1. Field of the Invention
This invention relates to bone implant materials and methods and more particularly to composite materials including an elastomer component for treating abnormalities in bones such as compression fractures of vertebra, necrosis of femurs, joint implants and the like. An exemplary method includes introducing a flowable composite material into the interior of a bone wherein increasing pressures result in the elastomer component causing a differential apparent viscosity within selected regions across the flowable material to thereby allow controlled application of forces to the bone for reducing a fracture.
2. Description of the Related Art
Osteoporotic fractures are prevalent in the elderly, with an annual estimate of 1.5 million fractures in the United States alone. These include 750,000 vertebral compression fractures (VCFs) and 250,000 hip fractures. The annual cost of osteoporotic fractures in the United States has been estimated at $13.8 billion: The prevalence of VCFs in women age 50 and older has been estimated at 26%. The prevalence increases with age, reaching 40% among 80-year-old women. Medical advances aimed at slowing or arresting bone loss from aging have not provided solutions to this problem. Further, the affected population will grow steadily as life expectancy increases. Osteoporosis affects the entire skeleton but most commonly causes fractures in the spine and hip. Spinal or vertebral fractures also have serious consequences, with patients suffering from loss of height, deformity and persistent pain which can significantly impair mobility and quality of life. Fracture pain usually lasts 4 to 6 weeks, with intense pain at the fracture site. Chronic pain often occurs when one level is greatly collapsed or multiple levels are collapsed.
Postmenopausal women are predisposed to fractures, such as in the vertebrae, due to a decrease in bone mineral density that accompanies postmenopausal osteoporosis. Osteoporosis is a pathologic state that literally means “porous bones”. Skeletal bones are made up of a thick cortical shell and a strong inner meshwork, or cancellous bone, of collagen, calcium salts and other minerals. Cancellous bone is similar to a honeycomb, with blood vessels and bone marrow in the spaces. Osteoporosis describes a condition of decreased bone mass that leads to fragile bones which are at an increased risk for fractures. In an osteoporotic bone, the sponge-like cancellous bone has pores or voids that increase in dimension, making the bone very fragile. In young, healthy bone tissue, bone breakdown occurs continually as the result of osteoclast activity, but the breakdown is balanced by new bone formation by osteoblasts. In an elderly patient, bone resorption can surpass bone formation thus resulting in deterioration of bone density. Osteoporosis occurs largely without symptoms until a fracture occurs.
Vertebroplasty and kyphoplasty are recently developed techniques for treating vertebral compression fractures. Percutaneous vertebroplasty was first reported by a French group in 1987 for the treatment of painful hemangiomas. In the 1990's, percutaneous vertebroplasty was extended to indications including osteoporotic vertebral compression fractures, traumatic compression fractures, and painful vertebral metastasis. In one percutaneous vertebroplasty technique, bone cement such as PMMA (polymethylmethacrylate) is percutaneously injected into a fractured vertebral body via a trocar and cannula system. The targeted vertebrae are identified under fluoroscopy. A needle is introduced into the vertebral body under fluoroscopic control to allow direct visualization. A transpedicular (through the pedicle of the vertebrae) approach is typically bilateral but can be done unilaterally. The bilateral transpedicular approach is typically used because inadequate PMMA infill is achieved with a unilateral approach.
In a bilateral approach, approximately 1 to 4 ml of PMMA are injected on each side of the vertebra. Since the PMMA needs to be forced into cancellous bone, the technique requires high pressures and fairly low viscosity cement. Since the cortical bone of the targeted vertebra may have a recent fracture, there is the potential of PMMA leakage. The PMMA cement contains radiopaque materials so that when injected under live fluoroscopy, cement localization and leakage can be observed. The visualization of PMMA injection and extravasasion are critical to the technique—and the physician terminates PMMA injection when leakage is evident. The cement is injected using small syringe-like injectors to allow the physician to manually control the injection pressures.
Kyphoplasty is a modification of percutaneous vertebroplasty. Kyphoplasty involves a preliminary step that comprises the percutaneous placement of an inflatable balloon tamp in the vertebral body. Inflation of the balloon creates a cavity in the bone prior to cement injection. Further, the proponents of percutaneous kyphoplasty have suggested that high pressure balloon-tamp inflation can at least partially restore vertebral body height. In kyphoplasty, it has been proposed that PMMA can be injected at lower pressures into the collapsed vertebra since a cavity exists to receive the cement—which is not the case in conventional vertebroplasty.
The principal indications for any form of vertebroplasty are osteoporotic vertebral collapse with debilitating pain. Radiography and computed tomography must be performed in the days preceding treatment to determine the extent of vertebral collapse, the presence of epidural or foraminal stenosis caused by bone fragment retropulsion, the presence of cortical destruction or fracture and the visibility and degree of involvement of the pedicles, Leakage of PMMA during vertebroplasty can result in very serious complications including compression of adjacent structures that necessitate emergency decompressive surgery.
Leakage or extravasasion of PMMA is a critical issue and can be divided into paravertebral leakage, venous infiltration, epidural leakage and intradiscal leakage. The exothermic reaction of PMMA carries potential catastrophic consequences if thermal damage were to extend to the dural sac, cord, and nerve roots. Surgical evacuation of leaked cement in the spinal canal has been reported. It has been found that leakage of PMMA is related to various clinical factors such as the vertebral compression pattern, and the extent of the cortical fracture, bone mineral density, the interval from injury to operation, the amount of PMMA injected and the location of the injector tip. In one recent study, close to 50% of vertebroplasty cases resulted in leakage of PMMA from the vertebral bodies. See Hyun-Woo Do et al., “The Analysis of Polymethylmethacrylate Leakage after Vertebroplasty for Vertebral Body Compression Fractures”, Jour. of Korean Neurosurg. Soc. Vol. 35, No. 5 (May 2004) pp. 478-82, (http://www.jkns.or.kr/htm/abstract.asp?no=042004086).
Another recent study was directed to the incidence of new VCFs adjacent to the vertebral bodies that were initially treated. Vertebroplasty patients often return with new pain caused by a new vertebral body fracture. Leakage of cement into an adjacent disc space during vertebroplasty increases the risk of a new fracture of adjacent vertebral bodies. See Am. J. Neuroradiol. 2004 February; 25(2):175-80. The study found that 58% of vertebral bodies adjacent to a disc with cement leakage fractured during the follow-up period compared with 12% of vertebral bodies adjacent to a disc without cement leakage.
Another life-threatening complication of vertebroplasty is pulmonary embolism. See Bernhard, J. et al., “Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty”, Ann. Rheum. Dis. 2003; 62:85-86. The vapors from PMMA preparation and injection are also cause for concern. See Kirby. B., et al., “Acute bronchospasm due to exposure to polymethlmethacrylate vapors during percutaneous vertebroplasty”, Am. J. Roentgenol. 2003; 180:543-544.
Another disadvantage of PMMA is its inability to undergo remodeling—and the inability to use the PMMA to deliver osteoinductive agents, growth factors, chemotherapeutic agent and the like. Yet another disadvantage of PMMA is the need to add radiopaque agents which lower its viscosity with unclear consequences on its long-term endurance.
In both higher pressure cement injection (vertebroplasty) and balloon-tamped cementing procedures (kyphoplasty), the methods do not provide for well controlled augmentation of vertebral body height. The direct injection of bone cement simply follows the path of least resistance with the fractured bone. The expansion of a balloon also applies compacting forces along lines of least resistance in the collapsed cancellous bone. Thus, the reduction of a vertebral compression fracture is not optimized or controlled in high pressure balloons as forces of balloon expansion occur in multiple directions.
In a kyphoplasty procedure, the physician often uses very high pressures (e.g., up to 200 or 300 psi) to inflate the balloon which first crushes and compacts cancellous bone. Expansion of the balloon under high pressures close to cortical bone can fracture the cortical bone, or cause regional damage to the cortical bone that can result in cortical bone necrosis. Such cortical bone damage is highly undesirable and results in weakened cortical endplates.
Kyphoplasty also does not provide a distraction mechanism capable of 100% vertebral height restoration. Further, the kyphoplasty balloons under very high pressure typically apply forces to vertebral endplates within a central region of the cortical bone that may be weak, rather than distributing forces over the endplate.
There is a general need to provide systems and methods for use in treatment of vertebral compression fractures that provide a greater degree of control over introduction of bone support material, and that provide better outcomes. Embodiments of the present invention meet one or more of the above needs, or other needs, and provide several other advantages in a novel and non-obvious manner.
The invention provides systems and method of treating bone abnormalities including vertebral compression fractures, bone tumors and cysts, avascular necrosis of the femoral head and the like. In one embodiment, an elastomeric composite implant body is inserted into bone. A rigid insert can be inserted into the elastomeric composite implant body. The elastomeric composite implant body can be deformed with the rigid insert to thereby form an interference fit between the bone and the implant.
A method according to some embodiments can include inserting an elastomeric composite implant body having a predetermined shape into an opening in a bone, the composite implant body defining an internal bore along a longitudinal axis of the composite implant body. The elastomeric composite implant body can include at least one first region and at least one second region. Each region can comprise an elastomeric polymer and reticulated elements dispersed within the elastomeric polymer. The at least one first region can have a different elastic modulus from the at least one second region, the difference being a function of differences between the reticulated elements in the at least one first region as compared to the reticulated elements in the at least one second region. The method can further include inserting a rigid insert into the bore in the elastomeric composite implant body to secure the implant in the bone and deforming the elastomeric composite implant body with the rigid insert to thereby form an interference fit between the bone and the implant, the at least one first region deforming in a manner different from the at least one second region.
In the following detailed description, similar reference numerals are used to depict like elements in the various figures.
In general, an exemplary method corresponding to the invention for treating mammalian bone comprises the following: (a) flowing an initial volume of flowable media into the interior of a bone wherein the media includes a volume of elastomeric elements, and (b) flowing under pressure increasing volumes of the flowable media wherein injection pressures causes a differential apparent viscosity within selected regions across the flowable media. The method further includes causing surface regions 20 of the plume 18 of flowable media to be substantially impermeable to flows therethrough (
In another embodiment, the fill material 4 described above includes an elastomer filler composite 6 that carries microscale or mesoscale reticulated elements 10B (
In any embodiment, elastomer composite elements 6 can carry radiosensitive and magnetic-sensitive fillers for cooperating with an RF source or an inductive heating source for elevating the polymer to a targeted temperature. Alternatively, the polymeric composition can be substantially transparent or substantially translucent and carry chromophores for cooperating with a light source introduced with the material for heating the material to a selected temperature for increasing the modulus of the material. Thus, such methods of heating surface regions 20 (
The reticulated structures 10B as in
Referring back to
In another embodiment depicted in
The above-described embodiments describe elastomer composites that cooperate with fill materials to control properties of the interface between fill material and bone. The scope of the invention extends to elastomer composites as in
In any embodiment, the fill materials or implants can further carry a radiopaque or radiovisible composition if the material of the reticulated elements is not radiovisible.
In any embodiment, the fill materials or implants can carry any pharmacological agent or any of the following: antibiotics, cortical bone material, synthetic cortical replacement material, demineralized bone material, autograft and allograft materials. The implant body also can include drugs and agents for inducing bone growth, such as bone morphogenic protein (BMP). The implants can carry the pharmacological agents for immediate or timed release.
The above description of the invention is intended to be illustrative and not exhaustive. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.
This application is a continuation of U.S. application Ser. No. 11/148,973 filed Jun. 9, 2005, which claims benefit of Provisional U.S. Patent Application No. 60/578,182 filed Jun. 9, 2004, titled Scaffold Composites and Methods for Treating Abnormalities in Bone, the entire contents of all of which are hereby incorporated by reference in their entirety and should be considered a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
3349840 | Tope et al. | Oct 1967 | A |
4250887 | Dardik et al. | Feb 1981 | A |
4265618 | Herskovitz et al. | May 1981 | A |
4280233 | Raab | Jul 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4338925 | Miller | Jul 1982 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4735625 | Davidson | Apr 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4849223 | Pratt et al. | Jul 1989 | A |
4959104 | Iino et al. | Sep 1990 | A |
4963151 | Ducheyne et al. | Oct 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4969906 | Kronman | Nov 1990 | A |
5037437 | Matsen | Aug 1991 | A |
5051482 | Tepic | Sep 1991 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5130950 | Orban et al. | Jul 1992 | A |
5145250 | Planck et al. | Sep 1992 | A |
5292362 | Bass et al. | Mar 1994 | A |
5334626 | Lin | Aug 1994 | A |
5360450 | Giannini | Nov 1994 | A |
5431654 | Nic | Jul 1995 | A |
5514135 | Earle | May 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5574075 | Draenert | Nov 1996 | A |
5648097 | Nuwayser | Jul 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5676700 | Black et al. | Oct 1997 | A |
5679299 | Gilbert et al. | Oct 1997 | A |
5693099 | Harle | Dec 1997 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5788711 | Lehner et al. | Aug 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5961554 | Janson et al. | Oct 1999 | A |
5997580 | Mastrorio et al. | Dec 1999 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6075067 | Lidgren | Jun 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6143036 | Comfort | Nov 2000 | A |
6171312 | Beaty | Jan 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6236020 | Friedman | May 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6264659 | Ross et al. | Jul 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6309420 | Preissman | Oct 2001 | B1 |
6312254 | Friedman | Nov 2001 | B1 |
6316885 | Collins et al. | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6348679 | Ryan et al. | Feb 2002 | B1 |
6358254 | Anderson | Mar 2002 | B1 |
6375659 | Erbe et al. | Apr 2002 | B1 |
6395007 | Bhatnagar et al. | May 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6425919 | Lambrecht | Jul 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6439439 | Rickard | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6458127 | Truckai et al. | Oct 2002 | B1 |
6458375 | Gertzman et al. | Oct 2002 | B1 |
6485436 | Truckai | Nov 2002 | B1 |
6524102 | Davis | Feb 2003 | B2 |
6558428 | Park | May 2003 | B2 |
6607557 | Brosnahan et al. | Aug 2003 | B1 |
6610079 | Li et al. | Aug 2003 | B1 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6620185 | Harvie et al. | Sep 2003 | B1 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6649888 | Ryan et al. | Nov 2003 | B2 |
6676664 | Al-Assir | Jan 2004 | B1 |
6706069 | Berger | Mar 2004 | B2 |
6709149 | Tepic | Mar 2004 | B1 |
6712852 | Chung et al. | Mar 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6723095 | Hammerslag | Apr 2004 | B2 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6736537 | Coffeen et al. | May 2004 | B2 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6753358 | Fischer et al. | Jun 2004 | B2 |
6767936 | Walz et al. | Jul 2004 | B2 |
6790233 | Brodke et al. | Sep 2004 | B2 |
6814736 | Reiley et al. | Nov 2004 | B2 |
6832988 | Sproul | Dec 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6872403 | Pienkowski et al. | Mar 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6955691 | Chae et al. | Oct 2005 | B2 |
6958061 | Truckai et al. | Oct 2005 | B2 |
6964667 | Shaolian et al. | Nov 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6985061 | Hafskjold et al. | Jan 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7014658 | Ralph et al. | Mar 2006 | B2 |
7044954 | Reiley et al. | May 2006 | B2 |
7081125 | Edwards et al. | Jul 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7166121 | Reiley et al. | Jan 2007 | B2 |
7186267 | Aston et al. | Mar 2007 | B2 |
7189263 | Erbe et al. | Mar 2007 | B2 |
7191285 | Scales | Mar 2007 | B2 |
7226481 | Kuslich | Jun 2007 | B2 |
7241303 | Reiss et al. | Jul 2007 | B2 |
7252672 | Yetkinler | Aug 2007 | B2 |
7258700 | Lambrecht et al. | Aug 2007 | B2 |
7259210 | Puckett et al. | Aug 2007 | B2 |
7261720 | Stevens et al. | Aug 2007 | B2 |
7273523 | Wenz | Sep 2007 | B2 |
7306598 | Truckai et al. | Dec 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7357798 | Sharps et al. | Apr 2008 | B2 |
7399739 | Shimp | Jul 2008 | B2 |
7431763 | Zimmermann | Oct 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7510579 | Preissman | Mar 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7662133 | Scarborough et al. | Feb 2010 | B2 |
7678116 | Truckai et al. | Mar 2010 | B2 |
7708733 | Sanders et al. | May 2010 | B2 |
7717918 | Truckai et al. | May 2010 | B2 |
7722620 | Truckai et al. | May 2010 | B2 |
7722624 | Boucher et al. | May 2010 | B2 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020127720 | Erbe et al. | Sep 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030130738 | Hovda et al. | Jul 2003 | A1 |
20030220648 | Osorio et al. | Nov 2003 | A1 |
20030233096 | Osorio et al. | Dec 2003 | A1 |
20040024410 | Olson, Jr. et al. | Feb 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040138748 | Boyer, II et al. | Jul 2004 | A1 |
20040172132 | Ginn | Sep 2004 | A1 |
20040193171 | DiMauro et al. | Sep 2004 | A1 |
20040228898 | Ross et al. | Nov 2004 | A1 |
20040267272 | Henniges | Dec 2004 | A1 |
20050010231 | Myers | Jan 2005 | A1 |
20050015148 | Jansen et al. | Jan 2005 | A1 |
20050043816 | Datta et al. | Feb 2005 | A1 |
20050113843 | Arramon | May 2005 | A1 |
20050180806 | Green et al. | Aug 2005 | A1 |
20050209595 | Karmon | Sep 2005 | A1 |
20050222681 | Richley et al. | Oct 2005 | A1 |
20050245938 | Kochan | Nov 2005 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060052794 | McGill et al. | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060079905 | Beyar et al. | Apr 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060150862 | Zhao et al. | Jul 2006 | A1 |
20060198865 | Freyman et al. | Sep 2006 | A1 |
20060229628 | Truckai et al. | Oct 2006 | A1 |
20060264965 | Shadduck et al. | Nov 2006 | A1 |
20070027230 | Beyar et al. | Feb 2007 | A1 |
20070112299 | Smit et al. | May 2007 | A1 |
20070118144 | Truckai et al. | May 2007 | A1 |
20070162043 | Truckai et al. | Jul 2007 | A1 |
20070185231 | Liu et al. | Aug 2007 | A1 |
20070191858 | Truckai et al. | Aug 2007 | A1 |
20070191964 | Preissman | Aug 2007 | A1 |
20070233148 | Truckai et al. | Oct 2007 | A1 |
20080103505 | Fransen | May 2008 | A1 |
20080195112 | Liu et al. | Aug 2008 | A1 |
20090024161 | Bonutti et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 02058592 | Aug 2002 | WO |
WO 02064062 | Aug 2002 | WO |
WO 02087416 | Nov 2002 | WO |
WO 2004075954 | Sep 2004 | WO |
WO 2006031490 | Mar 2006 | WO |
WO 2006062916 | Jun 2006 | WO |
WO 2006130491 | Dec 2006 | WO |
WO 2007028120 | Mar 2007 | WO |
WO 2008097855 | Aug 2008 | WO |
WO 2009108893 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110054482 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
60578182 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11148973 | Jun 2005 | US |
Child | 12942936 | US |