Claims
- 1. An aqueous alkaline ammoniacal cupric etching spray bath containing an etch accelerating additive selected from the group consisting of cyanamide and its precursors, said etch accelerating additive being present in an amount sufficient to increase the etch rate of said bath by at least about 10 percent over an identical aqueous alkaline copper etching bath free of said additive.
- 2. A process of etching a copper-clad substrate having a portion of its surface masked with a resistant coating including the step of forcefully contacting both the masked and unmasked portions of said surface with a stream of an aqueous alkaline ammoniacal cupric etching solution containing an etch-accelerating-additive selected from the group consisting of cyanamide and its precursors, said etch-accelerating additive being present in an amount sufficient to increase the etch-rate of said bath by at least about 10 percent over an identical aqueous alkaline copper etching bath free of said additive and without substantially increasing the amount of undercut over the undercut obtained on a copper-clad substrate with an identical aqueous alkaline etching-bath free of said additive.
- 3. A process of etching a copper-clad substrate having a portion of its surface masked with a resist coating, according to claim 2, including the step of impinging, in a substantially perpendicular direction upon both the masked and unmasked portions of said surface, an aqueous alkaline ammoniacal cupric etching solution containing an etch-accelerating additive selected from the group consisting of cyanamide and its precursors, said etch-acelerating additive being present in an amount sufficient to increase the etch-rate of said bath by at least about 10 percent over an identical aqueous alkaline copper etching bath free of said additive and without substantially increasing the amount of undercut over the undercut obtained on a copper-clad substrate with an identical aqueous alkaline etching-bath free of said additive.
- 4. The aqueous alkaline ammoniacal cupric etching bath as defined in claim 1 wherein said etch accelerating additive is present in an amount between about 0.005 and about 0.3 g of cyanamide per liter of said bath or in an activity equivalent amount of said cyanamide precursor.
- 5. The aqueous alkaline ammoniacal cupric etching bath as defined in claim 1 wherein said etch accelerating additive is a cyanamide precursor selected from the group consisting of formamidine disulfide, the acid addition salts of formamidine disulfide, formamidine sulfinic acid, 2,5-dithiobiurea, lower alkyl cyanamides, mixtures thereof and the reaction products of said cyanamide precursors with cupric salts in an alkaline medium.
- 6. The etch bath according to claim 1 wherein said additive being present in amount between about 0.01 and about 0.2 g/l of cyanamide or in equivalent activity amount of the precursor.
- 7. The aqueous alkaline ammoniacal cupric etching bath as defined in claim 1 wherein said etch accelerating additive is the accelerating effective portion of the reaction product of thiourea and a cupric salt in alkaline medium, said reaction product being present in said bath in an activity equivalent amount to between 0.005 and 0.3 grams of cyanamide per liter of said bath.
- 8. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein said etch accelerating additive is cyanamide and said cyanamide is present in an amount between 0.01 and about 0.1 g/l of said bath.
- 9. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein said etch-accelerating additive is a mixture of cyanamide and thiourea.
- 10. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein said etch-accelerating additive is formamidine disulfide or its acid addition salts.
- 11. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein said etch-accelerating additive is 2,5-dithiobiurea.
- 12. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein the pH of said bath is between about 8 and about 9.
- 13. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein the temperature of said bath is about 120.degree. F.
- 14. The aqueous alkaline ammoniacal cupric etching-bath as defined in claim 1 wherein said etch-rate increase is between about 10 percent and about 40 percent of a bath without additive.
- 15. The process of etching a copper-clad substrate as defined in claim 3 wherein said etch-accelerating additive is cyanamide, said cyanamide being present in an amount between about 0.005 and about 0.3 g/l of said bath.
- 16. The process of etching a copper-clad substrate as defined in claim 3 wherein said etch-accelerating additive is a cyanamide precursor present in said bath in an activity equivalent amount to between about 0.01 and about 0.1 g/l of cyanamide.
- 17. The process of etching a copper-clad substrate as defined in claim 3 wherein said etch accelerating additive is the accelerating effective portion of the reaction product of thiourea and a cupric salt in an alkaline medium, said reaction product being present in the bath in an activity equivalent amount to between about 0.01 and about 0.1 g of cyanamide per liter of said bath.
- 18. The process of etching a copper-clad substrate as defined in claim 3 wherein said etch accelerating additive is cyanamide and thiourea.
- 19. The process of etching a copper-clad substrate as defined in claim 3 wherein said etch-accelerating additive is formamidine disulfide dihydrochloride.
- 20. The process of etching a copper-clad substrate as defined in claim 3 wherein the pH of said bath is between about 8 and about 9.
- 21. A process of etching a copper-clad substrate as defined in claim 3 wherein the temperature of said bath impinging upon said copper substrate is about 120.degree. F.
- 22. A process of etching a copper-clad substrate as defined in claim 3 wherein said etch rate increase is between about 10 percent and about 40 percent.
- 23. The aqueous alkaline ammoniacal cupric etching bath according to claim 7 wherein said accelerating effective portion of the reaction product of thiourea and a cupric salt in an alkaline medium is prepared by reacting thiourea with said cupric salt in alkaline media, slurrying the copper-thiourea adduct in a 50 percent NaOH solution, discarding the copper sulfide precipitate, and adjusting the resulting solution to a pH between about 12 and about 14.
- 24. The bath according to claim 1 wherein said additive is formamidine disulfide dihydrochloride.
- 25. The bath according to claim 1 wherein said additive is formamidine sulfinic acid.
- 26. The bath according to claim 1 wherein said additive is 2,5-dithiobiurea.
- 27. An aqueous alkaline ammoniacal cupric etching bath containing an etch accelerating additive which is selected from the group consisting of thiourea and reaction products of thiourea with cupric salts in an alkaline medium, said etch accelerating additive being present in an amount sufficient to increase the etch rate of said bath by at least about 10 percent over an identical aqueous cupric etching bath free of said additive.
- 28. A process of etching a copper-clad substrate having a portion of its surface masked with a resistant coating including the step of forcefully contacting both the masked and unmasked portions of said surface with a stream of an aqueous ammoniacal cupric etching solution containing an etch accelerating additive which is selected from the group consisting of thiourea and reaction products of thiourea with cupric salts in an alkaline medium, said etch accelerating additive being present in an amount sufficient to increase the etch rate of said bath by at least about 10 percent over an identical aqueous alkaline cupric etching bath free of said additive and without substantially increasing the amount of undercut over the undercut obtained on a copper-clad substrate with an identical aqueous alkaline cupric etching bath free of said additive.
RELATED APPLICATIONS
This application is a continuation-in-part of U.S. patent application Ser. No. 029,218 filed Apr. 12, 1979 which is a CIP of application Ser. No. 914,392 filed June 12, 1978, both now abandoned.
US Referenced Citations (5)
Continuation in Parts (2)
|
Number |
Date |
Country |
Parent |
29218 |
Apr 1979 |
|
Parent |
914392 |
Jun 1978 |
|