1. Technical Field
The present invention relates to the field of structural elements, and more particularly, to composite structural elements.
2. Discussion of Related Art
Common tiles and covers are made of a single material and are passive elements.
One aspect of the present invention provides a composite structural element comprising: a basal member having voids of a predefined shape that are open to a surface thereof; and a plurality of filling elements designed to fit into the voids, wherein at least one of the predefined shape of the void and an interface between the filling elements and the voids is arranged to maintain the filling elements within the voids.
These, additional, and/or other aspects and/or advantages of the present invention are: set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.
For a better understanding of embodiments of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
In the accompanying drawings:
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Composite structural element 100 comprises a basal member 110 having voids 115 of a predefined shape that are open to a surface thereof, and a plurality of filling elements 120 designed to fit into voids 115. In embodiments, filling elements 120 may be designed to fit into voids 115 to yield a smooth surface of composite element 100. The smooth surface of composite element 100 may be flat as illustrated in
In particular, composite structural element 100 is designed to meet strength requirements and basal member 110 and filling elements 120 are designed to have sufficient bending and pressing strengths that keep them intact and interconnected under expected environmental conditions, including thermal, mechanical and chemical influences.
In embodiments, the predefined shape of void 115 and/or the interface between filling elements 120 and voids 115 is arranged to maintain filling elements 120 within voids 115. For example, filling elements 120 may be designed to fit into voids 115 in a compressed state, to yield a specified frictional force at the interface (e.g. independently of ambient conditions). In support of the compression, filling elements 120 may comprise one or more cavities 124 (see
Filling elements 120 may be made of various materials, such as wood, plastic, rubber, metal, glass, composite materials, cement, limestone glue powder, fiberglass, ceramics and combinations thereof. Basal member 110 may be made of various materials, such as wood, plastic, rubber, metal, glass, composite materials, cement, limestone glue powder, fiberglass, ceramics and combinations thereof.
The predefined shape of voids 115 and materials used for filling elements 120 and basal member 110 may be selected according to given strength and elasticity requirements. For example, the materials may be selected to optimize the mechanical parameters and characteristics of composite element 100, according to its use, regarding e.g. the weights that it is expected to hold, the required flexibility and brittleness, tensile strength etc. Filling elements 120 and basal member 110 may be selected to be complementary in these respects. In embodiments, the materials may be selected to minimize the weight of composite element 100 under given strength and elasticity requirements, applying e.g. criteria for determining the maximal shear stress of material failure. In embodiments, the materials may be selected to maximize the moment of inertia of composite element 100 to reduce the shear stress.
Engaging basal member 110 and filling elements 120 may be carried out by introducing filling elements 120 into voids 115 by pressing, click-connecting, transversal insertion and/or by producing of filling elements 120 within voids 115 (e.g. by extrusion into voids 115). For example, composite element 100 may be provided with a clamp hook that corresponding to clamp grooves in filling elements 120, or vice versa. The clamp hook of basal member 110 or voids 115 may be pressed on the clamp groove of filling elements 120, thereby integrating the metal profile and the filler-material profile. In embodiments, basal member 110 may be bonded with filling elements 120 as a whole body. In embodiments, filling elements 120 may be wrapped around basal member 110. In embodiments, composite element 100 may be produced by co-extruding filling elements 120 as a surface layer and basal member 110 as a core layer. The above mentioned embodiments may be combined to produce any type of composite element 100.
Designing filling elements 120 may be carried out to provide a flat surface of composite element 100. Composite element 100 may further be laminated, e.g. by co-extrusion, gluing or any other method. The lamination can be on the upper side, lower side or both sides of the new composite profile.
These combinations of these two materials together in one profile provide composite profile with improved strength within a thin layer. It also gives more elasticity to the profile and strength to bending. When a device is inserted into the metal or the filler materials there is an option to enhance the device's performance and functionality.
In embodiments, one or more of filling elements 120 may comprise sensor(s), transmitters and/or receivers, light source(s), wiring(s) and heating element(s) all indicated by a generic member 126.
Sensors may be used e.g. to measure pressure, temperature, electric or magnetic fields, electromagnetic radiation, illumination, capacity, conductivity (“touch-tiles”) to detect movements or illumination of composite element 100 such as a tile.
Transmitters and/or receivers may relate to electromagnetic radiation such as RF, X-ray or microwaves; and pressure such as ultrasound, sound or other vibrations.
Light sources such as light emitting diode (LEDs) or optical fibers may be used to create e.g. floor illumination by composite element 100.
Wiring may be integrated within composite element 100 to yield a highly modular wiring system, e.g. in a floor, sparing the need for additional installation. Wiring may comprise electric wires (power or data), optical fibers etc. Heating elements may be used to replace other heating sources and provide integrated heating. Alternatively or additionally, composite structural element 100 may be heat conductive (e.g. made of metal) and comprise heating elements 116 embedded within basal member 110. Other elements, such as sensors, light sources and wiring may as well be integrated within basal member 110. Either or both basal member 110 and filling elements 120 may be heat conductive comprise heating element 116 embedded in basal member and/or filling elements 120, respectively. Either or both basal member 110 and filling elements 120 may be electrically conductive.
Composite element 100 may at least one device attached to it or embedded in the internal space or a pipe that runs through composite element 100, such as heat condensers, electric circuitry or combinations thereof.
Composite element 100 may further be formed to have modular connections on its edges to connect to other elements and/or other composite elements 100, e.g. as tiles or covers. The modular connection may comprise electric, optical or fluid connections among members 126 and/or 116 in different elements.
Basal member 110 may be designed to engage a specified structural element such as standard tiles or other structural elements, via a joint 130 shaped to engage respective connective members 132 and sockets 133 (see
In embodiments, voids 115 may be trapezoid as illustrated in
In embodiments, filling elements 120 may be designed to protrude from voids 115 above a surface 104 of structural element 100 (
Advantageously, composite element 100 combines the material characteristics of basal member 110 and filling elements 120 and enhances them by integrating various elements 126, 116 into the composite structure. Composite element 100 may be designed to be usable under various circumstances and provide novel design features.
Composite element 100 may be used in various applications depending on the materials combined into the composite profile and on the attached elements. Examples for applications comprise:
Decking such as decoration decks with several different surface coatings and comprising illumination.
Kitchen or bathroom tiles, with or without heating elements.
Floor or ceiling tiles, optionally water-sealed, with or without wiring for electricity or communications and piping.
Furniture such as tables, benches, chairs, with or without illumination.
Aesthetic and decorated covers for walls and floors.
Frames of any kind of frames, e.g. using lightweight and strong materials, optionally comprising sensors and controlled illumination.
Green building with control of heat transfer parameters.
Shafts with specified strength, elasticity and heat conductivity characteristics.
Flooring plate of lightweight and strong material that can sustain great loads and can be made anti-corrosive (e.g. boat floors, boat body, aircraft, vehicles etc.), with or without heating elements, illumination and sensors that are usable under the “smart home” concept.
Advantageously, filling elements 120 may be designed to reinforce composite element 100, seal and hide connection regions between adjacent elements (e.g. by fully or partially covering joint 130) and generate a uniform appearance of connected elements.
In the above description, an embodiment is an example or implementation of the invention. The various appearances of “one embodiment”, “an embodiment” or “some embodiments” do not necessarily all refer to the same embodiments.
Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.
Embodiments of the invention may include features from different embodiments disclosed above, and embodiments may incorporate elements from other embodiments disclosed above. The disclosure of elements of the invention in the context of a specific embodiment is not to be taken as limiting their used in the specific embodiment alone.
Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in embodiments other than the ones outlined in the description above.
The invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.
Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.
While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2013/050160 | 2/21/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61634156 | Feb 2012 | US |