COMPOSITE STRUCTURE

Abstract
A composite structure includes a plate-like shear resistance member joined to a surface of a substrate in an erected manner and a concrete-based member formed on the surface of the substrate. The plate-like shear resistance member is embedded in the concrete-based member, and a through hole and a projecting rim portion projecting outside of at least one surface of the plate-like shear resistance member from an inner periphery of the through hole are provided on the plate-like shear resistance member.
Description
TECHNICAL FIELD

The present invention relates to a composite structure formed by integrally joining a steel member and a concrete-based member at the time of constructing an architectural structure, a civil engineering structure or the like.


BACKGROUND ART

Conventionally, a composite structure which is formed by integrally joining a steel member and a concrete-based member has been popularly used in fields such as architectural structures and civil engineering structures. As the composite structure generally pertaining to the present invention in the same field, for example, there has been known a composite structure 180 which uses studs 181 as shown in FIG. 15 and FIG. 16, a composite structure 190 which uses a perforated steel-plate dowel connection member 191 as shown in FIG. 17 and FIG. 18 or the like.


In the composite structure 180 shown in FIG. 15 and FIG. 16, a plurality of studs 181 are welded to an upper surface of a steel frame beam 182 which constitutes a steel member in an erected manner at predetermined intervals, and a layer-like concrete-based member 183 is formed on an upper surface of the steel frame beam 182 in a state where these studs 181 are embedded in the concrete-based member 183.


In the composite structure 190 shown in FIG. 17 and FIG. 18, the strip-shaped perforated steel-plate dowel connection member 191 in which a plurality of through holes 191 are formed at predetermined intervals is welded to an upper surface of a steel frame beam 192 which constitutes a steel member in the form of ribs. A layer-like concrete-based member 193 is formed on an upper surface of the steel frame beam 192 in a state where the perforated steel-plate dowel connection member 191 is embedded in the concrete-based member 193.


On the other hand, to increase adhesiveness between a placing frame and concrete, there has been proposed a technique where through holes are formed in a substrate which is a raw material for forming the placing frame by burring working so that a plurality of small irregular projections are formed on peripheries of the through holes (see Patent Document 1, for example).


PRIOR ART DOCUMENTS
Patent Documents



  • Patent Document 1: Japanese Patent Laid-open Publication No. 10-102503



The studs 181 which constitute the composite structure 180 shown in FIG. 15 and FIG. 16 exhibit the largest shearing force along accompanying with the displacement deformation and hence, the studs 181 have been popularly used in the fields of architectural and civil engineering structures. However, in the composite structure 180, to acquire high shear strength and high initial rigidity, it is necessary to join a large number of studs 181 to the upper surface of the steel frame beam 182 and hence, a wide mounting space is necessary for arranging the studs 181. Accordingly, the studs 181 are not suitable for a joining portion on which a stress is concentrated in the composite structure which requires high initial rigidity.


On the other hand, in the composite structure 190 shown in FIG. 17 and FIG. 18, the displacement between the perforated steel-plate dowel connection member 191 and the concrete-based member 193 is prevented or suppressed due to the shear resistance of concrete filled into the through holes 191a formed in the perforated steel-plate dowel connection member 191 and hence, the perforated steel-plate dowel connection member 191 has high rigidity compared to the studs 181 shown in FIG. 15 and FIG. 16 thus possessing advantages such as an excellent fatigue characteristic and favorable work executing efficiency. However, in the technical field of the present invention, there has been a demand for the further improvement of shear strength, and it is the current situation that the composite structure 190 shown in FIG. 17 and FIG. 18 cannot also satisfy such a demand.


On the other hand, in the placing frame described in Patent Document 1, as a means for increasing adhesiveness of a joining portion between the placing frame and concrete, a plurality of through holes having small irregular projections are formed in the substrate by burring working. However, these small projections are formed with irregular shapes along the peripheries of the through holes and hence, it is indefinite whether or not these small projections have a function of increasing shear strength.


SUMMARY OF THE INVENTION

Accordingly, one or more embodiments of the present invention provide a composite structure which can largely increase a displacement prevention function, shear strength and rigidity at a joining portion between a steel-frame-based member and a concrete-based member and, at the same time, can also exhibit excellent work executing efficiency.


According to a first aspect of the present invention, a composite structure may include: a plate-like shear resistance member joined to a surface of a substrate in an erected manner like a partitioning screen; and a concrete-based member formed on a surface of the substrate in a state where the shear resistance member is embedded in the concrete-based member, wherein a through hole and a projecting rim portion which projects toward the outside of at least one surface of the shear resistance member from an inner periphery of the through hole are provided to the shear resistance member.


According to a second aspect of the present invention, a composite structure may include: a plate-like shear resistance members arranged to face each other in an opposed manner; and a concrete-based member formed between the shear resistance members, wherein a through hole and a projecting rim portion which projects into the concrete-based member from an inner periphery of the through hole are provided to the shear resistance members.


According to a third aspect of the present invention, a composite structure may include: a cylindrical columnar member; and a concrete-based member formed around the columnar member in a state where at least a portion of the columnar member is embedded into the concrete-based member, wherein at least one of a through hole and a projecting rim portion which projects into the concrete-based member or toward an axis of the columnar member from an inner periphery of the through hole is provided to the portion of the columnar member embedded into the concrete-based member.


In the composite structure according to the third aspect of the present invention, a through hole and a projecting rim portion which projects toward an axis of the columnar member from an inner periphery of the through hole are provided to a portion of the columnar member exposed from the concrete-based member, and a concrete-based member is filled into the inside of the columnar member.


According to one or more embodiments, the projecting rim portion may have a short cylindrical shape which is continuous with an inner periphery of the through hole.


According to one or more embodiments, a plurality of through holes may be formed in the shear resistance member.


In this case, the projecting directions of the projecting rim portions formed on the through holes arranged adjacent to each other may differ from each other.


On the other hand, the composite structure according to the first aspect of the present invention may adopt the structure where a plurality of shear resistance members are joined to a surface of the substrate.


According to one or more embodiments of the present invention, it is possible to provide the composite structure which can largely increase a displacement prevention function, shear strength and rigidity at a joining portion between a steel-frame-based member and a concrete-based member and, at the same time, can also exhibit excellent work executing efficiency.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view with a part broken away showing a composite structure according to a first embodiment of the present invention.



FIG. 2 is a view as viewed in the direction indicated by an arrow A in FIG. 1.



FIG. 3 is a cross-sectional view taken along a line B-B in FIG. 2.



FIG. 4 is a cross-sectional view with a part omitted taken along a line C-C in FIG. 2.



FIG. 5 is a cross-sectional view of the composite structure according to a second embodiment of the present invention with a part omitted.



FIG. 6 is a cross-sectional view of the composite structure according to a third embodiment of the present invention with a part omitted.



FIG. 7 is a cross-sectional view of the composite structure according to a fourth embodiment of the present invention with a part omitted.



FIG. 8 is a cross-sectional view of the composite structure according to a fifth embodiment of the present invention with a part omitted.



FIG. 9 is a cross-sectional view of the composite structure according to a sixth embodiment of the present invention with a part omitted.



FIG. 10 is a cross-sectional view of the composite structure according to a seventh embodiment of the present invention with a part omitted.



FIG. 11 is a cross-sectional view taken along a line D-D in FIG. 10 with a part omitted.



FIG. 12 is a front view with a part broken away showing the composite structure according to an eighth embodiment of the present invention.



FIG. 13 is a cross-sectional view taken along a line E-E in FIG. 12 with a part omitted.



FIG. 14 is a cross-sectional view taken along a line F-F in FIG. 12 with a part omitted.



FIG. 15 is a longitudinal cross-sectional view showing the conventional composite structure.



FIG. 16 is a cross-sectional view taken along a line X-X in FIG. 15.



FIG. 17 is a longitudinal cross-sectional view showing the conventional composite structure.



FIG. 18 is a cross-sectional view taken along a line Y-Y in FIG. 17.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Hereinafter, the composite structures 10, 20, 30, 40, 50, 60, 70, 80 of first to eighth embodiments according to the present invention are described by reference to FIG. 1 to FIG. 14.


The composite structure 10 shown in FIG. 1 to FIG. 4 includes: a flat-plate-like shear resistance member 3 joined to a surface 1a of a flat-plate-like substrate 1 in an erected manner like a partitioning screen by fillet welds 2; and a concrete-based member 4 formed on the surface 1a of the substrate 1 in a state where the shear resistance member 3 is embedded in the concrete-based member 4. A plurality of through holes 5 are formed in the shear resistance member 3, and projecting rim portions 6 are formed such that the projecting rim portions project toward the outside of one surface 3a of the shear resistance member 3 from inner peripheries of the through holes 5. The plurality of through holes 5 have a circular shape, and the projecting rim portions 6 have a short cylindrical shape which is continuous with the inner periphery of the through hole 5. Although both the substrate 1 and the shear resistance member 3 are formed of a steel plate, a material for forming the substrate 1 and the shear resistance member 3 is not limited to a steel plate.



FIG. 4 is a cross-sectional view with a part omitted taken along a line C-C in FIG. 2, and shows a state where the concrete-based member 4 and the fillet welds 2 which constitute the composite structure 10 are omitted. As shown in FIG. 4, four through holes 5 are formed in the shear resistance member 3 at fixed intervals along the longitudinal direction of the shear resistance member 3. The projecting rim portion 6 formed on each through hole 5 projects toward the outside of one surface 3a of the shear resistance member 3. An inner diameter of the through hole 5, the number of through holes 5, intervals at which the through holes 5 are formed and the like are not particularly limited.


As shown in FIG. 1, in the composite structure 10, the displacement between the shear resistance member 3 and the concrete-based member 4 is prevented by a shear resistance of the concrete-based member 4 filled in the through holes 5. Further, the projecting rim portions 6 formed on the through holes 5 and the concrete-based member 4 disposed in the vicinity of the projecting rim portions 6 also exhibit shear resistance force and a displacement prevention function and hence, high rigidity and shear strength of the composite structure 10 can be largely increased. Further, the fillet welds 2 for joining the shear resistance member 3 to the surface 1a of the substrate 1 can be formed in a factory or the like in advance and, thereafter, the composite structure 10 can be conveyed to a construction site. Accordingly, it is possible to avoid a welding work at a construction site so that the composite structure 10 exhibits favorable work executing efficiency.


Further, the projecting rim portion 6 is formed on the through hole 5 and hence, the rigidity of the shear resistance member 3 per se is increased so that the shear resistance member 3 is minimally deformed. Accordingly, the formation of the projecting rim portion 6 can improve the handling of the shear resistance member 3 at the time of conveying or storing, can effectively improve work executing efficiency, and can improve the strength of the composite structure 10. Further, since the rigidity of the shear resistance member 3 is improved, the deformation of the shear resistance member 3 due to a thermal effect at the time of forming the fillet welds 2 can be prevented.


The through hole 5 formed in the shear resistance member 3 can be also used as an insertion hole. That is, a wire rope or a shackle is inserted into the through hole 5 at the time when a steel material to which the shear resistance member 3 is joined is hoisted by a crane. A reinforcing bar can be inserted into the through hole 5 formed in the shear resistance member 3. Accordingly, the through holes 5 can be also used as spacers at the time of arranging reinforcing bars at a construction site of an architectural or civil engineering structure.


Although a working method for forming the projecting rim portion 6 on the through hole 5 is not particularly limited, the projecting rim portion 6 is formed on the through hole 5 by burring working in this embodiment. Burring working is a working technique where an inner periphery of a prepared hole formed in a steel plate which is a material for forming the shear resistance member 3 is raised in the plate thickness direction of the steel plate using a punch and a die. Although the substrate 1 to which the shear resistance member 3 is joined has a flat plate-like shape, the shape of the substrate 1 is not limited to such a shape in the composite structure 10. Provided that the shear resistance member 3 can be joined to the substrate 1, any steel material such as an I-beam steel, an H-beam, a T-beam, an angle beam, a channel beam or a steel pipe, for example, can be used as the substrate 1.


As described previously, a reinforcing bar (not shown in the drawing) can be inserted into the through hole 5 formed in the shear resistance member 3. Accordingly, the composite structure 10 may adopt the structure where one or a plurality of reinforcing bars (not shown in the drawing) are inserted into each through hole 5, and the concrete-based member 4 is formed on the surface 1a of the substrate 1 in a state where the shear resistance member 3 and the reinforcing bars (not shown in the drawing) are embedded in the concrete-based member 4. Due to such a constitution, horizontal shearing force (shearing force in the direction parallel to the surface 1a of the substrate 1) can be shared by the reinforcing bars and hence, a deformation resistance is increased whereby the composite structure 10 can acquire excellent advantageous effects such as the increase of resistance force against floating of the concrete-based member 4.


Next, the composite structures 20, 30, 40, 50, 60 according to the second to sixth embodiments are described by reference to FIG. 5 to FIG. 9. All of FIG. 5 to FIG. 9 are cross-sectional views with a part omitted in the same manner as the above-mentioned FIG. 4 and hence, parts corresponding to the concrete-based member 4 and the fillet welds 2 shown in FIG. 1 are omitted. Further, in the composite structures 20, 30, 40, 50, 60 shown in FIG. 5 to FIG. 9, constitutional parts having the same shape and function as the corresponding constitutional parts of the composite structure 10 shown in FIG. 1 are given the same symbols, and the repeated description of these parts is omitted.


The composite structure 20 shown in FIG. 5 includes: two shear resistance members 3 joined to a surface 21a of a flat-plate-like substrate 21 in an erected manner like a partitioning screen by welds (not shown in the drawing); and a concrete-based member (not shown in the drawing) formed on the surface 21a of the substrate 21 in a state where the shear resistance member 3 is embedded in the concrete-based member. Two shear resistance members 3 are arranged parallel to each other in a state where the other surfaces 3b of the shear resistance members 3 from which projecting rim portions 6 formed on through holes 5 do not project are made to face each other in an opposed manner.


In the composite structure 20, two shear resistance members 3 exhibit shear resistance force and a displacement prevention function respectively and hence, the composite structure 20 has the higher rigidity than the composite structure 10 whereby the shear strength can be further increased in the composite structure 20.


Next, the composite structure 30 shown in FIG. 6 includes: two shear resistance members 3 joined to a surface 31a of a flat-plate-like substrate 31 in an erected manner like a partitioning screen by fillet welds (not shown in the drawing); and a concrete-based member (not shown in the drawing) formed on the surface 31a of the substrate 31 in a state where the shear resistance member 3 is embedded in the concrete-based member. Two shear resistance members 3 are arranged parallel to each other in a state where one surfaces 3a of the shear resistance members 3 from which projecting rim portions 6 formed on through holes 5 project are made to face each other in an opposed manner. In the composite structure 30, two shear resistance members 3 exhibit shear resistance force and a displacement prevention function respectively and hence, the composite structure 30 has the higher rigidity than the composite structure 10 whereby the shear strength can be further increased in the composite structure 30.


Next, the composite structure 40 shown in FIG. 7 includes: a shear resistance member 43 joined to a surface 41a of a flat-plate-like substrate 41 in an erected manner like a partitioning screen by fillet welds (not shown in the drawing); and a concrete-based member (not shown in the drawing) formed on the surface 41a of the substrate 41 in a state where the shear resistance member 43 is embedded in the concrete-based member. A plurality of through holes 5 are formed in the shear resistance member 43 along the longitudinal direction of the shear resistance member 43 at fixed intervals. The projecting directions of the projecting rim portions 6 formed on the through holes 5 arranged adjacent to each other are made 180 degrees different from each other. That is, with respect to the through holes 5 arranged adjacent to each other, the projecting rim portion 6 formed on one through hole 5 projects from a front surface 43a of the shear resistance member 43, while the projecting rim portion 6 formed on the other through hole 5 projects from a back surface 43b of the shear resistance member 43.


Due to such a constitution, shear resistance force which the shear resistance member 43 and the concrete-based member (not shown in the drawing) generate is made uniform between the front surface 43a and the back surface 43b of the shear resistance member 43. Accordingly, such a constitution can effectively enhance the strength of the composite structure 40.


Next, the composite structure 50 shown in FIG. 8 includes: two shear resistance members 43 joined to a surface 51a of a flat-plate-like substrate 51 in an erected manner like a partitioning screen by welds (not shown in the drawing); and a concrete-based member (not shown in the drawing) formed on the surface 51a of the substrate 51 in a state where the shear resistance member 43 is embedded in the concrete-based member.


In the composite structure 50, two shear resistance members 43 are joined to the surface 51a of the substrate 51 such that the shear resistance members 43 are arranged parallel to each other. Accordingly, these shear resistance members 43 and the concrete-based member (not shown in the drawing) exhibit large shear resistance force and hence, the shear strength can be increased compared to the composite structure 40 shown in FIG. 7.


Next, the composite structure 60 shown in FIG. 9 includes: a shear resistance member 63 joined to a surface 61a of a flat-plate-like substrate 61 in an erected manner like a partitioning screen by fillet welds (not shown in the drawing); and a concrete-based member (not shown in the drawing) formed on the surface 61a of the substrate 61 in a state where the shear resistance member 63 is embedded in the concrete-based member. A plurality of through holes 65 are formed in the shear resistance member 63 along the longitudinal direction of the shear resistance member 63 at fixed intervals, and projecting rim portions 66 are formed on inner peripheries of each through hole 65 such that the projecting rim portions 66 project outward from a front surface 63a and a back surface 63b of the shear resistance member 63 respectively.


In the composite structure 60, the projecting rim portions 66 formed on the through holes 65 are provided to both surfaces (front surface 63a and back surface 63b) of the shear resistance member 63 and hence, there is no difference between a front side and a back side of the shear resistance member 63. Accordingly, shear resistance force which the shear resistance member 63 and the concrete-based member (not shown in the drawing) exhibit is made uniform between the front surface 43a and the back surface 43b of the shear resistance member 63 and hence, such a constitution is effective for increasing the strength of the composite structure 60.


The composite structures 20, 30, 40, 50, 60 shown in FIG. 5 to FIG. 9 may adopt the structure where one or a plurality of reinforcing bars (not shown in the drawing) are inserted into each through holes 5, 65 formed in the shear resistance members 3, 43, 63, and the concrete-based member (not shown in the drawing) is formed on the surfaces 21a, 31a, 41a, 51a, 61a of the substrates 21, 31, 41, 51, 61 in a state where the shear resistance members 3, 43, 63 and the reinforcing bars (not shown in the drawing) are embedded in the concrete-based member. Due to such a constitution, in the same manner as described previously, the deformation resistance performance of the composite structure can be increased and hence, the composite structure can acquire advantageous effects such as the increase of resistance force against floating of the concrete-based member.


Next, the composite structure 70 shown in FIG. 10 and FIG. 11 includes: two plate-like shear resistance members 73 arranged so as to face each other in an opposed manner; and a concrete-based member 74 formed between the shear resistance members 73. A plurality of through holes 5 are formed in the shear resistance member 73, and projecting rim portions 76 are formed on inner peripheries of the respective through holes 75 such that the projecting rim portions 76 project into the concrete-based member 74. The projecting rim portion 76 formed on the through hole 5 projects from one surface 73a of the shear resistance member 73 (a contact surface with the concrete-based member 74). The plurality of through holes 75 have a circular shape, and the projecting rim portion 76 has a short cylindrical shape and is continuously formed with an inner periphery of the through hole 75. Although both shear resistance members 73 are formed using a flat-plate-like steel plate, a material for forming the shear resistance members 73 is not limited to the flat-plate-like steel plate, and a corrugated plate, a folded plate or the like can be used for forming the shear resistance members 73.


Due to the provision of the through holes 75 and the projecting rim portions 76, the composite structure 70 can acquire a strong displacement prevention function at joining portions between the two steel-plate-made shear resistance members 73 and the concrete-based member 74. Accordingly, the shear strength and rigidity of the composite structure 70 can be largely increased and, at the same time, work executing efficiency can be also improved. The application of the composite structure 70 is not limited and hence, the composite structure 70 is applicable to various reinforced-concrete structural bodies. For example, the composite structure 70 is favorably applicable to a wall body structure or the like of a reinforced-concrete building (not shown in the drawing).


Next, the composite structure 80 shown in FIG. 12 to FIG. 14 includes: a rectangular cylindrical column member 81; and a concrete-based member 84a which is formed around the column member 81 in a state where a portion of the column member 81 close to a lower end portion 81a is embedded in the concrete-based member 84a. A plurality of through holes 85a are formed in the portion of the column member 81 embedded in the concrete-based member 84a (in the portion of the column member 81 close to the lower end portion 81a), and projecting rim portions 86a are formed on the through holes 85a such that the projecting rim portions 86a project toward the inside of the concrete-based member 84a from inner peripheries of the respective through holes 85a.


As shown in FIG. 12 and FIG. 13, the plurality of through holes 85a are formed such that two through holes 85a are respectively formed in upper and lower portions of each one of four flat plane portions 81p constituting peripheral walls of the rectangular cylindrical column member 81. That is, eight through holes 85a are formed in the flat plane portions 81p in total. However, the number of through holes 85a and the arrangement state of the through holes 85a are not limited to the above. Projecting rim portions 86a formed on the through holes 85a project outward from the flat plane portions 81p.


As shown in FIG. 12 and FIG. 14, a plurality of through holes 85b are formed in a portion of the column member 81 exposed from the concrete-based member 84a (in the portion of the column member 81 close to an upper end portion 81b of the column member 81), projecting rim portions 86b are formed on the through holes 85b such that the projecting rim portions 86b project toward an axis 81c of the column member 81 from inner peripheries of the respective through holes 85b, and a concrete-based member 84b is filled in the inside of the column member 81. The concrete-based members 84a, 84b are integrally and continuously formed with each other through the through holes 85a.


As shown in FIG. 12 and FIG. 14, the plurality of through holes 85b are formed such that two through holes 85b are respectively formed in upper and lower portions of four flat plane portions 81p constituting the peripheral walls of the rectangular cylindrical column member 81. That is, eight through holes 85b are formed in the flat plane portions 81p in total. However, the number of through holes 85b and the arrangement state of the through holes 85b are not limited to the above. Projecting rim portions 86b formed on the through holes 85b project inward from the flat plane portions 81p.


Due to the provision of the through holes 85a, 85b and the projecting rim portions 86a, 86b, the composite structure 80 can acquire a strong displacement prevention function at a joining portion between the column member 81 which constitutes a shear resistance member and the concrete-based members 84a, 84b. Accordingly, the shear strength and rigidity of the composite structure 80 can be largely increased and, at the same time, work executing efficiency can be also improved. The application of the composite structure 80 is not limited and hence, the composite structure 80 is applicable to various reinforced-concrete structural bodies. For example, the composite structure 80 is favorably applicable to a pillar body structure or the like of a reinforced-concrete building (not shown in the drawing).


Further, as shown in FIG. 12, by adopting the structure where reinforcing members 85 are made to pass through the through holes 85a formed in the portion of the column member 81 embedded in the concrete-based member 84a thus integrally forming the reinforcing members 85 with the concrete-based member 84a, the composite structure 80 can further increase the strength and the deformation resistance performance. Although the column member 81 of the composite structure 80 has a rectangular cylindrical shape, a shape of the column member 81 is not limited to the rectangular cylindrical shape, and may have other shapes such as a polygonal cylindrical shape, a circular cylindrical shape, an elliptical cylindrical shape or an elongated circular cylindrical shape, for example.


The above-mentioned composite structures 10, 20, 30, 40, 50, 60, 70, 80 merely exemplify the composite structure of the present invention, and the composite structure of the present invention is not limited to these embodiments.


Although the disclosure has been described with respect to only a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present invention. Accordingly, the scope of the invention should be limited only by the attached claims.


INDUSTRIAL APPLICABILITY

The composite structure according to one or more embodiments of the present invention is widely applicable to fields such as architectural industry, civil engineering-architectural industry and the like.


DESCRIPTION OF REFERENCE SIGNS






    • 1, 21, 31, 41, 51, 61: substrate


    • 1
      a, 21a, 31a, 41a, 51a, 61a: surface


    • 2: fillet weld


    • 3, 43, 63, 73: shear resistance member


    • 3
      a, 3b, 73a: surface


    • 4, 74, 84a, 84b: concrete-based member


    • 5, 65, 75, 85a, 85b: through hole


    • 6, 66, 76, 86a, 86b: projecting rim portion


    • 10, 20, 30, 40, 50, 60, 70, 80: composite structure


    • 43
      a: front surface


    • 43
      b: back surface


    • 81: column member


    • 81
      a: lower end portion


    • 81
      b: upper end portion


    • 81
      c: axis


    • 81
      p: flat plane portion


    • 88: reinforcing material




Claims
  • 1. A composite structure comprising: a plate-like shear resistance member joined to a surface of a substrate in an erected manner; anda concrete-based member formed on the surface of the substrate,wherein the plate-like shear resistance member is embedded in the concrete-based member, andwherein a through hole and a projecting rim portion projecting outside of at least one surface of the plate-like shear resistance member from an inner periphery of the through hole are provided on the plate-like shear resistance member.
  • 2. A composite structure comprising: a plurality of plate-like shear resistance members arranged facing each other in an opposed manner; anda concrete-based member formed between the plate-like shear resistance members,wherein a through hole and a projecting rim portion projecting into the concrete-based member from an inner periphery of the through hole are provided on the plate-like shear resistance members.
  • 3. A composite structure comprising: a cylindrical columnar member; anda concrete-based member formed around the cylindrical columnar member,wherein at least a portion of the cylindrical columnar member is embedded into the concrete-based member, andwherein at least one of a through hole and a projecting rim portion projecting into the concrete-based member or toward an axis of the cylindrical columnar member from an inner periphery of the through hole is provided on the portion of the cylindrical columnar member embedded in the concrete-based member.
  • 4. The composite structure according to claim 2, wherein the through hole and the projecting rim portion are provided on a portion of a columnar member exposed from the concrete-based member, and wherein the concrete-based member is filled into an inside of the columnar member.
  • 5. The composite structure according to claim 1, wherein the projecting rim portion has a short cylindrical shape and is continuously formed within an inner periphery of the through hole.
  • 6. The composite structure according to claim 1, wherein a plurality of through holes are formed in the plate-like shear resistance member.
  • 7. The composite structure according to claim 6, wherein projecting directions of projecting rim portions formed on the plurality of through holes arranged adjacent to each other are different from each other.
  • 8. The composite structure according to claim 1, wherein a plurality of shear resistance members are joined to the surface of the substrate.
  • 9. The composite structure according to claim 2, wherein the projecting rim portion has a short cylindrical shape and is continuously formed within an inner periphery of the through hole.
  • 10. The composite structure according to claim 3, wherein the projecting rim portion has a short cylindrical shape and is continuously formed within an inner periphery of the through hole.
  • 11. The composite structure according to claim 4, wherein the projecting rim portion has a short cylindrical shape and is continuously formed within an inner periphery of the through hole.
  • 12. The composite structure according to claim 2, wherein a plurality of through holes are formed in the plurality of plate-like shear resistance members.
  • 13. The composite structure according to claim 3, wherein a plurality of through holes are formed in the cylindrical columnar member.
  • 14. The composite structure according to claim 4, wherein a plurality of through holes are formed in at least one of the columnar member and the plurality of plate-like shear resistance members.
  • 15. The composite structure according to claim 5, wherein a plurality of through holes are formed in the plate-like shear resistance member.
Priority Claims (1)
Number Date Country Kind
2012-151625 Jul 2012 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2013/068238 7/3/2013 WO 00