COMPOSITION COMPRISING (-)-DELTA9-TRANS-TETRAHYDROCANNABINOL

Abstract
A composition comprising a tetrahydrocannabinol compound, a solvent and an acid, wherein the tetrahydrocannabinol compound may be Δ8 tetrahydrocannabinol, (−)-Δ9-trans-tetrahydrocannabinol or a side chain alkyl derivative of either compound, the solvent may be an oil or C1-C4 alcohol (e.g. sesame oil or ethanol), and the acid may be an organic acid or a mineral acid.
Description
FIELD OF THE INVENTION

The present invention relates to a composition comprising (−)-Δ9-trans-tetrahydrocannabinol or related compounds.


BACKGROUND OF THE INVENTION

The compound (−)-Δ9-trans-tetrahydrocannabinol is the active ingredient in marijuana. It is used therapeutically as an inhalant or an oral drug for stimulation of appetite among AIDS and cancer chemotherapy patients. Tetrahydrocannabinols (THCs) can be isolated from marijuana (a mixture of leaves and flowering heads of the plant Cannabis Sativa). Alternatively, THCs can be obtained by synthetic routes, e.g. as described in WO 02/096899.


Pure (−)-Δ9-trans-tetrahydrocannabinol that has been produced synthetically and purified is unstable and is liable to degrade to products such as cannabinol (which is inactive) and Δ8-tetrahydrocannabinol (which is less potent). Although Δ8-tetrahydrocannabinol has similar activity to as (−)-Δ9-trans-tetrahydrocannabinol it is only approx. 75% as potent and also tends to degrade to other compounds including cannabinol. Dissolving the (−)-Δ9-trans-tetrahydrocannabinol in a solvent or carrier improves the stability, but it is still usual to store the solutions under refrigerated conditions, e.g. at 5° C., to prevent degradation. The present inventors have sought to improve the stability of solutions of (−)-Δ9-trans-tetrahydrocannabinol and Δ8-tetrahydrocannabinol.


SUMMARY OF THE INVENTION

Accordingly, the present invention provides a composition comprising:

    • (a) a tetrahydrocannabinol compound chosen from Δ8 tetrahydrocannabinol, (−)-Δ9-trans-tetrahydrocannabinol and side chain alkyl derivatives of either compound,
    • (b) a solvent chosen from oils and C1-C4 alcohols, and
    • (c) an acid.


By side chain alkyl derivatives of either compound we mean compounds with the structure of either of the compounds depicted in the FIGURE, in which R represents an alkyl side chain. Of particular interest, are compounds in which R is 1,1 dimethylheptyl.





BRIEF DESCRIPTION OF THE DRAWINGS

The FIGURE shows the chemical structures for alkyl substituted (−)-Δ8-trans-tetrahydrocannabinol derivatives and (−)-Δ9-trans-tetrahydrocannabinol derivatives.





DETAILED DESCRIPTION OF THE INVENTION

The inventors have found that the addition of the acid improves the stability of the composition, i.e. there is less degradation of the tetrahydrocannabinol compound during prolonged storage of the composition.


The composition includes a solvent. The solvent may be chosen from oils and C1-C4 alcohols. Suitable examples of oils include sesame oil, olive oil, canola oil and combinations thereof. Suitable examples of C1-C4 alcohols include methanol, ethanol, propanol, iso-propanol and butanol.


According to one embodiment, the solvent is sesame oil. The sesame oil may be refined or unrefined, but is preferably refined (the US Food and Drug Administration standards require that refined sesame oil is used in pharmaceutical products). The composition may further comprise other solvents, but preferably comprises only sesame oil as the solvent. According to an alternative embodiment, the solvent is ethanol.


The acid used in the composition may be an organic acid. When an organic acid is used, the organic acid is suitably chosen from citric acid, ascorbic acid, malic acid, oxalic acid, succinic acid and tartaric acid, and is preferably citric acid.


The acid used in the composition may be a mineral acid. When a mineral acid is used, the mineral acid is suitably chosen from phosphoric acid, hydrochloric acid, nitric acid and sulphuric acid, and is preferably phosphoric acid.


Weak acids have an especially positive stabilizing effect on (−)-Δ9-trans-tetrahydrocannabinol and its derivatives, forming a stabilized composition. If the amount or concentration of strong acid is too large, the Δ9-isomer degrades to the Δ8-isomer.


The acid may be added to the other constituents either as a separate component, or the acid may be formed in a solution of the other constituents. An example of the latter is the use of dissolved CO2 in ethanol, which also stabilizes the Δ9-isomer, probably due to formation of carbonic acid.


The amount of acid is suitably from 0.01-2% as a weight percentage of the composition, preferably from 0.02-1% and most preferably from 0.05-0.5%.


The amount of (−)-Δ9-trans-tetrahydrocannabinol in the composition is suitably from 0.1-15% as a weight percentage of the composition, preferably from 1 to 10%.


The composition may further comprise antimicrobial agents such as methyl paraben or propyl paraben. The composition may further comprise preservatives such as alpha-tocopherol or butylated hydroxytoluene (BHT). The composition may further comprise antioxidants. The antimicrobial agents, preservatives and antioxidants may be used alone or in combination.


In a preferred embodiment, the composition of the invention consists essentially of a tetrahydrocannabinol compound, an oil or a C1-C4 alcohol, and 0.01-2 wt % of an acid chosen from the group consisting of citric acid, ascorbic acid, malic acid, oxalic acid, succinic acid, tartaric acid, phosphoric acid, hydrochloric acid, nitric acid and sulphuric acid. Additional components (e.g. antimicrobial agents, preservatives, antioxidants) may comprise up to 1 wt % of the solution. In an especially preferred embodiment, the composition of the invention consists essentially of (−)-Δ9-trans-tetrahydrocannabinol, sesame oil and 0.05-0.5 wt % citric acid or phosphoric acid, wherein additional components may comprise up to 1 wt % of the solution.


Compositions according to the invention may be prepared by adding the acid to a solution of a tetrahydrocannabinol compound in sesame oil or a C1-C4 alcohol and mixing. Solutions of (−)-Δ9-trans-tetrahydrocannabinol in sesame oil may be prepared by dissolving pure (−)-Δ9-trans-tetrahydrocannabinol in sesame oil, or by mixing sesame oil with a solution of (−)-Δ9-trans-tetrahydrocannabinol in ethanol, and then distilling off the ethanol.


The following examples are illustrative but not limiting of the invention.


Composition Preparation: Sesame Oil Solvent

Sesame oil was degassed under vacuum distillation and blanketed with nitrogen. The sesame oil was refined sesame oil from Jeen International (Compositions 1-2, 7-17) or Dipasa (Compositions 3-6). A solution of (−)-Δ9-trans-tetrahydrocannabinol in ethanol was added to the sesame oil and the acid was also added. The solution was mixed and the ethanol was removed using a rotary evaporator.


Each composition contained 6.65 wt % (−)-Δ9-trans-tetrahydrocannabinol based on the weight of the composition. The additional components in each composition were as shown in Table 1 below:









TABLE 1







Compositions 1-18 in Sesame Oil Solvent










Acid
Other components





Composition 1
None
None


Composition 2
0.1 wt % citric acid
None


Composition 3
None
None


Composition 4
0.1 wt % citric acid
None


Composition 5
None
Methyl paraben, Propyl




paraben, Alpha tocopherol,




BHT


Composition 6
0.1 wt % citric acid
Methyl paraben, Propyl




paraben, Alpha tocopherol,




BHT


Composition 7
None
None


Composition 8
0.1 wt % ascorbic acid
None


Composition 9
0.1 wt % acetic acid
None


Composition 10
0.1 wt % citric acid
None


Composition 11
0.1 wt % lactic acid
None


Composition 12
0.1 wt % fumaric acid
None


Composition 13
0.1 wt % malic acid
None


Composition 14
0.1 wt % oxalic acid
None


Composition 15
0.1 wt % succinic acid
None


Composition 16
0.1 wt % salicylic acid
None


Composition 17
0.1 wt % tartaric acid
None


Composition 18
0.1 wt % phosphoric acid
None









Composition Preparation: Ethanol Solvent

Citric acid was added to 2 ml samples of a solution of (−)-Δ9-trans-tetrahydrocannabinol in ethanol (the concentration of the (−)-Δ9-trans-tetrahydrocannabinol was 66.6 mg/ml). The solutions were mixed. The amount of citric acid in each solution is shown in Table 2 below:









TABLE 2







Compositions 19-24 in Ethanol Solvent











Weight % of




citric acid compared




to the weight



Amount of citric acid (mg)
of Δ9-THC













Composition 19
0.00
0.0%


Composition 20
2.51
1.9%


Composition 21
2.01
1.5%


Composition 22
0.50
0.4%


Composition 23
0.25
0.2%


Composition 24
0.13
0.09% 









Stability: Sesame Oil Solvent

The stability of the sesame oil compositions (compositions 1-18) was assessed at three different conditions: 5° C. or Normal Storage (Refrigerated) Conditions; 25° C./60% Relative Humidity or Accelerated Conditions; and 40° C./75% Relative Humidity or High Temperature/High Humidity Conditions. The degradation of the (−)-Δ9-trans-tetrahydrocannabinol was monitored using a High Performance Liquid Chromatography (HPLC) method with ultraviolet detection at 228 nm. Each detected impurity peak was measured using percent peak area (% PA) with respect to the peak area counts for (−)-Δ9-trans-tetrahydrocannabinol for each chromatogram. Each impurity peak was identified with a relative retention time (RRT) relative to the (−)-Δ9-trans-tetrahydrocannabinol peak elution time from each chromatogram. Impurity peaks measuring above 0.05% PA were recorded.


The impurities that are attributed to the degradation of (−)-Δ9-trans-tetrahydrocannabinol elute from the HPLC column at a RRT window of 0.56 to 0.95 and at a RRT of 1.06. The impurities cannabinol and Δ8-tetrahydrocannabinol elute from the column at RRTs of 0.95 and 1.06 respectively.


Table 3 shows the results of the stability tests for compositions 1-18. The period of time after which the degradation of the composition was assessed is indicated beside each table.









TABLE 3







Stability tests for compositions 1-18









% Peak Areas according to Relative Retention Time (RRT)




















Condition
0.56
0.57
0.58
0.61
0.63
0.66
0.67
0.70
0.74
0.78
0.90
0.95
1.06










Composition 1, 1 month




















Initial












0.28


25° C./60% RH

4.13
4.45
0.96
3.11
10.2
2.35
0.22

0.36
1.46
4.06
5.33


40° C./75% RH

8.09
5.35
2.43
4.91
0.29
15.62
0.28


0.49
1.86
2.99







Composition 2, 3 months




















Initial















 5° C.


0.08
0.05







0.05


25° C./60% RH
0.18


0.13

0.07

0.07


0.16
0.37
0.29


40° C./75% RH
1.96

0.22
0.91
0.17
0.45
0.36
0.3

0.05
1.25
4.16
2.17







Composition 3, 3 months




















Initial





0.12









 5° C.
0.29
0.51

0.29
0.13
3.96
0.22

0.35
1.89

0.15
0.08


25° C./60% RH
0.85
0.74
1.97
1.23
0.72
6.13
1.81
0.06
0.23
2.55
0.44
2.03
0.64


40° C./75% RH
0.16
0.52
0.31
0.65
0.74
3.72
0.45
0.02
0.08
1.02
1.96
1.46
0.7







Composition 4, 3 months




















Initial















 5° C.











0.05


25° C./60% RH
0.19


0.10






0.10
0.20
0.14


40° C./75% RH
1.96


0.15
0.53
0.29
0.30
0.17


1.11
2.62
0.41







Composition 5, 3 months




















Initial








1.54






 5° C.
0.05
0.12


0.08
0.06


1.36
0.05
0.09

0.30


25° C./60% RH
0.40
0.65
0.2
0.13
0.41
0.50
0.37
0.14
0.92
0.12
0.27
0.48
1.00


40° C./75% RH
1.05
0.63
0.23
0.11
0.91
0.62
0.22

1.07
0.11
0.54
1.63
1.74







Composition 6, 3 months




















Initial



0.05




1.54






RF 5° C.



0.06




1.52


0.11
0.05


25° C./60% RH
0.09


0.06

0.07


1.52


0.53
0.3


40° C./75% RH
0.97
0.21
0.15
0.52
0.25
0.32
0.2
0.18
1.57

0.63
2.96
1.96







Composition 7, 4 weeks




















Initial

0.03
0.03



0.02


0.01


0.02


 5° C.
0.01




0.11
0.02

0.04
0.04
0.01

0.05


25° C./60% RH
0.19
0.16

0.13
0.11
1.76


0.51
0.22
0.01
0.05
0.05


40° C./75% RH
0.23
0.21
0.46
1.41
0.67
5.60
0.22
0.07
1.00
0.81
0.29
0.56
0.05







Composition 8, 4 weeks




















Initial
0.01

0.01


0.01



0.01


0.02


 5° C.


0.02







0.01

0.02


25° C./60% RH


0.03
0.03






0.02
0.01
0.02


40° C./75% RH
0.02
0.01
0.06
0.11
0.03



0.02
0.02
0.04
0.05
0.06







Composition 9, 4 weeks




















Initial
0.02




0.04
0.03





0.02


 5° C.
0.17
0.10
0.02
0.1
0.02
0.67
0.16

0.15
0.15

0.02
0.05


25° C./60% RH
0.13
0.23
0.36
1.00
0.09
3.18
0.46
0.02
0.58
0.59
0.1
0.68
0.14


40° C./75% RH
0.65
1.25
0.29
2.95
0.32
2.99
1.71
0.04
0.30
0.12
0.49
3.69
0.7







Composition 10, 4 weeks




















Initial
0.02





0.01




0.01
0.02


 5° C.










0.01

0.01


25° C./60% RH


0.04







0.03
0.01
0.02


40° C./75% RH
0.11

0.11
0.02
0.02
0.02
0.02
0.03


0.16
0.12
0.14







Composition 11, 4 weeks




















Initial


0.02









0.02


 5° C.


0.02






0.01
0.02
0.02
0.03


25° C./60% RH
0.02
0.01
0.09


0.01




0.04
0.11
0.07


40° C./75% RH
0.02
0.19
0.12
0.27
0.04
0.16
0.04


0.02
0.33
0.60
0.43







Composition 12, 4 weeks




















Initial
0.02

0.01


0.02



0.03


0.01


 5° C.
0.26
0.10
0.09

0.05
0.42
0.17

0.09
0.12
0.01
0.02
0.06


25° C./60% RH
0.08
0.09
0.12
0.02
0.07
0.38
0.1
0.02
0.04
0.07
0.19
0.19
0.67


40° C./75% RH
0.42
0.11
0.53
0.07
0.16
0.31
0.32

0.07
0.04
0.98
1.41
2.58







Composition 13, 4 weeks




















Initial












0.02


 5° C.










0.01

0.01


25° C./60% RH
0.01

0.02







0.02
0.03
0.03


40° C./75% RH
0.15

0.02
0.06
0.04
0.03

0.03


0.15
0.18
0.18







Composition 14, 4 weeks




















Initial
0.01











0.02


 5° C.


0.05







0.01

0.02


25° C./60% RH


0.16







0.03
0.03
0.02


40° C./75% RH
0.04
0.03
0.35
0.02






0.11
0.12
0.02







Composition 15, 4 weeks




















Initial





0.02


0.02

0.01

0.02


 5° C.










0.01
0.01
0.02


25° C./60% RH


0.03

0.02





0.01

0.03


40° C./75% RH
0.05
0.01
0.25
0.03
0.08
0.08
0.03

0.03

0.11
0.10
0.28







Composition 16, 4 weeks




















Initial
0.01

0.04

0.01
0.01
0.02




0.01
0.03


 5° C.
0.01

0.16

0.03
0.08
0.04

0.05
0.15
0.01
0.22
0.07


25° C./60% RH
0.36
0.1
1.87

0.58
0.63
0.75
0.01
0.19
2.76
0.05
4.27
0.15


40° C./75% RH
0.41
0.27
0.99
0.17
0.45
0.34
0.77
0.05
0.08
2.97
0.64
4.5
0.59







Composition 17, 4 weeks




















Initial
0.02





0.01


0.02


0.02


 5° C.










0.01

0.02


25° C./60% RH


0.02







0.02
0.02
0.02


40° C./75% RH
0.13

0.04
0.04
0.01
0.04

0.03


0.12
0.12
0.17







Composition 18, 16 days




















Initial


1.58
0.26
0.55



0.36

0.05




25° C./60% RH


3.39
0.20
0.17*
0.09



0.09

1.08


40° C./75% RH


3.39
0.20
0.18*
0.08


0.10


1.08





data after 1 week, not 16 days






Compositions 1, 3, 5 and 7 did not contain any organic acid, and the tables show that considerable degradation occurred during the observation period. By contrast, the degradation observed for compositions 2, 4 and 6 (which all contained 0.1 wt % citric acid) was considerably less. Compositions 5 and 6 both contained antimicrobial agents and preservatives, yet composition 6 (containing 0.1 wt % citric acid) was more stable than composition 5.


Compositions 8-18 contained a variety of acids. Compositions 8, 10, 11, 12, 13, 14, 15, 17 and 18 (containing 0.1 wt % ascorbic acid, 0.1 wt % citric acid, 0.1 wt % lactic acid, 0.1 wt % fumaric acid, 0.1 wt % malic acid, 0.1 wt % oxalic acid, 0.1 wt % succinic acid, 0.1 wt % tartaric acid and 0.1 wt % phosphoric acid respectively) all showed improved stability compared to composition 7 (containing no organic acid). Compositions 9 and 16 (containing 0.1 wt % acetic acid and 0.1 wt % salicylic acid) did not show an appreciable improvement compared to composition 7 and it would seem that these acids are less effective at improving stability (although the inventors believe that these acid may provide an improvement if used at another concentration).


Stability: Ethanol Solvent

The stability of the ethanol compositions (compositions 19-24) was assessed in substantially the same manner as for the sesame oil compositions except that they were only assessed at only one set of conditions (40° C.) and the compositions were analysed after 60 hours and 1 month.


Table 4 shows that the composition that did not contain citric acid (composition 19) showed the greatest degradation and there seems to be a slight correlation between increasing citric acid content and increased stability.









TABLE 4







Stability tests for compositions 19-24









% Peak Areas according to Relative Retention Time (RRT)






















Condition
0.57
0.58
0.59
0.61
0.63
0.66
0.67
0.70
0.74
0.78
0.82
0.90
0.95


























Initial





0.11









Composition
40° C./60 hr
0.04
0.04

0.25
0.02
1.80


0.35

0.02


19
40° C./1 mo
0.34
0.34
0.14
8.6
1.58
5.13

0.13
2.33
0.07
1.46
0.52
0.34


Composition
40° C./60 hr



0.3
0.02





0.04

0.07


20
40° C./1 mo
0.02


2.38
0.19
0.03
0.06
0.02


0.05
0.01
0.58


Composition
40° C./60 hr
0.04


0.3
0.02
0.01




0.05

0.08


21
40° C./1 mo
0.02


2.51
0.2
0.02
0.06
0.02


0.05
0.01
0.6


Composition
40° C./60 hr



0.35
0.03
0.07




0.11

0.04


22
40° C./1 mo
0.02


3.37
0.27
0.06
0.06
0.03


0.23
0.02
0.69


Composition
40° C./60 hr



0.31
0.03
0.11




0.11

0.02


23
40° C./1 mo
0.02
0.02

3.03
0.25
0.12
0.04
0.03


0.42
0.01
0.51


Composition
40° C./60 hr
0.02


0.28
0.03
0.16


0.02

0.11

0.02


24
40° C./1 mo
0.02


1.71
0.14
0.13
0.02
0.03


0.39

0.24








Claims
  • 1. A composition comprising: (a) (−)-Δ9-trans-tetrahydrocannabinol,(b) a solvent comprising sesame oil, and(c) an acid selected from the group consisting of acetic acid, lactic acid, oxalic acid, succinic acid, salicylic acid and tartaric acid, and
  • 2. A composition comprising: (a) (−)-Δ9-trans-tetrahydrocannabinol,(b) a solvent comprising sesame oil, and(c) phosphoric acid, and
  • 3. A composition consisting essentially of: a) (−)-Δ9-trans-tetrahydrocannabinol,b) a solvent comprising sesame oil, andc) an acid selected from the group consisting of ascorbic acid, malic acid and fumaric acid,
  • 4. A composition comprising: (a) a tetrahydrocannabinol compound selected from Δ8 tetrahydrocannabinol, (−)-Δ9-trans-tetrahydrocannabinol and side chain alkyl derivatives of either compound,(b) a solvent comprising C1-C4 alcohols, and(c) an acid selected from the group consisting of ascorbic acid, malic acid and fumaric acid.
  • 5. A composition comprising: (a) a tetrahydrocannabinol compound selected from Δ8 tetrahydrocannabinol, (−)-Δ9-trans-tetrahydrocannabinol and side chain alkyl derivatives of either compound,(b) a solvent comprising ethanol, and(c) carbonic acid formed from dissolved CO2 in the ethanol.
  • 6. A composition consisting essentially of: a) a tetrahydrocannabinol compound selected from Δ8-tetrahydrocannabinol, (−)-Δ9-trans-tetrahydrocannabinol and side chain alkyl derivatives of either compound,b) a solvent comprising ethanol, andc) carbonic acid formed from dissolved CO2 in the ethanol,and, optionally, one or more anti-oxidants, antimicrobial agents, preservatives or a combination thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 11/595,682, filed Nov. 10, 2006, the disclosure of which is incorporated herein by reference in its entirety for all purposes.

Divisions (1)
Number Date Country
Parent 11595682 Nov 2006 US
Child 13237388 US