The present disclosure relates generally to a support rack for supporting cargo inside of a transportation container.
Transportation containers are used to transport cargo from one place to another. Efficient use of space in the transportation containers can reduce associated transportation costs.
According to an aspect of the present disclosure, there is provided a transportation apparatus that comprises a transportation container (e.g., rail car, trailer, shipping container, or sea container) and a fiber-reinforced composite support rack positioned in the transportation container for supporting cargo on the support rack. An associated method is disclosed.
The support rack may take a variety of forms. Exemplarily, it has a cargo platform for supporting cargo and an underlying frame for supporting the platform. The platform has, for example, a pair of horizontal, parallel planks spaced-apart from one another to receive cargo thereon. The planks are made of fiber-reinforced composite material to provide the planks with a relatively high strength-to-weight ratio. The frame has one, two, or three legs to support the planks. The leg(s) may be made, for example, of metal or fiber-reinforced composite material.
The above and other features of the present disclosure will become apparent from the following description and the attached drawings.
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives following within the spirit and scope of the invention as defined by the appended claims.
Referring to
The support rack 14 has one or more components made of a fiber-reinforced composite material such that the support rack 14 is relatively light weight, relatively strong, and relatively moisture-impervious. The composite material thus enhances the strength-to-weight ratio of the support rack 14.
The composite component(s) may be made of any suitable fiber-reinforced composite structure. An example of such a structure is a fiber-reinforced polymer (FRP) composite structure. Such an FRP structure may include a polymer matrix having a reinforcing element and a polymer resin. The FRP structure may be embodied as any type of FRP structure. Examples of such structures include, but are not limited to, a solid laminate, a pultruded or vacuum-infused sandwich panel (e.g., a panel having a pair of skins with a core therebetween), pultruded panel (e.g., a panel having a pair of sheets with vertical or diagonal webs therebetween), or TRANSONITE® available from Martin Marietta Materials, Inc. of Raleigh, N.C. In the case where the FRP structure is embodied as a sandwich panel, the core type may include, but is not limited to, wood, foam and various types of honeycomb.
The matrix includes, for example, a thermosetting resin, although thermoplastic resins are also contemplated for use. Examples of thermosetting resins which may be used include, but are not limited to, unsaturated polyesters, vinyl esters, polyurethanes, epoxies, phenolics, and mixtures and blends thereof.
The reinforcing element may include E-glass fibers, although other reinforcements such as S-glass, carbon, KEVLAR®, metal, high modulus organic fibers (e.g. aromatic polyamides, polybenzamidazoles, and aromatic polyimides), and other organic fibers (e.g. polyethylene and nylon) may be used. Blends and hybrids of such materials may be used for the reinforcing element. Other suitable composite materials may be used for the reinforcing element including whiskers and fibers such as boron, aluminum silicate, basalt, carbon nano-fibers, and other nano-fibers.
Referring to
Each plank 116 is made of the composite material and comprises a tubular outer wall 126 and a number (e.g., three) of vertical (or diagonal) reinforcement walls 128, as shown in
Illustratively, the leg 118 has a pair of vertical tubular bars 130, a lower horizontal tubular bar 132, a pair of longer upper horizontal tubular bars 134, and a shorter upper horizontal tubular bar 136, as shown in
The leg 118 may be secured to the planks 116 at a variety of locations along the length of the planks 116 depending on the cargo loading configuration employed (among other possible factors). For example, the leg 118 may be secured to the planks 116 at their midpoint, as shown in
Referring to
All the components of the rack 214 may be made of a fiber-reinforced composite material or, in some embodiments, there may be components (e.g., the gussets 138, 140) which are made of a material other than a fiber-reinforced composite material such as metal. In either case, the components may be configured as shown in
Referring to
Referring to
Referring to
Referring to
Each leg 518 defines a pair of open slots 520. Each slot 520 receives a portion of a plank 116. A retainer 522 of the leg 518 inhibits inadvertent removal of the plank portion from the associated slot 520. Illustratively, the retainer 522 is configured as a lip cantilevered to extend over the plank portion.
Exemplarily, the fiber-reinforced composite material of each plank 116 used in any of the racks disclosed herein is a glass fiber-reinforced polymer with urethane resin. In such a case, the plank 116 is moisture impervious and weighs less than 3.2 pounds per foot. Exemplarily, each plank 116 weighs about 2.7 pounds per foot. The other components of the racks may be made of a glass fiber-reinforced polymer with polyester resin.
While the concepts of the present disclosure have been illustrated and described in detail in the drawings and foregoing description, such an illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only the illustrative embodiments have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
There are a plurality of advantages of the concepts of the present disclosure arising from the various features of the systems described herein. It will be noted that alternative embodiments of each of the systems of the present disclosure may not include all of the features described yet still benefit from at least some of the advantages of such features. Those of ordinary skill in the art may readily devise their own implementations of a system that incorporate one or more of the features of the present disclosure and fall within the spirit and scope of the invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/591,197 which was filed Jul. 26, 2004 and is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60591197 | Jul 2004 | US |