Field of the Disclosure
The following is directed to shaped abrasive particles, and more particularly, to composite shaped abrasive particles having certain features and methods of forming such composite shaped abrasive particles.
Description of the Related Art
Abrasive articles incorporating abrasive particles are useful for various material removal operations including grinding, finishing, polishing, and the like. Depending upon the type of abrasive material, such abrasive particles can be useful in shaping or grinding various materials in the manufacturing of goods. Certain types of abrasive particles have been formulated to date that have particular geometries, such as triangular shaped abrasive particles and abrasive articles incorporating such objects. See, for example, U.S. Pat. Nos. 5,201,916; 5,366,523; and 5,984,988.
Previously, three basic technologies that have been employed to produce abrasive particles having a specified shape, which are fusion, sintering, and chemical ceramic. In the fusion process, abrasive particles can be shaped by a chill roll, the face of which may or may not be engraved, a mold into which molten material is poured, or a heat sink material immersed in an aluminum oxide melt. See, for example, U.S. Pat. No. 3,377,660. In sintering processes, abrasive particles can be formed from refractory powders having a particle size of up to 10 micrometers in diameter. Binders can be added to the powders along with a lubricant and a suitable solvent to form a mixture that can be shaped into platelets or rods of various lengths and diameters. See, for example, U.S. Pat. No. 3,079,242. Chemical ceramic technology involves converting a colloidal dispersion or hydrosol (sometimes called a sol) to a gel or any other physical state that restrains the mobility of the components, drying, and firing to obtain a ceramic material. See, for example, U.S. Pat. Nos. 4,744,802 and 4,848,041.
The industry continues to demand improved abrasive materials and abrasive articles.
According to a first aspect, a method of forming an abrasive particle comprises forming a shaped abrasive particle having a body and attaching a plurality of abrasive particles to at least one surface of the body to form a composite abrasive particle including the shaped abrasive particle and the plurality of abrasive particles.
In another aspect, an abrasive particle includes a shaped abrasive particle comprising a body; and a plurality of abrasive particles bonded to at least one surface of the body of the shaped abrasive particle.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The following is directed to methods of forming shaped abrasive particles, and more particularly composite shaped abrasive particles including shaped abrasive particles and a plurality of abrasive particles overlying at least one surface of the body of the shaped abrasive particle. The abrasive particles of the embodiments herein may be used in various abrasive articles, including for example bonded abrasive articles, coated abrasive articles, and the like. Alternatively, the shaped abrasive particle fractions of the embodiments herein may be utilized in free abrasive technologies, including for example grinding and/or polishing slurries.
The abrasive particles of the embodiments herein may be obtained through various processing methods, including but not limited to, printing, molding, pressing, stamping, casting, extruding, cutting, fracturing, heating, cooling, crystallizing, rolling, embossing, depositing, etching, scoring, drying, and a combination thereof. Particular methods of forming the shaped abrasive particles can include the formation of a mixture, such as a sol-gel, that can be shaped in an opening of a production tooling (e.g., a screen or mold), and formed into a precursor shaped abrasive particle. Screen printing methods of forming shaped abrasive particles are generally described in U.S. Pat. No. 8,753,558. A suitable method of forming shaped abrasive particles according to a conventional molding process is described in U.S. Pat. No. 5,201,916.
According to one particular embodiment, the process of forming the shaped abrasive particles can be a screen printing process.
The mixture 101 may contain a certain content of solid material, liquid material, and additives such that it has suitable rheological characteristics for use with the process detailed herein. That is, in certain instances, the mixture can have a certain viscosity, and more particularly, suitable rheological characteristics that form a dimensionally stable phase of material that can be formed through the process as noted herein. A dimensionally stable phase of material is a material that can be formed to have a particular shape and substantially maintain the shape for at least a portion of the processing subsequent to forming. In certain instances, the shape may be retained throughout subsequent processing, such that the shape initially provided in the forming process is present in the finally-formed object.
The mixture 101 can be formed to have a particular content of solid material, such as the ceramic powder material. For example, in one embodiment, the mixture 101 can have a solids content of at least about 25 wt %, such as at least about 35 wt %, or even at least about 38 wt % for the total weight of the mixture 101. Still, in at least one non-limiting embodiment, the solids content of the mixture 101 can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 55 wt %, not greater than about 45 wt %, or not greater than about 42 wt %. It will be appreciated that the content of the solid material in the mixture 101 can be within a range between any of the minimum and maximum percentages noted above.
According to one embodiment, the ceramic powder material can include an oxide, a nitride, a carbide, a boride, an oxycarbide, an oxynitride, and a combination thereof. In particular instances, the ceramic material can include alumina. More specifically, the ceramic material may include a boehmite material, which may be a precursor of alpha alumina. The term “boehmite” is generally used herein to denote alumina hydrates including mineral boehmite, typically being Al2O3.H2O and having a water content on the order of 15%, as well as pseudoboehmite, having a water content higher than 15%, such as 20-38% by weight. It is noted that boehmite (including pseudoboehmite) has a particular and identifiable crystal structure, and therefore a unique X-ray diffraction pattern. As such, boehmite is distinguished from other aluminous materials including other hydrated aluminas such as ATH (aluminum trihydroxide), a common precursor material used herein for the fabrication of boehmite particulate materials.
Furthermore, the mixture 101 can be formed to have a particular content of liquid material. Some suitable liquids may include water. In more particular instances, the mixture 101 can have a liquid content of at least about 25 wt % for the total weight of the mixture 101. In other instances, the amount of liquid within the mixture 101 can be greater, such as at least about 35 wt %, at least about 45 wt %, at least about 50 wt %, or even at least about 58 wt %. Still, in at least one non-limiting embodiment, the liquid content of the mixture can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 62 wt %, or even not greater than about 60 wt %. It will be appreciated that the content of the liquid in the mixture 101 can be within a range between any of the minimum and maximum percentages noted above.
Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the mixture 101 can have a particular storage modulus. For example, the mixture 101 can have a storage modulus of at least about 1×104 Pa, such as at least about 4×104 Pa, or even at least about 5×104 Pa. However, in at least one non-limiting embodiment, the mixture 101 may have a storage modulus of not greater than about 1×107 Pa, such as not greater than about 2×106 Pa. It will be appreciated that the storage modulus of the mixture 101 can be within a range between any of the minimum and maximum values noted above.
The storage modulus can be measured via a parallel plate system using ARES or AR-G2 rotational rheometers, with Peltier plate temperature control systems. For testing, the mixture 101 can be extruded within a gap between two plates that are set to be approximately 8 mm apart from each other. After extruding the gel into the gap, the distance between the two plates defining the gap is reduced to 2 mm until the mixture 101 completely fills the gap between the plates. After wiping away excess mixture, the gap is decreased by 0.1 mm and the test is initiated. The test is an oscillation strain sweep test conducted with instrument settings of a strain range between 0.01% to 100%, at 6.28 rad/s (1 Hz), using 25-mm parallel plate and recording 10 points per decade. Within 1 hour after the test completes, the gap is lowered again by 0.1 mm and the test is repeated. The test can be repeated at least 6 times. The first test may differ from the second and third tests. Only the results from the second and third tests for each specimen should be reported.
Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the mixture 101 can have a particular viscosity. For example, the mixture 101 can have a viscosity of at least about 4×103 Pa s, at least about 5×103 Pa s, at least about 6×103 Pa s, at least about 8×103 Pa s, at least about 10×103 Pa s, at least about 20×103 Pa s, at least about 30×103 Pa s, at least about 40×103 Pa s, at least about 50×103 Pa s, at least about 60×103 Pa s, or at least about 65×103 Pa s. In one non-limiting embodiment, the mixture 101 may have a viscosity of not greater than about 100×103 Pa s, such as not greater than about 95×103 Pa s, not greater than about 90×103 Pa s, or even not greater than about 85×103 Pa s. It will be appreciated that the viscosity of the mixture 101 can be within a range between any of the minimum and maximum values noted above. The viscosity can be measured in the same manner as the storage modulus as described above.
Moreover, the mixture 101 can be formed to have a particular content of organic materials including, for example, organic additives that can be distinct from the liquid to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable organic additives can include stabilizers, binders such as fructose, sucrose, lactose, glucose, UV curable resins, and the like.
Notably, the embodiments herein may utilize a mixture 101 that can be distinct from slurries used in conventional forming operations. For example, the content of organic materials within the mixture 101 and, in particular, any of the organic additives noted above, may be a minor amount as compared to other components within the mixture 101. In at least one embodiment, the mixture 101 can be formed to have not greater than about 30 wt % organic material for the total weight of the mixture 101. In other instances, the amount of organic materials may be less, such as not greater than about 15 wt %, not greater than about 10 wt %, or even not greater than about 5 wt %. Still, in at least one non-limiting embodiment, the amount of organic materials within the mixture 101 can be at least about 0.01 wt %, such as at least about 0.5 wt % for the total weight of the mixture 101. It will be appreciated that the amount of organic materials in the mixture 101 can be within a range between any of the minimum and maximum values noted above.
Moreover, the mixture 101 can be formed to have a particular content of acid or base, distinct from the liquid content, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable acids or bases can include nitric acid, sulfuric acid, citric acid, chloric acid, tartaric acid, phosphoric acid, ammonium nitrate, and ammonium citrate. According to one particular embodiment in which a nitric acid additive is used, the mixture 101 can have a pH of less than about 5, and more particularly, can have a pH within a range between about 2 and about 4.
The system 150 of
In accordance with an embodiment, a particular pressure may be utilized during extrusion. For example, the pressure can be at least about 10 kPa, such as at least about 500 kPa. Still, in at least one non-limiting embodiment, the pressure utilized during extrusion can be not greater than about 4 MPa. It will be appreciated that the pressure used to extrude the mixture 101 can be within a range between any of the minimum and maximum values noted above. In particular instances, the consistency of the pressure delivered by a piston 199 may facilitate improved processing and formation of shaped abrasive particles. Notably, controlled delivery of consistent pressure across the mixture 101 and across the width of the die 103 can facilitate improved processing control and improved dimensional characteristics of the shaped abrasive particles.
Referring briefly to
As further illustrated, the production tool 151 can have openings 152 that are oriented in a particular manner relative to each other. As illustrated and in accordance with one embodiment, each of the openings 152 can have substantially the same orientation relative to each other, and substantially the same orientation relative to the surface of the production tool 151. For example, each of the openings 152 can have a first edge 154 defining a first plane 155 for a first row 156 of the openings 152 extending laterally across a lateral axis 158 of the production tool 151. The first plane 155 can extend in a direction substantially orthogonal to a longitudinal axis 157 of the production tool 151. However, it will be appreciated, that in other instances, the openings 152 need not necessarily have the same orientation relative to each other.
Moreover, the first row 156 of openings 152 can be oriented relative to a direction of translation to facilitate particular processing and controlled formation of shaped abrasive particles. For example, the openings 152 can be arranged on the production tool 151 such that the first plane 155 of the first row 156 defines an angle relative to the direction of translation 171. As illustrated, the first plane 155 can define an angle that is substantially orthogonal to the direction of translation 171. Still, it will be appreciated that in one embodiment, the openings 152 can be arranged on the production tool 151 such that the first plane 155 of the first row 156 defines a different angle with respect to the direction of translation, including for example, an acute angle or an obtuse angle. Still, it will be appreciated that the openings 152 may not necessarily be arranged in rows. The openings 152 may be arranged in various particular ordered distributions with respect to each other on the production tool 151, such as in the form of a two-dimensional pattern. Alternatively, the openings may be disposed in a random manner on the production tool 151.
Referring again to
Additionally, the system 151 can include a bottom stage 198 within the application zone 183. During the process of forming shaped abrasive particles, the belt 109 can travel over the bottom stage 198, which can offer a suitable substrate for forming.
During operation of the system 150, the production tool 151 can be translated in a direction 153 while the belt 109 can be translated in a direction 110 substantially similar to the direction 153, at least within the application zone 183, to facilitate a continuous printing operation. As such, the precursor shaped abrasive particles 123 may be printed onto the belt 109 and translated along the belt 109 to undergo further processing. It will be appreciated that such further processing can include processes described in the embodiments herein, including for example, shaping, application of other materials (e.g., plurality of abrasive particles), drying, sintering, and the like.
In some embodiments, the belt 109 and/or the production tool 151 can be translated while extruding the mixture 101 through the die opening 105. As illustrated in the system 100, the mixture 101 may be extruded in a direction 191. The direction of translation 110 of the belt 109 and/or the production tool 151 can be angled relative to the direction of extrusion 191 of the mixture 101. While the angle between the direction of translation 110 and the direction of extrusion 191 is illustrated as substantially orthogonal in the system 100, other angles are contemplated, including for example, an acute angle or an obtuse angle.
The belt 109 and/or the production tool 151 may be translated at a particular rate to facilitate processing. For example, the belt 109 and/or the production tool 151 may be translated at a rate of at least about 3 cm/s. In other embodiments, the rate of translation of the belt 109 and/or the production tool 151 may be greater, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s. Still, in at least one non-limiting embodiment, the belt 109 and/or the production tool 151 may be translated in a direction 110 at a rate of not greater than about 5 m/s, not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that the belt 109 and/or the production tool 151 may be translated at a rate within a range between any of the minimum and maximum values noted above, and moreover, may be translated at substantially the same rate relative to each other. Furthermore, for certain processes according to embodiments herein, the rate of translation of the belt 109 as compared to the rate of extrusion of the mixture 101 in the direction 191 may be controlled to facilitate proper processing.
After the mixture 101 is extruded through the die opening 105, the mixture 101 may be translated along the belt 109 under a knife edge 107 attached to a surface of the die 103. The knife edge 107 may define a region at the front of the die 103 that facilitates displacement of the mixture 101 into the openings 152 of the production tool 151.
Certain processing parameters may be controlled to facilitate formation of particular features of the precursor shaped abrasive particles 123 and the finally-formed shaped abrasive particle fractions described herein. Some exemplary process parameters that can be controlled include a release distance 197, a viscosity of the mixture, a storage modulus of the mixture, mechanical properties of the bottom stage, geometric or dimensional characteristics of the bottom stage, thickness of the production tool, rigidity of the production tool, a solid content of the mixture, a carrier content of the mixture, a release angle, a translation speed, a temperature, a content of release agent, a pressure exerted on the mixture, a speed of the belt, a drying rate, a drying time, a drying temperature, and a combination thereof.
According to one embodiment, one particular process parameter can include controlling the release distance 197 between a filling position and a release position. In particular, the release distance 197 can be a distance measured in a direction 110 of the translation of the belt 109 between the end of the die 103 and the initial point of separation between the production tool 151 and the belt 109.
After extruding the mixture 101 into the openings 152 of the production tool 151, the belt 109 and the production tool 151 may be translated to a release zone 185 where the belt 109 and the production tool 151 can be separated to facilitate the formation of the precursor shaped abrasive particles 123. In accordance with an embodiment, the production tool 151 and the belt 109 may be separated from each other within the release zone 185 at a particular release angle.
Thereafter, the precursor shaped abrasive particles 123 may be translated through a series of optional zones wherein various treating processes may be conducted. Some suitable exemplary treating processes can include drying, heating, curing, reacting, radiating, mixing, stirring, agitating, planarizing, calcining, sintering, comminuting, sieving, doping, application of other abrasive particles to the body of the precursor shaped abrasive particles and a combination thereof. According to one embodiment, the precursor shaped abrasive particles 123 may be translated through an optional shaping zone 113, wherein at least one exterior surface of the particles may be shaped as described in embodiments herein. Furthermore, the precursor shaped abrasive particles 123 may be translated through an optional application zone 131, wherein a material, such as a dopant material and/or a plurality of abrasive particles can be applied to at least one exterior surface of the precursor shaped abrasive particles 123 as described in embodiments herein.
After forming precursor shaped abrasive particles 123, the particles may be translated through a post-forming zone 125. Various processes may be conducted in the post-forming zone 125, including treatment of the precursor shaped abrasive particles 123. In one embodiment, the post-forming zone 125 can include a heating process where the precursor shaped abrasive particles 123 may be dried. Drying may include removal of a particular content of material, including volatiles, such as water. In accordance with an embodiment, the drying process can be conducted at a drying temperature of not greater than about 300° C., such as not greater than about 280° C., or even not greater than about 250° C. Still, in one non-limiting embodiment, the drying process may be conducted at a drying temperature of at least about 50° C. It will be appreciated that the drying temperature may be within a range between any of the minimum and maximum temperatures noted above. Furthermore, the precursor shaped abrasive particles 123 may be translated through the post-forming zone 125 at a particular rate, such as at least about 0.2 feet/min and not greater than about 8 feet/min.
Furthermore, the drying process may be conducted for a particular duration. For example, the drying process may be not greater than about 6 hours, such as not greater than about 5 hours, not greater than about 4 hours, not greater than about 2 hours, or even not greater than about 1 hour. Still, the drying process, may be at least about 1 minute, such as at least about 15 minutes or at least about 30 minutes. It will be appreciated that the drying duration may be within a range between any of the minimum and maximum temperatures noted above. For example, in at least one embodiment, the precursor shaped abrasive particles can be dried for a duration of 1 to 10 minutes, which may facilitate intentional fracturing at a predetermined stress concentration point and along a predetermined stress concentration vector.
After the precursor shaped abrasive particles 123 are translated through the post-forming zone 125, the precursor shaped abrasive particles 123 may be removed from the belt 109. The precursor shaped abrasive particles 123 may be collected in a bin 127 for further processing.
In accordance with an embodiment, the process of forming shaped abrasive particles may further comprise a sintering process. For certain processes of embodiments herein, sintering can be conducted after collecting the precursor shaped abrasive particles 123 from the belt 109. Alternatively, the sintering may be a process that is conducted while the precursor shaped abrasive particles 123 are on the belt 109. Sintering of the precursor shaped abrasive particles 123 may be utilized to densify the particles, which are generally in a green state. In a particular instance, the sintering process can facilitate the formation of a high-temperature phase of the ceramic material. For example, in one embodiment, the precursor shaped abrasive particles 123 may be sintered such that a high-temperature phase of alumina, such as alpha alumina, is formed. In one instance, a shaped abrasive particle can comprise at least about 90 wt % alpha alumina for the total weight of the particle. In other instances, the content of alpha alumina may be greater such that the shaped abrasive particle may consist essentially of alpha alumina.
According to one embodiment, the process of forming the abrasive particles can include forming a precursor shaped abrasive particle 123 and attaching a plurality of abrasive particles to at least one surface of the body of the precursor shaped abrasive particle 123. In certain instances, the process of attaching can happen in the application zone 131, wherein one or more application heads 132 can facilitate deposition of the plurality of abrasive particles onto the major exterior surfaces (e.g., the upper surfaces) of the precursor shaped abrasive particles 123. Various suitable processes for attaching the plurality of abrasive particles can include deposition processes such as blasting, projecting, pressing, gravity coating, molding, stamping, and a combination thereof. The deposition of the plurality of abrasive particles may include the use of a carrier, which may be a liquid or gas that facilitates carrying of the plurality of abrasive particles to the one or more surfaces of the precursor shaped abrasive particles 123. For example, in at least one embodiment, the plurality of abrasive particles may be forcefully ejected from the applications heads 132 by a gas carrier to facilitate deposition of the plurality of abrasive particles onto the one or more surfaces of the precursor shaped abrasive particles 123.
According to another embodiment, the process of attaching the plurality of abrasive particles to the body of the precursor shaped abrasive particles can include deposition of the mixture onto a layer of abrasive particles including the plurality of shaped abrasive particles. For example, the production tool can be prepared to have a layer of abrasive particles contained on a surface, onto which the mixture is shaped in the form of a precursor shaped abrasive particle, such that the mixture is deposited directly onto the plurality of abrasive particles. In such instances, the process of shaping of the precursor shaped abrasive particle and the attachment of the plurality of abrasive particles can be completed simultaneously. For one particular example, the upper surface of the belt 109 can be prepared to contain a layer of abrasive particles and the mixture 101 can be extruded into the openings 152 of the production tool 151 and onto the layer of abrasive particles on the upper surface of the belt 109. The production tool 151 can then be removed from the belt 109 and the precursor shaped abrasive particles 123 can have a plurality of abrasive particles attached to their bottom surface, which is adjacent the belt 109. It will be appreciated that additional processes can be used to attach the plurality of abrasive particles to other surfaces, including a deposition process that attaches a plurality of abrasive particles to the upper surface of the precursor shaped abrasive particles. It is contemplated that one or more processes can be used to attach a plurality of abrasive particles to one or more surfaces of the body of the precursor shaped abrasive particles, including but not limited to the bottom surface, the upper surface, and side surfaces.
In at least one embodiment, the process of attaching the plurality of abrasive particles to the bodies of the precursor shaped abrasive particles can occur prior to substantial drying of the body. Notably, in certain instances, some moisture in the precursor shaped abrasive particles may facilitate suitable attachment of the plurality of abrasive particles. According to one embodiment, the process of attachment can occur such that the moisture content (i.e., weight percent of liquid) of the precursor shaped abrasive particle during attachment can be not greater than about 70% different than the moisture content of the mixture 101 when it is placed in the production tool 151. The percent difference can be calculated according to the formula [(Mc1−Mc2)/Mc1]×100%, where Mc1 is the moisture content of the mixture 101 during placement into the production tool 151 and Mc2 is the moisture content of the precursor shaped abrasive particle during attachment. In other instances, the moisture content of the precursor shaped abrasive particle during attachment can be not greater than about 60% different, such as not greater than about 50% different, not greater than about 40% different, not greater than about 30% different, not greater than about 20% different, or even not greater than about 10% different than the moisture content of the mixture 101 when it is placed into the production tool 151. Still, in at least one non-limiting embodiment, the moisture content of the precursor shaped abrasive particle during attachment can be substantially the same or exactly the same as the moisture content of the mixture 101 when it is placed into the production tool 151.
In at least one embodiment, the process of attaching the plurality of abrasive particles to the bodies of the precursor shaped abrasive particle can include humidifying the surface of the precursor shaped abrasive particle prior to attachment of the abrasive particles. For example, the moisture content at the surface of the precursor shaped abrasive particles can be increased prior to the attachment process, such that the moisture content can be nearly the same as the moisture content of the mixture 101 when it is disposed in the production tool 151.
In one embodiment, the process can include drying the precursor shaped abrasive particles and plurality of abrasive particles after attaching the plurality of abrasive particles to the precursor shaped abrasive particles. Moreover, it will be appreciated that in certain instances, the process can include calcining the precursor shaped abrasive particle and plurality of abrasive particles after attaching the plurality of abrasive particles to the precursor shaped abrasive particles. Moreover, the process can include sintering the precursor shaped abrasive particle and plurality of abrasive particles after attaching the plurality of abrasive particles to the precursor shaped abrasive particles to form a composite shaped abrasive particle.
According to one embodiment, the plurality of abrasive particles 302 can be bonded to a major surface of the body 301. In other instances, the plurality of abrasive particles 302 can be bonded to at least two surfaces of the body. For example, the plurality of abrasive particles 302 can be bonded to at least two major surfaces of the body 301, such as those surfaces having the greatest surface area compared to all surfaces of the body 301, which in the particle of
For certain composite abrasive particles of the embodiments herein, the plurality of abrasive particles 302 can cover at least about 50% of the total surface area of the body 301 of the shaped abrasive particle. In other instances, the plurality of abrasive particles 302 can be greater, such as at least about 60%, at least about 70%, at least about 80%, at least about 90% or even at least about 95% of the total surface area of the body 301 of the shaped abrasive particle. Still, in at least one embodiment, the plurality of abrasive particles 302 can cover not greater than about 99% of the total surface area of the body 301 of the shaped abrasive particle. It will be appreciated that the plurality of abrasive particles 302 can cover a percentage of the total surface area of the body 301 of the shaped abrasive particle within a range including any of the minimum and maximum values noted above.
According to one embodiment, the plurality of abrasive particles 302 can account for at least about 10 wt % of a total weight of the composite abrasive particle 300. In other instances, the plurality of abrasive particles 302 can account for at least about 20 wt %, such as at least about 30 wt %, at least about 40 wt %, or even at least about 50 wt % of the total weight of the composite abrasive particle 300. Still, in a non-limiting embodiment, the plurality of abrasive particles 302 can be not greater than about 80 wt %, such as not greater than about 60 wt %, not greater than about 40 wt %, not greater than about 30 wt %, or even not greater than about 20 wt % of a total weight of the composite abrasive particle 300. It will be appreciated that the plurality of abrasive particles 302 can account for a particular weight percent of the total weight of the composite abrasive particle within a range including any of the minimum and maximum percentages noted above.
The plurality of abrasive particles 302 may be selected from a particular type of material to facilitate suitable formation of the composite shaped abrasive particles. For example, the plurality of abrasive particles 302 can include a material from the group of oxides, carbides, nitrides, borides, oxycarbides, oxynitrides, oxyborides, natural minerals, synthetic materials, carbon-based materials, and a combination thereof. In one particular embodiment, the plurality of abrasive particles can include alumina, and more particularly can consist essentially of alpha alumina.
For at least one embodiment, the plurality of abrasive particles 302 can include a material having a particular coefficient of thermal expansion (CTE) relative to the CTE of the body 301 that can facilitate improved forming, deployment, and/or performance of the composite abrasive particle. For example the plurality of abrasive particles 302 can have a CTE that is not greater than about 50% different than a CTE of the body 301 of the shaped abrasive particle according to the formula [(CTE1−CTE2)/CTE1]×100%, where CTE1 represents the higher CTE value relative to CTE2. In certain instances, the plurality of abrasive particles 302 can have a CTE that is less than the CTE of the body 301. In another embodiment, the plurality of abrasive particles 302 can have a CTE that is greater than the CTE of the body 301. Still, the plurality of abrasive particles 302 can have a CTE that is not greater than about 40% different, not greater than about 30% different, not greater than about 20% different, or even not greater than about 10% different compared to the CTE of the body 301. Still, in one non-limiting embodiment, the CTE of the plurality of abrasive particles 302 may be essentially the same as the CTE of the body 301. In yet another embodiment, the CTE of the plurality of abrasive particles 302 can be at least about 0.5% different, at least about 1% different, or at least about 3% different compared to the CTE of the body 301. It will be appreciated that the plurality of abrasive particles can have a difference in CTE relative to the CTE of the body that is within a range including any of the minimum and maximum values noted above.
According to an embodiment, the plurality of abrasive particles 302 are selected from the group consisting of crushed grains, irregularly shaped grains, elongated grains, agglomerates, aggregates, and a combination thereof. In one particular instance, the plurality of abrasive particles consists essentially of crush grains, which may have a generally irregular shape. It is contemplated that the plurality of shaped abrasive particles 302 may be shaped abrasive particles of a significantly finer size compared to the body 301 of the shaped abrasive particle 301.
The body 301 of the shaped abrasive particle can have a length (L), a width (W) and a height. The length can define the longest dimension of the body 301. The width can define the second longest dimension of the body 301. The height can define the shortest dimension of the body and may extend in a direction perpendicular to the plane defined by the length and width of the body 301. According to one particular embodiment, the length can be greater than or equal to the width, and the width can be greater than or equal to the height.
In accordance with an embodiment, the body 301 of the shaped abrasive particle can have an average particle size, as measured by the largest dimension measurable on the body 301 (i.e., the length), of at least about 100 microns. In fact, the body 301 of the shaped abrasive particle can have an average particle size of at least about 150 microns, such as at least about 200 microns, at least about 300 microns, at least about 400 microns, at least about 500 microns, at least about 500 microns, at least about 600 microns, at least about 800 microns, or even at least about 900 microns. Still, the abrasive particle can have an average particle size that is not greater than about 5 mm, such as not greater than about 3 mm, not greater than about 2 mm, or even not greater than about 1.5 mm. It will be appreciated that the abrasive particle can have an average particle size within a range including any of the minimum and maximum values noted above.
The abrasive grains (i.e., crystallites) contained within the body 301 may have an average grain size that is generally not greater than about 100 microns. In other embodiments, the average grain size can be less, such as not greater than about 80 microns, not greater than about 50 microns, not greater than about 30 microns, not greater than about 20 microns, not greater than about 10 microns, or even not greater than about 1 micron. Still, the average grain size of the abrasive grains contained within the body 301 can be at least about 0.01 microns, such as at least about 0.05 microns, such as at least about 0.08 microns, at least about 0.1 microns, or even at least about 0.5 microns. It will be appreciated that the abrasive grains can have an average grain size within a range between any of the minimum and maximum values noted above.
The plurality of abrasive particles 302 may have a particular size relative to one or more dimensions of the body 301 of the shaped abrasive particle, which may facilitate improved manufacturing, deployment, and/or performance of the composite abrasive particle. For example, the plurality of abrasive particles 302 can have a median particle size (D50) that can be not greater than the length (L) of the body 301 of the shaped abrasive particle. More particularly, the plurality of abrasive particles 302 can have a median particle size (D50) that is not greater than about 90% of the length (L), such as not greater than about 80% of the length, not greater than about 70% of the length, not greater than about 60% of the length, not greater than about 50% of the length, not greater than about 40% of the length, or even not greater than about 30% of the length of the body 301. Still, in another non-limiting embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) that is at least about 0.1% of the length (L), such as at least about 0.5% of the length, at least about 1% of the length, or even at least about 3% of the length of the body 301. It will be appreciated that the plurality of abrasive particles 302 can have a median particle size (D50) that is within a range including any of the minimum and maximum percentages noted above.
In another embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) that is not greater than about 90% of the width (W), such as not greater than about 80% of the width, not greater than about 70% of the width, not greater than about 60% of the width, not greater than about 50% of the width, not greater than about 40% of the width, or even not greater than about 30% of the width of the body 301. Still, in another non-limiting embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) that is at least about 0.1% of the width (W), such as at least about 0.5% of the width, at least about 1% of the width, or even at least about 3% of the width of the body 301. It will be appreciated that the plurality of abrasive particles 302 can have a median particle size (D50) that is within a range including any of the minimum and maximum percentages noted above.
In another embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) that is not greater than about 90% of the height, such as not greater than about 80% of the height, not greater than about 70% of the height, not greater than about 60% of the height, not greater than about 50% of the height, not greater than about 40% of the height, or even not greater than about 30% of the height of the body 301. Still, in another non-limiting embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) that is at least about 0.1% of the height, such as at least about 0.5% of the height, at least about 1% of the height, or even at least about 3% of the height of the body 301. It will be appreciated that the plurality of abrasive particles 302 can have a median particle size (D50) that is within a range including any of the minimum and maximum percentages noted above.
In accordance with an embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) of not greater than about 1 mm, such as not greater than about 800 microns, not greater than about 500 microns, not greater than about 200 microns, not greater than about 100 microns, not greater than about 80 microns, not greater than about 60 microns, or even not greater than about 40 microns. Still, in one non-limiting embodiment, the plurality of abrasive particles 302 can have a median particle size (D50) of at least about 0.1 microns, at least about 0.5 microns, or even at least about 1 micron. It will be appreciated that the abrasive particle can have an average particle size within a range including any of the minimum and maximum values noted above.
For at least one embodiment, at least a portion of the abrasive particles of the plurality of abrasive particles are embedded in at least one surface the body 301 of the shaped abrasive particle. Moreover, in certain instances, a majority of the abrasive particles of the plurality of abrasive particles 302 can be embedded in at least one surface of the body 301 of the shaped abrasive particle. In another embodiment, at least a portion of the plurality of abrasive particles 302 can be directly bonded to at least one surface of the body 301 of the shaped abrasive particle. More particularly, at least a portion of the plurality of abrasive particles 302 can be sinter-bonded to at least one surface of the body 301 of the shaped abrasive particle. In at least one embodiment, all of the abrasive particles of the plurality of abrasive particles 302 can be sinter-bonded to at least one surface of the body 301 of the shaped abrasive particle.
According to one embodiment, the substrate 501 can include an organic material, inorganic material, and a combination thereof. In certain instances, the substrate 501 can include a woven material. However, the substrate 501 may be made of a non-woven material. Particularly suitable substrate materials can include organic materials, including polymers, and particularly, polyester, polyurethane, polypropylene, polyimides such as KAPTON from DuPont, paper. Some suitable inorganic materials can include metals, metal alloys, and particularly, foils of copper, aluminum, steel, and a combination thereof.
The make coat 503 can be applied to the surface of the substrate 501 in a single process, or alternatively, the abrasive particulate materials 505, 506, 507 can be combined with a make coat 503 material and applied as a mixture to the surface of the substrate 501. Suitable materials of the make coat 503 can include organic materials, particularly polymeric materials, including for example, polyesters, epoxy resins, polyurethanes, polyamides, polyacrylates, polymethacrylates, poly vinyl chlorides, polyethylene, polysiloxane, silicones, cellulose acetates, nitrocellulose, natural rubber, starch, shellac, and mixtures thereof. In one embodiment, the make coat 503 can include a polyester resin. The coated substrate can then be heated in order to cure the resin and the abrasive particulate material to the substrate. In general, the coated substrate 501 can be heated to a temperature of between about 100° C. to less than about 250° C. during this curing process.
The abrasive particulate materials 505, 506, and 507 can include different types of shaped abrasive particles according to embodiments herein. The different types of shaped abrasive particles can differ from each other in composition, two-dimensional shape, three-dimensional shape, size, and a combination thereof as described in the embodiments herein. As illustrated, the coated abrasive 500 can include a first type of shaped abrasive particle 505 having a generally triangular two-dimensional shape and a second type of shaped abrasive particle 506 having a quadrilateral two-dimensional shape. The coated abrasive 500 can include different amounts of the first type and second type of shaped abrasive particles 505 and 506. It will be appreciated that the coated abrasive may not necessarily include different types of shaped abrasive particles, and can consist essentially of a single type of shaped abrasive particle. As will be appreciated, the shaped abrasive particles of the embodiments herein can be incorporated into various fixed abrasives (e.g., bonded abrasives, coated abrasive, non-woven abrasives, thin wheels, cut-off wheels, reinforced abrasive articles, and the like), including in the form of blends, which may include different types of shaped abrasive particles, shaped abrasive particles with diluent particles, and the like. Moreover, according to certain embodiments, batch of particulate material may be incorporated into the fixed abrasive article in a predetermined orientation, wherein each of the shaped abrasive particles can have a predetermined orientation relative to each other and relative to a portion of the abrasive article (e.g., the backing of a coated abrasive).
The abrasive particles 507 can be diluent particles different than the first and second types of shaped abrasive particles 505 and 506. For example, the diluent particles can differ from the first and second types of shaped abrasive particles 505 and 506 in composition, two-dimensional shape, three-dimensional shape, size, and a combination thereof. For example, the abrasive particles 507 can represent conventional, crushed abrasive grit having random shapes. The abrasive particles 507 may have a median particle size less than the median particle size of the first and second types of shaped abrasive particles 505 and 506.
After sufficiently forming the make coat 503 with the abrasive particulate materials 505, 506, 507 contained therein, the size coat 504 can be formed to overlie and bond the abrasive particulate material 505 in place. The size coat 504 can include an organic material, may be made essentially of a polymeric material, and notably, can use polyesters, epoxy resins, polyurethanes, polyamides, polyacrylates, polymethacrylates, poly vinyl chlorides, polyethylene, polysiloxane, silicones, cellulose acetates, nitrocellulose, natural rubber, starch, shellac, and mixtures thereof.
The abrasive particulate material 602 of the bonded abrasive 600 can include different types of shaped abrasive particles 603, 604, 605, and 606, which can have any of the features of different types of shaped abrasive particles as described in the embodiments herein. Notably, the different types of shaped abrasive particles 603, 604, 605, and 606 can differ from each other in composition, two-dimensional shape, three-dimensional shape, size, and a combination thereof as described in the embodiments herein.
The bonded abrasive 600 can include a type of abrasive particulate material 607 representing diluent abrasive particles, which can differ from the different types of shaped abrasive particles 603, 604, 605, and 606 in composition, two-dimensional shape, three-dimensional shape, size, and a combination thereof.
The porosity 608 of the bonded abrasive 600 can be open porosity, closed porosity, and a combination thereof. The porosity 608 may be present in a majority amount (vol %) based on the total volume of the body of the bonded abrasive 600. Alternatively, the porosity 608 can be present in a minor amount (vol %) based on the total volume of the body of the bonded abrasive 600. The bond material 601 may be present in a majority amount (vol %) based on the total volume of the body of the bonded abrasive 600. Alternatively, the bond material 601 can be present in a minor amount (vol %) based on the total volume of the body of the bonded abrasive 600. Additionally, abrasive particulate material 602 can be present in a majority amount (vol %) based on the total volume of the body of the bonded abrasive 600. Alternatively, the abrasive particulate material 602 can be present in a minor amount (vol %) based on the total volume of the body of the bonded abrasive 600.
Item 1. An abrasive particle comprising:
a shaped abrasive particle comprising a body; and
a plurality of abrasive particles bonded to at least one surface of the body of the shaped abrasive particle.
Item 2. The abrasive particle of item 1, wherein the body of the shaped abrasive particle comprises a two-dimensional shape as viewed in a plane defined by a length and a width of the body selected from the group consisting of polygons, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof.
Item 3. The abrasive particle of item 1, wherein the plurality of abrasive particles is bonded to a major surface of the body.
Item 4. The abrasive particle of item 1, wherein the plurality of abrasive particles is bonded to at least two surfaces of the body.
Item 5. The abrasive particle of item 1, wherein the plurality of abrasive particles is bonded to at least two major surfaces of the body.
Item 6. The abrasive particle of item 1, wherein the plurality of abrasive particles cover at least about 50% of the total surface area of the body or at least about 60% or at least about 70% or at least about 80% or at least about 90% or at least about 95%.
Item 7. The abrasive particle of item 1, wherein the plurality of abrasive particles are selected from the group consisting of oxides, carbides, nitrides, borides, oxycarbides, oxynitrides, oxyborides, natural minerals, synthetic materials, carbon-based materials, and a combination thereof.
Item 8. The abrasive particle of item 1, wherein the plurality of abrasive particles are selected from the group consisting of crushed grains, irregularly shaped grains, elongated grains, agglomerates, aggregates, and a combination thereof.
Item 9. The abrasive particle of item 1, wherein the body of the shaped abrasive particle comprises a length>width>height, and the plurality of abrasive particles comprise a median particle size (D50), and wherein the median particle size (D50) is not greater than the length of the body of the shaped abrasive particle or wherein the median particle size (D50) is not greater than the width of the body of the shaped abrasive particle or wherein the median particle size (D50) is not greater than the height of the body of the shaped abrasive particle.
Item 10. The abrasive particle of item 1, wherein the plurality of abrasive particles comprise at least about 10 wt % of a total weight of the abrasive particle or at least about 20 wt % or at least about 30 wt % or at least about 40 wt % or at least about 50 wt %.
Item 11. The abrasive particle of item 1, wherein the plurality of abrasive particles comprise not greater than about 80 wt % of a total weight of the abrasive particle or not greater than about 60 wt % or not greater than about 40 wt % or not greater than about 30 wt % or not greater than about 20 wt %.
Item 12. The abrasive particle of item 1, wherein the plurality of abrasive particles is embedded in the at least one surface the body of the shaped abrasive particle.
Item 13. The abrasive particle of item 1, wherein the plurality of abrasive particles is directly bonded to at least one surface of the body of the shaped abrasive particle.
Item 14. The abrasive particle of item 1, wherein the plurality of abrasive particles are sinter-bonded to the at least one surface of the body of the shaped abrasive particle.
Item 15. The abrasive particle of item 1, wherein the plurality of abrasive particles include a material having a CTE that is not greater than about 50% different than a CTE of the body of the shaped abrasive particle.
Item 16. A method of forming an abrasive particle comprising:
forming a shaped abrasive particle having a body;
attaching a plurality of abrasive particles to at least one surface of the body to form a composite abrasive particle including the shaped abrasive particle and the plurality of abrasive particles.
Item 17. The method of item 16, wherein forming a shaped abrasive particle includes forming a precursor shaped abrasive particle and attaching the plurality of abrasive particles to at least one surface of the precursor shaped abrasive particle, wherein the process further comprises drying the precursor shaped abrasive particle and plurality of abrasive particles, wherein the process further comprises calcining the precursor shaped abrasive particle and plurality of abrasive particles, wherein the process comprises sintering the precursor shaped abrasive particle and plurality of abrasive particles to form a composite shaped abrasive particle.
Item 18. The method of item 16, wherein the plurality of abrasive particles is attached the body of the shaped abrasive particle prior to substantial drying of the body.
Item 19. The method of item 16, wherein attaching the plurality of abrasive particles includes depositing the plurality of abrasive particles on a surface of the body, wherein depositing includes a process selected from the group consisting of blasting, projecting, pressing, gravity coating, molding, stamping, and a combination thereof.
Item 20. The method of item 16, wherein the body of the shaped abrasive particle is formed on a production tool including a layer of abrasive particles including the plurality of abrasive particles.
A gel was formed including 41.5 wt % boehmite commercially available as Reflux Catapal B and seeded with 1% alpha alumina seeds. The mixture also included 55 wt % water, 2.5 wt % nitric acid. The mixture was extruded into triangular shaped openings in a production tool. The triangular shaped openings had a length of 2.77 mm, a width of 2.4 mm and a depth of 0.53 mm. The production tool was made of metal. The surfaces of the openings in the production tool were coated with a lubricant of olive oil to facilitate removal of the precursor shaped abrasive particles from the production tool.
A plurality of unsintered particles of dried gel comprising an alpha alumina precursor material having a median particle size (D50) of 100 microns were deposited on the mixture while it resided in the openings of the production tool. No appreciable drying of the mixture occurred between the placement of the mixture in the production tool and the deposition of the plurality of particles.
The mixture was dried in the openings at approximately 50° C. for 10 minutes. The mixture was then removed from the openings of the production tool to form precursor shaped abrasive particles including a plurality of particles attached to an upper surface. After removal the precursor shaped abrasive particles were sintered at approximately 1325° C. for approximately 10 minutes to achieve 98% theoretical density. The body of the shaped abrasive particle had a length of 1550 microns, a width of 1350 microns, and a height of 300 microns.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
The Abstract of the Disclosure is provided to comply with Patent Law and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
345604 | Semper | Jul 1886 | A |
1910444 | Nicholson | May 1933 | A |
2049874 | Sherk | Aug 1936 | A |
2148400 | Crompton, Jr. | Feb 1939 | A |
2248064 | Carlton et al. | Jul 1941 | A |
2248990 | Heany | Jul 1941 | A |
2290877 | Heany | Jul 1942 | A |
2318360 | Benner et al. | May 1943 | A |
2376343 | Carlton | May 1945 | A |
2563650 | Heinemann et al. | Aug 1951 | A |
2880080 | Rankin et al. | Mar 1959 | A |
3041156 | Rowse et al. | Jun 1962 | A |
3067551 | Maginnis | Dec 1962 | A |
3079242 | Glasgow | Feb 1963 | A |
3079243 | Ueltz | Feb 1963 | A |
3123948 | Kistler et al. | Mar 1964 | A |
3141271 | Fischer et al. | Jul 1964 | A |
3276852 | Lemelson | Oct 1966 | A |
3377660 | Marshall et al. | Apr 1968 | A |
3379543 | Norwalk | Apr 1968 | A |
3387957 | Howard | Jun 1968 | A |
3454385 | Amero | Jul 1969 | A |
3477180 | Robertson, Jr. | Nov 1969 | A |
3480395 | McMullen et al. | Nov 1969 | A |
3481723 | Kistler et al. | Dec 1969 | A |
3491492 | Ueltz | Jan 1970 | A |
3495359 | Smith et al. | Feb 1970 | A |
3536005 | Derrickson | Oct 1970 | A |
3590799 | Guuchowicz | Jul 1971 | A |
3608050 | Carman et al. | Sep 1971 | A |
3608134 | Cook | Sep 1971 | A |
3615308 | Amero | Oct 1971 | A |
3619151 | Sheets, Jr. et al. | Nov 1971 | A |
3637360 | Ueltz | Jan 1972 | A |
3670467 | Walker | Jun 1972 | A |
3672934 | Larry | Jun 1972 | A |
3819785 | Argyle et al. | Jun 1974 | A |
3859407 | Blanding et al. | Jan 1975 | A |
3874856 | Leeds | Apr 1975 | A |
3909991 | Coes, Jr. | Oct 1975 | A |
3940276 | Wilson | Feb 1976 | A |
3950148 | Fukuda | Apr 1976 | A |
3960577 | Prochazka | Jun 1976 | A |
3977132 | Sekigawa | Aug 1976 | A |
3986885 | Lankard | Oct 1976 | A |
3991527 | Maran | Nov 1976 | A |
4004934 | Prochazka | Jan 1977 | A |
4037367 | Kruse | Jul 1977 | A |
4045919 | Moritomo | Sep 1977 | A |
4055451 | Cockbain et al. | Oct 1977 | A |
4073096 | Ueltz et al. | Feb 1978 | A |
4114322 | Greenspan | Sep 1978 | A |
4150078 | Miller et al. | Apr 1979 | A |
4194887 | Ueltz et al. | Mar 1980 | A |
4252544 | Takahashi | Feb 1981 | A |
4261706 | Blanding et al. | Apr 1981 | A |
4286905 | Samanta | Sep 1981 | A |
4304576 | Hattori et al. | Dec 1981 | A |
4314827 | Leitheiser et al. | Feb 1982 | A |
4341663 | Derleth et al. | Jul 1982 | A |
4393021 | Eisenberg et al. | Jul 1983 | A |
4452911 | Eccles et al. | Jun 1984 | A |
4457767 | Poon et al. | Jul 1984 | A |
4469758 | Scott | Sep 1984 | A |
4505720 | Gabor et al. | Mar 1985 | A |
4541842 | Rostoker | Sep 1985 | A |
4548617 | Miyatani et al. | Oct 1985 | A |
4570048 | Poole | Feb 1986 | A |
4618349 | Hashimoto et al. | Oct 1986 | A |
4623364 | Cottringer et al. | Nov 1986 | A |
4656330 | Poole | Apr 1987 | A |
4657754 | Bauer et al. | Apr 1987 | A |
4659341 | Ludwig et al. | Apr 1987 | A |
4678560 | Stole et al. | Jul 1987 | A |
4711750 | Scott | Dec 1987 | A |
4728043 | Ersdal et al. | Mar 1988 | A |
4744802 | Schwabel | May 1988 | A |
4770671 | Monroe | Sep 1988 | A |
4786292 | Janz et al. | Nov 1988 | A |
4797139 | Bauer | Jan 1989 | A |
4797269 | Bauer et al. | Jan 1989 | A |
4799939 | Bloecher et al. | Jan 1989 | A |
4829027 | Cutler et al. | May 1989 | A |
4832706 | Yates | May 1989 | A |
4848041 | Kruschke | Jul 1989 | A |
4858527 | Masanao | Aug 1989 | A |
4860721 | Matsuda | Aug 1989 | A |
4863573 | Moore et al. | Sep 1989 | A |
4876226 | Fuentes | Oct 1989 | A |
4881951 | Wood et al. | Nov 1989 | A |
4917852 | Poole et al. | Apr 1990 | A |
4918116 | Gardziella et al. | Apr 1990 | A |
4925815 | Tani et al. | May 1990 | A |
4930266 | Calhoun et al. | Jun 1990 | A |
4942011 | Bolt et al. | Jul 1990 | A |
4954462 | Wood | Sep 1990 | A |
4960441 | Pellow et al. | Oct 1990 | A |
4961757 | Rhodes et al. | Oct 1990 | A |
4963012 | Tracy | Oct 1990 | A |
4964883 | Morris et al. | Oct 1990 | A |
4970057 | Wilkens et al. | Nov 1990 | A |
4997461 | Markhoff-Matheny et al. | Mar 1991 | A |
5009675 | Kunz et al. | Apr 1991 | A |
5009676 | Rue et al. | Apr 1991 | A |
5011508 | Wald et al. | Apr 1991 | A |
5011510 | Hayakawa et al. | Apr 1991 | A |
5014468 | Ravipati et al. | May 1991 | A |
5024795 | Kennedy et al. | Jun 1991 | A |
5032304 | Toyota | Jul 1991 | A |
5035723 | Kalinowski et al. | Jul 1991 | A |
5035724 | Pukari et al. | Jul 1991 | A |
5042991 | Kunz et al. | Aug 1991 | A |
5049166 | Kirkendall | Sep 1991 | A |
5049645 | Nagaoka et al. | Sep 1991 | A |
5053367 | Newkirk et al. | Oct 1991 | A |
5053369 | Winkler et al. | Oct 1991 | A |
5076991 | Poole et al. | Dec 1991 | A |
5078753 | Broberg et al. | Jan 1992 | A |
5081082 | Hai-Doo et al. | Jan 1992 | A |
5085671 | Martin et al. | Feb 1992 | A |
5090968 | Pellow | Feb 1992 | A |
5094986 | Matsumoto et al. | Mar 1992 | A |
5098740 | Tewari | Mar 1992 | A |
5103598 | Kelly | Apr 1992 | A |
5108963 | Fu et al. | Apr 1992 | A |
5114438 | Leatherman et al. | May 1992 | A |
5120327 | Dennis | Jun 1992 | A |
5123935 | Kanamaru et al. | Jun 1992 | A |
5129919 | Kalinowski et al. | Jul 1992 | A |
5131926 | Rostoker et al. | Jul 1992 | A |
5132984 | Simpson | Jul 1992 | A |
5139978 | Wood | Aug 1992 | A |
5152917 | Pieper et al. | Oct 1992 | A |
5160509 | Carman et al. | Nov 1992 | A |
5164744 | Yoshida et al. | Nov 1992 | A |
5173457 | Shorthouse | Dec 1992 | A |
5178849 | Bauer | Jan 1993 | A |
5180630 | Giglia | Jan 1993 | A |
5185012 | Kelly | Feb 1993 | A |
5185299 | Wood et al. | Feb 1993 | A |
5190568 | Tselesin | Mar 1993 | A |
5194072 | Rue et al. | Mar 1993 | A |
5201916 | Berg | Apr 1993 | A |
5203886 | Sheldon et al. | Apr 1993 | A |
5213591 | Celikkaya et al. | May 1993 | A |
5215552 | Sung | Jun 1993 | A |
5219462 | Bruxvoort et al. | Jun 1993 | A |
5219806 | Wood | Jun 1993 | A |
5221294 | Carman et al. | Jun 1993 | A |
5224970 | Harakawa et al. | Jul 1993 | A |
5227104 | Bauer | Jul 1993 | A |
5244477 | Rue | Sep 1993 | A |
5244849 | Roy et al. | Sep 1993 | A |
5273558 | Nelson et al. | Dec 1993 | A |
5277702 | Thibault et al. | Jan 1994 | A |
5282875 | Wood | Feb 1994 | A |
5288297 | Ringwood | Feb 1994 | A |
5300130 | Rostoker | Apr 1994 | A |
5304331 | Leonard et al. | Apr 1994 | A |
5312789 | Wood | May 1994 | A |
5312791 | Coblenz et al. | May 1994 | A |
5366523 | Rowenhorst et al. | Nov 1994 | A |
5366525 | Fujiyama | Nov 1994 | A |
5372620 | Rowse et al. | Dec 1994 | A |
5373786 | Umaba | Dec 1994 | A |
5376598 | Preedy et al. | Dec 1994 | A |
5376602 | Nilsen | Dec 1994 | A |
5383945 | Cottringer et al. | Jan 1995 | A |
5395407 | Cottringer et al. | Mar 1995 | A |
5409645 | Torre, Jr. et al. | Apr 1995 | A |
5429648 | Wu | Jul 1995 | A |
5431967 | Manthiram | Jul 1995 | A |
5435816 | Spurgeon et al. | Jul 1995 | A |
5437754 | Calhoun | Aug 1995 | A |
5441549 | Helmin | Aug 1995 | A |
5443603 | Kirkendall | Aug 1995 | A |
5447894 | Yasuoka et al. | Sep 1995 | A |
5453106 | Roberts | Sep 1995 | A |
5454844 | Hibbard et al. | Oct 1995 | A |
5470806 | Krstic et al. | Nov 1995 | A |
5479873 | Shintani et al. | Jan 1996 | A |
5482756 | Berger et al. | Jan 1996 | A |
5486496 | Talbert et al. | Jan 1996 | A |
5496386 | Broberg et al. | Mar 1996 | A |
5500273 | Holmes et al. | Mar 1996 | A |
5514631 | Cottringer et al. | May 1996 | A |
5516347 | Garg | May 1996 | A |
5516348 | Conwell et al. | May 1996 | A |
5523074 | Takahashi et al. | Jun 1996 | A |
5525100 | Kelly et al. | Jun 1996 | A |
5527369 | Garg | Jun 1996 | A |
5543368 | Talbert et al. | Aug 1996 | A |
5551963 | Larmie | Sep 1996 | A |
5560745 | Roberts | Oct 1996 | A |
5567150 | Conwell et al. | Oct 1996 | A |
5567214 | Ashley | Oct 1996 | A |
5567251 | Peker et al. | Oct 1996 | A |
5571297 | Swei et al. | Nov 1996 | A |
5576409 | Mackey | Nov 1996 | A |
5578095 | Bland et al. | Nov 1996 | A |
5578222 | Trischuk et al. | Nov 1996 | A |
5582625 | Wright et al. | Dec 1996 | A |
5584896 | Broberg et al. | Dec 1996 | A |
5584897 | Christianson et al. | Dec 1996 | A |
5591685 | Mitomo et al. | Jan 1997 | A |
5593468 | Khaund et al. | Jan 1997 | A |
5599493 | Ito et al. | Feb 1997 | A |
5603738 | Zeiringer | Feb 1997 | A |
5609706 | Benedict et al. | Mar 1997 | A |
5611829 | Monroe et al. | Mar 1997 | A |
5618221 | Furukawa et al. | Apr 1997 | A |
5628952 | Holmes et al. | May 1997 | A |
5641469 | Garg et al. | Jun 1997 | A |
RE35570 | Rowenhorst et al. | Jul 1997 | E |
5645619 | Erickson et al. | Jul 1997 | A |
5651925 | Ashley et al. | Jul 1997 | A |
5656217 | Rogers et al. | Aug 1997 | A |
5667542 | Law et al. | Sep 1997 | A |
5669941 | Peterson | Sep 1997 | A |
5669943 | Horton et al. | Sep 1997 | A |
5672097 | Hoopman | Sep 1997 | A |
5672554 | Mohri et al. | Sep 1997 | A |
5683844 | Mammino | Nov 1997 | A |
5702811 | Ho et al. | Dec 1997 | A |
5725162 | Garg et al. | Mar 1998 | A |
5736619 | Kane et al. | Apr 1998 | A |
5738696 | Wu | Apr 1998 | A |
5738697 | Wu et al. | Apr 1998 | A |
5751313 | Miyashita et al. | May 1998 | A |
5759481 | Pujari et al. | Jun 1998 | A |
5776214 | Wood | Jul 1998 | A |
5779743 | Wood | Jul 1998 | A |
5785722 | Garg et al. | Jul 1998 | A |
5810587 | Bruns et al. | Sep 1998 | A |
5820450 | Calhoun | Oct 1998 | A |
5830248 | Christianson et al. | Nov 1998 | A |
5840089 | Chesley et al. | Nov 1998 | A |
5849646 | Stout et al. | Dec 1998 | A |
5855997 | Amateau | Jan 1999 | A |
5863306 | Wei et al. | Jan 1999 | A |
5866254 | Peker et al. | Feb 1999 | A |
5876793 | Sherman et al. | Mar 1999 | A |
5885311 | McCutcheon et al. | Mar 1999 | A |
5893935 | Wood | Apr 1999 | A |
5902647 | Venkataramani | May 1999 | A |
5908477 | Harmer et al. | Jun 1999 | A |
5908478 | Wood | Jun 1999 | A |
5919549 | Van et al. | Jul 1999 | A |
5924917 | Benedict et al. | Jul 1999 | A |
5946991 | Hoopman | Sep 1999 | A |
5975987 | Hoopman et al. | Nov 1999 | A |
5984988 | Berg et al. | Nov 1999 | A |
5989301 | Laconto, Sr. et al. | Nov 1999 | A |
5997597 | Hagan | Dec 1999 | A |
6016660 | Abramshe | Jan 2000 | A |
6019805 | Herron | Feb 2000 | A |
6024824 | Krech | Feb 2000 | A |
6027326 | Cesarano, III et al. | Feb 2000 | A |
6048577 | Garg | Apr 2000 | A |
6053956 | Wood | Apr 2000 | A |
6054093 | Torre, Jr. et al. | Apr 2000 | A |
6080215 | Stubbs et al. | Jun 2000 | A |
6080216 | Erickson | Jun 2000 | A |
6083622 | Garg et al. | Jul 2000 | A |
6096107 | Caracostas et al. | Aug 2000 | A |
6110241 | Sung | Aug 2000 | A |
6129540 | Hoopman et al. | Oct 2000 | A |
6136288 | Bauer et al. | Oct 2000 | A |
6146247 | Nokubi et al. | Nov 2000 | A |
6179887 | Barber, Jr. et al. | Jan 2001 | B1 |
6206942 | Wood | Mar 2001 | B1 |
6228134 | Erickson | May 2001 | B1 |
6238450 | Garg et al. | May 2001 | B1 |
6258137 | Garg et al. | Jul 2001 | B1 |
6258141 | Sung et al. | Jul 2001 | B1 |
6261682 | Law | Jul 2001 | B1 |
6264710 | Erickson | Jul 2001 | B1 |
6277160 | Stubbs et al. | Aug 2001 | B1 |
6277161 | Castro et al. | Aug 2001 | B1 |
6283997 | Garg et al. | Sep 2001 | B1 |
6284690 | Nakahata et al. | Sep 2001 | B1 |
6287353 | Celikkaya | Sep 2001 | B1 |
6306007 | Mori et al. | Oct 2001 | B1 |
6312324 | Mitsui et al. | Nov 2001 | B1 |
6319108 | Adefris et al. | Nov 2001 | B1 |
6331343 | Perez et al. | Dec 2001 | B1 |
6371842 | Romero | Apr 2002 | B1 |
6391812 | Araki et al. | May 2002 | B1 |
6401795 | Cesarano, III et al. | Jun 2002 | B1 |
6403001 | Hayashi | Jun 2002 | B1 |
6413286 | Swei et al. | Jul 2002 | B1 |
6451076 | Nevoret et al. | Sep 2002 | B1 |
6475253 | Culler et al. | Nov 2002 | B2 |
6524681 | Seitz et al. | Feb 2003 | B1 |
6531423 | Schwetz et al. | Mar 2003 | B1 |
6537140 | Miller et al. | Mar 2003 | B1 |
6579819 | Hirosaki et al. | Jun 2003 | B2 |
6582623 | Grumbine et al. | Jun 2003 | B1 |
6583080 | Rosenflanz | Jun 2003 | B1 |
6599177 | Nevoret et al. | Jul 2003 | B2 |
6613113 | Minick et al. | Sep 2003 | B2 |
6646019 | Perez et al. | Nov 2003 | B2 |
6652361 | Gash et al. | Nov 2003 | B1 |
6669745 | Prichard et al. | Dec 2003 | B2 |
6685755 | Ramanath et al. | Feb 2004 | B2 |
6696258 | Wei | Feb 2004 | B1 |
6702650 | Adefris | Mar 2004 | B2 |
6737378 | Hirosaki et al. | May 2004 | B2 |
6749496 | Mota et al. | Jun 2004 | B2 |
6755729 | Ramanath et al. | Jun 2004 | B2 |
6833014 | Welygan et al. | Dec 2004 | B2 |
6843815 | Thurber et al. | Jan 2005 | B1 |
6846795 | Lant et al. | Jan 2005 | B2 |
6878456 | Castro et al. | Apr 2005 | B2 |
6881483 | McArdle et al. | Apr 2005 | B2 |
6888360 | Connell et al. | May 2005 | B1 |
6913824 | Culler et al. | Jul 2005 | B2 |
6942561 | Mota et al. | Sep 2005 | B2 |
6949128 | Annen | Sep 2005 | B2 |
6974930 | Jense | Dec 2005 | B2 |
7022179 | Dry | Apr 2006 | B1 |
7044989 | Welygan et al. | May 2006 | B2 |
7141522 | Rosenflanz et al. | Nov 2006 | B2 |
7168267 | Rosenflanz et al. | Jan 2007 | B2 |
7169198 | Moeltgen et al. | Jan 2007 | B2 |
7267700 | Collins et al. | Sep 2007 | B2 |
7294158 | Welygan et al. | Nov 2007 | B2 |
7297170 | Welygan et al. | Nov 2007 | B2 |
7297402 | Evans et al. | Nov 2007 | B2 |
7364788 | Kishbaugh et al. | Apr 2008 | B2 |
7373887 | Jackson | May 2008 | B2 |
7384437 | Welygan et al. | Jun 2008 | B2 |
7488544 | Schofalvi et al. | Feb 2009 | B2 |
7507268 | Rosenflanz | Mar 2009 | B2 |
7553346 | Welygan et al. | Jun 2009 | B2 |
7556558 | Palmgren | Jul 2009 | B2 |
7560062 | Gould et al. | Jul 2009 | B2 |
7560139 | Thebault et al. | Jul 2009 | B2 |
7563293 | Rosenflanz | Jul 2009 | B2 |
7611795 | Aoyama et al. | Nov 2009 | B2 |
7618684 | Nesbitt | Nov 2009 | B2 |
7662735 | Rosenflanz et al. | Feb 2010 | B2 |
7666344 | Schofalvi et al. | Feb 2010 | B2 |
7666475 | Morrison | Feb 2010 | B2 |
7669658 | Barron et al. | Mar 2010 | B2 |
7670679 | Krishna et al. | Mar 2010 | B2 |
7695542 | Drivdahl et al. | Apr 2010 | B2 |
7858189 | Wagener et al. | Dec 2010 | B2 |
7906057 | Zhang et al. | Mar 2011 | B2 |
7968147 | Fang et al. | Jun 2011 | B2 |
7972430 | Millard et al. | Jul 2011 | B2 |
8021449 | Seth et al. | Sep 2011 | B2 |
8034137 | Erickson et al. | Oct 2011 | B2 |
8049136 | Mase et al. | Nov 2011 | B2 |
8070556 | Kumar et al. | Dec 2011 | B2 |
8123828 | Culler et al. | Feb 2012 | B2 |
8141484 | Ojima et al. | Mar 2012 | B2 |
8142531 | Adefris et al. | Mar 2012 | B2 |
8142532 | Erickson et al. | Mar 2012 | B2 |
8142891 | Culler et al. | Mar 2012 | B2 |
8251774 | Joseph et al. | Aug 2012 | B2 |
8256091 | Duescher | Sep 2012 | B2 |
8440602 | Gonzales et al. | May 2013 | B2 |
8440603 | Gonzales et al. | May 2013 | B2 |
8445422 | Gonzales et al. | May 2013 | B2 |
8470759 | Gonzales et al. | Jun 2013 | B2 |
8480772 | Welygan et al. | Jul 2013 | B2 |
8628597 | Palmgren et al. | Jan 2014 | B2 |
8783589 | Hart et al. | Jul 2014 | B2 |
8852643 | Gonzales et al. | Oct 2014 | B2 |
9017439 | Yener et al. | Apr 2015 | B2 |
20010027623 | Rosenflanz | Oct 2001 | A1 |
20020026752 | Culler et al. | Mar 2002 | A1 |
20020151265 | Adefris | Oct 2002 | A1 |
20020170236 | Larson et al. | Nov 2002 | A1 |
20020174935 | Burdon et al. | Nov 2002 | A1 |
20020177391 | Fritz et al. | Nov 2002 | A1 |
20030008933 | Perez et al. | Jan 2003 | A1 |
20030022961 | Kusaka et al. | Jan 2003 | A1 |
20030029094 | Moeltgen et al. | Feb 2003 | A1 |
20030085204 | Lagos | May 2003 | A1 |
20030109371 | Pujari et al. | Jun 2003 | A1 |
20030110707 | Rosenflanz et al. | Jun 2003 | A1 |
20030126800 | Seth et al. | Jul 2003 | A1 |
20040003895 | Amano et al. | Jan 2004 | A1 |
20040148967 | Celikkaya et al. | Aug 2004 | A1 |
20040202844 | Wong | Oct 2004 | A1 |
20040224125 | Yamada et al. | Nov 2004 | A1 |
20040235406 | Duescher | Nov 2004 | A1 |
20040244675 | Kishimoto et al. | Dec 2004 | A1 |
20050020190 | Schutz et al. | Jan 2005 | A1 |
20050060941 | Provow et al. | Mar 2005 | A1 |
20050060947 | McArdle et al. | Mar 2005 | A1 |
20050064805 | Culler et al. | Mar 2005 | A1 |
20050081455 | Welygan et al. | Apr 2005 | A1 |
20050118939 | Duescher | Jun 2005 | A1 |
20050132655 | Anderson et al. | Jun 2005 | A1 |
20050218565 | DiChiara, Jr. | Oct 2005 | A1 |
20050223649 | O'Gary et al. | Oct 2005 | A1 |
20050232853 | Evans et al. | Oct 2005 | A1 |
20050245179 | Luedeke | Nov 2005 | A1 |
20050255801 | Pollasky | Nov 2005 | A1 |
20050266221 | Karam et al. | Dec 2005 | A1 |
20050271795 | Moini et al. | Dec 2005 | A1 |
20050284029 | Bourlier et al. | Dec 2005 | A1 |
20060049540 | Hui et al. | Mar 2006 | A1 |
20060126265 | Crespi et al. | Jun 2006 | A1 |
20060135050 | Petersen et al. | Jun 2006 | A1 |
20060177488 | Caruso et al. | Aug 2006 | A1 |
20060185256 | Nevoret et al. | Aug 2006 | A1 |
20070020457 | Adefris | Jan 2007 | A1 |
20070051355 | Sung | Mar 2007 | A1 |
20070072527 | Palmgren | Mar 2007 | A1 |
20070074456 | Orlhac et al. | Apr 2007 | A1 |
20070087928 | Rosenflanz et al. | Apr 2007 | A1 |
20070234646 | Can et al. | Oct 2007 | A1 |
20080017053 | Araumi et al. | Jan 2008 | A1 |
20080121124 | Sato | May 2008 | A1 |
20080172951 | Starling | Jul 2008 | A1 |
20080176075 | Bauer et al. | Jul 2008 | A1 |
20080179783 | Liu et al. | Jul 2008 | A1 |
20080230951 | Dannoux et al. | Sep 2008 | A1 |
20080262577 | Altshuler et al. | Oct 2008 | A1 |
20080286590 | Besida et al. | Nov 2008 | A1 |
20080299875 | Duescher | Dec 2008 | A1 |
20090016916 | Rosenzweig et al. | Jan 2009 | A1 |
20090017736 | Block et al. | Jan 2009 | A1 |
20090165394 | Culler et al. | Jul 2009 | A1 |
20090165661 | Koenig et al. | Jul 2009 | A1 |
20090208734 | Macfie et al. | Aug 2009 | A1 |
20090246464 | Watanabe et al. | Oct 2009 | A1 |
20100000159 | Walia et al. | Jan 2010 | A1 |
20100003900 | Sakaguchi et al. | Jan 2010 | A1 |
20100003904 | Duescher | Jan 2010 | A1 |
20100056816 | Wallin et al. | Mar 2010 | A1 |
20100068974 | Dumm | Mar 2010 | A1 |
20100146867 | Boden et al. | Jun 2010 | A1 |
20100151195 | Culler et al. | Jun 2010 | A1 |
20100151196 | Adefris et al. | Jun 2010 | A1 |
20100151201 | Erickson et al. | Jun 2010 | A1 |
20100190424 | Francois et al. | Jul 2010 | A1 |
20100201018 | Yoshioka et al. | Aug 2010 | A1 |
20100292428 | Meador et al. | Nov 2010 | A1 |
20100307067 | Sigalas et al. | Dec 2010 | A1 |
20100319269 | Erickson | Dec 2010 | A1 |
20110008604 | Boylan | Jan 2011 | A1 |
20110023376 | Linnenbrink | Feb 2011 | A1 |
20110111563 | Yanagi et al. | May 2011 | A1 |
20110124483 | Shah et al. | May 2011 | A1 |
20110136659 | Allen et al. | Jun 2011 | A1 |
20110146509 | Welygan et al. | Jun 2011 | A1 |
20110160104 | Wu et al. | Jun 2011 | A1 |
20110244769 | David et al. | Oct 2011 | A1 |
20110289854 | Moren et al. | Dec 2011 | A1 |
20110314746 | Erickson et al. | Dec 2011 | A1 |
20120000135 | Eilers et al. | Jan 2012 | A1 |
20120137597 | Adefris et al. | Jun 2012 | A1 |
20120144754 | Culler et al. | Jun 2012 | A1 |
20120144755 | Erickson et al. | Jun 2012 | A1 |
20120153547 | Bauer et al. | Jun 2012 | A1 |
20120167481 | Yener et al. | Jul 2012 | A1 |
20120168979 | Bauer et al. | Jul 2012 | A1 |
20120227333 | Adefris et al. | Sep 2012 | A1 |
20120231711 | Keipert et al. | Sep 2012 | A1 |
20130000212 | Wang et al. | Jan 2013 | A1 |
20130000216 | Wang et al. | Jan 2013 | A1 |
20130009484 | Yu | Jan 2013 | A1 |
20130036402 | Mutisya et al. | Feb 2013 | A1 |
20130045251 | Cen et al. | Feb 2013 | A1 |
20130067669 | Gonzales et al. | Mar 2013 | A1 |
20130072417 | Perez-Prat et al. | Mar 2013 | A1 |
20130074418 | Panzarella et al. | Mar 2013 | A1 |
20130125477 | Adefris | May 2013 | A1 |
20130180180 | Yener et al. | Jul 2013 | A1 |
20130186005 | Kavanaugh | Jul 2013 | A1 |
20130186006 | Kavanaugh et al. | Jul 2013 | A1 |
20130199105 | Braun et al. | Aug 2013 | A1 |
20130236725 | Yener et al. | Sep 2013 | A1 |
20130255162 | Welygan et al. | Oct 2013 | A1 |
20130267150 | Seider et al. | Oct 2013 | A1 |
20130283705 | Fischer et al. | Oct 2013 | A1 |
20130305614 | Gaeta et al. | Nov 2013 | A1 |
20130337262 | Bauer et al. | Dec 2013 | A1 |
20130337725 | Monroe | Dec 2013 | A1 |
20140000176 | Moren et al. | Jan 2014 | A1 |
20140007518 | Yener et al. | Jan 2014 | A1 |
20140080393 | Ludwig | Mar 2014 | A1 |
20140106126 | Gaeta et al. | Apr 2014 | A1 |
20140182216 | Panzarella et al. | Jul 2014 | A1 |
20140182217 | Yener et al. | Jul 2014 | A1 |
20140186585 | Field, III et al. | Jul 2014 | A1 |
20140250797 | Yener et al. | Sep 2014 | A1 |
20140290147 | Seth et al. | Oct 2014 | A1 |
20140352721 | Gonzales et al. | Dec 2014 | A1 |
20140352722 | Gonzales et al. | Dec 2014 | A1 |
20140357544 | Gonzales et al. | Dec 2014 | A1 |
20140378036 | Cichowlas et al. | Dec 2014 | A1 |
20150000209 | Louapre et al. | Jan 2015 | A1 |
20150000210 | Breder et al. | Jan 2015 | A1 |
20150007399 | Gonzales et al. | Jan 2015 | A1 |
20150007400 | Gonzales et al. | Jan 2015 | A1 |
20150089881 | Stevenson et al. | Apr 2015 | A1 |
20150126098 | Eilers et al. | May 2015 | A1 |
20150128505 | Wang et al. | May 2015 | A1 |
20150183089 | Iyengar et al. | Jul 2015 | A1 |
20150218430 | Yener et al. | Aug 2015 | A1 |
20150232727 | Erickson | Aug 2015 | A1 |
20150291865 | Breder et al. | Oct 2015 | A1 |
20150291866 | Arcona et al. | Oct 2015 | A1 |
20150291867 | Breder et al. | Oct 2015 | A1 |
20150343603 | Breder et al. | Dec 2015 | A1 |
20160177152 | Braun | Jun 2016 | A1 |
20160177153 | Josseaux | Jun 2016 | A1 |
20160177154 | Josseaux et al. | Jun 2016 | A1 |
20160186028 | Louapare et al. | Jun 2016 | A1 |
20160214903 | Humpal et al. | Jul 2016 | A1 |
20160298013 | Bock et al. | Oct 2016 | A1 |
20160303704 | Chou et al. | Oct 2016 | A1 |
20160303705 | Chou et al. | Oct 2016 | A1 |
20160304760 | Bock et al. | Oct 2016 | A1 |
20160311081 | Culler et al. | Oct 2016 | A1 |
20160311084 | Culler et al. | Oct 2016 | A1 |
20160326416 | Bauer et al. | Nov 2016 | A1 |
20160340564 | Louapre et al. | Nov 2016 | A1 |
20160354898 | Nienaber | Dec 2016 | A1 |
20160362589 | Bauer et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
743715 | Oct 1966 | CA |
2423788 | Jul 2002 | CA |
685051 | Mar 1995 | CH |
102123837 | Jul 2014 | CN |
102012023688 | Apr 2014 | DE |
202014101739 | Jun 2014 | DE |
202014101741 | Jun 2014 | DE |
102013202204 | Aug 2014 | DE |
102013210158 | Dec 2014 | DE |
102013210716 | Dec 2014 | DE |
102013212598 | Dec 2014 | DE |
102013212622 | Dec 2014 | DE |
102013212634 | Dec 2014 | DE |
102013212639 | Dec 2014 | DE |
102013212644 | Dec 2014 | DE |
102013212653 | Dec 2014 | DE |
102013212654 | Dec 2014 | DE |
102013212661 | Dec 2014 | DE |
102013212666 | Dec 2014 | DE |
102013212677 | Dec 2014 | DE |
102013212680 | Dec 2014 | DE |
102013212687 | Dec 2014 | DE |
102013212690 | Dec 2014 | DE |
102013212700 | Dec 2014 | DE |
102014210836 | Dec 2014 | DE |
0046374 | Feb 1982 | EP |
0078896 | May 1983 | EP |
0152768 | Sep 1987 | EP |
0293163 | Nov 1988 | EP |
0480133 | Apr 1992 | EP |
0652919 | May 1995 | EP |
0662110 | Jul 1995 | EP |
0500369 | Jan 1996 | EP |
0609864 | Nov 1996 | EP |
0771769 | May 1997 | EP |
0812456 | Dec 1997 | EP |
0651778 | May 1998 | EP |
0614861 | May 2001 | EP |
0931032 | Jul 2001 | EP |
0833803 | Aug 2001 | EP |
1356152 | Oct 2003 | EP |
1371451 | Dec 2003 | EP |
1383631 | Jan 2004 | EP |
1015181 | Mar 2004 | EP |
1492845 | Jan 2005 | EP |
1851007 | Nov 2007 | EP |
1960157 | Aug 2008 | EP |
2176031 | Apr 2010 | EP |
2184134 | May 2010 | EP |
2390056 | Nov 2011 | EP |
1800801 | Mar 2012 | EP |
2537917 | Dec 2012 | EP |
2567784 | Mar 2013 | EP |
2631286 | Aug 2013 | EP |
2692813 | Feb 2014 | EP |
2692814 | Feb 2014 | EP |
2692815 | Feb 2014 | EP |
2692816 | Feb 2014 | EP |
2692817 | Feb 2014 | EP |
2692818 | Feb 2014 | EP |
2692819 | Feb 2014 | EP |
2692820 | Feb 2014 | EP |
2692821 | Feb 2014 | EP |
2719752 | Apr 2014 | EP |
2720676 | Apr 2014 | EP |
2012972 | Jun 2014 | EP |
2354373 | Jan 1978 | FR |
986847 | Mar 1965 | GB |
53064890 | Jun 1978 | JP |
60-006356 | Jan 1985 | JP |
62002946 | Jan 1987 | JP |
63036905 | Jul 1988 | JP |
3079277 | Apr 1991 | JP |
03-287687 | Dec 1991 | JP |
5285833 | Nov 1993 | JP |
6114739 | Apr 1994 | JP |
7008474 | Feb 1995 | JP |
10113875 | May 1998 | JP |
2779252 | Jul 1998 | JP |
10330734 | Dec 1998 | JP |
H10315142 | Dec 1998 | JP |
2957492 | Oct 1999 | JP |
2000091280 | Mar 2000 | JP |
2000-336344 | Dec 2000 | JP |
3160084 | Apr 2001 | JP |
2001162541 | Jun 2001 | JP |
03194269 | Jul 2001 | JP |
2001207160 | Jul 2001 | JP |
2002-038131 | Feb 2002 | JP |
2003-049158 | Feb 2003 | JP |
2004-510873 | Apr 2004 | JP |
2004209624 | Jul 2004 | JP |
2006159402 | Jun 2006 | JP |
2006-192540 | Jul 2006 | JP |
2008194761 | Aug 2008 | JP |
5238725 | Jul 2013 | JP |
5238726 | Jul 2013 | JP |
171464 | Nov 1982 | NL |
9402559 | Feb 1994 | WO |
9501241 | Jan 1995 | WO |
9503370 | Feb 1995 | WO |
9518192 | Jul 1995 | WO |
9520469 | Aug 1995 | WO |
9627189 | Sep 1996 | WO |
9714536 | Apr 1997 | WO |
9906500 | Feb 1999 | WO |
9938817 | Aug 1999 | WO |
9938817 | Aug 1999 | WO |
9954424 | Oct 1999 | WO |
0114494 | Mar 2001 | WO |
02097150 | Dec 2002 | WO |
03087236 | Oct 2003 | WO |
2005080624 | Sep 2005 | WO |
2006027593 | Mar 2006 | WO |
2007041538 | Apr 2007 | WO |
2009085578 | Jul 2009 | WO |
2010077509 | Jul 2010 | WO |
2010085587 | Jul 2010 | WO |
2010151201 | Dec 2010 | WO |
2011068724 | Jun 2011 | WO |
2011068714 | Jun 2011 | WO |
2011087649 | Jul 2011 | WO |
2011109188 | Sep 2011 | WO |
2011139562 | Nov 2011 | WO |
2011149625 | Dec 2011 | WO |
2012018903 | Feb 2012 | WO |
2012061016 | May 2012 | WO |
2012061033 | May 2012 | WO |
2012092590 | Jul 2012 | WO |
2012092605 | Jul 2012 | WO |
2012112305 | Aug 2012 | WO |
2012112322 | Aug 2012 | WO |
2012141905 | Oct 2012 | WO |
2013003830 | Jan 2013 | WO |
2013003831 | Jan 2013 | WO |
2013009484 | Jan 2013 | WO |
2013036402 | Mar 2013 | WO |
2013045251 | Apr 2013 | WO |
2013049239 | Apr 2013 | WO |
2013070576 | May 2013 | WO |
2013102170 | Jul 2013 | WO |
2013102176 | Jul 2013 | WO |
2013102177 | Jul 2013 | WO |
2013106597 | Jul 2013 | WO |
2013106602 | Jul 2013 | WO |
2013151745 | Oct 2013 | WO |
2013177446 | Nov 2013 | WO |
2013188038 | Dec 2013 | WO |
2014005120 | Jan 2014 | WO |
2014161001 | Feb 2014 | WO |
2014020068 | Feb 2014 | WO |
2014020075 | Feb 2014 | WO |
2014022453 | Feb 2014 | WO |
2014022462 | Feb 2014 | WO |
2014022465 | Feb 2014 | WO |
2014057273 | Apr 2014 | WO |
2014062701 | Apr 2014 | WO |
2014070468 | May 2014 | WO |
2014106173 | Jul 2014 | WO |
2014106211 | Jul 2014 | WO |
2014124554 | Aug 2014 | WO |
2014137972 | Sep 2014 | WO |
2014140689 | Sep 2014 | WO |
2014165390 | Oct 2014 | WO |
2014176108 | Oct 2014 | WO |
2014206739 | Dec 2014 | WO |
2014206890 | Dec 2014 | WO |
2014206967 | Dec 2014 | WO |
2014209567 | Dec 2014 | WO |
2014210160 | Dec 2014 | WO |
2014210442 | Dec 2014 | WO |
2014210532 | Dec 2014 | WO |
2014210568 | Dec 2014 | WO |
2015050781 | Apr 2015 | WO |
2015073346 | May 2015 | WO |
2015088953 | Jun 2015 | WO |
2015089527 | Jun 2015 | WO |
2015089528 | Jun 2015 | WO |
2015089529 | Jun 2015 | WO |
2015100018 | Jul 2015 | WO |
2015100020 | Jul 2015 | WO |
2015100220 | Jul 2015 | WO |
2015112379 | Jul 2015 | WO |
2015130487 | Sep 2015 | WO |
2015158009 | Oct 2015 | WO |
2015164211 | Oct 2015 | WO |
2015165122 | Nov 2015 | WO |
2015167910 | Nov 2015 | WO |
2015179335 | Nov 2015 | WO |
2015180005 | Dec 2015 | WO |
2016028683 | Feb 2016 | WO |
2016044158 | Mar 2016 | WO |
2016064726 | Apr 2016 | WO |
2016089675 | Jun 2016 | WO |
2016160357 | Oct 2016 | WO |
2016161157 | Oct 2016 | WO |
2016161170 | Oct 2016 | WO |
2016167967 | Oct 2016 | WO |
2016196795 | Dec 2016 | WO |
2016205133 | Dec 2016 | WO |
2016205267 | Dec 2016 | WO |
2016210057 | Dec 2016 | WO |
2017007703 | Jan 2017 | WO |
2017007714 | Jan 2017 | WO |
Entry |
---|
“Investigation of Shaped Abrasive Particles vol. 1: Review of US Pat. No. 6,054,093 Apr. 25, 2000” © Apr. 2011, 5 pages. |
Austin, Benson M., “Thick-Film Screen Printing,” Solid State Technology, Jun. 1969, pp. 53-58. |
Avril, Nicholas Joseph, “Manufacturing Glass-fiber Reinforcement for Grinding Wheels,” Massachusetts Institute of Technology, 1996, 105 pgs. |
Bacher, Rudolph J., “High Resolution Thick Film Printing,” E.I. du Pont de Nemours & Company, Inc., pp. 576-581, date unknown. |
Besse, John R., “Understanding and controlling wheel truing and dressing forces when rotary plunge dressing,” Cutting Tool Engineering, Jun. 2012, vol. 64, Issue 6, 5 pages. |
Brewer, L. et al., Journal of Materials Research, 1999, vol. 14, No. 10, pp. 3907-3912. |
Ciccotti, M. et al., “Complex dynamics in the peeling of an adhesive tape,” International Journal of Adhesion & Adhesives 24 (2004) pp. 143-151. |
Dupont, “Kevlar Aramid Pulp”, Copyright 2011, DuPont, 1 page. |
Wu, J. et al., Friction and Wear Properties of Kevlar Pulp Reinforced Epoxy. |
J. European Ceramic Society 31, Abstract only (2011) 2073-2081. |
Riemer, Dietrich E., “Analytical Engineering Model of the Screen Printing Process: Part II,” Solid State Technology, Sep. 1988, pp. 85-90. |
Miller, L.F., “Paste Transfer in the Screening Process,” Solid State Technology, Jun. 1969, pp. 46-52. |
Morgan, P. et al., “Ceramic Composites of Monazite and Alumina,” J. Am. Ceram. Soc., 78, 1995, 1553-63. |
Riemer, Dietrich E., “Analytical Engineering Model of the Screen Printing Process: Part I,” Solid State Technology, Aug. 1988, pp. 107-111. |
WINTER Catalogue No. 5, Dressing tools, WINTER diamond tools for dressing grinding wheels, 140 pages. |
Badger, Jeffrey, “Evaluation of Triangular, Engineered-Shape Ceramic Abrasive in Cutting Discs,” Supplement to the Welding Journal, Apr. 2014, vol. 93, pp. 107-s to 115-s. |
3M Cubitron II Abrasive Belts Brochure, Shaping the Future, Jan. 2011, 6 pages. |
Vanstrum et al., Precisely Shaped Grain (PSG): 3M's Innovation in Abrasive Grain Technology, date unknown, 1 page. |
Graf, “Cubitron II: Precision-Shaped Grain (PSG) Turns the Concept of Gear Grinding Upside Down,” gearsolutions.com, May 2014, pp. 36-44. |
DOW Machine Tool Accessories, Grinding & Surface Finishing, www.1mta.com, Nov. 2014, 72 pages. |
International Search Report for Application No. PCT/US2015/000190, dated Apr. 1, 2016, 1 page. |
Number | Date | Country | |
---|---|---|---|
20160177153 A1 | Jun 2016 | US |