Claims
- 1. An aqueous acidic or neutral liquid composition that, in addition to water, consists essentially of the following dissolved, stably dispersed, or both dissolved and stably dispersed components:(A) from about 10 mM/kg of total composition to about 2.0 M/kg of total composition of a component of alkali metal borate salts; (B) a concentration of boric acid in excess of any generated by reaction of anions of component (A) with water, the concentration of component (B) having a ratio to the concentration of component (A) that is from about 0.5:1.0 to about 10:1.0; (C) from 50 to 750 g/kg of total composition of a component selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2, where: R1 represents (i) an alkyl, aryl, or alklaryl moiety or (ii) an alkyl-, aryl-, or alkylaryl-amino moiety containing an amino nitrogen atom that is chemically bonded directly to a C2H4O moiety in the general formula, said alkyl, aryl, alkylaryl, or alkyl-, aryl-, or alkylaryl-amino moiety having from 5 to 22 carbon atoms; R2 represents hydrogen or an alkyl, aryl, or alkylaryl moiety having no more than 8 carbon atoms; w represents a positive integer, which need not be the same for every molecule; and component (C) as a whole has an average value of w that is from about 2 to about 16; and (D) a concentration of a component selected from the group consisting of (D.1) molecules including a moiety that is a partial organic ester of an acid selected from the group consisting of (D.1.1) phosphoric acids, (D.1.2) phosphonic acids, and (D.1.3) sulfuric acid; (D.2) salts of partial esters that if present in acid form would be constituents of (D.1); and (D.3) amino acids and salts thereof that are not part of components (D.1) or (D.2), the concentration of component (D) having a ratio to the concentration of component (C) that is from about 0.02:1.0 to about 3.0:1.0.
- 2. An aqueous liquid composition according to claim 1, wherein: the concentration of component (A) is from about 30 mM/kg of total composition to about 0.90 M/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 0.9:1.0 to about 6:1.0; the concentration of component (C) is from 100 to 550 g/kg of total composition; the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.08:1.0 to 1.0:1.0; and the composition also contains a component (E) of salts that are not part of any of the previously recited components (A) through (D).
- 3. An aqueous liquid composition according to claim 2, wherein component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a moiety having from 8 to 20 carbon atoms, R2 represents a moiety having no more than 4 carbon atoms, w represents a positive integer, and component (C) as a whole has an average value of w that is from about 5.0 to about 12.0.
- 4. An aqueous liquid composition according to claim 4, wherein: the concentration of component (A) is from about 50 mM/kg of total composition to about 0.70 M/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 1.3:1.0 to about 4.0:1.0; the concentration of component (C) is from 150 to 400 g/kg of total composition; the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.12:1.0 to about 0.50:1.0.
- 5. An aqueous liquid composition according to claim 6, wherein component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R 2 when R1 represents a moiety having from 10 to 18 carbon atoms, R2 represents a moiety having no more than 2 carbon atoms, and component (C) as a whole has an average value of w that is from about 6.0 to about 11.0.
- 6. An aqueous liquid composition according to claim 5, wherein: the concentration of component (A) is from about 80 mM/kg of total composition to about 0.40 M /kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 1.70:1.0 to about 3.1:1.0; the concentration of component (C) is from 185 to 350 g/kg of total composition; and the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.16:1.0 to about 0.35:1.0.
- 7. An aqueous liquid composition according to claim 6, wherein component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a moiety having from 12 to 14 carbon atoms, R2 represents a moiety having no more than 1 carbon atom, and component (C) as a whole has an average value of w that is from about 8.0 to about 10.0.
- 8. An aqueous liquid composition according to claim 7, wherein: the concentration of component (A) is from about 90 mM/kg of total composition to about 0.20 M/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 2.20:1.0 to about 2.45:1.0; component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a linear primary alkyl moiety and R2 represents a hydrogen atom; the concentration of component (C) is from 225 to 300 g/kg of total composition; the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.200:1.0 to about 0.25:1.0; and component (E) consists of alkali metal diacid pyrophosphate salts.
- 9. A process for cleaning/degreasing a soiled metal surface, said process comprising steps of:(I) contacting the soiled metal surface with an aqueous liquid composition according to claim 3 for a sufficient time at a sufficient temperature to transfer soil from the soiled metal surface to the aqueous liquid composition, thereby generating a less soiled metal surface and a soil-containing aqueous liquid composition; and (II) separating the less soiled metal surface generated in step (I) from the soil-containing aqueous liquid composition also generated in step (I).
- 10. A process according to claim 9, wherein, in the aqueous composition used in step (I): there is a pH value from about 3.0 to about 7.1; the concentration of component (A) is from about 0.31 mM/kg of total composition to about 62 mM/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 0.5:1.0 to about 10:1.0; the concentration of component (C) is from 1.5 to 23 g/kg of total composition; and the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.02:1.0 to about 3.0:1.0.
- 11. A process according to claim 10, wherein, in the aqueous composition used in step (I):component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2, where: R1 represents (i) an alkyl, aryl, or alkylaryl moiety or (ii) an alkyl-, aryl-, or alkylaryl-amino moiety containing an amino nitrogen atom that is chemically bonded directly to a C2H4O moiety in the general formula, said alkyl, aryl, alkylaryl, or alkyl-, aryl-, or alkylaryl-amino moiety having from 5 to 22 carbon atoms; R2 represents hydrogen or an alkyl, aryl, or alkylaryl moiety having no more than 8 carbon atoms; w represents a positive integer, which need not be the same for every molecule; and component (C) as a whole has an average value of w that is from about 2 to about 16; and component (D) is selected from the group consisting of (D.1) molecules including a moiety that is a partial organic ester of an acid selected from the group consisting of (D.1.1) phosphoric acids, (D.1.2) phosphonic acids, and (D.1.3) sulfuric acid; (D.2) salts of partial esters that if present in acid form would be constituents of (D.1); and (D.3) amino acids and salts thereof that are not part of components (D.1) or (D.2).
- 12. A process according to claim 11, wherein, in the aqueous composition used in step (I): there is a pH value from about 4.0 to about 6.9; the concentration of component (A) is from about 0.9 mM/kg of total composition to about 28 mM/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 0.9:1.0 to about 6:1.0; the concentration of component (C) is from 100 to 550 g/kg of total composition; the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.08:1.0 to 1.0:1.0; and the composition also contains a component (E) of salts that are not part of any of the previously recited components (A) through (D).
- 13. A process according to claim 12, wherein, in the aqueous composition used in step (I), component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a moiety having from 8 to 20 carbon atoms, R2 represents a moiety having no more than 4 carbon atoms, w represents a positive integer, and component (C) as a whole has an average value of w that is from about 5.0 to about 12.0.
- 14. A process according to claim 13, wherein, in the aqueous composition used in step (I): there is a pH value from about 4.4 to about 6.5; the concentration of component (A) is from about 1.6 mM/kg of total composition to about 22 mM/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 1.3:1.0 to about 4.0:1.0; the concentration of component (C) is from 4.6 to 12.4 g/kg of total composition; and the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.12:1.0 to about 0.50:1.0.
- 15. A process according to claim 14, wherein, in the aqueous composition used in step (I), component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a moiety having from 10 to 18 carbon atoms, R2 represents a moiety having no more than 2 carbon atoms, and component (C) as a whole has an average value of w that is from about 6.0 to about 11.0.
- 16. A process according to claim 15, wherein, in the aqueous composition used in step (I): there is a pH value from about 4.6 to about 5.9; the concentration of component (A) is from about 2.5 mM/kg of total composition to about 12.4 mM/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 1.70:1.0 to about 3.1:1.0; the concentration of component (C) is from 5.7 to 10.8 g/kg of total composition; and the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.16:1.0 to about 0.35:1.0.
- 17. A process according to claim 16, wherein component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O)w—R2 when R1 represents a moiety having from 12 to 14 carbon atoms, R2 represents a moiety having no more than 1 carbon atom, and component (C) as a whole has an average value of w that is from about 8.0 to about 10.0.
- 18. A process according to claim 17, wherein, in the aqueous composition used in step (I): there is a pH value from about 5.20 to about 5.40; the concentration of component (A) is is from about 2.8 mM/kg of total composition to about 6.2 mM/kg of total composition; the concentration of component (B) has a ratio to the concentration of component (A) that is from about 2.20:1.0 to about 2.45:1.0; component (C) is selected from the group consisting of molecules conforming to the general formula R1—(C2H4O) w—R2 when R1 represents a linear primary alkyl moiety and R2 represents a hydrogen atom; the concentration of component (C) is from 7.0 to 9.3 g/kg of total composition; the concentration of component (D) has a ratio to the concentration of component (C) that is from about 0.200:1.0 to about 0.25:1.0; and component (E) consists of alkali metal diacid pyrophosphate salts.
CROSS-REFERENCE TO RELATED APPLICATION
Priority under 35 U.S.C. § 119(e) is claimed for this application from application Ser. No. 60/032,530 filed on Dec. 6, 1996.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
102e Date |
371c Date |
PCT/US97/20807 |
|
WO |
00 |
6/7/1999 |
6/7/1999 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO98/24869 |
6/11/1998 |
WO |
A |
US Referenced Citations (11)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/032530 |
Dec 1996 |
US |