Mycobacterium tuberculosis, the causative agent of tuberculosis, is a major public health problem that causes more than one million deaths every year (See, e.g., http://goo.gl/A6X0i). Several factors comprise the efficacy of the available pharmacological treatments, including the emergence of multi- and extensive-drug resistant strains, the lack of new drugs, and the bacilli's ability to persist inside the host macrophages by inhibiting phagosome maturation. One of the most promising strategies to face with the urgency of drug discovery in tuberculosis disease is to interfere with bacterial signaling cascades and host cell transduction pathways [1, 2]. (Citations to reference notations in bracketing “[ ]” are found under the Reference section of the present application, infra).
Genome studies uncovered eleven Ser/Thr protein kinases akin to eukaryotic ones [3]. Among them, PknG, has emerged as a key soluble kinase that regulates critical processes in mycobacterial pathophysiology [1, 4, 5]. Experimental data support different functional roles for PknG including regulation of metabolic processes and interference of signaling pathways from the infected host cell [4, 5]. The inactivation of the pknG gene decreases cell viability and virulence in animal models, and suggests its participation in the control of intracellular glutamate/glutamine levels [6]. Our previous results revealed that PknG participates in the regulation of glutamate metabolism via the phosphorylation of an endogenous substrate (GarA), and the same function was reported for PknG from the related actinomycete Corynebacterium glutamicum [5, 7]. It has also been reported that PknG is a virulence factor that mediates M. tuberculosis ability to survive within host cells. Inside macrophages the kinase prevents phagosome-lysosome fusion by a still unknown mechanism [4]. In addition, inhibition of PknG activity yield bacteria more susceptible to intracellular degradation[4]. Due to the key cellular processes that it controls, PknG inhibition has emerged as an attractive strategy for potential drug discovery. The main challenge to overcome is to achieve selectivity for PknG inhibition, as the catalytic mechanisms as well as active Ser/Thr protein kinase fold is remarkable conserved form prokaryotes to eukaryotes.
PknG from M. tuberculosis is a multi-domain protein. The conserved canonical catalytic kinase domain is flanked by N- and C-terminal domains having undefined functional roles. The C-terminal domain of PknG contains a tetratricopeptide repeats motif (TPR), a domain known to participate in protein-protein interactions in both eukaryotic and prokaryotic organisms [8]. TPR domain is involved in intermolecular interactions in the reported crystal structure of PknG, however, whether and how dimerization is linked to enzyme activity is currently unknown [8]. The N-terminal sequence preceding the kinase domain contains both the autophosphorylation sites and a rubredoxin-like domain (Rbx) [5]. This protein module is typified by an iron ion coordinated by four conserved cysteine residues, and it was reported to participate in electron transfer reactions [9, 10]. The N-terminal sequence of PknG contains two CXXCG (Seq. No. 12) motifs typically involved in metal binding in Rbx domains. The crystal structure of a PknG construct confirmed the presence of a Rbx-like arrangement interacting with the kinase domain without occluding active site accessibility [8]. The role of Rbx domain in PknG is still uncertain. Metal binding site disruption by simultaneous mutations of multiple key cysteine residues has a remarkable effect on PknG activity [8, 11], pointing to a relevant functional or structural role of Rbx domain. This finding encouraged us to evaluate the effect of an electrophilic-nitrated fatty acid on PknG activity.
Electrophilic unsaturated fatty acid derivatives generated by metabolic processes are emerging as endogenous signaling mediators that induce anti-inflammatory and chemotherapeutic responses [12]. In particular, nitrated unsaturated fatty acids are potent electrophiles that mediate the reversible nitroalkylation of specific proteins at nucleophilic Cys and His residues. This thiol-reversible post-translational modification modulates protein function and distribution [13]. The reactivity of these molecules is directed by the electrophilic carbon β to the electron-withdrawing NO2 group, allowing reversible Michael addition with nucleophilic amino acids [12-14]. Compared with other biological electrophilic lipids, nitro-fatty acids (NO2-FA) react with thiols with a high rate constant [15]. Moreover, the reaction between NO2—FA and nucleophilic amino acids is also unique in that adduction reactions are thiol-reversible [12, 13].
It has been an objective of the present invention to exploit unique structural features of PknG to inhibit its kinase activity by a specific modification of its non-catalytic Rbx domain.
It is a further objective of the present invention to elucidate a new mechanism for kinase inhibition by iron release from the Rbx domain upon cysteine covalent modification by nitrated fatty acids.
As used herein, the following abbreviations have the following meanings: ANS, 8-anilino-1-naphthalenesulfonic acid ammonium salt; BPS, bathophenanthroline disulfonate; ESI, electrospray ionization; IAM, iodoacetamide; IPTG, isopropyl β-D-1-thiogalactopyranoside; LC, liquid chromatography; OA oleic acid, 9-octadecenoic acid; OA-NO2 nitro-oleic acid, 9- and 10-nitro-9-cis-octadecaenoic acids; Rbx, rubredoxin.
The analysis of Mycobacterium tuberculosis genome sequence predicted the presence of eleven eukaryotic like Ser/Thr protein kinases denominated pknA to pknL [3]. However, the importance of these enzymes in mycobacterial physiology and virulence has been realized only recently [1, 32]. In particular, one of these enzymes, PknG, participates in the regulation of critical biological processes of M. tuberculosis. Previous data demonstrated that PknG regulates glutamate metabolism in M. tuberculosis through the phosphorylation of GarA, an intermediate regulator of three metabolic enzymes [5, 33]. PknG has also been proposed as an important virulence factor that contributes to inhibition of phagosomes maturation of infected macrophages through a still unknown mechanism [4, 11]. In agreement with this observation, inhibition of PknG activity yield bacteria more susceptible to degradation inside macrophages.
In this scenario, novel and selective PknG inhibitors could represent promising molecules for drug development. Despite research efforts, few PknG inhibitors displaying moderate activity have been already described [2, 8, 34]. The reported inhibitors are directed towards the kinase catalytic site, in the case of inhibitor AX20017 some degree of specificity towards PknG has been reported based on particular structural features of its active site [8]. It is well recognized that the active “eukaryotic like” kinase folding is highly conserved even among different kingdoms [35]. This turns specificity a difficult task to achieve. An alternative strategy for particular kinase inhibition contemplated by the present invention is to target other protein domains besides active site.
In one embodiment of the present invention, OA-NO2 is used to inhibit PknG kinase activity by reversible alkylation of specific Cys residues of the Rbx domain, outside the catalytic domain. The combination of Rbx and kinase domains has not been previously been described for any other protein besides PknG-like kinases. PknG orthologs are present in all mycobacterial genomes sequenced to date as well as in other related actinomycetes [31]. Interestingly, while the kinase domain is very well preserved, some other domains are not. In particular, the N-terminal Rbx domain appears in few PknG-like kinases from Actinomycetales (
The structure of a truncated form of PknG shows that the rubredoxin-like domain is closely associated to the N-terminal lobe of the catalytic domain of PknG, just facing the kinase active site (
Fatty acid nitroalkenes are electrophilic species produced during inflammation and metabolism that react with nucleophilic amino acid residues of target proteins (i.e. Cys and His residues), modulating protein functions and their subcellular distribution in a reversible-manner. Nitroalkene reactivity is mainly directed by the electrophilic character of the β-carbon proximal to the alkenyl NO2 group (
Xanthine oxidoreductase (XOR) inhibition by OA-NO2 was the first irreversible inhibition reported for this nitroalkene. As in the case of PknG, XOR inhibition is not reversed by thiol reagents [15]. At that time, the postulated inhibition of XOR was mediated via: 1) an irreversible covalent reaction between OA-NO2 and XOR or 2) a reaction of the nitroalkene with the dithiolene of the pterin moiety and the concomitant loss of the molybdenum atom; but no direct evidence was available at that time for any of the two hypotheses [15]. Inhibition of other enzymes by nitrated fatty acids was also previously reported [13, 36]. OA-NO2 inhibition of both GAPDH and PknG is achieved at almost the same range of micromolar concentrations. It is important to note that OA-NO2 is consider a potent inhibitor of GAPDH, an important enzyme of the intermediate cellular metabolism that, due to its catalytically active-critical Cys residue, has also been postulate to be a redox-sensor. OA-NO2 is almost an order of magnitude more potent than the highly reactive oxidants in biology, hydrogen peroxide and peroxynitrite, towards GAPDH [13].
Covalent inhibitors display time-dependent inhibition and their potency has to be characterized by the analysis of the inactivation rate for different inhibitor concentrations. In the case of OA-NO2, the determination of an inhibition constant for PknG is difficult for several reasons. The fact that OA-NO2 concentration can not be readily increased over its critical micelle concentration and that increasing inhibitor concentration also increased the number of unspecific covalent modifications detected makes difficult the detailed kinetic analysis. In one embodiment of the present invention OA-NO2 is administered to have a potent effect on kinase activity at micromolar concentrations of OA-NO2 using PknG:OA-NO2 ratios of 1:3 and 1:5.
The Cys-alkylated peptides showed an unexpected mass shift when detected using MALDI-TOF/TOF. In one embodiment of the present invention, laser ionization induces photodecomposition of cysteine-OA-NO2 adducts generating the observed pattern with a mass shift of 198/200/202 Da. Decomposition of nitro-compounds during MALDI analysis was previously reported [37]. In contrast to cysteine modification, alkylated histidine showed the expected mass shift of 327 Da, demonstrating that the mass increment of 198/200/202 Da is a fingerprint of cysteine modification when detected by MALDI MS. This may explain why Cys-OA-NO2 adducts were systematically not detected in MALDI experiments in previous work [13]. MALDI MS/MS spectra of the modified peptides with this atypical mass increments did not show fragments of the 198/200/202 Da modification, thus not allowing a structural characterization.
Thus, in accordance with the present invention, one embodiment exploits the unique structural characteristics of the multi-domain protein kinase PknG for the specific inhibition of its enzymatic activity. This embodiment represents a totally new mechanism for PknG inhibition involving the Rbx domain outside the catalytic domain. As contemplated in the present invention, electrophilic fatty-acids represent a new class of molecules for the specific inhibition of a small subset of kinases containing Rbx domain, and their use as PknG inhibitors.
9-octadecenoic acid (oleic acid; OA) was purchased from Nu-Check Prep (Elysian, Minn.). 9- and 10-nitro-octadeca-9-cis-enoic acid (OA-NO2) was prepared as previously [16]. GSH, DTT, bathophenanthrolinedisulfonic acid disodium salt (BPS), iodoacetamide (IAM) and 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS) were from Sigma. C18-Omix® Pipette tips for sample preparation were from Varian (Lake Forest, Calif.). Sequencing grade modified trypsin was from Promega (Madison, Wis.).
Full-length PknG was overexpressed in Escherichia coli BL21(DE3) cells grown for 24 h at 30° C. without IPTG and supplemented with 100 μM FeCl3. PknG was purified as described before [5].
Site-directed mutagenesis of PknG was performed by PCR on pET-28a-74PknG using QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies). The sequence of the construct (PknG 74-406, Δ 74/TPR) was verified by DNA sequencing. PknG A74/TPR was overexpressed in E. coli BL21(DE3) cells grown at 30° C. until OD600=0.6, then ON at 14° C. after addition of 1 mM IPTG. PknG Δ 74/TPR purification was performed as previously [5].
GarA (Rv1827) expression was performed in E. coli BL21(AI). Cells were grown in LB medium supplemented with 0.1% glucose and 10 μg/μL tetracycline at 37° C. until OD600=0.6, then for 18 h at 22° C. after addition of 1 mM IPTG and 0.02% arabinose. The cells were harvested by centrifugation and re-suspended in buffer A (5 mM NaH2PO4, 50 mM Na2HPO4, 500 mM NaCl, 5% glycerol, 25 mM imidazole, pH 8.0) supplemented with Complete protease inhibitor cocktail (Roche)). GarA was first purified by metal-affinity chromatography on a HisTrap Ni2+-IMAC column (GE Healthcare) equilibrated in buffer A, using a linear imidazole gradient (20-400 mM). The GarA-containing fractions were dialyzed against buffer B (25 mM Tris-HCl, 150 mM NaCl, 5% glycerol, 1 mM DTT, pH 7.6), and the His6 tag was removed by incubation for 24 h at 18° C. in the presence of His6-tagged TEV endoprotease at a 1:30 ratio followed by separation on Ni-NTA agarose column (Qiagen). The untagged GarA was then further purified by size-exclusion chromatography on a Superdex 75 26/60 column (GE Healthcare) equilibrated in buffer B without DTT.
Protein phosphorylation reactions were performed in 50 mM HEPES buffer pH 7.0 containing 2 mM MnCl2 and 100 μM ATP. Activity of PknG was assayed using recombinant GarA as substrate. The molar ratio of kinase:substrate ranged from 1:10 to 1:20. Reaction mixtures were incubated 30 min at 37° C. and substrate phosphorylation was evaluated by MALDI-TOF MS. The autophosphorylation activity of PknG was assessed by incubation of the enzyme in the presence of 2 mM MnCl2 and 100 μM ATP for 40 min at 37° C. The samples were then digested with trypsin and phosphopeptides were detected by MS.
The effect of OA-NO2—PknG pre-incubation times on kinase inhibition was assayed. PknG and OA-NO2 were incubated and at different time points aliquots of treated and control enzymes were removed for kinase activity determination. Activity assay was performed using Kinase Glo® Plus Luminiscent Kinase Assay (Promega) according to manufacturer guidelines. Briefly, activity was tested using GarA as substrate (kinase:substrate ratio was 1:25) and remaining ATP was quantified by luminescence after 30 min incubation time at 37° C. For each time point the inhibition relative to control enzyme is plotted.
Proteolytic digestion was carried out by incubating the proteins with trypsin in 70 mM ammonium bicarbonate, pH 8.0, for 12 h at 37° C. (enzyme-substrate ratio 1:10). Mass spectra of peptides mixtures were acquired in a 4800 MALDI TOF/TOF instrument (Applied Biosystems) in positive ion reflector or linear mode using a matrix solution of α-cyano-4-hydroxycinnamic acid in 0.2% trifluoroacetic acid in acetonitrile-H2O (50%, v/v) and were externally calibrated using a mixture of standard peptides (Applied Biosystems). The molecular mass of the native and phosphorylated GarA was determined using a sinapinic acid matrix (10 mg/mL in acetonitrile-H2O 50%, 0.2% trifluoroacetic acid). Alternatively, a linear ion trap mass spectrometer (LTQ Velos, Thermo) coupled on line with a nano-liquid chromatrography system (easy-nLC, Proxeon-Thermo) was used for peptide mixtures analysis. Peptides were separated on a reversed-phase column (EASY-column™ 100 mm, ID75 μm, 3 μm, C18-A2 from Proxeon) and eluted with a linear gradient of acetonitrile 0.1% formic acid (0-60% in 60 min) at a flow rate of 400 μL/min. Electrospray voltage was 1.40 kV and capillary temperature was 200° C. Peptides were detected in the positive ion mode using a mass range of 300-2000 in the data-dependent triple play MS2 mode (full scan followed by zoom scan and MS/MS of the top 5 peaks in each segment).
Native PknG (ranging from 5-10 μM) in 70 mM ammonium bicarbonate, pH 8.0, was incubated for 10 min at 25° C. with OA-NO2 (0-100 μM) or IAM (0-500 μM) and kinase activity was immediately measured. As a control, PknG was exposed to OA-NO2 vehicle (methanol) in the same conditions. In addition for OA-NO2 experiments, kinase activity in the presence of equivalent concentration of OA was determined. In some experiments, after nitroalkene treatment PknG was incubated with DTT (42 mM) or GSH (24 mM) for 10 min at 25° C. and enzymatic activity was re-determined. The activity of control PknG in the presence and absence of the thiol containing reagents was also assayed. Previous to enzymatic digestions, excess of DTT was removed by immobilization of PknG on reverse-phase Poros 10 R2 beads (Applied Biosystems).
PknG tryptic peptides were isolated by reverse-phase HPLC (Vydac® C18; 2.1×100 mm) and fractions including cysteine-containing peptides were selected after mass analysis by MALDI-TOF. Selected fractions were dried, re-suspended in 70 mM ammonium bicarbonate, pH 8.0 and treated with OA-NO2 (1:4) for 10 min at 25° C. Peptide modification was analyzed by MALDI MS and ESI MS.
The experiments using rabbit muscle GAPDH as model protein were carried out as previously reported [13].
Control and OA-NO2-treated PknG were loaded onto OMIX C4 pipette tips (Agilent Technologies) and flow-through was collected. Non-bound fraction was incubated for 15 min at 25° C. with 40 mM DTT and iron was determined spectrophotometrically using BPS as previously described [17].
Concentration of ANS was determined using the molar extinction coefficient 8=5000 M−1 cm−1 at 350 nm [18]. PknG exposed to OA-NO2 in the same experimental conditions stated above was diluted at 1 μM, dialyzed to remove excess OA-NO2 and incubated with 16 μM ANS. As controls, PknG natively folded and thermally denatured were incubated with ANS.
Fluorescence was collected on Cary Eclipse fluorescence spectrophotometer (Varian, Inc.) with the excitation wavelength set on 350 nm and emission between 370-650 nm.
Circular dichroism (Far-UV) spectroscopy, was performed on OA-NO2-treated and OA-treated PknG. CD spectra were recorded between 190 and 260 nm on an Aviv 215 spectropolarimeter (Aviv Biomedical), using a cylindrical cell with a 0.02 cm path length and an averaging time of 1s per step, with protein samples at 0.5 mg/mL in 25 mM Tris-HCl, 100 mM NaCl, glycerol 5% pH 8.0. Five consecutive scans from each sample were merged to produce an averaged spectrum and corrected using buffer baselines measured under the same conditions. Data were normalized to the molar peptide bond concentration and path length and expressed as Mean Residue Ellipticity ([0] degree·cm2·dmol−1).
The bioinformatics procedures entailed searching protein sequence homologs to PknG at NCBI's NR database using CS-Blast [19], Psi-Blast [20] and HHsenser [21]. All searches were run performing both gapped and ungapped alignments, in order to selectively detect proteins carrying both Rbx and Ser/Thr protein kinase domains. Significant hits (Blast E-) values<1e−10) found with all methods with sequence coverage >75% were kept. Multiple sequence alignments (MSAs) were computed with Mafft [22], T-Coffee [23] and Prank [24]. Such MSAs were manually analyzed in order to detect sequences with N-terminal Rbx motifs (all had the kinase domain). Distance-based phylograms for a subset of 652 sequences (lengths between 500 and 800 aminoacids, pairwise identities <76%) were computed with BioNJ [25].For proteins with the Rbx domain, maximum-likelihood phylogenetic trees were built by way of PhyML [26].
PknG Inhibition by OA-NO2.
To evaluate whether the electrophilic nitro-oleic acid has an effect on PknG kinase activity, the enzyme was treated with different concentrations of OA-NO2 (below its critical micelle concentration) and its remaining activity was measured using a recombinant protein substrate, GarA. Native and phosphorylated GarA were detected by MALDI-TOF MS as ions of m/z 17145 and m/z 17222 respectively, as before [27]. The mass shift corresponds to the incorporation of one phosphate group (80 Da) into the native sequence (
The effect of OA-NO2 treatment on PknG autophosphorylation was also evaluated to confirm that the inhibition observed reflects a general loss of the kinase activity more than a substrate specific effect (
The effect of OA-NO2 on kinase activity was tested using inhibitor concentration ranging from 0 to 80 μM. As shown in
To further characterize the effect of the nitrated fatty acid on PknG, we studied the time course of enzyme inhibition. PknG and OA-NO2 (or vehicle as control) was pre-incubated for time periods ranging from 0 to 30 min, and kinase activity was measured using a commercial luminescent kinase assay (Kinase Glo®)). Under these experimental conditions the control activity varies less than 10% during the 30 min incubation time. The percentage of remaining kinase activity was calculated with respect to control activity for the same time point. As shown in
Cysteines at the Rbx domain are the main target of OA-NO2.
In order to identify the PknG residues that may account for the inhibition of the kinase, samples were digested with trypsin and peptide mixtures were analyzed by MS (
3604.56
3517.53
3388.49
C
3145.39
2842.38
3042.38
C
2582.26
2782.26
2479.25
2422.23
2335.20
2075.08
1988.05
1840.98
1727.90
1502.79
2455.95
1389.70
1275.66
2725.05
1121.58
2838.14
1006.56
2937.21
3008.24
794.41
723.37
666.35
3485.43
Similarly, MS/MS analysis of the other modified Rbx peptide (m/z 1492.54) showed that only daughter ions that contain the CWNC (Seq. No. 14) residues appeared with a modified mass (data not shown). Although enough sequence information to identify the modified residue(s) within this motif was not available, based on the previously reported reactivity of the nitrated fatty acid towards nucleophilic residues, these results strongly suggest that the Cys residues of those peptides are the main target of OA-NO2 [13].
To further characterize this modification and the observed atypical mass shift, all three PknG native tryptic peptides that contain Cys residues (m/z 1292.57, m/z 1813.92 and m/z 3530.60) were isolated by RP-HPLC and then treated with OA-NO2. The peptide with the sequence Seq. No. 13 (m/z 1813.92) is the only tryptic peptide of PknG that contains a single Cys. The modification pattern previously observed was found for all those three Cys-containing peptides treated with OA-NO2 (
PknG sequence Seq. No. 13 contains a unique non-rubredoxin Cys (C156). Noticeably, no consumption of the peptide containing this free Cys was observed upon treatment of PknG with OA-NO2 (
In experiments performed with higher concentrations of OA-NO2 (50-80 μM; molar ratio PknG:OA-NO2 from 1:5 to 1:10) further showed the modification of several His residues in a very low yield. In agreement with this observation, no significant consumption of His-containing peptides was detected (
HGALDADGVDFSESVELPLMEVR
HFTEVLDTFPGELAPK
HFTTAR
HRYTLVDMANK
aThe sequence and alkylation sites were confirmed by MS/MS analysis.
#Low OA-NO2:PknG ratio means a molar ratio in between 1:1 and 3:1 ([OANO2] between 8 μM and 30 μM). High OA-NO2:PknG ratio means a molar ratio 10:1 ([OANO2] = 80 μM)
In contrast to cysteine modification, alkylated histidine showed the expected mass shift of 327 Da when analyzed by MALDI MS and ESI MS. MS/MS analysis of these peptides allowed us to confirm that the incorporation of the nitrated fatty acid took place at a His residue (Table 2 and
Using both enzyme constructions, Cys-Rbx are the only modified residues detected using the OA-NO2 concentrations up to 35 μM, that are sufficient to render a noticeable loss of PknG activity. Altogether these data indicate that Cys residues at the Rbx domain are the main targets of OA-NO2 and may account for the observed enzyme inhibition.
Irreversible PknG Inhibition by the Reversible OA-NO2 Mediated Nitroalkylation of the Kinase.
We have previously reported that nitrated fatty acids are capable to inhibit GAPDH activity by modification of nucleophilic amino acid residues in a thiol-reversible manner [13]. Herein, we analyze the reversibility of PknG nitroalkylation. Treatment of nitroalkylated PknG with DTT (42 mM) or GSH (24 mM) was unable to recover the kinase activity (
To evaluate the reversibility of the chemical modification of His and Cys residues in PknG, OA-NO2 treated samples were further exposed to thiol-containing reagents (DTT or GSH) before protein digestion and MS analysis. We initially analyzed the peptide containing two Rbx-Cys (Seq. No. 3). The spectrum clearly showed that nitroalkylation of this peptide in PknG is reversible as we were unable to detect its modified form after exposure to DTT. In addition, native cysteine-containing peptides were fully recovered by treatment with DTT (
OA-NO2 Induces Iron Release from Rbx Domain.
The rubredoxin domain contains an iron ion which is coordinated by the sulphurs of four conserved cysteine residues forming an almost regular tetrahedron. Fe3+ is hardly removed from Rbxs [28, 29]. To evaluate the effect of Cys nitroalkylation on the metal center of the Rbx domain, we measured the amount of iron released upon OA-NO2 treatment, using a specific ligand for its spectrophotometric determination. Non protein-bound iron present in control and OA-NO2 treated PknG samples was recovered, reduced with DTT and quantified spectrophotometrically. The results clearly showed that PknG nitroalkylation leaded to iron release from the Rbx domain (
PknG Inhibition by OA-NO2 is not the Consequence of a Global Change in PknG Structure.
In order to address if the effect of OA-NO2 could be mediated by an unspecific global distortion of protein tridimensional structure as a consequence of the introduction of a quite large hydrophobic molecule, we analyzed global changes in protein structure by different approaches. We incubated OA-NO2-treated enzyme with ANS, a fluorescent probe that binds to hydrophobic patches on proteins with a concomitant change in emission spectrum (
Rbx and Kinase Domain Co-Occurrence is Restricted to Few Actinomycetales.
The specificity of OA-NO2 reactivity towards Cys residues in the Rbx domain of PknG raised the possibility of a selective inhibition of certain kinases containing this domain. Employing bioinformatics, we analyzed the co-ocurrence of Rbx and kinase domains.
Multiple sequence alignments of PknG orthologs showed a minority of PknG-like kinases harboring the CXXCG (Seq. No. 12) motif linked to Rbx domains (
Conservation of the catalytic domain, as well as variability of the N-terminus, has previously been described for a number of PknGs [30, 31]. However, presence/absence of the Rbx domain and sequence conservation levels had not been analyzed, to our knowledge. Interestingly, joint occurrence of kinase and Rbx domains is restricted to bacteria from the Actynomycetales order, including pathogenic and non-pathogenic mycobacteria. It is worth noting that the sequences indicated by a dot in
This application claims priority to co-pending U.S. Patent Provisional Application Ser. No. 61/835,416 filed Jun. 14, 2013, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61835416 | Jun 2013 | US |