Composite spinal facet implant with textured surfaces

Abstract
Implementations described and claimed herein provide a distal leading portion of a composite spinal implant for implantation in a spinal facet joint. In one implementation, the distal leading portion includes a distal leading end, a proximal trailing end, a first face, and a second face. The distal leading end has a distal surface generally opposite a proximal surface of the proximal trailing end. The first face has a first surface that is generally parallel with a second surface of the second face. The first and second faces extend between the distal leading end and the proximal trailing end, such that the first and second surfaces slope upwardly from the distal lead end to the proximal trailing end along a length of extending proximally. The first and second surfaces having one or more textured features adapted to provide friction with the spinal facet joint.
Description
TECHNICAL FIELD

Aspects of the present disclosure relate to a device for distracting the spine and more particularly to a tool for distracting a facet joint of the spine and an implant for maintaining the distracted position of the joint.


BACKGROUND

Chronic back problems cause pain and disability for a large segment of the population. Adverse spinal conditions may be characteristic of age. In particular, spinal stenosis (including, but not limited to, central, canal, and lateral stenosis) and facet arthropathy may increase with age. Spinal stenosis results in a reduction of foraminal area (i.e. the available space for the passage of nerves and blood vessels), which may compress cervical nerve roots and cause radicular pain. Both neck extension and ipsilateral rotation, in contrast to neck flexion, may further reduce the foraminal area and contribute to pain, nerve root compression, and neural injury.


Cervical disc herniations may be a factor in spinal stenosis and may predominantly present upper extremity radicular symptoms. In this case, treatment may take the form of closed traction. A number of closed traction devices are available that alleviate pain by pulling on the head to increase foraminal height. Cervical disc herniations may also be treated with anterior and posterior surgery. Many of these surgeries are performed through an anterior approach, which requires a spinal fusion. These surgeries may be expensive and beget additional surgeries due to changing the biomechanics of the neck. There is a three percent incidence of re-operation after cervical spine surgery. Moreover, these surgeries may be highly invasive leading to long recovery times.


There is a need in the art for implants, delivery systems, and methods of implantation that facilitate the fusion of a spinal facet joint via a minimally invasive or percutaneous procedure from, for example, a posterior approach.


It is with these observations in mind, among others, that various aspects of the present disclosure were conceived and developed.


SUMMARY

Implementations described and claimed herein address the foregoing problems, among others, by providing a distal leading portion of a composite spinal implant for implantation in a spinal facet joint. In one implementation, the distal leading portion includes a distal leading end, a first face, and a first side. The distal leading end has a distal surface generally opposite a proximal surface of a proximal trailing end. The first face has a first surface that is generally parallel with a second surface of a second face. The first and second faces extend between the distal leading end and the proximal trailing end, such that the first and second surfaces slope upwardly from the distal lead end to the proximal trailing end along a length of extending proximally. The first and second surfaces having one or more textured features adapted to provide friction with the spinal facet joint. The first side has a first side surface generally opposite a second side having a second side surface. The first side surface and the second side surface each have a slot extending distally from a notch formed in the proximal surface until reaching a sloped transition extending from an inner surface of the slot to the side surface of the first side or the second side.


Other implementations are also described and recited herein. Further, while multiple implementations are disclosed, still other implementations of the presently disclosed technology will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative implementations of the presently disclosed technology. As will be realized, the presently disclosed technology is capable of modifications in various aspects, all without departing from the spirit and scope of the presently disclosed technology. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-D are isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant.



FIG. 2A is an isometric view of another example of a distal leading portion of a composite spinal implant.



FIG. 2B shows an isometric view of an example proximal trailing anchor portion of a composite spinal implant.



FIGS. 2C-2D illustrate side and top plan views, respectively, of a composite spinal implant employing the distal leading portion of FIG. 2A and the proximal trailing anchor portion of FIG. 2B.



FIGS. 3A-C depict isometric, top plan, and proximal trailing end views, respectively, of example composite implants employing different proximal trailing anchor portions.



FIGS. 4A-D show isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant including textured faces having small pyramids.



FIGS. 5A-D illustrate isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant including textured faces having large pyramids.



FIGS. 6A-D are isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant including textured faces having dimples.



FIGS. 7A-D show isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant including textured faces having grit.



FIGS. 8A-D depict isometric, top plan, distal leading end, and side views, respectively, of an example distal leading portion of a composite spinal implant including textured faces having pits.



FIG. 9 shows an example delivery device and guide tube configured to minimally invasively deliver a composite spinal implant.



FIG. 10 shows a perspective view the delivery device of FIG. 9 and a detailed view of a distal end of the delivery device.



FIG. 11 illustrates a perspective view of the guide tube of FIG. 9.



FIG. 12 depicts a perspective view of an example decorticator.



FIG. 13 shows a perspective view of an example injector.



FIG. 14 is a perspective view of an example chisel.



FIG. 15 illustrates an example place holding chisel.



FIG. 16 depicts a perspective view of an example malleting tool.





DETAILED DESCRIPTION

Aspects of the present disclosure generally involve devices and methods for treating spinal stenosis. Spinal stenosis reflects a narrowing of one or more areas of the spine often in the upper or lower back. This narrowing can put pressure on the spinal cord or on the nerves that branch out from the compressed areas. Individual vertebrae of the spine are positioned relative to each other and their separation is maintained by discs separating main vertebral bodies and by capsules positioned within facet joints. The discs and capsules are separated from the bone of their respective joints by cartilage. Spinal stenosis is often indicative of degeneration of a disc, a capsule, or the cartilage in a joint, which leads to a compression of the joints and the narrowing mentioned.


As such, in one aspect, a device for distracting a facet joint of the spine is provided to remedy this condition. The device may include a tool and an implant for distracting and maintaining the distracted position of the joint. The device may be adapted to access a facet joint by inserting a delivery tool and an implant, forcibly separate the associated articular surfaces with the tool, the implant, or both, and leave the implant in place to maintain the separation of the articular surfaces. This approach may allow for maintaining the distraction of the joint, thereby relieving symptoms associated with spinal stenosis.


In one particular aspect, a composite spinal implant for implantation in a spinal facet joint to bring about the fusion of the spinal facet joint is provided. The composite spinal implant includes a distal leading portion and a proximal trailing anchor portion. The distal leading portion includes at least one face having a textured surface that provides friction between the spinal facet joint and the implant.


For a detailed description of an example distal leading portion 100 of a composite spinal implant, reference is made to FIGS. 1A-D, which are isometric, top plan, distal leading end, and side views, respectively.


The distal leading portion 100 may be formed of a bone or bone substitute material. In one implementation, the distal leading portion 100 includes a distal leading end 102 generally opposite a proximal trailing end 104, a first face 106 generally opposite a second face 108, and a first side 110 generally opposite a second side 112. In one implementation, the first and second sides 110 and 112 each have a length 160 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 156 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. For example, the first face 106 may extend from the distal leading end 102 to the proximal trailing end 104 at an angle of approximately 0° to 15° relative to the second face 108. As such, a height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In the implementation shown in FIGS. 1A-D, the distal leading end 102 includes a distal surface 116 and the proximal trailing end 104 includes a proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 152 that is approximately 0.84 mm, and the proximal surface 118 has a height 154 that is approximately 2.25 mm. The distal surface 116 includes a first pair of distal edges 128 extending between the first and second sides 110 and 112 and a second pair of distal edges 134 extending between the first and second faces 106 and 108. Similarly, the proximal surface 118 includes a first pair of proximal edges 128 and a second pair of proximal edges 120 extending between the first and second faces 106 and 108. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the height of the second pair of proximal edges 120 is greater than the height of the second pair of distal edges 134, such that a surface 124 of the first face 106 and a surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104 along a length 140 extending proximally.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape formed from the length 140 and a width 126 that is generally coextensive with the first pair of edges 128. The first and second sides 110 and 112 each include a side surface 132 extending between the distal leading end 102 and the proximal trailing end 104. In one implementation, the side surface 132 is a generally planar surface having a pair of opposed edges that are generally coextensive with the second pair of distal edges 134 and the second pair of proximal edges 120.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114. In the implementation shown in FIGS. 1A-D, the textured features 114 are one or more ridges extending generally perpendicularly from the surfaces 124 and/or 130 along the length 140. Each of the ridges includes an inner surface 142 generally opposite an outer surface 144. In one implementation, the outer surface 144 of each of the ridges is generally planar and coextensive with the side surface 132, and the inner surface 142 of each of the ridges is a generally planar surface that is generally perpendicular to the surface 124 of the first face 106 and/or the surface 130 of the second face 108. In one implementation, each of the ridges has a saw toothed profile defined by a plurality of teeth having a leading distal face 148, a trailing proximal face 150, and a tip 146 formed at an intersection between the faces 148 and 150. The trailing proximal face 150 has a slope that is different from a slope of the leading distal face 148. For example, the trailing proximal face 150 has a slope that is greater than the slope of the leading distal face 148.


Further, the height of the tips 146 may increase along the length 140, such that teeth positioned near the proximal trailing end 104 have a greater height than teeth positioned near the distal leading end 102. For example, a height 158 extending between the tip 146 of a tooth positioned on the first face 106 and the tip 146 of a tooth positioned on the second face 108 at the distal leading end 102 may be approximately 2.69 mm, and a height 162 extending between the tip 146 of a tooth positioned on the first face 106 and the tip 146 of a tooth positioned on the second face 108 at the distal leading end 102 may be approximately 3.68 mm. The tip 146 may be a truncated flat surface, a point, or other shapes. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of ridges or teeth and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include a slot 136 defined in the side surface 132 extending distally from a notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching a sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


As can be understood from FIG. 2A, in one implementation, the distal leading portion 100 includes at least one of a first groove 164 or a second groove 166 defined in the proximal surface 118 and extending into the surfaces 124 or 130, respectively. The first and second grooves 164 and 166 are adapted to engage a proximal trailing anchor portion 200.


In one implementation, as shown in FIG. 2B, the proximal trailing anchor portion 200 includes a body 202 and one or more anchors 204. The anchor 204 is supported by the body 202 and configured to extend at least one of outwardly from the body 202 or outwardly and distally from the body 202. The proximal trailing anchor portion 200 may be formed of a biocompatible metal, ceramic, polymer, or any combination thereof. In some implementations, the composite spinal implant may be entirely formed of bone or bone substitute material. In this case, the proximal trailing anchor portion 200 may be excluded from the composite spinal implant and the overall length of the distal leading portion 100 extended.


The body 202 includes a distal leading end 206 generally opposite a proximal trailing end 208, a first face 210 generally opposite a second face 212, and a first side 214 generally opposite a second side 216. In one implementation, the first and second faces 210 and 212 include textured features 218. For example, the textured features 218 may include one or more ridges similar to the ridges of the distal leading portion 100 described with respect to FIGS. 1A-D. Other implementations of the proximal trailing anchor portion 200 may include any number or configuration of the textured features 218 covering all or a portion of the faces 210 and 212.


As can be understood from FIGS. 2A-2D, the first and second grooves 164 and 166 in the distal leading portion 100 align with corresponding openings (e.g., an opening 224) in the body 202 of the proximal trailing anchor portion 200 through which the anchor 204 extends so as to allow the anchor 204 to extend through at least a portion of the proximal trailing anchor portion 200 and at least a portion of the distal leading portion 100.


As such, when the proximal trailing anchor portion 200 and the distal leading portion 100 are implanted in the facet joint to form a composite spinal implant, the distal leading end 206 of the body 202 of the proximal trailing anchor portion 200 abuts in a generally planar surface contact with the proximal trailing end 104 of the distal leading portion 100. With the portions 100 and 200 so abutted, slots 220 in the sides 214 and 216 of the body 202 of the proximal trailing anchor portion 200 are generally aligned and dimensionally consistent with the respective slots 136 in the distal leading portion 100, such that a notch 222 in the distal leading end 206 of the proximal trailing anchor portion 200 is aligned with each of the notches 122 of the distal leading portion 100. In one implementation, the slots 220 extend the full length of the body 202 between opposing notches 222 centered along a height of the sides 214 and 216 of the proximal trailing anchor portion 200. Further, when so abutted, each of the side surfaces 132 of the distal leading portion 100 is generally coextensive with a surface of the sides 214 or 216 of the body 202 of the proximal trailing anchor portion 200, and the textured features 114 of the distal leading portion 100 are generally aligned and similarly spaced with respect to the textured features 218 of the proximal trailing anchor portion 200.


As can be understood from FIGS. 3A-C, different proximal trailing anchor portions 200 with a variety of anchors 204 and openings 224 may be utilized. For example, a composite spinal implant 300 includes a pair of generally parallel circular openings 224 extending through the body 202 of the proximal trailing anchor portion 200. A composite spinal implant 302 includes a pair of offset circular openings 224 extending through the body 202 of the proximal trailing anchor portion 200 through which an anchor 204 in the form of a relatively small curved member extends. A composite spinal implant 304 includes a relatively large opening 224 extending through the body 202 of the proximal trailing anchor portion 200 through which an anchor 204 in the form of a screw extends. A composite spinal implant 306 includes a pair of offset circular openings 224 extending through the body 202 of the proximal trailing anchor portion 200 through which an anchor 204 in the form of a relatively large curved member extends. It will be appreciated that the anchor 204 may be one or more of nails, barbed members, threaded members, curved members, screws, and the like. A proximal trailing end of the anchor 204 is actionable at the proximal trailing end 208 of the body 202 so as to cause the anchor 204 to extend from the body 202.


For additional examples of the distal leading portion 100 with various textured features 114, reference is made to FIGS. 4A-8D. It will be appreciated that the proximal trailing anchor portion 200 may be similarly modified to include a variety of textured features 218.


Referring to FIGS. 4A-D, in one implementation, the distal leading portion 100 includes the distal leading end 102 generally opposite the proximal trailing end 104, the first face 106 generally opposite the second face 108, and the first side 110 generally opposite the second side 112. In one implementation, the first and second sides 110 and 112 each have a length 406 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 402 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. A height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In one implementation, the distal leading end 102 includes the distal surface 116 and the proximal trailing end 104 includes the proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 404 that is approximately 2.8 mm. The distal surface 116 includes a first pair of distal edges 128 extending between the first and second sides 110 and 112 and a second pair of distal edges 134 extending between the first and second faces 106 and 108. Similarly, the proximal surface 118 includes a first pair of proximal edges 128 and a second pair of proximal edges 120 extending between the first and second faces 106 and 108. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the height of the second pair of proximal edges 120 is greater than the height of the second pair of distal edges 134, such that a surface 124 of the first face 106 and a surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104 along the length 140 extending proximally.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape formed from the length 140 and the width 126 that is generally coextensive with the first pair of edges 128. The first and second sides 110 and 112 each include the side surface 132 extending between the distal leading end 102 and the proximal trailing end 104. In one implementation, the side surface 132 is a generally planar surface having a pair of opposed edges that are generally coextensive with the second pair of distal edges 134 and the second pair of proximal edges 120.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114. In one implementation, the textured features 114 are a plurality of protrusions 400 extending generally perpendicularly from the surfaces 124 and/or 130 along the length 140. In the implementation shown in FIGS. 4A-D, the protrusions 400 have a pyramidal shape, including four generally triangular faces and a rectangular base that is generally parallel to the respective surfaces 124 and/or 130. The rectangular base forms generally right angles that are coextensive with angles formed by the width 126 and the length 140 of the respective surfaces 124 and/or 130. Each face of the protrusions 400 is adjacent to two other faces of the same protrusion 400 that extend outwardly from the respective surfaces 124 and/or 130 where they adjoin to form a tip. The protrusions 400 shown in FIGS. 4A-D are relatively small pyramids having, for example, a height to the tip ranging from approximately 0.25 mm and 0.5 mm and base edges having a length between approximately 0.5 mm and 1.0 mm.


In one implementation, the protrusions 400 are arranged in rows, such that the rectangular base of each of the protrusions 400 abut the bases of adjacent protrusions 400. A plurality of the protrusions 400 extend from the first side 110 to the second side 112 to form the rows, and the rows, in turn, extend from the distal leading end 102 to the proximal trailing end 104 to form a series of rows. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of the protrusions 400 and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include the slot 136 defined in the side surface 132 extending distally from the notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching the sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


Turning to FIGS. 5A-D, in one implementation, the distal leading portion 100 includes the distal leading end 102 generally opposite the proximal trailing end 104, the first face 106 generally opposite the second face 108, and the first side 110 generally opposite the second side 112. In one implementation, the first and second sides 110 and 112 each have a length 506 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 502 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. A height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In one implementation, the distal leading end 102 includes the distal surface 116 and the proximal trailing end 104 includes the proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 504 that is approximately 2.8 mm. The distal surface 116 includes a first pair of distal edges 128 extending between the first and second sides 110 and 112 and a second pair of distal edges 134 extending between the first and second faces 106 and 108. Similarly, the proximal surface 118 includes a first pair of proximal edges 128 and a second pair of proximal edges 120 extending between the first and second faces 106 and 108. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the height of the second pair of proximal edges 120 is greater than the height of the second pair of distal edges 134, such that a surface 124 of the first face 106 and a surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104 along the length 140 extending proximally.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape formed from the length 140 and the width 126 that is generally coextensive with the first pair of edges 128. The first and second sides 110 and 112 each include the side surface 132 extending between the distal leading end 102 and the proximal trailing end 104. In one implementation, the side surface 132 is a generally planar surface having a pair of opposed edges that are generally coextensive with the second pair of distal edges 134 and the second pair of proximal edges 120.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114. In one implementation, the textured features 114 are a plurality of protrusions 500 extending generally perpendicularly from the surfaces 124 and/or 130 along the length 140. In the implementation shown in FIGS. 5A-D, the protrusions 500 have a pyramidal shape, including four generally triangular faces and a rectangular base that is generally parallel to the respective surfaces 124 and/or 130. The rectangular base forms generally right angles that are coextensive with angles formed by the width 126 and the length 140 of the respective surfaces 124 and/or 130. Each face of the protrusions 500 is adjacent to two other faces of the same protrusion 500 that extend outwardly from the respective surfaces 124 and/or 130 where they adjoin to form a tip. The protrusions 500 shown in FIGS. 5A-D are relatively large pyramids having, for example, a height to the tip ranging from approximately 0.5 mm and 1.5 mm and base edges having a length between approximately 1.0 mm and 2.0 mm.


In one implementation, the protrusions 500 are arranged in rows, such that the rectangular base of each of the protrusions 500 abut the bases of adjacent protrusions 500. A plurality of the protrusions 500 extend from the first side 110 to the second side 112 to form the rows, and the rows, in turn, extend from the distal leading end 102 to the proximal trailing end 104 to form a series of rows. In one implementation, there may be gaps between the rows that extend from the first side 110 to the second side 112 to accommodate relatively larger sized protrusions 500. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of the protrusions 500 and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include the slot 136 defined in the side surface 132 extending distally from the notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching the sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


As can be understood from FIGS. 6A-D, in one implementation, the distal leading portion 100 includes the distal leading end 102 generally opposite the proximal trailing end 104, the first face 106 generally opposite the second face 108, and the first side 110 generally opposite the second side 112. In one implementation, the first and second sides 110 and 112 each have a length 612 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 608 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. A height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In one implementation, the distal leading end 102 includes the distal surface 116 and the proximal trailing end 104 includes the proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 610 that is approximately 5.6 mm. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the surface 124 of the first face 106 and the surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape, and the first and second sides 110 and 112 each include the side surface 132 extending between the distal leading end 102 and the proximal trailing end 104.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114 defined therein. In one implementation, the textured features 114 are a plurality of dimples 600 having a generally spherical imprint or indentation 602 having a radial depth generally perpendicularly into the respective surfaces 124 and/or 130. In one implementation, the dimples 600 are arranged in rows, such that the indentations 602 overlap with at least a portion of an adjacent indentation 602. A plurality of the dimples 600 extend from the first side 110 to the second side 112 to form the rows, and the rows, in turn, extend from the distal leading end 102 to the proximal trailing end 104 to form a series of rows. The effect creates a grid-like pattern of the dimples 600 forming towers 604 between the indentations 602. In one implementation, the towers 604 are generally planar surfaces. The degree of overlap of the indentations 602 and the depth of the indentations 602 can vary accordingly so as to provide an appropriate amount of friction and grip between the implant and the bone surface. For example, in one implementation, the indentations 602 may have a vertical depth of approximately 0.25 mm to 1.0 mm and a diameter of approximately 0.5 mm to 1.5 mm. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of the dimples 600 and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include the slot 136 defined in the side surface 132 extending distally from the notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching the sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


Referring to FIGS. 7A-D, in one implementation, the distal leading portion 100 includes the distal leading end 102 generally opposite the proximal trailing end 104, the first face 106 generally opposite the second face 108, and the first side 110 generally opposite the second side 112. In one implementation, the first and second sides 110 and 112 each have a length 706 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 702 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. A height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In one implementation, the distal leading end 102 includes the distal surface 116 and the proximal trailing end 104 includes the proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 704 that is approximately 3.6 mm. The distal surface 116 includes a first pair of distal edges 128 extending between the first and second sides 110 and 112 and a second pair of distal edges 134 extending between the first and second faces 106 and 108. Similarly, the proximal surface 118 includes a first pair of proximal edges 128 and a second pair of proximal edges 120 extending between the first and second faces 106 and 108. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the height of the second pair of proximal edges 120 is greater than the height of the second pair of distal edges 134, such that a surface 124 of the first face 106 and a surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104 along the length 140 extending proximally.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape formed from the length 140 and a width that is generally coextensive with the first pair of edges 128. The first and second sides 110 and 112 each include the side surface 132 extending between the distal leading end 102 and the proximal trailing end 104. In one implementation, the side surface 132 is a generally planar surface having a pair of opposed edges that are generally coextensive with the second pair of distal edges 134 and the second pair of proximal edges 120.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114. Further, the side surfaces 124, the distal surface 116, and/or the proximal surface 118 may include the textured features 114. In one implementation, the textured features 114 are a plurality of grit particles 700 extending generally perpendicularly from the surfaces 124 and/or 130 along the length 140. The grit particles 700 may be a variety of shapes adapted to fuse the implant to the bone surface. In the implementation shown in FIGS. 7A-D, the grit particles 700 have a semi-circular, bubble-like shape. The grit particles 700 shown in FIGS. 7A-D have a diameter ranging from approximately 0.1 mm and 1.0 mm.


In one implementation, the grit particles 700 are randomly adhered to the respective surfaces 124 and 130, such that the surfaces 124 and 130 may contain differences in the layout of the textured features 114. The grit particles 700 may be applied by a variety of suitable means to adhere the grit particles 700 to the material of the surfaces 124 and 130. In another implementation, the grit particles 700 are arranged relatively uniformly (i.e., in rows or strips) on the respective surfaces 124 and 130. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of the grit particles 700 and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include the slot 136 defined in the side surface 132 extending distally from the notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching the sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


Turning to FIGS. 8A-D, in one implementation, the distal leading portion 100 includes the distal leading end 102 generally opposite the proximal trailing end 104, the first face 106 generally opposite the second face 108, and the first side 110 generally opposite the second side 112. In one implementation, the first and second sides 110 and 112 each have a length 806 of approximately 10 mm, and the distal leading end 102 and the proximal trailing end 104 each have a length 802 of approximately 5 mm.


The first face 106 extends between the distal leading end 102 and the proximal trailing end 104. In one implementation, the first face 106 is generally parallel with the second face 108. A height of the proximal trailing end 104 may be greater than or equal to a height of the distal leading end 102. In one implementation, the first and second faces 106 and 108 include textured features 114 that provide friction between the spinal facet joint and the implant.


In one implementation, the distal leading end 102 includes the distal surface 116 and the proximal trailing end 104 includes the proximal surface 118. In one implementation, the distal and proximal surfaces 116 and 118 are planar surfaces forming a generally rectangular shape. In one implementation, the distal surface 116 has a height 804 that is approximately 3.9 mm. The distal surface 116 includes a first pair of distal edges 128 extending between the first and second sides 110 and 112 and a second pair of distal edges 134 extending between the first and second faces 106 and 108. Similarly, the proximal surface 118 includes a first pair of proximal edges 128 and a second pair of proximal edges 120 extending between the first and second faces 106 and 108. In one implementation, where the height of the proximal trailing end 104 is greater than the height of the distal leading end 102, the height of the second pair of proximal edges 120 is greater than the height of the second pair of distal edges 134, such that a surface 124 of the first face 106 and a surface 130 of the second face 108 slope upwardly from the distal leading end 102 to the proximal trailing end 104 along the length 140 extending proximally.


In one implementation, the surface 124 of the first face 106 and the surface 130 of the second face 108 are planar surfaces having a generally rectangular shape formed from the length 140 and a width that is generally coextensive with the first pair of edges 128. The first and second sides 110 and 112 each include the side surface 132 extending between the distal leading end 102 and the proximal trailing end 104. In one implementation, the side surface 132 is a generally planar surface having a pair of opposed edges that are generally coextensive with the second pair of distal edges 134 and the second pair of proximal edges 120.


The surface 124 of the first face 106 and/or the surface 130 of the second face 108 include the textured features 114. Further, the side surfaces 124, the distal surface 116, and/or the proximal surface 118 may include the textured features 114. In one implementation, the textured features 114 are a plurality of pits 800 extending generally perpendicularly into the surfaces 124 and/or 130 along the length 140. The pits 800 may be a variety of shapes adapted to fuse the implant to the bone surface. For example, the pits 800 may be shaped like a negative imprint of the grit particles 700, the dimples 600, the protrusions 400, 500 or any similar feature. In the implementation shown in FIGS. 8A-D, for example, the pits 800 are negative imprints of a semi-circular, bubble-like shape. The depth of such an imprint and the imprint diameter will vary accordingly to achieve adequate friction between the implant and the bone. For example, the pits 800 shown in FIGS. 8A-D have a diameter ranging from approximately 0.1 mm and 1.0 mm.


The surfaces 124 and 130 may undergo a reductive surface treatment, including, without limitation, abrasive blasting, chemical treating, and the like, to achieve the pits 800. In addition to a reductive surface treatment, an additive treatment may be used to texture the surfaces 124 and 130 to add a pre-textured layer. In one implementation, the pits 800 cover the respective surfaces 124 and 130 in a random orientation, such that the surfaces 124 and 130 may contain differences in the layout of the textured features 114. In another implementation, the pits 800 are arranged relatively uniformly (i.e., in rows or strips) on the respective surfaces 124 and 130. Further, it will be appreciated that the first and second faces 106 and 108 may include any number or configuration of the pits 800 and that the textured features 114 may cover all or a portion of the surface 124 of the first face 106 and/or the surface 130 of the second face 108.


In one implementation, the first and second sides 110 and 112 each include the slot 136 defined in the side surface 132 extending distally from the notch 122 formed in the proximal surface 118 at an approximate center of each of the second pair of proximal edges 120. As such, the slot 136 is generally centered in the side surface 132 between the surface 124 of the first face 106 and the surface 130 of the second face 108. In one implementation, the slot 136 is generally dimensionally constant for a majority of a length of the slot 136 extending from the notch 122 until reaching the sloped transition 138 extending from an inner surface of the slot 136 to the side surface 132.


As can be understood from FIGS. 9-16, a distraction system 900 is configured to minimally invasively or percutaneously deliver implementations of the composite spinal implant including the distal leading portion 100 and optionally the proximal trailing anchor portion 200 into a patient spinal facet joint space via, for example, a posterior approach. In one implementation, the system 900 includes a delivery tool 902 and a guide tube 904, both of which extend from a respective leading distal end 906, 907 to a respective trailing proximal end 908, 909. As can be understood from FIG. 9, the delivery tool 902 can be receive in the lumen of the guide tube 904 to bring about the delivery of the implant 100 into the target spinal facet joint. The system 900 may further include a decorticator 936, an injector 948, a chisel 960, a place holding chisel 974, and a malleting tool 980.


For a detailed description of the delivery tool 902, reference is made to FIG. 10. In one implementation, the delivery tool 902 includes a tubular body 910 with a handle arrangement 912 at the trailing proximal end 908. The handle arrangement 912 may further include one or more members 914 for engaging the guide tube 904 as can be understood from FIG. 9. In one implementation, a plunger 916 extends through a lumen 918 of the tubular body 910 and includes a handle 920 at the trailing proximal end 906. The plunger 916 may be used to distally push the implant from an interference fit engagement with the arms 922 of the delivery tool distal end 906.


In one implementation, the tubular body 910 at the leading distal end 906 includes opposed prongs 922 between which the implant, including the distal leading portion 100 and the proximal trailing anchor portion 200, may be supported. The prongs 922 include longitudinally extending ridges that are adapted to be received into and engage the respective slots 136 and 220 of the distal leading portion 100 and the proximal trailing anchor portion 200. In one implementation, the plunger 916 is spring biased to keep the plunger 916 proximally displaced in the lumen 918 of the tubular body 910, such that distal force exerted against the handle 920 causes the plunger 216 to distally displace to eject the implant from the tubular body 910 at the leading distal end 906.


Turning to FIG. 11, a detailed description of the guide tube or tool 904 is provided. In one implementation, the guide tube 904 includes a receiving assembly 926 at a proximal end 909 and a pair of anchoring forks 934 at a distal end 907 with a generally tubular shaft 924 extending there between. The anchoring forks 934 may be textured distal parallel prongs for accessing a spinal facet joint and through which the delivery tool 902 can be routed to deliver the implant 100 in the facet joint.


The guide tube 904 can also include a malleting anvil 930 having a raised surface 932 positioned on the proximal face of the receiving assembly 926 adapted for contact with a distal end of a malleting head 966 on the chisel 960 or on the delivery tool 902. Malleting on the proximal end of the chisel 960 or the delivery tool 902 can cause longitudinal forces along the length of the respective tool piece. These longitudinal forces can be transferred, at least partially, through the contact between the malleting head and the malleting anvil 930. Accordingly, relative motion between the respective tool piece and the guide tube 904 can be prevented. As such, for example, at the distal end 907 of the guide tube 904, the relative position of the distal end 972 of the chisel 960 or the delivery tool 902 relative to the distal end 907 of the guide tube 904 can be maintained. Further, in one implementation, the receiving assembly 926 includes a receiving portion 928 for receiving and engaging the members 914 or 970 of the delivery tool 902 and the chisel 960, respectively, as can be understood from FIG. 9.


As can be understood from FIG. 12, in one implementation, the decorticator 936 includes a tubular shaft portion 938, an abrasive distal end 944, and a handle 940 at a proximal end. The tubular shaft 938 may have an inner radius substantially equal to an outer radius of the shaft 976 of the place holding or guide chisel 974 of FIG. 15 and may allow for sliding movement of the decorticator 936 along the length of the chisel shaft 976 and rotationally around the chisel shaft 976. In some implementations, the inner radius of the tubular shaft 938 may be slightly or substantially larger than the outer radius of the shaft 976 of the chisel 974 allowing for more freedom of movement of the decorticator 936.


The abrasive distal end 944 of the decorticator 936 may include serrated teeth 946 as shown, or may include a more flat annular surface with a gritty surface. In the implementation shown in FIG. 12, the distal end of the tubular shaft portion 938 is chamfered and the serrated teeth 946 are located on the distal most end of the chamfered end allowing for a more directed and controllable decorticating process. As such, the decorticator 936 shown is well suited for the intra facet process reflected by many of the implementations described herein. That is, the human anatomy of the cervical spine may be such that the lateral mass of the facet joints are not perpendicular to the surface of the facet joint.


Additionally, to properly place the prongs 934 of the place holding guide chisel 974 within the joint, the guide chisel 974 may be positioned substantially parallel to articular surfaces of the facet joint. As such, the place holding or guide chisel 974 may not be positioned perpendicular to the lateral masses of the facet joints and may actually be directed with a downward slope as it extends in the distal direction. Where the decorticator 936 has an non-chamfered annular end, depending on anatomy, the decorticator 936 may be able to be placed in contact with the superior lateral mass, but may be unable to reach or contact the inferior lateral mass. In the present implementation, the chamfered end of the tubular shaft portion 938 will allow the distal tip of the chamfered end to reach and decorticate the inferior lateral mass. This chamfered distal end may define an angle to the longitudinal axis. Additionally, the teeth 946 may be relatively large or they may relatively small and may extend along the full perimeter surface of the chamfered end rather being positioned solely at the tip of the chamfered end. Additionally, a beveled edge may run along the periphery of the chamfered end. That is, along the ovular shape created by the chamfered tubular shaft portion 938, the edge is beveled. As such, when the chisel 974 is inserted into the patient and/or when the decorticator 936 is advanced along the chisel 974, the beveled edge may assist in avoiding tissue snags, and the decorticator 936 may be placed in contact with the lateral mass of the facet joints in a much smoother process and may avoid damage to neighboring tissues.


The handle 940 of the decorticator 936 may include a gripping surface along its peripheral edge and may sleevably receive the tubular shaft portion 938. The handle 940 may also include radially extending bores 942 adapted to receive a gripping tool to provide for better control and a higher amount of torsional leverage when decorticating the lateral masses of the facet joint or to allow for malleting in the longitudinal direction of the decorticator 936 to cause forceful decortication of the lateral mass. The decorticator 936 may then be retracted, rotated to a new radial position, advanced, and struck again for additional decortication.


Referring to FIG. 13, in one implementation, the injector 948 includes a longitudinal delivery shaft 950 and a seating feature 952. The longitudinal delivery shaft 950 may have any cross-section and may have a cross-sectional size adapted to fit within the guide tube 904. The longitudinal shaft 950 may have an opening 956 on its distal end 954 for directing bone paste out the distal end of the shaft 950 allowing the paste to flow into and/or over the facet joint and/or outward toward the lateral mass of a facet joint. The seating feature 952 may include a member 958 positioned around the shaft 950, which may be sized and shaped to abut the receiving portion 928 of the guide tube 904. The injector 948 may be sleevably inserted into the guide tube 904 and advanced such that the distal end of the shaft 950 is positioned between the prongs 934.


As can be understood from FIG. 14, in one implementation, the chisel 960 includes a generally cylindrical cross-section forming a shaft 962, which may have a radius substantially equal to the inner radius of the tubular shaft portion 924 of the guide tube 904 allowing for slidable insertion of the chisel 960 within the guide tube 904. Alternatively, the radius of the shaft 963 may be smaller than the inner radius of the tubular shaft 924 providing for more play and adjustability of the chisel 960 and the guide tube 904 relative to one another. The chisel 960 may include a single or doubly chamfered tip 972 at a distal end or may have a coped distal end or a combination of coping and chamfering. The tip 972 may include a roughened surface on one or more sides to aid in anchoring or docking the chisel in the facet joint. Additionally, this roughened surface may allow for roughening or decorticating the inner surfaces of the facet joint. The tip 972 may have a length adapted to extend substantially across the facet joint.


The chisel 960 may further include a handle assembly 964 may include a member 970 positioned around the shaft 962, which may be sized and shaped to abut the receiving portion 928 of the guide tube 904. The chisel 1008 may also include a longitudinally extending lumen 968 and a malleting head 966.


Turning to FIG. 15, in one implementation, the placing holding or guide chisel 974 includes a shaft 976 and a distal tip 978, which may include a tip the same or similar to the chisel 960. For example, the chisel 974 can include a coped and/or chamfered tip. Additionally, the chisel 974 can include ridges. Additionally, the chisel 974 can include a radiopaque portion on the shaft 976 adapted to allow recognition of the location of the chisel 974 while avoiding occlusion of the lateral view. The radiopaque portion can include a straight, round, square, or other shaped piece of material positioned near the distal end of the chisel 974 for locating the distal end. As also shown, the proximal end of the chisel 974 can include a hole extending transversely therethrough. The hole can adapted to receive a transverse rod or shaft extending into the hole and/or through the hole. The rod or shaft and the chisel 974 can form a T-grip or L-shaped grip for use in pulling on the chisel 974 for removal.


In one implementation, the place holding chisel 974 can be used as a place holder without occluding the lateral view of a chisel and delivery tool positioned in a contralateral facet joint. That is, upon placement of the chisel 960 and the guide tool 904 in a first facet joint, the chisel 960 may be removed and replaced with the place holding chisel 974 where the prongs 934 of the guide tube 904 maintain the position of the system 900. The guide tube 904 may also be removed and reassembled with the chisel 960 once the place holding chisel 974 is properly positioned. The guide tube 904 and chisel 960 may then be inserted into the contralateral facet joint or second joint. By replacing the chisel 960 in the first joint with the place holding chisel 974, the location of the chisel 960 and guide tube 904 in the second joint may be more readily ascertainable using lateral fluoroscopy. That is, if a radiopaque chisel or delivery device was left in place in the first joint, the fluoroscopic view of the contralateral facet joint would be relatively occluded. Upon placing the guide tube 904 properly in the second facet joint, the procedure above may continue. Upon completing treatment of the second facet joint, the guide tube 904 may be sleeved over the place holding chisel 974 still positioned in and holding the place in the first facet joint and the first facet joint may then be treated with the above procedure. It is noted that initial placement of the guide tube 904 can be conducted with the place holding chisel 974 rather than the chisel 960 to avoid having to replace the chisel 960.


Referring to FIG. 16, in one implementation, the malleting tool 980 can include a longitudinally shaped shaft with a U-shaped decorticator interface 984 at one end and a chamfered tip 982 at the other end. The decorticator interface 984 can be adapted for positioning around the guide tube 904 in a position just proximal to a malleting element of the decorticator 936. The u-shape of the decorticator interface 984 may allow the malleting tool 980 to be placed in position from the side of the guide tube 904 and selectively used as required to forcibly advance the decorticator 936.


The chamfered end of the tool 982 can be held in position while the user mallets near the decorticator interface end causing the interface 984 to contact the malleting element on the decorticator 936. The decorticator 936 may then be retracted, rotated to a new radial position, advanced, and struck again for additional decortication. The malleting tool 980 may rotate with the decorticator 936 or it may remain in a position convenient for malleting. In addition to malleting, the malleting tool 980 can be used to assist in separating several tools. That is, in some cases, the handles of a given tool piece can be difficult to separate from receiving portion. The chamfered tip 982 can be used to wedge between a given handle and the receiving portion to assist in separating the devices.


Other implementations of a distraction system 900 can be configured with alternative retaining and deployment (release or eject) methods, such as screw drives, latches, snaps, cams, adhesives, magnets, or the like.


The delivery system components depicted in FIGS. 9-16 can be used to minimally invasively implant any of the implants 100 depicted in FIGS. 1A-8D in a spinal facet joint that is the target of treatment. For example, in one embodiment, a percutaneous or minimally invasive incision is made in the posterior region of the neck to lead to the target facet joint. The access chisel 974 depicted in FIG. 15 is routed through incision under fluoroscopic guidance until the tapered distal tip 978 resides in the target facet joint and the chisel shaft 976 extends out of the patient via the incision. With the access chisel 974 so positioned, the outer decorticator 936 of FIG. 12 can be grasped and distally routed over the access chisel 974 such that the chisel shaft 976 is received in the lumen that extends longitudinally through the outer decorticator 936. With the distal decorticating end 946 of the outer decorticator 936 abutting against one or more lateral masses adjacent the target facet joint, the outer decorticator 936 can be rotated about the chisel shaft 976 to decorticate the bone surfaces of the lateral masses adjacent the target facet joint. Once decortication of the lateral masses has been sufficiently achieved, the decorticator 936 can be removed from about the chisel shaft 976 and from the patient.


With the place holding or access chisel 974 so positioned, the guide tool 904 of FIG. 11 is grasped and distally routed over the chisel 974 such that the chisel shaft 976 is received in the guide tool lumen that extends longitudinally through the guide tool shaft 924. The tapered forked distal end 907 of the guide tool 904 is distally advanced through the incision and along the chisel shaft 976 until the tapered forks 934 of the guide tool 904 are positioned inside the target facet joint, the chisel tapered distal tip 978 being located between the pair of forks 934 of the guide tool distal end 907, the guide tool shaft 924 extending out of the patient via the incision.


With the guide tool 904 so positioned, the place holding or access chisel 974 can be withdrawn out of the guide tool lumen and out of the patient, leaving the guide tool tapered forked distal end 907 residing in the target facet joint and the guide tool shaft extending out of the patient. The decorticating chisel 960 of FIG. 14 can then be distally routed through the lumen of the guide tool 904 to place the tapered decorticating distal end 972 of the chisel 960 between the guide tool forks 934 located in the target facet joint space. The decorticating chisel 960 can then be displaced distal-proximal to cause the tapered decorticating distal end 972 of the chisel 960 to remove the cartilage of the target facet joint space located between the guide tool forks 934 and further decorticate any associated bone surfaces of the target facet joint space. Once the target facet joint space surfaces have been prepped with the decorticating chisel 960, the chisel 960 can be removed from the lumen of the guide tool 904 and the patient.


The implant 100 is coupled to, and supported off of, the distal end 906 of the implant delivery tool 902 of FIG. 10. As discussed above, the coupling of the implant delivery tool distal end 906 with the implant 100 may be achieved via interference fit engagement. With the implant supported off of the distal end 906 of the implant delivery tool 902 in a manner similar to that depicted in FIG. 10, the implant 100, and the delivery tool shaft 910 on which the implant 100 is supported, are distally routed through the lumen of the guide tool 904 until the implant 100 and the delivery tool distal end 906 are located in the target facet joint space between the pair of forks 934 of the guide tool distal end 907, the delivery tool 902, the guide tool 904 and the implant 100 being coupled together as depicted in FIG. 9. With the implant 100 so positioned in the target spinal facet join space, the plunger 916 may be used to deposit the implant 100 into the target spinal facet joint space by plunging the implant 100 from the delivery tool distal end 906 via corresponding manipulation of the plunger 916 via its handle 920. Once the implant 100 is decoupled from the delivery tool 902 and deposited into the facet joint space, the delivery tool 902 can be withdrawn from the guide tool 904, which is left in place with its forked distal end 907 occupying the facet joint space and the implant 100 being located between the forks 934 of the guide tool 904. Where the implant 100 is the entirety of the implant and not simply a distal portion 100 of a composite implant 300 similar to that depicted with respect to FIGS. 1A-3C, the use of the delivery tool 902 is now complete with respect to this target spinal facet joint.


However, where the delivered implant 100 is actually a proximal portion 100 of a composite spinal implant 300 similar to that depicted with respect to FIGS. 2C-3C, the delivery of the distal anchoring portion 200 of the composite spinal implant 300 may occur in one of two ways employing the method of using the delivery tool 902 as just laid out in the immediately preceding paragraph. For example, in one embodiment, the delivery of the composite implant 300 may occur in a single delivery using the above-described methodology pertaining to the use of the delivery tool 902, wherein the proximal portion 100 and the distal portion 200 are placed together to form the composite implant 300 and then inserted into the spinal facet joint space via the delivery tool 902 by the methodology just described.


Alternatively, in another embodiment, the distal portion 100 and the anchor portion 200 of the composite implant 300 are delivered in separate trips of the delivery tool 902 down through the lumen of the guide tool 904. In other words, the distal implant portion 100 is first coupled to the delivery tool 902 and tracked down into the facet joint space via the guide tool 904, and then the process is repeated by coupling the proximal anchor portion 200 to the delivery tool 902 and tracking the proximal portion 200 down the guide tool 904 into the facet joint space, abutting in the spinal facet joint space the distal face of the proximal portion 200 to the proximal face of the distal portion 100 to establish the composite implant 300. Various tools can then be introduced down the lumen of the guide tool 904 to act on the proximal end of the anchors 204 of the anchor portion 200 to cause the anchors 204 to deploy from the anchor portion 200, thereby securing the composite implant 300 from backing out of the facet joint space.


With the implant 100 and forks 934 so positioned in the facet joint space and the guide tool shaft 924 extending from the patient, bone growth promoting paste may be plunged down the lumen of the guide tool 904 via the shaft 950 of the injector 948 being distally displaced down the lumen to cause the bone paste to exit the distal end 907 of the delivery tool 904 and extend about the implant 100 occupying the spinal facet joint space. The injector 948 and guide tool 904 can then be withdrawn from the patient, the implantation of the implant 100 in the facet joint having been completed. The process can then be repeated for another facet joint if needed.


For a further discussion regarding delivery systems and methodology, see U.S. patent application Ser. No. 12/653,283, which was filed on Dec. 10, 2009 and entitled “Verbal Joint Implants and Delivery Tools.”


The description above includes example systems, methods, techniques, instruction sequences, and/or computer program products that embody techniques of the present disclosure. However, it is understood that the described disclosure may be practiced without these specific details.


It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.


While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context of particular implementations. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.

Claims
  • 1. A distal leading portion of a composite spinal implant for implantation in a spinal facet joint, the distal leading portion comprising: a distal leading end having a distal surface generally opposite a proximal surface of a proximal trailing end;a first face having a first surface that is generally opposite a second surface of a second face, the first and second faces extending between the distal leading end and the proximal trailing end, the first and second surfaces having one or more textured features adapted to provide friction with the spinal facet joint; anda first side having a first side surface generally opposite a second side having a second side surface, the first side surface and the second side surface each having a slot extending distally from the proximal surface,wherein the textured features include a ridge extending perpendicularly from each of the first and second surfaces along at least a portion of the length of the first and second surfaces, the ridge having a saw toothed profile defining a row of teeth, each tooth of the row of teeth having a leading distal face, a trailing proximal face, and a tip formed at an intersection between the leading distal face and the trailing proximal face, each tooth further including an inner surface generally opposite an outer surface, the outer surface is adjacent to a respective side surface of the first or second side and the inner surface is generally perpendicular to the first surface of the first face or the second surface of the second face.
  • 2. The distal leading portion of claim 1, wherein the trailing proximal face has a slope that is greater than a slope of the leading distal face.
  • 3. The distal leading portion of claim 1, wherein a tip of one of the teeth positioned near the distal leading end has a height that is lower than a height of a tip of one of the teeth positioned near the proximal trailing end.
  • 4. The distal leading portion of claim 1, wherein each tooth of the discrete row of teeth has a height that is greater than a height of its immediately proximal adjacent tooth.
  • 5. The distal leading portion of claim 1, wherein the textured features include a plurality of protrusions extending perpendicularly from each of the first and second surfaces.
  • 6. The distal leading portion of claim 5, wherein the protrusions each have a pyramidal shape with a rectangular base that is generally parallel to a respective surface of the first face and the second face.
  • 7. The distal leading portion of claim 5, wherein the protrusions form small pyramids.
  • 8. The distal leading portion of claim 5, wherein the protrusions form large pyramids.
  • 9. The distal leading portion of claim 5, wherein the protrusions are arranged in rows, a first row of the protrusions abutting a second row of the protrusions.
  • 10. The distal leading portion of claim 1, wherein the textured features include a plurality of dimples, each of the dimples having a generally spherical indentation having a radial vertical depth generally perpendicularly into a respective surface of the first face and the second face.
  • 11. The distal leading portion of claim 1, wherein the textured features include a plurality of grit particles extending generally perpendicularly from a respective surface of the first face and the second face.
  • 12. The distal leading portion of claim 11, wherein the plurality of grit particles are randomly adhered to the surfaces of the first face and the second face.
  • 13. The distal leading portion of claim 1, wherein the textured features include a plurality of pits extending generally perpendicularly into a respective surface of the first face and the second face.
  • 14. The distal leading portion of claim 13, wherein the plurality of pits cover a respective surface of the first face and the second face in a random orientation.
  • 15. The distal leading portion of claim 13, wherein the plurality of pits are achieved as a result of surface treating the surfaces of the first face and the second face.
  • 16. A composite spinal implant for implantation in a spinal facet joint, the composite spinal implant comprising: a distal leading portion having a distal leading end, a first face, and a first side, the distal leading end having a distal surface generally opposite a proximal surface of a proximal trailing end, the first face having a first surface that is generally opposite a second surface of a second face, the first and second faces extending between the distal leading end and the proximal trailing end, the first and second surfaces having one or more textured features adapted to provide friction with the spinal facet joint, the first side having a first side surface generally opposite a second side having a second side surface; anda proximal trailing anchor portion having a body and an anchor, the body having a distal leading end generally opposite a proximal trailing end, a first face generally opposite a second face, and a first side generally opposite a second side, the anchor being supported in the body and configured to extend at least one of outwardly from the body or outwardly and distally from the body, the distal leading end of the body adapted to abut the proximal trailing end of the distal leading portion to form the composite spinal implant,wherein the textured features include a ridge extending perpendicularly from each of the first and second surfaces along at least a portion of the length of the first and second surfaces, the ridge having a saw toothed profile defining a row of teeth, each tooth of the row of teeth having a leading distal face, a trailing proximal face, and a tip formed at an intersection between the leading distal face and the trailing proximal face, each tooth further including an inner surface generally opposite an outer surface, the outer surface is adjacent to a respective side surface of the first or second side and the inner surface is generally perpendicular to the first surface of the first face or the second surface of the second face.
  • 17. The composite spinal implant of claim 16, wherein the first side surface and the second side surface of the distal leading portion each have a slot extending distally from the proximal surface and the first side and the second side of the body of the proximal trailing anchor portion each have a slot extending distally from a surface of the proximal trailing end of the body to a surface of the distal leading end of the body, the slots of the proximal trailing anchor portion being generally aligned and dimensionally consistent with the slots of the distal leading portion when the distal leading end of the body abuts the proximal trailing end of the distal leading portion.
  • 18. The composite spinal implant of claim 16, wherein the distal leading portion includes a groove defined in the proximal surface and at least one of the surface of the first face or the second face that aligns with an opening in the body of the proximal trailing anchor portion through which the anchor extends into the groove.
  • 19. The distal leading portion of claim 1, wherein the first and second surfaces slope upwardly from the distal lead end to the proximal trailing end along a length extending proximally.
  • 20. The distal leading portion of claim 1, wherein the portion comprises bone or bone substitute material.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to and is a continuation of U.S. patent application Ser. No. 14/037,164 filed on Sep. 25, 2013, now U.S. Pat. No. 9,381,049, and entitled “COMPOSITE SPINAL FACET IMPLANT WITH TEXTURED SURFACES,” which claims priority under 35 U.S.C. § 119 to U.S. provisional patent application 61/705,375, which was filed Sep. 25, 2012 and entitled “Composite Spinal Facet Implant,” and to U.S. provisional patent application 61/777,643, which was filed Mar. 12, 2013 and entitled “Composite Spinal Facet Implant with Textured Surfaces.” The present application claims priority to and is a continuation of U.S. patent application Ser. No. 14/037,164 filed on Sep. 25, 2013, now U.S. Pat. No. 9,381,049, and entitled “COMPOSITE SPINAL FACET IMPLANT WITH TEXTURED SURFACES,” which claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 13/614,372 filed on Sep. 13, 2012, now U.S. Pat. No. 8,753,377, and entitled Vertebral Joint Implants And Delivery Tools. U.S. patent application Ser. No. 13/614,372, now U.S. Pat. No. 8,753,377, is a continuation of U.S. patent application Ser. No. 12/653,283, which was filed on Dec. 10, 2009, now U.S. Pat. 8,425,558, and entitled “Verbal Joint Implants and Delivery Tools.” U.S. patent application Ser. No. 12/653,283, now U.S. Pat. No. 8,425,558 claims priority to and is a continuation- in-part of U.S. patent application Ser. No. 12/455,814, which was filed on Jun. 5, 2009, now U.S. Pat. No. 8,361,152 and entitled “Facet Joint Implants and Delivery Tools.” U.S. patent application Ser. No. 12/455,814 claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 12/317,682, which was filed on Dec. 23, 2008, now U.S. Pat. No. 8,267,966, and entitled “Facet Joint Implants and Delivery Tools.” U.S. patent application Ser. No. 12/317,682 claims priority under 35 U.S.C. § 119 to U.S. provisional patent application 61/109,776, which was filed Oct. 30, 2008 and entitled “Facet Joint Implants,” and U.S. provisional patent application 61/059,723, which was filed on Jun. 6, 2008 and entitled “Spine Distraction Device.” Each of the aforementioned applications is hereby incorporated by reference in its entirety into the present application.

US Referenced Citations (499)
Number Name Date Kind
1934962 Barry Nov 1933 A
2708376 Booth May 1955 A
2984241 Carlson May 1961 A
4479491 Martin Oct 1984 A
4530355 Griggs Jul 1985 A
4604995 Stephens et al. Aug 1986 A
4772287 Ray et al. Sep 1988 A
4877020 Vich Oct 1989 A
4878915 Brantigan Nov 1989 A
5015247 Michelson May 1991 A
5026373 Ray et al. Jun 1991 A
5100405 McLaren Mar 1992 A
5135528 Winston Aug 1992 A
5236460 Barber Aug 1993 A
5484437 Michelson Jan 1996 A
5489307 Kuslich et al. Feb 1996 A
5505732 Michelson Apr 1996 A
5527312 Ray Jun 1996 A
5549679 Kuslich et al. Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5571191 Fitz Nov 1996 A
5584832 Schlapfer et al. Dec 1996 A
5593409 Michelson Jan 1997 A
5632747 Scarborough et al. May 1997 A
5649945 Ray et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5720748 Kuslich et al. Feb 1998 A
5741253 Michelson Apr 1998 A
5772661 Michelson Jun 1998 A
5792044 Foley et al. Aug 1998 A
5797909 Michelson Aug 1998 A
5836948 Zucherman et al. Nov 1998 A
5879353 Terry Mar 1999 A
5885299 Winslow et al. Mar 1999 A
5891147 Moskovitz Apr 1999 A
5895426 Scarborough et al. Apr 1999 A
5899908 Kuslich et al. May 1999 A
5928238 Scarborough et al. Jul 1999 A
5953820 Vasudeva Sep 1999 A
5961522 Mehdizadeh Oct 1999 A
5976146 Ogawa et al. Nov 1999 A
6008433 Stone Dec 1999 A
6033405 Winslow et al. Mar 2000 A
6045580 Scarborough et al. Apr 2000 A
6063088 Winslow May 2000 A
RE36758 Fitz Jun 2000 E
6080155 Michelson Jun 2000 A
6090143 Meriwether et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6099531 Bonutti Aug 2000 A
6102950 Vaccaro Aug 2000 A
6113602 Sand Sep 2000 A
6149650 Michelson Nov 2000 A
RE37005 Michelson et al. Dec 2000 E
6159245 Meriwether et al. Dec 2000 A
6176882 Biedermann et al. Jan 2001 B1
6179873 Zientek Jan 2001 B1
6190388 Michelson et al. Feb 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6210412 Michelson Apr 2001 B1
RE37161 Michelson et al. May 2001 E
6224595 Michelson May 2001 B1
6224607 Michelson May 2001 B1
6224630 Bao et al. May 2001 B1
6245108 Biscup Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
D444878 Walter Jul 2001 S
D445188 Walter Jul 2001 S
6264656 Michelson Jul 2001 B1
6267763 Castro Jul 2001 B1
6270498 Michelson Aug 2001 B1
6283966 Boufburg Sep 2001 B1
6315795 Scarborough et al. Nov 2001 B1
6325827 Lin Dec 2001 B1
6371984 Van Dyke et al. Apr 2002 B1
6371988 Pafford Apr 2002 B1
6402784 Wardlaw Jun 2002 B1
6423063 Bonutti Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6425919 Lambrecht Jul 2002 B1
6436098 Michelson Aug 2002 B1
6436142 Paes et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6451023 Salazar et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6500206 Bryan Dec 2002 B1
6514256 Zucherman et al. Feb 2003 B2
6530955 Boyle Mar 2003 B2
6558390 Cragg May 2003 B2
6565574 Michelson May 2003 B2
6565605 Fallin et al. May 2003 B2
6569186 Winters et al. May 2003 B1
6575919 Reiley et al. Jun 2003 B1
6575979 Cragg Jun 2003 B1
6579319 Goble et al. Jun 2003 B2
6582432 Michelson Jun 2003 B1
6607530 Carl et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6626905 Schmiel et al. Sep 2003 B1
6632235 Weikel et al. Oct 2003 B2
6635060 Hanson et al. Oct 2003 B2
6641582 Hanson et al. Nov 2003 B1
6648893 Dudasik Nov 2003 B2
6652584 Michelson Nov 2003 B2
6663647 Reiley et al. Dec 2003 B2
6666866 Martz et al. Dec 2003 B2
6679886 Weikel et al. Jan 2004 B2
6682535 Hoogland Jan 2004 B2
6685742 Jackson Feb 2004 B1
6709458 Michelson Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6719773 Boucher et al. Apr 2004 B1
6723095 Hammerslag Apr 2004 B2
6733534 Sherman May 2004 B2
6740093 Hochschuler et al. May 2004 B2
6751875 Jones Jun 2004 B2
6770074 Michelson Aug 2004 B2
6793679 Michelson Sep 2004 B2
6805715 Reuter et al. Oct 2004 B2
6808537 Michelson Oct 2004 B2
6823871 Schmieding Nov 2004 B2
6840941 Rogers et al. Jan 2005 B2
6851430 Tsou Feb 2005 B2
6875213 Michelson Apr 2005 B2
6899719 Reiley May 2005 B2
6921403 Cragg et al. Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6958077 Suddaby Oct 2005 B2
6962606 Michelson Nov 2005 B2
6964686 Gordon Nov 2005 B2
6966930 Arnin et al. Nov 2005 B2
6972035 Michelson Dec 2005 B2
6974478 Reiley et al. Dec 2005 B2
6979333 Hammerslag Dec 2005 B2
6986772 Michelson Jan 2006 B2
7001385 Bonutti Feb 2006 B2
7008453 Michelson Mar 2006 B1
7033362 McGahan et al. Apr 2006 B2
7033392 Schmiel et al. Apr 2006 B2
7033394 Michelson Apr 2006 B2
7066961 Michelson Jun 2006 B2
D524443 Blain Jul 2006 S
7083623 Michelson Aug 2006 B2
7090698 Fallin et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7101398 Dooris et al. Sep 2006 B2
7115128 Michelson Oct 2006 B2
7118598 Michelson Oct 2006 B2
7128760 Michelson Oct 2006 B2
7156877 Lotz et al. Jan 2007 B2
7166110 Yundt Jan 2007 B2
7175023 Martin Feb 2007 B2
7179263 Zdeblick et al. Feb 2007 B2
7207991 Michelson Apr 2007 B2
D541940 Blain May 2007 S
7220280 Kast et al. May 2007 B2
7264622 Michelson Sep 2007 B2
7273498 Bianchi et al. Sep 2007 B2
7288093 Michelson Oct 2007 B2
7291149 Michelson Nov 2007 B1
7300440 Zdeblick et al. Nov 2007 B2
7326211 Padget et al. Feb 2008 B2
7326214 Michelson Feb 2008 B2
7371238 Soboleski et al. May 2008 B2
7399303 Michelson Jul 2008 B2
7410501 Michelson Aug 2008 B2
7431722 Michelson Oct 2008 B1
7445636 Michelson Nov 2008 B2
7452359 Michelson Nov 2008 B1
7452369 Barry Nov 2008 B2
7465304 Haufe et al. Dec 2008 B1
7476226 Weikel et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7491205 Michelson Feb 2009 B1
7500992 Li Mar 2009 B2
7517358 Peterson Apr 2009 B2
7524333 Lambrecht et al. Apr 2009 B2
7569054 Michelson Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7580743 Bourlion et al. Aug 2009 B2
7591851 Winslow et al. Sep 2009 B2
7601170 Winslow et al. Oct 2009 B2
7608077 Cragg et al. Oct 2009 B2
7608107 Michelson Oct 2009 B2
7615079 Flickinger et al. Nov 2009 B2
7632291 Stephens et al. Dec 2009 B2
7641664 Pagano Jan 2010 B2
7648523 Mirkovic et al. Jan 2010 B2
7655027 Michelson Feb 2010 B2
7655043 Peterman et al. Feb 2010 B2
7662173 Cragg et al. Feb 2010 B2
D611147 Hanson et al. Mar 2010 S
7682378 Truckai et al. Mar 2010 B2
7686805 Michelson Mar 2010 B2
7686807 Padget et al. Mar 2010 B2
7699878 Pavlov et al. Apr 2010 B2
D615653 Horton May 2010 S
7708761 Petersen May 2010 B2
7722619 Michelson May 2010 B2
D619719 Pannu Jul 2010 S
7763024 Bertagnoli et al. Jul 2010 B2
7763050 Winslow et al. Jul 2010 B2
7776090 Winslow et al. Aug 2010 B2
D623748 Horton et al. Sep 2010 S
D623749 Horton et al. Sep 2010 S
7789898 Peterman Sep 2010 B2
D627468 Richter et al. Nov 2010 S
7824431 McCormack Nov 2010 B2
7837713 Peterson Nov 2010 B2
7846183 Blain Dec 2010 B2
7846184 Sasso et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7862589 Thramann Jan 2011 B2
7867277 Tohmeh Jan 2011 B1
D631967 Horton Feb 2011 S
7879098 Simmons, Jr. Feb 2011 B1
7887565 Michelson Feb 2011 B2
7892261 Bonutti Feb 2011 B2
7892286 Michelson Feb 2011 B2
7896803 Schara et al. Mar 2011 B2
7896903 Link Mar 2011 B2
7901439 Horton Mar 2011 B2
7914530 Michelson Mar 2011 B2
7918891 Curran et al. Apr 2011 B1
7922729 Michelson Apr 2011 B2
7922766 Grob et al. Apr 2011 B2
7935136 Alamin et al. May 2011 B2
7938857 Krueger et al. May 2011 B2
7988712 Hale et al. Aug 2011 B2
7988714 Puekert et al. Aug 2011 B2
7998174 Malandain et al. Aug 2011 B2
8007534 Michelson Aug 2011 B2
8029540 Winslow et al. Oct 2011 B2
8043334 Fisher et al. Oct 2011 B2
8052728 Hestad Nov 2011 B2
8062303 Berry et al. Nov 2011 B2
8066705 Michelson Nov 2011 B2
D650481 Gottlieb et al. Dec 2011 S
8097034 Michelson Jan 2012 B2
8100944 Lauryssen et al. Jan 2012 B2
D653757 Binder Feb 2012 S
8114158 Carl et al. Feb 2012 B2
8118838 Winslow et al. Feb 2012 B2
8128660 Mitchel et al. Mar 2012 B2
8133261 Fisher et al. Mar 2012 B2
8142503 Malone Mar 2012 B2
8147553 Vresilovic et al. Apr 2012 B2
8162981 Vestgaarden Apr 2012 B2
8172877 Winslow et al. May 2012 B2
8177872 Nelson et al. May 2012 B2
8197513 Fisher et al. Jun 2012 B2
8206418 Triplett et al. Jun 2012 B2
8267966 McCormack et al. Sep 2012 B2
D674900 Janice et al. Jan 2013 S
8348979 McCormack Jan 2013 B2
8361152 McCormack et al. Jan 2013 B2
8366748 Kleiner Feb 2013 B2
D677791 Danacioglu et al. Mar 2013 S
8394107 Fanger et al. Mar 2013 B2
8394129 Morgenstern et al. Mar 2013 B2
D681205 Farris et al. Apr 2013 S
8425558 McCormack et al. Apr 2013 B2
8512347 McCormack et al. Aug 2013 B2
8523908 Malone Sep 2013 B2
8623054 McCormack et al. Jan 2014 B2
8668722 Pavlov et al. Mar 2014 B2
8753347 McCormack et al. Jun 2014 B2
8764755 Michelson Jul 2014 B2
8828062 McCormack et al. Sep 2014 B2
8834530 McCormack Sep 2014 B2
8845727 Gottlieb et al. Sep 2014 B2
8870882 Kleiner Oct 2014 B2
D723690 McCormack et al. Mar 2015 S
D723691 McCormack et al. Mar 2015 S
8998905 Marik et al. Apr 2015 B2
9011492 McCormack et al. Apr 2015 B2
D732667 McCormack et al. Jun 2015 S
D745156 McCormack et al. Dec 2015 S
9211198 Michelson Dec 2015 B2
9220608 McKay Dec 2015 B2
D750249 Grimberg et al. Feb 2016 S
9271765 Blain Mar 2016 B2
9333086 McCormack et al. May 2016 B2
9381049 McCormack Jul 2016 B2
9427264 Kleiner et al. Aug 2016 B2
9504583 Blain Nov 2016 B2
9717403 Kleiner et al. Aug 2017 B2
20010004710 Felt et al. Jun 2001 A1
20010047208 Michelson Nov 2001 A1
20020026195 Layne et al. Feb 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020143343 Castro Oct 2002 A1
20020147496 Belef et al. Oct 2002 A1
20020147497 Belef et al. Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20020169471 Ferdinand Nov 2002 A1
20030023312 Thalgott Jan 2003 A1
20030028251 Mathews Feb 2003 A1
20030032962 McGahan et al. Feb 2003 A1
20030033017 Lotz et al. Feb 2003 A1
20030105526 Bryant et al. Jun 2003 A1
20030109928 Pasquet et al. Jun 2003 A1
20030139816 Michelson Jul 2003 A1
20030144737 Sherman Jul 2003 A1
20030158553 Michelson Aug 2003 A1
20030225416 Bonvallet et al. Dec 2003 A1
20040059337 Hanson et al. Mar 2004 A1
20040073217 Michelson Apr 2004 A1
20040087948 Suddaby May 2004 A1
20040087956 Weikel et al. May 2004 A1
20040106999 Mathews Jun 2004 A1
20040133277 Michelson Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040162562 Martz Aug 2004 A1
20040215344 Hochshculer et al. Oct 2004 A1
20050010294 Michelson Jan 2005 A1
20050015149 Michelson Jan 2005 A1
20050027358 Suddaby Feb 2005 A1
20050033432 Gordon et al. Feb 2005 A1
20050049705 Hale et al. Mar 2005 A1
20050055096 Serhan et al. Mar 2005 A1
20050065518 Michelson Mar 2005 A1
20050065519 Michelson Mar 2005 A1
20050065608 Michelson Mar 2005 A1
20050065609 Wardlaw Mar 2005 A1
20050080422 Otte et al. Apr 2005 A1
20050090829 Martz et al. Apr 2005 A1
20050090901 Studer Apr 2005 A1
20050119680 Dykes Jun 2005 A1
20050124993 Chappuis Jun 2005 A1
20050159650 Raymond et al. Jul 2005 A1
20050159746 Grob et al. Jul 2005 A1
20050177240 Blain Aug 2005 A1
20050182417 Pagano Aug 2005 A1
20050216018 Sennett Sep 2005 A1
20050240188 Chow et al. Oct 2005 A1
20050251146 Martz et al. Nov 2005 A1
20050251257 Mitchell et al. Nov 2005 A1
20050267480 Suddaby Dec 2005 A1
20060004367 Alamin et al. Jan 2006 A1
20060015184 Winterbottom et al. Jan 2006 A1
20060036243 Sasso et al. Feb 2006 A1
20060036247 Michelson Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060041311 McLeer Feb 2006 A1
20060058793 Michelson Mar 2006 A1
20060058878 Michelson Mar 2006 A1
20060069442 Michelson Mar 2006 A1
20060079905 Beyar et al. Apr 2006 A1
20060079962 Michelson Apr 2006 A1
20060085068 Barry Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060095028 Bleich May 2006 A1
20060095036 Hammerslag May 2006 A1
20060111779 Peterson May 2006 A1
20060111780 Petersen May 2006 A1
20060111781 Petersen May 2006 A1
20060142762 Michelson Jun 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060184172 Michelson Aug 2006 A1
20060190081 Kraus et al. Aug 2006 A1
20060195109 McGahan et al. Aug 2006 A1
20060200137 Soboleski et al. Sep 2006 A1
20060200138 Michelson Sep 2006 A1
20060200139 Michelson Sep 2006 A1
20060206118 Kim et al. Sep 2006 A1
20060217812 Lambrecht et al. Sep 2006 A1
20060235391 Sutterlin, III Oct 2006 A1
20060241597 Mitchell et al. Oct 2006 A1
20060241626 McGahan et al. Oct 2006 A1
20060241758 Peterman et al. Oct 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060259142 Dooris et al. Nov 2006 A1
20060271195 Thramann Nov 2006 A1
20060276790 Dawson et al. Dec 2006 A1
20060276801 Yerby et al. Dec 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070016195 Winslow et al. Jan 2007 A1
20070016196 Winslow et al. Jan 2007 A1
20070016218 Winslow et al. Jan 2007 A1
20070032871 Michelson Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070050031 Khosrowshahi Mar 2007 A1
20070055245 Sasso et al. Mar 2007 A1
20070055263 Way et al. Mar 2007 A1
20070073402 Vresilovic et al. Mar 2007 A1
20070083265 Malone Apr 2007 A1
20070123863 Winslow et al. May 2007 A1
20070123888 Bleich et al. May 2007 A1
20070135814 Farris Jun 2007 A1
20070135921 Park Jun 2007 A1
20070149976 Hale et al. Jun 2007 A1
20070149983 Link Jun 2007 A1
20070150061 Trieu Jun 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070179617 Brown et al. Aug 2007 A1
20070179619 Grob et al. Aug 2007 A1
20070225721 Thelen et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070244483 Winslow et al. Oct 2007 A9
20070276491 Ahrens Nov 2007 A1
20070282441 Stream Dec 2007 A1
20070288014 Shadduck et al. Dec 2007 A1
20070299451 Tulkis Dec 2007 A1
20080015581 Eckman Jan 2008 A1
20080021457 Anderson et al. Jan 2008 A1
20080021464 Morin et al. Jan 2008 A1
20080058954 Trieu Mar 2008 A1
20080065219 Dye Mar 2008 A1
20080108996 Padget et al. May 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080161810 Melkent Jul 2008 A1
20080161929 McCormack et al. Jul 2008 A1
20080167657 Greenhaigh Jul 2008 A1
20080177311 Winslow et al. Jul 2008 A1
20080208341 McCormack et al. Aug 2008 A1
20080216846 Levin Sep 2008 A1
20080234677 Dahners et al. Sep 2008 A1
20080234758 Fisher et al. Sep 2008 A1
20080255564 Michelson Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080255622 Mickiewicz et al. Oct 2008 A1
20080255666 Fisher et al. Oct 2008 A1
20080255667 Horton Oct 2008 A1
20080287955 Michelson Nov 2008 A1
20080312744 Vresilovic et al. Dec 2008 A1
20090131986 Lee et al. May 2009 A1
20090138053 Assell et al. May 2009 A1
20090177205 McCormack et al. Jul 2009 A1
20090177237 Zucherman et al. Jul 2009 A1
20090234397 Petersen Sep 2009 A1
20090248076 Reynolds et al. Oct 2009 A1
20090263461 McKay Oct 2009 A1
20090270929 Suddaby et al. Oct 2009 A1
20090275994 Phan et al. Nov 2009 A1
20090306671 McCormack et al. Dec 2009 A1
20090312763 McCormack et al. Dec 2009 A1
20100069912 McCormack et al. Mar 2010 A1
20100086185 Weiss Apr 2010 A1
20100093829 Gorman Apr 2010 A1
20100111829 Drapeau et al. May 2010 A1
20100114105 Butters et al. May 2010 A1
20100114318 Gittings et al. May 2010 A1
20100145391 Kleiner Jun 2010 A1
20100191241 McCormack et al. Jul 2010 A1
20110004247 Lechmann Jan 2011 A1
20110022089 Assell et al. Jan 2011 A1
20110054613 Hansen Mar 2011 A1
20110077686 Mishra et al. Mar 2011 A1
20110082548 Assell et al. Apr 2011 A1
20110144755 Baynham et al. Jun 2011 A1
20110190821 Chin et al. Aug 2011 A1
20110245930 Alley et al. Oct 2011 A1
20110295327 Moskowitz et al. Dec 2011 A1
20110307061 Assell et al. Dec 2011 A1
20120010659 Angert et al. Jan 2012 A1
20120010662 O'Neil et al. Jan 2012 A1
20120010669 O'Neil et al. Jan 2012 A1
20120065613 Pepper et al. Mar 2012 A1
20120143334 Boyce et al. Jun 2012 A1
20120215259 Cannestra Aug 2012 A1
20120265250 Ali Oct 2012 A1
20120283776 Mishra Nov 2012 A1
20120323242 Tsuang et al. Dec 2012 A1
20130006364 McCormack et al. Jan 2013 A1
20130012994 McCormack et al. Jan 2013 A1
20130013070 McCormack et al. Jan 2013 A1
20130018474 McCormack et al. Jan 2013 A1
20130023995 McCormack et al. Jan 2013 A1
20130023996 McCormack et al. Jan 2013 A1
20130030440 McCormack et al. Jan 2013 A1
20130030532 McCormack et al. Jan 2013 A1
20130110168 McCormack et al. May 2013 A1
20130110243 Patterson et al. May 2013 A1
20130123922 McCormack et al. May 2013 A1
20130144389 Bonutti Jun 2013 A1
20130226239 Altarac et al. Aug 2013 A1
20130253649 Davis Sep 2013 A1
20130274763 Drapeau et al. Oct 2013 A1
20130310839 McCormack et al. Nov 2013 A1
20130310878 McCormack et al. Nov 2013 A1
20130310943 McCormack et al. Nov 2013 A1
20130317548 Malone Nov 2013 A1
20130338720 Kleiner Dec 2013 A1
20140025113 McCormack et al. Jan 2014 A1
20140100657 McCormack et al. Apr 2014 A1
20140379087 McCormack Dec 2014 A1
20150297357 McCormack et al. Oct 2015 A1
20170027713 Kleiner Feb 2017 A1
20170189199 Maier et al. Jul 2017 A1
20170216044 McCormack Aug 2017 A1
Foreign Referenced Citations (20)
Number Date Country
G9304368.6 May 2003 DE
2722980 Feb 1996 FR
9641582 Dec 1996 WO
9949818 Oct 1999 WO
00035388 Jun 2000 WO
0053126 Sep 2000 WO
0053126 Sep 2000 WO
0101895 Jan 2001 WO
0234120 May 2002 WO
2002038062 May 2002 WO
0234120 May 2002 WO
02076335 Oct 2002 WO
2006058221 Jun 2006 WO
2006130791 Dec 2006 WO
2008083349 Jul 2008 WO
2009089367 Jul 2009 WO
2009148619 Dec 2009 WO
2010030994 Mar 2010 WO
2010074714 Jul 2010 WO
2016049784 Apr 2016 WO
Non-Patent Literature Citations (7)
Entry
US 7,063,700, 06/2006, Michelson (withdrawn)
Goel, Atul, “Facetal distraction as treatment for single- and multilevel cervical spondylotic radiculopathy and myelopathy: a preliminary report,” J Neurosurg Spine, Jun. 2011, pp. 689-696.
Press Release , Interventional Spine, Inc., Interventional Spine, Inc. Introduces the PERPOS Fusion Facet Prep Kit, Oct. 14, 2008, 1 Page.
Press Release, minSURG Corp., Orthopedic Development Corporation's TruFUSE Procedure Tops 1,750 Patients in First Year, Sep. 24, 2007, 1 Page.
Press Release , Interventional Spine, Inc., FDA Grants Conditional Approval to Interventional Spine's PercuDyn System IDE Application, Jul. 1, 2008, 1 Page.
International Search Report and Written Opinion for PCT Patent Application No. PCT/US2014/056078, dated Jan. 2, 2015, 9 pages.
Stein et al., “Percutaneous Facet Joint Fusion: Preliminary Experience,” Journal of Vascular and Interventional Radiology, Jan.-Feb. 1993, pp. 69-74, vol. 4, No. 1.
Related Publications (1)
Number Date Country
20160374823 A1 Dec 2016 US
Provisional Applications (5)
Number Date Country
61777643 Mar 2013 US
61705375 Sep 2012 US
61169601 Apr 2009 US
61109776 Oct 2008 US
61059723 Jun 2008 US
Continuations (2)
Number Date Country
Parent 14037164 Sep 2013 US
Child 15196862 US
Parent 12653283 Dec 2009 US
Child 13614372 US
Continuation in Parts (3)
Number Date Country
Parent 13614372 Sep 2012 US
Child 14037164 US
Parent 12455814 Jun 2009 US
Child 12653283 US
Parent 12317682 Dec 2008 US
Child 12455814 US