Composite tapes and rods formed from fibers embedded in a polymer resin have been employed in a wide variety of applications. For example, such tapes, and more specifically rods formed from the tapes, may be utilized as lightweight structural reinforcements. One specific application of such rods is in the oil and gas industry, such as in subsea applications as well as in on-shore oil and gas production fields. In on-shore or subsea applications, for, example, multi-layer pipes may be utilized in risers, transfer lines, umbilicals and/or other suitable pipe assemblies. In production field applications, multi-layer pipes may be utilized in risers, infield flow lines, export pipelines and/or other suitable pipe assemblies. Power umbilicals, for example, are often used in the transmission of fluids and/or electric signals between the sea surface and equipment located on the sea bed. To help strengthen such umbilicals, attempts have been made to use pultruded carbon fiber rods as separate load carrying elements. Other applications of such rods may include, for example, use in high-voltage cables, tethers, etc. Applications of tapes may include, for example, use in high-pressure vessels to provide reinforcement thereof. In general, composite tapes and rods may be utilized in any suitable applications that may require, for example, high strength-to-weight elements, high corrosion resistance, and/or low thermal expansion properties.
There are many significant problems, however, with currently known methods and apparatus for producing composite tapes and rods. For example, composite tapes and rods are typically formed by impregnating fiber rovings with a polymer resin. Many rovings rely upon thermoset resins (e.g., vinyl esters) to help achieve desired strength properties. Thermoset resins are difficult to use during manufacturing and do not possess good bonding characteristics for forming layers with other materials. Further, attempts have been made to form impregnated rovings from thermoplastic polymers in other types of applications. U.S. Patent Publication No. 2005/0186410 to Bryant, et al., for instance, describes attempts that were made to embed carbon fibers into a thermoplastic resin to form a composite core of an electrical transmission cable. Unfortunately, Bryant, et al. notes that these cores exhibited flaws and dry spots due to inadequate wetting of the fibers, which resulted in poor durability and strength. Another problem with such cores is that the thermoplastic resins could not operate at a high temperature.
More recently, methods and apparatus have been developed that allow for the use of thermoplastic resins with fiber rovings to form composite tapes and rods. However, use of these presently known methods and apparatus has in some cases resulted in composite rods having undesirably high void levels. Additionally, presently known methods and apparatus are typically expensive and produce high levels of excess scrap.
Still further, monitoring of composite tapes and rods, and the components and applications in which the tapes and rods are employed, has become of increased concern. For example, in high pressure applications, it may be desirable to monitor the performance of the tapes and/or rods, such that the components utilizing the composite tapes and rods can be removed from service before significant damage or failure occurs. Further, in applicants wherein the tapes and/or rods are subjected to significant harmful exposure, such as in oil and gas applications, it may be similarly desirable to monitor the integrity and/or exposure of the tapes and/or rods, such that the components utilizing the composite tapes and rods can be removed from service before breaches in integrity or excessive exposure occur.
Accordingly, improved tapes and rods, as well as improved systems and methods for forming such composites, are desired in the art. Specifically, a need currently exists for tapes and rods having sensing characteristics which can monitor and report changes in performance, exposure, etc. of the tapes and rods. Further, a need currently exists for tapes and rods which have such sensing characteristics and further provide the desired strength, durability, temperature performance and dimensional requirements demanded by a particular application.
In accordance with one embodiment of the present disclosure, a composite tape is disclosed. The composite tape includes a thermoplastic material and a plurality of continuous fibers embedded in the thermoplastic material. The plurality of continuous fibers having a generally unidirectional orientation within the thermoplastic material. The composite tape further includes a sensing element embedded in the thermoplastic material.
In accordance with another embodiment of the present disclosure, a composite rod is disclosed. The composite rod includes a core. The core includes a thermoplastic material and a plurality of continuous fibers embedded in the thermoplastic material. The plurality of continuous fibers having a generally unidirectional orientation within the thermoplastic material. The core further includes a sensing element embedded in the thermoplastic material. The core has a void fraction of about 5% or less.
Other features and aspects of the present invention are set forth in greater detail below.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention.
Generally speaking, the present disclosure is directed to tapes and rods having sensing elements embedded therein. The sensing elements may advantageously monitor and report changes in the performance and/or exposure of the tapes and/or rods, and the components utilizing the tapes and/or rods. Additionally or alternatively, the sensing elements may monitor and report changes in the environment to which the tapes, rods and/or components are subjected. Such monitoring and reporting may allow for the tapes, rods, and components to be removed from service, repaired, or otherwise adjusted before failure. Additionally or alternatively, such monitoring may allow for adjustments to be made to other components utilized in various applications to compensate for any reported changes in performance, exposure, or environment as required.
A tape or rod formed according to the present disclosure includes a continuous fiber reinforced thermoplastic (“CFRT”) material. The CFRT material includes a thermoplastic material and a plurality of continuous fibers embedded therein. Suitable thermoplastic materials for use in tapes and rods according to the present disclosure include, for instance, polyolefins (e.g., polypropylene, propylene-ethylene copolymers, etc.), polyesters (e.g., polybutylene terephalate (“PBT”)), polycarbonates, polyamides (e.g., PA12, Nylon™), polyether ketones (e.g., polyether ether ketone (“PEEK”)), polyetherimides, polyarylene ketones (e.g., polyphenylene diketone (“PPDK”)), liquid crystal polymers, polyarylene sulfides (e.g., polyphenylene sulfide (“PPS”), poly(biphenylene sulfide ketone), poly(phenylene sulfide diketone), poly(biphenylene sulfide), etc.), fluoropolymers (e.g., polytetrafluoroethylene-perfluoromethylvinylether polymer, perfluoro-alkoxyalkane polymer, petrafluoroethylene polymer, ethylene-tetrafluoroethylene polymer, etc.), polyacetals, polyurethanes, polycarbonates, styrenic polymers (e.g., acrylonitrile butadiene styrene (“ABS”)), and so forth.
The thermoplastic material according to the present disclosure may further include a plurality of fibers embedded therein to reinforce the thermoplastic material. In exemplary embodiments, the CFRT material includes continuous fibers, although it should be understood that long fibers may additionally be included therein. The fibers may be dispersed in the thermoplastic material to form the CFRT material. As used therein, the term “long fibers” generally refers to fibers, filaments, yarns, or rovings that are not continuous, and as opposed to “continuous fibers” which generally refer to fibers, filaments, yarns, or rovings having a length that is generally limited only by the length of a part. The fibers dispersed in the polymer material may be formed from any conventional material known in the art, such as metal fibers, glass fibers (e.g., E-glass, A-glass, C-glass, D-glass, AR-glass, R-glass, S-glass such as S1-glass or S2-glass), carbon fibers (e.g., graphite), boron fibers, ceramic fibers (e.g., alumina or silica), aramid fibers (e.g., Kevlar® marketed by E. I. duPont de Nemours, Wilmington, Del.), synthetic organic fibers (e.g., polyamide, polyethylene, paraphenylene, terephthalamide, polyethylene terephthalate and polyphenylene sulfide), and various other natural or synthetic inorganic or organic fibrous materials known for reinforcing polymer compositions. Glass fibers, carbon fibers, and aramid fibers are particularly desirable. In exemplary embodiments, the continuous fibers may be generally unidirectional, as shown in
A tape or rod according to the present disclosure further includes one or more sensing elements embedded therein. Each sensing element is embedded in the thermoplastic material, and is configured to monitor and/or report changes in performance of the tape and/or rod. In some embodiments, a sensing element may be, for example, a fiber optic cable. Alternatively, a sensing element may be a radio frequency identification (“RFID”) transmitter. Still further, a sensing element may be a copper fiber, aluminum fiber, or other suitable metal or metal alloy fiber. Still further, a sensing element may be, for example, a conducting liquid sensing cable, a water sensing cable, a fuel or oil sensing cable, or a liquid organic solvent cable, examples of which may be found from CAS Systems Limited of Tsuen Wan, NT, Hong Kong. When a change in performance of, exposure of, or environment surrounding a tape or rod occurs, properties of the sensing element may change. Such properties may include, for example, electrical signal (such as for example voltage), optical signal strength, light amplitude interferometry, micro-tension, and passive radio frequency signal strength. Additional such properties, which may be measure directly or, preferably, indirectly based on for example the above-listed properties, include displacement, strain, temperature, and pH level. These changes in properties may be monitored and correlated such that changes in performance, exposure or environment are received from these property changes. Use of sensing elements according to the present disclosure thus allows for tapes, rods, components utilizing the tapes and/or rods, and/or other components in an application thereof to be removed, repaired, replaced, and/or adjusted.
One embodiment of an application utilizing a tape 158 according to the present disclosure is shown in
One embodiment of an application utilizing a rod 750 according to the present disclosure is shown in
Rods 750 of the present disclosure may be incorporated into the cable 20 in any desired manner, such as individually or in the form of bundles. In the embodiment illustrated in
Additionally, although not shown, it should be noted that tapes 158 formed according to the present disclosure may be wrapped around the cable 20 to reinforce the cable 20, similar to wrapping around a pressure vessel 10 as discussed above.
It should further be understood that the present disclosure is not limited to the above disclosed applications, and rather that tapes 158 and rods 750 formed according to the present disclosure may be utilized in any suitable applications.
A tape and rod according to the present disclosure may be formed using any suitable process or apparatus. Exemplary embodiments of suitable processes and apparatus, such as pultrusion processes and apparatus, for forming a tape and rod according to the present disclosure are discussed in detail below.
Referring to
A continuous fiber roving 142 or a plurality of continuous fiber ravings 142 are supplied from a reel or reels 144 to die 150. The ravings 142 are generally positioned side-by-side, with minimal to no distance between neighboring ravings, before impregnation. The feedstock 137 may further be heated inside the die by heaters 146 mounted in or around the die 150. The die is generally operated at temperatures that are sufficient to cause and/or maintain the proper melt temperature for the thermoplastic material, thus allowing for the desired level of impregnation of the rovings by the thermoplastic material. Typically, the operation temperature of the die is higher than the melt temperature of the thermoplastic material, such as at temperatures from about 200° C. to about 450° C. When processed in this manner, the continuous fiber rovings 142 become embedded in the thermoplastic material, which may be a resin 214 processed from the feedstock 137. The mixture may then exit the impregnation die 150 as wetted composite, extrudate, or tape 152.
As used herein, the term “roving” generally refers to a bundle of individual fibers 300. The fibers 300 contained within the roving can be twisted or can be straight. The rovings may contain a single fiber type or different types of fibers 300. Different fibers may also be contained in individual rovings or, alternatively, each roving may contain a different fiber type. The continuous fibers employed in the rovings possess a high degree of tensile strength relative to their mass. For example, the ultimate tensile strength of the fibers is typically from about 1,000 to about 15,000 Megapascals (“MPa”), in some embodiments from about 2,000 MPa to about 10,000 MPa, and in some embodiments, from about 3,000 MPa to about 6,000 MPa. Such tensile strengths may be achieved even though the fibers are of a relatively light weight, such as a mass per unit length of from about 0.05 to about 2 grams per meter, in some embodiments from about 0.4 to about 1.5 grams per meter. The ratio of tensile strength to mass per unit length may thus be about 1,000 Megapascals per gram per meter (“MPa/g/m”) or greater, in some embodiments about 4,000 MPa/g/m or greater, and in some embodiments, from about 5,500 to about 20,000 MPa/g/m. Carbon fibers are particularly suitable for use as the continuous fibers, which typically have a tensile strength to mass ratio in the range of from about 5,000 to about 7,000 MPa/g/m. The continuous fibers often have a nominal diameter of about 4 to about 35 micrometers, and in some embodiments, from about 9 to about 35 micrometers. The number of fibers contained in each roving can be constant or vary from roving to roving. Typically, a roving contains from about 1,000 fibers to about 50,000 individual fibers, and in some embodiments, from about 5,000 to about 30,000 fibers.
A pressure sensor 147 may sense the pressure near the impregnation die 150 to allow control to be exerted over the rate of extrusion by controlling the rotational speed of the screw shaft 134, or the feed rate of the feeder. That is, the pressure sensor 147 is positioned near the impregnation die 150, such as upstream of the manifold assembly 220, so that the extruder 130 can be operated to deliver a correct amount of resin 214 for interaction with the fiber rovings 142. After leaving the impregnation die 150, impregnated ravings 142 or the extrudate or tape 152, which may comprises the CFRT material, may enter an optional pre-shaping or guiding section (not shown) and/or a preheating device to control the temperature of the extrudate before entering a nip formed between two adjacent rollers 190. Although optional, the rollers 190 can help to consolidate the impregnated ravings 142 into a tape 156 or consolidate the tape 152 into a final tape 156, as well as enhance fiber impregnation and squeeze out any excess voids. In addition to the rollers 190, other shaping devices may also be employed, such as a die system. Regardless, the resulting consolidated tape 156 is pulled by tracks 162 and 164 mounted on rollers. The tracks 162 and 164 also pull the impregnated rovings 142 or tape 152 from the impregnation die 150 and through the rollers 190. If desired, the consolidated tape 156 may be wound up at a section 171. Generally speaking, the resulting tapes are relatively thin and typically have a thickness of from about 0.05 to about 1 millimeter, in some embodiments from about 0.1 to about 0.8 millimeters, and in some embodiments, from about 0.1 to about 0.4 millimeters.
Perspective views of one embodiment of a die 150 according to the present disclosure are further shown in
Within the impregnation die, it is generally desired that the ravings 142 are traversed through an impregnation zone 250 to impregnate the rovings with the polymer resin 214. In the impregnation zone 250, the polymer resin may be forced generally transversely through the rovings by shear and pressure created in the impregnation zone 250, which significantly enhances the degree of impregnation. This is particularly useful when forming a composite from tapes of a high fiber content, such as about 35% weight fraction (“Wf”) or more, and in some embodiments, from about 40% Wf or more. Typically, the die 150 will include a plurality of contact surfaces 252, such as for example at least 2, at least 3, from 4 to 7, from 2 to 20, from 2 to 30, from 2 to 40, from 2 to 50, or more contact surfaces 252, to create a sufficient degree of penetration and pressure on the rovings 142. Although their particular form may vary, the contact surfaces 252 typically possess a curvilinear surface, such as a curved lobe, pin, etc. The contact surfaces 252 are also typically made of a metal material.
As shown in
The plurality of channels 222 may, in exemplary embodiments as shown in
If desired, the runners 222 may include a second branched runner group 234 diverging from the first branched runner group 232, as shown. For example, a plurality of runners 222 from the second branched runner group 234 may branch off from one or more of the runners 222 in the first branched runner group 232. The second branched runner group 234 may include 2, 3, 4 or more runners 222 branching off from runners 222 in the first branched runner group 232.
If desired, the runners 222 may include a third branched runner group 236 diverging from the second branched runner group 234, as shown. For example, a plurality of runners 222 from the third branched runner group 236 may branch off from one or more of the runners 222 in the second branched runner group 234. The third branched runner group 236 may include 2, 3, 4 or more runners 222 branching off from runners 222 in the second branched runner group 234.
In some exemplary embodiments, as shown, the plurality of branched runners 222 have a symmetrical orientation along a central axis 224. The branched runners 222 and the symmetrical orientation thereof generally evenly distribute the resin 214, such that the flow of resin 214 exiting the manifold assembly 220 and coating the rovings 142 is substantially uniformly distributed on the rovings 142. This desirably allows for generally uniform impregnation of the ravings 142.
Further, the manifold assembly 220 may in some embodiments define an outlet region 242. The outlet region 242 is that portion of the manifold assembly 220 wherein resin 214 exits the manifold assembly 220. Thus, the outlet region 242 generally encompasses at least a downstream portion of the channels or runners 222 from which the resin 214 exits. In some embodiments, as shown, at least a portion of the channels or runners 222 disposed in the outlet region 242 have an increasing area in a flow direction 244 of the resin 214. The increasing area allows for diffusion and further distribution of the resin 214 as the resin 214 flows through the manifold assembly 220, which further allows for substantially uniform distribution of the resin 214 on the ravings 142. Additionally or alternatively, various channels or runners 222 disposed in the outlet region 242 may have constant areas in the flow direction 244 of the resin 214, or may have decreasing areas in the flow direction 244 of the resin 214.
In some embodiments, as shown, each of the channels or runners 222 disposed in the outlet region 242 is positioned such that resin 214 flowing therefrom is combined with resin 214 from other channels or runners 222 disposed in the outlet region 242. This combination of the resin 214 from the various channels or runners 222 disposed in the outlet region 242 produces a generally singular and uniformly distributed flow of resin 214 from the manifold assembly 220 to substantially uniformly coat the rovings 142. Alternatively, various of the channels or runners 222 disposed in the outlet region 242 may be positioned such that resin 214 flowing therefrom is discrete from the resin 214 from other channels or runners 222 disposed in the outlet region 242. In these embodiments, a plurality of discrete but generally evenly distributed resin flows 214 may be produced by the manifold assembly 220 for substantially uniformly coating the rovings 142.
As shown in
As further illustrated in
In some embodiments, as shown in
Further, as shown in
Upon exiting the manifold assembly 220 and the gate passage 270 of the die 150 as shown in
As shown in
For example, as discussed above, in exemplary embodiments as shown in
In some embodiments, as shown in
In exemplary embodiments, as shown in
Angle 254 at which the rovings 142 traverse the contact surfaces 252 may be generally high enough to enhance shear and pressure, but not so high to cause excessive forces that will break the fibers. Thus, for example, the angle 254 may be in the range between approximately 1° and approximately 30° and in some embodiments, between approximately 5° and approximately 25°.
As stated above, contact surfaces 252 typically possess a curvilinear surface, such as a curved lobe, pin, etc. In exemplary embodiments as shown, a plurality of peaks, which may form contact surfaces 252, and valleys are thus defined. Further, in many exemplary embodiments, the impregnation zone 250 has a waveform cross-sectional profile. In one exemplary embodiment as shown in
In other embodiments, the contact surfaces 252 are lobes that form portions of a waveform surface of only one of the first or second plate 256 or 258. In these embodiments, impingement occurs only on the contact surfaces 252 on the surface of the one plate. The other plate may generally be flat or otherwise shaped such that no interaction with the coated ravings occurs.
In other alternative embodiments, the impregnation zone 250 may include a plurality of pins (or rods), each pin having a contact surface 252. The pins may be static, freely rotational (not shown), or rotationally driven. Further, the pins may be mounted directly to the surface of the plates defining the impingement zone, or may be spaced from the surface. It should be noted that the pins may be heated by heaters 143, or may be heated individually or otherwise as desired or required. Further, the pins may be contained within the die 150, or may extend outwardly from the die 150 and not be fully encased therein.
In further alternative embodiments, the contact surfaces 252 and impregnation zone 250 may comprise any suitable shapes and/or structures for impregnating the ravings 142 with the resin 214 as desired or required.
As discussed, a roving 142 traversed through an impregnation zone 250 according to the present disclosure may become impregnated by resin 214, thus resulting in an impregnated roving 142, and optionally a tape 152 comprising at least one roving 142, exiting the impregnation zone 250, such as downstream of the contact surfaces 252 in the run direction 282. The impregnated rovings 142 and optional tape 152 exiting the impregnation zone 250 are thus formed from a fiber impregnated polymer material, as discussed above. At least one fiber roving 142 may be contained within a thermoplastic material, or resin, 214, as discussed above, to form the CFRT material and resulting tape 152 or tape 156.
As further shown in
As shown in
It should be understood that a tape 152, 156 according to the present disclosure may have any suitable cross-sectional shape and/or size. For example, such tape 152, 156 may have a generally rectangular shape, or a generally oval or circular or other suitable polygonal or otherwise shape. Further, it should be understood that one or more impregnated rovings 142 having been traversed through the impregnation zone 250 may together form the tape 152, 156, with the resin 214 of the various ravings 142 connected to form such tape 152, 156. The various above amounts, ranges, and/or ratios may thus in exemplary embodiments be determined for a tape 152 having any suitable number of impregnated rovings 142 embedded and generally dispersed within resin 214.
To further facilitate impregnation of the rovings 142, they may also be kept under tension while present within the die 150, and specifically within the impregnation zone 250. The tension may, for example, range from about 5 to about 300 Newtons, in some embodiments from about 50 to about 250 Newtons, and in some embodiments, from about 100 to about 200 Newtons per roving 142 or tow of fibers.
As shown in
Additionally, other components may be optionally employed to assist in the impregnation of the fibers. For example, a “gas jet” assembly may be employed in certain embodiments to help uniformly spread a roving of individual fibers, which may each contain up to as many as 24,000 fibers, across the entire width of the merged tow. This helps achieve uniform distribution of strength properties. Such an assembly may include a supply of compressed air or another gas that impinges in a generally perpendicular fashion on the moving ravings that pass across exit ports. The spread rovings may then be introduced into a die for impregnation, such as described above.
It should be understood that tapes 152, 156 and impregnated ravings 142 thereof according to the present disclosure need not be formed in the dies 150 and other apparatus as discussed above. Such dies 150 and apparatus are merely disclosed as examples of suitable equipment for forming tapes 152, 156 or impregnated tows. The use of any suitable equipment or process to form tapes 152, 156 or impregnated tows is within the scope and spirit of the present disclosure.
Further, one or more sensing elements 500 may be embedded in the tape 152, 156, such that a tape 158 has a CFRT material and such sensing elements 500. Embedding of the sensing elements 500 may, in exemplary embodiments, be generally performed after a tape 152, 156 is initially formed, such as in a die 150, 412 as discussed above. Further, such embedding may, in exemplary embodiments, be generally performed while the tape 152, 156 is still in a generally molten form, before further forming and cooling of the tape 152, 156 occurs.
In some embodiments, a sensing element 500 may be embedded in a tape 152, 156 or, if the tape is being formed into a rods 750, a preform 614, such that the sensing element 500 bonds to the tape 152, 156 or preform 614 material, such as to the resin thereof. In other embodiments, the sensing element 500 may be unbonded from the tape 152, 156 or preform 614, such that the sensing element 500 can generally move independently within the tape 158, preform 614 or resulting rod 750 (discussed below). Various methods and apparatus may be utilized to embed sensing elements 500 such that they are bonded or unbonded, as desired per application of the resulting tape 158 or rod 750.
For example,
In some exemplary embodiments, a sensing element 500 may be a continuous fiber or cable. Alternatively, however, discrete sensing elements 500 that are not continuous may be individually embedded in the tape 152, 158. Further, in some exemplary embodiments wherein a plurality of sensing elements 500 are embedded, the sensing elements 500 may be generally unidirectional.
Further, sensing elements 500 may be embedded separately, as single elements, such as single fibers or cables, or alternatively may be embedded in bundles of sensing elements 500. Still further, the one or more sensing elements 500 may be assembled in a tube, which may for example be formed from a suitable metal or polymer material. The tube with the sensing element(s) embedded therein may be embedded as discussed herein.
A relatively high percentage of fibers may be employed in a tape, and CFRT material thereof, to provide enhanced strength properties. For instance, fibers typically constitute from about 25 wt. % to about 90 wt. %, in some embodiments from about 30 wt. % to about 75 wt. %, and in some embodiments, from about 35 wt. % to about 70 wt. % of the tape or material thereof. Likewise, polymer(s) typically constitute from about 20 wt % to about 75 wt. %, in some embodiments from about 25 wt. % to about 70 wt. %, and in some embodiments, from about 30 wt. % to about 65 wt. % of the tape 158. Such percentage of fibers may additionally or alternatively by measured as a volume fraction. For example, in some embodiments, the CFRT material may have a fiber volume fraction between approximately 25% and approximately 80%, in some embodiments between approximately 30% and approximately 70%, in some embodiments between approximately 40% and approximately 60%, and in some embodiments between approximately 45% and approximately 55%.
Embedding of a sensing element 500 in a CFRT material, such as in a tape 152, 156 as discussed above, may thus provide a composite tape 158. In some embodiments, the composite tape 158 may then be utilized as a tape in a particular application. The tape 158 may be cooled and stored for later use in such application, or may be immediately utilized in such application. A tape 158 in exemplary embodiments may be used in various applications by, for example, wrapping the tape 158 around a core material to reinforce the core material, such as illustrated in
Alternatively, a tape 152, 156, 158 may be formed into a rod. Any suitable processes and apparatus may be utilized to form a tape 152, 156, 158 into a rod 750. The specific manner in which rovings and tapes 152, 156, 158 are shaped may be carefully controlled to ensure that rods 750 can be formed with an adequate degree of compression and strength properties. Referring to
The tapes 152, 156, 158 may be heated in an oven 645 before entering a consolidation die. Heating may be conducted using any known type of oven, as in an infrared oven, convection oven, etc. During heating, the fibers in the tapes are unidirectionally oriented to optimize the exposure to the heat and maintain even heat across the entire tape. The temperature to which the tapes 152, 156, 158 are heated is generally high enough to soften the thermoplastic polymer to an extent that the tapes can bond together. However, the temperature is not so high as to destroy the integrity of the material. The temperature may, for example, range from about 100° C. to about 500° C., in some embodiments from about 200° C. to about 400° C., and in some embodiments, from about 250° C. to about 350° C. In one particular embodiment, for example, polyphenylene sulfide (“PPS”) is used as the polymer, and the tapes are heated to or above the melting point of PPS, which is about 285° C.
Upon being heated, the tapes 152, 156, 158 are provided to a consolidation die 650 that compresses them together into a preform 614, as well as aligns and forms the initial shape of the rod. As shown generally in
The desired heating, compression, and shaping of the tapes 152, 156, 158 may be accomplished through the use of a die 650 having one or multiple sections. For instance, although not shown in detail in
If desired, a second die 660 (e.g., calibration die) may also be employed that compresses the preform 614 into the final shape of the rod. When employed, it is sometimes desired that the preform 614 is allowed to cool briefly after exiting the consolidation die 650 and before entering the optional second die 660. This allows the consolidated preform 614 to retain its initial shape before progressing further through the system. Typically, cooling reduces the temperature of the exterior of the rod below the melting point temperature of the thermoplastic matrix to minimize and substantially prevent the occurrence of melt fracture on the exterior surface of the rod. The internal section of the rod, however, may remain molten to ensure compression when the rod enters the calibration die body. Such cooling may be accomplished by simply exposing the preform 614 to the ambient atmosphere (e.g., room temperature) or through the use of active cooling techniques (e.g., water bath or air cooling) as is known in the art. In one embodiment, for example, air is blown onto the preform 614 (e.g., with an air ring). The cooling between these stages, however, generally occurs over a small period of time to ensure that the preform 614 is still soft enough to be further shaped. For example, after exiting the consolidation die 650, the preform 614 may be exposed to the ambient environment for only from about 1 to about 20 seconds, and in some embodiments, from about 2 to about 10 seconds, before entering the second die 660. Within the die 660, the preform is generally kept at a temperature below the melting point of the thermoplastic matrix used in the ribbon so that the shape of the rod can be maintained. Although referred to above as single dies, it should be understood that the dies 650 and 660 may in fact be formed from multiple individual dies (e.g., face plate dies).
Thus, in some embodiments, multiple individual dies 660 may be utilized to gradually shape the material into the desired configuration. The dies 660 are placed in series, and provide for gradual decreases in the dimensions of the material. Such gradual decreases allow for shrinkage during and between the various steps.
For example, as shown in
In further embodiments, the cross-sectional area of an inlet 662 and the cross-sectional area of a corresponding outlet 664 of the first die 660 may have a ratio in a range between approximately 1.5 to 1 and 6 to 1.
The first die 660 thus provides a generally smooth transformation of polymer impregnated fiber material to a shape that is relatively similar to a final shape of the resulting rod, which in exemplary embodiments has a circular or oval shaped cross-section. Subsequent dies, such as a second die 660 and third die 660 as shown in
In further exemplary embodiments, dies 660 having relatively long land lengths 669 may be desired, due to for example desires for proper cooling and solidification, which are critical in achieving a desired rod shape and size. Relatively long and lengths 669 reduce stresses and provide smooth transformations to desired shapes and sizes, and with minimal void fraction and bow characteristics. In some embodiments, for example, a ratio of land length 669 at an outlet 664 to major axis length 666 at the outlet 664 for a die 660 may be in the range between approximately 0 and approximately 20, such as between approximately 2 and approximately 6.
The use of calibration dies 660 according to the present disclosure provides for gradual changes in material cross-section, as discussed. These gradual changes may in exemplary embodiments ensure that the resulting product, such as a rod or other suitable product, has a generally uniform fiber distribution with relatively minimal void fraction.
It should be understood that any suitable number of dies 660 may be utilized to gradually form the material into a profile having any suitable cross-sectional shape, as desired or required by various applications.
As discussed above, a sensing element 500 may be embedded in a tape 152, 156 or, if the tape is being formed into a rods 750, a preform 614, in a bonded or unbonded state. Further embodiments are illustrated in, for example,
In another embodiment, as shown in
In another embodiment, as shown in
In another embodiment, as shown in
A sensing element 500 can be embedded in a tape 152, 156 to form a tape 158, or embedded in a preform 614, in a bonded or unbonded state using any of the above disclosed methods and apparatus. Additionally or alternatively, to facilitate a bonded or unbonded state, the temperature of the sensing element 500 relative to the tape 152, 156 or preform 614 may be a critical factor, as well as the use of a capping layer for the sensing element 500. For example, with respect to temperature, in embodiments wherein bonding is desired, the sensing element 500 and/or capping layer thereof may be heated such that the sensing element 500 and/or capping layer is at a temperature at or above the temperature of the resin in the tape 152, 156 or preform 614 during embedding thereof. In embodiments wherein bonding is not desired, and an unbonded state is instead preferred, the sensing element 500 and/or capping layer thereof may be heated (or not heated) such that the sensing element 500 and/or capping layer is at a temperature below the temperature of the resin in the tape 152, 156 or preform 614 during embedding thereof.
Further, in some embodiments, a capping layer 502 may be provided on a sensing element 500, and may thus generally surround the sensing element 500. The capping layer 502 may facilitate bonding of the capping layer 502 to the tape 152, 156 or preform 614, or alternatively may facilitate non-bonding of the capping layer 502 to the tape 152, 156, as desired. For example, if bonding is desired, a suitable thermoplastic material, which may be identical to the resin thermoplastic material of the tape 152, 156 or preform 614 or have good bonding qualities with the resin material, may be utilized as a capping layer 502. If bonding is not desired, a suitable thermoplastic material, which may not have good bonding qualities with and may thus be dissimilar from the resin material, may be utilized. Alternatively, if bonding is not desired, a suitable lubricant may be included in the capping layer.
In addition to the use of one or more dies, other mechanisms may also be employed to help compress the preform 614 into the shape of a rod 750. For example, forming rollers 690, as shown in
The rollers 690 in exemplary embodiments, such as at least the portions contacting the material, may have generally smooth surfaces. For example, relatively hard, polished surfaces are desired in many embodiments. For example, the surface of the rollers may be formed from a relatively smooth chrome or other suitable material. This allows the rollers 690 to manipulate the preform 614 without damaging or undesirably altering the preform 614. For example, such surfaces may prevent the material from sticking to the rollers, and the rollers may impart smooth surfaces onto the materials.
In some embodiments, the temperature of the rollers 690 is controlled. This may be accomplished by heating of the rollers 690 themselves, or by placing the rollers 690 in a temperature controlled environment.
Further, in some embodiments, surface features 692 may be provided on the rollers 690. The surface features 692 may guide and/or control the preform 614 in one or more directions as it is passed through the rollers. For example, surface features 692 may be provided to prevent the preform 614 from folding over on itself as it is passed through the rollers 690. Thus, the surface features 692 may guide and control deformation of the preform 614 in the cross-machine direction relative to the machine direction A as well as in the vertical direction relative to the machine direction A. The preform 614 may thus be pushed together in the cross-machine direction, rather than folded over on itself, as it is passed through the rollers 690 in the machine direction A.
In some embodiments, tension regulation devices may be provided in communication with the rollers. These devices may be utilized with the rollers to apply tension to the preform 614 in the machine direction, cross-machine direction, and/or vertical direction to further guide and/or control the preform.
As indicated above, the resulting rod is also applied with a capping layer to protect it from environmental conditions or to improve wear resistance. Referring again to
The capping layer is generally free of continuous fibers. That is, the capping layer contains less than about 10 wt. % of continuous fibers, in some embodiments about 5 wt. % or less of continuous fibers, and in some embodiments, about 1 wt. % or less of continuous fibers (e.g., 0 wt. %). Nevertheless, the capping layer may contain other additives for improving the final properties of the rod. Additive materials employed at this stage may include those that are not suitable for incorporating into the continuous fiber material. For instance, it may be desirable to add pigments to reduce finishing labor, or it may be desirable to add flame retardant agents to enhance the flame retarding features of the rod. Because many additive materials are heat sensitive, an excessive amount of heat may cause them to decompose and produce volatile gases. Therefore, if a heat sensitive additive material is extruded with an impregnation resin under high heating conditions, the result may be a complete degradation of the additive material. Additive materials may include, for instance, mineral reinforcing agents, lubricants, flame retardants, blowing agents, foaming agents, ultraviolet light resistant agents, thermal stabilizers, pigments, and combinations thereof. Suitable mineral reinforcing agents may include, for instance, calcium carbonate, silica, mica, clays, talc, calcium silicate, graphite, calcium silicate, alumina trihydrate, barium ferrite, and combinations thereof.
While not shown in detail herein, the capping die 672 may include various features known in the art to help achieve the desired application of the capping layer. For instance, the capping die 672 may include an entrance guide that aligns the incoming rod. The capping die may also include a heating mechanism (e.g., heated plate) that pre-heats the rod before application of the capping layer to help ensure adequate bonding. Following capping, the shaped part 615, or rod 750, is then finally cooled using a cooling system 680 as is known in the art. The cooling system 680 may, for instance, be a sizing system that includes one or more blocks (e.g., aluminum blocks) that completely encapsulate the rod while a vacuum pulls the hot shape out against its walls as it cools. A cooling medium may be supplied to the sizer, such as air or water, to solidify the rod in the correct shape.
Even if a sizing system is not employed, it is generally desired to cool the rod 750 after it exits the capping die (or the consolidation or calibration die if capping is not applied). Cooling may occur using any technique known in the art, such a water tank, cool air stream or air jet, cooling jacket, an internal cooling channel, cooling fluid circulation channels, etc. Regardless, the temperature at which the material is cooled is usually controlled to achieve optimal mechanical properties, part dimensional tolerances, good processing, and an aesthetically pleasing composite. For instance, if the temperature of the cooling station is too high, the material might swell in the tool and interrupt the process. For semi-crystalline materials, too low of a temperature can likewise cause the material to cool down too rapidly and not allow complete crystallization, thereby jeopardizing the mechanical and chemical resistance properties of the composite. Multiple cooling die sections with independent temperature control can be utilized to impart the optimal balance of processing and performance attributes. In one particular embodiment, for example, a water tank is employed that is kept at a temperature of from about 0° C. to about 30° C., in some embodiments from about 1° C. to about 20° C., and in some embodiments, from about 2° C. to about 15° C.
If desired, one or more sizing blocks (not shown) may also be employed, such as after capping. Such blocks contain openings that are cut to the exact rod shape, graduated from oversized at first to the final rod shape. As the rod passes therethrough, any tendency for it to move or sag is counteracted, and it is pushed back (repeatedly) to its correct shape. Once sized, the rod may be cut to the desired length at a cutting station (not shown), such as with a cut-off saw capable of performing cross-sectional cuts or the rod can be wound on a reel in a continuous process. The length of rod will then be limited to the length of the fiber tow.
As will be appreciated, the temperature of the rod as it advances through any section of the system of the present invention may be controlled to yield optimal manufacturing and desired final composite properties. Any or all of the assembly sections may be temperature controlled utilizing electrical cartridge heaters, circulated fluid cooling, etc., or any other temperature controlling device known to those skilled in the art.
Referring again to
The tapes 158 and rods 750 that result from use of dies and methods according to the present disclosure may have a very low void fraction, which helps enhance their strength. For instance, the void fraction may be about 5% or less, in some embodiments about 4% or less, in some embodiments about 3% or less, in some embodiments about 2% or less, in some embodiments about 1.5% or less, in some embodiments about 1% or less, and in some embodiments, about 0.5% or less. The void fraction may be measured using techniques well known to those skilled in the art. For example, the void fraction may be measured using a “resin burn off” test in which samples are placed in an oven (e.g., at 600° C. for 3 hours) to burn out the resin. The mass of the remaining fibers may then be measured to calculate the weight and volume fractions. Such “burn off” testing may be performed in accordance with ASTM D 2584-08 to determine the weights of the fibers and the polymer matrix, which may then be used to calculate the “void fraction” based on the following equations:
V
f=100*(ρt−ρc)/ρt
where,
Vf is the void fraction as a percentage;
ρc is the density of the composite as measured using known techniques, such as with a liquid or gas pycnometer (e.g., helium pycnometer);
ρt is the theoretical density of the composite as is determined by the following equation:
ρt=1/[Wt/ρf+Wm/ρm]
ρm is the density of the polymer matrix (e.g., at the appropriate crystallinity);
ρf is the density of the fibers;
Wf is the weight fraction of the fibers; and
Wm is the weight fraction of the polymer matrix.
Alternatively, the void fraction may be determined by chemically dissolving the resin in accordance with ASTM D 3171-09. The “burn off” and “dissolution” methods are particularly suitable for glass fibers, which are generally resistant to melting and chemical dissolution. In other cases, however, the void fraction may be indirectly calculated based on the densities of the polymer, fibers, tape and/or rod in accordance with ASTM D 2734-09 (Method A), where the densities may be determined ASTM D792-08 Method A. Of course, the void fraction can also be estimated using conventional microscopy equipment.
As discussed above, after exiting an impregnation die 150, 412, the CFRT material may in some embodiments form a tape 158. The number of rovings employed in each tape 158 may vary. Typically, however, a tape 158 will contain from 2 to 80 rovings, and in some embodiments from 10 to 60 rovings, and in some embodiments, from 20 to 50 rovings. In some embodiments, it may be desired that the rovings are spaced apart approximately the same distance from each other within the tape 158. In other embodiments, however, it may be desired that the rovings are combined, such that the fibers of the rovings are generally evenly distributed throughout the tape 158, such as throughout one or more resin rich portions and a fiber rich portion as discussed above. In these embodiments, the rovings may be generally indistinguishable from each other. Referring to
One embodiment of a composite rod 750 formed from the method described above is shown in more detail in
A capping layer 804 formed from capping resin 800 may also extends around the perimeter of the rod 750 and define an external surface of the rod 750. The cross-sectional thickness (“T”) of the rod 750 may be strategically selected to help achieve a particular strength. For example, the rod 750 may have a thickness (e.g., diameter) of from about 0.1 to about 40 millimeters, in some embodiments from about 0.5 to about 30 millimeters, and in some embodiments, from about 1 to about 10 millimeters. The thickness of the capping layer 804 depends on the intended function of the part, but is typically from about 0.01 to about 10 millimeters, and in some embodiments, from about 0.02 to about 5 millimeters. Regardless, the total cross-sectional thickness or height of the rod typically ranges from about of from about 0.1 to about 50 millimeters, in some embodiments from about 0.5 to about 40 millimeters, and in some embodiments, from about 1 to about 20 millimeters. While the rod 750 may be substantially continuous in length, the length of the rod is often practically limited by the spool onto which it will be wound and stored or the length of the continuous fibers. For example, the length often ranges from about 1000 to about 5000 meters, although even greater lengths are certainly possible.
Through use of apparatus and methods according to the present disclosure and control over the various parameters mentioned above, tapes and rods having a very high strength may be formed. For example, the rods may exhibit a relatively high flexural modulus. The term “flexural modulus” generally refers to the ratio of stress to strain in flexural deformation (units of force per area), or the tendency for a material to bend. It is determined from the slope of a stress-strain curve produced by a “three point flexural” test (such as ASTM D790-10, Procedure A), typically at room temperature. For example, the rod of the present invention may exhibit a flexural modulus of from about 10 Gigapascals (“GPa”) or more, in some embodiments from about 12 to about 400 GPa, in some embodiments from about 15 to about 200 GPa, and in some embodiments, from about 20 to about 150 GPa. Furthermore, the ultimate tensile strength may be about 300 Megapascals (“MPa”) or more, in some embodiments from about 400 MPa to about 5,000 MPa, and in some embodiments, from about 500 MPa to about 3,500 MPa. The term “ultimate tensile strength” generally refers to the maximum stress that a material can withstand while being stretched or pulled before necking and is the maximum stress reached on a stress-strain curve produced by a tensile test (such as ASTM D3916-08) at room temperature. The tensile modulus of elasticity may also be about 50 GPa or more, in some embodiments from about 70 GPa to about 500 GPa, and in some embodiments, from about 100 GPa to about 300 GPa. The term “tensile modulus of elasticity” generally refers to the ratio of tensile stress over tensile strain and is the slope of a stress-strain curve produced by a tensile test (such as ASTM 3916-08) at room temperature. Notably, the strength properties of the composite rod referenced above may also be maintained over a relatively wide temperature range, such as from about −40° C. to about 300° C., and particularly from about 180° C. to 200° C.
Rods made according to the present disclosure may further have relatively high flexural fatigue life, and may exhibit relatively high residual strength. Flexural fatigue life and residual flexural strength may be determined based on a “three point flexural fatigue” test (such as ASTM D790, typically at room temperature. For example, the rods of the present invention may exhibit residual flexural strength after one million cycles at 160 Newtons (“N”) or 180 N loads of from about 60 kilograms per square inch (“ksi”) to about 115 ksi, in some embodiments about 70 ksi to about 115 ksi, and in some embodiments about 95 ksi to about 115 ksi. Further, the rods may exhibit relatively minimal reductions in flexural strength. For example, rods having void fractions of about 4% or less, in some embodiments about 3% or less, may exhibit reductions in flexural strength after three point flexural fatigue testing of about 1% (for example, from a maximum pristine flexural strength of about 106 ksi to a maximum residual flexural strength of about 105 ksi). Flexural strength may be tested before and after fatigue testing using, for example, a three point flexural test as discussed above.
The linear thermal expansion coefficient of the composite rod may be, on a ppm basis per ° C., less than about 5, less than about 4, less than about 3, or less than about 2. For instance, the coefficient (ppm/° C.) may be in a range from about −0.25 to about 5; alternatively, from about −0.17 to about 4; alternatively, from about −0.17 to about 3; alternatively, from about −0.17 to about 2; or alternatively, from about 0.29 to about 1.18. The temperature range contemplated for this linear thermal expansion coefficient may be generally in the −50° C. to 200° C. range, the 0° C. to 200° C. range, the 0° C. to 175° C. range, or the 25° C. to 150° C. range. The linear thermal expansion coefficient is measured in the longitudinal direction. i.e., along the length of the fibers.
The composite rod may also exhibit a relatively small “bend radius”, which is the minimum radius that the rod can be bent without breaking and is measured to the inside curvature of the rod. A smaller bend radius means that the rod is more flexible and can be spooled onto a smaller diameter bobbin. This property also makes the rod easier to implement in processes that currently use metal rods. Due to the improved process and resulting rod of the present invention, bend radiuses may be achieved that are less than about 40 times the outer diameter of the rod, in some embodiments from about 1 to about 30 times the outer diameter of the rod, and in some embodiments, from about 2 to about 25 times the outer diameter of the rod, determined at a temperature of about 25° C. For instance, the bend radius may be less than about 15 centimeters, in some embodiments from about 0.5 to about 10 centimeters, and in some embodiments, from about 1 to about 6 centimeters, determined at a temperature of about 25° C.
These and other modifications and variations of the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.
The present application claims filing benefit of U.S. Provisional Patent Application Ser. No. 61/841,963 having a filing date of Jul. 2, 2013, and which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61841963 | Jul 2013 | US |