Embodiments of the subject matter disclosed herein generally relate to pump systems, and in particular to valve seats in pump systems.
Pumping systems may be used in a variety of applications, especially industrial applications where pumping systems are used to elevate a working fluid pressure. One such application is hydraulic fracturing systems, which high pressure pumps are used to increase a fluid pressure of a working fluid (e.g., fracturing fluid, slurry, etc.) for injection into an underground formation. The working fluid may include particulates, which are injected into fissures of the formation. When the fluid is removed from the formation, the particulates remain and “prop” open the fissures, facilitating flow of oil and gas. In many applications, reciprocating pumps are used where a fluid is introduced into a fluid end inlet passage and out through an outlet passage. A valve assembly reciprocates within the pump and contacts valve seats at the inlet and outlet passages. Due to the particulates and corrosive nature of the working fluid, the valve seats may become eroded or otherwise damaged, which my prevent sealing of the inlet and outlet passages.
Applicants recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for valve seats in pump systems.
In accordance with one or more embodiments a valve assembly for a fracturing pump includes a valve seat having a bore extending therethrough, the valve seat including a strike face at a top region opposite a bottom region, at least a portion of the strike face formed by an insert positioned within a groove formed in the valve body. The valve assembly also includes a bore liner arranged within the bore, at least a portion of an axial length of the bore liner covering at least a portion of the ceramic to form a barrier between the insert and the bore. The valve assembly further includes a valve member positioned to reciprocate within the bore, the valve member moving between an open position and a closed position, wherein at least a portion of the valve member engages at least a portion of the strike face in the closed position.
In accordance with another embodiment, a valve seat for use in a fracturing pump includes a first body, including at least a portion of a bore and having a first diameter. The valve seat also includes a second body, coupled to the first body. The second body includes a tapered portion having a downward slope from a second diameter to an axis, a groove formed in the tapered portion, the groove extending from at least a second portion of the bore radially outward toward the second diameter, and an insert, positioned within the groove, the insert having a sloped region substantially conforming to the downward slope of the tapered portion. The valve seat also includes a bore liner extending through the bore along at least a portion of both the first body and the second body, the bore liner positioned to overlap at least a portion of the insert.
In accordance with another embodiment, a method for forming a valve seat includes receiving a valve seat, the valve seat including a first body and a second body coupled together, the first body having a larger diameter than the second body, the second body including a tapered portion. The method also includes forming a groove in the tapered portion, the groove extending radially outward from the bore. The method further includes positioning an insert within the groove. The method also includes securing the insert within the groove. The method includes positioning a bore liner along at least a portion of the bore, the bore liner arranged to overlap at least a portion of the insert. The method further includes securing the bore liner to at least one of the bore or the insert.
The present technology will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:
The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.
When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions.
Embodiments of the present disclosure include a valve seat at least partially formed of a ceramic material on at least a portion of a strike face. Moreover, the valve seat may include an inner flow bore including a wear resistant metallic or polymeric material. In various embodiments, the wear resistant metallic or polymeric material may be fixed to the inner flow bore by bonding, press fitting, sintering, or a combination thereof. The valve seat may include a first and second body, the first body having an outer diameter configured to be inserted into a fluid passageway of a fracturing pump, such as a reciprocating pump. The second body extends radially from the first body, and may be considered integral to the first body in embodiments, and has an outer diameter greater than the outer diameter of the first body. The second body is at least partially formed of a ceramic material. In various embodiments, the second body includes an insert comprising a ceramic material, which may be fixed to the second body by bonding, press fitting, sintering, or a combination thereof.
In various embodiments, systems and methods for forming a valve seat used in positive displacement reciprocating pumps and hydraulic fracturing service designed to pump sand water acid slurry are described. The valve seat is designed to have a wear resistant valve strike face and inner flow bore to extend a service life of the valve seat before replacement or repair. Embodiments may provide significant extension of services lives of the valve seat compared to conventional case-hardened alloy steel valve seats. Prior art valve seats have issues with the strike face wearing down and the inner flow bore eroding or becoming gouged due to the up and down action of the valve wing guided portion. Prior art valve seats including a ceramic insert on the strike face do not have a liner system to prevent contact damage with valve guide legs or erosive damage from fluid flow. In embodiments, the valve strike face is partially formed of ceramic material, such as cemented tungsten carbide or similar, to increase wear resistance of the strike face of the valve seat. Moreover, the inner flow bore of the valve seat is formed of an inner layer of wear resistant metallic or polymer material to prevent flow accelerated erosion of the valve seat flow bore and prevent gouging from up and down motion of the valve which has wing guided feet.
It should be appreciated that various components of the pump assembly 100 have been removed for clarity with the following discussion. For example, a power end has been removed in favor of focusing on the illustrated fluid end 102 of the pump assembly 100. The power end may include a crankshaft that is driven by an engine or motor to facilitate operations. The fluid 102 includes a fluid end block 104 that may house one or more components discussed herein. A plunger rod 106 is driven (e.g., via the crankshaft) to reciprocate within the fluid end block 104 along a plunger axis 108. The plunger rod 106 is positioned within a bore 110 extending through at least a portion of the fluid end block 104. The illustrated bore 110 is arranged along the plunger axis 108 (e.g., first axis) and intersects a pressure chamber 112, which is arranged along a pressure chamber axis 114 (e.g., second axis), which is positioned substantially perpendicular to the plunger axis 108. It should be appreciated that the pump assembly 100 may include multiple plunger rod and pressure chamber arrangements, which may be referred to as a plunger throw. For example, the pump assembly 100 may be a triplex pump, quadplex pump, quintuplex pump, and the like.
The illustrated fluid end block 104 includes an inlet passage 116 and an outlet passage 118, which are generally coaxial and arranged along the pressure chamber axis 114. In other words, the inlet and outlet passages 116, 118 are axially aligned with respect to one another and/or the pressure chamber 112. In various embodiments, fluid enters the pressure chamber 112 via the inlet passage 116, for example on an up stroke of the plunger rod 106, and is driven out of the pressure chamber 112 via the outlet passage 118, for example on a down stroke of the plunger rod 106.
Respective valve assemblies 120, 122 are arranged within the inlet passage 116 and the outlet passage 118. These valve assemblies 120, 122 are spring loaded in the illustrated embodiment, but it should be appreciated that such an arrangement is for illustrative purposes only. In operation, a differential pressure may drive movement of the valve assemblies. For example, as the plunger rod 106 is on the upstroke, pressure at the inlet passage 116 may overcome the spring force of the valve assembly 120, thereby driving fluid into the pressure chamber 112. However, on the down stroke, the valve assembly 120 may be driven to a closed positon, while the spring force of the valve assembly 122 is overcome, thereby enabling the fluid to exit via the outlet passage 118.
As will be described in detail below, the valve assemblies 120, 122 may include a valve seat face, which may include a strike face. The strike face may contact a sealing face of a valve member as the valve member transitions between an open position and a closed position. Due to the nature of the working fluid (e.g., corrosive and filled with particulates), wear may develop along the strike face, thereby reducing its sealing effectiveness.
In various embodiments, guide legs 212 of the valve member 204 may also lead to damage to various portions of the valve seat 202. For example, in the illustrated embodiment, the guide legs 212 extend a bore 214 of the valve member 204. Due to the presence of the corrosive fluid and/or the particulates, damage may occur along the bore 214, such as scarring. As a result, the pump assembly may be taken out of service for repairs, which may be expensive and also contribute to non-productive time at the well site. Accordingly, embodiments of the present disclosure are directed toward systems and methods for forming improved valve seats, which may be part of valve assemblies.
In various embodiments, the valve seat 300 includes a first body 308 and a second body 310. The first and second bodies 308, 310 may be integrally formed as a unitary component corresponding to the body portion of the valve seat 300. In the illustrated embodiment, the first body 308 includes a first outer diameter 312 and the second body 310 includes a second outer diameter 314. As illustrated, the first outer diameter 312 is less than the second outer diameter 314. It should be appreciated that the first outer diameter 312 is being measured from a radially outward region and not from a seal groove 316 formed in the first body 308. A transition 318 between the first and second body 308, 310 includes a notched region 320. The notched region 320 may be utilized to engage a shoulder formed along a portion of a pressure chamber to secure the valve seat 300 into position. It should be appreciated that the notched region 320 is shown for illustrated purposes only, and that in other embodiments a taper, a bend, or any other transition may be included in place of or in addition to the notched region 320.
The second body 310 includes a strike face 322 extending along a tapered portion 324 of the second body 310. In the illustrated embodiment, the tapered portion 324 has a downward slope from the second outer diameter 314 to a valve seat axis 326. The tapered portion 324 may be described as being constrained to the second body 310, in that the second body 310 may include the region having the second outer diameter 314. In other words, the second body 310 may be defined, in certain embodiments, as the portion of the valve seat 300 extending a first axial distance 328, as opposed to the first body 308 that extends the second axial distance 330 and includes the first outer diameter 312.
The illustrated tapered portion 324 extends circumferentially about the valve seat axis 326 and is arranged at a first angle 332. It should be appreciated that the first angle 332 may be any reasonable angle and may be particularly selected based on operating conditions. For example, the first angle 332 may be approximately 40 degrees. However, the first angle 332 may be approximately 15 degrees, approximately 20 degrees, approximately 25 degrees, approximately 30 degrees, approximately 35 degrees, approximately 45 degrees, approximately 50 degrees, approximately 55 degrees, approximately 60 degrees, approximately 65 degrees, or any other reasonable angle. Moreover, the first angle 332 may be between approximately 15 degrees and 25 degrees, between approximately 25 degrees and 35 degrees, between approximately 35 degrees and 45 degrees, between approximately 45 degrees and 5 degrees, or any other reasonable range.
The strike face 322 forms at least a portion of the tapered portion 324. In various embodiments, the strike face 322 may be considered to cover substantially all of the tapered portion 324. However, in other embodiments, the strike face 322 may be defined as including a portion of the tapered portion 324 that corresponds to a contact region with a valve member 204. This contact region may vary based on the configuration of the valve member. In the illustrated embodiment, an insert 334 is installed along the tapered portion 324 and forms at least a portion of the strike face 322. As noted above, the insert 334 may be a ceramic or high strength material that is positioned to engage the valve member 204 when the valve member 204 is brought into engagement with the valve seat 300.
The illustrated insert 334 includes a sloped region 336 that is substantially equal to the tapered portion 324, thereby forming a smooth sloping surface along the valve seat 300. It should be appreciated that the sloped region 336 may be arranged at a different angle 338 than the angle 332. For example, the sloped region 336 may be positioned at a steeper angle or shallower angle, thereby providing additional options for adjustment due to expected operating conditions. The insert 334 extends circumferentially about the tapered portion 324 and is positioned within a groove 340 that extends radially outward from the bore 302. In other words, an inner portion of the grove 340 may be formed, at least in part, by the bore 302 and an outer portion of the groove 340 may be formed, at least in part, by the second body 310. The groove 340 includes a radial distance 342, which forms a groove diameter 344 that is less than the first outer diameter 312. However, it should be appreciated that, in other embodiments, the groove diameter 344 may be equal to the first outer diameter 312 or greater than the first outer diameter 312. In the illustrated embodiment, the groove 340 does not extend to a shoulder 346 of the second body 310. The shoulder 346 may be utilized to secure the valve seat 300 within the pump assembly. As noted above, while the shoulder 346 is illustrated as a substantially squared-off or straight shoulder, it should be appreciated that other arrangements (e.g., sloped, curved, etc.) may be provided and may be based, at least in part, on the transition 318.
In various embodiments, the insert 334 includes an insert width 348, which may be substantially equal to the radial distance 342, and as a result, the insert 334 may not extend into the bore 302. However, in embodiments, the insert 334 may extend into the bore, for example, when the insert width 348 is greater than the radial distance 342. The illustrated insert 334 further includes a first height 350 and a second height 352, the first height 350 being less than the second height 352, and being connected via a contact surface 354 forming at least a portion of the sloped region 336. In operation, the valve member will contact at least a portion of the contact surface 354. However, because the insert 334 is formed from a hard material, such as ceramic, damage will take longer to accumulate, thereby increasing the life of the valve seat 300.
As shown, both a first end 356, having the first height 350, and a second end 358, having the second height 352, are substantially parallel to the valve seat axis 326. In other words, the illustrated ends 356, 358 are substantially straight with respect to the bore 302. However, it should be appreciated that such an arrangement is for illustrative purposes only. For example, the first or send ends 356, 358 may be sloped. Additionally, the insert 334 is illustrated with a curved end 360 at the second end 358. Again, the curvature is for illustrative purposes and may be an angle or the like, however, it should be appreciated that the curvature may facilitate transmission of forces.
Inclusion of the insert 334 enables improved longevity of the valve seat 300 because the region(s) in contact with the valve member may be formed from stronger and/or harder materials, which may be less susceptible to wear. However, improving the longevity of the strike face 322 may be insufficient if the bore 302 experiences significant damage. In other words, the valve seat 300 may be replaced and/or repaired due to damage at any region, not just the strike face 322. Accordingly, embodiments of the present disclosure include a bore liner 362 extending through at least a portion of the bore 302. The illustrated bore liner 362 protects the bore 302 from damage, for example, from the guide legs 212. For example, the bore liner 362 may be formed from a high strength material, such as a wear resistant metallic alloy, or from a polymer material. The illustrated bore liner 362 has a thickness 364, which may slightly reduce a bore diameter 366. It should be appreciated that the bore diameter 366 and/or the thickness 364 may be particularly selected such that a liner inner diameter 368 is substantially equal to a prior art bore diameter.
The illustrated bore liner 362 extends for an axial length 370 and covers at least a portion of the insert 334. That is, at least a portion of the first insert height 350 is overlapped by at least a portion of the axial length 370. It should be appreciated that, in various embodiments, the entirety of the first insert height 350 may be covered by at least a portion of the axial length 370. However, in other embodiments, less than the entire first insert height 350 may be covered. As a result, the bore liner 362 forms at barrier or separation between the insert 334 and the bore 302. In embodiments, installation of the bore liner 362 prior to the insert 334 may facilitate locating and placement of the insert 334. In order words, the insert 334, in embodiments, does not form a portion of the bore 302.
As previously noted, at least a portion of the bore liner 362 may overlap at least a portion of the insert 334. In the illustrated embodiment, the entire first insert height 350 is covered by the bore liner 362. It should be appreciated, as noted above, that the bore liner 362 may not overlap the entire insert 334. However, in various embodiments, at least a portion of the bore liner 362 overlaps at least a portion of the insert 334 to form a barrier between the insert 334 and the bore 302.
The bore liner 362 includes a sloped top 504, arranged at an angle 506, that substantially conforms to the insert angle 338. It should be appreciated that the sloped top 504 may be omitted in other embodiments. That is, the top may be substantially planar. The illustrated portion of the tapered portion 324 is substantially constant. In other words, the angles 332, 338, 506 are substantially equal, thereby forming a smooth transition along the tapered portion 324.
As noted above, embodiments of the present disclosure are directed toward incorporating harder and/or stronger materials into valve seats in order to improve effective life. For example, traditional valve seats may be formed by an alloy steel. Repeated contact with a valve member, which may lead to wear and erosion, especially when utilized with environments with corrosive fluids and/or particulates in the fluid. Embodiments of the present disclosure incorporate high strength materials, such as ceramic materials, resistant steels, or polymers, into the valve seats at areas where contact is made with the valve member. These materials may be incorporated in a variety of ways, such as bonding, press fitting, sintering, or a combination thereof. As a result, a majority of the valve seat may be formed from cheaper materials, such as alloy steels, with more expensive materials being focused at the areas of contact.
Embodiments of the present disclosure may also be directed toward providing strengthening and protection to the valve bore. For example, a bore liner may be installed within the bore of the valve seat 810. In embodiments, the bore liner is substantially cylindrical, like the bore. Moreover, the bore liner may be sized to engage the bore. For example, the bore liner may have an outer diameter that is substantially equal to the inner diameter of the bore. Thereafter, the bore liner may be secured to the valve bore 812. As noted above, the bore liner may be press fit, bonded, or metallurgically fused to the bore. Additionally, in embodiments, the bore liner may be mechanically coupled to the insert. Accordingly, embodiments of the present disclosure provide a valve seat having protective surfaces arranged along the bore and the strike face.
The foregoing disclosure and description of the disclosed embodiments is illustrative and explanatory of the embodiments of the disclosure. Various changes in the details of the illustrated embodiments can be made within the scope of the appended claims without departing from the true spirit of the disclosure. The embodiments of the present disclosure should only be limited by the following claims and their legal equivalents.
This application is a continuation of U.S. patent application Ser. No. 16/746,519 filed Jan. 17, 2020 titled “COMPOSITE VALVE SEAT SYSTEM AND METHOD,” the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1576269 | Durant | Mar 1926 | A |
1595459 | Durant | Aug 1926 | A |
1671139 | Wilson | May 1928 | A |
1873318 | Eason, Jr. | Aug 1932 | A |
1914737 | Elms | Jun 1933 | A |
1948628 | Penick | Feb 1934 | A |
1963684 | Shimer | Jun 1934 | A |
1963685 | Shimer | Jun 1934 | A |
2011547 | Joseph | Aug 1935 | A |
2069443 | Hill | Feb 1937 | A |
2103503 | White | Dec 1937 | A |
2103504 | White | Dec 1937 | A |
2143399 | Abercrombie | Jan 1939 | A |
2304991 | Foster | Dec 1942 | A |
2506128 | Ashton | May 1950 | A |
2547831 | Mueller | Apr 1951 | A |
2713522 | Lorenz | Jul 1955 | A |
2719737 | Fletcher | Oct 1955 | A |
2745631 | Shellman | May 1956 | A |
2756960 | Church | Jul 1956 | A |
2898082 | Von Almen | Aug 1959 | A |
2969951 | Walton | Jan 1961 | A |
2982515 | Rule | May 1961 | A |
2983281 | Bynum | May 1961 | A |
3049082 | Barry | Aug 1962 | A |
3053500 | Atkinson | Sep 1962 | A |
3063467 | Roberts, Jr. | Nov 1962 | A |
3224817 | Carter | Dec 1965 | A |
3276390 | Bloudoff | Oct 1966 | A |
3288475 | Benoit | Nov 1966 | A |
3459363 | Miller | Aug 1969 | A |
3474808 | Elliott | Oct 1969 | A |
3483885 | Leathers | Dec 1969 | A |
3489098 | Roth | Jan 1970 | A |
3489170 | Leman | Jan 1970 | A |
3512787 | Kennedy | May 1970 | A |
3809508 | Uchiyama | May 1974 | A |
3907307 | Maurer | Sep 1975 | A |
3931755 | Hatridge | Jan 1976 | A |
4044834 | Perkins | Aug 1977 | A |
4076212 | Leman | Feb 1978 | A |
4184814 | Parker | Jan 1980 | A |
4219204 | Pippert | Aug 1980 | A |
4277229 | Pacht | Jul 1981 | A |
4331741 | Wilson | May 1982 | A |
4395050 | Wirz | Jul 1983 | A |
4398731 | Gorman | Aug 1983 | A |
4440404 | Roach | Apr 1984 | A |
4508133 | Hamid | Apr 1985 | A |
4518329 | Weaver | May 1985 | A |
4518359 | Yao-Psong | May 1985 | A |
4527806 | Ungchusri | Jul 1985 | A |
4662392 | Vadasz | May 1987 | A |
4754950 | Tada | Jul 1988 | A |
4763876 | Oda | Aug 1988 | A |
4770206 | Sjoberg | Sep 1988 | A |
4807890 | Gorman | Feb 1989 | A |
4811758 | Piper | Mar 1989 | A |
4861241 | Gamboa | Aug 1989 | A |
4919719 | Abe | Apr 1990 | A |
4951707 | Johnson | Aug 1990 | A |
5020490 | Seko | Jun 1991 | A |
5052435 | Crudup | Oct 1991 | A |
5061159 | Pryor | Oct 1991 | A |
5062450 | Bailey | Nov 1991 | A |
5080713 | Ishibashi | Jan 1992 | A |
5088521 | Johnson | Feb 1992 | A |
5127807 | Eslinger | Jul 1992 | A |
5131666 | Hutchens | Jul 1992 | A |
5149107 | Maringer | Sep 1992 | A |
5209495 | Palmour | May 1993 | A |
5249600 | Blume | Oct 1993 | A |
5267736 | Pietsch | Dec 1993 | A |
5273570 | Sato | Dec 1993 | A |
5314659 | Hidaka | May 1994 | A |
5478048 | Salesky | Dec 1995 | A |
5533245 | Stanton | Jul 1996 | A |
5540570 | Schuller | Jul 1996 | A |
5572920 | Kennedy | Nov 1996 | A |
5626345 | Wallace | May 1997 | A |
5636688 | Bassinger | Jun 1997 | A |
5674449 | Liang | Oct 1997 | A |
5834664 | Aonuma | Nov 1998 | A |
5859376 | Ishibashi | Jan 1999 | A |
5895517 | Kawamura | Apr 1999 | A |
5949003 | Aoki | Sep 1999 | A |
6139599 | Takahashi | Oct 2000 | A |
6200688 | Liang | Mar 2001 | B1 |
6209445 | Roberts, Jr | Apr 2001 | B1 |
6328312 | Schmitz | Dec 2001 | B1 |
6340377 | Kawata | Jan 2002 | B1 |
6382940 | Blume | May 2002 | B1 |
6436338 | Qiao | Aug 2002 | B1 |
6460620 | LaFleur | Oct 2002 | B1 |
6464749 | Kawase | Oct 2002 | B1 |
6482275 | Qiao | Nov 2002 | B1 |
6485678 | Liang | Nov 2002 | B1 |
6544012 | Blume | Apr 2003 | B1 |
6623259 | Blume | Sep 2003 | B1 |
6641112 | Antoff | Nov 2003 | B2 |
6695007 | Vicars | Feb 2004 | B2 |
6702905 | Qiao | Mar 2004 | B1 |
6880802 | Hara | Apr 2005 | B2 |
6910871 | Blume | Jun 2005 | B1 |
6916444 | Liang | Jul 2005 | B1 |
6951165 | Kuhn | Oct 2005 | B2 |
6951579 | Koyama | Oct 2005 | B2 |
6955181 | Blume | Oct 2005 | B1 |
6959916 | Chigasaki | Nov 2005 | B2 |
7000632 | McIntire | Feb 2006 | B2 |
7036824 | Kunz | May 2006 | B2 |
7144440 | Ando | Dec 2006 | B2 |
7168440 | Blume | Jan 2007 | B1 |
7186097 | Blume | Mar 2007 | B1 |
7222837 | Blume | May 2007 | B1 |
7290560 | Orr | Nov 2007 | B2 |
7296591 | Moe | Nov 2007 | B2 |
7335002 | Vicars | Feb 2008 | B2 |
7341435 | Vicars | Mar 2008 | B2 |
7506574 | Jensen | Mar 2009 | B2 |
7513483 | Blume | Apr 2009 | B1 |
7513759 | Blume | Apr 2009 | B1 |
7611590 | Liang | Nov 2009 | B2 |
7681589 | Schwegman | Mar 2010 | B2 |
7682471 | Levin | Mar 2010 | B2 |
7726026 | Blume | Jun 2010 | B1 |
7748310 | Kennedy | Jul 2010 | B2 |
7754142 | Liang | Jul 2010 | B2 |
7754143 | Qiao | Jul 2010 | B2 |
7757396 | Sawada | Jul 2010 | B2 |
7789133 | McGuire | Sep 2010 | B2 |
7793913 | Hara | Sep 2010 | B2 |
7828053 | McGuire | Nov 2010 | B2 |
7845413 | Shampine | Dec 2010 | B2 |
7861738 | Erbes | Jan 2011 | B2 |
7866346 | Walters | Jan 2011 | B1 |
7891374 | Vicars | Feb 2011 | B2 |
7954510 | Schwegman | Jun 2011 | B2 |
7992635 | Cherewyk | Aug 2011 | B2 |
8069923 | Blanco | Dec 2011 | B2 |
8075661 | Chen | Dec 2011 | B2 |
8083506 | Maki | Dec 2011 | B2 |
8100407 | Stanton | Jan 2012 | B2 |
8141849 | Blume | Mar 2012 | B1 |
8147227 | Blume | Apr 2012 | B1 |
8181970 | Smith | May 2012 | B2 |
8261771 | Witkowski | Sep 2012 | B2 |
8287256 | Shafer | Oct 2012 | B2 |
8291927 | Johnson | Oct 2012 | B2 |
8317498 | Gambier | Nov 2012 | B2 |
8375980 | Higashiyama | Feb 2013 | B2 |
8376723 | Kugelev | Feb 2013 | B2 |
8402880 | Patel | Mar 2013 | B2 |
8430075 | Qiao | Apr 2013 | B2 |
D687125 | Hawes | Jul 2013 | S |
8479700 | Qiao | Jul 2013 | B2 |
8511218 | Cordes | Aug 2013 | B2 |
8522667 | Clemens | Sep 2013 | B2 |
8528585 | McGuire | Sep 2013 | B2 |
8534691 | Schaffer | Sep 2013 | B2 |
8613886 | Qiao | Dec 2013 | B2 |
8662864 | Bayyouk | Mar 2014 | B2 |
8662865 | Bayyouk | Mar 2014 | B2 |
8668470 | Bayyouk | Mar 2014 | B2 |
8707853 | Dille | Apr 2014 | B1 |
8733313 | Sato | May 2014 | B2 |
8784081 | Blume | Jul 2014 | B1 |
8828312 | Yao | Sep 2014 | B2 |
8870554 | Kent | Oct 2014 | B2 |
8893806 | Williamson | Nov 2014 | B2 |
8894392 | Blume | Nov 2014 | B1 |
8915722 | Blume | Dec 2014 | B1 |
8940110 | Qiao | Jan 2015 | B2 |
8978695 | Witkowkski | Mar 2015 | B2 |
8998593 | Vicars | Apr 2015 | B2 |
9010412 | McGuire | Apr 2015 | B2 |
9103448 | Witkowski | Aug 2015 | B2 |
9150945 | Bei | Oct 2015 | B2 |
9157136 | Chou | Oct 2015 | B2 |
9157468 | Dille | Oct 2015 | B2 |
9206910 | Kahn | Dec 2015 | B2 |
D748228 | Bayyouk | Jan 2016 | S |
9260933 | Artherholt | Feb 2016 | B2 |
9261195 | Toynbee | Feb 2016 | B2 |
9273543 | Baca | Mar 2016 | B2 |
9284631 | Radon | Mar 2016 | B2 |
9284953 | Blume | Mar 2016 | B2 |
9285040 | Forrest | Mar 2016 | B2 |
9291274 | Blume | Mar 2016 | B1 |
9322243 | Baca | Apr 2016 | B2 |
9334547 | Qiao | May 2016 | B2 |
9340856 | Otobe | May 2016 | B2 |
9359921 | Hashimoto | Jun 2016 | B2 |
9365913 | Imaizumi | Jun 2016 | B2 |
9371919 | Forrest | Jun 2016 | B2 |
9376930 | Kim | Jun 2016 | B2 |
9377019 | Blume | Jun 2016 | B1 |
9382940 | Lee | Jul 2016 | B2 |
9416887 | Blume | Aug 2016 | B2 |
9435454 | Blume | Sep 2016 | B2 |
9441776 | Bryne | Sep 2016 | B2 |
9458743 | Qiao | Oct 2016 | B2 |
9464730 | Bihlet | Oct 2016 | B2 |
9500195 | Blume | Nov 2016 | B2 |
9506382 | Yeager | Nov 2016 | B2 |
9528508 | Thomeer | Dec 2016 | B2 |
9528631 | McCarty | Dec 2016 | B2 |
9534473 | Morris | Jan 2017 | B2 |
9534691 | Miller | Jan 2017 | B2 |
9556761 | Koyama | Jan 2017 | B2 |
9568138 | Arizpe | Feb 2017 | B2 |
9605767 | Chhabra | Mar 2017 | B2 |
9631739 | Belshan | Apr 2017 | B2 |
D787029 | Bayyouk | May 2017 | S |
9638075 | Qiao | May 2017 | B2 |
9638337 | Witkowski | May 2017 | B2 |
9650882 | Zhang | May 2017 | B2 |
9651067 | Beschorner | May 2017 | B2 |
9689364 | Mack | Jun 2017 | B2 |
9695812 | Dille | Jul 2017 | B2 |
9732746 | Chandrasekaran | Aug 2017 | B2 |
9732880 | Haines | Aug 2017 | B2 |
9745968 | Kotapish | Aug 2017 | B2 |
9784262 | Bayyouk | Oct 2017 | B2 |
9822894 | Bayyouk | Nov 2017 | B2 |
9845801 | Shek | Dec 2017 | B1 |
9857807 | Baca | Jan 2018 | B2 |
9915250 | Brasche | Mar 2018 | B2 |
9920615 | Zhang | Mar 2018 | B2 |
9927036 | Dille | Mar 2018 | B2 |
9945362 | Skurdalsvold | Apr 2018 | B2 |
9945375 | Zhang | Apr 2018 | B2 |
9989044 | Bayyouk | Jun 2018 | B2 |
10029540 | Seeger | Jul 2018 | B2 |
10041490 | Jahnke | Aug 2018 | B1 |
10082137 | Graham | Sep 2018 | B2 |
10094478 | Iijima | Oct 2018 | B2 |
10113679 | Shuck | Oct 2018 | B2 |
10184470 | Bamett, Jr. | Jan 2019 | B2 |
10190197 | Baker | Jan 2019 | B2 |
10197172 | Fuller | Feb 2019 | B2 |
10215172 | Wood | Feb 2019 | B2 |
10221848 | Bayyouk | Mar 2019 | B2 |
10240594 | Bamhouse, Jr. | Mar 2019 | B2 |
10240597 | Bayyouk | Mar 2019 | B2 |
10247182 | Zhang | Apr 2019 | B2 |
10247184 | Chunn | Apr 2019 | B2 |
10273954 | Brown | Apr 2019 | B2 |
10288178 | Nowell | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10330097 | Skurdalsvold | Jun 2019 | B2 |
10344757 | Stark | Jul 2019 | B1 |
10364487 | Park | Jul 2019 | B2 |
D856498 | Bayyouk | Aug 2019 | S |
10378535 | Mahmood | Aug 2019 | B2 |
10378538 | Blume | Aug 2019 | B2 |
10393113 | Wagner | Aug 2019 | B2 |
10400764 | Wagner | Sep 2019 | B2 |
10415348 | Zhang | Sep 2019 | B2 |
10428406 | Yao | Oct 2019 | B2 |
10428949 | Miller | Oct 2019 | B2 |
10436193 | Jahnke | Oct 2019 | B1 |
10443456 | Hoeg | Oct 2019 | B2 |
10465680 | Guerra | Nov 2019 | B1 |
10472702 | Yeh | Nov 2019 | B2 |
10487528 | Pozybill | Nov 2019 | B2 |
10519070 | Sanders | Dec 2019 | B2 |
10519950 | Foster | Dec 2019 | B2 |
10526862 | Witkowski | Jan 2020 | B2 |
10527036 | Blume | Jan 2020 | B2 |
10557446 | Stecklein | Feb 2020 | B2 |
10557576 | Witkowski | Feb 2020 | B2 |
10557580 | Mendyk | Feb 2020 | B2 |
10563494 | Graham | Feb 2020 | B2 |
10563649 | Zhang | Feb 2020 | B2 |
10570491 | Hong | Feb 2020 | B2 |
10576538 | Kato | Mar 2020 | B2 |
10577580 | Abbas | Mar 2020 | B2 |
10577850 | Ozkan | Mar 2020 | B2 |
10591070 | Nowell | Mar 2020 | B2 |
10605374 | Takaki | Mar 2020 | B2 |
10626856 | Coldren | Apr 2020 | B2 |
10633925 | Panda | Apr 2020 | B2 |
10634260 | Said | Apr 2020 | B2 |
10640854 | Hu | May 2020 | B2 |
10655623 | Blume | May 2020 | B2 |
10663071 | Bayyouk | May 2020 | B2 |
10670013 | Foster | Jun 2020 | B2 |
10670153 | Filipow | Jun 2020 | B2 |
10670176 | Byrne | Jun 2020 | B2 |
10677109 | Qiao | Jun 2020 | B2 |
10677240 | Graham | Jun 2020 | B2 |
10677365 | Said | Jun 2020 | B2 |
10711754 | Nelson | Jul 2020 | B2 |
10711778 | Buckley | Jul 2020 | B2 |
10718441 | Myers | Jul 2020 | B2 |
10731523 | Qu | Aug 2020 | B2 |
10731643 | DeLeon | Aug 2020 | B2 |
10738928 | Arizpe | Aug 2020 | B2 |
10753490 | Fuller | Aug 2020 | B2 |
10753495 | Bayyouk | Aug 2020 | B2 |
10767520 | Hattiangadi | Sep 2020 | B1 |
10774828 | Smith | Sep 2020 | B1 |
10781803 | Kumar | Sep 2020 | B2 |
10787725 | Fujieda | Sep 2020 | B2 |
10801627 | Warbey | Oct 2020 | B2 |
10808488 | Witkowski | Oct 2020 | B2 |
10815988 | Buckley | Oct 2020 | B2 |
10830360 | Frank | Nov 2020 | B2 |
10851775 | Stark | Dec 2020 | B2 |
10865325 | Nakao | Dec 2020 | B2 |
10907738 | Nowell | Feb 2021 | B2 |
10914171 | Foster | Feb 2021 | B2 |
10934899 | Hattiangadi | Mar 2021 | B2 |
10941866 | Nowell | Mar 2021 | B2 |
10954938 | Stark | Mar 2021 | B2 |
10961607 | Oshima | Mar 2021 | B2 |
10962001 | Nowell | Mar 2021 | B2 |
D916240 | Nowell | Apr 2021 | S |
10968717 | Tran | Apr 2021 | B2 |
10988834 | Lee | Apr 2021 | B2 |
10989321 | Hattiangadi | Apr 2021 | B2 |
10995738 | Blume | May 2021 | B2 |
11028662 | Rhodes | Jun 2021 | B2 |
11041570 | Buckley | Jun 2021 | B1 |
11078903 | Nowell | Aug 2021 | B2 |
11104981 | Chen | Aug 2021 | B2 |
11105185 | Spencer | Aug 2021 | B2 |
11105327 | Hurst | Aug 2021 | B2 |
11105328 | Bryne | Aug 2021 | B2 |
11105428 | Warbey | Aug 2021 | B2 |
11111915 | Bayyouk | Sep 2021 | B2 |
11131397 | Yan | Sep 2021 | B2 |
D933104 | Ellisor | Oct 2021 | S |
D933105 | Ellisor | Oct 2021 | S |
D933106 | Mullins | Oct 2021 | S |
D933107 | Mullins | Oct 2021 | S |
11149514 | Witkowski | Oct 2021 | B2 |
11162859 | Lei | Nov 2021 | B2 |
11181101 | Byrne | Nov 2021 | B2 |
11181108 | Brooks | Nov 2021 | B2 |
11231111 | Hurst | Jan 2022 | B2 |
11242849 | Smith | Feb 2022 | B1 |
20020084004 | Takahashi | Jul 2002 | A1 |
20020124961 | Porter | Sep 2002 | A1 |
20020159914 | Yeh | Oct 2002 | A1 |
20030205864 | Dietle | Nov 2003 | A1 |
20030233910 | Jeong | Dec 2003 | A1 |
20040170507 | Vicars | Sep 2004 | A1 |
20040194576 | Ando | Oct 2004 | A1 |
20040234404 | Vicars | Nov 2004 | A1 |
20040255410 | Schonewille | Dec 2004 | A1 |
20040258557 | Shun | Dec 2004 | A1 |
20050095156 | Wolters | May 2005 | A1 |
20050200081 | Stanton | Sep 2005 | A1 |
20050226754 | Orr | Oct 2005 | A1 |
20060002806 | Baxter | Jan 2006 | A1 |
20060027779 | McGuire | Feb 2006 | A1 |
20060045782 | Kretzinger | Mar 2006 | A1 |
20070086910 | Liang | Apr 2007 | A1 |
20070154342 | Tu | Jul 2007 | A1 |
20070273105 | Stanton | Nov 2007 | A1 |
20070295411 | Schwegman | Dec 2007 | A1 |
20080031769 | Yeh | Feb 2008 | A1 |
20080092384 | Schaake | Apr 2008 | A1 |
20080279706 | Gambier | Nov 2008 | A1 |
20090041611 | Sathian | Feb 2009 | A1 |
20090261575 | Bull | Oct 2009 | A1 |
20090278069 | Blanco | Nov 2009 | A1 |
20100272597 | Qiao | Dec 2010 | A1 |
20110079302 | Hawes | Apr 2011 | A1 |
20110142701 | Small | Jun 2011 | A1 |
20110189040 | Vicars | Aug 2011 | A1 |
20110255993 | Ochoa | Oct 2011 | A1 |
20120141308 | Saini | Jun 2012 | A1 |
20120163969 | Ongole | Jun 2012 | A1 |
20120304821 | Ando | Dec 2012 | A1 |
20130020521 | Byrne | Jan 2013 | A1 |
20130202457 | Bayyouk | Aug 2013 | A1 |
20130202458 | Byrne | Aug 2013 | A1 |
20130319220 | Luharuka | Dec 2013 | A1 |
20140083541 | Chandrasekaran | Mar 2014 | A1 |
20140083547 | Hwang | Mar 2014 | A1 |
20140196883 | Artherholt | Jul 2014 | A1 |
20140260954 | Young | Sep 2014 | A1 |
20140286805 | Dyer | Sep 2014 | A1 |
20140322034 | Bayyouk | Oct 2014 | A1 |
20140348677 | Moeller | Nov 2014 | A1 |
20150132157 | Whaley | May 2015 | A1 |
20150144826 | Bayyouk | May 2015 | A1 |
20150147194 | Foote | May 2015 | A1 |
20150219096 | Jain | Aug 2015 | A1 |
20150300332 | Kotapish | Oct 2015 | A1 |
20150368775 | Baker | Dec 2015 | A1 |
20160201169 | Vecchio | Jul 2016 | A1 |
20160215588 | Belshan | Jul 2016 | A1 |
20160238156 | Hubenschmidt | Aug 2016 | A1 |
20160245280 | Todorov | Aug 2016 | A1 |
20160319626 | Dille | Nov 2016 | A1 |
20160319805 | Dille | Nov 2016 | A1 |
20170067459 | Bayyouk | Mar 2017 | A1 |
20170089473 | Nowell | Mar 2017 | A1 |
20170097107 | Hotz | Apr 2017 | A1 |
20170159655 | Morreale | Jun 2017 | A1 |
20170218951 | Graham | Aug 2017 | A1 |
20170218993 | Freed | Aug 2017 | A1 |
20170297149 | Shinohara | Oct 2017 | A1 |
20170298932 | Wagner | Oct 2017 | A1 |
20170314097 | Hong | Nov 2017 | A1 |
20170342776 | Bullock | Nov 2017 | A1 |
20170342976 | Reddy | Nov 2017 | A1 |
20180017173 | Nowell | Jan 2018 | A1 |
20180058431 | Blume | Mar 2018 | A1 |
20180202434 | Bamhouse, Jr. | Jul 2018 | A1 |
20180298894 | Wagner | Oct 2018 | A1 |
20180312946 | Gigliotti, Jr | Nov 2018 | A1 |
20180320258 | Stewart | Nov 2018 | A1 |
20180340245 | Kemion | Nov 2018 | A1 |
20180354081 | Kalyani | Dec 2018 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190017503 | Foster | Jan 2019 | A1 |
20190024198 | Hong | Jan 2019 | A1 |
20190024225 | Tang | Jan 2019 | A1 |
20190032685 | Foster | Jan 2019 | A1 |
20190032720 | Bayyouk | Jan 2019 | A1 |
20190047049 | Fujieda | Feb 2019 | A1 |
20190049052 | Shuck | Feb 2019 | A1 |
20190063427 | Nowell | Feb 2019 | A1 |
20190063430 | Byrne | Feb 2019 | A1 |
20190071755 | Lee | Mar 2019 | A1 |
20190072088 | DeLeon | Mar 2019 | A1 |
20190072089 | Buckley | Mar 2019 | A1 |
20190085806 | Meibgeier | Mar 2019 | A1 |
20190085978 | Chase | Mar 2019 | A1 |
20190101109 | Cortes | Apr 2019 | A1 |
20190107226 | Bayyouk | Apr 2019 | A1 |
20190120389 | Foster | Apr 2019 | A1 |
20190136842 | Nowell | May 2019 | A1 |
20190145400 | Graham | May 2019 | A1 |
20190145568 | Nick | May 2019 | A1 |
20190154033 | Brooks | May 2019 | A1 |
20190170137 | Chase | Jun 2019 | A1 |
20190170138 | Bayyouk | Jun 2019 | A1 |
20190194786 | Chuang | Jun 2019 | A1 |
20190226058 | Fujieda | Jul 2019 | A1 |
20190242373 | Wernig | Aug 2019 | A1 |
20190264683 | Smith | Aug 2019 | A1 |
20190292633 | Porret | Sep 2019 | A1 |
20190301314 | Kamo | Oct 2019 | A1 |
20190301447 | Skurdalsvold | Oct 2019 | A1 |
20190316685 | Wang | Oct 2019 | A1 |
20190376508 | Wagner | Dec 2019 | A1 |
20200056272 | Hong | Feb 2020 | A1 |
20200063899 | Witkowkski | Feb 2020 | A1 |
20200080660 | Dyer | Mar 2020 | A1 |
20200080661 | Mullins | Mar 2020 | A1 |
20200157663 | Yang | May 2020 | A1 |
20200158123 | Chen | May 2020 | A1 |
20200173317 | Keating | Jun 2020 | A1 |
20200023245 | Blume | Jul 2020 | A1 |
20200208776 | Bayyouk | Jul 2020 | A1 |
20200217424 | Rasmussen | Jul 2020 | A1 |
20200240531 | Nowell | Jul 2020 | A1 |
20200256149 | Witkowski | Aug 2020 | A1 |
20200284253 | Foster | Sep 2020 | A1 |
20200284365 | Bayyouk | Sep 2020 | A1 |
20200290118 | Chen | Sep 2020 | A1 |
20200291731 | Haiderer | Sep 2020 | A1 |
20200300240 | Nowell | Sep 2020 | A1 |
20200308683 | Xue | Oct 2020 | A1 |
20200347843 | Mullins | Nov 2020 | A1 |
20200355182 | DeLeon | Nov 2020 | A1 |
20200392613 | Won | Dec 2020 | A1 |
20200393054 | Fuller | Dec 2020 | A1 |
20200399979 | Webster | Dec 2020 | A1 |
20200400003 | Webster | Dec 2020 | A1 |
20200400130 | Poehls | Dec 2020 | A1 |
20200400132 | Kumar | Dec 2020 | A1 |
20200400140 | Bayyouk | Dec 2020 | A1 |
20200400242 | Spencer | Dec 2020 | A1 |
20210010113 | Qiao | Jan 2021 | A1 |
20210010470 | Blume | Jan 2021 | A1 |
20210017830 | Witkowski | Jan 2021 | A1 |
20210017982 | Bayyouk | Jan 2021 | A1 |
20210017983 | Myers | Jan 2021 | A1 |
20210040836 | Baskin | Feb 2021 | A1 |
20210054486 | Kim | Feb 2021 | A1 |
20210102630 | Nowell | Apr 2021 | A1 |
20210108734 | Nowell | Apr 2021 | A1 |
20210130936 | Wu | May 2021 | A1 |
20210148471 | Murugesan | May 2021 | A1 |
20210180156 | Kim | Jun 2021 | A1 |
20210190053 | Wagner | Jun 2021 | A1 |
20210190223 | Bayyouk | Jun 2021 | A1 |
20210197524 | Maroli | Jul 2021 | A1 |
20210215071 | Oikawa | Jul 2021 | A1 |
20210215154 | Nowell | Jul 2021 | A1 |
20210230987 | Tanner | Jul 2021 | A1 |
20210239111 | Zitting | Aug 2021 | A1 |
20210246537 | Maroli | Aug 2021 | A1 |
20210260704 | Hu | Aug 2021 | A1 |
20210270261 | Zhang | Sep 2021 | A1 |
20210285551 | Renollett | Sep 2021 | A1 |
20210310484 | Myers | Oct 2021 | A1 |
20210381504 | Wagner | Dec 2021 | A1 |
20210381615 | Riedel | Dec 2021 | A1 |
20210388832 | Byrne | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
201149099 | Nov 2008 | CN |
102410194 | Apr 2012 | CN |
102748483 | Oct 2012 | CN |
102410194 | Apr 2021 | CN |
0414955 | Jan 1989 | DE |
0414955 | Mar 1991 | EP |
Entry |
---|
Weir Oil & Gas, “SPM Well Service Pumps & Flow Control Products TWS600S Fluid End Operation Instruction and Service Manual,” Feb. 27, 2017, https://www.global.weir/assets/files/oil%20and%20gas%20ebrochures/manuals/tws600s-fluid-end-2p121260.pdf, 41 pages. |
White Star Pump Co., “Maintenance Manual: Triplex Pump WS-1300/1600,” 2005, http://www.whitestarpump.com/ES/docs/user_t.pdf, 45 pages. |
Flowserve, “Dynamic Balance Plug Valve and Double DB Plug Valve: Installation, Operation and Maintenance,” 2011, https://www.flowserve.com/sites/default/files/2016-07/NVENIM2005-00_0.pdf, 36 pages. |
U.S. Appl. No. 16/814,267, 194 pages. |
U.S. Appl. No. 17/120,121, 110 pages. |
U.S. Appl. No. 62/234,483, 45 pages. |
U.S. Appl. No. 62/315,343, 41 pages. |
U.S. Appl. No. 62/318,542, 44 pages. |
U.S. Appl. No. 62/346,915, 41 pages. |
U.S. Appl. No. 62/379,462, 24 pages. |
“Flush Free Sealing Benefits,” Oct. 3, 2011, http://empoweringpumps.com/flush-free-sealing-benefits/, accessed May 9, 2020, 5 pages. |
Gardner Denver, Well Servicing Pump Model GD-3000—Operating and Service Manual, Apr. 2011, 44 pages. |
Gardner Denver, Well Servicing Pump Model GD-1000Q—Fluid End Parts List, Sep. 2011, 24 pages. |
Gardner Denver, Well Servicing Pump Model HD-2250—Operating and Service Manual, Jan. 2005, 44 pages. |
Gardner Denver, Gd 2500Q HDF Frac & Well Service Pump, 3 Pages. |
Cutting Tool Engineering, “Groove milling,” Aug. 1, 2012, https://www.ctemag.cojm/news/articles/groove-milling, accessed May 13, 2020, 11 pages. |
Vargususa, “Groovex Innovative Grooving Solutions—Groove Milling,” Dec. 12, 2011, http://www.youtube.com/watch?v=vrFxHJUXjvk, 68 pages. |
Kerr Pumps, Kerr KA-3500B/KA-3500BCB Plunger Pump Parts and Service Manual, 41 pages. |
Kerr Pumps, Kerr KD-1250B/KD-1250BCB Plunger Pump Service Manual, 38 pages. |
Kerr Pumps, Kerr KJ-2250B and KJ-2250BCB Plunger Pump Service Manual, 38 pages. |
Kerr Pumps, Kerr KM-3250B/KM-3250BCB Plunger Pump Service Manual, 35 pages. |
Kerr Pumps, Kerr KP-3300B/KP-3300BCB Plunger Pump Service Manual, 41 pages. |
Kerr Pumps, Kerr KT-3350B/BCB KT-3400BCB Plunger Pump Service Manual, 46 pages. |
Kerr Pumps, Kerr triplex pump km3250bcb 10,000 psi @ 5.1 gmp, Feb. 2, 2021, http://imged.com/kerr-triplex-pump-km3250bcb-10-000-psi-5-1-gmp-8234739.html, 2 pages. |
Lex Machina, 77 Federal district court cases for Alan D Albright of W.D. Tex., http://law.lexmachina.com/court/txwd/judge/5198506/cases?status=open&filed_on-from=2020-02-19&filed_on-to=2020-04-19&pending-, 7 pages. |
Lex Machina, Motion Metrics Report for 834 orders issued by District Judge Alan D Albright (ADA) in 1,603 cases from the Search for federal district court cases before Judge Alan D Albright, https://law.lexmachina.com/motions/motion_metrics?cases_key=yyix9Y8-k2k, generated on Sep. 23, 2020, 1 page. |
Lex Machina, 6:20-cv-00200-ADA, Kerr Machine Co.v. Vulcan Industrial Holdings, LLC Docket Entries, https://law. exmachina.com/cases/2004206451#docket-entries, 6 pages. |
Jonathan Maes, “Machining Square Inside Corners: Conquer the Nightmare!,” accessed Sep. 8, 2020, https://makeitfrommetal.com/machining-square-inside-corners-the-night., 22 pages. |
Ross Mackay, “Process Engineering: Properly seal that pump,” May 17, 2005, https://www.chemicalprocessing.com/articles/2005/465, 11 pages. |
MSI Fluid End Components, https://www.scribd.com/document/421304589/Fluid-End, 1 page. |
MSI Dixie Iron Works, Ltd., MSI QI-1000 Technical Manual for 1000 HP Quintuplex MSI QI-1000 Pump, Feb. 21, 2004, 90 pages. |
MSI, Product Listing and Pricing, accessed Mar. 8, 2016, 19 pages. |
National Oilwell Varco, 267Q-6M Quinuplex Plunger Pump: Parts List, Jul. 21, 2008, 13 pages. |
Oil and Gas Well Servicing, Audit Procedures for Oil and Gas Well Servicing, May 2010, Texas Comptroller of Public Accounts, Audit Division, 68 pages. |
Fony Atkins and Marcel Escudier, Oxford Dictionary of Mechanical Engineering, Oxford University Press, 2013, 10 pages. |
Parker Hannifin Corporation and Autoclave Engineers, Technical Information, 2016, 16 pages. |
Girdhar, Moniz and Mackay, “Chapter 5.4 Centrifugal pump design,” Plant and Process Engineering 360, 2010, pp. 519-536. |
Parker Hannifin Corporation, PolyPak Seals for Hydraulic Applications Catalog EPS 5370_PolyPak, 2015, 38 pages. |
Paresh Girdhar and Octo Moniz, “Practical Centrifugal Pumps—Design. Operation and Maintenance,” Newnes, 2005, 33 pages. |
Reinhard Preiss, “Stress concentration factors of flat end to cylindrical shell connection with a fillet or stress relief groove subjected to internal pressure,” 1997, Int. J. Pres. Ves & Piping, vol. 73, pp. 183-190. |
Caterpillar, WS255 Quintuplex Well Stimulation Pump, 2 pages. |
Gardner Denver Pumps, Redline Series Brochure, 3 pages. |
Eaton Aerospace Group, Resilient Metallic Seals, TF100-35D, Oct. 2013, 60 pages. |
Scott McKeown, “District Court Trial Dates Tend to Slip After PTAB Discretionary Denials - Patents Post-Grant,” Jul. 24, 2020, Ropes & Gray, accessed Sep. 23, 2020, 3 pages. |
Ricky Smith and R. Keith Mobley, “Rules of Thumb for Maintenance and Reliability Engineers—Chapter 14: Packing and Seals,” Elsevier, 2008, pp. 239-250. |
Schlumberger, Jet Manual 02—Reciprocating Pumps, Aug. 7, 2015, 63 pages. |
Schlumberger, Treating Equipment Manual: Fluid Ends, Section 10, Apr. 2000, 87 pages. |
SPM Oil & Gas, SPM QEM 3000 Frac Pump, 2021, 4 pages. |
Supplemental Declaration of Steven M. Tipton, Ph.D., P.E.—Case PGR2020-00065, U.S. Pat. No. 10,591,070, Mar. 2, 2021, 35 pages. |
Servagroup, TPD 600 Triplex Pump Brochure, Mar. 24, 2011, 2 pages. |
Utex Industries, Inc., Well Service Products Catalog, Jun. 2017, 51 pages. |
Utex Industries, Inc., Well Service Packing—Packing Assemblies Complete & Replacement, May 2013, 40 pages. |
Vargus Ltd., Groove Milling High Precision Tools for Groove Milling, Dec. 2012, pp. 2-22. |
Declaration of Duncan Hall from Internet Archive/Wayback Machine, Feb. 3, 2021, Kerr Plunger Pump Manuals, 20 pages. |
Michael Agnes, Editor, Webster's New World College Dictionary, Fourth Edition, 1999, 5 pages. |
WEIR SPM Oil & Gas, Grooveless Fluid End, 2008, 1 page. |
WEIR SPM Oil & Gas, Weir SPM General Catalog, 2009, 40 pages. |
WEIR SPM Oil & Gas, Well Service Pump Reference Guide, 2008, 55 pages. |
Intellectual Ventures I LLCv VMWare, Inc. , Case No. 1:19-CV-01075-ADA, Document 91 (W.D. Tex Jun. 3, 2020), Defendant VMWare, Inc.'s Stipulation of Invalidity Contentions for U.S. Pat. No. 7,949,752, Jun. 3, 2020, 5 pages. |
Vulcan Industrial Holding, LLC et al.v. Kerr Machine Co. Case No. 4:21-cv-433, Document 1, Complaint for Declaratory Judgment of Patent Non-lnfringement, Feb. 9, 2021, 17 pages. |
Trilogy Enterprises, Inc., v. Trilogy Education Services, LLC , Case. No. 6:19-cv-199-ADA-JCM, Document 35, Fifth Amended Scheduling Order, Sep. 8, 2020, 4 pages. |
Dr. Corneliu Bolboceanv Baylor University , Case No. 6:19-CV-00465-ADA-JCM, Document 34, Scheduling Order, Apr. 6, 2020, 4 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:21-CV-00044-ADA, Document 4, Plaintiffs Amended Complaint for Patent nfringement and Jury Demand, Jan. 19, 2021, 30 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:21-CV-00044, Document 1, Plaintiffs Original Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 47 pages. |
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:21-CV-00044-ADA, Document 10, Plaintiffs Second Amended Complaint for Patent Infringement and Jury Demand, Feb. 1, 2021, 88 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC , Case No. W-20-CV-00200-ADA-24, Order Setting Trial Date, Jun. 14, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC , Case No. W-20-CV-00200-ADA-29, Order Setting Trial Date, Aug. 2, 2020, 1 page. |
Kerr Machine Co., v. Vulcan Industrial Holdings, LLC , Case. No. 6:20-CV-00200-ADA, Affidavit of Service, Apr. 7, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Plaintiffs First Amended Complaint for Patent Infringement and Jury Demand, Jun. 4, 2020, 11 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Document 26, Defendant Cizion, LLC d/b/a Vulcan Industrial Manufacturing, LLC's Motion to Dismiss or Transfer, Jul. 22, 2020, 10 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Defendants' Opposed Motion to Stay Litigation Pending the Outcome of the Pending Post-Grant Review Proceeding Before the Patent Trial and Appeal Board, Jul. 31, 2020, 14 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200-ADA, Plaintiffs Preliminary nfringement Contentions, May 22, 2020, 50 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Defendants' Preliminary Invalidity Contentions, Aug. 13, 2020, 29 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Document 34, Scheduling Order, Aug. 11, 2020, 3 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Document 38, Plaintiffs Second Amended Complaint for Patent Infringement and Jury Demand, Sep. 25, 2020, 11 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Document 5, Standing Order regarding Scheduled Hearings in Civil Cases in Light of Chief Judge Garcia's 24 Amended Order, Mar. 24, 2020, 4 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Civil Docket for Case No. 6:20-cv-00200-ADA, accessed Sep. 11, 2020, 7 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Document 54, Claim Construction Order, Dec. 3, 2020, 3 pages. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing , Case No. 6:20-CV-00200-ADA, Docket Entry, Aug. 2, 2020, 1 page. |
Kerr Machine Co., v Vulcan Industrial Holdings, LLC , Case No. 6:20-CV-00200, Document 1, Plaintiffs Original Complaint for Patent Infringement and Jury Demand, Mar. 19, 2020, 39 pages. |
Adriana del Rocio Barberena-Rovira, et al., v Kuiper Dairy, LLC , et al., Case No. 6:20-CV-00250-ADA-JCM, Document 20, Scheduling Order, Jul. 22, 2020, 4 pages. |
Acquanlan Deonshay Harrisv. Cenlar, FSB , Case No. 6:20-CV-00271-ADA-JCM, Document 13, Scheduling Order, Aug. 20, 2020, 4 pages. |
Senior Living Properties, LLCc. Ironshore Speciality, Insurance Company , Case No. 6:20-CV-00282-ADA-JCM, Document 12, Scheduling Order, Jul. 7, 2020, 4 pages. |
Dionne Bracken, Individually and as Next Friend of A.M.B., v Michael D. Ashcraft and Envirovac Waste Transport Systems, Inc. , Case No. 6:20-CV-00308-ADA-JCM, Document 17, Scheduling Order, Jul. 28, 2020, 4 pages. |
Kendra Coufalv. Roger Lee Thomas and Apple Logistics, Inc. , Case No. 6:20-CV-00356-ADA-JCM, Document 12, Scheduling Order, Jul. 28, 2020, 4 pages. |
Tipton International, Inc., v. Vetbizcorp, LLC and Samuel Cody , Case No. 6:20-CV-00554-ADA-JCM, Document 8, Scheduling Order, Aug. 20, 2020, 4 pages. |
Dynaenergetics GmbH & Co. KG and Dynaenergetics US, Inc., v. Hunting Titan, Ltd.; Hunting Titan, Inc.; and Hunting Energy Services, Inc. , Case No. H-17-3784, Order, Sep. 4, 2020, 2 pages. |
Slip Opinion, In re Sand Revolution LLC, Case No. 2020-00145 (Fed. Cir. Sep. 28, 2020), 3 pages. |
In re Vulcan Industrial Holdings, LLC, Case No. 2020-00151 (Fed. Cir. Sep. 29, 2020), Petition for Writ of Mandamus, 43 pages. |
Densys Ltd., v. 3Shape Trios A/S and 3Shape A/S , Case No. WA:19-CV-00680-ADA, Document 27, Scheduling Drder, Apr. 8, 2020, 4 pages. |
Kerr Machine Co.vs. Vulcan Industrial Holdings, LLC , Case No. WA:20-CV-00200-ADA, Order Setting Markman Hearing, May 29, 2020, 1 page. |
U.S. Appl. No. 17/241,680 titled “Fluid End and Center Feed Suction Manifold” filed Apr. 27, 2021 lacks reference in file wrapper but has been considered (abandoned before publication). |
White Star Pump Co., “Maintenance Manual: Triplex Pump WS-1300/1600,” 2005, http://www.whitestarpump.com/ES/iocs/user_t.pdf, 45 pages. |
KerrPumps, “Super Stainless Steel Better Than The Best,” http://kerrpumps.com/superstainless? gclid=EAIalQobChMlg47o482q6wlVilTICh2XPA-qEAAYASAAEgKrxPD_BwE, 2013, last accessed: Aug. 21, 2020, 6 pages. |
KerrPumps, “Frac One Pumps—Fluid End—Fracing,” http://kerrpumps.com/fracone, 2013, last accessed: Aug. 21, 2020, 3 pages. |
Kerrpumps, “KerrPumps—Frac Pump & Mud Pump Fluid End—Fluid End Pump,” http://kerrpumps.com/fluidends, 2013, last accessed: Aug. 21, 2020, 6 pages. |
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/, 2019, last accessed: Aug. 21, 2020, 3 pages. |
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/fluid-ends/, 2019, last accessed: Aug. 21, 2020, 3 pages. |
Covert Manufacturing, Inc., “Fluid End Block: Covert Manufacturing”, (site visited Jul. 30, 2021), covertmfg.com, URL <http://www.covertmfg.com/our-capabilities/fluid-end-block/> (Year: 2021). |
Kerr Pumps, “the most advanced fluid ends”, (site visited Aug. 5, 2021), Kerrpumps.com, URL: <http://kerrpumps.com/fluidends> (Year: 2021). |
Shandong Baorun, 2250 Triplex Plunger Pump Fluid End Exchangeable with Spm, (site visited Aug. 5, 2021), made-in-china.com, URL: <https://sdbaorun.en.made-in-china.com/product/wNixIDXYrshL/China-2250-Triplex-Plunger-Pump-Fluid-End-Exchangeable-with-Spm.html> (Year: 2021). |
John Miller, “The Reciprocating Pump, Theory, Design and Use,” 1995, 2nd Edition, Krieger Publishing Company, Malabar, Florida, 1 page. |
“QIH-1000 HP Quintuplex,” Dixie Iron Works, 2017, https://web.archive.org/web/20171031221150/http:/www. diwmsi.com/pumping/qi-1000/. |
Technical Manual MSI Hybrid Well Service Pump Triplex and Quintuplex Models, Dixie Iron Works, Mar. 12, 2019, 38 pages. |
Carpenter, “CarTech Ferrium C61 Data Sheet,” 2015, 2 pages. |
The American Heritage Dictionary, Second College Edition, 1982, 6 pages. |
Matthew Bultman, “Judge in West Texas Patent Hot Spot Issues Revised Guidelines,” Sep. 23, 2020, Bloomberg Law News, 3 pages. |
David L. Taylor, “Machine Trades Blueprint Reading: Second Edition,” 2005, 3 pages. |
Blume, U.S. Pat. No. 6,544,012, issued Apr. 8, 2003, Fig. 12A. |
Caterpillar, “Cat Fluid Ends For Well Stimulation Pumps,” 2015, 2 pages. |
Claim Chart for U.S. Pat. No. 6,544,012, 23 pages. |
Claim Chart for U.S. Pat. No. 7,186,097, 22 pages. |
Claim Chart for U.S. Pat. No. 7,845,413, 8 pages. |
Claim Chart for U.S. Pat. No. 9,534,472, 8 pages. |
Claim Chart for U.S. Pat. Pub. No. 2013/0319220, 17 pages. |
Claim Chart for U.S. Pat. Pub. No. 2014/0348677, 10 pages. |
Claim Chart for U.S. Pat. Pub. No. 2015/0132157, 23 pages. |
Claim Chart for “GD-3000,” 9 pages. |
Claim Chart for “NOV-267Q,” 14 pages. |
Collins English Dictionary, “annular,” https://www.collinsdictionary.com/us/dictionary/english/annular, 2021, 4 pages. |
Collins English Dictionary, “circumference,” https://www.collinsdictionary.com/us/dictionary/english/circumference, 2021, 7 pages. |
Collins English Dictionary, “plug,” https://www.collinsdictionary.com/us/dictionary/english/plug, 2021, 17 pages. |
Collins English Dictionary, “profile,” https://www.collinsdictionary.com/us/dictionary/english/profile, 2021, 10 pages. |
Collins English Dictionary, “sleeve,” “therethrough,” “through,” “tube,” and “tubular,” 8 pages. |
Collins English Dictionary, “space,” https://www.collinsdictionary.com/US/dictionary/english/space, 2021, 13 pages. |
Collins English Dictionary, “stairstep,” https://www.collinsdictionary.com/US/dictionary/english/stairstep, 2021, 3 pages. |
Congressional Record—Extensions of Remarks, Apr. 18, 2007, pp. E773-E775. |
Congressional Record, Mar. 7, 2011, 31 pages. |
“Declaration of Steven M. Tipton, Ph.D., P.E., Submitted with Patent Owner's Preliminary Response,” Sep. 11, 2020, 155 pages. |
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,914,171,” Feb. 11, 2021, 308 pages. |
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,591,070,” May 25, 2020, 209 pages. |
Email dated Sep. 22, 2020 in PGR2020-00065, 3 pages. |
Email dated Sep. 25, 2020 in Kerr Machinev Vulcan Industrial Holdings , 1 page. |
U.S. Pat. No. 10,288,178, 353 pages. |
U.S. Pat. No. 10,519,950, 142 pages. |
U.S. Pat. No. 10,591,070, 168 pages. |
U.S. Appl. No. 16/722,139, 104 pages. |
U.S. Appl. No. 13/773,271, 250 pages. |
U.S. Appl. No. 15/719,124, 183 pages. |