Composites formed from an absorptive filler and a polyurethane

Information

  • Patent Grant
  • 9932457
  • Patent Number
    9,932,457
  • Date Filed
    Friday, April 12, 2013
    11 years ago
  • Date Issued
    Tuesday, April 3, 2018
    6 years ago
Abstract
Composite materials and methods for their preparation are described herein. The composite materials can comprise a polyurethane and an absorptive filler. The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.
Description
BACKGROUND

Polymeric composite materials that contain organic and/or inorganic filler materials have become desirable for a variety of uses because of their excellent mechanical properties and weathering stability. Foamed versions of these materials can have a relatively low density yet the filler materials can provide a composite material that is extremely strong. The polymer provided in the composite material can help provide good toughness (i.e., resistance to brittle fracture) and resistance to degradation from weathering to the composite when it is exposed to the environment. Thus, polymeric composite materials including organic and/or inorganic fillers can be used in a variety of applications, including in building materials.


Recently, there has been an increased interest in using fly ash as a filler in polymer composites. Fly ash has attracted attention as a filler for several reasons. First, fly ash is a by-product produced during the combustion of coal. As such, fly ash qualifies as a recycled material, making it an environmentally friendly choice for use as a filler in composites. Fly ash is also relatively inexpensive when compared to alternative fillers often used in polymer composites. Furthermore, fly ash can be incorporated in polymer composites without adversely impacting their resultant mechanical properties. In fact, in some cases, fly ash can improve the mechanical properties of polymer composites.


When using fly ash to form polymer composites, difficulties arise in producing composites having consistent batch-to-batch materials properties (e.g., consistent hardness). Depending on its combustion history, fly ash can have varied chemical and physical properties. For example, fly ash obtained from different sources can include varying quantities of residual organic carbon. The residual organic carbon can absorb organic molecules (e.g., polymerization catalysts used to cure the polymer composite), influencing the properties of the resultant polymer composites. Methods for addressing the variation in fly ash performance offer the potential to provide polymeric composites having consistent batch-to-batch materials properties.


SUMMARY

As described herein, absorptive fillers, such as fly ash, can absorb certain catalysts (e.g., amine catalysts) used to form the polyurethane. As a result, absorptive fillers can undesirably influence properties of the polyurethane system, including the tack-free time of the system, by decreasing the amount of available catalyst present during polymerization. This can be especially problematic, given that many absorptive fillers, such as fly ash, can exhibit varying absorptive behavior from sample to sample, for example, depending on the combustion history of the fly ash. As a consequence, it can be difficult to prepare polymeric composites having consistent batch-to-batch materials properties.


The deleterious effects of absorptive fillers can be mitigated by incorporating an isocyanate-reactive monomer in the polyurethane system which includes a moiety configured to associate with the absorptive filler. This isocyanate-reactive monomer, can associate with the absorptive filler during formation of the composite material, freeing up catalyst which may otherwise be absorbed to the filler to participate in reaction of the polyurethane system. As a result, the variance in the properties of the polyurethane system resulting from the presence of the absorptive filler can be reduced.


Composite materials and methods for their preparation are described. The composite materials can comprise a polyurethane and an absorptive filler. The absorptive filler can be a filler, such as fly ash, which is chemically and physically configured to absorb a catalyst (e.g., an amine catalyst) used to form the polyurethane. In some embodiments, the total amount of absorptive filler in the composite material can range from 40% to 90% by weight, based on the total weight of the composition.


The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.


The one or more isocyanate-reactive functional groups in the first isocyanate-reactive monomer can be any suitable functional groups which react with an isocyanate to form a covalent bond (e.g., amines, hydroxy groups, or combinations thereof). The moiety configured to associate with the absorptive filler in the first isocyanate-reactive monomer can be any chemical moiety which possesses an affinity for the absorptive filler. For example, the moiety configured to associate with the absorptive filler can be a Lewis basic moiety containing a lone electron pair (e.g., a nitrogen-containing moiety such as a secondary amine, a tertiary amine, or combinations thereof).


In certain embodiments, the first isocyanate-reactive monomer comprises an amine-containing polyol. For example, the first isocyanate-reactive monomer can comprise, for example, an alkanolamine (e.g., an alkylene oxide-capped alkanolamine), an alkoxylated polyamine, a Mannich polyol (e.g., an alkylene oxide-capped Mannich polyol), or a combination thereof. The first isocyanate-reactive monomer can be present in an amount from 5% to 50% by weight (e.g., from 10% to 40% by weight), based on the total weight of the one or more isocyanate-reactive monomers used to form the polyurethane.


The one or more isocyanate-reactive monomers used to form the polyurethane can further include one or more additional polyols. The one or more additional polyols can comprise, for example, a polyester polyol (e.g., aromatic polyester polyol), a polyether polyol (e.g., aromatic polyether polyol), or a combination thereof.


Also provided are methods of preparing the composite materials described herein. The methods can include mixing (1) an absorptive filler; (2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof; (3) one or more isocyanate-reactive monomers, wherein the one or more isocyanate-reactive monomers comprise a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler; and (4) a catalyst. The at least one isocyanate and the one or more isocyanate-reactive monomers are allowed to react in the presence of the absorptive filler and catalyst to form the composite material.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a graph illustrating the tack-free time (in seconds) for composite materials formed using seven different samples of fly ash.



FIG. 2 is graph illustrating the loss-on-ignition (LOI) measured for three different samples of fly ash (Fly Ashes 1-3).



FIG. 3 is a graph illustrating the tack-free time (in seconds) of composites formed from samples of Fly Ash 1 and Fly Ash 2 before and after ignition.



FIG. 4 is a graph illustrating the tack-free time (in seconds) of composites formed from samples of Fly Ashes 4-7 before and after ignition.



FIG. 5 illustrates the tack-free time (in seconds) of composites formed from Polyol Blends 1-5 and three different samples of fly ash (Fly Ash 1, Fly Ash 7, and a mixture of Fly Ash 2 and Fly Ash 3).



FIG. 6 is a plot showing the tack-free time (in seconds) for composites formed using an amine catalyst (triethylenediamine) and an amine catalyst (triethylenediamine) in combination with varying amounts of an organotin catalyst (dimethyltin oleate).





DETAILED DESCRIPTION

Composite materials and methods for their preparation are described herein.


The composite materials can comprise a polyurethane and an absorptive filler. The absorptive filler can be a filler, such as fly ash, which is chemically and physically configured to absorb a catalyst (e.g., an amine catalyst) used to form the polyurethane. In some embodiments, the total amount of absorptive filler in the composite material can be from 40% to 90% by weight, based on the total weight of the composition.


The polyurethane can be formed from the reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers comprise at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.


Absorptive Fillers


The composite materials described herein include an absorptive filler. Absorptive fillers are fillers which are chemically and physically configured to absorb one or more catalysts used to form a polyurethane (e.g., fillers configured to absorb one or more amine catalysts). Absorptive fillers can possess one or more chemical properties (e.g., organic carbon content), one or more physical properties (e.g., surface area), or a combination thereof which results in a filler which absorbs or otherwise associates with one or more catalysts (e.g., one or more amine catalysts) used to form a polyurethane.


The absorptive nature of an absorptive filler can be qualitatively and/or quantitatively assessed by observing and/or measuring the difference in the tack-free time, as determined using a cup test, of a formulation containing an absorptive filler as compared to the tack-free time of an identical formulation containing a non-absorptive filler (e.g., glass beads) in place of the absorptive filler. In some cases, the formulation containing the absorptive filler has a tack-free time, as determined using the cup test described in the examples, that is at least 5 seconds greater than the tack-free time of an identical formulation containing a non-absorptive filler (e.g., glass beads). For example, the formulation containing the absorptive filler can have a tack-free time, as determined using the cup test, that is at least 10 seconds greater, at least 15 seconds greater, at least 20 seconds greater, at least 25 seconds greater, at least 30 seconds greater, at least 35 seconds greater, at least 40 seconds greater, at least 45 seconds greater, at least 50 seconds greater, at least 55 seconds greater, at least 60 seconds greater, at least 65 seconds greater, at least 70 seconds greater, at least 75 seconds greater, at least 80 seconds greater, at least 85 seconds greater, at least 90 seconds greater, or at least 95 seconds greater than the tack-free time of an identical formulation containing a non-absorptive filler (e.g., glass beads).


The absorptive nature of an absorptive filler can also be qualitatively and/or quantitatively assessed by measuring the total adsorptive capacity of the absorptive filler using a mass titration. Methods of performing mass titrations to determine adsorptive capacity of solid materials (e.g., activated carbon) are known in the art. Generally, such mass titrations can involve adding varying amounts of an absorptive filler to samples of an aqueous solution of 1,4-Diazabicyclo[2.2.2]octane (DABCO, 2.5% by weight). Each sample can then be stirred (e.g., for one minute at 2000 rpm using a mechanical stirrer (Ryobi brand, Model DP-101) equipped with a 2-inch diameter stirring blade) and allowed to rest for two minutes. The absorptive filler can then be removed from the sample (e.g., by filtration), and the amount of DABCO remaining in the sample (i.e., in the supernatant) can be quantified. The amount of DABCO remaining can be plotted as a function of the concentration of absorptive filler added to the samples to obtain an adsorption isotherm for the filler. The absorptive filler can have an adsorption isotherm which indicates that the absorptive filler has a greater propensity to adsorb DABCO than glass beads.


In some embodiments, the absorptive filler comprises a carbonaceous material. Carbonaceous materials are absorptive fillers which include some amount of organic carbon. The amount of organic carbon present in a carbonaceous material can be estimated by measuring the material's loss-on-ignition (LOI). The LOI of a carbonaceous material refers to the percent weight loss of a sample of the carbonaceous material upon ignition at 750° C. for 2 hours, and then further heated at 750° C. to a constant mass to consume any organic carbon present in the material, as described, for example in ASTM C618-12a.


In some embodiments, the absorptive filler has an LOI of at least 0.20% (e.g., at least 0.25%, at least 0.30%, at least 0.35%, at least 0.40%, at least 0.45%, at least 0.50%, at least 0.55%, at least 0.60%, at least 0.65%, at least 0.70%, at least 0.75%, at least 0.80%, at least 0.85%, at least 0.90%, at least 0.95%, at least 1.0%, at least 1.1%, at least 1.2%, at least 1.3%, at least 1.4%, at least 1.5%, at least 1.6%, at least 1.7%, at least 1.8%, at least 1.9%, at least 2.0%, at least 2.25%, at least 2.5%, at least 2.75%, at least 3.0%, at least 3.25%, at least 3.5%, at least 3.75%, at least 4.0%, at least 4.25%, at least 4.5%, at least 4.75%, at least 5.0%, at least 5.25%, at least 5.5%, at least 5.75%, at least 6.0%, at least 6.25%, at least 6.5%, at least 6.75%, at least 7.0%, at least 7.25%, at least 7.5%, at least 7.75%, at least 8.0%, at least 8.25%, at least 8.5%, at least 8.75%, at least 9.0%, at least 9.25%, at least 9.5%, at least 9.75%, at least 10.0%, at least 11%, at least 12%, at least 13%, at least 15%, at least 16%, at least 17%, at least 18%, at least 19%, at least 20%, or more).


In some embodiments, the absorptive filler has an LOI of less than 25% (e.g., less than 20%, less than 19%, less than 18%, less than 17%, less than 16%, less than 15%, less than 14%, less than 13%, less than 12%, less than 11%, less than 10%, less than 9.75, less than 9.5%, less than 9.25%, less than 9.0%, less than 8.75, less than 8.5%, less than 8.25%, less than 8.0%, less than 7.75, less than 7.5%, less than 7.25%, less than 7.0%, less than 6.75%, less than 6.5%, less than 6.25%, less than 6.0%, less than 5.75%, less than 5.5%, less than 5.25%, less than 5.0%, less than 4.75%, less than 4.5%, less than 4.25%, less than 4.0%, less than 3.75%, less than 3.5%, less than 3.25%, less than 3.0%, less than 2.75%, less than 2.5%, less than 2.25%, less than 2.0%, less than 1.9%, less than 1.8%, less than 1.7%, less than 1.6%, less than 1.5%, less than 1.4%, less than 1.3%, less than 1.2%, less than 1.1%, less than 1.0%, less than 0.95%, less than 0.90%, less than 0.85%, less than 0.80%, less than 0.75%, less than 0.70%, less than 0.65%, less than 0.60%, less than 0.55%, less than 0.50%, less than 0.45%, less than 0.40%, less than 0.35%, less than 0.30%, or less than 0.25%).


The absorptive filler can have an LOI ranging from any of the minimum values described above to any of the maximum values described above. For example, the absorptive filler can have an LOI ranging from 0.10% to 25% (e.g., from 0.15% to 15%, from 0.20% to 10%, from 0.20% to 6.0%, from 0.20% to 5.0%, or from 0.20% to 1.0%).


In some embodiments, the absorptive filler has a BET surface area, as measured using ASTM C1069-09, of at least 0.75 m2/g (e.g., at least 1.0 m2/g, at least 1.1 m2/g, at least 1.2 m2/g, at least 1.3 m2/g, at least 1.4 m2/g, at least 1.5 m2/g, at least 1.6 m2/g, at least 1.7 m2/g, at least 1.8 m2/g, at least 1.9 m2/g, at least 2.0 m2/g, at least 2.5 m2/g, at least 3.0 m2/g, at least 3.5 m2/g, at least 4.0 m2/g, at least 4.5 m2/g, at least 5.0 m2/g, at least 6.0 m2/g, at least 7.0 m2/g, at least 8.0 m2/g, at least 9.0 m2/g, at least 10 m2/g, at least 15 m2/g, at least 20 m2/g, at least 25 m2/g, at least 50 m2/g, at least 75 m2/g, at least 100 m2/g, at least 150 m2/g, at least 250 m2/g, at least 500 m2/g, at least 750 m2/g, or at least 1000 m2/g). In some embodiments, the absorptive filler has a BET surface area, as measured using ASTM C1069-09, of less than 100 m2/g (e.g., less than 1000 m2/g, less than 750 m2/g, less than 500 m2/g, less than 250 m2/g, less than 150 m2/g, less than 100 m2/g, less than 75 m2/g, less than 50 m2/g, less than 25 m2/g, less than 20 m2/g, less than 15 m2/g, less than 10 m2/g, less than 9.0 m2/g, less than 8.0 m2/g, less than 7.0 m2/g, less than 6.0 m2/g, less than 5.0 m2/g, less than 4.5 m2/g, less than 4.0 m2/g, less than 3.5 m2/g, less than 3.0 m2/g, less than 2.5 m2/g, less than 2.0 m2/g, less than 1.9 m2/g, less than 1.8 m2/g, less than 1.7 m2/g, less than 1.6 m2/g, less than 1.5 m2/g, less than 1.4 m2/g, less than 1.3 m2/g, less than 1.2 m2/g, less than 1.1 m2/g, less than 1.0 m2/g, or less).


The absorptive filler can have a BET surface area ranging from any of the minimum values described above to any of the maximum values described above. For example, the absorptive filler can have a BET surface area ranging from 0.75 m2/g to 1000 m2/g (e.g., 0.75 m2/g to 500 m2/g, 0.75 m2/g to 150 m2/g, from 0.75 m2/g to 50 m2/g, from 0.75 m2/g to 15 m2/g, from 0.75 m2/g to 5.0 m2/g, or from 1.0 m2/g to 4.0 m2/g).


In some embodiments, the absorptive filler can have a ratio of BET surface area to LOI ratio (i.e., BET/LOI) of at least 1.0 (e.g., at least 1.5, at least 2.0, at least 2.5, at least 3.0, at least 3.5, at least 4.0, at least 4.5, at least 5.0, or at least 5.5) measuring BET in m2/g and the LOI in %. In some embodiments, the absorptive filler can have a ratio of BET surface area to LOI of less than 6.0 (e.g., less than 5.5, less than 5.0, less than 4.5, less than 4.0, less than 3.5, less than 3.0, less than 2.5, less than 2.0, or less than 1.5).


The absorptive filler can have a ratio of BET surface area to LOI from any of the minimum values described above to any of the maximum values described above. For example, the absorptive filler can have a ratio of BET surface area to LOI from 1.0 to 6.0 (e.g., from 1.5 to 5.5, or from 2.0 to 5.0).


The absorptive filler can include fly ash. The term “fly ash” is used herein generally to refer to ash by-products of the combustion of pulverized coal (e.g., in electrical power generation plants). The term fly ash, as used herein, can thus include flue-ash (i.e., fine ash particles generated during the combustion of coal that rise with flue gases, and are captured with particle filtration equipment before the exiting the chimney of a coal-fired power plant), bottom ash (e.g., ash produced during the combustion of coal which does not rise with flue gases), as well as a combination thereof (i.e., coal ash).


Fly ash is formed of mineral matter that is typically of very fine particle size, ranging from less than 1 micron to over 100 microns in some cases. The fly ash particles possess a substantially spherical shape as a consequence of the high temperature melting and coalescence in the furnace of the mineral matter accompanying the coal. The fine particle size and spherical shape are advantageous properties of the fly ash and are in marked contrast to the properties of many conventional fillers such as ground limestone or calcium carbonate, which are typically relatively coarse with an irregular, blocky particle shape.


Mineralogically, fly ash is predominantly amorphous, or non-crystalline, in nature as a result of the rapid quenching of clay/shale minerals as they rapidly pass through the boiler flame and dust collection system of the power plant. For some fly ashes, the amorphous material can be described as an aluminosilicate glass similar in composition to the mineral mullite (Al6Si2O13); for other fly ashes, it can be described as a calcium aluminosilicate glass similar in composition to the mineral anorthite (CaAl2Si2O8). Fly ashes can also contain smaller amounts of a variety of other mineral components derived from thermal modification of accessory minerals present in the coal. These can include mullite, quartz (SiO2), ferrite spinel (Fe3O4), hematite (Fe2O3), dicalcium silicate (Ca2SiO4), tricalcium aluminate (Ca3Al2O6), and lime (CaO). These mineral components can occur as inclusions in the glass particles and/or as discrete particles.


It is commonly known that the chemical composition of fly ash changes as a result of the type of coal being burned in the boiler. These differences are largely in the relative proportions of the element calcium present in the ash. For example, high rank bituminous coals generally have a low calcium content and produce an ash with relatively low calcium, typically less than 5% CaO; whereas low rank thermal coals generally have much higher content of calcium, typically in the range 8-20% CaO for lignite coals and 20-30% CaO, or higher, for subbituminous coals. These differences are recognized by ASTM specifications, such as ASTM C-618, and by Canadian specifications that classify the ashes based on their CaO content.


Current ASTM C-618 (Coal Fly Ash or Calcined Natural Pozzolan for Use in Concrete) specifications include only two designations or classes of fly ash: “Class F” and “Class C” fly ashes. The “Class F” designation generally incorporates fly ashes originating from the combustion of bituminous and lignite coals and the “Class C” designation generally incorporates ashes from the combustion of subbituminous coals. These designations are based on the chemical composition of the fly ash in such a way that when the sum of the element oxides (SiO2+Al2O3+Fe2O3) derived from chemical analysis of the ash is equal to or greater than 70% by weight, then the fly ash is designated a “Class F” fly ash. When the sum of the element oxides is equal to or greater than 50% by weight, the fly ash is designated as a “Class C” fly ash. In Canada, as mentioned above, fly ashes have certain designations based on their CaO content. In particular, a fly ash is considered a “Class F” when it includes less than 8% CaO, a “Class CI” when it includes 8-20% CaO, and a “Class CH” when it includes greater than 20% CaO.


The fly ash can be a lignite fly ash, a subbituminous fly ash, a bituminous fly ash, or a blend of two or more fly ashes (e.g., a subbituminous/bituminous fly ash blend). The fly ash can be a Class C fly ash, a Class F fly ash, or a blend thereof. In certain embodiments, the absorptive filler includes fly ash having an LOI ranging from 0.20% to 10% (e.g., from 0.20% to 5.0%, or from 0.20% to 1.0%), a BET surface area ranging from 0.75 m2/g to 15 m2/g (e.g., from 0.75 m2/g to 5.0 m2/g, or from 1.0 m2/g to 4.0 m2/g), and/or a BET surface area to LOI ratio ranging from 1.0 to 6.0 (e.g., from 1.5 to 5.5, or from 2.0 to 5.0).


Other suitable absorptive fillers include graphite, activated carbon, amorphous carbon (e.g., carbon black), absorptive clays (e.g., absorptive silicate minerals such as kaolin), other combustion ashes, and combinations thereof. For example, the other combustion ash can be ash produced by firing one or more fuels including industrial gases, petroleum coke, petroleum products, municipal solid waste, paper sludge, wood, sawdust, refuse derived fuels, switchgrass, or other biomass material. These absorptive fillers can be used alone, or in combination with fly ash. In some embodiments, the absorptive filler consists of or consists essentially of fly ash.


The composites described herein can include at least 40% by weight absorptive filler, based on the total weight of the composite (e.g., at least 45% by weight, at least 50% by weight, at least 55% by weight, at least 60% by weight, at least 65% by weight, at least 70% by weight, at least 75% by weight, at least 80% by weight, or at least 85% by weight). In some embodiments, the composites can include 90% or less by weight absorptive filler, based on the total weight of the composite (e.g., less than 85% by weight, less than 80% by weight, less than 75% by weight, less than 70% by weight, less than 65% by weight, less than 60% by weight, less than 55% by weight, less than 50% by weight, or less than 45% by weight).


The absorptive filler can be present in the composition in an amount from any of the minimum values described above to any of the maximum values described above. For example the total amount of absorptive filler in the composite material can range 40% to 90% by weight, based on the total weight of the composition (e.g., from 50% to 85% by weight, or from 60% to 80% by weight).


Isocyanates


The polyurethane systems used to form the composite materials described herein include one or more isocyanate monomers. Suitable isocyanates that can be used to form the composite materials include one or more monomeric or oligomeric poly- or di-isocyanates. The monomeric or oligomeric poly- or di-isocyanate include aromatic diisocyanates and polyisocyanates. The isocyanates can also be blocked isocyanates, or pre-polymer isocyanates (e.g., castor oil pre-polymer isocyanates and soy polyol pre-polymer isocyanates). An example of a useful diisocyanate is methylene diphenyl diisocyanate (MDI). Useful MDI's include MDI monomers, MDI oligomers, and mixtures thereof.


Further examples of useful isocyanates include those having NCO (i.e., the reactive group of an isocyanate) contents ranging from about 25% to about 50% by weight (e.g., from about 25% to about 35% by weight). Examples of useful isocyanates are found, for example, in Polyurethane Handbook: Chemistry, Raw Materials, Processing Application, Properties, 2nd Edition, Ed: Gunter Oertel; Hanser/Gardner Publications, Inc., Cincinnati, Ohio, which is herein incorporated by reference. Suitable examples of aromatic polyisocyanates include 2,4- or 2,6-toluene diisocyanate, including mixtures thereof; p-phenylene diisocyanate; tetramethylene and hexamethylene diisocyanates; 4,4-dicyclohexylmethane diisocyanate; isophorone diisocyanate; 4,4-phenylmethane diisocyanate (methylene diphenyl diisocyanate; MDI); polymethylene polyphenylisocyanate; and mixtures thereof. In addition, triisocyanates may be used, for example, 4,4,4-triphenylmethane triisocyanate; 1,2,4-benzene triisocyanate; polymethylene polyphenyl polyisocyanate; methylene polyphenyl polyisocyanate; and mixtures thereof. Suitable blocked isocyanates are formed by the treatment of the isocyanates described herein with a blocking agent (e.g., diethyl malonate, 3,5-dimethylpyrazole, methylethylketoxime, and caprolactam). Isocyanates are commercially available, for example, from Bayer Corporation (Pittsburgh, Pa.) under the trademarks MONDUR and DESMODUR. Other examples of suitable isocyanates include MONDUR MR Light (Bayer Corporation; Pittsburgh, Pa.), PAPI 27 (Dow Chemical Company; Midland, Mich.), Lupranate M20 (BASF Corporation; Florham Park, N.J.), Lupranate M70L (BASF Corporation; Florham Park, N.J.), Rubinate M (Huntsman Polyurethanes; Geismar, La.), Econate 31 (Ecopur Industries), and derivatives thereof.


In some embodiments, the at least one isocyanates can include 50% or more of one or more highly reactive isocyanates. Suitable highly reactive isocyanates when replacing the isocyanate used in the standard polyurethane formulation of the Brookfield Viscosity Test (i.e. Mondur MR Light) can produce a Brookfield viscosity of over 50,000 mPa·s in less than 400 seconds, less than 380 seconds, less than 360 seconds, less than 340 seconds, less than 320 seconds, or even less than 300 seconds. An exemplary highly reactive isocyanate includes Econate 31, an isocyanate commercially available from Ecopur Industries.


The average functionality of isocyanates useful with the composites described herein is between about 1.5 to about 5. Further, examples of useful isocyanates include isocyanates with an average functionality of about 2 to about 4.5, about 2.2 to about 4, about 2.4 to about 3.7, about 2.6 to about 3.4, and about 2.8 to about 3.2.


As indicated above, in the composite materials described herein, an isocyanate is reacted with a polyol to produce the polyurethane formulation. In general, the ratio of isocyanate groups to the total isocyanate reactive groups, such as hydroxyl groups, water and amine groups, is in the range of about 0.5:1 to about 1.5:1, which when multiplied by 100 produces an isocyanate index between 50 and 150. Additionally, the isocyanate index can be from about 80 to about 120, from about 90 to about 120, from about 100 to about 115, or from about 105 to about 110. As used herein, an isocyanate may be selected to provide a reduced isocyanate index, which can be reduced without compromising the chemical or mechanical properties of the composite material.


Isocyanate-Reactive Monomers


The polyurethane systems used to form the composite materials described herein include one or more isocyanate-reactive monomers. The one or more isocyanate-reactive monomers can include at least one polyol and a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler.


As described above, the first isocyanate-reactive monomer includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler. The one or more isocyanate-reactive functional groups can be suitable functional groups which react with an isocyanate to form a covalent bond. For example, the one or more isocyanate-reactive functional groups can include amines, hydroxy groups, or combinations thereof.


The first isocyanate-reactive monomer can include one or more moiety configured to associate with the absorptive filler. In some embodiments, the first isocyanate-reactive monomer includes a singly moiety configured to associate with the absorptive filler. In other embodiments, the first isocyanate-reactive monomer includes two or more moieties configured to associate with the absorptive filler.


The moiety configured to associate with the absorptive tiller can be any chemical moiety which possesses an affinity for the absorptive filler. For example, the moiety configured to associate with the absorptive filler can be a Lewis basic moiety containing a lone electron pair (e.g., a nitrogen-containing moiety such as an amine). In some embodiments, the moiety configured to associate with the absorptive filler comprises a secondary amine, a tertiary amine, or combinations thereof. In certain embodiments, the moiety configured to associate with the absorptive filler comprises an amine, and the one or more isocyanate-reactive functional groups comprise one or more amines, one or more hydroxy groups, or combinations thereof. The first isocyanate-reactive monomer can be a polyol and/or a polyamine. In certain embodiments, the first isocyanate-reactive monomer comprises an amine-containing polyol.


In some embodiments, the first isocyanate-reactive monomer comprises an alkanolamine. The alkanolamine can be a dialkanolamine, a trialkanolamine, or a combination thereof.


Suitable dialkanolamines include dialkanolamines which include two hydroxy-substituted C1-C12 alkyl groups (e.g., two hydroxy-substituted C1-C8 alkyl groups, or two hydroxy-substituted C1-C6 alkyl groups). The two hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition. Examples of suitable dialkanolamines include diethanolamine, diisopropanolamine, ethanolisopropanolamine, ethanol-2-hydroxybutylamine, isopropanol-2-hydroxybutylamine, isopropanol-2-hydroxyhexylamine, ethanol-2-hydroxyhexylamine, and combinations thereof.


Suitable trialkanolamines include trialkanolamines which include three hydroxy-substituted C1-C12 alkyl groups (e.g., three hydroxy-substituted C1-C8 alkyl groups, or three hydroxy-substituted C1-C6 alkyl groups). The three hydroxy-substituted alkyl groups can be branched or linear, and can be of identical or different chemical composition. Examples of suitable trialkanolamines include triisopropanolamine (TIPA), triethanolamine, N,N-bis(2-hydroxyethyl)-N-(2-hydroxypropyl)amine (DEIPA), N,N-bis(2-hydroxypropyl)-N-(hydroxyethyl)amine (EDIPA), tris(2-hydroxybutyl)amine, hydroxyethyl di(hydroxypropyl)amine, hydroxypropyl di(hydroxyethyl)amine, tri(hydroxypropyl)amine, hydroxyethyl di(hydroxy-n-butyl)amine, hydroxybutyl di(hydroxypropyl)amine, and combinations thereof.


The first isocyanate-reactive monomer can comprise an adduct of an alkanolamine described above with an alkylene oxide. The resulting amine-containing polyols can be referred to as alkylene oxide-capped alkanolamines. Alkylene oxide-capped alkanolamines can be formed by reacting a suitable alkanolamine with a desired number of moles of an alkylene oxide. Any suitable alkylene oxide or combination of alkylene oxides can be used to cap the alkanolamine. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. Alkylene oxide-capped alkanolamines are known in the art, and include, for example, propylene oxide-capped triethanolamine sold under the trade names CARPOL® TEAP-265 and CARPOL® TEAP-335 (Carpenter Co., Richmond, Va.).


In some embodiments, the first isocyanate-reactive monomer comprises an alkoxylated polyamine (i.e., alkylene oxide-capped polyamines) derived from a polyamine and an alkylene oxide. Alkoxylated polyamine can be formed by reacting a suitable polyamine with a desired number of moles of an alkylene oxide. Suitable polyamines include monomeric, oligomeric, and polymeric polyamines. In some cases, the polyamines has a molecular weight of less than 1000 g/mol (e.g., less than 800 g/mol, less than 750 g/mol, less than 500 g/mol, less than 250 g/mol, or less than 200 less than 200 g/mol). Examples of suitable polyamines that can be used to form alkoxylated polyamines include ethylenediamine, 1,3-diaminopropane, putrescine, cadaverine, hexamethylenediamine, 1,2-diaminopropane, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, spermidine, spermine, norspermidine, toluene diamine, 1,2-propane-diamine, diethylenetriamine, triethylenetetramine, tetraethylene-pentamine (TEPA), pentaethylenehexamine (PEHA), and combinations thereof.


Any suitable alkylene oxide or combination of alkylene oxides can be used to cap the polyamine. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. Alkylene oxide-capped polyamines are known in the art, and include, for example, propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-770 (Carpenter Co., Richmond, Va.) and ethylene and propylene oxide-capped ethylene diamine sold under the trade name CARPOL® EDAP-800 (Carpenter Co., Richmond, Va.).


The first isocyanate-reactive monomer can comprise a Mannich polyol. Mannich polyols are the condensation product of a substituted or unsubstituted phenol, an alkanolamine, and formaldehyde. Mannich polyols can be prepared using methods known in the art. For example, Mannich polyols can be prepared by premixing the phenolic compound with a desired amount of the alkanolamine, and then slowly adding formaldehyde to the mixture at a temperature below the temperature of Novolak formation. At the end of the reaction, water is stripped from the reaction mixture to provide a Mannich base. See, for example, U.S. Pat. No. 4,883,826, which is incorporated herein by reference in its entirety. The Mannich base can then be alkoxylated to provide a Mannich polyol.


The substituted or unsubstituted phenol can include one or more phenolic hydroxyl group. In certain embodiments, the substituted or unsubstituted phenol includes a single hydroxyl group bound to a carbon in an aromatic ring. The phenol can be substituted with substituents which do not undesirably react under the conditions of the Mannich condensation reaction, a subsequent alkoxylation reaction (if performed), or the preparation of polyurethanes from the final product. Examples of suitable substituents include alkyl (e.g., a C1-C18 alkyl, or a C1-C12 alkyl), aryl, alkoxy, phenoxy, halogen, and nitro groups.


Examples of suitable substituted or unsubstituted phenols that can be used to form Mannich polyols include phenol, o-, p-, or m-cresols, ethylphenol, nonylphenol, dodecylphenol, p-phenylphenol, various bisphenols including 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), β-naphthol, β-hydroxyanthracene, p-chlorophenol, o-bromophenol, 2,6-dichlorophenol, p-nitrophenol, 4- or 2-nitro-6-phenylphenol, 2-nitro-6- or 4-methylphenol, 3,5-dimethylphenol, p-isopropylphenol, 2-bromo-6-cyclohexylphenol, and combinations thereof. In some embodiments, the Mannich polyol is derived from phenol or a monoalkyl phenols (e.g., a para-alkyl phenols). In some embodiments, the Mannich polyol is derived from a substituted or unsubstituted phenol selected from the group consisting of phenol, para-n-nonylphenol, and combinations thereof.


The alkanolamine can include a monoalkanolamine, a dialkanolamine, or combinations thereof. Examples of suitable monoalkanolamines include methylethanolamine, ethylethanolamine, methylisopropanolamine, ethylisopropanolamine, methyl-2-hydroxybutylamine, phenylethanolamine, ethanolamine, isopropanolamine, and combinations thereof. Exemplary dialkanolamines include diisopropanolamine, ethanolisopropanolamine, ethanol-2-hydroxybutylamine, isopropanol-2-hydroxybutylamine, isopropanol-2-hydroxyhexylamine, ethanol-2-hydroxyhexylamine, and combinations thereof. In certain embodiments, the alkanolamine is selected from the group consisting of diethanolamine, diisopropanolamine, and combinations thereof.


Any suitable alkylene oxide or combination of alkylene oxides can be used to form the Mannich polyol. In some embodiments, the alkylene oxide is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, and combinations thereof. In certain embodiments, the Mannich polyol is alkoxylated with from 100% to about 80% propylene oxide and from 0 to about 20 wt. % ethylene oxide.


Mannich polyols are known in the art, and include, for example, ethylene and propylene oxide-capped Mannich polyols sold under the trade names CARPOL® MX-425 and CARPOL® MX-470 (Carpenter Co., Richmond, Va.).


The first isocyanate-reactive monomer can comprise a polyamine Any suitable polyamine can be used. Suitable polyamines can correspond to the polyols described herein (for example, a polyester polyol or a polyether polyol), with the exception that the terminal hydroxy groups are converted to amino groups, for example by amination or by reacting the hydroxy groups with a diisocyanate and subsequently hydrolyzing the terminal isocyanate group to an amino group.


By way of example, the polyamine can be polyether polyamine, such as polyoxyalkylene diamine or polyoxyalkylene triamine Polyether polyamines are known in the art, and can be prepared by methods including those described in U.S. Pat. No. 3,236,895 to Lee and Winfrey. Exemplary polyoxyalkylene diamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® D-230, Jeffamine® D-400 and Jeffamine® D-2000. Exemplary polyoxyalkylene triamines are commercially available, for example, from Huntsman Corporation under the trade names Jeffamine® T-403, Jeffamine® T-3000, and Jeffamine® T-5000.


The first isocyanate-reactive monomer can be present in varying amounts relative the one or more isocyanate-reactive monomers used to form the polyurethane. In some embodiments, the first isocyanate-reactive monomer is present in at least 5% by weight (e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, or at least 45%), based on the total weight of the one or more isocyanate-reactive monomers used to form the polyurethane. In some embodiments, the first isocyanate-reactive monomer is 50% or less by weight of the one or more isocyanate-reactive monomers used to form the polyurethane (e.g., 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less).


The first isocyanate-reactive monomer can be present in an amount ranging from any of the minimum values described above to any of the maximum values described above. For example, the first isocyanate-reactive monomer can be present in an amount ranging from 5% to 50% by weight (e.g., from 10% to 40% by weight), based on the total weight of the one or more isocyanate-reactive monomers used to form the polyurethane.


The one or more isocyanate-reactive monomers used to form the polyurethane can further include one or more polyols (in addition to the amine polyols described above). Any suitable polyols may be used. Suitable additional polyols for the formation of polymeric composites are known in the art, and can be selected in view of the desired properties of the polymeric composite. In some cases, the one or more polyols comprise a polyester polyol (e.g., aromatic polyester polyol), a polyether polyol (e.g., aromatic polyether polyol), or a combination thereof.


In some embodiments, the one or more additional polyols include a highly reactive polyol. In some embodiments, the one or more additional polyols can include 50% or more of one or more highly reactive polyols. For example, the one or more additional polyols can include greater than 55%, greater than 60%, greater than 65%, greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or about 100% of one or more highly reactive polyols.


In some embodiments, the one or more highly reactive polyols have a primary hydroxyl number of greater than about 250. As used herein, the primary hydroxyl number is defined as the hydroxyl number multiplied by the percentage of primary hydroxyl groups based on the total number of hydroxyl groups in the polyol. For example, the primary hydroxyl group number can be greater than about 255, greater than about 260, greater than about 265, greater than about 270, greater than about 275, greater than about 280, greater than about 285, greater than about 290, or greater than about 295. In some examples, the highly reactive polyol has a hydroxyl number of greater than about 300, greater than about 305, greater than about 310, greater than about 315, greater than about 320, greater than about 325, greater than about 330, greater than about 335, greater than about 340, greater than about 345, or greater than about 350.


In some embodiments, the one or more highly reactive polyols include a large number of primary hydroxyl groups (e.g. about 75% or more) based on the total number of hydroxyl groups in the polyol. For example, the highly reactive polyols can include about 80% or more, about 85% or more, about 90% or more, about 95% or more, or about 100% of primary hydroxyl groups. The number of primary hydroxyl groups can be determined using fluorine NMR spectroscopy as described, for example, in ASTM D4273, which is hereby incorporated by reference in its entirety.


In some embodiments, the one or more highly reactive polyols produce a Brookfield viscosity rise to a Brookfield viscosity of over 50,000 mPa·s in less than about 225 seconds when used to replace the polyols used in the standard polyurethane formulation of the Brookfield Viscosity Test (i.e., Multranol 4035 and Arcol LHT-240). The Brookfield Viscosity Test is described, for example, in Polyurethane Handbook: Chemistry, Raw Materials, Processing Application, Properties, 2nd Edition, Ed: Gunter Oertel; Hanser/Gardner Publications, Inc., Cincinnati, Ohio; Rigid Plastic Foams, T. H. Ferrigno (1963); and Reaction Polymers: Polyurethanes, Epoxies, Unsaturated Polyesters, Phenolics, Special Monomers and Additives: Chemistry, Technology, Applications, Wilson F. Gum et al. (1992), which are all herein incorporated by reference. In some embodiments, the one or more highly reactive polyols produce a Brookfield viscosity rise in the Brookfield Viscosity Test to a viscosity of over 50,000 mPa·s in less than about 220 seconds, less than about 210 seconds, less than about 200 seconds, less than about 190 seconds, less than about 180 seconds, less than about 170 seconds, less than about 160 seconds, or less than about 150 seconds.


Exemplary highly reactive polyols include Pel-Soy 744 and Pel-Soy P-750, soybean oil based polyols commercially available from Pelron Corporation; Agrol Diamond, a soybean oil based polyol commercially available from BioBased Technologies; Ecopol 122, Ecopol 131 and Ecopol 132, soybean oil polyols formed using polyethylene terephthalate and commercially available from Ecopur Industries; Stepanpol PD-110 LV and PS 2352, polyols based on soybean oil, diethylene glycol and phthallic anhydride and commercially available from Stepan Company; Voranol 280, 360 and WR2000, polyether polyols commercially available from Dow Chemical Company; Honey Bee HB-530, a soybean oil-based polyol commercially available from MCPU Polymer Engineering; Renewpol, commercially available from Styrotech Industries (Brooklyn Park, Minn.); JeffAdd B 650, a 65% bio-based content (using ASTM D6866-06) additive based on soybean oil commercially available from Huntsman Polyurethanes; Jeffol SG 360, a sucrose and glycerin-based polyol commercially available from Huntsman Polyurethanes; and derivatives thereof. For example, Ecopol 131 is a highly reactive aromatic polyester polyol comprising 80% primary hydroxyl groups, a hydroxyl number of 360-380 mg KOH/g, i.e., a primary hydroxyl number of 288-304 mg KOH/g, and a viscosity rise when used to replace the polyols used in the standard polyurethane formulation of the Brookfield Viscosity Test of over 50,000 mPa·s in less than about 150 seconds. In some embodiments, the highly reactive plant-based polyols can be formed by the reaction of a soybean oil and a polyester to produce a plant-based polyester polyol. For example, the soybean oil-based polyol can be formed by the reaction of a soybean oil and a recycled polyester. In some embodiments, the high hydroxyl number polyol can include renewable and recyclable content.


The one or more highly reactive polyols can be present in varying amounts relative the one or more isocyanate-reactive monomers used to form the polyurethane. In some embodiments, the one or more highly reactive polyols are present in at least 5% by weight (e.g., at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, or at least 45%), based on the total weight of the one or more isocyanate-reactive monomers used to form the polyurethane. In some embodiments, the one or more highly reactive polyols are 50% or less by weight of the one or more isocyanate-reactive monomers used to form the polyurethane (e.g., 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, or 10% or less).


The one or more highly reactive polyols can be present in an amount ranging from any of the minimum values described above to any of the maximum values described above. For example, the one or more highly reactive polyols can be present in an amount ranging from 5% to 50% by weight (e.g., from 10% to 40% by weight), based on the total weight of the one or more isocyanate-reactive monomers used to form the polyurethane.


In some embodiments, the one or more additional polyols include one or more plant-based polyols or non plant-based polyols. The one or more plant-based polyols useful with the composite materials described herein can include polyols containing ester groups that are derived from plant-based fats and oils. Accordingly, the one or more plant-based polyols can contain structural elements of fatty acids and fatty alcohols. Starting materials for the plant-based polyols of the polyurethane component can include fats and/or oils of plant-based origin with preferably unsaturated fatty acid residues. The one or more plant-based polyols useful with the composite materials described herein include, for example, castor oil, coconut oil, corn oil, cottonseed oil, lesquerella oil, linseed oil, olive oil, palm oil, palm kernel oil, peanut oil, sunflower oil, tall oil, and mixtures thereof. In some embodiments, the at least one polyol can include castor oil. Castor oil is a well-known, commercially available material, and is described, for example, in Encyclopedia of Chemical Technology, Volume 5, John Wiley & Sons (1979). Suitable castor oils include those sold by Vertellus Specialties, Inc., e.g., DB® Oil, and Eagle Specialty Products, e.g., T31® Oil. In some embodiments, the one or more plant-based polyols can be derived from soybean oil as the plant-based oil. For example, the plant-based polyols can be highly reactive polyols derived from soybean oil as described above.


In some embodiments, the one or more additional polyols include a less reactive polyol. For example, the one or more additional polyols can include one or more less reactive polyols in addition to one or more highly reactive polyols present in the composition. Less reactive polyols can have lower numbers of primary hydroxyl groups, lower primary hydroxyl numbers, and higher times to reach 50,000 mPa·s using the Brookfield Viscosity Test, than the highly reactive polyols. In some embodiments, the less reactive polyols have about 50% or less primary hydroxyl groups, about 40% or less primary hydroxyl groups, about 30% or less primary hydroxyl groups, about 20% or less primary hydroxyl groups, or even about 10% or less primary hydroxyl groups. The less reactive polyols can have primary hydroxyl numbers of less than about 220, less than about 200, less than about 180, less than about 160, less than about 140, less than about 120, less than about 100, less than about 80, less than about 60, less than about 40, or even less than about 20. Less reactive polyols can also have Brookfield viscosity rise to over 50,000 mPa·s when used to replace the polyols in the standard polyurethane formulation of the Brookfield Viscosity Test of greater than about 300 seconds, greater than about 350 seconds, greater than about 400 seconds, greater than about 450 seconds, greater than about 500 seconds, greater than about 550 seconds, or even greater than about 600 seconds. Suitable less reactive polyols include castor oil; Stepanpol PS-2052A (commercially available from the Stepan Company); Agrol 2.0, 3.6, 4.3, 5.6 and 7.0 (plant-based polyols commercially available from BioBased Technologies); Ecopol 123 and Ecopol 124, which are commercially available from Ecopur Industries; Honey Bee HB-150 and HB-230, soybean oil-based polyols commercially available from MCPU Polymer Engineering; Terol 1154, commercially available from Oxid (Houston, Tex); Multranol 3900, Multranol 3901, Arcol 11-34, Arcol 24-32, Arcol 31-28, Arcol E-351, Arcol LHT-42, and Arcol LHT-112, commercially available from Bayer; and Voranol 220-028, 220-094, 220-110N, 222-056, 232-027, 232-034, and 232-035, commercially available from Dow.


In some embodiments, greater than 0% (e.g., at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85%) by weight of the one or more isocyanate-reactive monomers used to form the polyurethane comprise polyester polyols, polyether polyols, or combinations thereof. In some embodiments, 90% or less (e.g., 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, or 5% or less) by weight of the one or more isocyanate-reactive monomers used to form the polyurethane comprise polyester polyols, polyether polyols, or combinations thereof. In some embodiments, the one or more additional polyols include an aromatic polyester polyol such as those sold under the TEROL® trademark (e.g., TEROL® 198).


The one or more isocyanate-reactive monomers used to form the polyurethane can comprise polyester polyols, polyether polyols, or combinations thereof in an amount ranging from any of the minimum values described above to any of the maximum values described above. For example, the one or more isocyanate-reactive monomers used to form the polyurethane can comprise polyester polyols, polyether polyols, or combinations thereof in an amount ranging from greater than 0% to 90% by weight (e.g., from 40% to 90% by weight, or from 70% to 90% by weight).


The one or more additional polyols can have an average functionality of from 1.0 to 8.0 (e.g., from 1.5 to 8.0, from 1.6 to 6.0, from 1.8 to 4.0, from 2.5 to 3.5, or from 2.6 to 3.1). The average hydroxyl number values (as measured in units of mg KOH/g) for the one or more additional polyols can be from 25 to 600 (e.g., from 100 to 600, from 150 to 550, from 200 to 500, from 250 to 440, from 300 to 415, or from 340 to 400).


Catalysts


One or more catalysts are added to facilitate curing and can be used to control the curing time of the polyurethane matrix. Examples of suitable catalysts include amine-containing catalysts (such as 1,4-diazabicyclo[2.2.2] octane (DABCO or triethylenediamine and tetramethylbutanediamine), tin catalysts (e.g., an organotin catalyst such as dimethyltin oleate), as well mercury- and bismuth-containing catalysts. In some embodiments, 0.01 wt % to 2 wt % catalyst or catalyst system (e.g., 0.025 wt % to 1 wt %, 0.05 wt % to 0.5 wt %, or 0.1 wt % to about 0.25 wt %) can be used.


In some embodiments, a catalyst which does not substantially associate with the absorptive filler is employed in the polyurethane system. For example, organometallic catalysts, such as organotin catalysts (e.g., dimethyltin oleate), do not substantially associate with absorptive fillers comprising organic carbon.


In certain embodiments, the absorptive filler comprises organic carbon, and the amount of organic carbon provided by the absorptive filler in the composite is at least 0.1% by weight of the composite (e.g., at least 0.25%, at least 0.5%, at least 0.75%, at least 1.0%, at least 1.5%, at least 2.0%, at least 3.0%, at least 4.0%, or at least 5.0%). In these cases, the polyurethane system can include an organotin catalyst that does not substantially associate with the organic carbon in the absorptive filler.


In some embodiments, the weight ratio of organotin catalyst to the organic carbon provided by the absorptive filler is at least 1:1 (e.g., at least 2:1, at least 3:1, at least 4:1, at least 5:1, at least 6:1, at least 7:1, at least 8:1, at least 9:1, at least 10:1, at least 11:1, at least 12:1, at least 13:1, at least 14:1, at least 15:1, at least 16:1, at least 17:1, at least 18:1, or at least 19:1). In some embodiments, the weight ratio of organotin catalyst to the organic carbon provided by the absorptive filler is 20:1 or less (e.g., 19:1 or less, 18:1 or less, 17:1 or less, 16:1 or less, 15:1 or less, 14:1 or less, 13:1 or less, 12:1 or less, 11:1 or less, 10:1 or less, 9:1 or less, 8:1 or less, 7:1 or less, 6:1 or less, 5:1 or less, 4:1 or less, 3:1 or less, or 2:1 or less,).


The weight ratio of organotin catalyst to the organic carbon provided by the absorptive filler can range from any of the minimum values described above to any of the maximum values described above. For example, the weight ratio of organotin catalyst to the organic carbon provided by the absorptive filler can range from1:1 to 20:1 (e.g., from 1:1 to 15:1, or from 1:1 to 10:1).


In some of these embodiments, the catalyst does not include a catalyst that associates with the absorptive filler. For example, in certain embodiments, the absorptive filler comprises organic carbon, and the catalyst does not include an amine catalyst.


In other embodiments, the catalyst comprises a first catalyst which does not substantially associate with the absorptive filler is employed in the polyurethane system, and a second catalyst which does associate with the absorptive filler is employed in the polyurethane system. For example, in certain embodiments, the absorptive filler comprises organic carbon, and the catalyst comprises a first catalyst which does not substantially associate with the absorptive filler is employed in the polyurethane system, such as an organotin catalyst (e.g., dimethyltin oleate), and a second catalyst which does associate with the absorptive filler (e.g., an amine catalyst).


In certain embodiments, the weight ratio of the organotin catalyst to the amine catalyst is at least 1:3 (e.g., at least 1:2, at least 1:1.75, at least 1:1.5, at least 1:1.25, at least 1:1.20, at least 1:1.15, at least 1:1.10, at least 1:1, at least 1.10:1, at least 1.15:1, at least 1.20:1, at least 1.25:1, at least 1.5:1, at least 1.75:1, at least 2:1, at least 2.5:1, at least 3:1, at least 4:1, at least 5:1, at least 10:1, or more). In certain embodiments, the weight ratio of the organotin catalyst to the amine catalyst is less than 2:1 (e.g., less than 1.75:1, less than 1.5:1, less than 1.25:1, less than 1.20:1, less than 1.15:1, less than 1.10:1, less than 1:1, less than 1:1.10, less than 1:1.15, less than 1:1.20, less than 1:1.25, less than 1:1.5, less than 1:1.75, or less than 1:2).


The weight ratio of the organotin catalyst to the amine catalyst can range from any of the minimum values described above to any of the maximum values described above. For example, the weight ratio of the organotin catalyst to the amine catalyst can range from 2:1 to 1:2 (e.g., from 2:1 to 1:1.10, from 2:1 to 1:1, or from 2:1 to 1.20:1).


Additional Components


Additional components useful with the composite materials described herein include additional fillers, foaming agents, blowing agents, surfactants, chain-extenders, crosslinkers, coupling agents, UV stabilizers, fire retardants, antimicrobials, anti-oxidants, and pigments. Though the use of such components is well known to those of skill in the art, some of these additional additives are further described herein.


One or more additional fillers can be used in the composite materials described herein. Examples of additional fillers useful with the composite materials include other types of ash such as those produced by firing fuels including industrial gases, petroleum coke, petroleum products, municipal solid waste, paper sludge, wood, sawdust, refuse derived fuels, switchgrass or other biomass material. The one of more additional fillers can also include ground/recycled glass (e.g., window or bottle glass); milled glass; glass spheres; glass flakes; calcium carbonate; aluminum trihydrate (ATH); silica; sand; ground sand; silica fume; slate dust; crusher fines; red mud; mica; talc; wollastonite; alumina; feldspar; bentonite; quartz; garnet; saponite; beidellite; granite; calcium oxide; calcium hydroxide; antimony trioxide; barium sulfate; magnesium oxide; titanium dioxide; zinc carbonate; zinc oxide; nepheline syenite; perlite; diatomite; pyrophillite; flue gas desulfurization (FGD) material; soda ash; trona; inorganic fibers; soy meal; pulverized foam; and mixtures thereof.


In some embodiments, inorganic fibers or organic fibers can be included in the polymer composite, e.g., to provide increased strength, stiffness or toughness. Fibers suitable for use with the composite materials described herein can be provided in the form of individual fibers, fabrics, rovings, or tows. These can be added prior to polymerization and can be chopped before or during the mixing process to provide desired fiber lengths. Alternately, the fibers can be added after polymerization, for example, after the composite material exits the mixing apparatus. The fibers can be up to about 2 in. in length. The fibers can be provided in a random orientation or can be axially oriented. The fibers can be coated with a sizing to modify performance to make the fibers reactive. Exemplary fibers include glass, polyvinyl alcohol (PVA), carbon, basalt, wollastonite, and natural (e.g., bamboo or coconut) fibers.


The inclusion of additional fillers in the composite materials as described herein can modify and/or improve the chemical and mechanical properties of the composite materials. For example, the optimization of various properties of the composite materials allows their use in building materials and other structural applications. High filler loading levels can be used in composite materials without a substantial reduction of (and potentially an improvement in) the intrinsic structural, physical, and mechanical properties of a composite. The use of filled composites as building materials has advantages over composite materials made using lower filler levels or no filler. For example, the use of higher filler loading levels in building materials may allow the building materials to be produced at a substantially decreased cost.


Foaming agents and blowing agents may be added to the composite materials described herein to produce a foamed version of the composite materials. Examples of blowing agents include organic blowing agents, such as halogenated hydrocarbons, acetone, pentanes, carbon dioxide, and other materials that have a boiling point below the reaction temperature. Chemical foaming agents include azodicarbonamides (e.g., Celogen manufactured by Lion Copolymer Geismar); and other materials that react at the reaction temperature to form gases such as carbon dioxide. Water is an exemplary foaming agent that reacts with isocyanate to yield carbon dioxide. The presence of water as an added component or in the filler also can result in the formation of polyurea bonds through the reaction of the water and isocyanate.


The addition of excess foaming or blowing agents above what is needed to complete the foaming reaction can add strength and stiffness to the composite material, improve the water resistance of the composite material, and increase the thickness and durability of the outer skin of the composite material. Such excessive blowing agent may produce a vigorously foaming reaction product. To contain the reaction product, a forming device that contains the pressure or restrains the materials from expanding beyond the design limits may be used, such as a stationary or continuous mold.


Surfactants can be used as wetting agents and to assist in mixing and dispersing the inorganic particulate material in a composite. Surfactants can also stabilize and control the size of bubbles formed during the foaming event and the resultant cell structure. Surfactants can be used, for example, in amounts below about 0.5 wt % based on the total weight of the mixture. Examples of surfactants useful with the polyurethanes described herein include anionic, non-ionic and cationic surfactants. For example, silicone surfactants such as DC-197 and DC-193 (Air Products; Allentown, Pa.) can be used.


Low molecular weight reactants such as chain-extenders and/or crosslinkers can be included in the composite materials described herein. These reactants help the polyurethane system to distribute and contain the inorganic filler and/or fibers within the composite material. Chain-extenders are difunctional molecules, such as diols or diamines, that can polymerize to lengthen the urethane polymer chains. Examples of chain-extenders include ethylene glycol; 1,4-butanediol; ethylene diamine, 4,4′-methylenebis(2-chloroaniline) (MBOCA); diethyltoluene diamine (DETDA); and aromatic diamines such as Unilink 4200 (commercially available from UOP). Crosslinkers are tri- or greater functional molecules that can integrate into a polymer chain through two functionalities and provide one or more further functionalities (i.e., linkage sites) to crosslink to additional polymer chains. Examples of crosslinkers include glycerin, trimethylolpropane, sorbitol, diethanolamine, and triethanolamine. In some composites, a crosslinker or chain-extender may be used to replace at least a portion of the at least one polyol in the composite material. For example, the polyurethane can be formed by the reaction of an isocyanate, a polyol, and a crosslinker.


Coupling agents and other surface treatments such as viscosity reducers, flow control agents, or dispersing agents can be added directly to the filler or fiber, or incorporated prior to, during, and/or after the mixing and reaction of the composite material. Coupling agents can allow higher filler loadings of an inorganic filler such as fly ash and may be used in small quantities. For example, the composite material may comprise about 0.01 wt % to about 0.5 wt % of a coupling agent. Examples of coupling agents useful with the composite materials described herein include Ken-React LICA 38 and KEN-React KR 55 (Kenrich Petrochemicals; Bayonne, N.J.). Examples of dispersing agents useful with the composite materials described herein include JEFFSPERSE X3202, JEFFSPERSE X3202RF, and JEFFSPERSE X3204 (Huntsman Polyurethanes; Geismar, La.).


Ultraviolet light stabilizers, such as UV absorbers, can be added to the composite materials described herein. Examples of UV light stabilizers include hindered amine type stabilizers and opaque pigments. Fire retardants can be included to increase the flame or fire resistance of the composite material. Antimicrobials can be used to limit the growth of mildew and other organisms on the surface of the composite. Antioxidants, such as phenolic antioxidants, can also be added. Antioxidants provide increased UV protection, as well as thermal oxidation protection.


Pigments or dyes can optionally be added to the composite materials described herein. An example of a pigment is iron oxide, which can be added in amounts ranging from about 2 wt % to about 7 wt %, based on the total weight of the composite material.


The polyurethane system can optionally be a highly reactive system. In some cases, the polyurethane is formed from one or more highly reactive polyols and/or highly reactive isocyanates in the presence of an absorptive filler. In some embodiments, the polyurethane system, when tested in a Brookfield Viscosity Test, produces a Brookfield viscosity increase to over 50,000 mPa·s in less than about 225 seconds, less than about 220 seconds, less than about 210 seconds, less than about 200 seconds, less than about 190 seconds, less than about 180 seconds, less than about 170 seconds, less than about 160 seconds, or less than about 150 seconds.


In some embodiments, the unfilled polyurethane (i.e., only the polyol, isocyanate, catalyst, and other non-filler additives) produces a surface temperature rise in a cup test of at least about 120° F. In other words, when the at least one isocyanate, the at least one polyol, the at least one catalyst, and any non-filler additives are mixed together in the amounts used in the polyurethane without fly ash or other fillers (e.g., fibers), the mixture produces a surface temperature rise in a cup test of at least 120° F. The surface temperature rise can be at least about 125° F., at least about 130° F., at least about 135° F., at least about 140° F., at least about 145° F., or even at least about 150° F.


In some embodiments, it is desirable to maximize cream time of the composite material while limiting the tack free time of the composite material, particularly in the continuous production of building materials. In some embodiments, the composite material has a cream time (the time for the polyurethane blowing reaction to initiate) of at least 5 seconds, at least 10 seconds, at least 15 seconds, at least 20 seconds, at least 25 seconds, or even at least 30 seconds. In some embodiments, the composite material has a wet tack-free time, as determined using ASTM D7487-08, of less than 100 second, less than 90 seconds, less than 85 seconds, less than 80 seconds, less than 75 seconds, less than 70 seconds, less than 65 seconds, or less than 60 seconds. Thus, the polyurethane composites can be demolded quickly resulting in faster production rates.


A method of preparing a composite material is also described herein. The method can include mixing (1) an absorptive filler; (2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof; (3) one or more isocyanate-reactive monomers, wherein the one or more isocyanate-reactive monomers comprise a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler; and (4) a catalyst. The at least one isocyanate and the one or more isocyanate-reactive monomers are allowed to react in the presence of the absorptive filler and catalyst to form the composite material. The composite material can be produced using a batch, semi-batch, or continuous process. At least a portion of the mixing step, reacting step, or both, can be conducted in a mixing apparatus such as a high speed mixer or an extruder. The method can further include the step of extruding the resulting composite material through a die or nozzle.


In some embodiments, a mixing step of the method used to prepare the composite materials described herein includes: (1) mixing the absorptive filler and the one or more isocyanate-reactive monomers; (2) mixing the isocyanate with the absorptive filler and the one or more isocyanate-reactive monomers; and (3) mixing the catalyst with the isocyanate, the absorptive filler, and the one or more isocyanate-reactive monomers. In some embodiments, a mixing step of the method used to prepare the composite materials described herein includes mixing the liquid ingredients (i.e., the the one or more isocyanate-reactive monomers, isocyanate, catalyst, surfactants, and water) and then combining the mixed liquid ingredients with the absorptive filler and optional fiber. As the composite material exits the die or nozzle, the composite material may be placed in a mold for post-extrusion curing and shaping. For example, the composite material can be allowed to cure in individual molds or it can be allowed to cure in a continuous forming system such as a belt molding system.


An ultrasonic device can be used for enhanced mixing and/or wetting of the various components of the composite materials described herein. Such enhanced mixing and/or wetting can allow a high concentration of filler to be mixed with the polyurethane matrix. The ultrasonic device produces an ultrasound of a certain frequency that can be varied during the mixing and/or extrusion process. The ultrasonic device useful in the preparation of composite materials described herein can be attached to or adjacent to an extruder and/or mixer. For example, the ultrasonic device can be attached to a die or nozzle or to the port of an extruder or mixer. An ultrasonic device may provide de-aeration of undesired gas bubbles and better mixing for the other components, such as blowing agents, surfactants, and catalysts.


Also provided are methods of addressing the variance of organic carbon content in an absorptive filler to provide a composite material having a substantially constant tack-free time. The method can include mixing (1) an absorptive filler comprising organic carbon; (2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof; (3) one or more isocyanate-reactive monomers, wherein the one or more isocyanate-reactive monomers comprise a first isocyanate-reactive monomer which includes one or more isocyanate-reactive functional groups and a moiety configured to associate with the absorptive filler; and (4) a catalyst. The at least one isocyanate and the one or more isocyanate-reactive monomers are allowed to react in the presence of the absorptive filler and catalyst to form the composite material.


The isocyanate-reactive monomer can associate with the absorptive filler during formation of the composite material, freeing up catalyst which may otherwise be absorbed to the filler to participate in reaction of the polyurethane system. As a result, the variance in the properties of the polyurethane system (e.g., tack-free time) resulting from variation in the absorptive behavior of the catalyst (e.g., as a result of variance of organic carbon content in an absorptive filler) can be minimized. This can provide polymeric composites having consistent batch-to-batch material properties.


In some embodiments, the tack-free time of the composite material formed using the cup test described in the examples is within 10% (e.g., within 7.5%, within 5%, within 2.5%, or within 1%) of the tack-free time of a composition prepared using an identical method wherein the absorptive filler is replaced with glass beads. In certain embodiments, the absorptive filler includes fly ash.


The composite materials described herein can be foamed. The one or more isocyanate-reactive monomers and the isocyanate can be allowed to produce a foamed composite material after mixing the components according to the methods described herein. The composite materials described herein can be formed while they are actively foaming or after they have foamed. For example, the material can be placed under the pressure of a mold cavity prior to or during the foaming of the composite material. When a foaming composite material is molded by a belt molding system into a product shape, the pressure that the foamed part exerts on the belts impacts the resulting mechanical properties. For example, as the pressure of the foaming increases and if the belt system can hold this pressure without the belts separating, then the product may have higher flexural strength than if the belts allowed leaking or pressure drop.


The composite materials described herein can be formed into shaped articles and used in various applications including building materials. Examples of such building materials include siding material, roof coatings, roof tiles, roofing material, carpet backing, flexible or rigid foams such as automotive foams (e.g., for dashboard, seats or roofing), component coating, and other shaped articles. Examples of shaped articles made using composite materials described herein include roofing material such as roof tile shingles; siding material; trim boards; carpet backing; synthetic lumber; building panels; scaffolding; cast molded products; decking materials; fencing materials; marine lumber; doors; door parts; moldings; sills; stone; masonry; brick products; posts; signs; guard rails; retaining walls; park benches; tables; slats; and railroad ties. The composite materials described herein further can be used as reinforcement of composite structural members including building materials such as doors; windows; furniture; and cabinets and for well and concrete repair. The composite materials described herein also can be used to fill gaps, particularly to increase the strength of solid surface articles and/or structural components. The composite materials can be flexible, semi-rigid or rigid foams. In some embodiments, the flexible foam is reversibly deformable (i.e., resilient) and can include open cells. A 8″×1″×1″ piece of a flexible foam can generally wrap around a 1″ diameter mandrel at room temperature without rupture or fracture. Flexible foams also generally have a density of less than 5 lb/ft3 (e.g., 1 to 5 lb/ft3). In some embodiments, the rigid foam is irreversibly deformable and can be highly crosslinked and/or can include closed cells. Rigid foams generally have a density of 1 lb/ft3 or greater (e.g., 1 to 60 lb/ft3, 5 to 60 lb/ft3, 20 to 55 lb/ft3, or 30 to 50 lb/ft3).


The examples below are intended to further illustrate certain aspects of the compositions and methods described herein, and are not intended to limit the scope of the claims. All parts and percentages are provided on a per weight basis, unless indicated otherwise.


EXAMPLES

General Test Methods


The reactivity of the polyurethane system used to form the composite materials can be measured using the Brookfield Viscosity Test (BVT). The Brookfield Viscosity Test determines the reactivity of a polyurethane system by determining how quickly viscosity increases showing gellation of the polyurethane system. The BVT can be conducted using a standard polyurethane formulation and by replacing components in the standard polyurethane formulation (e.g. the polyols or the isocyanate) to determine the viscosity rise. Alternately, the BVT can be conducted using the actual polyurethane formulation including the components in the amounts that would be used in the actual polyurethane formulation.


The standard polyurethane formulation for use in the BVT includes the following components:
















Amount




Component
(parts by wt)
Equiv Wt.
Equivalents


















ARCOL LHT-240 polyol
50.0
224.3
0.223


MULTRANOL 4035 polyol
50.0
148.0
0.338


DC-197 surfactant
1.0
0.0



DABCO R-8020 catalyst
2.0
110.0
0.018


Fly ash
460.0
0.0



Water
0.5
9.0
0.056









For the standard, the above components were mixed in a 600 mL glass jar at 1000 RPM for 30-seconds using any lab-duty electric stirrer equipped with a Jiffy Mixer brand, Model LM, mixing blade. MONDUR MR Light (a polymeric MDI, having a NCO weight of 31.5%, viscosity of 200 mPa·s@25° C., equivalent weight of 133, and a functionality of 2.8) was then added at an isocyanate index of 110 and the components mixed for an additional 30 seconds. The glass jar is then removed from the stirrer and placed on a Brookfield viscometer. The viscosity rise is measured using a viscometer for 20 minutes or until 50,000 mPa·s is reached. For the standard, a viscosity of 50,000 mPa·s is reached in about 550 seconds.


To test the reactivity of other components such as polyols, isocyanates and catalysts, these components replace the corresponding components used in the BVT standard polyurethane formulation. For example, to test the reactivity of a polyol, the polyol is added in an amount of 100 parts by weight and replaces the ARCOL LHT-240 and MULTRANOL 4035 polyols used in the standard polyurethane formulation. To test the reactivity of an isocyanate, the isocyanate replaces MONDUR MR Light and is added at a viscosity index of 110. A catalyst to be tested can be added in an amount of 2.0 parts by weight and replaces the DABCO R-8020 catalyst used in the standard polyurethane formulation.


To test the reactivity of an entire polyurethane system, all the standard components are replaced by those used in the polyurethane system of interest and used in the amounts they would be used in the polyurethane system of interest. The cup test as described herein is similar to the test procedure provided in ASTM D7487-08 (2008) and the general definitions, terms, safety precautions, and preparations used herein are the same as those used in ASTM D7487-08 (2008). The procedure is as follows:


1. Set the stirrer (Ryobi brand, Model DP-101) to run at 2000 rpm. The stirrer is equipped with a 2-inch diameter stirring blade, a GraLab Model 555 Electronic Timer, and an auto-reset and foot-switch controller.


2. Set the experiment formulation sheet and record sheet.


3. Wet-tare a 100 ml tri-pour beaker. Referring to the formulation sheet, add isocyanate into the beaker.


4. Weigh a 1000 ml plastic mixing cup and record the cup weight. Add the required amount of fly ash into the mixing cup (if it is being used). Then, add the required weights of all the other resin ingredients (except isocyanate) into the same mixing cup precisely. Record the weights to the nearest 0.1 gram.


5. Stir the mixture for 1 min (if fly ash is not being used, the stirring time is reduced to 15 seconds). Record the mixture temperature after stirring.


6. Add the required amount of isocyanate from the beaker (pre-weighed isocyanate in Step 3) into the mixing cup quickly (less than 30 secs) precisely. Record the weight to the nearest 0.1 gram.


7. Immerse the stirrer blade into the mixture. Simultaneously, turn on the mixer switch and start the stop-watch. Mix everything inside the cup for 15 seconds. At the end of the 15 seconds, remove the cup from the spinning mixing blade and record the mixture temperature after stirring.


8. Place the cup in a fume hood and observe. Record the characteristic parameters such as cream time, gel time, top of cup (TOC) time, tack free time, end of rise time, and maximum surface temperature. Maximum surface temperature can be measured using an infrared (IR) thermometer.


9. Clean the stirring blade thoroughly after each test using a container of acetone.


Effect of Fly Ash Composition on Tack-Free Time


Composites were prepared using seven different fly ash samples (Fly Ashes 1-7). 50 g of polyol blend 5 (33% by weight TEROL® 198 (aromatic polyester polyol; available from Oxid L.P., Houston, Tex.), 33% by weight CARPOL® GSP-355 (sucrose-based polyether polyol; available from Carpenter Co., Richmond, Va.), 33% by weight CARPOL® GP-725 (alkylene oxide-capped glycerine; available from Carpenter Co., Richmond, Va.), and 1% by weight 2-(2-hydroxyethylamino)ethanol (99%)) was mixed with 0.10 g of an amine catalyst (triethylenediamine), 0.20 g of an organotin catalyst, and 0.35 g of a silicone surfactant were mixed in a 12 oz. cup. A sample of fly ash (102 g) was added and wetted with the liquid solution. Methylene diphenyl diisocyanate (MDI; 104 index; 51.5 g) was added to the cup, and simultaneously stirring began and a timer was started. After mixing for ten seconds, the foam was allowed to rise undisturbed. When the rate of rise slowed, the surface of the foam was gently touched with a tongue depressor until the foam was found to no longer be sticky. This was recorded as the tack-free time.



FIG. 1 illustrates the tack-free times for the polyurethane system including amine-based blow and cure catalysts with several sources of fly ash. The more than two-fold change in reactivity suggested that the physical and chemical makeup of the fly ash had a major influence on the polyurethane chemistry.


The physical properties of Fly Ashes 1-7, including the surface area (BET surface area, m2/g) of the fly ash and amount of organic carbon present in the fly ash (estimated by determining loss-on-ignition (LOI), %), were measured using ASTM C618-12a and ASTM C1069-09.









TABLE 1







Physical properties of Fly Ashes 1-7.











BET Surface Area (m2/g)
LOI (%)
BET/LOI














Fly Ash 1
1.1965
0.383
3.1256


Fly Ash 2
0.9186
0.247
3.7225


Fly Ash 3
1.3177
0.278
4.7352


Fly Ash 4
1.0143
0.240
4.2284


Fly Ash 5
3.5924
0.843
4.2638


Fly Ash 6
1.6952
0.661
2.5643


Fly Ash 7
1.0193
0.413
2.4667









As shown in Table 1, the surface areas and organic carbon content of Fly Ashes 1-7 varied as a consequence of the different combustion history of each sample. In particular, some fly ash samples possessed significantly different levels of organic carbon, as indicated by different LOI values. For example, as illustrated in FIG. 2, the measured LOI was higher for Fly Ash 1 than for Fly Ash 2 or Fly Ash 3. As shown in FIG. 1, Fly Ash 1 also exhibited a greater tack-free time than Fly Ash 2 or Fly Ash 3. It was hypothesized that the higher carbon content of Fly Ash 1 resulted in greater absorption of the amine used to catalyze reaction of the polyurethane system, resulting in an increased tack-free time.


To further examine the effect of carbon content upon reaction time of the polyurethane system, the tack-free time of composites formed using Fly Ash 1 and Fly Ash 2 were measured before and after ignition at 750° C. for 2 hours to consume any organic carbon present in the fly ash. A higher catalyst loading was used in these experiments to shorten reaction time. FIG. 3 illustrates the tack-free time of composites formed from samples of Fly Ash 1 and Fly Ash 2 before and after ignition. Prior to ignition, there was a 34% difference in tack-free time between composites prepared using Fly Ash 1 and Fly Ash 2. The ignited samples gave identical reaction times.


Composites formed using fly ash samples from the other sources (Fly Ashes 4-7) were also measured before and after ignition. As shown in FIG. 4, the composites exhibit variable tack-times prior to ignition; however, they all exhibit similar tack-free times following ignition. This suggests that organic carbon present in the fly ash is the root cause of variability in polyurethane chemistry between sources of fly ash.


Composites Formed from Polyurethanes Derived from a Monomer which Includes a Moiety Configured to Associate with the Fly Ash


Composites were formed using polyurethanes derived from a monomer which includes a moiety configured to associate with the fly ash. In particular, composites were formed from a polyurethane formed from a polyol blend containing an amine-based polyol to examine if the amine-based polyol could function as a sacrificial agent on the fly ash with minimal effect on the overall reactivity due to their high level of use compared to amine catalysts.


Five different polyol blends (Polyol Blends 1-5) were examined. The composition of Polyol Blends 1-5 is shown in Table 2 below. Polyol Blends 1-4 included a polyol bearing an amino group. Polyol Blends 1-3 included a Mannich-based polyether polyol (CARPOL® MX-470 or CARPOL® MX-425) derived from ortho-nonylphenol, formaldehyde, and diethanolamine. Polyol Blend 4 included an alkylene oxide-capped polyamine (CARPOL® EDAP-800, propylene oxide-and ethylene oxide-capped ethylene diamine). For comparison, Polyol Blend 5 did not contain a polyol bearing an amino group.









TABLE 2







Composition of Polyol Blends 1-5.













Polyol
Polyol
Polyol
Polyol
Polyol



Blend 1
Blend 2
Blend 3
Blend 4
Blend 5

















1CARPOL ® MX-470

33







2CARPOL ® MX-425


33
33





3TEROL ® 198

33
33
33
33
33



4CARPOL ® GSP-355

33
33
33
33
33



5CARPOL ® EDAP-800




33




6CARPOL ® GP-725





33



7DEOA

 1
 1

 1
 1


Glycerine


 1








1Mannich-based polyether polyol; available from Carpenter Co., Richmond, VA




2Mannich-based polyether polyol; available from Carpenter Co., Richmond, VA




3Aromatic polyester polyol; available from Oxid L.P., Houston, TX




4Sucrose-based polyether polyol; available from Carpenter Co., Richmond, VA




5Alkylene oxide-capped ethylene diamine; available from Carpenter Co., Richmond, VA




6Alkylene oxide-capped glycerine; available from Carpenter Co., Richmond, VA




72-(2-hydroxyethylamino)ethanol, 99%







50 g of each polyol blend was mixed with 0.10 g of an amine catalyst (triethylenediamine), 0.20 g of an organotin catalyst, and 0.35 g of a silicone surfactant were mixed in a 12 oz. cup. A sample of fly ash (102 g) was added and wetted with the liquid solution. Methylene diphenyl diisocyanate (MDI; 104 index; 51.5 g) was added to the cup, and simultaneously stirring began and a timer was started. After mixing for ten seconds, the foam was allowed to rise undisturbed. When the rate of rise slowed, the surface of the foam was gently touched with a tongue depressor until the foam was found to no longer be sticky. This was recorded as the tack-free time.



FIG. 5 illustrates the tack-free time of composites formed from Polyol Blends 1-5 and three different samples of fly ash (Fly Ash 1, Fly Ash 7, and a mixture of Fly Ash 2 and Fly Ash 3). As shown in FIG. 5, the blends made with the amine-containing polyols showed only a small difference (3-5 second difference, less than 10%) between samples made with different fly ashes. Surprisingly, the difference in tack time was small, even when comparing Fly Ash 7 (a Class F fly ash with a relatively high level of active carbon) to Fly Ash 1 and the mixture of Fly Ash 2 and Fly Ash 3 (Class C samples)


In contrast, composites prepared from Polyol Blend 5 (which does not include an amine-based polyol) exhibited much slower overall reactivity. In addition, the tack-time of the composite was highly variable depending upon the fly ash added. Composites formed from Fly Ash 1 and a mixture of Fly Ash 2 and Fly Ash 3 exhibited an approximately 20% difference in tack-free time, while composites formed from Fly Ash 7 exhibited a tack-free time more than twice the tack-free time observed for Fly Ash 1 and a mixture of Fly Ash 2 and Fly Ash 3. This confirms the ability of the amine-containing polyols to act as a sacrificial agent on the fly ash, minimizing the effect of the carbon content of the fly ash on the reaction time of the polyurethane matrix.


Composites Formed Using a Non-Absorptive Catalyst


Composites were formed from two different fly ash samples using catalyst mixtures containing varying amounts of an amine catalyst (an absorptive catalyst) and an organotin catalyst (a non-absorptive catalyst such as dimethyltin oleate). The experiments were performed as described above, with the catalyst system being modified to contain the amounts of amine and/or organotin catalyst shown in FIG. 6 for each trial.



FIG. 6 is a plot showing the tack-free time for composites formed using an amine catalyst (triethylenediamine) and an amine catalyst (triethylenediamine) in combination with varying amounts of an organotin catalyst (dimethyltin oleate) in place of a portion of the amine catalyst. As shown in FIG. 6, as the amount of non-absorptive catalyst in the catalyst mixture increases, the difference in tack-free time between composites formed from Fly Ash 1 and a mixture of Fly Ash 2 and Fly Ash 3 decreased.


Because the tin catalyst is not absorbed on the residual carbon present in the fly ash, the variance in the carbon content of the fly ash does not exert as great of an influence on the composite's tack-free time when increasing amounts of tin catalyst are used to cure the composite. The amine catalyst, which is present in increasingly small amounts as the amount of tin catalyst is increased, is still adsorbed by the carbon in the fly ash, resulting in slight differences in reactivity of composites formed from different fly ashes, even when using a significant fraction of non-absorptive tin catalyst.


The composites, materials and methods of the appended claims are not limited in scope by the specific composites and methods described herein, which are intended as illustrations of a few aspects of the claims and any composites, materials, and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the composites, materials and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative composites, materials, and method steps disclosed herein are specifically described, other combinations of the composite materials and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments of the invention and are also disclosed.

Claims
  • 1. A composite comprising: an absorptive filler comprising fly ash having at least 0.1%, by weight of the fly ash, of an organic carbon, anda polyurethane formed by a reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers comprising a Mannich polyol, in the presence of an amine catalyst,wherein the Mannich polyol is in an amount from 10% to 50% by weight, based on the total weight of the one or more isocyanate-reactive monomers, and associates with the absorptive filler through a nitrogen-containing moiety; andwherein the composite has a tack-free time that varies less than 10% regardless of the fly ash used.
  • 2. The composite of claim 1, wherein the absorptive filler is present in an amount from 40% to 90% by weight, based on the total weight of the composite.
  • 3. The composite of claim 1, wherein the nitrogen-containing moiety comprises an amine.
  • 4. The composite of claim 1, wherein the Mannich polyol comprises an alkanolamine.
  • 5. The composite of claim 4, wherein the alkanolamine comprises a dialkanolamine which includes two hydroxy-substituted C1-C12 alkyl groups, or a trialkanolamine which includes three hydroxy-substituted C1-C12 alkyl groups.
  • 6. The composite of claim 1, wherein the Mannich polyol comprises an alkoxylated polyamine derived from a polyamine and an alkylene oxide.
  • 7. The composite of claim 1, wherein the Mannich polyol is derived from a substituted or unsubstituted phenol and an alkanolamine.
  • 8. The composite of claim 7, wherein the Mannich polyol is further derived from an alkylene oxide.
  • 9. The composite of claim 1, wherein the Mannich polyol is from 10% to 40% by weight of the one or more isocyanate-reactive monomers.
  • 10. The composite of claim 1, wherein the one or more isocyanate-reactive monomers further comprises a highly reactive polyol, wherein at least 75% of the hydroxyl groups in the highly reactive polyol comprise primary hydroxyl groups.
  • 11. The composite of claim 10, wherein the highly reactive polyol is from 10% to 40% by weight of the one or more isocyanate-reactive monomers.
  • 12. The composite of claim 1, wherein the one or more isocyanate-reactive monomers further comprises a polyester polyol, a polyether polyol, or a combination thereof.
  • 13. The composite of claim 12, wherein the polyester polyol comprises an aromatic polyester polyol.
  • 14. A method of preparing a composite material, comprising: mixing (1) an absorptive filler comprising fly ash having at least 0.1%, by weight of the fly ash, of an organic carbon; (2) at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof; (3) one or more isocyanate-reactive monomers comprising a Mannich polyol; and (4) an amine catalyst; andallowing the at least one isocyanate and the one or more isocyanate-reactive monomers to react in the presence of the absorptive filler and the amine catalyst to form the composite material,wherein the Mannich polyol is in an amount from 10% to 50% by weight, based on the total weight of the one or more isocyanate-reactive monomers, and associates with the absorptive filler through a nitrogen-containing moiety; andwherein the composite material has a tack-free time that varies less than 10% regardless of the fly ash used.
  • 15. The composite of claim 1, wherein the one or more isocyanate-reactive monomers comprise an alkylene-oxide capped Mannich polyol.
  • 16. The composite of claim 1, wherein the amine catalyst is selected from 1,4-diazabicyclo[2.2.2]octane, triethylenediamine, and tetramethylbutanediamine.
  • 17. A composite comprising: 40-90% by weight of the composite of fly ash, the fly ash comprising at least 0.1% by weight of the fly ash of an organic carbon, anda polyurethane formed from a reaction of at least one isocyanate selected from the group consisting of diisocyanates, polyisocyanates, and combinations thereof, and one or more isocyanate-reactive monomers comprising a Mannich polyol and an aromatic polyester polyol, in the presence of an amine catalyst,wherein the Mannich polyol is in an amount from 10% to 50% by weight, based on the total weight of the one or more isocyanate-reactive monomers, and associates with the fly ash through a nitrogen-containing moiety; andwherein the composite has a tack-free time that varies less than 10% regardless of the fly ash used.
  • 18. The composite of claim 1, wherein the Mannich polyol is from 10% to 25% by weight of the one or more isocyanate-reactive monomers.
  • 19. The composite of claim 17, wherein the Mannich polyol is from 10% to 25% by weight of the one or more isocyanate-reactive monomers.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/036464 4/12/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/168633 10/16/2014 WO A
US Referenced Citations (508)
Number Name Date Kind
529535 Smith Nov 1894 A
529538 Vaughn Nov 1894 A
2526033 Lyon Oct 1950 A
2817875 Harris et al. Dec 1957 A
2833730 Barthel, Jr. May 1958 A
RE24514 Hoppe et al. Aug 1958 E
2902388 Szukiewicz Sep 1959 A
2983693 Sievers May 1961 A
3065500 Berner Nov 1962 A
3071297 Lee Jan 1963 A
3078240 Hoshino et al. Feb 1963 A
3078512 De Haven Feb 1963 A
3178490 Petrino et al. Apr 1965 A
3182104 Cwik May 1965 A
3223027 Soda et al. Dec 1965 A
3262151 Oxel Jul 1966 A
3269961 Bruson et al. Aug 1966 A
3308218 Wiegand et al. Mar 1967 A
3340220 Granito et al. Sep 1967 A
3409711 Pashak et al. Nov 1968 A
3453356 Kent, Jr. et al. Jul 1969 A
3466705 Richie Sep 1969 A
3520027 Amos et al. Jul 1970 A
3528126 Ernst et al. Sep 1970 A
3566448 Ernst Mar 1971 A
3583679 Godley, II Jun 1971 A
3608008 Soukup et al. Sep 1971 A
3632091 Ford Jan 1972 A
3644168 Bonk et al. Feb 1972 A
3685804 Stansfield Aug 1972 A
3698731 Jost et al. Oct 1972 A
3712776 Woodham et al. Jan 1973 A
3726624 Schwarz Apr 1973 A
3728288 Cobbs, Jr. et al. Apr 1973 A
3732345 Amos et al. May 1973 A
3736081 Yovanovich May 1973 A
3738895 Paymal Jun 1973 A
3764247 Garrett et al. Oct 1973 A
3768937 Haga et al. Oct 1973 A
3769053 Pennachetti et al. Oct 1973 A
3769054 Pennachetti et al. Oct 1973 A
3774428 Derry et al. Nov 1973 A
3802582 Brock Apr 1974 A
3816043 Snelling et al. Jun 1974 A
3819574 Brown et al. Jun 1974 A
3824057 Kornylak et al. Jul 1974 A
3830776 Carlson et al. Aug 1974 A
3832429 Charpentier Aug 1974 A
3841390 Dibenedetto et al. Oct 1974 A
3843757 Ehrenfreund et al. Oct 1974 A
3852387 Bortnick et al. Dec 1974 A
3867494 Rood et al. Feb 1975 A
3878027 Troutner Apr 1975 A
3890077 Holman Jun 1975 A
3910179 Troutner Oct 1975 A
3917547 Massey Nov 1975 A
3917571 Olstowski et al. Nov 1975 A
3917774 Sagane et al. Nov 1975 A
3928258 Alexander Dec 1975 A
3932980 Mizutani et al. Jan 1976 A
3963679 Ullrich et al. Jun 1976 A
3981654 Rood et al. Sep 1976 A
3991005 Wallace Nov 1976 A
3999230 Bruning et al. Dec 1976 A
4005035 Deaver Jan 1977 A
4013616 Wallace Mar 1977 A
4023779 Beloy May 1977 A
4025257 Sagane et al. May 1977 A
4042314 Bruning et al. Aug 1977 A
4051742 Johansson et al. Oct 1977 A
4060579 Schmitzer et al. Nov 1977 A
4065410 Schafer et al. Dec 1977 A
4073840 Saidla Feb 1978 A
4078032 Wenner Mar 1978 A
4092276 Narayan May 1978 A
4104094 Peterson Aug 1978 A
4107248 Schlieckmann Aug 1978 A
4120626 Keller Oct 1978 A
4121945 Hurst et al. Oct 1978 A
4127040 Moore et al. Nov 1978 A
4128369 Kemerer et al. Dec 1978 A
4137200 Wood et al. Jan 1979 A
4137265 Edwards Jan 1979 A
4141862 Raden et al. Feb 1979 A
4143759 Paradis Mar 1979 A
4149840 Tippmann Apr 1979 A
4153768 Blount May 1979 A
4160749 Schneider et al. Jul 1979 A
4160853 Ammons Jul 1979 A
4163824 Saidla Aug 1979 A
4164439 Coonrod Aug 1979 A
4164526 Clay et al. Aug 1979 A
4165414 Narayan et al. Aug 1979 A
4175870 Warzel Nov 1979 A
4180538 Morikawa et al. Dec 1979 A
4209605 Hoy et al. Jun 1980 A
4210572 Herman et al. Jul 1980 A
4214864 Tabler Jul 1980 A
4221877 Cuscurida et al. Sep 1980 A
4229222 Schneider Oct 1980 A
4240950 Von Vonin et al. Dec 1980 A
4241131 Bailey Dec 1980 A
4243755 Marx et al. Jan 1981 A
4246363 Turner et al. Jan 1981 A
4247656 Janssen Jan 1981 A
4248975 Satterly Feb 1981 A
4251428 Recker et al. Feb 1981 A
4254002 Sperling et al. Mar 1981 A
4254176 Muller et al. Mar 1981 A
4256846 Ohashi et al. Mar 1981 A
4260538 Iseler et al. Apr 1981 A
4260568 Warzel Apr 1981 A
4261946 Goyert et al. Apr 1981 A
4268320 Klingaman et al. May 1981 A
4272377 Gerlach et al. Jun 1981 A
4275033 Schulte et al. Jun 1981 A
4276337 Coonrod Jun 1981 A
4282329 Von Bonin et al. Aug 1981 A
4282988 Hulbert, Jr. Aug 1981 A
4284826 Aelony Aug 1981 A
4290248 Kemerer et al. Sep 1981 A
4294750 Klingaman et al. Oct 1981 A
4296159 Jenkines et al. Oct 1981 A
4300776 Taubenmann Nov 1981 A
4324495 Martinez Apr 1982 A
4330494 Iwata et al. May 1982 A
4331726 Cleary May 1982 A
4338422 Jackson, Jr. et al. Jul 1982 A
4339366 Blount Jul 1982 A
4340681 Reuter et al. Jul 1982 A
4342847 Goyert et al. Aug 1982 A
4344873 Wick Aug 1982 A
4347281 Futcher et al. Aug 1982 A
4359359 Gerlach et al. Nov 1982 A
4359548 Blount Nov 1982 A
4366204 Briggs Dec 1982 A
4367259 Fulmer et al. Jan 1983 A
4371629 Austin Feb 1983 A
4376171 Blount Mar 1983 A
4381352 McBrayer Apr 1983 A
4382056 Coonrod May 1983 A
4383818 Swannell May 1983 A
4390581 Cogswell et al. Jun 1983 A
4395214 Phipps et al. Jul 1983 A
4396791 Mazzoni Aug 1983 A
4397983 Hill et al. Aug 1983 A
4412033 Labelle et al. Oct 1983 A
4414174 Klempner et al. Nov 1983 A
4439548 Weisman Mar 1984 A
4450133 Cafarelli May 1984 A
4454251 Frisch et al. Jun 1984 A
4460737 Evans et al. Jul 1984 A
4465500 Motsinger et al. Aug 1984 A
4483727 Eickman et al. Nov 1984 A
4486211 Monaghan Dec 1984 A
4489023 Proksa Dec 1984 A
4490493 Mikols Dec 1984 A
4512942 Babbin et al. Apr 1985 A
4514162 Schulz Apr 1985 A
4525103 Meyer et al. Jun 1985 A
4532098 Campbell et al. Jul 1985 A
4540357 Campbell et al. Sep 1985 A
4568702 Mascioli Feb 1986 A
4576718 Reischl et al. Mar 1986 A
4576974 Carroll et al. Mar 1986 A
4581186 Larson Apr 1986 A
4595709 Reischl Jun 1986 A
4597927 Zeitler et al. Jul 1986 A
4600311 Mourrier et al. Jul 1986 A
4604410 Altenberg Aug 1986 A
4649162 Roche et al. Mar 1987 A
4661533 Stobby Apr 1987 A
4677157 Jacobs Jun 1987 A
4680214 Frisch et al. Jul 1987 A
4705409 Trerice Nov 1987 A
4714722 Najvar et al. Dec 1987 A
4714778 Burgoyne, Jr. et al. Dec 1987 A
4717027 Laure et al. Jan 1988 A
4724250 Schubert et al. Feb 1988 A
4728287 Niems Mar 1988 A
4728288 Niems Mar 1988 A
4734455 Mobley et al. Mar 1988 A
4737524 Ako et al. Apr 1988 A
4780484 Schubert et al. Oct 1988 A
4780498 Goerrissen et al. Oct 1988 A
4795763 Gluck et al. Jan 1989 A
4802769 Tanaka Feb 1989 A
4826429 Niems May 1989 A
4826944 Hoefer et al. May 1989 A
4832183 Lapeyre May 1989 A
4835195 Rayfield et al. May 1989 A
4848915 Fintel Jul 1989 A
4855184 Klun et al. Aug 1989 A
4883826 Marugg Nov 1989 A
4889429 Heinzmann et al. Dec 1989 A
4892891 Close Jan 1990 A
4895352 Stumpf Jan 1990 A
4948859 Echols et al. Aug 1990 A
4992102 Barbour Feb 1991 A
4995801 Hehl Feb 1991 A
5001165 Canaday et al. Mar 1991 A
5010112 Glicksman et al. Apr 1991 A
5028648 Famili et al. Jul 1991 A
5033860 Nakamura Jul 1991 A
5051222 Marten et al. Sep 1991 A
5053274 Jonas Oct 1991 A
5064293 Nakamura Nov 1991 A
5087545 Hagenbach Feb 1992 A
5091436 Frisch et al. Feb 1992 A
5094798 Hewitt Mar 1992 A
5096993 Smith et al. Mar 1992 A
5102918 Moriya Apr 1992 A
5102969 Scheffler et al. Apr 1992 A
5106422 Bennett et al. Apr 1992 A
5110275 Scheuring May 1992 A
5114630 Newman et al. May 1992 A
5120815 Marugg et al. Jun 1992 A
5149722 Soukup Sep 1992 A
5149739 Lee Sep 1992 A
5159012 Doesburg et al. Oct 1992 A
5160539 Cochran Nov 1992 A
5166301 Jacobs Nov 1992 A
5167899 Jezic Dec 1992 A
5185117 Hawley Feb 1993 A
5185420 Smith et al. Feb 1993 A
5186539 Manser et al. Feb 1993 A
5229138 Carotti Jul 1993 A
5240969 Brown Aug 1993 A
5252697 Jacobs et al. Oct 1993 A
5271699 Barre et al. Dec 1993 A
5278195 Volkert et al. Jan 1994 A
5296545 Heise Mar 1994 A
5299692 Nelson et al. Apr 1994 A
5300531 Weaver Apr 1994 A
5302634 Mushovic Apr 1994 A
5330341 Kemerer et al. Jul 1994 A
5331044 Lausberg et al. Jul 1994 A
5340300 Saeki et al. Aug 1994 A
5342884 Tabor et al. Aug 1994 A
5344490 Roosen et al. Sep 1994 A
5358680 Boissonnat et al. Oct 1994 A
5361945 Johanson Nov 1994 A
5369147 Mushovic Nov 1994 A
5375988 Klahre Dec 1994 A
5391417 Pike Feb 1995 A
5399194 Cochran et al. Mar 1995 A
5401154 Sargent Mar 1995 A
5424013 Lieberman Jun 1995 A
5424014 Glorioso et al. Jun 1995 A
5432204 Farkas Jul 1995 A
5439623 Fintel Aug 1995 A
5439711 Vu et al. Aug 1995 A
5453231 Douglas Sep 1995 A
5455312 Heidingsfeld et al. Oct 1995 A
5458477 Kemerer et al. Oct 1995 A
5458831 Saeki et al. Oct 1995 A
5491174 Grier et al. Feb 1996 A
5495640 Mullet et al. Mar 1996 A
5505599 Kemerer et al. Apr 1996 A
5508315 Mushovic Apr 1996 A
5514430 Andersen et al. May 1996 A
5518996 Maroy et al. May 1996 A
5522446 Mullet et al. Jun 1996 A
5527172 Graham, Jr. Jun 1996 A
5527833 Kuczynski et al. Jun 1996 A
5532065 Gubitz et al. Jul 1996 A
5536310 Brook et al. Jul 1996 A
5536781 Heidingsfeld et al. Jul 1996 A
5554713 Freeland Sep 1996 A
5562141 Mullet et al. Oct 1996 A
5565239 Pike Oct 1996 A
5565497 Godbey et al. Oct 1996 A
5566740 Mullet et al. Oct 1996 A
5567791 Brauer et al. Oct 1996 A
5569713 Lieberman Oct 1996 A
5582840 Pauw et al. Dec 1996 A
5582849 Lupke Dec 1996 A
5604266 Mushovic Feb 1997 A
5611976 Klier et al. Mar 1997 A
5621024 Eberhardt et al. Apr 1997 A
5624491 Liskowitz et al. Apr 1997 A
5631103 Eschbach et al. May 1997 A
5631319 Reese et al. May 1997 A
5634953 Wissmann Jun 1997 A
5643516 Raza et al. Jul 1997 A
5653534 Matsumoto et al. Aug 1997 A
5681384 Liskowitz et al. Oct 1997 A
5681915 Lechner et al. Oct 1997 A
5688890 Ishiguro et al. Nov 1997 A
5696205 Muller et al. Dec 1997 A
5700495 Kemerer et al. Dec 1997 A
5707474 Andersen et al. Jan 1998 A
5710231 Fogg et al. Jan 1998 A
5723506 Glorioso et al. Mar 1998 A
5728337 Yoshikawa et al. Mar 1998 A
5759695 Primeaux, II Jun 1998 A
5759730 Hermansen et al. Jun 1998 A
5760133 Heidingsfeld et al. Jun 1998 A
5769281 Bates Jun 1998 A
5772752 Liskowitz et al. Jun 1998 A
5776244 Ahrens Jul 1998 A
5782283 Kendall Jul 1998 A
5783125 Bastone et al. Jul 1998 A
5783629 Srinivasan et al. Jul 1998 A
5795949 Daute et al. Aug 1998 A
5798533 Fishback et al. Aug 1998 A
5811506 Slagel Sep 1998 A
5814256 Greve et al. Sep 1998 A
5817230 Groppo, Jr. et al. Oct 1998 A
5817402 Miyake et al. Oct 1998 A
5836499 Mullet et al. Nov 1998 A
5837742 Fishback Nov 1998 A
5844015 Steilen et al. Dec 1998 A
5845783 Smith Dec 1998 A
5849075 Hopkins et al. Dec 1998 A
5872168 Katoot Feb 1999 A
5882396 Hiorns Mar 1999 A
5887724 Weyand et al. Mar 1999 A
5908701 Jennings et al. Jun 1999 A
5929153 Mori et al. Jul 1999 A
5932337 Edinger Aug 1999 A
5934352 Morgan Aug 1999 A
5935885 Hnat et al. Aug 1999 A
5945460 Ekart et al. Aug 1999 A
5952053 Colby Sep 1999 A
5962144 Primeaux, II Oct 1999 A
5981655 Heidingsfled et al. Nov 1999 A
5993551 Hahn Nov 1999 A
6000102 Lychou Dec 1999 A
6019269 Mullet et al. Feb 2000 A
6020387 Downey et al. Feb 2000 A
6040381 Jennings et al. Mar 2000 A
6051634 Laas et al. Apr 2000 A
6055781 Johanson May 2000 A
6060531 Horn et al. May 2000 A
6062719 Busby et al. May 2000 A
6065862 Althausen May 2000 A
6086802 Levera et al. Jul 2000 A
6096401 Jenkines Aug 2000 A
6103340 Kubo et al. Aug 2000 A
6107355 Horn et al. Aug 2000 A
6107433 Petrovic et al. Aug 2000 A
6120905 Figovsky Sep 2000 A
6133329 Shieh et al. Oct 2000 A
6136246 Rauwendaal et al. Oct 2000 A
6136870 Triolo et al. Oct 2000 A
6139960 Styron et al. Oct 2000 A
6140381 Rosthauser et al. Oct 2000 A
6146556 Katoot Nov 2000 A
6177232 Melisaris et al. Jan 2001 B1
6180192 Smith et al. Jan 2001 B1
6180686 Kurth Jan 2001 B1
RE37095 Glorioso et al. Mar 2001 E
6204312 Taylor Mar 2001 B1
6211259 Borden et al. Apr 2001 B1
6220745 Kobayashi et al. Apr 2001 B1
6224797 Franzen et al. May 2001 B1
6228933 Hiles May 2001 B1
6234777 Sperry et al. May 2001 B1
6235367 Holmes et al. May 2001 B1
6242098 Styron et al. Jun 2001 B1
6252031 Tsutsumi et al. Jun 2001 B1
6257643 Young Jul 2001 B1
6257644 Young Jul 2001 B1
6258310 Sardanopoli et al. Jul 2001 B1
6258917 Slagel Jul 2001 B1
6264462 Gallagher Jul 2001 B1
6265457 Dolgopolsky et al. Jul 2001 B1
6271276 Gribble et al. Aug 2001 B1
6284841 Friesner Sep 2001 B1
6294637 Brauer et al. Sep 2001 B1
6297321 Onder et al. Oct 2001 B1
6309507 Morikawa et al. Oct 2001 B1
6312244 Levera et al. Nov 2001 B1
6313186 Kaida et al. Nov 2001 B1
6321904 Mitchell Nov 2001 B1
6329448 Gutsche et al. Dec 2001 B1
6331577 Volkert et al. Dec 2001 B1
6343924 Klepsch Feb 2002 B1
6348514 Calabrese et al. Feb 2002 B1
6364518 Gleich et al. Apr 2002 B1
6383599 Bell et al. May 2002 B1
6387504 Mushovic May 2002 B1
6399698 Petrovic et al. Jun 2002 B1
6409949 Tanaka et al. Jun 2002 B1
6419864 Scheuring Jul 2002 B1
6420034 Takahashi et al. Jul 2002 B1
6423755 Allen et al. Jul 2002 B1
6429257 Buxton et al. Aug 2002 B1
6431847 Hawley et al. Aug 2002 B1
6432335 Ladang et al. Aug 2002 B1
6433032 Hamilton Aug 2002 B1
6433121 Petrovic et al. Aug 2002 B1
6441534 Iino et al. Aug 2002 B2
6444153 Shah et al. Sep 2002 B1
6455605 Giorgini et al. Sep 2002 B1
6455606 Kaku et al. Sep 2002 B1
6458866 Oppermann et al. Oct 2002 B1
6465569 Kurth Oct 2002 B1
6467610 MacLachlan Oct 2002 B1
6469667 Fox et al. Oct 2002 B2
6485665 Hermanutz et al. Nov 2002 B1
6486224 Lin et al. Nov 2002 B2
6495772 Anstrom et al. Dec 2002 B2
6508362 Hnatow et al. Jan 2003 B2
6524978 Moore Feb 2003 B1
6534556 Lacarte et al. Mar 2003 B2
6534617 Batt et al. Mar 2003 B1
6541534 Allen et al. Apr 2003 B2
6552660 Lisowski Apr 2003 B1
6555199 Jenkines Apr 2003 B1
6571935 Campbell et al. Jun 2003 B1
6573309 Reitenbach et al. Jun 2003 B1
6573354 Petrovic et al. Jun 2003 B1
6578619 Wright Jun 2003 B2
6579932 Schipper et al. Jun 2003 B1
6604848 Tanaka et al. Aug 2003 B2
6605343 Motoi et al. Aug 2003 B1
6609638 Lott Aug 2003 B1
6610756 Shimizu et al. Aug 2003 B1
6613827 Lundgard et al. Sep 2003 B2
6616886 Peterson et al. Sep 2003 B2
6617009 Chen et al. Sep 2003 B1
6624244 Kurth Sep 2003 B2
6641384 Bosler et al. Nov 2003 B2
6646093 Tsuruta et al. Nov 2003 B2
6649084 Morikawa et al. Nov 2003 B2
6649667 Clatty Nov 2003 B2
6676864 Hawley Jan 2004 B2
6686435 Petrovic et al. Feb 2004 B1
6695902 Hemmings et al. Feb 2004 B2
6706774 Munzenberger et al. Mar 2004 B2
6709717 Mushovic Mar 2004 B2
6767399 Peev et al. Jul 2004 B2
6769220 Friesner Aug 2004 B2
6776596 Brussel Aug 2004 B2
6777457 Dolgopolsky et al. Aug 2004 B2
6832430 Ogawa et al. Dec 2004 B1
6849676 Shibano et al. Feb 2005 B1
6864296 Kurth Mar 2005 B2
6864312 Moore Mar 2005 B2
6867239 Kurth Mar 2005 B2
6871457 Quintero-Flores et al. Mar 2005 B2
6875385 Hawley et al. Apr 2005 B2
6881763 Kurth Apr 2005 B2
6881764 Doesburg et al. Apr 2005 B2
6903156 Muller et al. Jun 2005 B2
6908573 Hossan Jun 2005 B2
6916863 Hemmings et al. Jul 2005 B2
6958365 Dontula et al. Oct 2005 B2
6962636 Kurth et al. Nov 2005 B2
6971495 Hedrick et al. Dec 2005 B2
6972144 Roth et al. Dec 2005 B2
6979477 Kurth et al. Dec 2005 B2
6979704 Mayer et al. Dec 2005 B1
6989123 Lee et al. Jan 2006 B2
6997346 Landers et al. Feb 2006 B2
7037865 Kimberly May 2006 B1
7048431 Sieverding et al. May 2006 B2
7063877 Kurth et al. Jun 2006 B2
7098291 Brinkman Aug 2006 B2
7101430 Pike et al. Sep 2006 B1
7132459 Buchel Nov 2006 B1
7160976 Luhmann et al. Jan 2007 B2
7188992 Mattingly, Jr. Mar 2007 B2
7196124 Parker et al. Mar 2007 B2
7199168 Spitler et al. Apr 2007 B2
7211206 Brown et al. May 2007 B2
7241818 Hemmings et al. Jul 2007 B2
7267288 Wheeler, Jr. et al. Sep 2007 B2
7316559 Taylor Jan 2008 B2
7491351 Taylor et al. Feb 2009 B2
7651645 Taylor Jan 2010 B2
7763341 Brown Jul 2010 B2
7794224 Butteriss Sep 2010 B2
7794817 Brown Sep 2010 B2
7879144 Hemmings et al. Feb 2011 B2
7993553 Brown Aug 2011 B2
8024818 Devenport Sep 2011 B1
8097325 Jenkines Jan 2012 B2
20010009683 Kitahama et al. Jul 2001 A1
20020034598 Bonk et al. Mar 2002 A1
20020040071 Lin et al. Apr 2002 A1
20020045048 Bonk et al. Apr 2002 A1
20020048643 Bonk et al. Apr 2002 A1
20020086913 Roels et al. Jul 2002 A1
20020098362 Mushovic Jul 2002 A1
20020171164 Halterbaum et al. Nov 2002 A1
20020192456 Mashburn et al. Dec 2002 A1
20030004232 Ruede Jan 2003 A1
20030065045 Falke Apr 2003 A1
20030080203 Roth et al. May 2003 A1
20030083394 Clatty May 2003 A1
20070197672 Lekovic et al. Aug 2007 A1
20080132611 Brown Jun 2008 A1
20100022717 Honma Jan 2010 A1
20100116179 Baker et al. May 2010 A1
20100286312 Zhang et al. Nov 2010 A1
20100292397 Brown Nov 2010 A1
20110086931 Herrington et al. Apr 2011 A1
20110086932 Herrington Apr 2011 A1
20110086933 Herrington et al. Apr 2011 A1
20110086934 Herrington et al. Apr 2011 A1
20110303156 Sikka Dec 2011 A1
20120029145 Brown Feb 2012 A1
20120085264 Zhang et al. Apr 2012 A1
20120123022 Berns et al. May 2012 A1
20130206040 Zhang et al. Aug 2013 A1
Foreign Referenced Citations (72)
Number Date Country
2037130 Jan 2006 CA
1251596 Apr 2000 CN
1052991 May 2000 CN
1926282 Mar 2007 CN
19528938 Feb 1997 DE
10105812 Aug 2002 DE
102006021266 Nov 2006 DE
102007047548 Apr 2009 DE
102008028287 Dec 2009 DE
102008063815 Jun 2010 DE
202008016807 Jun 2010 DE
0115374 Aug 1984 EP
0771827 May 1997 EP
0911453 Apr 1999 EP
1201703 May 2002 EP
1336461 Aug 2003 EP
1921098 May 2008 EP
1921099 May 2008 EP
1927535 Jun 2008 EP
2300627 Nov 1996 GB
2306909 May 1997 GB
2347933 Sep 2000 GB
08188634 Jul 1996 JP
09-030857 Feb 1997 JP
10-029882 Feb 1998 JP
11005245 Jan 1999 JP
11171960 Jun 1999 JP
2001326361 Nov 2001 JP
2004131654 Apr 2004 JP
2005138567 Jun 2005 JP
2012056173 Mar 2012 JP
2002086327 Nov 2002 KR
9533571 Dec 1995 WO
9711114 Mar 1997 WO
9721640 Jun 1997 WO
9739043 Oct 1997 WO
9744373 Nov 1997 WO
9808893 Mar 1998 WO
9937592 Jul 1999 WO
9939891 Aug 1999 WO
0004082 Jan 2000 WO
0017249 Mar 2000 WO
0064993 Nov 2000 WO
0123317 Apr 2001 WO
0172863 Oct 2001 WO
0194470 Dec 2001 WO
0201530 Jan 2002 WO
2004065469 Aug 2004 WO
2004078900 Sep 2004 WO
2004113248 Dec 2004 WO
2005006349 Jan 2005 WO
2005053938 Jun 2005 WO
2005056267 Jun 2005 WO
2005072187 Aug 2005 WO
2005072188 Aug 2005 WO
2005094255 Oct 2005 WO
2005123798 Dec 2005 WO
2006012149 Feb 2006 WO
2006114430 Nov 2006 WO
2006118995 Nov 2006 WO
2006137672 Dec 2006 WO
2007014332 Feb 2007 WO
2007087175 Aug 2007 WO
2007112104 Oct 2007 WO
2007112105 Oct 2007 WO
2008110222 Sep 2008 WO
2008127934 Oct 2008 WO
2008154010 Dec 2008 WO
2009045926 Apr 2009 WO
2009048927 Apr 2009 WO
2010078895 Jul 2010 WO
2013043333 Mar 2013 WO
Non-Patent Literature Citations (40)
Entry
Anonymous, “Cellular Plastics Made by Extrusion”, Research Disclosure, Jornal No. 40204, Kenneth Mason Publications Ltd, United Kingdom, 9 pages, Oct. 1997.
Yih, et al., “Recovery of Cenospheres and Application to the Manufacture of Insulation Materials”, Journal of the Chin. I.Ch.E., vol. 19, No. 1,, 1988, pp. 23-29.
Anonymous, “Rigid Polurethane Foams Having a Strut/Window Mass Ratio in the Range of 90/10 to 10/90, Made via Extrusion”, Research Disclosure, Journal No. 40264, Kenneth Mason Publications Ltd., United Kingdom, 6 pages, Oct. 1997.
Berry, et al., “Acid-Leached Fly Ash as a Spherical Filler in Polymer Composites”, 42nd Annual Conference, 6 pages, Composites Institute, The Society of the Plastics Industry, Inc., Feb. 2-6, 1987.
Berry, et al., “Beneficiated Fly Ash: Hydration, Microstructure, and Strength Development in Portland Cement Systems”, Fly Ash, Silica Fume, Slag, and Natrual Pozzolans in Concrete, Proceedings Third International Conference, Trondheim, Norway vol. 1; p. 241-273, American Concrete Institute, Detroit, 1989.
Berry, “Enhanced Resource Recovery by Beneficiation and Direct Acid Leaching of Fly Ash”, Fly Ash and Coal Conversion by Products: Characterization, Utilization and Disposal III Symposium, Boston, MA, Dec. 1-3, 1986, pp. 365-380.
Berry, et al., “Investigation of Some New Spherical Fillers”, 27 pages, Ontario Research Foundation, Canada, Nov. 1986.
Borrachero, et al., “Improvement of Portland Cement/Fly Ash Mortars Strength Using Classified Fly Ashes”, Proceedings of the International Conference on Environmental Implications of Construction with Waste Materials, vol. 2, 1994, pp. 563-570.
Cayli, et al., “Soybean Oil Based Isocyanates: Synthesis, Characterizations, and Polymerizations”, Conference Abstract, 2nd Workshop on Fats and Oils as Renewable Feedstock for Chemical Industry, 3 pages, Mar. 22-29, 2009.
Dinelli, “Thermal By-Products Treatment and Valorization”, Chemicke Listy, vol. 89, No. 3, Mar. 1995, pp. 137-143.
Dolui,, “Unusual Effect of Filler (CaCO3) on Thermal Degradation of Polyurethane”, Journal of Applied Polymer Science, vol. 52 No. 4, John Wiley & Sons, 2003, pp. 463-465.
Guhanathan, et al., “Studies on Castor Oil-Based Polyurethane/Polyacrylonitrile Interpenetrating Polymer Network for Toughening of Unsaturated Polyester Resin”, Journal of Applied Polymer Science, vol. 92, No. 2, Apr. 15, 2004, Wiley Subscription Services, New Jersey, 2004, pp. 817-829.
Hemmings, et al., “Evaluation of Plastic Filler Applications for Leached Fly Ash”, Electric Power Research Institute, 177 pages, Ontario Research Foundation, Mississauga, Ontario, Canada, Sep. 1986.
Hojabri, et al., “Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization”, Biomacromolecules, 10(4), American Chemical Society, Mar. 12, 2009, pp. 884-891.
Horvath, Jr., “Structural Polyurethane Foam Reaction Injection Molding”, Journal of Cellular Plastics, Sep.-Oct. 1976, pp. 289-293.
Huang, et al., “Processed Low NOx Fly Ash as a Filler in Plastics”, Proceedings of Twelfth International Symposium on Management & Use of Coal Combustion Byproducts (CCBs), 25 pages, Orlando, Florida, Jan. 26-30, 1997.
International, “International Search Report and Written Opinion of the International Search Authority”, for PCT/US2010/040967, dated Apr. 22, 2011, 10 pages.
International, “International Search Report and Written Opinion of the International Searching Authority”, for PCT/US2010/045460, dated Sep. 24, 2010, 9 pages.
Inukai, et al., “Glass Fiber Reinforced Rigid Polyurethane Foam (Eslon Neo-Lumber FFU)”, International Progress in Urethanes, vol. 5, Technomic Publishing Co., Inc., Lancaster, PA, 1988, pp. 202-216.
Jablonski, “Fly Ash Utilization as an Extender in Plastics and Paints”, International Ash Utilization Symposium, 15 pages., Oct. 1987.
Javni, et al., “Thermal Stability of Polyurethanes Based on Vegetable Oils”, Journal of Applied Polymer Science, vol. 77, No. 8, Aug. 22, 2000, John Wiley & Sons, New York, pp. 1723-1734.
Kaas, “Residual Fly Ash Can Replace Talc and Kaolin as Polypropylene Filler”, Plastics Design and Processing, Nov. 1978, pp. 49-53.
Madden, et al., “A Study of Polyether-Polyol and Polyester-Polyol-Based Rigid Urethane Foam Systems”, Paper submitted to the 162nd National Meeting of the American Chemical Society, Washington D.C.,16 Pages, Sep. 1971.
Morimoto, et al., “Continuous Glass Fiber Reinforced Rigid Polyurethane Foam (Airlite FRU)”, International Progress in Urethanes, vol. 5, Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1988, pp. 82-101.
Nayak, “Natural Oil-Based Polymers: Opportunities and Challenges”, J. Macro. Sci. Rev. Macro. Chem. & Phys., C40 (1), Marcel Dekker, Inc., New York, 2000, pp. 1-21.
Okagawa, et al., “Glass Fiber Reinforced Rigid Polyurethane Foam”, International Progress in Urethane, vol. 2, Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1980, pp. 85-97.
Okagawa, et al., “Glass Fibre Reinforced Rigid Polyurethane Foam”, Cellular and Non Cellular Polyurethanes, Carl Hanser Verlag Munchen Wien Druck and Bindung, Germany, 1980, pp. 453-467.
Ortel, Polyurethane—Handbook—Chemistry—Raw Materials—Processing—Applications—Properties; Hanser Publishers; New York, 1985, pp. 16-18.
Paya, et al., “Early-Strength Development of Portland Cement Mortars Containing Air Classified Fly Ashes”, Cement and Concrete Research, vol. 25, No. 2, Elsevier Science Ltd., United States of America, 1995, pp. 449-456.
Plowman, et al., “The Use of Pulverized Fuel Ash as a Filler in Plastics”, Conference Proceedings for the AshTech '84 Second International Conference on Ash Technology and Marketing, Barbican Centre, London, Sep. 16-21, 1984, pp. 663-670.
Shaw, “Abstract: The Use of Fly Ash in the Manufacture of Asphalt Shingles”, 12 pages, Jun. 2002.
Szycher, Szycher's Handbook of Polyurethanes; CRC Press, New York, 1999, 1999, pp. 7:16-7:21.
Szycher, “17.7.1 Foam Production by Extruder Method”, Szycher's Handbook of Polyurethanes, CRC Press LLC, New York, 1999, pp. 17:21-17:22.
Thames, et al., “Lesquerella: Renewal Resource for Industrial Coatings and Polyurethane Foams”, Conference Abstract, Society for the Advancement of Material and Process Engineering, 1996.
Unknown, “Fly Ash Shows Promise as Plastics Filler”, C&EN, May 8, 1978, pp. 29-30.
Unknown, “Soya-Based Isocyanate Alternatives Coming? (US Newslines)”, Urethanes Technology, Abstract, 2 pages, Apr. 1, 2007.
Unknown, “Standard Practice for Polyurethane Raw Materials: Polyurethane Foam Cup Test”, ASTM D7487-08, 5 pages, ASTM International, Pennsylvania, 2008.
Utika, et al., “Properties of High Strength Concrete Using ‘Classified Fly Ash’”, 4th International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, p. 37-47, May 1992.
International Search Report and Written Opinion for PCT/US2013/036464 dated Jan. 6, 2014.
Abstract of Rama, Shetty R. et al., Journal of Reinforced Plastics and Composites, 2010, 29:2099-2104.
Related Publications (1)
Number Date Country
20150267029 A1 Sep 2015 US