Composite tubing

Abstract
The present disclosure is directed to embodiments of composite tubing having properties tailored to meet a wide variety of environmental and working conditions. Composite tubes disclosed herein may include one or more of the following layers: a internal liner, a composite layer, a thermal insulation layer, a crush resistant layer, a permeation barrier, buoyancy control layer, a pressure barrier layer, and a wear resistant layer. Grooves may be provided in one or more layers of the composite tube to provide increased axial permeability to the composite tube. A venting system, including vent paths, may be provided in the composite tube to vent fluid that may become trapped within the wall of the composite tube.
Description
BACKGROUND

Composite tubing is becoming an increasingly popular alternative to conventional steel tubing. Composite tubing provides improved mechanical properties, greater chemical and corrosion resistance, and longer service life than conventional steel tubing. As composite tubing is introduced into service in different operations, for example as line pipe, as down-hole well pipe, or as sub-sea pipe for the oil and gas industries, the composite tubing is faced with a range of environmental and working conditions, some of which may affect the performance of composite tubing. For example, composite tubing may be exposed to extreme temperatures and pressures, may be utilized to transport highly corrosive fluids and gases under high pressures, and may be subjected to high stresses and strains due to repeated spooling and un-spooling from a reel.


SUMMARY

The present disclosure is directed to embodiments of composite tubing having properties tailored to meet a wide variety of environmental and working conditions. The composite tubing disclosed herein may be continuous, corrosion and fatigue resistant, and lightweight, allowing the composite tubing to be repeatedly spooled and un-spooled on a reel and making the composite tubing particularly suited for use in the oil and gas industry to transport fluids or perform other operations traditionally carried out with steel tubing.


In accordance with one exemplary embodiment, a composite tube includes a substantially fluid impervious layer, a composite layer of fibers embedded in a matrix, and a thermal insulation layer for maintaining the temperature of fluid carried by the composite tube within a predetermined temperature range. The thermal insulation layer may be disposed at any point throughout the cross-section of the composite tube. For example, the thermal insulation layer can be disposed between the liner and the composite layer. The thermal insulation layer may extend along the entire length of the composite tube or may be disposed along one or more discrete lengths of the composite tube.


Materials for the thermal insulation layer are selected based on thermal properties sufficient to maintain the fluid within the desired temperature range and are further selected to withstand external forces that may be applied to the composite tube as a result of, for example, spooling, deployment, or external pressure. Suitable materials for the thermal insulation layer may include, for example, syntactic foams, foamed thermoset or thermoplastic materials such as epoxy, urethane, phenolic, vinylester, polyester, polypropylene, polyethylene, polyvinylchlorides, nylons, thermoplastic or thermoset materials filled with particles (such as glass, plastic, micro-spheres, ceramics), filled rubber, aerogels, or other elastic materials, or composites of these materials.


In accordance with another exemplary embodiment, a composite tube includes a substantially fluid impervious layer, a composite layer of fibers embedded in a matrix, and a crush resistant layer for increasing the hoop strength of the composite tube. The crush resistant layer may be disposed at any point throughout the cross-section of the composite tube and may extend along the entire length of the composite tube or may be disposed along one or more discrete lengths of the composite tube. The crush resistant layer may be bonded or unbonded to adjacent layers. The crush resistant layer may be a layer of thermoplastic, thermoset material, metal or other material having sufficient strength in the radial direction to increase the hoop strength of the composite tube and, thereby, provide increased crush or collapse resistance to the composite tube. The crush resistant layer may have a hoop strength greater than the hoop strength of the substantially fluid impervious layer and the hoop strength of the composite layer.


In one embodiment, the crush resistant layer may be layer of flexible corrugated tubing interposed, for example, between the composite layer and a pressure barrier layer external to the composite layer. The corrugated tubing may include a plurality of alternating parallel ridges and grooves. The corrugated tubing may be oriented such that the ridges and grooves are oriented at 0 degrees (i.e., parallel) to the longitudinal axis, at 90 degrees (i.e., perpendicular) to the longitudinal axis, or at any other angle (helical) relative to the longitudinal axis. In another embodiment, the crush resistant layer may be a plurality of discrete rings spaced along the length of the composite tube and interposed, for example, between the interior liner and the composite layer. In a further embodiment, the crush resistant layer may be a coiled spring interposed, for example, between the composite layer and a pressure barrier layer external to the composite layer.


In accordance with another exemplary embodiment, a composite tube includes an internal, fluid impervious liner, a composite layer of fibers embedded in a matrix surrounding and bonded to the internal liner and an external layer disposed exterior to the composite layer. The external layer may comprise at least one longitudinal section that is free to move longitudinally relative to the composite layer during bending of the composite tube. The external layer may be, for example, a wear resistant layer, a pressure barrier layer, another composite layer, a thermal insulation layer, a permeation barrier, or a buoyancy control layer. Bonding of the interior liner to the composite layer inhibits the separation of the layers during spooling or deployment due to shear forces on the composite tube. The interior layer may be chemically and/or mechanically bonded to the composite layer. In one embodiment, at least one longitudinal section of the external layer may be unbonded to the composite layer to permit the longitudinal section to move longitudinally relative to the composite layer during bending of the composite tube. The external layer is may be unbonded to the composite layer to reduce manufacturing costs for the composite tube as well as to increase the flexibility of the composite tube during spooling.


In accordance with another exemplary embodiment, a composite tube includes an internal liner and a composite layer of fibers embedded in a matrix surrounding at least a portion of the internal liner. The internal liner may include a substantially fluid impervious inner layer and a permeation barrier. The permeation barrier operates to inhibit the permeation of fluids, particularly gases under pressure, through the internal liner. For example, the permeation barrier may have a permeability of less than 1×10−10 (cm3)/cm per sec-cm2-bar, preferably, less than 1×10−12 (cm3)/cm per sec-cm2-bar. The permeation barrier may extend along the entire length of the composite tube or may be disposed along one or more discrete lengths of the composite tube.


The permeation barrier can be constructed from any metal, metal alloy, or combinations of metals suitable for use in composite tubing. For example, the metal or metals may be selected to withstand the external forces applied to the composite tube as a result of spooling, deployment, or external pressure and the internal forces applied to the composite tube from a pressurized fluid carried within the composite tube. In the case of a metal permeation barrier, the permeability of the metal layer forming the permeation barrier may be less than 1×10−14 (cm3)/cm per sec-cm2-bar, and, preferably, is approximately zero (0). In addition, the metal or metals may be selected to have a melt temperature greater than the operational temperature of the composite tube. For example, composite tubing for use in the oil and gas industry may have an operational temperature of up to about 350° F.


Alternatively, the permeation barrier can be constructed from polymers, such as thermoplastics, thermosets, thermoplastic elastomers, metal-coated polymers, filled polymers, or composites thereof, having the desired permeability to inhibit fluid flow through the permeation barrier. In the case of filled polymers, fillers are added to the polymer to reduce the permeability of the polymer. Examples of such fillers include metallic fillers, clays, nano-clays, ceramic materials, fibers, silica, graphite, and gels.


In the case of a metallic permeation barrier, the metallic layer may be applied to the composite tube using a wide variety of processes, generally depending on the type of metal used and the intended operating conditions of the composite tube. For example, the metallic layer may be a metal foil that can be wrapped about the composite tube during manufacturing of the composite tube or co-formed with the inner layer of the interior liner. Alternatively, the metal foil may be applied to the composite tube using conventional coating processes such as, for example, plating, deposition, or powder coating. Alternatively, a metal foil laminated to a polymer film can be used as a permeation barrier, such as aluminum, steel, stainless steel or other alloys laminated to polyester, polypropylene, HDPE, or other polymer film. In addition, the permeation barrier may be a fusible metal having a low melt temperature that allows the metal to be applied in a liquid or semi-liquid state to the composite tube. Preferably, the fusible metal is selected to have a melt temperature less than the processing temperature of the composite tubing during manufacturing and greater than the intended operational temperature, of the composite tube. In one exemplary embodiment, the permeation barrier may be formed of the fusible metal indium or indium alloys. Exemplary indium alloys may include Ag, Pb, Sn, Bi, and/or Cd.


In certain exemplary embodiments, a composite tube may include an optional adhesive layer interposed between the inner layer and the permeation barrier to facilitate bonding of the inner layer and the permeation barrier. Materials for the adhesive layer may include any polymers or other materials suitable for bonding, chemically, mechanically and/or otherwise, to the permeation barrier and to the inner layer of the internal liner of the composite tube. Suitable materials may include, for example, contact type adhesives or liquid resin type adhesives, thermoplastics, thermosets, thermoplastic elastomers, metal-coated polymers, filled polymers, or combinations thereof. In the case of thermoplastics and thermoplastic elastomers, the adhesive layer material may have a melt temperature greater than the operational temperature of the composite tube and less than the manufacturing process temperature of the composite tube. In one exemplary embodiment, the adhesive layer comprises a layer of thermoplastic having a melt temperature of less than 350° F. In the case of thermoset materials, the adhesive layer material may have a curing temperature less than the manufacturing process temperature of the composite tube.


The composite tube may also include an optional second adhesive layer interposed between the permeation barrier and the composite layer to facilitate bonding of the composite layer to the permeation barrier. Materials for the second adhesive layer may include any polymers or other materials suitable for bonding, chemically, mechanically and/or otherwise, to the material forming the permeation barrier, e.g., metal, and to the matrix material of the composite layer of the composite tube. Suitable materials may include, for example, contact type adhesives or liquid resin type adhesives, thermoplastics, thermosets, thermoplastic elastomers, metal-coated polymers, filled polymers, or combinations thereof. In one embodiment, the material forming the second adhesive layer is chemically reactive with both the metal forming the permeation barrier and the matrix of the composite layer.


In other exemplary embodiments, the first adhesive layer and/or the second adhesive layer may be a composite of contact type adhesives or liquid resin type adhesives, thermoplastics, thermosets, thermoplastic elastomers, metal-coated polymers, and/or filled polymers.


In further exemplary embodiments, the internal liner may include multiple fluid impervious layers, multiple permeation barriers, and multiple adhesive layers. For example, one exemplary embodiment of a composite tube may include an internal liner having a substantially fluid impervious inner thermoplastic layer, a permeation barrier in the form of a metal foil layer, a first adhesive layer interposed between the inner layer and the permeation barrier, a second substantially fluid impervious layer external to the permeation barrier and a second adhesive layer interposed between the permeation barrier and the second substantially fluid impervious layer.


In accordance with another exemplary embodiment, a composite tube includes an internal liner and a composite layer of fibers embedded in a matrix surrounding at least a portion of the internal liner. The internal liner may include a substantially fluid impervious inner layer, a permeation barrier, and an optional adhesive layer interposed between the permeation barrier and the composite layer to facilitate bonding of the composite layer and the permeation barrier. The permeation barrier may operate to inhibit the permeation of fluids, particularly gases under pressure, through the internal liner. For example, the permeation barrier may have a permeability of less than 1×10−10 (cm3)/cm per sec-cm2-bar, preferably, less than 1×10−12 (cm3)/cm per sec-cm2-bar. The permeation barrier may extend along the entire length of the composite tube or may be disposed along one or more discrete lengths of the composite tube.


In accordance with a further exemplary embodiment, a composite tube includes an internal liner, a composite layer of fibers embedded in a matrix surrounding at least a portion of the internal liner, and a pressure barrier layer external to the composite layer. The pressure barrier layer may include a substantially fluid impervious inner layer and a permeation barrier. The permeation barrier operates to inhibit the permeation of fluids, particularly gases under pressure, through the pressure barrier layer. For example, the permeation barrier may have a permeability of less than 1×10−10 (cm3)/cm per sec-cm2-bar, preferably, less than 1×10−12 (cm3)/cm per sec-cm2-bar. The pressure barrier layer and the permeation barrier may extend along the entire length of the composite tube or may be disposed along one or more discrete lengths of the composite tube.


In certain exemplary embodiments, the pressure barrier layer of a composite tube may include an optional adhesive layer interposed between the inner layer and the permeation barrier to facilitate bonding of the inner layer and the permeation barrier. In other exemplary embodiments, the pressure barrier layer of a composite tube may include an optional adhesive layer interposed between the permeation barrier and another layer of the composite tube, such as an external wear resistant layer, to facilitate bonding of the permeation barrier to the additional layer. In further exemplary embodiments, the pressure barrier layer may include multiple fluid impervious layers, multiple permeation barriers, and multiple adhesive layers.


In other exemplary embodiments, the substantially fluid impervious layer of the internal liner, the substantially fluid impervious layer of the pressure barrier, and/or other layers of the composite tube may include one or more surface grooves oriented axially, i.e., generally parallel to the longitudinal axis of the composite tube, or oriented helically relative to the longitudinal axis of the composite tube. The grooves create axially or helically flow paths for fluids that may permeate into the layers of the composite tube. The flow paths formed by the grooves operate to increase the axial or helical permeability relative to the permeability through the cross-section of the composite tube. In the case of a composite tube having a generally circular cross-section, for example, the axial or helical permeability is greater than the radial permeability of the composite tube. Thus, fluid permeating through the wall of the composite tube can be vented from the composite tube through the grooves without becoming trapped within the wall of the composite tube.


In certain exemplary embodiments, a system for venting fluid from the grooves may also be provided. The system may include one or more vent paths through the layers of composite tube. For example, a vent path may be in fluid communication at one end with an axially or helically oriented groove on the interior liner and/or the pressure barrier layer and in fluid communication with the interior or the exterior of the composite tube at another end. In this manner, fluid within the grooves may be vented or otherwise discharged from within the wall of the composite tube via the vent path.


Alternatively, the system for venting fluid from the grooves may be a coupling, fitting, or other external structure attached to the composite tube. The coupling may include a vent path that is in fluid communication at one end with an axial or helically oriented groove within the internal liner or a pressure barrier layer and in fluid communication with the interior or exterior of composite tube at another end. The coupling may include a one-way check valve within the vent path to inhibit fluid flow into the grooves from the interior or exterior of the composite tube.


In other exemplary embodiments, the permeation barrier of the internal liner and/or the pressure barrier of the composite tube may include one or more holes that allow for the flow of fluid through the permeation barrier. For example, one or more holes may be provided at discrete locations along the length of composite tube to provide preferential venting of fluids across the permeation barrier.


In accordance with another exemplary embodiment, a composite tube includes an internal liner and a composite layer of fibers embedded in a matrix surrounding at least a portion of the internal liner. The composite tube may have high axial permeability relative to the permeability through the cross-section of the composite tube to allow for the axial transport of fluids that may permeate into the walls of the composite tube. For example, the axial permeability of the composite tube may be at least five times greater than the radial permeability of a composite tube having a circular cross section.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the composite tubes disclosed herein will be more fully understood by reference to the following detailed description in conjunction with the attached drawings in which like reference numerals refer to like elements through the different views. The drawings illustrate principles of the composite tubes disclosed herein and, although not to scale, show relative dimensions.



FIG. 1 is a perspective view, partially broken away, of an exemplary composite tube including an interior liner, a thermal insulation layer, and a composite layer;



FIG. 2 is a side view in cross-section of the composite tube of FIG. 1;



FIG. 3A is a side view in cross-section of another exemplary embodiment of a composite tube including a crush resistant layer disposed between the composite layer and an exterior layer;



FIG. 3B is a side view in cross-section of another exemplary embodiment of a composite tube including a crush resistant layer disposed between the interior liner and the composite layer;



FIG. 4A is a side view in cross-section of another exemplary embodiment of a composite tube including a crush resistant layer formed from a corrugated tube;



FIG. 4B is an elongated cross-sectional view of the corrugated tube of FIG. 4A;



FIG. 5 is a perspective view, partially broken away, of another exemplary embodiment of a composite tube including a crush resistant layer formed by a plurality of spaced-apart rings;



FIG. 6A is a perspective view, partially broken away, of another exemplary embodiment of a composite tube including a crush resistant layer formed by a coiled spring;



FIG. 6B is a cross-sectional view of the composite tube of FIG. 6A;



FIG. 7 is a side view in cross-section of another exemplary embodiment of a composite tube including an un-bonded external layer;



FIG. 8 is a side view in cross-section of another exemplary embodiment of a composite tube including a layer of low density material;



FIG. 9 is a perspective view, partially broken away, of an exemplary composite tube including a composite layer and an interior liner having an inner layer, a permeation barrier, and an optional adhesive layer interposed between the inner layer and the permeation barrier;



FIG. 10 is a side view in cross-section of the composite tube of FIG. 9;



FIG. 11 is a side view in cross-section of another exemplary embodiment of a composite tube including an optional second adhesive layer disposed between the composite layer and the permeation barrier;



FIG. 12 is a side view in cross-section of another exemplary embodiment of a composite tube including a composite layer and an interior liner having an inner layer, a permeation barrier, and an optional adhesive layer interposed the composite layer and the permeation barrier;



FIG. 13 is a side elevational view in cross-section of another exemplary embodiment of a composite tube including an interior liner, a composite layer, and a pressure barrier having an inner layer; a permeation barrier, and an optional adhesive layer interposed between the inner layer and the permeation barrier;



FIG. 14 is a perspective view, partially broken away, of an exemplary composite tube including a composite layer and an interior liner, illustrating axial grooves formed on the inner layer of the interior liner;



FIG. 15 is a perspective view, partially broken away, of an exemplary composite tube including a composite layer and an interior liner, illustrating helical grooves formed on the inner layer of the interior liner;



FIG. 16 is a perspective view, partially broken away, of an exemplary composite tube including a composite layer and an interior liner having an inner layer and a permeation barrier, illustrating vent holes formed in the permeation barrier of the interior liner;



FIG. 17 is a longitudinal cross-section of an exemplary composite tube including a composite layer and an interior liner having an inner layer, a permeation barrier, and an optional adhesive layer interposed between the inner layer and the permeation barrier, illustrating axial grooves formed on the inner layer of the interior liner and vent paths providing communication between the axial grooves and the interior of the composite tube; and



FIG. 18 is a longitudinal cross section of an exemplary composite tube including a composite layer and an interior liner having an inner layer, a permeation barrier, and an optional adhesive layer interposed between the inner layer and the permeation barrier, illustrating axial grooves formed on the inner layer of the interior liner and an external coupling having vent paths providing communication between the axial grooves and the interior of the composite tube.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Referring to FIGS. 1-2, an exemplary composite tube 10 constructed of an internal liner 12, a thermal insulation layer 14, and a composite layer 16 is illustrated. The composite tube 10 is generally formed along a longitudinal axis 18 and can have a variety of cross-sectional shapes, including circular, oval, rectangular, square, polygonal, and the like. The illustrated tube 10 has a circular cross-section. The composite tube 10 can generally be constructed in manner analogous to one or more of the composite tubes described in commonly owned U.S. Pat. Nos. 6,016,845, 5,921,285, 6,148,866, and U.S. Pat. No. 6,004,639 and U.S. Pat. No. 6,286,558. Each of the aforementioned patents is incorporated herein by reference.


The liner 12 may serves as a fluid containment layer and as a pressure barrier layer to resist leakage of internal fluids from the composite tube 10. In this regard, the liner 12 is preferably substantially fluid impervious to resist the leakage of internal fluid into additional layers of the composite tube 10. The liner 12 may be constructed from polymeric materials such as thermoplastics and thermoset polymers. Alternatively, the liner 12 may be constructed from elastomeric or metallic or a heat-shrinkable material. The liner 12 may also include fibers or additives to increase the load carrying strength of the liner and the overall load carrying strength of the composite tube.


In the case of a metal liner, the metals forming the liner 12 can include, individually or in combination, steel, titanium, lead, aluminum, copper, or stainless steel. In the case of a polymeric liner 12, the polymeric materials making up the liner 12 can be thermoplastic or thermoset materials. For instance, the liner 12 can be formed of homo-polymers, co-polymers, composite polymers, or co-extruded composite polymers. Homo-polymers refer to materials formed from a single polymer, co-polymers refers to materials formed by blending two or more polymers, and composite polymers refer to materials formed of two or more discrete polymer layers that have been permanently bonded or fused. The polymeric materials forming the interior liner are preferably selected from a group of various polymers, including but not limited to: polyvinylidene fluoride, etylene tetrafluoroethylene, cross-linked polyethylene (“PEX”), polyethylene, and polyester. Further exemplary thermoplastic polymers include materials such as polyphenylene sulfide, polyethersulfone, polyethylene terephthalate, polyamide, polypropylene, and acetyl.


The liner 12 can also include fibers to increase the load carrying strength of the liner and the overall load carrying strength of the composite tube 10. Exemplary composite fibers include graphite, glass, kevlar, fiberglass, boron, and polyester fibers, and aramid. The liner 12 may also be a nano-composite such as polypropylene filled with nano-clay.


The liner 12 may be resistive to corrosive chemicals such as heterocyclic amines, inorganic sulfur compound, and nitrogenous and acetylenic organic compounds. Three types of liner material, polyvinylidene fluoride (“PVDF”), etylene tetrafluoroethylene (“ETFE”), and polyethylene (“PE”), have been found to meet the severe chemical exposure characteristics demanded in particular applications involving composite coiled tubing. Two particularly attractive materials for the liner material are the RC10-089 grade of PVDF, manufactured by Atochem, and Tefzel® manufactured DuPont.


In other embodiments of liner 12, the liner comprises co-polymers formed to achieve enhanced characteristics, such as corrosion resistance, wear resistance and electrical resistance. For instance, a liner 12 can be formed of a polymer and an additive such that the liner has a high electrical resistance or such that the liner dissipates static charge buildup within the composite tube 10. In particular, carbon black can be added to a polymeric material to form a liner 12 having a resistivity on the order of 108 ohms/centimeter. Accordingly, the carbon black additive forms a liner 12 having an increased electrical conductivity that provides a static discharge capability. The static discharge capability advantageously prevents the ignition of flammable fluids being circulated within the composite tube 10.


The polymeric materials forming the liner 12 can have an axial modulus of elasticity exceeding 100,000 psi. For applications in which the composite tube 10 may be subject to high internal pressure, the liner 12 may have a modulus exceeding 100,000 psi. In addition, a liner with an axial modulus of elasticity less than 500,000 psi advantageously allows the liner to bend, rather than pull away from the composite layer, as the composite tube is spooled or bent around a eel.


In certain exemplary embodiments, the liner 12 has a mechanical elongation of at least 25%. A liner with a mechanical elongation of at least 25% can withstand the increased bending and stretching strains placed upon the liner 12 as it is coiled onto a reel and inserted into and removed from various well bores. Accordingly, the mechanical elongation characteristics of the liner 12 may prolong the overall life of the composite tube 10. In the case of polymeric liners, particularly thermoplastic liners, the liner 12 preferably has a melt temperature of at least 250° Fahrenheit so that the liner is not altered or changed during the manufacturing process for forming the composite coiled tubing. A liner having these characteristics typically has a radial thickness in the range of 0.02-0.25 inches.


The composite layer 16 can be formed of one or more plies, each ply having one or more fibers disposed within a matrix, such as a polymer, resin, or thermoplastic. The fiber material and orientation can be selected to provide the desired mechanical characteristics for the composite layer 16 and the composite tube 10. In the illustrated embodiment, the composite layer 16 is disposed external to and is coextensive with the internal liner 12 and the thermal insulation layer 14. One skilled in the art will appreciate that other arrangements may be possible. For example, the liner 12 may be disposed external to the composite layer 16 to serve as a substantially fluid impervious layer and/or a pressure barrier layer and inhibit external fluids from leaking through the composite tube 10. Moreover, the composite layer 16 and the liner 12, as well as other layers of the composite tube, if present, need not be coextensive circumferentially or coextensive longitudinally. Additional composite layers or other internal or external layers beyond the composite layer 16, such as a wear resistant layer, a pressure barrier layer, or an other layer disclosed herein may also be provided to enhance the capabilities of the composite tube 10.


In certain exemplary embodiments, the matrix has a tensile modulus of at least 100,000 psi, preferably at least 250,000 psi, and has a maximum tensile elongation of at least 5%. In the case of a thermoset matrix, the matrix may have a glass transition temperature of at least 180° F. In the case of a thermoplastic matrix, the matrix may have a melt temperature of at least 250° F. The fibers may be structural fibers and/or flexible yarn components. The structural fibers may be formed of carbon, nylon, polyester, aramid, thermoplastic, glass, or other suitable fiber materials. The flexible yarn components, or braiding fibers, may be formed of nylon, polyester, aramid, thermoplastic, glass, or other suitable fiber materials. The fibers included in the composite layer 16 can be woven, braided, knitted, stitched, circumferentially wound, or helically wound. In particular, the fibers can be biaxially or triaxially braided. The composite layer 16 can be formed through pultrusion processes, braiding processes, or continuous filament winding processes. In certain exemplary embodiments, a tube formed of the liners and the composite layers disclosed herein may form a composite tube having a tensile strain of at least 0.25 percent and being capable of maintaining an open bore configuration while being spooled on a reel.


The liner 12, illustrated in FIG. 1, may also include grooves or channels on the exterior surface of the liner. In certain embodiments, the liner 12 may be bonded to the composite layer 16 or other layers of the composite tube, such as the thermal insulation layer 14. The grooves may increase the bonding strength between the liner 12 and other layers by supplying a roughened surface for the components of the other layers, e.g., fibers, the matrix material, or an adhesive, to bond to. For example, in embodiments in which the liner 12 is bonded to the composite layer 16, the grooves may further increase the bonding strength between the liner 12 and the composite layer 16 if the grooves are filled with a matrix. The matrix may acts as an adhesive, causing the composite layer to be securely adhered to the underlying liner 12. Preferably, the grooves are helically oriented on the liner relative to the longitudinal axis 17.


The composite tube 10 may optionally include one or more energy conductors within the composite tube. In addition, sensors optionally may be provided within the composite tube 10 to monitor the condition of the tube and/or conditions of the fluid transported by the composite tube 10.


The thermal insulation layer 14 in the exemplary composite tube is disposed between the liner 12 and the composite layer 16 and is provided within the composite tube 10 to maintain the temperature of fluid carried by the composite tube 10 within a predetermined temperature range. Although the exemplary embodiment illustrates the thermal insulation layer 14 disposed between the liner 12 and the composite layer 16, the thermal insulation layer 14 may be disposed at any point throughout the cross-section of the composite tube 10. For example, the thermal insulation layer may be disposed interior to the liner 12, exterior to the composite layer 16, or between the composite layer 16 and additional layer(s), including a wear protection layer, of the composite tube 10. In one embodiment, for example, the thermal insulation layer 14 may be disposed between the composite layer and an outer wear resistant layer. The thermal insulation layer 14 may extend along the entire length of the composite tube 10 or may be disposed along one or more discrete lengths of the composite tube 10. In this manner, the entire composite tube 10 may be insulated or selected segments of the composite tube 10 may be separately insulated. Additionally, the thermal properties of the thermal insulation layer 14 may be varied along the length of the composite tube 10 by, for example, varying the material selected or the radial thickness of the thermal insulation layer 14. In this manner, selected lengths of the composite tube 10 may provide greater thermal insulation to the transported fluid than other lengths of the composite tube 10.


Materials for the thermal insulation layer 14 are selected based on the thermal properties required to maintain the fluid within the desired temperature range. Additional consideration may be given to the ability of the material selected to withstand external forces that may be applied to the composite tube as a result of, for example, spooling, deployment, or external pressure. Suitable materials for the thermal insulation layer may include for example, syntactic foams, foamed thermoset or thermoplastic materials such as epoxy, urethane, phenolic, vinylester, polypropylene, polyethylene, polyvinylchlorides, nylons, thermoplastic or thermoset materials filled with particles (such as glass, plastic, micro-spheres, ceramics), filled rubber, aerogels, or other elastic materials, or Composites of these materials.



FIG. 3A illustrates another exemplary embodiment of a composite tube. The composite tube 50 may include an internal, fluid impervious liner 12, a composite layer 16 of fibers embedded in a matrix surrounding the internal liner 12, and a crush resistant layer 52 surrounding the composite layer 16 for increasing the hoop strength of the composite tube 50. The composite tube 50 may also include an optional pressure barrier layer 54. In certain embodiments, the crush resistant layer may have a hoop strength greater than the hoops strength of one or more of the other layers of the composite tube, including, for example, the interior liner 12 and the composite layer 16.


Although the crush resistant layer 52 is illustrated as being disposed between the composite layer 16 and the pressure barrier layer 54, the crush resistant layer 52 may be disposed at any point throughout the cross-section of the composite tube 50. For example, the crush resistant layer may be disposed interior to the liner 12 (FIG. 3B), exterior to the composite layer 16, or between the composite layer 16 and additional layer(s) of the composite tube 10. The crush resistant layer 52 may extend along the entire length of the composite tube 52 or may be disposed along one or more discrete lengths of the composite tube. In this manner, increased crush resistance may be provided to the entire length of the composite tube 50 or to selective longitudinal segments of the Composite tube 50. In addition, the amount of crush resistance, e.g. hoop strength, provided by the crush resistant layer 52 may be varied along the length of the composite tube 52 by, for example, varying the material used for the crush resistant layer 52, the make-up or structure of the crush resistant layer 52, and/or the radial thickness of the crush resistant layer 52. In this manner, selective longitudinal segments of the composite tube 52 can have increased crush resistance compared to other segments of the composite tube 50.


The crush resistant layer 52 may be constructed from a thermoplastic, thermoset material, metal, fiber reinforced composite material, interlocking metal, corrugated metal, or other material having sufficient strength in the radial direction to increase the hoop strength of the composite tube and, thereby, provide increased crush or collapse resistance to the composite tube 52. In certain exemplary embodiments, the crush resistant layer may be a continuous layer of axially interlocking rings in which each ring may connected to an axially adjacent ring. A layer of interlocking rings may provide increased hoop strength and increased flexibility, as the layer may bend or flex at the junction of adjacent rings. The interlocking rings may be constructed of metal, such as steel or stainless steel, polymers, fiber reinforced composites, or composite/metal hybrids. The rings within a layer may be constructed of the same or different materials.


In one embodiment illustrated in FIGS. 4A4B, the crush resistant layer 52 may be a layer of flexible corrugated tubing 56 interposed, for example, between the composite layer 16 and the pressure barrier layer 54 external to the composite layer. The corrugated tubing 56 may include a plurality of alternating parallel ridges 58 and grooves 60. The corrugated tubing 56 may be oriented such that the ridges 58 and grooves 60 are oriented at 0 degrees (i.e., parallel) to the longitudinal axis, at 90 degrees (i.e., perpendicularly) to the longitudinal axis, or at any other angle (i.e. helically) relative to the longitudinal axis.


In another embodiment illustrated in FIG. 5, the crush resistant layer 52 may be a plurality of discrete rings 62 spaced along the length of the composite tube 50 and interposed, for example, between the composite layer 16 and the pressure barrier layer 54. The rings 62 may be oriented circumferentially as illustrated or, alternatively, the rings 62 may be oriented helically, i.e., at an angle to the longitudinal axis of the composite tube.


In a further embodiment illustrated in FIGS. 6A and 6B, the crush resistant layer 52 may be a coiled spring 64 interposed, for example, between the composite layer 16 and the pressure barrier layer 54. In the illustrated embodiment, the spring 64 is oriented coaxially with the longitudinal axis of the composite tube. The spring 64 preferably has a rectilinear cross-section, as best illustrated in FIG. 6B to facilitate incorporation of the spring between the composite layer 16 and the pressure barrier layer 54. One skilled in the art will appreciate that the cross-section of the spring may be other shapes without departing from the scope of the present disclosure.


In accordance with another exemplary embodiment illustrated in FIG. 7, a composite tube 100 includes an internal, fluid impervious liner 12, a composite layer 16 of fibers embedded in a matrix surrounding and bonded to the internal liner 12 and an external layer 102 that is free to move longitudinally relative to other layers of the composite tube. In the illustrated embodiment, for example, the external layer 102 is free to move longitudinally relative to the adjacent composite layer 16. The external layer 102 may be, for example, a wear resistant layer, a pressure barrier layer, or any other layer described herein.


As discussed above, the layers of the composite tubes disclosed herein may be optionally bonded to one another. For example, the liner 12 may be optionally bonded to the composite layer 16. Bonding of the liner 12 to the composite layer 16 inhibits the separation of the layers during spooling or deployment due to shear forces on the composite tube 100. The liner 12 may be, for example, chemically and/or mechanically bonded to the composite layer 16.


In the illustrated embodiment of FIG. 7, the external layer 102 is unbonded to the adjacent composite layer 16 thereby permitting the external layer 102 to move longitudinally relative to the adjacent composite layer 16. By not bonding the external layer or other layer to an adjacent layer, manufacturing costs for the composite tube 100 may be reduced and the flexibility of the composite tube 100 during bending, for example during spooling, may be increased. An unbonded external layer 102 may also be more readily repaired or replaced in the event of wear than an integrally bonded external layer. In certain exemplary embodiments, one or more discrete lengths of the external layer, or other layers, may be unbonded to one or both adjacent layers, if the external layer has an adjacent layer on both sides. Alternatively, the entire length of the external layer, or other layers may be unbonded to one or both adjacent layers, if the external layer has an adjacent layer on both sides.


Additional exterior layers, for example additional composite layers, wear resistant layers or pressure barrier layers may be provided external to the exterior layer 102. The additional layers may be bonded to the respective adjacent interior layer or may be unbonded depending the particular application of the composite tube 100.



FIG. 8 illustrates a further exemplary embodiment of composite tube 150 that includes an internal, fluid impervious liner 12, a composite layer 16 of fibers embedded in a matrix surrounding the internal liner 12, and a layer 152 of low density material incorporated within the composite tube to provide buoyancy to at least a longitudinal segment of the composite tube 150. An optional pressure barrier layer 54, as well as other additional layers including additional layers 152 of low density material and additional composite layers, may be provided external to the layer 152 of low density material. Although the layer 152 is illustrated as being disposed between the composite layer 16 and the pressure barrier layer 54, the layer 152 of low density material may be disposed at any point throughout the cross-section of the composite tube 150 including, for example, between the inner liner 12 and the composite layer 16. The layer 152 of low density material may extend along the entire length of the composite tube 150 or may be disposed along one or more discrete lengths of the composite tube 150. The layer 152 of low density material allows selected longitudinal segments or the entire length of the composite tube to have positive or neutral buoyancy.


Preferably, the low density material for the layer 152 is selected to have a specific gravity of less than or equal to 1. Suitable low density materials may include, for example, syntactic foams, foamed thermoset or thermoplastic materials such as epoxy, urethane, phenolic, vinylester, polypropylene, polyethylene, polyvinylchlorides, nylons, thermoplastic or thermoset materials filled with particles (such as glass, plastic, micro-spheres, ceramics), filled rubber or other elastic materials, or composites of these materials.


In a further alternative embodiment, a layer of high density material may be incorporated into a composite tube to selectively weight segments or the entire length of the composite tube and thereby selectively provide negative buoyancy to the composite tube. Preferably, the high density material selected has a specific gravity greater than 1.25 and preferably greater than 2.0. The layer of high density material may be incorporated into the composite tube in a manner analogous to the layer 152 of low density material described above. Moreover, a composite tube may include segments of low density material and segments of high density material.


Referring to FIGS. 9 and 10, an exemplary composite tube 200 constructed of an interior liner 212 and a composite layer 18 is illustrated. The liner 212 serves as a fluid containment and permeation barrier to resist permeation of internal fluids from the composite tube 200. In the exemplary embodiment illustrated in FIGS. 9 and 10, the liner 212 includes a fluid impervious inner layer 218, a permeation barrier 220, and an optional adhesive layer 222 interposed between the inner layer 218 and the permeation barrier 220. The inner layer 218 is may be constructed in a manner analogous to the interior liner described above. For example, the inner layer 218 may be constructed from polymeric materials such as thermoplastics and thermoset polymers, and may also be constructed from elastomeric or metallic or a heat-shrinkable material. The inner layer 218 may also include fibers or additives to increase the load carrying strength of the liner and the overall load carrying strength of the composite tube.


The permeation barrier 220 may be constructed from any metal or combinations of metals suitable for use in composite tubing and having a permeability sufficient to inhibit the permeation of fluid through the permeation barrier. For example, the metal selected for the permeation barrier 220 may have a permeability of less than 1×10−10 (cm3)/cm per sec-cm2-bar, preferably, less than 1×10−12 (cm3)/cm per sec-cm2-bar. In addition, the metal or metals may be selected to withstand the external forces applied to the composite tube 10 as a result of spooling, deployment, or external pressure, as well as the internal forces applied to the composite tube 200 from a pressurized fluid carried within the composite tube. In addition, the metal or metals may be selected to have a melt temperature greater than the operational temperature of the composite tube 200. For example, composite tubing for use in the oil and gas industry may have an operational temperature of up to approximately 350° F. A metal layer forming the permeation barrier may have a permeability of less than 1×10−14 (cm3)/cm per sec-cm2-bar, and, preferably, approximately zero (0).


Alternatively, the permeation barrier 220 can be constructed from polymers, such as thermoplastics, thermosets, thermoplastic elastomers, nano-composites, metal coated polymers or composites thereof, having the desired permeability to inhibit fluid permeation through the permeation barrier, as well as the desired structural properties.


In the case of a metallic permeation barrier 220, the metallic layer forming the permeation barrier may be applied to the composite tube 200 using a wide variety of processes, generally depending on the type of metal used and the intended operating conditions of the composite tube. For example, the metallic layer may be a metal foil that can be wrapped about the composite tube 200 during manufacturing of the composite tube or co-formed with the inner layer of the interior liner. Alternatively, the metal forming the permeation barrier may be applied to the composite tube 200 using conventional coating processes such as, for example, plating, deposition, or powder coating. In addition, the permeation barrier may be a fusible metal having a low melt temperature that allows the metal to be applied in a liquid or semi-liquid state to the composite tube and also allows the metal to form a seal with the layer the metal is applied to prevent permeation. Preferably, the fusible metal is selected to have a melt temperature less than the processing temperature of the composite tubing during manufacturing and greater than the intended operational temperature of the composite tube. Indium or Indium alloys, for example, may be a suitable fusible metal for use in the metallic layer.


Although the exemplary embodiment illustrates the permeation barrier 220 disposed within the liner 212 of the composite tube 200, the permeation barrier 220, as well as one or more optional adhesive layers, if necessary, may be disposed at any point throughout the cross-section of the composite tube 200. For example, the permeation barrier 220 may be disposed interior to the liner 212, exterior to the composite layer 16, between the composite layer 16 and additional layer(s) of the composite tube 200, or between additional layers of the composite tube. In addition, alternative embodiments of the composite tube may include a plurality of permeation barriers positioned throughout the cross-section of the composite tube. The permeation barrier 220 may extend along the entire length of the composite tube 200 or may be disposed along one or more discrete lengths of the composite tube 200. In this manner, the entire composite tube 200 may include one or more permeation barriers or selected segments of the composite tube 200 may include one or more permeation barriers. Additionally, the permeability of the permeation barrier 220 may be varied along the length of the composite tube 200 by, for example, varying the material selected, the radial thickness or the density of the permeation barrier 220. In this manner, selected lengths of the composite tube 200 may have greater permeability than other lengths of the composite tube 200.


The optional adhesive layer 222 may be provided to facilitate bonding between the fluid impervious layer 218 and the permeation barrier 220. Materials for the optional adhesive layer 222 may include any polymers or other materials suitable for bonding, chemically, mechanically and/or otherwise, to the material forming the permeation barrier, e.g., metal, and to the material forming the inner layer 218 of the internal liner 212 of the composite tube 200. Suitable materials for the adhesive layer 222 may include, for example, contact type adhesives or liquid resin type adhesives, thermoplastics, thermosets, thermoplastic elastomers, or combinations thereof. In the case of thermoplastics and thermoplastic elastomers, the adhesive layer material may have a melt temperature greater than the operational temperature of the composite tube and less than the manufacturing process temperature of the composite tube. In one exemplary embodiment, the adhesive layer comprises a layer of thermoplastic having a melt temperature of less than 300° F. In the case of thermoset materials, the adhesive layer material may have a curing temperature less than the manufacturing process temperature of the composite tube.


The optional adhesive layer 222 may be applied to the inner layer 218, added during the manufacturing process for the composite tube 200, or may be applied to the permeation barrier 220. The adhesive layer 222 may extend along the entire length of the permeation barrier 220 or the inner layer 218 or may be disposed along one or more discrete lengths between the permeation barrier 220 or the inner layer 218. In this manner, the entire length of the permeation barrier 220 and the inner layer 218 may be bonded together or, alternatively, selected segments of the permeation barrier 220 and the inner layer 218 may be bonded. Additionally, the bonding or adhesive properties of the adhesive layer 222 may be varied along the length of the permeation barrier 220 or the inner layer 218. In this manner, selected lengths of the permeation barrier 220 and the inner layer 218 may have greater bond strength than other lengths of the composite tube 200.


The adhesive layer 222 is optional. In certain exemplary embodiments, an adhesive layer between the inner layer 218 and the permeation barrier 220 may not be necessary or desired. For example, the material of the inner layer 218 may be selected to bond with the material of the permeation barrier 220, eliminating the need for a separate adhesive layer. In other exemplary embodiments, the permeation barrier 220 may not be bonded to the inner layer 218 or the permeation barrier 220 may be mechanically bonded to the inner layer 218 by the compression force exerted on the permeation barrier by the layers external to the permeation barrier 220.



FIG. 11 illustrates another exemplary embodiment of a composite tube. The composite tube 250 may include an interior liner 212 and a composite layer 16. In the exemplary embodiment illustrated in FIG. 11, the interior liner 212 includes a fluid impervious inner layer 218, a permeation barrier 220, an optional first adhesive layer 222 interposed between the inner layer 218 and the permeation barrier 220, and an optional second adhesive layer 252 interposed between the permeation barrier 220 and the composite layer 16. The optional second adhesive layer 252 is provided to facilitate bonding of the composite layer 16 to the permeation barrier 220. Materials for the second adhesive layer 252 may include any polymers or other materials suitable for facilitating bonding, chemically, mechanically and/or otherwise, to the material forming the permeation barrier 222, e.g., metal, and to the matrix material of the composite layer 214 of the composite tube 250. Suitable materials may include, for example, contact type adhesives or liquid resin type adhesives, thermoplastics, thermosets, thermoplastic elastomers, or combinations thereof. In one exemplary embodiment, the material forming the second adhesive layer 252 is chemically reactive with both the metal forming the permeation barrier 252 and the matrix of the composite layer 16. In the case of thermoplastics and thermoplastic elastomers, the material forming the second adhesive layer 252 may have a melt temperature greater than the operational temperature of the composite tube and less than the manufacturing process temperature of the composite tube. In one exemplary embodiment, the second adhesive layer comprises a layer of thermoplastic having a melt temperature of less than 200° F. In the case of thermoset materials, the material forming the second adhesive layer 252 may have a curing temperature less than the manufacturing process temperature of the composite tube.


The optional second adhesive layer 252 may be applied to the permeation barrier 220 or otherwise added during the manufacturing process for the composite tube 250. The second adhesive layer 252 may extend along the entire length of the permeation barrier 220 or composite layer 16 or may be disposed along one or more discrete lengths between the permeation barrier 220 or composite layer 16. In this manner, the entire length of the permeation barrier 220 and the composite layer 16 may be bonded together or, alternatively, selected segments of the permeation barrier 220 and the composite layer 16 may be bonded. Additionally, the bonding or adhesive properties of the second adhesive layer 252 may be varied along the length of the permeation barrier 220 or the composite layer 16. In this manner, selected lengths of the permeation barrier 220 and the composite layer 16 may have greater bond strength than other lengths of the composite tube 250.



FIG. 12 illustrates a further exemplary embodiment of a composite tube 300. The composite tube 300 may include an interior liner 212 and a composite layer 16. In the exemplary embodiment illustrated in FIG. 12, the interior liner 212 includes a fluid impervious inner layer 218, a permeation barrier 220, and an optional adhesive layer 252 interposed between the permeation barrier 220 and the composite layer 16. The optional adhesive layer 252 is provided to facilitate bonding of the composite layer 16 to the permeation barrier 220 and may be constructed in a manner analogous to the second adhesive layer 252 described above in connection with the exemplary embodiment of FIG. 11.



FIG. 13 illustrates a further exemplary embodiment of a composite tube 350. The composite tube 350 may include an interior liner 212, a composite layer 16, a pressure barrier layer 352 exterior to the composite layer 16, and an exterior wear resistant layer 354. In the exemplary embodiment illustrated in FIG. 13, the interior liner 212 may include a fluid impervious inner layer 218, a permeation barrier 220, and an optional adhesive layer 222 interposed between the permeation barrier 220 and the inner layer 218, as described above in connection with the exemplary embodiment of FIGS. 9 and 10. The interior liner 212 may also include an optional second adhesive layer 257, as described in connection with the embodiment of FIG. 11. Alternatively, the interior liner 212 may include only the substantially fluid impervious inner layer 218, as in the case of the exemplary embodiment of FIGS. 1 and 2 described above.


In the exemplary embodiment of FIG. 13, the pressure barrier 352 includes a fluid impervious inner layer 318, a permeation barrier 320, and an optional adhesive layer 322 interposed between the permeation barrier 320 and the inner layer 318. The adhesive layer 322 may optionally be provided to facilitate bonding of the inner layer 318 to the permeation barrier 320. The materials, structure and function of the inner layer 318, the permeation barrier 320, and the adhesive layer 322 is analogous to that of the inner layer 218, the permeation barrier 220, and the adhesive layer 222 of the interior liner 212, described above in connection with the exemplary embodiment of FIGS. 9 and 10. Like the adhesive layer 222, the adhesive layer 322 is optional. In certain exemplary embodiments, the adhesive layer 322 may not be necessary or desired. The pressure barrier 352 may also include an optional second adhesive layer to facilitate bonding of the permeation barrier 320 to the external wear resistant layer 354.



FIG. 14 illustrates an additional exemplary embodiment of a composite tube. The composite tube 400 may include an interior liner 212 and a composite layer 16. In the exemplary embodiment illustrated in FIG. 14, the interior liner 212 includes a fluid impervious inner layer 218. The interior liner 212 may also optionally include a permeation barrier and an optional adhesive layer. The substantially fluid impervious inner layer 218 of the internal liner 212 may include a plurality of axially oriented, relative to the longitudinal axis 18 of the composite tube 400, surface grooves 402. The grooves 402 create axially flow paths for fluids that may permeate into the inner layer 218 of the composite tube 400. The flow paths formed by the grooves 402 operate to increase the axial permeability relative to the cross-sectional, e.g., radial, permeability of the composite tube 400. For example, the axial permeability of the composite tube 400 may be at least five times greater than the radial permeability of the composite tube 400. The axial grooves 402 may be in fluid communication with a venting system, described below, or may communicate directly with the interior or exterior of the composite tube 400. Thus, fluid permeating through the inner layer 218 from the interior of the composite tube 400 can be vented from the composite tube 400 through the grooves 402 without becoming trapped within the wall of the composite tube 400.



FIG. 15 illustrates another exemplary embodiment of a composite tube that is similar in construction to the exemplary embodiment illustrated in FIG. 14. In the exemplary embodiment of FIG. 15, the substantially fluid impervious inner layer 218 of the internal liner 212 may include a plurality of helically oriented, relative to the longitudinal axis 18 of the composite tube 410, surface grooves 412. Similar to the axially grooves 402 described above in connection with FIG. 14, the helical grooves 412 create helical flow paths for fluids that may permeate into the inner layer 218 of the composite tube 410. The flow paths formed by the grooves 412 operate to increase the axial permeability relative to the cross-sectional, e.g., radial, permeability of the composite tube 410. For example, the axial permeability of the composite tube 410 may be at least five times greater than the radial permeability of the composite tube 410.



FIG. 16 illustrates an additional exemplary embodiment of a composite tube. The composite tube 420 may include an interior liner 212 and a composite layer 14. In the exemplary embodiment illustrated in FIG. 16, the interior liner 212 includes a fluid impervious inner layer 218 and a permeation barrier 220. The permeation barrier 220 may include may include one or more holes 222 that allow for the flow of fluid through the permeation barrier 220. For example, one or more holes 222 may be provided at discrete locations along the length of composite tube 220 to provide preferential venting of fluids across the permeation barrier 220. The number and arrangement of the holes 222 may be varied depending on the permeability desired proximate the holes 222.


One skilled in the art will appreciate the axial grooves 402, the helical grooves 412, and the holes 422 may be provided on additional layers of the composite tube in other exemplary embodiments, including any of the layers disclosed herein. For example, axial or helical grooves may be provided on the fluid impervious layer of one or more pressures barriers within the composite tube. Also, the axial or helical grooves may be provided on layers other than fluid impervious layers, like, for example, on a composite layer of the composite tube.



FIG. 17 illustrates an additional exemplary embodiment of a composite tube. The composite tube 430 may include an interior liner 212, a composite layer 16, and a wear resistant layer 354. In the exemplary embodiment illustrated in FIG. 17, the interior liner 212 includes a fluid impervious inner layer 218, a permeation barrier 220, and an optional first adhesive layer 222 interposed between the inner layer 218 and the permeation barrier 220. The substantially fluid impervious inner layer 218 of the internal liner 212 may include a plurality of axially oriented, relative to the longitudinal axis 18 of the composite tube 430, surface grooves 402. The composite tube 430 may include a system for venting fluid from the grooves 402. In the present exemplary embodiment, the venting system may include one or more vent paths 434 through the inner layer 218 of composite tube 430. Each vent path 434 may be in fluid communication at one end with an axial groove 402 and in fluid communication with the interior 436 of the composite tube 430 at another end. In this manner, fluid within the axial grooves 402 may be vented or otherwise discharged from within the wall of the composite tube, in this example, within the inner layer 218, of the composite tube 430, via the vent paths 434.


The vent paths 434 may be provided at any location throughout the cross-section of the composite tube and may be associated with one or more axial, helical or other grooves provided within the composite tube. Moreover, the vent paths 434 may positioned to be in fluid communication with the exterior of the composite tube, as well as the interior of the composite tube as illustrated in FIG. 17 and described above.



FIG. 18 illustrates an additional exemplary embodiment of a composite tube. The composite tube 440 may include an interior liner 212, a composite layer 16, and a wear resistant layer 354. In the exemplary embodiment illustrated in FIG. 18, the interior liner 212 includes a fluid impervious inner layer 218, a permeation barrier 220, and an optional first adhesive layer 222 interposed between the inner layer 218 and the permeation barrier 220. The substantially fluid impervious inner layer 218 of the internal liner 212 may include a plurality of axially oriented, relative to the longitudinal axis 16 of the composite tube 440, surface grooves 402. The composite tube 440 may include a system for venting fluid from the grooves 402. In the present exemplary embodiment, an annular coupling 442 attached to the composite tube 440 provides the venting system. The coupling 442 may include one or more vent paths 444 that are each in fluid communication at one end with an axial oriented groove 402 within the inner layer 218 and in fluid communication with the interior 436 of the composite tube 440 at another end. A one-way check valve 446 may be provided within each vent path 444 to inhibit fluid flow into the grooves 402 from the interior 436 of the composite tube 440. In an alternative embodiment, a single vent path 444 may be provided within the coupling 442 to provide fluid communication between all the grooves 402 and the interior of the composite tube 440.


In the exemplary embodiment illustrated in FIG. 18, the coupling 442 is a pipe-to-pipe connector that connects two sections of the composite tube, sections 440A and 440B, together. In other exemplary embodiments, the coupling 442 may be an end connector for connecting an end of the composite tube 440 to external equipment.


The exemplary embodiments of composite tubes disclosed herein describe multiple layers that may be used within a composite pipe. The layers disclosed herein may be used in any of the described exemplary embodiments or may be arranged to create additional exemplary embodiments.


While the composite tubes disclosed herein have been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the disclosure. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the exemplary embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the present disclosure.

Claims
  • 1. A composite tube comprising: a substantially fluid impervious layer, wherein the substantially fluid impervious layer comprises a surface having grooves formed thereon to facilitate a bond between the substantially fluid impervious layer and at least one other layer of the composite tube, wherein the bond is adapted to restrict longitudinal movement between the substantially fluid impervious layer and the at least one other layer;a composite layer of fibers embedded in a first matrix, wherein the composite layer is formed of a first set of fibers embedded in the matrix and at least 80%, by fiber volume, of the fibers of the first set of fibers are helically oriented relative to a longitudinal axis of the composite tube at an angle of between ±30° and ±70°, anda thermal insulation layer formed at least partially of a material different from the first matrix selected to maintain a fluid carried within the composite tube within a predetermined temperature range, wherein the thermal insulation layer is formed at least partially of a foamed thermoset material or a foamed thermoplastic material.
  • 2. The composite tube of claim 1, wherein the thermal insulation layer is disposed external to the composite layer.
  • 3. The composite tube of claim 1, wherein the thermal insulation layer extends continuously along a complete length of the composite tube.
  • 4. The composite tube of claim 1, wherein at least one of the foamed thermoset material and the foamed thermoplastic material is at least one of epoxy, urethane, phenolic, vinylester, polypropylene, polyethylene, polyvinylchloride, and nylon.
  • 5. The composite tube of claim 1, wherein the first matrix is formed at least partially of a thermoplastic material having a tensile modulus of elasticity of at least 250,000 psi, a maximum tensile elongation of greater than or equal to 5%, and a melt temperature of at least 250° F.
  • 6. The composite tube of claim 1, wherein the first matrix is formed at least partially of a thermoset material having a tensile modulus of elasticity of at least 250,000 psi, a maximum tensile elongation of greater than or equal to 5%, and a glass transition temperature of at least 180° F.
  • 7. The composite tube of claim 1, wherein the substantially fluid impervious layer is formed at least partially of a thermoplastic polymer having a mechanical elongation of at least 25% and a melt temperature of at least 250° F.
  • 8. The composite tube of claim 1, wherein the substantially fluid impervious layer is formed at least partially of a metallic material.
  • 9. The composite tube of claim 1, wherein the bond comprises at least one of a chemical bond and a mechanical bond.
  • 10. The composite tube of claim 1, wherein at least one of the composite layer and the thermal insulation layer is bonded to the substantially fluid impervious layer.
  • 11. The composite tube of claim 1 further comprising a second matrix disposed within the grooves.
  • 12. The composite tube of claim 1, wherein the grooves are helically oriented relative to a longitudinal axis of the composite tube.
  • 13. The composite tube of claim 1 further comprising an external layer surrounding the substantially fluid impervious layer, the composite layer, and the thermal insulation layer, wherein the external layer is unbonded to and free to move longitudinally relative to the substantially fluid impervious layer, the composite layer, and the thermal insulation layer.
  • 14. The composite tube of claim 1, wherein the external layer comprises at least one of a wear resistant layer, a pressure barrier layer, and an additional composite layer.
  • 15. The composite tube of claim 1, wherein the thermal insulation layer is disposed between the composite layer and the substantially fluid impervious layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of U.S. Ser. No. 11/543,300 which claims the benefit of U.S. Ser. No. 10/134,971 which claims the benefit of U.S. Provisional Application No. 60/287,268 filed Apr. 27, 2001, U.S. Provisional Application No. 60/287,193 filed Apr. 27, 2001, U.S. Provisional Application No. 60/337,848 filed Nov. 5, 2001, and U.S. Provisional Application No. 60/337,025 filed Dec. 3, 2001. Each of the above-referenced patent applications is incorporated herein by reference.

US Referenced Citations (319)
Number Name Date Kind
87993 Weston Mar 1869 A
396176 Simpson Jan 1889 A
418906 Bosworth Jan 1890 A
482181 Kellom Sep 1892 A
646887 Stowe et al. Apr 1900 A
749633 Seeley Jan 1904 A
1234812 Simmmons Jul 1917 A
1793455 Buchanan Feb 1931 A
1890290 Hargreaves Dec 1932 A
1930285 Robinson Oct 1933 A
2464416 Raybould Mar 1949 A
2467520 Brubaker Apr 1949 A
2481001 Burckle Sep 1949 A
2624366 Pugh Jan 1953 A
2648720 Alexander Aug 1953 A
2690769 Brown Oct 1954 A
2725713 Blanchard Dec 1955 A
2742931 De Ganahl Apr 1956 A
2750569 Moon Jun 1956 A
2810424 Swartswelter et al. Oct 1957 A
2969812 De Ganahl Jan 1961 A
2973975 Ramberg et al. Mar 1961 A
2991093 Guarnaschelli Jul 1961 A
3086369 Brown Apr 1963 A
3116760 Matthews Jan 1964 A
3170137 Brandt Feb 1965 A
3277231 Downey et al. Oct 1966 A
3306637 Press et al. Feb 1967 A
3334663 Peterson Aug 1967 A
3354992 Cook et al. Nov 1967 A
3379220 Kiuchi et al. Apr 1968 A
3390704 Woodell Jul 1968 A
3413169 Krings et al. Nov 1968 A
3459229 Croft Aug 1969 A
3477474 Mesler Nov 1969 A
3507412 Carter Apr 1970 A
3522413 Chrow Aug 1970 A
3554284 Nystrom Jan 1971 A
3563825 Segura Feb 1971 A
3579402 Goldswohy et al. May 1971 A
3589135 Ede Jun 1971 A
3589752 Spencer et al. Jun 1971 A
3604461 Matthews Sep 1971 A
3606396 Prosdocimo et al. Sep 1971 A
3606402 Medney Sep 1971 A
3677978 Dowbenko et al. Jul 1972 A
3685860 Schmidt Aug 1972 A
3692601 Goldsworthy et al. Sep 1972 A
3696332 Dickson, Jr. et al. Oct 1972 A
3700519 Carter Oct 1972 A
3701489 Goldsworthy et al. Oct 1972 A
3728187 Martin Apr 1973 A
3730229 D'Onofrio May 1973 A
3734421 Karlson et al. May 1973 A
3738637 Goldsworthy et al. Jun 1973 A
3740285 Goldsworthy et al. Jun 1973 A
3744016 Davis Jul 1973 A
3769127 Goldsworthy et al. Oct 1973 A
3773090 Ghersa et al. Nov 1973 A
3776805 Hansen Dec 1973 A
3783060 Goldsworthy et al. Jan 1974 A
3814138 Courtot Jun 1974 A
3817288 Ball Jun 1974 A
3828112 Johansen et al. Aug 1974 A
3856052 Feucht Dec 1974 A
3860040 Sullivan Jan 1975 A
3860742 Medney Jan 1975 A
3901281 Morrisey Aug 1975 A
3907335 Burge et al. Sep 1975 A
3913624 Ball Oct 1975 A
3933180 Carter Jan 1976 A
3955601 Plummer, III May 1976 A
3956051 Carter May 1976 A
3957410 Goldsworthy et al. May 1976 A
3960629 Goldsworthy Jun 1976 A
3974862 Fuhrmann et al. Aug 1976 A
3980325 Robertson Sep 1976 A
RE29112 Carter Jan 1977 E
4013101 Logan et al. Mar 1977 A
4032177 Anderson Jun 1977 A
4048807 Ellers et al. Sep 1977 A
4053343 Carter Oct 1977 A
4057610 Goettler et al. Nov 1977 A
4095865 Denison et al. Jun 1978 A
4108701 Stanley Aug 1978 A
4111469 Kavick Sep 1978 A
4114393 Engle, Jr. et al. Sep 1978 A
4125423 Goldsworthy Nov 1978 A
4133972 Andersson et al. Jan 1979 A
4137949 Linko, III et al. Feb 1979 A
4139025 Carlstrom Feb 1979 A
4190088 Lalikos et al. Feb 1980 A
4200126 Fish Apr 1980 A
4220381 van der Graaf Sep 1980 A
4226446 Burrington Oct 1980 A
4241763 Antal et al. Dec 1980 A
4248062 McLain et al. Feb 1981 A
4261390 Belofsky Apr 1981 A
4273160 Lowles Jun 1981 A
4303263 Legris Dec 1981 A
4303457 Johansen et al. Dec 1981 A
4306591 Arterburn Dec 1981 A
4307756 Voigt et al. Dec 1981 A
4308999 Carter Jan 1982 A
4336415 Walling Jun 1982 A
4351364 Cocks et al. Sep 1982 A
4380252 Gray et al. Apr 1983 A
4402346 Cheetham et al. Sep 1983 A
4417603 Argy Nov 1983 A
4421806 Marks et al. Dec 1983 A
4422801 Hale et al. Dec 1983 A
4445734 Cunningham May 1984 A
4446892 Maxwell May 1984 A
4447378 Gray et al. May 1984 A
4463779 Wink et al. Aug 1984 A
4488577 Shilad et al. Dec 1984 A
4507019 Thompson Mar 1985 A
4515737 Karino et al. May 1985 A
4522058 Ewing Jun 1985 A
4522235 Kluss et al. Jun 1985 A
4530379 Policelli Jul 1985 A
4556340 Morton Dec 1985 A
4567916 Antal et al. Feb 1986 A
4578675 MacLeod Mar 1986 A
4606378 Meyer Aug 1986 A
4627472 Goettler et al. Dec 1986 A
4657795 Foret Apr 1987 A
4681169 Brookbank, III Jul 1987 A
4700751 Fedrick Oct 1987 A
4706711 Czvikovszky et al. Nov 1987 A
4712813 Passerell et al. Dec 1987 A
4728224 Salama et al. Mar 1988 A
4729106 Rush et al. Mar 1988 A
4741795 Grace et al. May 1988 A
4758455 Campbell et al. Jul 1988 A
4789007 Cretel Dec 1988 A
4842024 Palinchak Jun 1989 A
4844516 Baker Jul 1989 A
4849668 Crawley et al. Jul 1989 A
4859024 Rahman Aug 1989 A
4903735 Delacour et al. Feb 1990 A
4913657 Naito et al. Apr 1990 A
4936618 Sampa et al. Jun 1990 A
4941774 Harmstorf et al. Jul 1990 A
4942903 Jacobsen et al. Jul 1990 A
4972880 Strand Nov 1990 A
4992787 Helm Feb 1991 A
4995761 Barton Feb 1991 A
5024252 Ochsner Jun 1991 A
5048572 Levine Sep 1991 A
5072622 Roach et al. Dec 1991 A
5077107 Kaneda et al. Dec 1991 A
5090741 Yokomatsu et al. Feb 1992 A
5097870 Williams Mar 1992 A
5156206 Cox Oct 1992 A
5170011 Martucci Dec 1992 A
5172765 Sas-Jaworsky et al. Dec 1992 A
5176180 Williams et al. Jan 1993 A
5182779 D'Agostino et al. Jan 1993 A
5184682 Delacour et al. Feb 1993 A
5188872 Quigley Feb 1993 A
5209136 Williams May 1993 A
5222769 Kaempen Jun 1993 A
5261462 Wolfe et al. Nov 1993 A
5265648 Lyon Nov 1993 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5285204 Sas-Jaworsky Feb 1994 A
5330807 Williams Jul 1994 A
5332269 Homm Jul 1994 A
5334801 Mohn Aug 1994 A
5343738 Skaggs Sep 1994 A
5346658 Gargiulo Sep 1994 A
5348088 Laflin et al. Sep 1994 A
5348096 Williams Sep 1994 A
5351752 Wood et al. Oct 1994 A
RE34780 Trenconsky et al. Nov 1994 E
5364130 Thalmann Nov 1994 A
5394488 Fernald et al. Feb 1995 A
5395913 Bottcher et al. Mar 1995 A
5398729 Spurgat Mar 1995 A
5400602 Chang et al. Mar 1995 A
5416724 Savic May 1995 A
5426297 Dunphy et al. Jun 1995 A
5428706 Lequeux Jun 1995 A
5435867 Wolfe et al. Jul 1995 A
5437311 Reynolds Aug 1995 A
5443099 Chaussepied et al. Aug 1995 A
5452923 Smith Sep 1995 A
5457899 Chemello Oct 1995 A
RE35081 Quigley Nov 1995 E
5469916 Sas-Jaworsky et al. Nov 1995 A
5472764 Kehr et al. Dec 1995 A
5494374 Youngs et al. Feb 1996 A
5499661 Odru et al. Mar 1996 A
5524937 Sides, III et al. Jun 1996 A
5525698 Bottcher et al. Jun 1996 A
5538513 Okajima et al. Jul 1996 A
5551484 Charboneau Sep 1996 A
5558375 Newman Sep 1996 A
5622211 Martin et al. Apr 1997 A
5641956 Vengsarkar et al. Jun 1997 A
5671811 Head Sep 1997 A
5683204 Lawther Nov 1997 A
5692545 Rodrigue Dec 1997 A
5718956 Gladfelter et al. Feb 1998 A
5730188 Kalman et al. Mar 1998 A
5755266 Aanonsen et al. May 1998 A
5758990 Davies et al. Jun 1998 A
5778938 Chick et al. Jul 1998 A
5785091 Barker, II Jul 1998 A
5795102 Corbishley Aug 1998 A
5797702 Drost et al. Aug 1998 A
5798155 Yanagawa et al. Aug 1998 A
5804268 Mukawa et al. Sep 1998 A
5828003 Thomeer et al. Oct 1998 A
5865216 Youngs Feb 1999 A
5875792 Campbell, Jr. et al. Mar 1999 A
5908049 Williams et al. Jun 1999 A
5913337 Williams et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5933945 Thomeer et al. Aug 1999 A
5950651 Kenworthy et al. Sep 1999 A
5951812 Gilchrist, Jr. Sep 1999 A
5979506 Aarseth Nov 1999 A
5984581 McGill et al. Nov 1999 A
5988702 Sas-Jaworsky Nov 1999 A
6004639 Quigley et al. Dec 1999 A
6016845 Quigley et al. Jan 2000 A
6032699 Cochran et al. Mar 2000 A
6066377 Tonyali et al. May 2000 A
6076561 Akedo et al. Jun 2000 A
6093752 Park et al. Jul 2000 A
6123110 Smith et al. Sep 2000 A
6136216 Fidler et al. Oct 2000 A
6148866 Quigley et al. Nov 2000 A
RE37109 Ganelin Mar 2001 E
6209587 Hsich et al. Apr 2001 B1
6220079 Taylor et al. Apr 2001 B1
6286558 Quigley et al. Sep 2001 B1
6315002 Antal et al. Nov 2001 B1
6328075 Furuta et al. Dec 2001 B1
6334466 Jani et al. Jan 2002 B1
6357485 Quigley et al. Mar 2002 B2
6357966 Thompson Mar 2002 B1
6361299 Quigley et al. Mar 2002 B1
6372861 Schillgalies et al. Apr 2002 B1
6390140 Niki et al. May 2002 B2
6397895 Lively Jun 2002 B1
6402430 Guesnon Jun 2002 B1
6422269 Johansson et al. Jul 2002 B1
6461079 Beaujean Oct 2002 B1
6470915 Enders et al. Oct 2002 B1
6532994 Enders et al. Mar 2003 B1
6538198 Wooters Mar 2003 B1
6604550 Quigley et al. Aug 2003 B2
6620475 Reynolds, Jr. et al. Sep 2003 B1
6631743 Enders et al. Oct 2003 B2
6634387 Glejbøl et al. Oct 2003 B1
6634388 Taylor et al. Oct 2003 B1
6663453 Quigley et al. Dec 2003 B2
6706348 Quigley et al. Mar 2004 B2
6746737 Debalme et al. Jun 2004 B2
6764365 Quigley et al. Jul 2004 B2
6787207 Lindstrom et al. Sep 2004 B2
6803082 Nichols et al. Oct 2004 B2
6807989 Enders et al. Oct 2004 B2
6857452 Quigley et al. Feb 2005 B2
6902205 Bouey et al. Jun 2005 B2
6978804 Quigley et al. Dec 2005 B2
6983766 Baron et al. Jan 2006 B2
7000644 Ichimura et al. Feb 2006 B2
7025580 Heagy et al. Apr 2006 B2
7029356 Quigley et al. Apr 2006 B2
7069956 Mosier Jul 2006 B1
7080667 McIntyre et al. Jul 2006 B2
7152632 Quigley et al. Dec 2006 B2
7234410 Quigley et al. Jun 2007 B2
7243716 Denniel et al. Jul 2007 B2
7285333 Wideman et al. Oct 2007 B2
7306006 Cornell Dec 2007 B1
7498509 Brotzell et al. Mar 2009 B2
7523765 Quigley et al. Apr 2009 B2
20010006712 Hibino et al. Jul 2001 A1
20020081083 Griffioen et al. Jun 2002 A1
20020094400 Lindstrom et al. Jul 2002 A1
20020119271 Quigley et al. Aug 2002 A1
20020185188 Quigley et al. Dec 2002 A1
20030008577 Quigley et al. Jan 2003 A1
20030087052 Wideman et al. May 2003 A1
20040025951 Baron et al. Feb 2004 A1
20040052997 Santo Mar 2004 A1
20040074551 McIntyre Apr 2004 A1
20040094299 Jones May 2004 A1
20040096614 Quigley et al. May 2004 A1
20040134662 Chitwood et al. Jul 2004 A1
20040226719 Morgan et al. Nov 2004 A1
20040265524 Wideman et al. Dec 2004 A1
20050087336 Surjaatmadja et al. Apr 2005 A1
20050189029 Quigley et al. Sep 2005 A1
20060000515 Huffman Jan 2006 A1
20060054235 Cohen et al. Mar 2006 A1
20060249508 Teufl et al. Nov 2006 A1
20070040910 Kuwata Feb 2007 A1
20070125439 Quigley et al. Jun 2007 A1
20070154269 Quigley et al. Jul 2007 A1
20070187103 Crichlow Aug 2007 A1
20080006337 Quigley et al. Jan 2008 A1
20080006338 Wideman et al. Jan 2008 A1
20080014812 Quigley et al. Jan 2008 A1
20080164036 Bullen Jul 2008 A1
20080185042 Feechan et al. Aug 2008 A1
20080210329 Quigley et al. Sep 2008 A1
20090107558 Quigley et al. Apr 2009 A1
20090194293 Stephenson et al. Aug 2009 A1
20090278348 Brotzell et al. Nov 2009 A1
20100101676 Quigley et al. Apr 2010 A1
20100212769 Quigley et al. Aug 2010 A1
20100218944 Quigley et al. Sep 2010 A1
20110013669 Raj et al. Jan 2011 A1
Foreign Referenced Citations (45)
Number Date Country
559688 Aug 1957 BE
461199 Aug 1968 CH
1959738 Jun 1971 DE
3603597 Aug 1987 DE
4040400 Aug 1992 DE
4214383 CI Sep 1993 DE
0024512 Mar 1981 EP
0203887 Dec 1986 EP
352148 Jan 1990 EP
0427306 May 1991 EP
0477704 Apr 1992 EP
0503737 Sep 1992 EP
505815 Sep 1992 EP
0536844 Apr 1993 EP
0681085 Nov 1995 EP
0 854 029 Jul 1998 EP
0 854 029 Apr 1999 EP
0953724 Nov 1999 EP
0970980 Jan 2000 EP
0981992 Mar 2000 EP
989204 Sep 1951 FR
553110 Aug 1942 GB
809097 Feb 1959 GB
909187 Oct 1962 GB
956500 Apr 1964 GB
1297250 Nov 1972 GB
2103744 Feb 1983 GB
2193006 Jan 1988 GB
2255994 Nov 1992 GB
2255994 Nov 1992 GB
2270099 Mar 1994 GB
2 365 096 Apr 2000 GB
163 592 Jun 1990 JP
WO 8704768 Aug 1987 WO
WO-9113925 Sep 1991 WO
WO-9221908 Dec 1992 WO
WO 9307073 Apr 1993 WO
9319927 Oct 1993 WO
WO-9502782 Jan 1995 WO
WO-9512115 Apr 1995 WO
WO-9712166 Apr 1997 WO
WO-9919653 Apr 1999 WO
WO 0031458 Jun 2000 WO
WO 0073695 Dec 2000 WO
WO-2006003208 Jan 2006 WO
Non-Patent Literature Citations (34)
Entry
International Search Report Completed on Aug. 5, 2002.
Austigard E. and R. Tomter, “Composites Subsea: Cost Effective Products; an Industry Challenge,” Subsea 94 International Conference, the 1994 Report on Subsea Engineering : The Continuing Challenges.
Connell Mike et al., “Coiled Tubing: Application for Today's Challenges,” Petroleum Engineer International, pp. 18-21 (Jul. 1999).
Feechan Mike et al., “Spoolable Composites Show Promise,” The American Oil & Gas Reporter, pp. 44-50 (Sep. 1999).
Fowler Hampton, “Advanced Composite Tubing Usable,” The American Oil & Gas Reporter, pp. 76-81 (Sep. 1997).
Fowler Hampton et al., “Development Update and Applications of an Advanced Composite Spoolable Tubing,” Offshore Technology Conference held in Houston Texas from May 4 to 7, 1998, pp. 157-162.
Hahn H. Thomas and Williams G. Jerry, “Compression Failure Mechanisms in Unidirectional Composites,” NASA Technical Memorandum pp. 1-42 ( Aug. 1984 ).
Hansen et al., “Qualification and Verification of Spoolable High Pressure Composite Service Lines for the Asgard Field Development Project,” paper presented at the 1997 Offshore Technology Conference held in Houston Texas from May 5 to 8, 1997, pp. 45-54.
Haug et al., “Dynamic Umbilical with Composite Tube (DUCT),” Paper presented at the 1998 Offshore Technology Conference held in Houston Texas from 4 to 7, 1998, pp. 699-712.
Lundberg et al., “Spin-off Technologies from Development of Continuous Composite Tubing Manufacturing Process,” Paper presented at the 1998 Offshore Technology Conference held in Houston, Texas from May 4 to 7, 1998, pp. 149-155.
Marker et al., “Anaconda: Joint Development Project Leads to Digitally Controlled Composite Coiled Tubing Drilling System ,” Paper presented at the SPEI/ COTA, Coiled Tubing Roundtable held in Houston, Texas from Apr. 5 to 6, 2000, pp. 1-9.
Measures R. M., “Smart Structures with Nerves of Glass.” Prog. Aerospace Sci. 26(4): 289-351 (1989).
Measures et al., “Fiber Optic Sensors for Smart Structures,” Optics and Lasers Engineering 16: 127-152 (1992).
Pope, Peter, “Braiding,” International Encyclopedia of Composites, Published by VGH, Publishers, Inc. , New York, NY 10010, 1990.
Quigley et al., “Development and Application of a Novel Coiled Tubing String for Concentric Workover Services,” Paper presented at the 1997 Offshore Technology Conference held in Houston, Texas from May 5 to 8, 1997, pp. 189-202.
Sas-Jaworsky II and Bell Steve, “Innovative Applications Stimulate Coiled Tubing Development,” World Oil , 217(6): 61 (Jun. 1996).
Sas-Jaworsky IIand Mark Elliot Teel, “Coiled Tubing 1995 Update: Production Applications,” World Oil, 216 (6): 97 (Jun. 1995 ).
Sas-Jaworsky, A. and J.G. Williams, “Advanced composites enhance coiled tubing capabilities,” World Oil, pp. 57-69 (Apr. 1994).
Sas-Jaworsky, A. and J.G. Williams, “Development of a composite coiled tubing for oilfield services,” Society of Petroleum Engineers, SPE 26536, pp. 1-11 (1993).
Sas-JaworsIcy, A. and J.G. Williams, “Enabling capabilities and potential applications of composite coiled tubing,” Proceedings of World Oil's 2nd International Conference on Coiled Tubing Technology, pp. 2-9 (1994).
Sas-Jaworsky II Alex, “Developments Position CT for Future Prominence,” The American Oil & Gas Reporter, pp. 87-92 (Mar. 1996).
Tore Wood Moe et al., “Spoolable Composite Piping for Chemical and Water Injection and Hydraulic Valve Operation,” Proceedings of the 11th International Conference on Offshore Mechanics and Arctic Engineering-—1992-, vol. III, Part A—Materials Engineering, pp. 199-207 (1992).
Shuart J. M. et al., “Compression Behavior of #45°-Dominated Laminates with a Circular Hole or Impact Damage,” AIAA Journal 24(1): 115-122 (Jan. 1986).
Silverman A. Seth, “Spoolable Composite Pipe for Offshore Applications,” Materials Selection & Design, pp. 48-50 (Jan. 1997).
Rispler K. et al., “Composite Coiled Tubing in Harsh Completion/Workover Environments,” Paper presented at the SPE GAS Technology Symposium and Exhibition held in Calgary, Alberta, Canada, on Mar. 15-18, 1998, pp. 405-410.
Williams G. J. et al., “Composite Spoolable Pipe Development, Advancements, and Limitations,” Paper presented at the 2000 Offshore Technology Conference held in Houston Texas from May 1 to 4, 2000, pp. 1-16.
European Search Report, Aug. 10, 2005.
International Search Report and Written Opinion for PCT/US2010/060582 mailed on Feb. 16, 2011 (11 pages).
International Search Report for PCT/US00/26977 mailed on Jan. 22, 2001, 3 pages.
International Search Report for PCT/US00/41073 mailed on Mar. 5, 2001, 3 pages.
International Search Report for PCT/US04/16093 mailed on Nov. 8, 2005, 9 pages.
Hartman, D.R., et al., “High Strength Glass Fibers,” Owens Coming Technical Paper (Jul. 1996).
Sperling, L.H., “Introduction to Physical Polymer Science 3rd Edition,” Wiley-Interscience, New York, NY, 2001, p. 100.
Fiberspar Tech Notes, “Horizontal well deliquification just got easier—with Fiberspar Spoolable Production Systems,” TN21-R1UN1-HybridLift, 2010, 2 pages.
Related Publications (1)
Number Date Country
20100101676 A1 Apr 2010 US
Provisional Applications (4)
Number Date Country
60287268 Apr 2001 US
60287193 Apr 2001 US
60337848 Nov 2001 US
60337025 Dec 2001 US
Continuations (2)
Number Date Country
Parent 11543300 Oct 2006 US
Child 12472893 US
Parent 10134971 Apr 2002 US
Child 11543300 US