Not Applicable
The present invention relates to the production of pre-stressed concrete, and in particular to the production of a composite wall panel using pre-stressed concrete with fibrous reinforcing tendons.
Modern use of steel reinforcement, known as rebar, concealed within the concrete to carry the loads and protect the rebar from the environment. Steel is made mainly of iron, and one of iron's unalterable properties is that it rusts. This ruins the durability of concrete structures in ways that are difficult to detect and reduces the longevity of the structure causing costly to repair.
The first defense against rebar corrosion is to thicken the highly impermeable concrete coverage. This limits the amount of square footage that can be transported at one time due to highway load limitations. It also creates a need for large cranes to move the panels. It requires substantial foundations, beams and columns to carry the dead load created by these concrete panels. Current prestressed concrete walls panels using steel reinforcement cables and rebars are heavy due to required cover over and the weight of steel reinforcement.
Current usage of composite rebar reinforcement without our prestress technology is not cost efficient due to the low modulus of elasticity of typically used composite reinforcement, with the exception of carbon fiber composite rebar which has a limitation of being too costly for use except in very specialized applications. Typical composite rebar currently used such as glass fiber rebar with the low modulus stretches much easier than steel rebar. This creates a need to use more rebar to compensate or the panels must be designed with larger diameter rebar to avoid cracking the panels during transport or erection.
Using prestressed composite reinforcement allows for thinner wall sections reducing the weight of the wall panels. Panels can be designed with sections to bear the loads required without having to design the sections to prevent reinforcement from corrosion.
As stated above, current steel reinforced prestressed concrete wall panels are designed to protect the steel reinforcement inside of the concrete sections as opposed to being designed to carry the loads they are subject to. This limits the amount of square footage that can be transported at one time due to highway load limitations. It also creates a need for large cranes to move the panels. It requires substantial foundations, beams and columns to carry the dead load created by these concrete panels.
Current usage of composite reinforcement without our prestress technology is not cost efficient due to the low modulus of elasticity of typically used composite reinforcement, with the exception of carbon fiber composite which has a limitation of being too costly for use except in very specialized applications. Typical composite rebar currently used such as glass fiber rebar with the low modulus stretches much easier than steel rebar. This creates a need to use more rebar to compensate or the panels must be designed with larger diameter rebar to avoid cracking the panels during transport or erection. The invention claimed here solves this problem.
Prestressing the composite reinforcement rebar in the concrete panels creates a compression in the concrete from the prestressed rebar which creates a stiffer panel than non-stressed rebar. The increased in tensile strength allows us to increase the distance between rebar. Composite rebars do not rust allowing us to decrease concrete coverage, decrease in concrete volume and bring the composite rebar closer to the surface of the wall panel allowing the load to be absorb by the rebars sooner than steel rebars. Composite reinforcement may herein be referred to as Fiber Reinforced Polymer or FRP. “Rod rebar” may be used to specifically refer to non-twisted composite rebar.
This allows for more panels to be transported to construction sights, smaller cranes to be used to move the panels and reduced beam, column and foundation costs due to the decreased dead load of the panels.
The claimed invention differs from what currently exists. Our prestressed composite concrete panels are lighter and more durable than conventional steel strands/cables prestressed concrete panels. Our panels are also less costly to produce, transport and erect due to the reduction in concrete used.
Current prestressed wall panels are expensive to transport and erect due to the weights and equipment needed to move such weights and are mainly limited to commercial construction due to these factors.
Also, it can produce Wall panels can be produced for use in underground, above ground structures or near salty atmosphere like oceans and seas. Wall panels can be structural or curtain wall and/or architectural.
Referring now also to
In the exemplary embodiment, the rod rebar 18 may be basalt fiber reinforced polymer, also known in the trade name “Rockbar”, by Galen Composites. The rod rebar 18 may be solid fiber reinforced polymer, as can be contrasted by twisted fiber filament rods.
Chucks 14 are shown to be positioned outside bulkhead 12 and operatively attached to selected rod rebar 18. Chuck 14 are designed to allow rod rebar 18 to be drawn outwardly through the chuck 14, while then holding the rod rebar 18 firmly in place, and not allowing retraction. Appropriately sized and designed chuck 14 should be able to hold in excess of a ton of tension on a piece of rod rebar 18.
Referring now primarily to
In the exemplary embodiment, a rod rebar 18 is embedded with in concrete 20 in each layer of concrete 20 with in wall panel 10. Shear connectors 24, which may be made of similar material to the rod rebar 18, may be placed diagonally through the wall panel 10 structure to provide shear strength. Shear connectors 24 that do not conduct heat may be advantageous in maintaining the high insulation factor of the composite wall panel 10.
Referring now to
Referring now to
Once formed, composite wall panels 10 may be used horizontally as floor or ceiling panels, in addition to their conventional use as vertical walls. Being that the amount of concrete is greatly reduced, while retaining strength and rigidity, the composite wall panels may be easily formed at a centralized location and shipped to a use site.
Using prestressed composite precast concrete wall panels manufacturers are able to use less concrete and eliminating the steel in their production reducing overall cost and weight. Builders are able to transport more wall panels to the construction site. Smaller cranes can be used to move the panels or larger cranes can extend their reach without having to move as often. The reduced dead load of the panels generally reduces the cost of the foundation. Additionally, this invention can be used to produce any item that is currently now produced using prestressed steel strand and concrete. Items could include but are not limited to beams and columns, railroad sleepers, seawalls, infrastructures, parking lot, podiums, bridge decks and double-T parking decks. Also, it can create: Wall panels can be produced for use in underground or above ground structures. Wall panels can be structural or curtain wall and/or architectural.
The examples contained in this specification are merely possible implementations of the current system, and alternatives to the particular features, elements and process steps, including scope and sequence of the steps may be changed without departing from the spirit of the invention. The present invention should only be limited by the examined and allowed claims, and their legal equivalents, since the provided exemplary embodiments are only examples of how the invention may be employed, and are not exhaustive.
This application claims the benefit of U.S. Application No. 63/035,264, filed on Jun. 5, 2020, by the present inventors, entitled “Precast Concrete Wall Panel System Utilizing Prestressed Composite Reinforcement,” international application No. PCT/US2017/056000, filed on Oct. 10, 2017, entitled “Production of Pre-Stressed Concrete Structures Using Fibrous Reinforcing Tendons,” U.S. application Ser. No. 16/375,260, filed on Apr. 4, 2019, entitled “Production of Pre-Stressed Concrete Structures Using Fibrous Reinforcing Tendons,” and U.S. Application No. 62/406,613, filed on Oct. 11, 2016, entitled “Concrete Pre-Stressed with Fiber Reinforced Polymers,” which both are hereby incorporated by reference in their entirety for all allowable purposes, including the incorporation and preservation of any and all rights to patentable subject matter of the inventor, such as features, elements, processes and process steps, and improvements that may supplement or relate to the subject matter described herein.
Number | Date | Country | |
---|---|---|---|
63035264 | Jun 2020 | US |