The present invention relates to a composite structure and a method of forming a composite structure.
It is known to reinforce extended surfaces with strengthening ribs and the like which stretch thereacross. These ribs, which can also be called stringers, are often parallel, or substantially parallel, and comprise a web extending substantially perpendicular from the extended surface and a flange which extends from an extremity of the web an angle thereto. This arrangement of web and flange can form a number of profiles, such as I-beams, T-beams, C-beams and the like.
Such a structure can be used in numerous fields and applications. In aeronautics, the extended surface can be a skin and the reinforced structure can be provided around the fuselage of an aircraft. Such a structure can also be used within an aircraft to form a floor.
In an aircraft, such structures can be formed from fiber-reinforced composites, such as carbon fiber-epoxy and the like. In such cases, the strengthening ribs are typically bonded, bolted and/or otherwise fastened to the extended surface.
U.S. Pat. No. 5,593,633, issued Jan. 14, 1997 to Dull et al. describes a vacuum-bagging arrangement wherein pairs of rubber blocks are used to form I-beam shaped stringers on top of a panel. U.S. Pat. No. 6,565,351, issued May 20, 2003 to Holsinger describes an apparatus for fabricating a composite structure that includes flexible hinge between two tooling portions.
Also known to the Applicant are the following related patents and/or patent applications: DE 102006031334, EP 1 151 856, EP 1 336 469, EP 1 888 323, EP 2 038 099, EP 2 038 107, U.S. Pat. No. 4,966,802, U.S. Pat. No. 5,170,967, U.S. Pat. No. 5,242,523, U.S. Pat. No. 5,593,633, U.S. Pat. No. 5,847,930, U.S. Pat. No. 6,375,121, U.S. Pat. No. 6,391,246, U.S. Pat. No. 6,508,909, U.S. Pat. No. 6,565,351, U.S. Pat. No. 6,589,472, U.S. Pat. No. 6,730,184, U.S. Pat. No. 6,743,504, U.S. Pat. No. 6,802,931, U.S. Pat. No. 7,527,222, U.S. Pat. No. 6,730,184, US 2007/0293110, WO 99/39976, WO 2001/15868, WO 2006/118691, WO 2006/136560, WO 2006/138025, WO 2008/003715, WO 2008/003767, WO 2009/111466, WO 2009/112694 and WO 2009/132892.
However, a drawback associated with some of the above-mentioned documents is that they require numerous steps to create an extended surface strengthened with stringers, which renders manufacture more complex and expensive. Another drawback associated with some of the above-mentioned documents is that they require mounting a pre-formed stringer onto an extended surface, which typically requires a large number of fasteners and can weaken the structure. This can require more complex, expensive tooling and can result in a heavier part.
It would be advantageous to provide a less complex reinforced composite structure. It would be advantageous to provide a composite structure including stringers which were integral with the structure's extended surface. It would also be advantageous to provide a composite structure which could be molded in one step.
The present invention provides a method of forming a fiber-reinforced composite structure having a skin, a plurality of webs extending from the skin and a plurality of flanges, each flange extending from a respective web opposite the skin. The method includes the steps of:
Preferably, the fiber-reinforced composite structure further includes at least one framing member which extends between two webs. At least one of the plurality of mandrels is assembled by:
Alternatively, the fiber-reinforce composite structure preferably further includes at least two framing members which extend between two webs. At least one of the plurality of mandrels is assembled by:
The present invention also provides a fiber-reinforced composite structure including:
The invention will be better understood upon reading the following non-restrictive description of the preferred embodiment thereof, made with reference to the accompanying drawings in which:
a and 10b illustrate top views of structures formed according to the method of
b illustrate a preferred method of assembling a mandrel in order to form framing members in accordance with the embodiment of
While the invention will be described in conjunction with an example embodiment, it will be understood that it is not intended to limit the scope of the invention to such embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included as defined by the appended claims.
In the following description, the same numerical references refer to similar elements. The embodiments shown in the figures are preferred, for exemplification purposes only.
In the context of the present description, the expression “ply” refers to an individual sheet of woven (or unidirectional) fiber. The plies referred to can be either pre-impregnated with resin or not. The expression “lay-up” refers to a grouping of one or more plies.
In addition, although the preferred embodiments of the present invention as illustrated in the accompanying drawings comprise various components, etc., and although the preferred embodiments of the structure and corresponding parts of the present invention as shown consist of certain geometrical configurations as explained and illustrated herein, not all of these components and geometries are essential to the invention and thus should not be taken in their restrictive sense, i.e. should not be taken as to limit the scope of the present invention. It is to be understood, as also apparent to a person skilled in the art, that other suitable components and cooperation therebetween, as well as other suitable geometrical configurations may be used for the composite structure according to the present invention, as will be briefly explained herein and as can be easily inferred herefrom by a person skilled in the art, without departing from the scope of the invention.
It will be appreciated that the present invention may be practiced without some of the specific details which have been set forth herein below in order to provide a thorough understanding of the invention.
The method of the present invention is claimed and described herein as a series of steps. It will be understood that these steps may be performed in any logical order. Moreover, the method may be performed alone, or in conjunction with other procedures and methods before, during or after such methods and steps set forth herein without departing from the scope of the present invention.
With reference to
In the preferred embodiment illustrated, the composite structure 10 forms part of a door for an aircraft and the primary stringers 12, which may be referred to as intercostals, and secondary stringers 16, which can be referred to as framing members, are provided along the inside thereof. A pair of lateral frames 18 are bonded and/or otherwise fastened on either side of the structure 10. The lateral frames 18 form forward and aft seal strikers, while the top and bottom seal strikers 20 are formed as part of the structure 10.
The intercostals 12 and framing members 16 are arranged so as to accommodate various features of the door, such as a handle box 22, and contoured so as to accommodate the mechanical assembly, as at 24.
The intercostals 12 and framing members 16 are I-beam shaped in cross-section. With additional reference now to
Each of the skin 14, the webs 30 and flanges 32 are formed from a plurality of plies 34. These are represented in
The skin 14, webs 30 and flanges 32 are formed from a plurality of first lay-ups 36, a single second lay-up 38 and a plurality of third lay-ups 40. Each first lay-up 36, which is illustrated comprising three plies 34, comprises three distinct sections: a skin section 42, a pair of opposed web sections 44 which extend outward from the skin section 42, and a pair of inwardly facing flange sections 46, each of which extends from a respective one of the web sections 44. Each first lay-up 36 further comprises opposed edges 48 at the end of each flange section 46.
The second lay-up 38, only a portion of which is illustrated, extends underneath the skin sections 42 of the first lay-ups 36 (from the frame of reference of that figure). Together, the skin sections 42 and the second lay-up 38 form the skin 14. In the current embodiment, the first lay-up 36 represents about 25% of the skin 14.
The third lay-ups 40, two of which are illustrated, extend above the flange sections 46 of the first lay-up 36. Together, each third lay-up 40 and the adjacent pair flange sections 46 form the flanges 32.
The webs 30 are formed by the web sections 44 of adjacent first lay-ups 36. An additional lay-up, a middle blade 50, can be inserted between the adjacent web sections 44 in order to adjust the thickness of the webs 30. Moreover, a middle blade 50 can be used to tailor thickness to follow load distribution, while ensuring local symmetry.
As will be appreciated by one skilled in the art, a plurality of noodles 52 are preferably positioned along any bends in the lay-ups, i.e. along the junctions between the skin and web sections 42 and 44, and the web and flange sections 44 and 46.
With reference now to
As seen in
In practice, it may be desirable to provide first lay-ups 36 which are longer than will ultimately be necessary in the composite structure 10. In this case, the flange sections 46 will extend farther around the fourth side 62. Such excess sections are then cut and the outer edges of each flange section 46 are polished to ensure a proper finish. The degree to which the flange sections 46 are extended can vary, although they are preferably not so long as to overlap.
Although trimming the cured flange sections 46 requires and additional step in the manufacturing process, it will be appreciated that the first lay-ups 36 advantageously do not need to be positioned quite as precisely as they would have otherwise given that the excess will subsequently be cut off, thereby ensuring precise dimensions of the final flange sections 46. However, it will also be appreciated that this results in an increased scrap rate.
For simplicity however, the schematic representation illustrated in the figures does not include such extensions. It will also be appreciated that this technique of extending lay-ups so as to be later able to trim and polish them can similarly be applied elsewhere.
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
It will be appreciated that because resin will liquefy during the cure cycle, it is desirable to constrain the mandrels 60 in order ensure the proper alignment of the lay-ups 36, 38 and 40. A tool frame 90 is therefore preferably provided to index the mandrels 60 and lay-ups 36, 38 and 40 with respect to the tools 64 and 68.
In the illustrated embodiment, the tool frame 90, functioning as a datum, extends along two perpendicular sides of the assembly and pressure is applied opposite the tool frame. Pressure can be applied by combining vacuum, autoclave and intensifiers 92 installed along the sides 96. Alternatively, a variation of the tool frame 90 could be used which extends along one longitudinal side of the assembly and pins one or more mandrels in place while pressure is applied along the remaining three sides. It will be appreciated however that various other means for maintaining alignment during the cure cycle are possible.
However, the composite structure of
For example, the framing members 16a and 16b extend between the intercostals 12a and 12b. In order to enable the formation and co-curing of these framing members 16a and 16b, the mandrel 60 which separates the two intercostals 12a and 12b is assembled in three portions 60a, 60b and 60c.
As seen in
The mandrel 60 is then assembled, and the framing members 16 formed, by aligning the first and second mandrel portions 60a and 60b on either side of the third mandrel portion 60c along their respective wrapped extremities 74. As before, middle blades 50 can be inserted between the fourth lay-ups 76 in order to adjust the thickness of the framing members.
As seen in
It will be appreciated that in situations where a single framing member 16 is present between two intercostals 12, a mandrel 60 comprising two mandrel portions 60a and 60b could similarly be used by omitting the central third mandrel portion 60c. It will similarly be appreciated that a multi-piece mandrel arrangement could also be used for embodiments comprising three or more framing members 16 between a pair of intercostals 12 by providing an appropriate number of mandrel portions 60a, 60b, 60c, 60d, etc.
Once the assembly has been cured, the mandrels 60 can be removed. For rows including either one framing member 16 or none at all, the mandrel 60 or mandrel portions 60a and 60b can simply be slid out of the now rigid structure 10. For rows having two or more framing members, the multi-part mandrels 60, such as that illustrated in
As being now better appreciated, the present invention is an improvement and presents several advantages over other related devices and/or methods known in the prior art. Indeed, the present invention is particularly advantageous in that the structure 10 requires only one curing cycle which can simplify construction and therefore avoid the need for mechanical fasteners between the stringers 12 and the skin 14, or indeed between the framing members 16 and the skin 14 should the former be included as well. This, it will be appreciated, can reduce the final part's complexity and weight and ease its assembly. A structure 10 in accordance with the present invention can also be formed with pre-impregnated plies 34, thereby avoiding the need for resin transfer molding. In addition, a structure 10 assembled according to an embodiment of the present invention enables integrated tooling so there is no need to transfer from one laminate surface to another.
Of course, numerous modifications could be made to the above-described embodiments without departing from the scope of the invention, as apparent to a person skilled in the art.
While specific embodiments of the present invention have been described and illustrated, it will be apparent to those skilled in the art that numerous modifications and variations can be made without departing from the scope of the invention.
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/IB2010/001728 | 7/13/2010 | WO | 00 | 1/11/2013 |