A receiver tube for a hearing instrument receiver, the component that generates the sound heard by the user of the hearing instrument, connects the output of the receiver with the outside of the shell, conveying the sound from the receiver to the user's inner ear. To accommodate a wax guard and provide a secure attachment for the receiver, the receiver tube may be configured as a composite of a tube, a cup, an insulator, and a flange that mates with the receiver. An insulator fashioned from a compliant material minimizes vibration that may be induced into the shell by the action of the receiver.
A composite receiver tube 10 for a hearing instrument receiver 20, is shown in
The tube 30, the cup 40, and the insulator 50 may have a circular cross section or a cross section of some other shape as desired. The flange 70 provides a physical or mounting interface between the insulator 50 and the receiver 20. As shown in
The tube 30 may be fabricated from a synthetic material such as an elastomer or any other suitable material. One such elastomer is marketed by DuPont Dow Elastomers, L.L.C. under the trademark Viton. A Viton elastomer having a hardness rating of 50 on the Shore A scale will be suitable.
The tube 30 resides in the cup 40, which in turn resides in a recess 52 in the insulator 50. The cup 40 may be fabricated from a metal such as steel or any other suitable material. As depicted here, the cup 40 and the conforming recess 52 are cylindrical, but they could easily assume a different shape. The tube 30 may be secured to the cup 40 with an adhesive.
In addition to the recess 52 for the cup 40, the insulator 50 has a sound channel 54 (
A facing 58 on the flared section 56 (
The insulator 50 may be fabricated in an injection-molding process, incorporating the cup 40 and the flange 70 during the process as appropriate. The insulator 50 may be made from a soft, rubber-like material such as a fluorosilicone having a hardness rating of 20-30 on the Shore A scale. Compared to the tube 30, the insulator 50 exhibits greater compliance. As noted above, the compliant effect of the insulator 50 is further enhanced by the flared section 56.
If desired, the inner-ear side 64 of the insulator 50 could be connected directly to tube 30 while the receiver side 66 of the insulator 50 could be affixed directly to the receiver 20, foregoing the cup 40 and the flange 70, respectively. Where the cup 40 is omitted, the recess 52 on the inner-ear side 64 of the insulator 50 may be sized to the outer dimensions of the tube 30.
The composite receiver tube 10 and the receiver 20 are shown within a shell 80 (shown in phantom), residing in the user's ear canal 90 in
This application is related to and claims the benefit of commonly-owned U.S. Provisional Application for Patent, Ser. No. 60/987,798, filed Nov. 14, 2007, and is also related to commonly-owned U.S. patent applications Ser. No. 10/610,449, filed Jun. 30, 2003, and titled “Feedback Reducing Receiver Mount and Assembly,” and No. 10/945,704, filed Se. 21, 2004, and titled “Feedback Reducing Receiver Mount and Assembly,” all incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60987798 | Nov 2007 | US |