The objects and features of the present invention will become clearer from the following description of the preferred embodiments given with reference to the attached drawings, wherein:
Referring now to the drawings, in particular
The spark plug or ignition device 1 includes a preferably hollow, composite insulator 4 disposed concentrically within the shell 15, incorporating a combustion cone 5, preferably formed from ceramic or the like. The center or positive electrode 7 is disposed concentrically within the ceramic cone 5 that is disposed in the combustion chamber when installed in the engine (not shown).
The center electrode 7 is preferably constructed of a thermally and electrically conductive material with very low resistivity values such as, but not limited to, a copper or copper alloy, with or without an outer coating, cladding or plating preferred in a nickel alloy. The center electrode 7 preferably includes formed thereon, by weldment or by other suitable attachment, an electrode tip 17 preferably constructed of a Rhenium/Tungsten alloy (50%-75% Rhenium), which is highly resistant to erosion under high power discharge, as further disclosed herein.
The spark plug 1 includes a highly conductive spring 10 that is a component of the center conductor assembly and positive plate 43 of the capacitive element. The spring 10 is connected to one end of a preferably 5KΩ (or suitable resitance) resistor or inductor 11 and electrically and mechanically contacts the positive plate 43 of the capacitor, which is connected to the center electrode 7 by means of an interference fit of the stud 9 of the electrode 7 into the positive plate 43. Preferably, the resistor or inductor 11 is connected to a high voltage terminal 13 for further connection to an ignition coil (not shown) by a penetrating rod 14 of the terminal 13, as further disclosed herein.
The composite insulator 4 of the spark plug is inserted into the shell 15 and preferably crimped for positive alignment and seal against combustion gasses, as is customary practice in the industry. Preferably, during an over molding process of creating the insulator 4, a flange 3 of a negative plate 2 is left exposed. The exposed flange 3 of the negative plate of the capacitor 2 makes physical and electrical contact with the conductive shell 15 of the spark plug when the shell 15 is crimped with sideward and downward pressure onto the insulator 1 using conventional industry practice. The mechanical contact between the shell 15, which is electrically connected to the ground circuit of the engine ignition circuit and the negative plate 2 of the capacitor advantageously ensures that the negative plate 2 is electrically connected to the ground circuit of the ignition system.
Referring now to
The preferably ceramic cone 5 has an integral and concentric locking detent 27 wherein during the molding process, the engineered polymer of the insulator 4 flows into, which locks and locates the cone 5 in relation to and separated from the negative plate 2. A concentric cavity 26 in the ceramic cone 5 is formed to nestle the center or positive electrode 7.
The center electrode 7 is provided with a boss 23, stud 9 and an electrode tip 17 that is resistant to high power discharge. The boss 23 of the center electrode 7 nestles in the cavity 26 provided in the ceramic cone 5. During the manufacturing process, the cavity 26 is preferably filled with copper glass, ceramic epoxy or other suitable permanently sealing material on top of the installed center electrode 7 and boss 23 thereof, which provides a gas seal to protect the interior of the spark plug 1 from combustion pressures. The stud 9 of the electrode 7 is provided to engage the assembled positive plate of the capacitor (shown as 43 in
Referring now to
Within the ignition or spark gap pulsed-power industry, it is well-known that increasing the power (Watts) of the spark increases the erosion rate of the electrodes, with the spark-emanating electrode eroding faster than the receiving electrode. Industry standard has been to utilize precious or noble metals such as gold, silver, platinum and lately iridium as the electrode metal of choice to abate the electrode erosion of common ignition power. These metals, however, will not suffice to reduce the elevated electrode erosion rate of the high power discharge of the current invention. The electrode tip 17 of a sintered compound of rhenium by about 50% to 75% by mass sintered with tungsten in a preferably cylindrical configuration of 0.025″-0.060″ in diameter and 0.100″ in length is preferably affixed to the center electrode 7 by means of plasma, friction or electron welding or other suitable method by which permanency is achieved while delivering a low resistance juncture.
The use of pure tungsten as an electrode in a spark gap application is well documented within the pulsed-power industry as a preferred erosion resistant material. However, as used in an internal combustion engine where combustion temperatures reach beyond the oxidation temperature of tungsten, the electrode disadvantageously erodes at a faster rate than noble metals. Tungsten may be utilized as an electrode material in an automotive application by the isolation of the tungsten to the oxygen present in the combustion chamber. This is partially accomplished by the sintering of tungsten with rhenium and an appropriate binding agent such as, but not limited to, a non-oxidizing metal that melts at a temperature below that of rhenium and tungsten. The sintering process blends the two preferably powdered base metals with the binding agent and during the refractory process melts the binder and sinters the base materials into a form held together by the binder. The form, preferably rectangular in shape, is then extruded into wire of 0.025″ to 0.060″ in diameter to form the electrode tips 17 and 45. The bonding agent provides protection against the oxidation of the tungsten component by covering that portion of the tungsten not in contact with the rhenium.
While this offers some protection for the tungsten against oxidation, the bonding metal erodes during the high-power discharge process, exposing the raw tungsten of the electrode tips 17 and 45 to ambient oxygen in the combustion chamber and thereby accelerating tungsten erosion. However, the erosion rate due to oxygen exposure is significantly reduced by the use of the bonding agent. Additionally, as the tungsten erodes, the rhenium is now closer to the opposing or negative electrode, and as proximity and field effect dictate where the spark emanates from, the rhenium, also highly resistant to high-power erosion, becomes the source of the spark streamer.
Additionally, tungsten may be utilized as an electrode material in an automotive application by the placement of the electrode tip 17 with respect to the ceramic cone 5. In this placement, only the extreme end of the electrode tip 17 is exposed to the elements in the combustion chamber. The remainder of the cylindrical electrode tip 17 has been bonded to the ceramic cone 5, sealing off the electrode tip 17 against any combustion gasses including oxygen. In this fashion, only the extreme end of the electrode tip 17 will erode, as it will under the high power discharge of the current invention.
As the electrode tip 17 gradually wears away, electrons from the ignition pulse will emanate from the recessed electrode tip 17 and ionize the ceramic cone wall 31 and creep to the edge 30 of the ceramic cone 5 before ionizing the spark gap (not shown) and creating a spark (not shown) to the ground electrode 16. The voltage required to ionize the ceramic cone wall 31 just above the eroding electrode tip 17 is very small resulting in the total voltage required to breakdown the spark gap and create a spark being minimally more than the voltage required to break down the original, un-eroded spark gap.
In this fashion, the electrode tip 17 can erode to the point where the distance from the ground electrode 16 to the center or positive electrode tip 17 has doubled, while the voltage required to break down the doubled gap is slightly more than the breakdown voltage of the original spark gap and well under the available voltage from the original equipment manufacturer ignition system. This advantageously assures proper operation of the engine for a minimum of 109 cycles of the spark plug or 100,000 equivalent miles.
Referring again to
Capacitance can be mathematically arrived at by formula;
Where C is the capacitance per inch of cylindrical plates, Dc is the dielectric constant of the polymer 4, Ln is the natural log, Di is the inside diameter of the negative plate 2, and Do is the outside diameter of the positive plate 43 in
Attention is now directed in
Referring now to
The spring 10 end opposite the resistor 11 makes mechanical and electrical contact with the tubular positive plate or conductor 43 completing the positive circuit for the ignition pulse. The placement of the resistor 11 in the positive circuit before the positive plate 43 of the capacitive element of the spark plug 1 allows the capacitor 28 to discharge at a very high transfer efficiency rate and deposit a very high percentage, greater than 95%, of the stored energy into the fuel charge. Normally this hard deposition of energy would create an abnormal amount of radio frequency or electromagnetic interference, which is incompatible with the operation of automobile engine management computers. Placement of the resistor 11 before the capacitor 28 in the circuit allows for the deposition while elimination the interference.
There is abundant prior experimentation with related results, see Society of Automotive Engineers Paper 02FFFL-204 titled “Automotive Ignition Transfer Efficiency”, concerning the utilization of a current peaking capacitor, such as the capacitor 28 wired in parallel to the high voltage circuit such as the circuits 30 and 37 of the ignition system to increase the electrical transfer efficiency of the ignition and thereby couple more electrical energy to the fuel charge. By coupling more electrical energy to the fuel charge, consistent ignition relative to crank angle is accomplished reducing cycle-to-cycle variations in peak combustion pressure, which increases engine efficiency. An additional benefit of coupling the current peaking capacitor 28 in parallel is the resultant large robust flame kernel created at the discharge of the capacitor 28. The robust kernel causes more consistent ignition and more complete combustion, again resulting in greater engine performance. One of the benefits of utilizing a peaking capacitor 28 to improve engine performance is the ability to ignite fuel in extreme lean conditions. Today, modern engines are introducing more and more exhaust gas into the intake of the engine to reduce emissions and improve fuel economy. The use of the peaking capacitor 28 will allow automobile manufacturers to lean air:fuel ratios with additional levels of exhaust gas beyond levels of current automotive ignition capability.
Referring now to
Gas seal and ground contact washer 22 of
An embodiment of the spark plug or ignition device 1 of the present invention provides a spark plug that has an insulator 4 and 5 that is a composite of dissimilar materials. An embodiment of the spark plug or ignition device 1 includes a very fine cross sectional electrode tips 17 and 45 of a material and design to effectively reduce the erosion of the electrode tips 17 and 45 prevalent in high power discharge, spark-gap devices. An embodiment of the spark plug or ignition device 1 an insulator 4 constructed in such a manner as to create a capacitor 28 in parallel with the high voltage circuit 30 of the ignition system, and placement of an inductor or resistor 11 in the electrical circuit 30 of the spark plug whereby the resistor or inductor 11 suitably shields any electromagnetic or radio frequency emissions from the spark plug 1 without compromising the high power discharge of the spark. An embodiment of the spark plug or ignition device 1 also completes the capacitor 28 and high voltage circuit 30 of the ignition system to provide a path for the high power discharge to the electrode 17 of the spark plug 1.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above and/or in the attachments, and of the corresponding application(s), are hereby incorporated by reference.
This application claims priority to and the benefit of the filing of U.S. Provisional Patent Application Ser. No. 60/799,926, entitled “Composite Spark Plug”, filed on May 12, 2006, and the specification thereof is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60799926 | May 2006 | US |