The present invention relates to a composite tooth intended to equip a machine for working the ground or rocks. It relates in particular to a tooth having a metal matrix reinforced by particles of titanium carbide.
The expression “tooth” should be interpreted in the broad sense and comprises any element of any dimension, having a pointed or flat shape, intended in particular to work the ground, the bottom of rivers or seas, rocks, in the open or in mines.
Few means are known for modifying the hardness and impact resistance of a foundry alloy in depth “in the mass.” The known means generally concern surface modifications at a small depth (a few mm). For teeth made in foundries, the reinforcement elements must be present in depth in order to withstand significant and simultaneous localized stresses in terms of mechanical stresses, wear and impact, and also because a tooth is used over a large portion of its length.
Recharging the teeth with metal carbides (Technosphere®-Technogenia) by oxyacetylenic welding is well-known. Such recharging allows to deposit a layer of carbide of a thickness of several millimeters on the surface of a tooth. Such reinforcement is however not integrated into the metal matrix of the tooth and does not guarantee the same performance as a tooth where a carbide reinforcement is completely incorporated into the mass of the metal matrix.
Document EP 1 450 973 B1 describes a reinforcement of the wear parts made by placing, in the mold intended to receive the cast metal, an insert formed by reactive powders that react with each other thanks to the heat provided by the metal during casting at a very high temperature (>1400° C.). After a reaction of the SHS type, the powders of the reactive insert will create a relatively uniform porous cluster (conglomerate) of hard particles; once formed, this porous cluster will be immediately infiltrated by the cast metal at a high temperature. The reaction of the powders is exothermic and self-propagating, which allows a synthesis of the carbides at a high temperature and considerably increases the wettability of the porous cluster by the infiltration metal.
Document U.S. Pat. No. 5,081,774 discloses different ways of positioning, in a flat tooth, inserts made from chromium cast iron intended to increase the performance thereof. But it is known that the limitations of such a technique are on one hand the large mass of the reinforcement, which tends to make the part brittle, and on the other hand the insufficient bond (welding) between the inserts and the base metal of the part.
Document U.S. Pat. No. 5,337,801 (Materkowski) discloses another method for depositing hard particles of tungsten carbide on the working surface of the teeth. In this case steel inserts containing hard particles are first prepared; those inserts are then positioned in the mold, then are incorporated into the cast base metal to make the part. This procedure is long and costly, does not exclude a possible reaction between the tungsten carbide and the metal of the inserts and does not always guarantee perfect welding of the hard particles to the base metal.
The present invention discloses a composite tooth for a tool for working the ground or rock, in particular for excavation or sludging tools, with an improved resistance to wear while also maintaining a good resistance to impacts. This property is obtained by a composite reinforcement structure specifically designed for this application, a material which at a millimetric scale alternates areas which are dense with fine micrometric globular particles of metal carbides with areas which are practically free of them within the metal matrix of the tooth.
The present invention also proposes a method for obtaining said reinforcement structure.
The present invention provides for a composite tooth for working the ground or rocks, the tooth comprising a ferrous alloy reinforced at least partially with titanium carbide according to a defined geometry, in which the reinforced portion comprises an alternating macro-microstructure of millimetric areas concentrated with micrometric globular particles of titanium carbide separated by millimetric areas essentially free of micrometric globular particles of titanium carbide. The areas are concentrated with micrometric globular particles of titanium carbide forming a microstructure in which the micrometric interstices between the globular particles are also filled by the ferrous alloy.
According to particular embodiments of the invention, the composite tooth comprises at least one or one suitable combination of the following features:
The present invention also discloses a method for manufacturing the composite tooth according to any of claims 1 to 9 comprising the following steps:
According to particular embodiments of the invention, the method comprises at least one or one suitable combination of the following features:
The present invention also discloses a composite tooth obtained according to the method of any of claims 11 to 13.
a and 1b show a three-dimensional view of teeth without reinforcement according to the state of the art.
c to 1h show a three-dimensional view of teeth with reinforcement according to the invention.
a-3h illustrate the method for manufacturing the tooth represented in
step 3a shows the device for mixing the titanium and carbon powders;
step 3b shows the compaction of the powders between two rolls followed by crushing and sifting with recycling of the too fine particles;
c shows a sand mold in which a barrier is placed for containing the granules of powder compacted at the location of the reinforcement of the tooth of the type 1d;
d shows an enlargement of the reinforcement area in which the compacted granules comprising the reagents precursor of TiC are located;
step 3e shows the casting of the ferrous alloy into the mold;
f shows the tooth of the type 1b which is the result of the casting;
g shows an enlargement of the areas with a high concentration of TiC nodules—this diagram illustrates the same areas as in
h shows an enlargement within a same area with a high concentration of TiC globules—the micrometric globules are individually surrounded by the cast metal.
In materials science, a SHS reaction or <<Self-propagating High temperature Synthesis>> is a self-propagating high temperature synthesis where reaction temperatures generally above 1,500° C., or even 2,000° C. are reached. For example, the reaction between titanium powder and carbon powder in order to obtain titanium carbide TiC is strongly exothermic. Only a little energy is needed for locally initiating the reaction. Then, the reaction will spontaneously propagate to the totality of the mixture of the reagents by means of the high temperatures reached. After initiation of the reaction, a reaction front develops which thus propagates spontaneously (self-propagating) and which allows titanium carbide to be obtained from titanium and carbon. The thereby obtained titanium carbide is said to be <<obtained in situ>> because it does not stem from the cast ferrous alloy.
The mixtures of reagent powders comprise carbon powder and titanium powder and are compressed into plates and then crushed in order to obtain granules, the size of which varies from 1 to 12 mm, preferably from 1 to 6 mm, and more preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed to between 55 and 95% of the theoretical density. These granules allow an easy use/handling (see
These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of
The composite tooth for working the ground or rocks according to the present invention has a reinforcement macro-microstructure which may further be called an alternating structure of areas concentrated with globular micrometric particles of titanium carbide separated by areas which are practically free of them. Such a structure is obtained by the reaction in the mold 15 of the granules comprising a mixture of carbon and titanium powders. This reaction is initiated by the casting heat of the cast iron or the steel used for casting the whole part and therefore both the non-reinforced portion and the reinforced portion (see
This high temperature synthesis (SHS) allows an easy infiltration of all the millimetric and micrometric interstices by the cast iron or cast steel (
Once these granules have reacted according to an SHS reaction, the reinforcement areas where these granules were located show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules), the micrometric interstices 3 of which have also been infiltrated by the cast metal which here is cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as the one which forms the non-reinforced portion of the tooth; this allows total freedom in the selection of the cast metal. In the finally obtained tooth, the reinforcement areas with a high concentration of titanium carbide consist of micrometric globular TiC particles in a significant percentage (between about 35 and about 70% by volume) and of the infiltration ferrous alloy.
By micrometric globular particles it is meant globally spheroidal particles which have a size ranging from 1 μm to a few tens of μm at the very most, the large majority of these particles having a size of less than 50 μm, and even less than 20 μm, or even 10 μm. We also call them TiC globules. This globular shape is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see
Obtaining Granules (Ti+C Version) for Reinforcing the Tooth
The method for obtaining the granules is illustrated in
The compaction level of the strips depends on the applied pressure (in Pa) on the rolls (diameter 200 mm, width 30 mm). For a low compaction level, of the order of 106 Pa, a density on the strips of the order of 55% of the theoretical density is obtained. After passing through the rolls 10 in order to compress this material, the apparent density of the granules is 3.75×0.55, i.e. 2.06 g/cm3.
For a high compaction level, of the order of 25.106 Pa, a density on the strips of 90% of the theoretical density is obtained, i.e. an apparent density of 3.38 g/cm3. In practice, it is possible to attain up to 95% of the theoretical density.
Therefore, the granules obtained from the raw material Ti+C are porous. This porosity varies from 5% for very highly compressed granules to 45% for slightly compressed granules.
In addition to the compaction level, it is also possible to adjust the grain size distribution of the granules as well as their shape during the operation of crushing the strips and sifting the Ti+C granules. The non-desired grain size fractions are recycled at will (see
Making of the Reinforcement Area in the Composite Tooth According to the Invention
The granules are made as described above. In order to obtain a three-dimensional structure or a superstructure/macro-microstructure with these granules, they are positioned in the areas of the mold where it is desired to reinforce the part. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container or by any other means (barrier 16). The bulk density of the stack of the Ti+C granules is measured according to the ISO 697 standard and depends on the compaction level of the strips, on the grain size distribution of the granules and on the method for crushing the strips, which influences the shape of the granules.
The bulk density of these Ti+C granules is generally of the order of 0.9 g/cm3 to 2.5 g/cm3 depending on the compaction level of these granules and on the density of the stack.
Before reaction, there is therefore a stack of porous granules consisting of a mixture of titanium powder and carbon powder.
During the reaction Ti+C→TiC, a volume contraction of the order of 24% occurs, upon passing from the reagent to the product (a contraction originating from the density difference between the reagents and the products). Thus, the theoretical density of the Ti+C mixture is 3.75 g/cm3 and the theoretical density of TiC is 4.93 g/cm3. In the final product, after the reaction for obtaining TiC, the cast metal will infiltrate:
In the examples which follow, the following raw materials were used:
In this example, the aim is to make a tooth, the reinforced areas of which comprise a global volume percentage of TiC of about 42%. For this purpose, a strip is made by compaction to 85% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 2.1 g/cm3 is obtained (35% of space between the granules+15% of porosity in the granules).
The granules are positioned in the mold at the location of the portion to be reinforced which thus comprises 65% by volume of porous granules. A cast iron with chromium (3% C, 25% Cr) is then cast at about 1500° C. in a non-preheated sand mold. The reaction between the Ti and the C is initiated by the heat of the cast iron. This casting is carried out without any protective atmosphere. After reaction, in the reinforced portion, 65% by volume of areas with a high concentration of about 65% of globular titanium carbide are obtained, i.e. 42% by the global volume of TiC in the reinforced portion of the tooth.
In this example, the aim is to make a tooth, the reinforced areas of which comprise a global volume percentage of TiC of about 30%. For this purpose, a strip is made by compaction to 70% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 1.4 g/cm3 is obtained (45% of space between the granules+30% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 55% by volume of porous granules. After reaction, in the reinforced portion, 55% by volume of areas with a high concentration of about 53% of globular titanium carbide are obtained, i.e. about 30% by the global volume of TiC in the reinforced portion of the tooth.
In this example, the aim is to make a tooth, the reinforced areas of which comprise a global volume percentage of TiC of about 20%. For this purpose, a strip is made by compaction to 60% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between 1 and 6 mm. A bulk density of the order of 1.0 g/cm3 is obtained (55% of space between the granules+40% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 45% by volume of porous granules. After reaction, in the reinforced portion, 45% by volume of areas concentrated to about 45% of globular titanium carbide are obtained, i.e. 20% by the global volume of TiC in the reinforced portion of the tooth.
In this example, it was sought to attenuate the intensity of the reaction between the carbon and the titanium by adding a ferrous alloy as a powder therein. Like in Example 2, the aim is to make a tooth, the reinforced areas of which comprise a global volume percentage of TiC of about 30%. For this purpose, a strip is made by compaction to 85% of the theoretical density of a mixture of 15% C, 63% Ti and 22% Fe by weight. After crushing, the granules are sifted so as to attain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 2 g/cm3 is obtained (45% of space between the granules+15% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 55% by volume of porous granules. After reaction, in the reinforced portion, 55% by volume of areas with a high concentration of about 55% of globular titanium carbide are obtained, i.e. 30% by volume of the global titanium carbide in the reinforced macro-microstructure of the tooth.
The following tables show the numerous possible combinations.
29.6
29.3
29.1
This table shows that with a compaction level ranging from 55 to 95% for the strips and therefore the granules, it is possible to perform granule filling levels in the reinforced portion of the tooth ranging from 45% to 70% by volume (ratio between the total volume of the granules and the volume of their confinement). Thus, in order to obtain a global TiC concentration in the reinforced portion of about 29% by volume (in bold characters in the table), it is possible to proceed with different combinations such as for example 60% compaction and 65% filling, or 70% compaction and 55% filling, or further 85% compaction and 45% filling. In order to obtain granule filling levels in the reinforced portion ranging up to 70% by volume, it is mandatory to apply a vibration in order to pack the granules. In this case, the ISO 697 standard for measuring the filling level is no longer applicable and the amount of material in a given volume is measured.
Here, we have represented the density of the granules according to their compaction level and the volume percent of TiC obtained after reaction and therefore contraction of about 24% by volume was inferred therefrom. Granules compacted to 95% of their theoretical density therefore allow to obtain after reaction a concentration of 72.2% by volume of TiC.
In practice, these tables are used as abacuses by the user of this technology, who sets a global TiC percentage to be obtained in the reinforced portion of the tooth and who, depending on this, determines the filling level and the compaction of the granules which he/she will use. The same tables were produced for a mixture of Ti+C+Fe powders.
Ti+0.98 C+Fe
Here, the inventor aimed at a mixture allowing to obtain 15% by volume of iron after reaction. The mixture proportion which was used is:
100 g Ti+24.5 g C+35.2 g Fe
By iron powder it is meant: pure iron or an iron alloy.
Theoretical density of the mixture: 4.25 g/cm3
Volume shrinkage during the reaction: 21%
25.9
26.2
25.9
25.7
Again, in order to obtain a global TiC concentration in the reinforced portion of about 26% by volume (in bold characters in the table), it is possible to proceed with different combinations such as for example 55% compaction and 70% filling, or 60% compaction and 65% filling, or 70% compaction and 55% filling, or further 85% compaction and 45% filling.
Advantages
The present invention has the following advantages in comparison with the state of the art in general:
Better Resistance to Impacts
With the present method, porous millimetric granules are obtained which are embedded into the infiltration metal alloy. These millimetric granules themselves consist of microscopic particles of TiC with a globular tendency also embedded into the infiltration metal alloy. This system allows to obtain a tooth with a reinforcement area comprising a macrostructure within which there is an identical microstructure at a scale which is about a thousand times smaller.
The fact that the reinforcement area of the tooth comprises small hard globular particles of titanium carbide finely dispersed in a metal matrix surrounding them allows to avoid the formation and propagation of cracks (see
The cracks generally originate at the most brittle locations, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric TiC particle, the propagation of this crack is then hindered by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the ceramic TiC particle. The crack needs more energy for passing from one particle to another, for crossing the micrometric spaces which exist between the particles.
Maximum Flexibility for the Application Parameters
In addition to the compaction level of the granules, two parameters may be varied, which are the grain size fraction and the shape of the granules, and therefore their bulk density. On the other hand, in a reinforcement technique with inserts, only the compaction level of the latter can be varied within a limited range. As regards the desired shape to be given to the reinforcement, taking into account the design of the tooth and the location where reinforcement is desired, the use of granules allows further possibilities and adaptation.
Advantages as Regards Manufacturing
The use of a stack of porous granules as a reinforcement has certain advantages as regards manufacturing:
The expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (expansion coefficient of TiC: 7.5 10−6/K and of the ferrous alloy: about 12.0 10−6/K). This difference in expansion coefficients has the consequence of generating stresses in the material during the solidification phase and also during the heat treatment. If these stresses are too significant, cracks may appear in the part and lead to its reject. In the present invention a small proportion of TiC reinforcement is used (less than 50% by volume), which causes less stresses in the part. Further, the presence of a more ductile matrix between the micrometric globular TiC particles in the alternating areas of low and high concentration allows to better handle possible local stresses.
Excellent Maintenance of the Reinforcement in the Tooth
In the present invention, the frontier between the reinforced portion and the non-reinforced portion of the tooth is not abrupt since there is a continuity of the metal matrix between the reinforced portion and the non-reinforced portion, which allows to protect it against a complete detachment of the reinforcement.
Test Results
The advantages of the tooth according to the present invention in comparison with non-composite teeth are an improved resistance to wear in the order of 300%. In more detail, and depending on the test conditions (sludging), it was possible to observe the following performances (expressed in lifetime of the tooth for a given work volume) for products made according to the invention (reinforcement of the
Number | Date | Country | Kind |
---|---|---|---|
2008/0518 | Sep 2008 | BE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/060978 | 8/26/2009 | WO | 00 | 5/31/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/031660 | 3/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5081774 | Kuwano | Jan 1992 | A |
5337801 | Materkowski | Aug 1994 | A |
5720830 | Wragg et al. | Feb 1998 | A |
6139658 | Davies et al. | Oct 2000 | A |
6607782 | Malshe et al. | Aug 2003 | B1 |
7780798 | Stinson et al. | Aug 2010 | B2 |
7842119 | Muramatsu et al. | Nov 2010 | B2 |
Number | Date | Country |
---|---|---|
1450973 | Sep 2002 | EP |
Entry |
---|
K. Das, A Review on the various synthesis routes of TiC reinforced ferrous based composites, online publication, 2002, 11 pages, pp. 3881-3892 , Journal of Materials Science 37 (2002) 3881-3892. |
Number | Date | Country | |
---|---|---|---|
20110225856 A1 | Sep 2011 | US |