1. Field of the Disclosure
The present disclosure is related generally to sealing devices and particularly related to composite sealing devices.
2. Description of the Related Art
Sealing devices, such as seal rings or the like, are well known in the art for providing a seal between opposing sealing surfaces. Various sealing devices can be used to provide a leak-tight seal between surfaces that are static with respect to one another, and/or between surfaces that are dynamic relative to one another, e.g., between a static surface and a dynamic surface, or between two sealing surfaces. An exemplary dynamic sealing application is a seal that is disposed between a static housing and a dynamic rotary or reciprocating sealing surface.
Such seal devices can be configured differently, depending on the specific sealing application. For example, seal rings can be configured in the form of a lip seal, comprising one or more lip elements that are designed to project away from the seal body to make contact with the dynamic sealing surface, or in the form of an energized seal, comprising one or more seal elements that are pressed into contact with a dynamic sealing surface by an energizing member disposed within the seal ring. Such seal rings can be used for oil or non-oil sealing applications, or for any type of gas or fluid sealing application.
Energized seals are well known in the art, and are typically constructed to include a seal body formed from either a metallic or nonmetallic material, depending on the particular seal application, and an energizing member positioned within the seal body to urge a portion the seal body into contact with the dynamic sealing surface. See, for example, U.S. Pat. Nos. 6,619,668 and 5,163,692. Also known is the use of structures utilizing multiple layers or multiple materials. See, for example, U.S. Pat. Nos. 5,380,019, 6,830,641, and 5,573,846. In some cases an energized seal comprises an annular-shaped seal body that is formed from a polymeric material, and a patterned or individually formed metallic material that is disposed within a channel defining the U-shape of the seal body. Depending on the specific sealing application, such U-shaped seals can be used to provide a radial sealing surface, e.g., between a radially aligned dynamic sealing surface and an inside or outside diameter surface of the seal body, or to provide an axial seal surface, e.g., between an axially aligned dynamic sealing surface and an inside or outside diameter surface of the seal body.
Generally when forming known lip seals and energized seals, multiple steps are required to form the different seal members. Generally, the patterned member and the body member are manufactured separately or at least provided or joined in two different steps. Individual construction processes for each of the components as well as assembly requirements results in a time consuming and labor intensive expenditure.
Accordingly, the industry continues to require seal devices having simplified construction and fabrication without compromising sealing performance when compared to conventional seals. Additionally, the industry continues to require seals that provide improved seal effectiveness and durability.
According to a first aspect, an annular sealing device is provided that includes a composite material made of a substantially rigid substrate having a first major surface and a second major surface, wherein the substantially rigid substrate is configured to extend out of a plane parallel to a sealing surface at an angle. The composite material of the sealing device also includes a polymer layer overlying at least one of the first major surface and the second major surface.
Referring to a particular application, according to another aspect, a reservoir configured to receive a volume of liquid is provided. The reservoir includes a major surface, a drain hole in the major surface, and a plug disposed within the drain hole. The plug includes a shaft and a composite sealing device around a portion of the shaft. The composite sealing device includes a substantially rigid substrate having a first major surface and a second major surface and a polymer layer overlying the first major surface and the second major surface, as well as a gripping edge made of the polymer layer that provides a radial force on the shaft.
According to another aspect, a method of forming a seal is provided. The method includes the steps of providing a fastener comprising a head and a shaft and disposing a composite sealing device around the shaft. As with previously described embodiments, the composite sealing device can include a substantially rigid substrate having a first major surface, a second major surface, and a polymer layer overlying at least one of the first major surface and the second major surface. The method further includes the steps of providing a sealing surface having an opening therein and inserting the shaft into the opening, wherein the composite sealing device extends out of a plane parallel to the sealing surface at an angle, and engaging the sealing surface with the composite sealing device.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings indicates similar or identical items.
Referring to
Moreover, as illustrated in
In the embodiment illustrated in
Suitable polymer materials useful for forming the laminated construction can be organic polymers that facilitate properties such as self-lubrication, wear-resistance, mechanical strength, and the like. Polymer materials that can be bonded to the rigid substrate 101 include but are not limited to polypropylene; polyethylene; nitrile elastomers; fluoropolymers such as polytetrafluoroethylene (PTFE), fluorinated ethylene-propylene (FEP), perfluoroalkoxy fluorocarbon resin (PFA), polychlorotrifluoroethylene (PCTFE), ethylenechlorotrifluoroethylene copolymer (ECTFE), ethylenetetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF); acetal; polycarbonate; polyimides; polyetherimide; polyether ether ketone (PEEK); polysulfones (e.g., polyethersulfone); polyamide (Nylon); polyphenylene sulfide; polyurethane; polyester; polyphenylene oxide; and blends (e.g., copolymers) and alloys thereof.
Additionally, the polymer material can include one or more fillers and/or pigments, to provide certain desired seal performance properties, such as mechanical strength, lubricity, thermal and/or electrical conductivity, wear resistance, or appearance, i.e., color. For example, the polymer layers 103 and 104 can include materials such as graphite for improved wear resistance and lubricity. Other filler materials can include, but are not limited to, carbon, aluminum oxide, ceramic materials, glass, bronze, molybdenum disulfide, silicon carbide, aromatic polyester, fluoropolymer, and mixtures thereof. It will be appreciated that the proportion of fillers and/or pigments within the polymer material can vary depending on the type of polymer material selected, and the particular type of seal application.
Affixing the polymer layers 103 and 104 to the substantially rigid substrate 101 can be accomplished by bonding such as by use of a suitable bonding agent that is interposed between the two layers. Suitable bonding agents include fluoropolymers such as PFA, MFA, ETFE, FEP, PCTFE, PVDF, curing adhesives such as epoxy, polyimide adhesives, and lower temperature hot melts such as EVA and polyether/polyamide copolymer (Pebox). For a particular example, where the polymer is PTFE, a suitable bonding agent can be any one of a number of high-temperature thermoplastic film materials, such as PFA and ETFE.
Optionally, an additional rigid mesh layer, such as a bronze metal mesh layer, can be introduced between the substantially rigid substrate 101 and the polymer laminate layers 103 and 104. The process of forming the composite material can include heat and pressure treatment to bond the polymer laminate and the substantially rigid substrate 101. Additionally, a rigid backing layer, such as a metal backing layer can be affixed to the composite material for improved durability and formability. Typically the metal backing can overlie the substantially rigid substrate 101. According to a particular embodiment, the polymer laminated construction is in the form of a PTFE laminated metal sheet, such as NORGLIDE® material, commercially available from the Saint Gobain Performance Plastics Corporation.
In reference to the geometries of the composite material and component layers, according to one embodiment, the average total thickness of the composite is not greater than about 10.0 mm, such as not greater than about 8.0 mm, or not greater than about 5.0 mm. In some embodiments, the average total thickness of the composite is not greater than about 1.0 mm. As will be appreciated, the average total thickness of the composite is dependent in part upon the average total thickness of the substantially rigid substrate 101, which according to one embodiment is not greater than about 10.0 mm, such as not greater than about 8.0 mm, or even not greater than about 5.0 mm. Accordingly, the average total thickness of the composite is also dependent, in part, upon the average total thickness of the polymer layers 103 and 104. According to one embodiment, the average total thickness of the polymer layer 103 is not greater than about 1.0 mm, such as not greater than about 0.8 mm, or even not greater than about 0.5 mm. Such thicknesses, particularly the thicknesses of the polymer layers 103 and 104, can facilitate effective sealing and reduced flow of contact materials (e.g. polymer layers) during sealing. Moreover, the ratio between the thickness of the substantially rigid substrate 101 and the thicknesses of the polymer layers 103 and 104 can improve sealing capabilities and reduce wear of the composite material due to differences in thermal expansion coefficients.
In reference to the shape of the sealing device 100, according to one embodiment, the sealing device has a generally open conical shape. As illustrated in
In further reference to the shape of the sealing device, as mentioned above, the sealing device can have an open conical shape or a frustoconical shape such that it has a substantially circular or annular shape when viewed from a top-down perspective (see
As described previously, according to a particular embodiment, the seal device 100 can have an open conical shape of an annular contour having a circular perimeter with an opening defining an inner circumference, illustrated in a top-down view of
The open conical shape having an annular contour can facilitate coupling the seal device around a shaft. As illustrated in
In further reference to the composite sealing device of
Referring to
After inserting the shaft into the opening 603, the fastener can be tightened against the sealing surface such that the leading edge of the composite sealing device engages the sealing surface 605. In an exemplary embodiment, prior to engagement with the sealing surface the composite sealing device generally has an open conical shape and sits at an angle to the sealing surface. Because, with the illustrated embodiment, the composite sealing device sits at an angle to the sealing surface and has a substantially consistent rectangular cross section throughout the entire circumference, the illustrated composite sealing device has a leading edge for first engaging the sealing surface.
Upon tightening of the fastener to form a seal with the sealing surface the composite sealing device can be compressed between the head of the fastener and the sealing surface 607. Compression of the composite sealing device can change the shape of the device such that it changes from an open conical shape to a substantially cylindrical shape. In such instances, the major surfaces of the composite sealing device are substantially parallel with the sealing surface and the surface of the head of the fastener, which can be considered a second sealing surface 609. Moreover, compression of the composite sealing device can include compressing the device such that an inner radial surface of the composite sealing device fully contacts the shaft for an effective seal. Additionally, the composite sealing device can exert forces against the sealing surface and the shaft for an effective leak-tight seal.
It will be understood that each of the elements described above, or two or more together, may also find utility in applications differing from the types described herein. While the invention has been illustrated and described as embodied in a composite sealing device, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present invention. For example, although many examples of potential materials of construction have been presented throughout this specification, the omission of a material is not intended to specifically exclude its use in or in connection with the claimed invention. As such, further modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the invention as defined by the following claims.
This application is a continuation application of U.S. Non-Provisional application Ser. No. 11/400,804, filed Apr. 7, 2006 and entitled “Composite Sealing Device,” which is in turn a non-provisional application of and claiming priority to U.S. Provisional Application No. 60/669,577, entitled “Seal Formed From Polymer Laminated Metallic Constructions” filed Apr. 7, 2005, both applications for which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60669577 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11400804 | Apr 2006 | US |
Child | 12786207 | US |