English translation of PCT #WO 93/12801. |
Benharroch, D., et al., "Biology of the Fibrblast Growth Factor Gene Family," ISR. J. Med. Sci., vol. 26, pp. 212-219 (Apr. 1990). |
Bhatnagar, R.S., et al., "Deisgn of Collagen-Mimetic Biomaterials," Transactions of The Society for Biomaterials, 309 (1994). |
Cooper, M.L., et al., "Use of a Composite Skin Graft Composed of Cultured Human Keratinocytes and Fibroblasts and a Collagen-GAG Matrix to Cover Full-Thickness Wounds on Athymic Mice," Surgery, vol. 109, pp. 198-207 (Feb. 1991). |
Clark, R.A., "Cutaneous Tissue Repair: Basic Biologic Considerations," J. Am. Academy dermat., vol. 13, pp. 701-725 (Nov. 1985). |
Fajardo, L.F., et al., "Methods in Laboratory Investigation: The Disc Angiogenesis System," Lab, Invest., vol. 58, 718-724 (Jun. 1988). |
Gore, D.C., et al., "Effect of Exogeneous Growth Hormone on Whole-Body and Isolated-Limb Protein Kinetics in Burned Patients," Arch. Surg., vol. 126, pp. 38-43 (Jan. 1991). |
Grotendorst, G.R., et a., "EGF and TGF-alpha are Potent Chemoattractants for Endothelial Cells and EGF-like Peptides and Present at Site of Tissue Regeneration," J. Cell Physio., vol. 139, pp. 617-623 (Jun. 1989). |
Hansson, H.A, et al., "Transient Expression of Insulin-Like Growth Factor I Immunoreactivity by Vascular Cells During Angiogenesis," Exp. Mole. Path., vol. 50, pp. 125-138 (Feb. 1989). |
Hockel, M., et al., "Purified Monocyte-Derived Antiogenic Substance (Angiotropin) Induces Controlled Angiogenesis Associated with Regulated Tissue Proliferation in Rabbits Skin," J. Clin. Invest., vol. 82, pp. 1075-1090 (Sep. 1988). |
Knighton, D.R., et al., "Wound Healing Angiogenesis: Indirect Stimulation by Basic Fibroblast Growth Factor," J. Trauma, vol. 30, pp. 134-144 (Dec. 1990). |
Laato, M., "Effect of Epidermal Growth Factor (EGF) on Blood Flow and Albumin Extravasation in Experimental Granulation Tissue," Acta Chir. Scand., vol. 152, pp. 401-405 (1986). |
Mahadevan, V., et al., "Facotrs Influencing Blood Supply in Wound Granuloma Quantitated by New in Vivo Technique," Cancer Res., vol. 49, pp. 415-419 (Jan. 15, 1989). |
Martin, C.R., Ph.D., Textbook of Endocrine Physiology, "10. Somatotrophin," Oxford Univ. Press, New York, pp. 107-108 (1979). |
Pierce, G.F., et al., "Platelet-derived Growth Factor (BB Homodimer), Transforming Growth Factor-.beta.1, and Basic Fibroblast Growth Factor in Dermal Wound Healing," Am. J. Path., vol. 140, No. 6, pp. 1375-1388 (Jun. 1992). |
Qian, J.J., et al., "Increased Cell Attachment, Migration and Differentiation on Hydroxyapatite in the Presence of a Collagen-Analog," Transactions of The Society for Biomaterials, 216 (1994). |
Reilly, W., et al., "Matrix Control of Tumer Agiogenesis," Adv. Exp. Med. and Biol., vol. 242, pp. 211-227 (1988). |
Savage, K., Ph.D., "The Effect of Platelet-Derived Growth Factor on Cell Division and Glycosaminoglycan Synthesis by Human Skin and Scar Fibroblasts," The J. Invest. Derm., vol. 89, pp. 93-99 (1987). |
Tsuboi, R., et al., "Recombinant Basic Growth Factor Stimulates Wound Healing In Healing-Impaired db/db Mice," J. Exp. Med., vol. 172, pp. 245-252 (Jul. 1990). |
Valette, G., et al., "Une Nouvelle Methode d-Assai Des Traitments Cicatrisant Fondee Sur La Mise En Oeuvre D'une Plaie Experimentals Dont La Cicatrisation Est Artificiellement Pertubee Par Hyperstimulation Locale Du Tissue De Granulation," Arzneimittelforschung, vol. 19, No. 7, pp. 1121-1132 (1969). |
Van Brunt, J. et al., "Growth Factors Speed Wound Healing," Bio/Technology, vol. 6, No. 1, pp. 25-30 (1988). |