The present invention relates to a composite strip material, which can be preferably used for manufacturing spacers, in particular spacers for insulating glass units (hereinafter IG units).
As most participants and observers of the window industry in North America know, Intercept IG units are a significant component in the fenestration manufacturing process. Understandably, the IG spacer is a principal element of any IG construction, and the Intercept technology for spacer manufacturing has had a major impact on IG unit economics and quality for over ten years. The spacer making process involves using a strip of material, usually tin-plated steel as shown in a cross sectional view in
With regard to the thermal performance behavior of tin-plated steel and other spacer materials, testing results have been well documented over ten years. Edge conductivity tests show the tin-plated steel spacer to be “warm edge technology”, and much better than the aluminium box spacer.
It is the object of this invention to provide a more competitive spacer material with regard to thermal performance and material costs, while still preserving favorable fabrication process economics.
This object is achieved by composite spacer strip material according to claim 1.
Further developments of the invention are given in the dependent claims.
It should be noted this concept of a composite strip for use in fabricating spacers is not limited to the Intercept IG spacer approach, but the strip could be used in a wide variety of spacer designs and shapes.
The composite spacer strip material is beneficiary, for example, because
Further features and advantages of the invention will become apparent from the following description of embodiments, referring to the drawings, which show cross sectional views perpendicular to the longitudinal direction of the spacer strip material as follows:
In the following, preferred embodiments of the invention are described referring to the drawings.
The plastic material is preferably an elastically-plastically deformable material (e.g., a plastic or resin material) having a relatively low heat conductivity. The metal layer is made of stainless steel, but could also be made of another deformable reinforcement material or layer, that is appropriated to be coupled to the elastically-plastically deformable material of layer one.
Preferred elastically-plastically deformable materials include synthetic or natural materials that undergo plastic, irreversible deformation after the elastic restoring forces of the bent material have been overcome. In such preferred materials, substantially no elastic restoring forces are active after deformation (bending) of the material beyond its apparent yielding point. Representative plastic materials also preferable exhibit a relatively low heat conductivity (i.e., preferred materials are heat-insulating materials), such as heat conductivities of less than about 5 W/(m*K), more preferably less than about 1 W/(m*K), and even more preferably less than about 0.3 W/(m*K). Particularly preferred materials for the profile body are thermoplastic synthetic materials including, but not limited to, polypropylene, polyethylene therephtalate, polyamide and/or polycarbonate. This plastic material(s) may also contain commonly used fillers (e.g., fibrous materials), additives, dyes, UV-protection agents, etc.
Preferred plastically deformable materials for the second layer(s) include metals that provide substantially no elastic restoring force after being bent beyond the apparent yielding point of the metal. Preferred materials for the profile body optionally exhibit a heat conduction value that is at least about 10 times less than the heat conduction value of the reinforcement material, more preferably about 50 times less than the heat conduction value of the reinforcement material and most preferably about 100 times less than the heat conduction value of the reinforcement material.
The first layer 1, i.e. preferably the plastic portion, of the composite spacer strip material, is permanently coupled (or materially connected) to the second layer(s) by the above manufacturing processes, preferably by co-extruding the first layer 1 with the second layer(s) 2 or laminating the same. The variety of further manufacturing techniques, which are not explicitly mentioned, may be utilized to make the material.
Preferably, the plastic material may comprise polypropylene Novolen 1040 K. An alternative is polypropylene MC208U comprising 20% talc, or polypropylene BA110CF, which is a heterophasic copolymer, both of which are available from Borealis A/S of Kongens Lyngby, Denmark. Alternatively, the plastic material may comprise Adstif® HA840K, which is a polypropylene homopolymer available from Basell Polyolefins Company NV.
The reinforcement material may be a metal foil or a thin metal plate material, e.g. AndralytE2, 8/2, 8T57 and may have a thickness of about 0.1 mm (approx. 4×10−3 Inch) The material of the second layer(s) 2 may be co-extruded with or laminated onto the first layer 1, for example, by adhering to the plastic portion using a 50 μm (approx. 2×10−3 Inch) layer of a bonding agent (adhesive) such a polyurethane and/or a polysulfide. Of course, if the second layer is made of a material subject to corrosion, the corresponding second layer may be treated to prevent corrosion. The material of the second layer(s) 2 is preferably stainless steel but can be also a tin-plated iron foil, such as a tin-plated iron foil having a chemical composition of: carbon 0.070%, manganese 0.400%, silicon 0.018%, aluminum 0.045%, phosphorus 0.020%, nitrogen 0.007%, the balance being iron. The tin layer having a weight/surface ratio of 2.8 g/m2 and is applied to the base portion at a thickness at about 0.38 microns.
An example for a stainless steel foil is, e.g., Krupp Verdol Aluchrom I SE, having a thickness of about 0.05-0.2 mm (approx. 2×10−3-8×10−3 Inch), and most preferably about 0.1 mm (approx. 4×10−3 Inch). The chemical composition of this stainless steel may be approximately: chromium 19-21%, carbon maximum 0.03%, manganese maximum 0.50%, silicon maximum 0.60%, aluminum 4.7-5.5%, the balance being iron.
Alternatively, the material of the second layer(s) 2 may comprise aluminum metal having a thickness of about 0.2-0.4 mm (approx. 8×10−3-1.6×10−2 Inch). Another alternative is a galvanized iron/steel sheet having a thickness of about 0.1-0.15 mm (approx. 4×10−3-6×10−3 Inch) as the material of the second layer(s) 2.
The above examples for the materials of the first layer 1 and the second layer(s) 2 are examples only. Favorable attributes of the materials are selected such that the strip material provides moisture transmission barrier properties and argon retention performance for the spacer to be used in a completed IG unit product.
A preferable composite spacer strip material has a thickness in the thickness direction (X) of about 0.010″ (2.54×10−4 m) such that the currently used roll-forming equipment for Intercept spacers can be used. Of course, it is possible to select other thicknesses and widths, depending on the desired spacer sizes and other properties. The width in the width direction (Y) can be varied significantly in a manufacturing process, in that, a wide sheet is fabricated (by extrusion, lamination or other means) and the wide sheet is subsequently slit into desired widths for forming into IG spacers. For example, the gross sheet would be about 60″ wide in the width direction (Y) and it would be slit into strips about 1.5″ wide.
In the examples shown in
A second embodiment of the invention is shown in
A third embodiment of the composite spacer strip material is shown in
In all embodiments shown in
In all embodiments described above, the second layers can be reinforcement layers and/or barrier layers and made of the materials described with respect to the second layer(s) of the first embodiment, and the first layer 1 can be made of the same material as described with respect to the first embodiment.
All other descriptions of modifications and manufacturing processes also relate to all embodiments.
It is explicitly stated that all features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original disclosure as well as for the purpose of restricting the claimed invention independent of the composition of the features in the embodiments and/or the claims. It is explicitly stated that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure as well as for the purpose of restricting the claimed invention, in particular as limits of value ranges.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP06/07211 | 7/21/2006 | WO | 00 | 7/7/2008 |
Number | Date | Country | |
---|---|---|---|
60704509 | Aug 2005 | US |