The present disclosure relates to a composite storage device, and more particularly to a composite storage device including a volatile storage unit and a detachable non-volatile storage device.
With the progress of the computer related technologies, lots of information used in daily life is urged toward digitation. Many different kinds of media we used in the past, such as photos for preserving images, disks for recording music, or films for playing movies, are now replaced by data in digital form that stored in computers. That is, storage devices which are capable of storing digital data have become essential media in our daily life.
The hard-disk drive (HDD) is known as a non-volatile storage device for preserving digital data in a long period of time. Due to the obstacle in design and operation of the mechanical structure, it is hard to decrease the size of HDD any further. As the development of the flash memory in recent years, HDD has been gradually replaced by solid-state disk (SSD) because SSD is lighter and thinner than HDD, and also has an advantage of low power consumption. However, it is known that only 2.5-inch or 3.5-inch storage devices can be mounted in general personal computers (PCs). Since many of the card-form SSDs or the module-form SSDs are unable to be mounted in the personal computers (PCs), it is quite inconvenient for user to mount the card-form SSDs or the module-form SSDs in the general PCs.
Therefore, there is a need of providing a composite storage device in order to eliminate the above drawbacks.
The present disclosure provides a composite storage device and a composite memory thereof. By integrating a SSD with a DRAM, the SSDs with different kinds of interface specifications can be installed on the main circuit board of the computer through the current interfaces available on the main circuit board without adding any new interfaces on the main circuit board. Consequently, the facilities of utilizing and mounting the SSDs are improved, and the cost is reduced.
The present disclosure provides a composite storage device and a composite memory thereof. By employing the composite storage device and the composite memory of the present invention, various card-form SSD or module-form SSD can be installed on the main circuit board, and the required electric energy can be provided to the non-volatile storage device and the dynamic random access memory for operations at the same time via a single interface of the main circuit board. Consequently, the mounting space is reduced, and the size of the product can be further reduced.
In accordance with an aspect of the present disclosure, there is provided a composite storage device. The composite storage device comprises a storage device and a composite memory. The composite memory comprises a substrate, a first transmission interface, a storage unit, a power conversion unit, a card insertion interface and a second transmission interface. The first transmission interface is disposed on the substrate and configured to connect with a first communication interface of a main circuit board. The storage unit is disposed on the substrate and coupled with the first transmission interface, and the information exchanged between the storage unit and the main circuit board is performed through the first transmission interface and the first communication interface of the main circuit board. The power conversion unit is disposed on the substrate and electrically coupled with the first transmission interface for converting a first power provided from the main circuit board to a second power. The card insertion interface is disposed on the substrate and coupled with the power conversion unit. The second transmission interface is disposed on the substrate and coupled with the card insertion interface, and the second transmission interface is connected with a second communication interface of the main circuit board through a transmission channel. The storage device is detachably connected with the card insertion interface of the composite memory. When the storage device is electrically connected with the card insertion interface, the second power is provided to the storage device for operations through the card insertion interface, and the information is exchanged between the storage device and the main circuit board through the card insertion interface, the second transmission interface, the transmission channel and the second communication interface.
In accordance with another aspect of the present disclosure, there is provided a composite memory for detachably connecting with a storage device and a main circuit board including a first communication interface and a second communication interface. The composite memory comprises a substrate, a first transmission interface, a storage unit, a power conversion unit, a card insertion interface and a second transmission interface. The first transmission interface is disposed on the substrate and configured to connect with the first communication interface of the main circuit board. The storage unit is disposed on the substrate and coupled with the first transmission interface, and the information exchanged between the storage unit and the main circuit board is performed through the first transmission interface and the first communication interface of the main circuit board. The power conversion unit is disposed on the substrate and electrically coupled with the first transmission interface for converting a first power provided from the main circuit board to a second power. The card insertion interface is disposed on the substrate and coupled with the power conversion unit for detachably connecting with the storage device. The second transmission interface is disposed on the substrate and coupled with the card insertion interface, and the second transmission interface is connected with the second communication interface of the main circuit board through a transmission channel. When the storage device is electrically connected with the card insertion interface, the second power is provided to the storage device through the card insertion interface, and the information is exchanged between the storage device and the main circuit board through the card insertion interface, the second transmission interface, the transmission channel and the second communication interface.
In accordance with a further aspect of the present disclosure, there is provided a composite storage device. The composite storage device comprises at least one storage device and a composite memory. The composite memory comprises a substrate, a first transmission interface, a storage unit, a power conversion unit, a first card insertion interface, a second card insertion interface, a second transmission interface and a third transmission interface. The first transmission interface is disposed on the substrate and configured to connect with a first communication interface of a main circuit board. The storage unit is disposed on the substrate and coupled with the first transmission interface, and the information exchanged between the storage unit and the main circuit board is performed through the first transmission interface and the first communication interface of the main circuit board. The power conversion unit is disposed on the substrate and coupled with the first transmission interface for converting a first power provided from the main circuit board to a second power and a third power. The first card insertion interface is disposed on the substrate and coupled with the power conversion unit. The second card insertion interface is disposed on the substrate and coupled with the power conversion unit. The second transmission interface is disposed on the substrate and coupled with the first card insertion interface, and the second transmission interface is connected with a second communication interface of the main circuit board through a first transmission channel. The third transmission interface is disposed on the substrate and coupled with the second card insertion interface, and the third transmission interface is connected with a third communication interface of the main circuit board through a second transmission channel. Each storage device is detachably connected with one of the first card insertion interface and the second card insertion interface. When the storage device is electrically connected with the first card insertion interface, the second power is provided to the storage device for operations through the first card insertion interface, and the information is exchanged between the storage device and the main circuit board through the first card insertion interface, the second transmission interface, the first transmission channel and the second communication interface. When the storage device is electrically connected with the second card insertion interface, the third power is provided to the storage device for operations through the second card insertion interface, and the information is exchanged between the storage device and the main circuit board through the second card insertion interface, the third transmission interface, the second transmission channel and the third communication interface.
The present disclosure will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this disclosure are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Please refer to
Besides, as shown in
The power conversion unit 124 is electrically coupled with the first transmission interface 122 and the card insertion interface 125, and the power conversion unit 124 is electrically connected with the main circuit board 4 through the first transmission interface 122 and the first communication interface 41 of the main circuit board 4. Under this circumstances, a first power provided from the main circuit board 4 can be converted to a second power which is conformed to the specification of the card insertion interface 125 by the power conversion unit 124. For example, portion of the electric energy provided from the main circuit board 4 is transmitted to the power conversion unit 124 through the first communication interface 41 and the first transmission interface 122 of the composite memory 12, and the voltage level of the power provided from the main circuit board 4 can be boosted or reduced to a required voltage level for example 3.3 volts by the power conversion unit 124. After the voltage level of the power has been converted to the required voltage level, the power is transmitted to the card insertion interface 125 to be outputted.
The second transmission interface 126 is disposed on the substrate 121 of the composite memory 12 and coupled with the card insertion interface 125. The second transmission interface 126 of the composite memory 12 is connected with the second communication interface 42 of the main circuit board 4 through a transmission channel C. In this embodiment, the second transmission interface 126 of the composite memory 12 and the second communication interface 42 of the main circuit board 4 may be conformed to a serial ATA (SATA) interface specification, but it is not limited thereto. For example, the second transmission interface 126 is an edge connector (i.e. golden finger) disposed on one side edge of the substrate 121, the second communication interface 42 is a socket, and the transmission channel C is a cable that is conformed to a SATA interface specification. Two mating connectors of the cable are connected with the second transmission interface 126 of the composite memory 12 and the second communication interface 42 of the main circuit board 4, respectively (not shown in
In this embodiment, as shown in
Please refer to
Please refer to
From the above descriptions, the present disclosure provides a composite storage device and a composite memory thereof. By integrating at least one SSD with a DRAM, the SSDs with different kinds of interface specifications can be installed on the main circuit board of the computer through the current interfaces available on the main circuit board without adding any new interfaces on the main circuit board. Consequently, the facilities of utilizing and mounting the SSDs are improved, and the cost is reduced. In addition, by employing the composite storage device and the composite memory of the present invention, various card-form SSD or module-form SSD can be coupled with the main circuit board, and the required electric energy can be provided to the non-volatile storage device (i.e. the SSD) and the dynamic random access memory (i.e. DRAM) for operations at the same time via a single interface of the main circuit board. Consequently, the mounting space is reduced, and the size of the product can be further reduced.
While the disclosure has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the disclosure needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
103121753 | Jun 2014 | TW | national |