The present invention relates generally to self-retaining systems for surgical procedures, methods of manufacturing self-retaining systems for surgical procedures, and uses thereof.
Wound closure devices such as sutures, staples and tacks have been widely used in superficial and deep surgical procedures in humans and animals for closing wounds, repairing traumatic injuries or defects, joining tissues together (bringing severed tissues into approximation, closing an anatomical space, affixing single or multiple tissue layers together, creating an anastomosis between two hollow/luminal structures, adjoining tissues, attaching or reattaching tissues to their proper anatomical location), attaching foreign elements to tissues (affixing medical implants, devices, prostheses and other functional or supportive devices), and for repositioning tissues to new anatomical locations (repairs, tissue elevations, tissue grafting and related procedures) to name but a few examples.
Sutures are often used as wound closure devices. Sutures typically consist of a filamentous suture thread attached to a needle with a sharp point. Suture threads can be made from a wide variety of materials including bioabsorbable (i.e., that break down completely in the body over time), or non-absorbable (permanent; non-degradable) materials. Absorbable sutures have been found to be particularly useful in situations where suture removal might jeopardize the repair or where the natural healing process renders the support provided by the suture material unnecessary after wound healing has been completed; as in, for example, completing an uncomplicated skin closure. Non-degradable (non-absorbable) sutures are used in wounds where healing may be expected to be protracted or where the suture material is needed to provide physical support to the wound for long periods of time; as in, for example, deep tissue repairs, high tension wounds, many orthopedic repairs and some types of surgical anastomosis. Also, a wide variety of surgical needles are available, and the shape, and size of the needle body and the configuration of the needle tip is typically selected based upon the needs of the particular application.
To use an ordinary suture, the suture needle is advanced through the desired tissue on one side of the wound and then through the adjacent side of the wound. The suture is then formed into a “loop” which is completed by tying a knot in the suture to hold the wound closed. Knot tying takes time and causes a range of complications, including, but not limited to (i) spitting (a condition where the suture, usually a knot) pushes through the skin after a subcutaneous closure), (ii) infection (bacteria are often able to attach and grow in the spaces created by a knot), (iii) bulk/mass (a significant amount of suture material left in a wound is the portion that comprises the knot), (iv) slippage (knots can slip or come untied), and (v) irritation (knots serve as a bulk “foreign body” in a wound). Suture loops associated with knot tying may lead to ischemia (knots can create tension points that can strangulate tissue and limit blood flow to the region) and increased risk of dehiscence or rupture at the surgical wound. Knot tying is also labor intensive and can comprise a significant percentage of the time spent closing a surgical wound. Additional operative procedure time is not only bad for the patient (complication rates rise with time spent under anesthesia), but it also adds to the overall cost of the operation (many surgical procedures are estimated to cost between $15 and $30 per minute of operating time).
Self-retaining sutures (including barbed sutures) differ from conventional sutures in that self-retaining sutures possess numerous tissue retainers (such as barbs) which anchor the self-retaining suture into the tissue following deployment and resist movement of the suture in a direction opposite to that in which the retainers face, thereby eliminating the need to tie knots to affix adjacent tissues together (a “knotless” closure). Knotless tissue-approximating devices having barbs have been previously described in, for example, U.S. Pat. No. 5,374,268, disclosing armed anchors having barb-like projections, while suture assemblies having barbed lateral members have been described in U.S. Pat. Nos. 5,584,859 and 6,264,675. Sutures having a plurality of barbs positioned along a greater portion of the suture are described in U.S. Pat. No. 5,931,855, which discloses a unidirectional barbed suture, and U.S. Pat. No. 6,241,747, which discloses a bidirectional barbed suture. Methods and apparatus for forming barbs on sutures have been described in, for example, U.S. Pat. No. 6,848,152. Self-retaining systems for wound closure also result in better approximation of the wound edges, evenly distribute the tension along the length of the wound (reducing areas of tension that can break or lead to ischemia), decrease the bulk of suture material remaining in the wound (by eliminating knots) and reduce spitting (the extrusion of suture material—typically knots—through the surface of the skin. All of these features are thought to reduce scarring, improve cosmesis, and increase wound strength relative to wound closures using plain sutures or staples. Thus, self-retaining sutures, because such sutures avoid knot tying, allow patients to experience an improved clinical outcome, and also save time and costs associated with extended surgeries and follow-up treatments. It is noted that all patents, patent applications and patent publications identified throughout are incorporated herein by reference in their entirety.
The ability of self-retaining sutures to anchor and hold tissues in place even in the absence of tension applied to the suture by a knot is a feature that also provides superiority over plain sutures. When closing a wound that is under tension, this advantage manifests itself in several ways: (i) self-retaining sutures have a multiplicity of retainers which can dissipate tension along the entire length of the suture (providing hundreds of “anchor” points this produces a superior cosmetic result and lessens the chance that the suture will “slip” or pull through) as opposed to knotted interrupted sutures which concentrate the tension at discrete points; (ii) complicated wound geometries can be closed (circles, arcs, jagged edges) in a uniform manner with more precision and accuracy than can be achieved with interrupted sutures; (iii) self-retaining sutures eliminate the need for a “third hand” which is often required for maintaining tension across the wound during traditional suturing and knot tying (to prevent “slippage” when tension is momentarily released during tying); (iv) self-retaining sutures are superior in procedures where knot tying is technically difficult, such as in deep wounds or laparoscopic/endoscopic procedures; and (v) self-retaining sutures can be used to approximate and hold the wound prior to definitive closure. As a result, self-retaining sutures provide easier handling in anatomically tight or deep places (such as the pelvis, abdomen and thorax) and make it easier to approximate tissues in laparoscopic/endoscopic and minimally invasive procedures; all without having to secure the closure via a knot. Greater accuracy allows self-retaining sutures to be used for more complex closures (such as those with diameter mismatches, larger defects or purse string suturing) than can be accomplished with plain sutures.
A self-retaining suture may be unidirectional, having one or more retainers oriented in one direction along the length of the suture thread; or bidirectional, typically having one or more retainers oriented in one direction along a portion of the thread, followed by one or more retainers oriented in another (often opposite) direction over a different portion of the thread (as described with barbed retainers in U.S. Pat. Nos. 5,931,855 and 6,241,747). Although any number of sequential or intermittent configurations of retainers are possible, a common form of bidirectional self-retaining suture involves a needle at one end of a suture thread which has barbs having tips projecting “away” from the needle until the transition point (often the midpoint) of the suture is reached; at the transition point the configuration of barbs reverses itself about 180° (such that the barbs are now facing in the opposite direction) along the remaining length of the suture thread before attaching to a second needle at the opposite end (with the result that the barbs on this portion of the suture also have tips projecting “away” from the nearest needle). Projecting “away” from the needle means that the tip of the barb is further away from the needle and the portion of suture comprising the barb may be pulled more easily through tissue in the direction of the needle than in the opposite direction. Put another way, the barbs on both “halves” of a typical bidirectional self-retaining suture have tips that point towards the middle, with a transition segment (lacking barbs) interspersed between them, and with a needle attached to either end.
Despite the multitude of advantages of unidirectional and bidirectional self-retaining sutures, there remains a need to improve upon the design of the suture such that a variety of common limitations can be eliminated. Specifically, several problems common to existing self-retaining sutures can be addressed by the embodiments of this invention, including, but not limited to: (i) retainers or barbs that are fragile and break or too flexible and bend back, or do not stand proud due to an insufficient ability of the material to plastically deform and as such do not properly engage when deployed in tissue; (ii) inadequate “hold” provided by the retainers for some surgical procedures; resulting in retainers or barbs do not sufficiently anchor in the surrounding tissue and “pull through;” (iii) insufficient contact between the retainers and the surrounding tissue (often occurring when the thread diameter is too small relative to the diameter of the hole created by a larger needle; this limits the ability of the retainers to contact and “grip” the surrounding tissue); (iv) breakage of the self-retaining suture during tensioning and wound approximation; and (v) rotation and slippage of the retainers after deployment. Furthermore, the creation and or deployment of retainer features of self-retaining sutures may be difficult to achieve.
Thus, it would be desirable to provide improved self-retaining sutures which have enhanced ability to anchor into the surrounding tissue, enhanced tissue holding capabilities, enhanced maximum load, and enhanced clinical performance.
It would further be desirable to provide improved methods for making self-retaining sutures that yield retainers which can be more readily created, elevated and deployed.
In accordance with the foregoing background and the limitations of the prior art, the present invention provides, improved self-retaining sutures which have enhanced ability to anchor into the surrounding tissue, enhanced tissue holding capabilities, enhanced maximum load, and enhanced clinical performance and methods for making such self-retaining sutures.
In accordance with another aspect, the present invention provides methods of making self-retaining sutures utilizing a composite filament comprised of two or more different materials.
In accordance with another aspect, the present invention provides self-retaining sutures comprising a composite filament having two of more different materials in which at least one outer material enhances the creation, elevation and deployment of the retainers of the suture.
In accordance with another aspect, the present invention provides sutures comprising a composite filament of two of more different co-extruded materials in which at least one inner material enhances the tensile strength and/or the flexibility of the suture and potentially does this without compromising the creation, elevation, deployment and engagement of the retainers on the suture.
In accordance with a specific embodiment of the present invention a self-retaining suture is made by co-extruding two materials to form a composite filament having a core made from one material that has high strength and flexibility and a sheath made from a different material selected to enhance formation, positioning and strength of a plurality of retainers. In a specific embodiment the sheath material is more plastically deformable than the core material and the core material has more tensile strength than the sheath material such that the suture has an enhanced combination of retainer features and tensile strength compared to a similar suture formed from a single-material filament.
In accordance with specific embodiments of the present invention a self-retaining suture is made by forming a composite filament having a core made from one material that has high strength and a sheath made from a different material. A plurality of retainers is formed from the material of the sheath in the surface of the filament. In specific embodiments the sheath and therefore retainers are made from a material that has a higher elastic constant (and is thus stiffer) and/or a larger plastic zone (and is thus more permanently deformable) than the material of the core. Also, the core material is more elastic and/or more flexible than the material of which the sheath and retainers are made.
The details of one or more embodiments are set forth in the description below. Other features, objects and advantages will be apparent from the description, the drawings, and the claims. In addition, the disclosures of all patents and patent applications referenced herein are incorporated by reference in their entirety.
Features of the invention, its nature and various advantages will be apparent from the accompanying drawings and the following detailed description of various embodiments.
Definitions of certain terms that may be used hereinafter include the following.
“Self-retaining system” refers to a self-retaining suture together with devices for deploying the suture into tissue. Such deployment devices include, without limitation, suture needles and other deployment devices as well as sufficiently rigid and sharp ends on the suture itself to penetrate tissue.
“Self-retaining suture” refers to a suture that comprises features on the suture filament for engaging tissue without the need for a knot or suture anchor.
“Tissue retainer” (or simply “retainer”) or “barb” refers to a physical feature of a suture filament which is adapted to mechanically engage tissue and resist movement of the suture in at least one axial directions. By way of example only, tissue retainer or retainers can include hooks, projections, barbs, darts, extensions, bulges, anchors, protuberances, spurs, bumps, points, cogs, tissue engagers, traction devices, surface roughness, surface irregularities, surface defects, edges, facets and the like. In certain configurations, tissue retainers are adapted to engage tissue to resist movement of the suture in a direction other than the direction in which the suture is deployed into the tissue by the surgeon, by being oriented to substantially face the deployment direction. In some embodiments the retainers lie flat when pulled in the deployment direction and open or “fan out” when pulled in a direction contrary to the deployment direction. As the tissue-penetrating end of each retainer faces away from the deployment direction when moving through tissue during deployment, the tissue retainers should not catch or grab tissue during this phase. Once the self-retaining suture has been deployed, a force exerted in another direction (often substantially opposite to the deployment direction) causes the retainers to be displaced from the deployment position (i.e. resting substantially along the suture body), forces the retainer ends to open (or “fan out”) from the suture body in a manner that catches and penetrates into the surrounding tissue, and results in tissue being caught between the retainer and the suture body; thereby “anchoring” or affixing the self-retaining suture in place. In certain other embodiments, the tissue retainers may be configured to permit motion of the suture in one direction and resist movement of the suture in another direction without fanning out or deploying. In certain other configurations, the tissue retainer may be configured or combined with other tissue retainers to resist motion of the suture filament in both directions. Typically a suture having such retainers is deployed through a device such as a cannula which prevents contact between the retainers and the tissue until the suture is in the desired location.
“Retainer configurations” refers to configurations of tissue retainers and can include features such as size, shape, flexibility, surface characteristics, and so forth. These are sometimes also referred to as “barb configurations”.
“Bidirectional suture” refers to a self-retaining suture having retainers oriented in one direction at one end and retainers oriented in the other direction at the other end. A bidirectional suture is typically armed with a needle at each end of the suture thread. Many bidirectional sutures have a transition segment located between the two barb orientations.
“Transition segment” refers to a retainer-free (barb-free) portion of a bidirectional suture located between a first set of retainers (barbs) oriented in one direction and a second set of retainers (barbs) oriented in another direction. The transition segment can be at about the midpoint of the self-retaining suture, or closer to one end of the self-retaining suture to form an asymmetrical self-retaining suture system.
“Suture thread” refers to the filamentary body component of the suture. The suture thread may be a monofilament, or comprise multiple filaments as in a braided suture. The suture thread may be made of any suitable biocompatible material, and may be further treated with any suitable biocompatible material, whether to enhance the sutures' strength, resilience, longevity, or other qualities, or to equip the sutures to fulfill additional functions besides joining tissues together, repositioning tissues, or attaching foreign elements to tissues.
“Monofilament suture” refers to a suture comprising a monofilamentary suture thread.
“Braided suture” refers to a suture comprising a multifilamentary suture thread. The filaments in such suture threads are typically braided, twisted, or woven together.
“Degradable suture” (also referred to as “biodegradable suture” or “absorbable suture”) refers to a suture which, after introduction into a tissue is broken down and absorbed by the body. Typically, the degradation process is at least partially mediated by, or performed in, a biological system. “Degradation” refers to a chain scission process by which a polymer chain is cleaved into oligomers and monomers. Chain scission may occur through various mechanisms, including, for example, by chemical reaction (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Polymer degradation may be characterized, for example, using gel permeation chromatography (GPC), which monitors the polymer molecular mass changes during erosion and breakdown. Degradable suture material may include polymers such as polyglycolic acid, copolymers of glycolide and lactide, copolymers of trimethylene carbonate and glycolide with diethylene glycol (e.g., MAXON™, Tyco Healthcare Group), terpolymer composed of glycolide, trimethylene carbonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate (26%), and dioxanone (14%)], Tyco Healthcare Group), copolymers of glycolide, caprolactone, trimethylene carbonate, and lactide (e.g., CAPROSYN™, Tyco Healthcare Group). A dissolvable suture can also include partially deacetylated polyvinyl alcohol. Polymers suitable for use in degradable sutures can be linear polymers, branched polymers or multi-axial polymers. Examples of multi-axial polymers used in sutures are described in U.S. Patent Application Publication Nos. 20020161168, 20040024169, and 20040116620. Sutures made from degradable suture material lose tensile strength as the material degrades. Degradable sutures can be in either a braided multifilament form or a monofilament form.
“Non-degradable suture” (also referred to as “non-absorbable suture”) refers to a suture comprising material that is not degraded by chain scission such as chemical reaction processes (e.g., hydrolysis, oxidation/reduction, enzymatic mechanisms or a combination of these) or by a thermal or photolytic process. Non-degradable suture material includes polyamide (also known as nylon, such as nylon 6 and nylon 6,6), polyester (e.g., polyethylene terephthalate), polytetrafluoroethylene (e.g., expanded polytetrafluoroethylene), polyether-ester such as polybutester (block copolymer of butylene terephthalate and polytetra methylene ether glycol), polyurethane, metal alloys, metal (e.g., stainless steel wire), polypropylene, polyethelene, silk, and cotton. Sutures made of non-degradable suture material are suitable for applications in which the suture is meant to remain permanently or is meant to be physically removed from the body.
“Suture diameter” refers to the diameter of the body of the suture. It is to be understood that a variety of suture lengths may be used with the sutures described herein and that while the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape. Suture sizing is based upon diameter. United States Pharmacopeia (“USP”) designation of suture size runs from 0 to 7 in the larger range and 1-0 to 11-0 in the smaller range; in the smaller range, the higher the value preceding the hyphenated zero, the smaller the suture diameter. The actual diameter of a suture will depend on the suture material, so that, by way of example, a suture of size 5-0 and made of collagen will have a diameter of 0.15 mm, while sutures having the same USP size designation but made of a synthetic absorbable material or a non-absorbable material will each have a diameter of 0.1 mm. The selection of suture size for a particular purpose depends upon factors such as the nature of the tissue to be sutured and the importance of cosmetic concerns; while smaller sutures may be more easily manipulated through tight surgical sites and are associated with less scarring, the tensile strength of a suture manufactured from a given material tends to decrease with decreasing size. It is to be understood that the sutures and methods of manufacturing sutures disclosed herein are suited to a variety of diameters, including without limitation 7, 6, 5, 4, 3, 2, 1, 0, 1-0, 2-0, 3-0, 4-0, 5-0, 6-0, 7-0, 8-0, 9-0, 10-0 and 11-0.
“Suture deployment end” refers to an end of the suture to be deployed into tissue; one or both ends of the suture may be suture deployment ends. The suture deployment end may be attached to a deployment device such as a suture needle, or may be sufficiently sharp and rigid to penetrate tissue on its own.
“Armed suture” refers to a suture having a suture needle on at least one suture deployment end.
“Needle attachment” refers to the attachment of a needle to a suture requiring same for deployment into tissue, and can include methods such as crimping, swaging, using adhesives, and so forth. The suture thread is attached to the suture needle using methods such as crimping, swaging and adhesives. Attachment of sutures and surgical needles is described in U.S. Pat. Nos. 3,981,307, 5,084,063, 5,102,418, 5,123,911, 5,500,991, 5,722,991, 6,012,216, and 6,163,948, and U.S. Patent Application Publication No. US 2004/0088003). The point of attachment of the suture to the needle is known as the swage.
“Suture needle” refers to needles used to deploy sutures into tissue, which come in many different shapes, forms and compositions. There are two main types of needles, traumatic needles and atraumatic needles. Traumatic needles have channels or drilled ends (that is, holes or eyes) and are supplied separate from the suture thread and are threaded on site. Atraumatic needles are eyeless and are attached to the suture at the factory by swaging or other methods whereby the suture material is inserted into a channel at the blunt end of the needle which is then deformed to a final shape to hold the suture and needle together. As such, atraumatic needles do not require extra time on site for threading and the suture end at the needle attachment site is generally smaller than the needle body. In the traumatic needle, the thread comes out of the needle's hole on both sides and often the suture rips the tissues to a certain extent as it passes through. Most modern sutures are swaged atraumatic needles. Atraumatic needles may be permanently swaged to the suture or may be designed to come off the suture with a sharp straight tug. These “pop-offs” are commonly used for interrupted sutures, where each suture is only passed once and then tied. For barbed sutures that are uninterrupted, these atraumatic needles are preferred.
Suture needles may also be classified according to the geometry of the tip or point of the needle. For example, needles may be (i) “tapered” whereby the needle body is round and tapers smoothly to a point; (ii) “cutting” whereby the needle body is triangular and has a sharpened cutting edge on the inside; (iii) “reverse cutting” whereby the cutting edge is on the outside; (iv) “trocar point” or “taper cut” whereby the needle body is round and tapered, but ends in a small triangular cutting point; (v) “blunt” points for sewing friable tissues; (vi) “side cutting” or “spatula points” whereby the needle is flat on top and bottom with a cutting edge along the front to one side (these are typically used for eye surgery).
Suture needles may also be of several shapes including, (i) straight, (ii) half curved or ski, (iii) ¼ circle, (iv) ⅜ circle, (v) ½ circle, (vi) ⅝ circle, (v) and compound curve.
Suturing needles are described, for example, in U.S. Pat. Nos. 6,322,581 and 6,214,030 (Mani, Inc., Japan); and U.S. Pat. No. 5,464,422 (W.L. Gore, Newark, Del.); and U.S. Pat. Nos. 5,941,899; 5,425,746; 5,306,288 and 5,156,615 (US Surgical Corp., Norwalk, Conn.); and U.S. Pat. No. 5,312,422 (Linvatec Corp., Largo, Fla.); and U.S. Pat. No. 7,063,716 (Tyco Healthcare, North Haven, Conn.). Other suturing needles are described, for example, in U.S. Pat. Nos. 6,129,741; 5,897,572; 5,676,675; and 5,693,072. The sutures described herein may be deployed with a variety of needle types (including without limitation curved, straight, long, short, micro, and so forth), needle cutting surfaces (including without limitation, cutting, tapered, and so forth), and needle attachment techniques (including without limitation, drilled end, crimped, and so forth). Moreover, the sutures described herein may themselves include sufficiently rigid and sharp ends so as to dispense with the requirement for deployment needles altogether.
“Needle diameter” refers to the diameter of a suture deployment needle at the widest point of that needle. While the term “diameter” is often associated with a circular periphery, it is to be understood herein to indicate a cross-sectional dimension associated with a periphery of any shape.
“Wound closure” refers to a surgical procedure for closing of a wound. An injury, especially one in which the skin or another external or internal surface is cut, torn, pierced, or otherwise broken is known as a wound. A wound commonly occurs when the integrity of any tissue is compromised (e.g., skin breaks or burns, muscle tears, or bone fractures). A wound may be caused by an act, such as a puncture, fall, or surgical procedure; by an infectious disease; or by an underlying medical condition. Surgical wound closure facilitates the biological event of healing by joining, or closely approximating, the edges of those wounds where the tissue has been torn, cut, or otherwise separated. Surgical wound closure directly opposes or approximates the tissue layers, which serves to minimize the volume new tissue formation required to bridge the gap between the two edges of the wound. Closure can serve both functional and aesthetic purposes. These purposes include elimination of dead space by approximating the subcutaneous tissues, minimization of scar formation by careful epidermal alignment, and avoidance of a depressed scar by precise eversion of skin edges.
‘Tissue elevation procedure” refers to a surgical procedure for repositioning tissue from a lower elevation to a higher elevation (i.e. moving the tissue in a direction opposite to the direction of gravity). The retaining ligaments of the face support facial soft tissue in the normal anatomic position. However, with age, gravitational effects and loss of tissue volume effect downward migration of tissue, and fat descends into the plane between the superficial and deep facial fascia, thus causing facial tissue to sag. Face-lift procedures are designed to lift these sagging tissues, and are one example of a more general class of medical procedure known as a tissue elevation procedure. More generally, a tissue elevation procedure reverses the appearance change that results from effects of aging and gravity over time, and other temporal effects that cause tissue to sag, such as genetic effects. It should be noted that tissue can also be repositioned without elevation; in some procedures tissues are repositioned laterally (away from the midline), medially (towards the midline) or inferiorly (lowered) in order to restore symmetry (i.e. repositioned such that the left and right sides of the body “match”).
“Medical device” or “implant” refers to any object placed in the body for the purpose of restoring physiological function, reducing/alleviating symptoms associated with disease, and/or repairing and/or replacing damaged or diseased organs and tissues. While normally composed of biologically compatible synthetic materials (e.g., medical-grade stainless steel, titanium and other metals or polymers such as polyurethane, silicon, PLA, PLGA and other materials) that are exogenous, some medical devices and implants include materials derived from animals (e.g., “xenografts” such as whole animal organs; animal tissues such as heart valves; naturally occurring or chemically-modified molecules such as collagen, hyaluronic acid, proteins, carbohydrates and others), human donors (e.g., “allografts” such as whole organs; tissues such as bone grafts, skin grafts and others), or from the patients themselves (e.g., “autografts” such as saphenous vein grafts, skin grafts, tendon/ligament/muscle transplants). Medical devices that can be used in procedures in conjunction with the present invention include, but are not restricted to, orthopedic implants (artificial joints, ligaments and tendons; screws, plates, and other implantable hardware), dental implants, intravascular implants (arterial and venous vascular bypass grafts, hemodialysis access grafts; both autologous and synthetic), skin grafts (autologous, synthetic), tubes, drains, implantable tissue bulking agents, pumps, shunts, sealants, surgical meshes (e.g., hernia repair meshes, tissue scaffolds), fistula treatments, spinal implants (e.g., artificial intervertebral discs, spinal fusion devices, etc.) and the like.
Composite Self-Retaining Sutures
As discussed above, the present invention provides compositions, configurations, methods of manufacturing and methods of using self-retaining systems in surgical procedures which greatly increase the ability of the self-retaining sutures to anchor into the surrounding tissue to provide superior holding strength and improve clinical performance. In accordance with one embodiment, the present invention comprises a self-retaining suture comprising a composite filament made from two or more different materials.
A. Self-Retaining Composite Suture System
In alternative embodiments a retainer 130 may comprise the sheath material 152 and also some portion of the core material 150 or another non-sheath material. In such embodiments the materials are selected such that the composite properties of the materials in the retainer permit or enhance the function of the retainer such as by facilitating elevation of the retainer 130.
B. Retainer Formation and Elevation
Suture threads described herein may be produced by any suitable method, including without limitation, injection molding, stamping, cutting, laser, extrusion, and so forth. With respect to cutting, polymeric thread or filaments may be manufactured or purchased for the suture body, and the retainers can be subsequently cut onto the suture body; the retainers may be hand-cut, laser-cut, or mechanically machine-cut using blades, cutting wheels, grinding wheels, and so forth. During cutting either the cutting device or the suture thread may be moved relative to the other, or both may be moved, to control the size, shape and depth of cut 210. Particular methods for cutting barbs on a filament are described in U.S. patent application Ser. No. 09/943,733 titled “Method Of Forming Barbs On A Suture And Apparatus For Performing Same” to Genova et al., and U.S. patent application Ser. No. 10/065,280 titled “Barbed Sutures” to Leung et al. both of which are incorporated herein by reference.
Referring now to
As shown in
In order for retainer 130 to effectively engage tissue after deployment, tip 132 is preferably elevated above the surface of composite filament 120. As shown in
If sheath material 152 is too elastic, retainer 130 will spring back to the retainer's previous position flush with the surface of composite filament 120 (as shown by the dotted line) after elevation of the retainer. This is also the case if the material does not have the ability to undergo permanent deformation. Thus, in accordance with a specific embodiment of the present invention, sheath material 152 is selected such that it is sufficiently plastically deformable that after retainer 130 has been moved away from composite filament 120, sheath material remains in its new deformed shape with the tip 132 of retainer 130 substantially elevated above the surface of composite filament 120 and tissue engagement surface 134 exposed. Sheath material 152 is selected such that the mechanical movement of tip 132 of retainer away from composite filament 120 is sufficient to plastically deform the region 230 of material 152 at the base of retainer 130 causing it to take on a new permanent shape. However, as such plastic deformation would be undesirable in the suture as a whole, core material 150 is selected to have significantly lower plasticity and significantly higher elasticity and/or tensile strength than sheath material 152.
In other embodiments, retainer 130 may be formed by a process other than cutting into the sheath of the filament. For example, as shown in
C. Co-Extrusion of Composite Monofilament
As described above, a composite filament can be made in many different ways. In accordance with one embodiment of the invention, a composite monofilament 320 is formed by co-extruding two materials. As shown in
In main extruder 330, the two melted materials 311, 316 flow through two flow paths 336, 338 through an extrusion die 332 which controls the arrangement of the two materials 311, 316 when the materials combine in composite flow channel 339. The two materials are combined are combined in composite flow channel 339 as shown and then extruded from die 332 through die exit 334. Die 332 and flow channels 336, 338, 339 are designed and operated such that the two materials 311 and 316 do not mix in composite flow channel 339. The fiber 340 which is still melted material is then solidified by air or liquid cooling in quenching station 350. Quenching station 350 preferably optionally includes a quenching bath 352 for liquid cooling. The solidified filament 342 is then drawn in drawing machine 360. Typically the solidified filament is drawn at temperatures between 30-80% of melting point (Celsius). Usually the suture is extruded then drawn on several rollers with decreasing temperature. Drawing of the filament reduces the diameter of the filament while at the same time orienting the molecules of the polymers of the filament and enhancing the tensile strength of the filament. Typically drawing is conducted in a continuous process by winding the filament around a series of rollers where each roller in the series has a slightly higher roller surface speed. The speed differential of the rollers results in stretching of the filament as the filament passes from roller to roller. The filament may also be tempered by one or more heating and cooling steps before, during or after the drawing process. As illustrated in
Although extrusion has been illustrated in
D. Filament Configurations
Depending upon the configuration of the extruders, die, spin block, spinneret, or other manufacturing equipment, a composite filament suitable for creating a self-retaining suture in accordance with embodiments of the present invention can be created with a wide variety of different arrangements of different materials. Furthermore, composite filaments can be made using 2, 3, 4 or even more different component materials if necessary or desired for the particular application. Different configurations of composite filaments are useful in specific embodiments of the present invention and are described below with respect to
As shown in
The configuration of the materials in the composite filament will depend upon the characteristics of the materials and the amount of material necessary to fulfill the role of the filament. For example, in one embodiment the material of sheath 414 is chosen to be plastically deformable in order that barbs may be more easily formed and elevated from the surface of the filament. The depth of the sheath may thus be chosen such that the retainers when formed are formed entirely out of the sheath material. Likewise in one embodiment of the present invention the material of the core 412 is chosen because of its characteristic of tensile strength. The strength of the final filament material will depend in large part upon the cross-sectional area of core 412. Thus core 412 is desirably as large as possible while providing sufficient amount of sheath material 414 to permit the formation of retainers. The overall diameter of the suture thread is also limited based upon the surgical needs.
Naturally, other geometric arrangements of the materials are possible, for example the sheath may be formed with a square cross-section, pentagonal, hexagonal or other polygonal cross-section.
E. Filament Materials
It is an advantage of the present invention that the material of the sheath of the filament may have different properties than the material of the core. The material of the sheath may thus be selected to have properties useful for retainer formation, elevation and deployment material and the material of the core may be selected for properties such as strength and flexibility. Suitable materials for the core include many materials that are currently used for making sutures. Suitable non-degradable suture materials for the core material include polyamide (also known as nylon, such as nylon 6 and nylon 6.6), polyester (e.g., polyethylene terephthalate), polytetrafluoroethylenes (e.g., expanded polytetrafluoroethylene), polyether-ester such as polybutester (block copolymer of butylene terephthalate and polytetra methylene ether glycol), 4-hydroxybutyrate, polyhydroxylalkanoate, polyurethane, metals and metal alloys (e.g., stainless steel wire), polypropylene, polyethelene, silk, and cotton. Suitable absorbable materials for the core include polyglycolic acid homopolymer, copolymers of glycolide and ε-caprolactone, copolymers of glycolide and lactide, copolymers of trimethylene carbonate and glycolide with diethylene glycol (e.g., MAXON™, Tyco Healthcare Group), polyhydroxylalkanoates (such as poly(4-hydroxybutyrate) or poly(4-hydroxybutyrate-co-3-hydroxybutyrate)), terpolymer composed of glycolide, trimethylene carbonate, and dioxanone (e.g., BIOSYN™ [glycolide (60%), trimethylene carbonate (26%), and dioxanone (14%)], Tyco Healthcare Group), copolymers of glycolide, caprolactone, trimethylene carbonate, and lactide (e.g., CAPROSYN™, Tyco Healthcare Group).
Suitable core materials are characterized by high yield strength after drawing and sufficient flexibility to ease handling. One suitable core material is copolymer of glycolide and ε-caprolactone, in a ratio of 50/50 to 95/5. More preferably the ratio of glycolide to 8-caprolactone is between preferably 70/30 to 80/20 and most preferably between 72/28 and 78/22. In some embodiments the core material has an elastic constant (Young's modulus) between 60,000 and 600,000 PSI. Preferably the core material has an elastic constant greater than 100,000 PSI. In most embodiments the elastic constant of the core material will be less than 400,000 PSI. However a core material with a higher elastic constant will be suitable if it has sufficient toughness and flexibility. Conversely a material with a lower elastic constant will be suitable if it has a low yield strength and sufficient toughness and a large plastic zone with a sufficiently high ultimate tensile strength (plastic suture can be advantageous in various applications which require permanent deformation to be imposed on the suture during use) or a high yield strength (elastic suture, which can be advantageous in various applications which require compliance). In some embodiments the core material will have a plasticity (amount of plastic deformation as a percentage of total deformation before breaking) of 5-70% and 10-100% elongation at break. However, preferably the core material has a plasticity of around 30% and 15-80% elongation at break. Most suitable core materials will have an elongation at break of 20-50%. The above elastic constant, plasticity and elongation at break values are for the core material as present in the finished suture (after drawing and/or other treatments). Some suitable suture materials may also have more than one elastic constant in the tensile curve which can be represented by two differentially sloped linear regions in the stress-strain curve, in such cases the combination of elastic constants are considered.
Because the retainers are formed from the material or materials of the sheath, the sheath layer or layers may desirably incorporate materials that promote the formation, elevation and deployment of the retainers. Materials that are suitable for the sheath, in some embodiments, are characterized by having a sufficiently small elastic zone and sufficiently large plastic zone to allow for permanent deformation of barbs into an elevated position during cutting and elevation and low recoil after elevating the barbs. It is also desirable to select materials for the sheath with low visco-elastic properties, since in such materials, the recoil may over a time and go undetected immediately after barb cutting and elevation. In certain embodiments the material of the sheath material may be selected to have a larger plastic deformation zone (also known as work hardening zone) i.e. more ability to undergo plastic (permanent) deformation than the material of the core material. This permits retainers formed from the sheath material to be elevated (bent away) from the filament and permanently deformed into the elevated position away from composite filament. For example, suitable materials for the sheath include Nylon 6,6, polydioxanone, polypropylene, non-drawn polycaprolactone, poly(4-hydroxybutyrate), non-drawn polydioxanone. Materials which are not drawn typically exhibit a larger plastic region than those which have been drawn. A disadvantage of non-drawn materials can be low stiffness. It is advantageous in some embodiments to use non-drawn materials in the sheath and increase their crystallinity post barb-making by annealing thereby obtaining a higher stiffness of the barb. The retainers can be treated to increase their stiffness and strength e.g. by appropriate annealing cycles (heating to a certain temperature and cooling at a certain rate) using techniques similar to those taught in U.S. Pat. No. 5,007,922 titled “Method Of Making A Surgical Suture” to Chen et al. which is incorporated herein by reference.
Preferably, the sheath material is also relatively stiff (i.e. the sheath material has a high elastic constant, but a short elastic zone, and a long plastic zone preferably with a large work hardening coefficient) such that the retainers take a large force to plastically deform, but have low recoil and thus remain in the elevated position after deformation. Additionally the sheath material preferably has sufficient flexural strength to prevent barbs from bending backwards during fixation of the suture in the tissues and sufficient strength to prevent barbs from breaking during fixation of the suture in the tissues. In some embodiments the sheath material has a short elastic zone and a high yield strength. Thus, in some embodiments the sheath material has an elongation at onset of yielding (onset of plastic deformation) of less than 10% and more preferably less than 3% elongation. At the same time the sheath preferably has a high work hardening coefficient and large plastic zone. Additionally, the plasticity (amount of plastic deformation as a percentage of total deformation before breaking) of the sheath material is, in some embodiments, higher than the plasticity of the core material. In some embodiments the sheath material has a plasticity which comprises 5-90% of total elongation and an ultimate elongation (elongation at break) of 10-80%. Alternatively the sheath can have a plasticity which comprises 30-80% of the total elongation and an ultimate elongation of 15-60%. Most preferably the plastic zone of the sheath material comprises 60-90% of the ultimate elongation.
The material of the sheath in some embodiments also preferably has a high strain-hardening exponent (also known as work-hardening coefficient). Most materials with a distinctive plastic zone have a strain-hardening exponent of 0.1-0.5. Many materials with a low strain-hardening exponent (tending towards “perfect plastic”) are not desirable as a sheath material due to the inability to withstand excess stress post yielding. The sheath material may in some embodiments have a strain-hardening exponent between 0.1 and 0.8 and preferably has a strain-hardening exponent between 0.3 and 0.7. Note that in some embodiments a sheath of non-drawn polymer may be extruded over a core polymer which has already been drawn in which case, the sheath elastic constant, plasticity and elongation at break values reflect the properties of the material without drawing. However, the sheath material may be annealed or otherwise treated after extrusion in order to increase the crystallinity and strength (and therefore stiffness).
It is another advantage of the present invention that the sheath and/or outer layers of the filament may desirably incorporate materials that further promote tissue engagement. In addition to tissue engagement at the retainers, use of tissue engagement-promoting materials in at least part of the suture sheath surface (whether or not such materials also make up all or part of the retainers) can enhance the ability of the sutures to stay in place. One such class of tissue engagement-promoting materials are porous polymers that can be extruded, including both microporous polymers and polymers that can be extruded with bubbles (whether bioabsorbable or nonbioabsorbable). A suture synthesized with such materials in the sheath can have a three-dimensional lattice structure that increases tissue engagement surface area and permits tissue infiltration into the suture body itself, thus having a sheath structure that promotes successful suture use. Moreover, by optimizing pore size, fibroblast ingrowth can be encouraged, further facilitating the suture to be anchored in the tissue. Furthermore, an agent can be utilized in conjunction with the suture (introduced separately or adhered to the suture or incorporated into a material of the suture) to encourage fibrosis. Fibrosis-inducing agents which may be used in conjunction with a self-retaining sutures in accordance with the present invention are described in U.S. Pat. No. 7,166,570 titled “Medical Implants And Fibrosis-Inducing Agents” to Hunter et al. which is incorporated herein by reference.
One such microporous polymer is ePTFE (expanded polytetrafluoroethylene). Self-retaining incorporating ePTFE (and related microporous materials) in the sheath are well-suited to uses requiring a strong and permanent lift (such as breast lifts, face lifts, and other tissue repositioning procedures), as tissue infiltration of the suture results in improved fixation and engraftment of the suture and the surrounding tissue thus providing superior hold and greater longevity of the lift.
Additionally, self-retaining sutures described herein may be provided with therapeutic compositions including, for example, compositions to promote healing and prevent undesirable effects such as scar formation, infection, pain, and so forth. This can be accomplished in a variety of manners, including for example: (a) by directly affixing to the suture a formulation (e.g., by either spraying the suture with a polymer/drug film, or by dipping the suture into a polymer/drug solution), (b) by coating the suture with a substance such as a hydrogel which will in turn absorb the composition, (c) by interweaving formulation-coated thread (or the polymer itself formed into a thread) into the suture structure in the case of multi-filamentary sutures, (d) constructing the suture itself with a composition. Such compositions may include without limitation anti-proliferative agents, anti-angiogenic agents, anti-infective agents, fibrosis-inducing agents, anti-scarring agents, lubricious agents, echogenic agents, anti-inflammatory agents, cell cycle inhibitors, analgesics, and anti-microtubule agents. For example, a composition can be applied to the suture before the retainers are formed, so that when the retainers engage, the engaging surface is substantially free of the coating. In this way, tissue being sutured contacts a coated surface of the suture as the suture is introduced, but when the retainer engages, a non-coated surface of the retainer contacts the tissue. Alternatively, the suture may be coated after or during formation of retainers on the suture if, for example, a fully-coated rather than selectively-coated suture is desired. In yet another alternative, a suture may be selectively coated either during or after formation of retainers by exposing only selected portions of the suture to the coating. The particular purpose to which the suture is to be put or the composition may determine whether a fully-coated or selectively-coated suture is appropriate; for example, with lubricious coatings, it may be desirable to selectively coat the suture, leaving, for instance, the tissue-engaging surfaces of the sutures uncoated in order to prevent the tissue engagement function of those surfaces from being impaired. On the other hand, coatings such as those comprising such compounds as anti-infective agents may suitably be applied to the entire suture, while coatings such as those comprising fibrosing agents may suitably be applied to all or part of the suture (such as the tissue-engaging surfaces). The purpose of the suture may also determine the sort of coating that is applied to the suture; for example, self-retaining sutures having anti-proliferative coatings may be used in closing tumor excision sites, while self-retaining sutures with fibrosing coatings may be used in tissue repositioning procedures and those having anti-scarring coatings may be used for wound closure on the skin. As well, the structure of the suture may influence the choice and extent of coating; for example, sutures having an expanded segment may include a fibrosis-inducing composition on the expanded segment to further secure the segment in position in the tissue. Coatings may also include a plurality of compositions either together or on different portions of the suture, where the multiple compositions can be selected either for different purposes (such as combinations of analgesics, anti-infective and anti-scarring agents) or for the synergistic effects of the combination.
F. Self-Elevating/Self-Deploying Retainers
As described above, in specific embodiments of the present invention retainers are formed in the surface of a composite filament to create a self-retaining suture. Advantageously, a sheath material is plastically deformable such that the retainers may be mechanically elevated after formation and will retain the retainers' elevated position. However, it is also possible, by appropriate selection of filament materials, to create a self-retaining suture in which the retainers elevate without requiring external mechanical intervention or in which the retainers self-elevate to augment the effects of mechanical intervention to produce a greater combined elevation. This is advantageous as it reduces the need for mechanical elevation which is time consuming, expensive and has the potential for weakening the retainers. Depending upon the materials chosen, the retainers can be made to elevate when manufactured or upon insertion into tissue during a procedure.
Referring now to
Alternatively a residual stress may be left in the sheath material compared to the core material by the extrusion and drawing process. When a cut is made through the sheath material 552, the tension in sheath material 552 causes the sheath to contract as shown by arrows 510. Contraction of the sheath causes the retainers to elevate from the position shown by the dotted line to the position shown in
Referring now to
In alternative embodiments, an external stimulus may be required to cause elevation of the retainers. Such an external stimulus may be, for example, the application of heat to cause a temperature rise in the suture in excess of natural body temperature. The temperature rise can be caused by heating the suture outside the body prior to deployment. Alternatively, magnetic particles may be embedded in the material of the suture and caused to heat the suture material by magnetic induction caused by application of a magnetic filed through the tissue of the subject after deployment of the suture. Additionally, shape memory polymers which contract upon application of UV light, pH or other stimuli which may be applied to the suture after deployment in the tissues may be used in sheath 552.
Referring now to
G. Clinical Uses
In addition to the general wound closure and soft tissue repair applications, self-retaining sutures can be used in a variety of other indications.
Self-retaining sutures described herein may be used in various dental procedures, i.e., oral and maxillofacial surgical procedures and thus may be referred to as “self-retaining dental sutures.” The above-mentioned procedures include, but are not limited to, oral surgery (e.g., removal of impacted or broken teeth), surgery to provide bone augmentation, surgery to repair dentofacial deformities, repair following trauma (e.g., facial bone fractures and injuries), surgical treatment of odontogenic and non-odontogenic tumors, reconstructive surgeries, repair of cleft lip or cleft palate, congenital craniofacial deformities, and esthetic facial surgery. Self-retaining dental sutures may be degradable or non-degradable, and may typically range in size from USP 2-0 to USP 6-0.
Self-retaining sutures described herein may also be used in tissue repositioning surgical procedures and thus may be referred to as “self-retaining tissue repositioning sutures”. Such surgical procedures include, without limitation, face lifts, neck lifts, brow lifts, thigh lifts, and breast lifts. Self-retaining sutures used in tissue repositioning procedures may vary depending on the tissue being repositioned; for example, sutures with larger and further spaced-apart retainers may be suitably employed with relatively soft tissues such as fatty tissues.
Self-retaining sutures described herein may also be used in microsurgical procedures that are performed under a surgical microscope (and thus may be referred to as “self-retaining microsutures”). Such surgical procedures include, but are not limited to, reattachment and repair of peripheral nerves, spinal microsurgery, microsurgery of the hand, various plastic microsurgical procedures (e.g., facial reconstruction), microsurgery of the male or female reproductive systems, and various types of reconstructive microsurgery. Microsurgical reconstruction is used for complex reconstructive surgery problems when other options such as primary closure, healing by secondary intention, skin grafting, local flap transfer, and distant flap transfer are not adequate. Self-retaining microsutures have a very small caliber, often as small as USP 9-0 or USP 10-0, and may have an attached needle of corresponding size. The microsutures may be degradable or non-degradable.
Self-retaining sutures as described herein may be used in similarly small caliber ranges for ophthalmic surgical procedures and thus may be referred to as “ophthalmic self-retaining sutures”. Such procedures include but are not limited to keratoplasty, cataract, and vitreous retinal microsurgical procedures. Ophthalmic self-retaining sutures may be degradable or non-degradable, and have an attached needle of correspondingly-small caliber.
Self-retaining sutures can be used in a variety of veterinary applications for a wide number of surgical and traumatic purposes in animal health.
Although the present invention has been shown and described in detail with regard to only a few exemplary embodiments of the invention, it should be understood by those skilled in the art that it is not intended to limit the invention to the specific embodiments disclosed. Various modifications, omissions, and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. Accordingly, it is intended to cover all such modifications, omissions, additions, and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
709392 | Brown | Sep 1902 | A |
733723 | Lukens | Jul 1903 | A |
789401 | Acheson | May 1905 | A |
816026 | Meier | Mar 1906 | A |
879758 | Foster | Feb 1908 | A |
1142510 | Engle | Jun 1915 | A |
1248825 | Dederrer | Dec 1917 | A |
1321011 | Cottes | Nov 1919 | A |
1558037 | Morton | Oct 1925 | A |
1728316 | Wachenfeldt | Sep 1929 | A |
1886721 | O'Brien | Nov 1932 | A |
2201610 | Dawson | May 1940 | A |
2232142 | Schumann | Feb 1941 | A |
2254620 | Miller | Sep 1941 | A |
2355907 | Cox | Aug 1944 | A |
2421193 | Gardner | May 1947 | A |
2472009 | Gardner | May 1949 | A |
2572936 | Kulp et al. | Oct 1951 | A |
2684070 | Kelsey | Jul 1954 | A |
2779083 | Eaton | Jan 1957 | A |
2814296 | Everett | Nov 1957 | A |
2817339 | Sullivan | Dec 1957 | A |
2866256 | Matlin | Dec 1958 | A |
2910067 | White | Oct 1959 | A |
2988028 | Alcamo | Jun 1961 | A |
3003155 | Mielzynski | Oct 1961 | A |
3068869 | Shelden | Dec 1962 | A |
3068870 | Levin | Dec 1962 | A |
3123077 | Alcamo | Mar 1964 | A |
3166072 | Sullivan | Jan 1965 | A |
3206018 | Lewis et al. | Sep 1965 | A |
3209754 | Brown | Oct 1965 | A |
3214810 | Mathison | Nov 1965 | A |
3221746 | Noble | Dec 1965 | A |
3234636 | Brown | Feb 1966 | A |
3273562 | Brown | Sep 1966 | A |
3352191 | Crawford | Nov 1967 | A |
3378010 | Codling et al. | Apr 1968 | A |
3385299 | Le Roy | May 1968 | A |
3494006 | Brumlik | Feb 1970 | A |
3525340 | Gilbert | Aug 1970 | A |
3527223 | Shein | Sep 1970 | A |
3545608 | Berger et al. | Dec 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3586002 | Wood | Jun 1971 | A |
3608095 | Barry | Sep 1971 | A |
3608539 | Miller | Sep 1971 | A |
3646615 | Ness | Mar 1972 | A |
3683926 | Suzuki | Aug 1972 | A |
3716058 | Tanner, Jr. | Feb 1973 | A |
3825010 | McDonald | Jul 1974 | A |
3833972 | Brumlik | Sep 1974 | A |
3918455 | Coplan | Nov 1975 | A |
3951261 | Mandel et al. | Apr 1976 | A |
3981051 | Brumlik | Sep 1976 | A |
3981307 | Borysko | Sep 1976 | A |
3985138 | Jarvik | Oct 1976 | A |
3985227 | Thyen et al. | Oct 1976 | A |
4006747 | Kronenthal et al. | Feb 1977 | A |
4069825 | Akiyama | Jan 1978 | A |
4073298 | Le Roy | Feb 1978 | A |
4198734 | Brumlik | Apr 1980 | A |
4204541 | Kapitanov | May 1980 | A |
4259959 | Walker | Apr 1981 | A |
4300424 | Flinn et al. | Nov 1981 | A |
4311002 | Dipalma et al. | Jan 1982 | A |
4313448 | Stokes | Feb 1982 | A |
4316469 | Kapitanov | Feb 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4428376 | Mericle et al. | Jan 1984 | A |
4430998 | Harvey et al. | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4492075 | Faure | Jan 1985 | A |
4493323 | Albright et al. | Jan 1985 | A |
4505274 | Speelman | Mar 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4553544 | Nomoto et al. | Nov 1985 | A |
4610251 | Kumar | Sep 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4637380 | Orejola | Jan 1987 | A |
4653486 | Coker | Mar 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4832025 | Coates | May 1989 | A |
4841960 | Garner | Jun 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4887601 | Richards | Dec 1989 | A |
4895148 | Bays et al. | Jan 1990 | A |
4898156 | Gatturna et al. | Feb 1990 | A |
4899743 | Nicholson et al. | Feb 1990 | A |
4905367 | Pinchuk et al. | Mar 1990 | A |
4930945 | Arai et al. | Jun 1990 | A |
4946468 | Li | Aug 1990 | A |
4948444 | Schutz et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4968315 | Gatturna et al. | Nov 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4981149 | Yoon et al. | Jan 1991 | A |
4994073 | Green | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5007921 | Brown | Apr 1991 | A |
5007922 | Chen et al. | Apr 1991 | A |
5026390 | Brown | Jun 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5084063 | Korthoff | Jan 1992 | A |
5101968 | Henderson et al. | Apr 1992 | A |
5102418 | Granger et al. | Apr 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5112344 | Petros | May 1992 | A |
5123911 | Granger et al. | Jun 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5127413 | Ebert | Jul 1992 | A |
5133738 | Korthoff et al. | Jul 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5156788 | Chesterfield | Oct 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5192274 | Bierman | Mar 1993 | A |
5192302 | Kensey et al. | Mar 1993 | A |
5192303 | Gatturna et al. | Mar 1993 | A |
5197597 | Leary et al. | Mar 1993 | A |
5207679 | Li | May 1993 | A |
5207694 | Broome | May 1993 | A |
5217486 | Rice et al. | Jun 1993 | A |
5217494 | Coggins et al. | Jun 1993 | A |
5222508 | Contarini | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5224946 | Hayhurst et al. | Jul 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246441 | Ross et al. | Sep 1993 | A |
5249673 | Sinn | Oct 1993 | A |
5258013 | Granger et al. | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5282832 | Toso et al. | Feb 1994 | A |
5292326 | Green et al. | Mar 1994 | A |
5306290 | Martins et al. | Apr 1994 | A |
5320629 | Noda et al. | Jun 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5341922 | Cerwin et al. | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5352515 | Jarrett et al. | Oct 1994 | A |
5354298 | Lee et al. | Oct 1994 | A |
5358511 | Gatturna et al. | Oct 1994 | A |
5372146 | Branch | Dec 1994 | A |
5374268 | Sander | Dec 1994 | A |
5374278 | Chesterfield et al. | Dec 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5391173 | Wilk | Feb 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5411523 | Goble | May 1995 | A |
5414988 | Dipalma et al. | May 1995 | A |
5425746 | Proto et al. | Jun 1995 | A |
5425747 | Brotz | Jun 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5462561 | Voda | Oct 1995 | A |
5464427 | Curtis et al. | Nov 1995 | A |
5472452 | Trott | Dec 1995 | A |
5480403 | Lee et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5494154 | Ainsworth et al. | Feb 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5500991 | Demarest et al. | Mar 1996 | A |
5520691 | Branch et al. | May 1996 | A |
5522845 | Wenstrom, Jr. et al. | Jun 1996 | A |
5531761 | Yoon | Jul 1996 | A |
5533982 | Rizk et al. | Jul 1996 | A |
5536582 | Prasad et al. | Jul 1996 | A |
5546957 | Heske | Aug 1996 | A |
5554171 | Gatturna et al. | Sep 1996 | A |
5566822 | Scanlon | Oct 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5584859 | Brotz | Dec 1996 | A |
5601557 | Hayhurst | Feb 1997 | A |
5626590 | Wilk | May 1997 | A |
5626611 | Liu et al. | May 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5662714 | Charvin et al. | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5697976 | Chesterfield et al. | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5709692 | Mollenauer et al. | Jan 1998 | A |
5716376 | Roby et al. | Feb 1998 | A |
5722991 | Colligan | Mar 1998 | A |
5723008 | Gordon | Mar 1998 | A |
5725557 | Gatturna et al. | Mar 1998 | A |
5728114 | Evans | Mar 1998 | A |
5779719 | Klein et al. | Jul 1998 | A |
5782864 | Lizardi | Jul 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5814051 | Wenstrom, Jr. | Sep 1998 | A |
5843087 | Jensen et al. | Dec 1998 | A |
5843178 | Vanney et al. | Dec 1998 | A |
5887594 | Locicero, III | Mar 1999 | A |
5891166 | Schervinsky | Apr 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5895395 | Yeung | Apr 1999 | A |
5895413 | Nordstrom | Apr 1999 | A |
5897572 | Schulsinger et al. | Apr 1999 | A |
5931855 | Buncke | Aug 1999 | A |
5935138 | McJames, II et al. | Aug 1999 | A |
5938668 | Scirica et al. | Aug 1999 | A |
5950633 | Lynch et al. | Sep 1999 | A |
5968097 | Frechet et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5984933 | Yoon | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6012216 | Esteves et al. | Jan 2000 | A |
6015410 | Tormala et al. | Jan 2000 | A |
6024757 | Hasse et al. | Feb 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6056778 | Grafton et al. | May 2000 | A |
6083244 | Lubbers et al. | Jul 2000 | A |
6102947 | Gordon | Aug 2000 | A |
6146407 | Krebs | Nov 2000 | A |
6163948 | Esteves et al. | Dec 2000 | A |
6165203 | Krebs | Dec 2000 | A |
6174324 | Egan et al. | Jan 2001 | B1 |
6183499 | Fischer et al. | Feb 2001 | B1 |
6187095 | Labrecque et al. | Feb 2001 | B1 |
6206908 | Roby | Mar 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6251143 | Schwartz et al. | Jun 2001 | B1 |
6264675 | Brotz | Jul 2001 | B1 |
6270517 | Brotz | Aug 2001 | B1 |
6315788 | Roby | Nov 2001 | B1 |
6334865 | Redmond et al. | Jan 2002 | B1 |
D462766 | Jacobs et al. | Sep 2002 | S |
6443962 | Gaber | Sep 2002 | B1 |
6471715 | Weiss | Oct 2002 | B1 |
6478809 | Brotz | Nov 2002 | B1 |
6485503 | Jacobs et al. | Nov 2002 | B2 |
RE37963 | Thal | Jan 2003 | E |
6506190 | Walshe | Jan 2003 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6554802 | Pearson et al. | Apr 2003 | B1 |
6599310 | Leung et al. | Jul 2003 | B2 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6610078 | Bru-Magniez et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6623492 | Berube et al. | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6645226 | Jacobs et al. | Nov 2003 | B1 |
6645227 | Fallin et al. | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6656182 | Hayhurst | Dec 2003 | B1 |
6689153 | Skiba | Feb 2004 | B1 |
6712830 | Esplin | Mar 2004 | B2 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773450 | Leung et al. | Aug 2004 | B2 |
6783554 | Amara et al. | Aug 2004 | B2 |
6818010 | Eichhorn et al. | Nov 2004 | B2 |
6848152 | Genova et al. | Feb 2005 | B2 |
6893452 | Jacobs | May 2005 | B2 |
6905484 | Buckman et al. | Jun 2005 | B2 |
6911035 | Blomme | Jun 2005 | B1 |
6960233 | Berg et al. | Nov 2005 | B1 |
6981983 | Rosenblatt et al. | Jan 2006 | B1 |
6984241 | Lubbers et al. | Jan 2006 | B2 |
6991643 | Saadat | Jan 2006 | B2 |
7021316 | Leiboff | Apr 2006 | B2 |
7048748 | Ustuner | May 2006 | B1 |
7056331 | Kaplan et al. | Jun 2006 | B2 |
7056333 | Walshe | Jun 2006 | B2 |
7070610 | Im et al. | Jul 2006 | B2 |
7083637 | Tannhauser | Aug 2006 | B1 |
7112214 | Peterson et al. | Sep 2006 | B2 |
D532107 | Peterson et al. | Nov 2006 | S |
7138441 | Zhang | Nov 2006 | B1 |
7144412 | Wolf et al. | Dec 2006 | B2 |
7150757 | Fallin et al. | Dec 2006 | B2 |
7156858 | Schuldt-Hempe et al. | Jan 2007 | B2 |
7156862 | Jacobs et al. | Jan 2007 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7172615 | Morriss et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7195634 | Schmielding et al. | Mar 2007 | B2 |
7211088 | Grafton et al. | May 2007 | B2 |
7225512 | Genova et al. | Jun 2007 | B2 |
7226468 | Ruff | Jun 2007 | B2 |
7232447 | Gellman et al. | Jun 2007 | B2 |
7850894 | Lindh et al. | Dec 2010 | B2 |
20010011187 | Pavcnik et al. | Aug 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010044637 | Jacobs et al. | Nov 2001 | A1 |
20010051815 | Esplin | Dec 2001 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020029066 | Foerster | Mar 2002 | A1 |
20020077631 | Lubbers et al. | Jun 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020099394 | Houser et al. | Jul 2002 | A1 |
20020173807 | Jacobs | Nov 2002 | A1 |
20030014077 | Leung et al. | Jan 2003 | A1 |
20030040795 | Elson et al. | Feb 2003 | A1 |
20030041426 | Genova et al. | Mar 2003 | A1 |
20030065360 | Jacobs et al. | Apr 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030069602 | Jacobs et al. | Apr 2003 | A1 |
20030074021 | Morriss et al. | Apr 2003 | A1 |
20030074023 | Kaplan et al. | Apr 2003 | A1 |
20030078604 | Walshe | Apr 2003 | A1 |
20030088270 | Lubbers et al. | May 2003 | A1 |
20030097150 | Fallin et al. | May 2003 | A1 |
20030105489 | Eichhorn et al. | Jun 2003 | A1 |
20030149447 | Morency et al. | Aug 2003 | A1 |
20030158604 | Cauthen, III et al. | Aug 2003 | A1 |
20030167072 | Oberlander | Sep 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030229361 | Jackson | Dec 2003 | A1 |
20040010275 | Jacobs et al. | Jan 2004 | A1 |
20040010276 | Jacobs et al. | Jan 2004 | A1 |
20040024420 | Lubbers et al. | Feb 2004 | A1 |
20040030354 | Leung et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040060409 | Leung et al. | Apr 2004 | A1 |
20040060410 | Leung et al. | Apr 2004 | A1 |
20040088003 | Leung et al. | May 2004 | A1 |
20040093023 | Allen et al. | May 2004 | A1 |
20040093028 | Ruff | May 2004 | A1 |
20040098051 | Fallin et al. | May 2004 | A1 |
20040106949 | Cohn et al. | Jun 2004 | A1 |
20040138683 | Shelton et al. | Jul 2004 | A1 |
20040153153 | Elson et al. | Aug 2004 | A1 |
20040186487 | Klein et al. | Sep 2004 | A1 |
20040193217 | Lubbers et al. | Sep 2004 | A1 |
20040226427 | Trull et al. | Nov 2004 | A1 |
20040237736 | Genova et al. | Dec 2004 | A1 |
20040254609 | Esplin | Dec 2004 | A1 |
20040260340 | Jacobs et al. | Dec 2004 | A1 |
20040265282 | Wright et al. | Dec 2004 | A1 |
20050004602 | Hart et al. | Jan 2005 | A1 |
20050033367 | Leung et al. | Feb 2005 | A1 |
20050059984 | Chanduszko et al. | Mar 2005 | A1 |
20050065533 | Magen et al. | Mar 2005 | A1 |
20050070959 | Cichocki et al. | Mar 2005 | A1 |
20050080455 | Schmieding et al. | Apr 2005 | A1 |
20050119694 | Jacobs et al. | Jun 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050125035 | Cichocki et al. | Jun 2005 | A1 |
20050171561 | Songer et al. | Aug 2005 | A1 |
20050177190 | Zamierowski | Aug 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050197699 | Jacobs et al. | Sep 2005 | A1 |
20050199249 | Karram | Sep 2005 | A1 |
20050203576 | Sulamanidze et al. | Sep 2005 | A1 |
20050209542 | Jacobs et al. | Sep 2005 | A1 |
20050234510 | Zamierowski | Oct 2005 | A1 |
20050240220 | Zamierowski | Oct 2005 | A1 |
20050240224 | Wu | Oct 2005 | A1 |
20050267531 | Ruff et al. | Dec 2005 | A1 |
20050267532 | Wu | Dec 2005 | A1 |
20050277984 | Long | Dec 2005 | A1 |
20050283246 | Cauthen et al. | Dec 2005 | A1 |
20060030884 | Yeung et al. | Feb 2006 | A1 |
20060036266 | Sulamanidze et al. | Feb 2006 | A1 |
20060058574 | Priewe et al. | Mar 2006 | A1 |
20060058799 | Elson et al. | Mar 2006 | A1 |
20060058844 | White et al. | Mar 2006 | A1 |
20060063476 | Dore | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064127 | Fallin et al. | Mar 2006 | A1 |
20060079935 | Kolster | Apr 2006 | A1 |
20060085016 | Eremia | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060089672 | Martinek | Apr 2006 | A1 |
20060111734 | Kaplan et al. | May 2006 | A1 |
20060111742 | Kaplan et al. | May 2006 | A1 |
20060122608 | Fallin et al. | Jun 2006 | A1 |
20060135994 | Ruff et al. | Jun 2006 | A1 |
20060135995 | Ruff et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060200062 | Saadat | Sep 2006 | A1 |
20060207612 | Jackson et al. | Sep 2006 | A1 |
20060229671 | Steiner et al. | Oct 2006 | A1 |
20060235447 | Walshe | Oct 2006 | A1 |
20060235516 | Cavazzoni | Oct 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060276808 | Arnal et al. | Dec 2006 | A1 |
20060293710 | Foerster et al. | Dec 2006 | A1 |
20070005109 | Popadiuk et al. | Jan 2007 | A1 |
20070005110 | Collier et al. | Jan 2007 | A1 |
20070027475 | Pagedas | Feb 2007 | A1 |
20070038249 | Kolster | Feb 2007 | A1 |
20070065663 | Trull et al. | Mar 2007 | A1 |
20070088391 | McAlexander et al. | Apr 2007 | A1 |
20070135840 | Schmieding | Jun 2007 | A1 |
20070135843 | Burkhart | Jun 2007 | A1 |
20070187861 | Genova et al. | Aug 2007 | A1 |
20070208377 | Kaplan et al. | Sep 2007 | A1 |
20070219587 | Accardo | Sep 2007 | A1 |
20070224237 | Hwang et al. | Sep 2007 | A1 |
20070225761 | Shetty | Sep 2007 | A1 |
20070233188 | Hunt et al. | Oct 2007 | A1 |
20070239206 | Shelton, IV et al. | Oct 2007 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080058869 | Stopek et al. | Mar 2008 | A1 |
20080195147 | Stopek et al. | Aug 2008 | A1 |
20080312688 | Nawrocki et al. | Dec 2008 | A1 |
20090018577 | Leung et al. | Jan 2009 | A1 |
20090043336 | Yuan et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
1014364 | Sep 2003 | BE |
P 1 810 800 | Jun 1970 | DE |
43 02 895 | Aug 1994 | DE |
19618891 | Apr 1997 | DE |
19833703 | Feb 2002 | DE |
10 2005 004317 | Jun 2006 | DE |
0428253 | May 1991 | EP |
0464479 | Jan 1992 | EP |
0513736 | Nov 1992 | EP |
0558993 | Sep 1993 | EP |
0574707 | Dec 1993 | EP |
0576337 | Dec 1993 | EP |
0612504 | Aug 1994 | EP |
0664198 | Jul 1995 | EP |
0673624 | Sep 1995 | EP |
0705567 | Apr 1996 | EP |
0755656 | Jan 1997 | EP |
826337 | Mar 1998 | EP |
0916310 | May 1999 | EP |
0960600 | Dec 1999 | EP |
1075843 | Feb 2001 | EP |
1525851 | Apr 2005 | EP |
1 726 317 | Nov 2006 | EP |
2619129 | Feb 1989 | FR |
2693108 | Jan 1994 | FR |
267007 | Mar 1927 | GB |
1091282 | Nov 1967 | GB |
1506362 | Apr 1978 | GB |
63288146 | Nov 1988 | JP |
WO 8809157 | Dec 1988 | WO |
WO 8905618 | Jun 1989 | WO |
WO 9009149 | Aug 1990 | WO |
WO 9852473 | Nov 1998 | WO |
WO 9855031 | Dec 1998 | WO |
WO 9921488 | May 1999 | WO |
WO 9933401 | Jul 1999 | WO |
WO 9962431 | Dec 1999 | WO |
WO 0051658 | Sep 2000 | WO |
WO 0106952 | Feb 2001 | WO |
WO 03001979 | Jan 2003 | WO |
WO 03017850 | Mar 2003 | WO |
WO 03045255 | Jun 2003 | WO |
WO 03077772 | Sep 2003 | WO |
WO 03092758 | Nov 2003 | WO |
WO 03103972 | Dec 2003 | WO |
WO 03105703 | Dec 2003 | WO |
WO 2004030520 | Apr 2004 | WO |
WO 2004030704 | Apr 2004 | WO |
WO 2004030705 | Apr 2004 | WO |
WO 2004062459 | Jul 2004 | WO |
WO 2004112853 | Dec 2004 | WO |
WO 2005096955 | Oct 2005 | WO |
WO 2005096956 | Oct 2005 | WO |
WO 2006005144 | Jan 2006 | WO |
WO 2006012128 | Feb 2006 | WO |
WO 2006061868 | Jun 2006 | WO |
WO 2006079469 | Aug 2006 | WO |
WO 2006099703 | Sep 2006 | WO |
2007005296 | Jan 2007 | WO |
WO 2007005291 | Jan 2007 | WO |
WO 2007053812 | May 2007 | WO |
WO 2007112024 | Oct 2007 | WO |
WO 2007133103 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
61015489 | Dec 2007 | US |