Present invention relates to a composition for use in the treatment of arthritides (also designated herein as arthritis).
Arthritides are a group of over 100 varieties of inflammatory or degenerative diseases that damage joints, involving pain or stiffness of the musculoskeletal system. Arthritis is an inflammation of a joint or joints. The most common types are osteoarthritis and Rheumatoid Arthritis (RA), Gout, Ankylosing spondylitis, but also can be secondary to other diseases like Psoriatic arthritis, Systemic Lupus Erythematosus. Examples of arthritis (not of acute forms) include osteoarthritis, rheumatoid arthritis, and gouty arthritis. Acute forms are commonly caused by bacterial invasion.
Although its pathogenesis is unknown, RA is characterized by chronic inflammation in multiple joints, which develops into erosion of marginal bone and cartilage, juxta-articular bone loss, and a general reduction in bone mass. It is widely accepted that inflammatory cells, especially lymphocytes and macrophages, are crucial players in the pathogenesis of RA, and that cytokines, such as tumour necrosis factor α (TNFα), interleukin 1 (IL-1), IL-6 and IL-8, are also involved. In addition, recent findings have shown that osteoclasts play a key role in joint destruction and osteoporosis in RA, without being balanced by osteoblastic activity (hence osteoclastic activity/osteoblastic activity >1). Although RA manifests itself as a joint disease, the root cause of RA may originate systemic. RA patients show increased levels of plasma levels IL-1, IL-6 and TNFα (during exacerbations or chronic disease manifestation) indicative for a pro-inflammatory state physiological condition.
Rheumatoid arthritis (RA) is a major systemic autoimmune disease, associated with high morbidity and mortality—50% of the RA patients are too disabled to work 10 years after disease onset—and shortens life span by 3 to 18 years. RA is associated with significant higher medical costs and lost working time.
Albeit that the causal root factor or mechanism leading to RA is not yet known, a role of systemic triggers of inflammation in aggravation or induction of RA has been proposed. For instance, there seems to be a correlation between the activity and extent of the intestinal disease and the severity of arthritis. Small bowel bacterial overgrowth induces RA and recombinant bactericidal/permeability-increasing protein, an agent that neutralizes endotoxin, and metronidazole, which is active against anaerobic bacteria, prevented arthritis induction. Next to gram-negative bacterial toxins (e.g. lipopolysaccharides), also gram-positive bacterial toxins (e.g. lipoteichoic acid) may induce arthritis. Next to bacterial toxins also bacterial-derived excess levels of ATP/ADP in gut drives a pro-inflammatory state. Also, collagen induced RA animal models have been described where, RA-induction failed in case the animals were raised under septic conditions. This indicates that bacterial components derived from commensal and pathogenic strains may influence local and systemic homeostasis and immune responses.
As there is no cure for rheumatoid arthritis, the goal of pharmacological management is to relieve symptoms, prevent joint damage and put the disease into remission. The “golden standard” disease-modifying anti-rheumatic drugs (DMARDs) used in the treatment of RA is Methotrexate (MTX). MTX has shown to clearly control the inflammatory response as first line agent. Its long-term efficacy is well documented, but rarely leads to a true/complete remission. A monotherapy with MTX is not often associated with sustained disease remissions. A major drawback of MTX is the cytotoxicity and nephrotoxicity and the negative effects to patients that are treated for a long time period. Only 50% of patients stay on MTX after 5 years due to its toxicity. Another disadvantage is that resistance to MTX is known to be induced and therefore MTX is often used in combination with other drugs.
Other disease modifying agents used in the treatment of RA are anti-tumour necrosis factor (TNF) drugs (e.g. Etanercept or Infliximab), so called TNFα blockers. For these types of drugs it has been shown to reduce disease activity, to have rapid improvement in joint pain and swelling, and reduce joint damage in patients suffering from RA shown. TNFα is an important cytokine that is involved in a number of pro-inflammatory effects and plays a major role in inflammatory diseases such as rheumatoid arthritis and is a key element in its pathogenesis. Current anti-TNFα drugs are used to block TNFα and thereby reducing the inflammatory response and potentially prevent or alleviate joint damage. Anti-TNFα drugs are used either as stand alone therapy or in combination therapy, with e.g. MTX.
However, the currently marketed biological TNFα blockers demonstrate several side effects. One of the foremost effects is the break of immune tolerance towards the antibody drug due to the non-natural nature of these drugs. This leads to the formation of inactivating antibodies and makes the applied dosages less effective. As a consequence the patient does not respond any longer to the beneficial effects of the compound. Patients then are re-introduced to other pharmaceuticals, like corticosteroids, that have major adverse implications for patient-specific time periods. Also, the use of anti-TNF antibodies may lead to increased risk to serious infections, in particular tuberculosis.
Considering the above, there is a need in the art for new strategies for the treatment of arthritis. Furthermore there is a need in the art for a treatment that has less adverse effects on patients during treatment and is more effective than the current treatments available.
It is an object of the present invention, amongst other objects, to address the above need in the art. The object of present invention, amongst other objects, is met by the present invention as outlined in the appended claims.
Specifically, the above object, amongst other objects, is met, according to a first aspect, by the present invention by an ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use in the treatment of a mammal suffering from arthritis. Arthritis include for example osteoarthritis, rheumatoid arthritis (RA), and gouty arthritis. An inaccurate systemic response of the innate immune system during pro-inflammatory insults results in further progression of disease. Consequently, attenuating these flare-up (exacerbation)-mediated systemic inflammatory responses (e.g. cytokine storms) may prove beneficial Alkaline phosphatase (AP) fulfils this function, and hence can be applied as a routine therapeutic compound.
According to another aspect of present invention, the present invention relates to the an ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the DMARDS is methotrexate (MTX). Combination therapy with alkaline phosphatase will enable effective therapeutic regimes at lower doses of MTX when combination therapy is applied. MTX, applied at doses for anti-RA therapy results in the efflux of /release of intracellular nucleotides like ATP and ADP from cells and subsequently are converted into adenosine. Adenosine has potent anti-inflammatory impact and de-activates activated white blood cells that are causal to RA pathology. By deduction alkaline phosphatase thus will be synergistic to MTX therapy by enabling conversion into anti-inflammatory adenosine. Also nucleotides released from cells under oxidative stress like those in affected areas implicated with RA will be converted thereby generating an anti-inflammatory micro-environment in e.g. joints.
AP is a potent mitigator to e.g. TNFα responses in inflammatory conditions and AP activity results in significant attenuation of cytokine storms, as has been demonstrated in preclinical and clinical studies, e.g. in patients undergoing major surgery. Specifically sharp reductions were observed for pro-inflammatory markers like TNFα, IL-6 and IL-8, whereas IL-10 plasma levels were not much affected. The latter suggests that the basic pro-inflammatory triggering event does not occur in e.g. macrophages and other white blood cells in the presence of sufficient AP levels and as a consequence no anti-inflammatory IL10 is produced. Furthermore, in contrast to the current anti RA-agents that target one of the major cytokine intermediates, AP is proposed to be a gate keeper in the innate immune defence system, and affects multiple cytokines.
Alkaline phosphatase, a physiological effective and active endogenous protein in healthy conditions, does not have putative adverse effects like increased risk for infections and development of issues to tolerance or resistance. Given the fact that even at high endogenous levels of AP is safe to both mother and developing child as observed during pregnancy and well tolerated for prolonged time intervals, we envision that AP therapy may be of benefit towards advanced rheumatic patients.
Oxidative stress (e.g. Ischemic injury-) mediated down stream effects may result in release of nucleotides like ATP, ADP and AMP from affected cells. These normally intracellular residing moieties, involved in intracellular energy supply, are potent pro-inflammatory factors (inflammation triggering moieties, ITM) once they are in the extracellular environment. These ITM' s are detoxified by the activity of ectophosphatases like AP, CD39 and CD73. As a result of acting on ATP and ADP adenosine is generated, which has an antagonistic (anti-inflammatory) effect. Thus AP is proposed as single anti-inflammatory, and in this case a stand-alone effective, anti-RA agent or even in combination therapy with other agents. The advantage of the latter approach will be that doses required of such other pharma-chemical or biological anti-RA compounds will be lower, thereby reducing the likeliness for induction of resistance or impact on tolerance.
According to yet another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein arthritis is rheumatoid arthritis.
According to present invention, a mammal suffering from arthritis, can be any vertebrate, such as a monkey, horse, cattle, rodent, human being, preferably a human being.
According to another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the ectophosphatase is selected from the group consisting of alkaline phosphatase, CD39, and CD73. The source of such ectophosphatase can be multiple; derived from native sources or recombinant technology by expression of ectophosphatases in one-cellular organisms, like yeast, or multicellular organisms like plants or animals.
According to another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the ectophosphatase is a recombinant alkaline phosphatase.
According to yet another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the ectophosphatase is a recombinant mammalian alkaline phosphatase, preferably a human alkaline phosphatase. Preferably the phosphatase used in the combination of present invention is compatible with the foreseen therapeutic intervention that it is to support, e.g. the treatment of a human being using the composition of present invention comprising a recombinant human alkaline phosphatase. However also other combinations may be used, for instance the treatment of a human being using the composition of present invention comprising a non-human native or non-human recombinant alternative alkaline phosphatase, like e.g. bovine intestinal derived alkaline phosphatases.
The ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use of present invention can be applied by either topical (e.g. oral, inhalation therapy) or parenteral administration, in a suitable formulation applicable for such routes of administration. Only after parenteral administration AP can act directly to the target. Most treatments of chronic inflammatory diseases like rheumatoid arthritis still require frequent and long-term administration, which utilizes conventional routes such as oral administration, intramuscular and intravenous injections, resulting in accumulation of drug outside the inflamed area and sometimes unwanted systemic side effects. Targeting can be made more specific by for example using nano-formulated AP.
According to yet another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, further combined with nanoparticles. By loading the nanoparticles with the ectophosphatase of present invention or in combination with DMARDS, shown to be effective as such against RA, an effective treatment modality can be developed. Using nanoparticles for the delivery of the composition of present invention, drugs are specifically released at the inflamed area in a controlled or sustained manner consequently reducing unwanted effects and improve patient compliance.
According to a preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the nanoparticles are comprised of a material selected from the group consisting of fullerene, liposome, gold, poly lactic-co-glycolic acid (PLGA) and poly L-lactic acid (PLA). The nanoparticles that can be used to encapsulate the composition of present invention is preferably comprised of gold, poly lactic-co-glycolic acid (PLGA) or poly L-lactic acid (PLA), more preferably PLGA or PLA, most preferably PLGA.
A suited AP is preferably a recombinant human AP that has a prolonged plasma residence time. In this way, recombinant human AP may be positioned as a routine use alternative compound to the current agents applied in the treatment of RA.
In addition, the use of recombinant human AP will circumvent putative immunological responses that may follow prolonged use of non-human like (glyco-)proteins, such as bovine AP that is applied in cardiac surgery for short-term use only. Typical for glycoproteins with warranted prolonged plasma residence time is a fully complex glycosylated oligosaccharide chain. Most of the potential sources for AP do not have sufficient complex sugar-chains attached and consequently demonstrate plasma residence times that are a fraction of the preferred therapeutics. Albeit alternative non-human AP, like bovine AP has significant TNFα blocker activity even with these short residence times, it is assumed not to be very efficacious when used chronically. However, it may be used as “vacation drug (off-period drug use) ” in short-term applications regimes in RA patients during their withdrawal period from therapy with currently applied TNFα blockers. Therefore these AP's are proposed here to act as “vacation drug”. For temporary use application, as “vacation drug”, several sources of AP can be used. Sources that are identified and from which biological relevant AP activity was established include native and recombinant APs expressed in e.g. yeast-, plant-, moss- and mammalian-expression models.
According to a preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the treatment comprises parenteral or oral administration of said composition. The therapeutic intervention can be applied by either topical (e.g. oral, inhalation therapy) or parenteral administration, in suitable formulation applicable for such routes of administration.
According to yet another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the treatment comprises prophylaxis, or delay of onset, or attenuated progression of arthritis. Therefore the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use of present invention can be used as prophylaxis to prevent or reduce the inflammatory response during pro-inflammatory insults which results in the attenuation of further progression of disease. AP may also be used therapeutically for the treatment of a mammal suffering from arthritis.
According to another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein said treatment comprises attenuation of the inflammatory response of a mammal suffering from arthritis. The attenuation of the inflammatory response can also comprise the treatment of exacerbations of the patient suffering from arthritis.
According to yet another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the ectophosphatase is a tissue specific ectophosphatase and the treatment is a chronic arthritis disease treatment.
According to a preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the tissue specific ectophosphatase is selected from the group consisting of intestinal AP (IAP), placental ALP (PALP) and liver AP (LAP), preferably placental ALP (PALP). Albeit that both tissue non-specific alkaline phosphatase (TNSALP) and tissue-specific AP like Intestinal-AP (IAP) cq Placental-ALP (PALP) share an activity towards nucleotides, as indicated by both in-vitro and in-vivo studies carried out in house, a significant difference in the molecular structure is found between TNSALP on the one side and IAP or PALP on the other side. The so-called crown domain that encompasses a RGD-binding site for bone-type AP in the TNSALP isozymes lacks in the tissue specific IAP and PLAP. We propose here that this crown domain is a homing moiety for the TNSALP and so, this would explain that e.g. intestinal ALP, albeit relatively increased in RA patients may compensate in part for nucleotide toxicity but not for bone formation. Preferably, alternatively the placental ALP may be used in RA patients. The safety of prolonged application of placental AP is warranted, since elevated plasma levels during pregnancy up to 30 fold normal levels are apparent. The increased plasma levels even correlate with reduced clinical RA symptoms in pregnant RA patients, possibly also because it reduces the need for endogenous tissue specific (bone, liver kidney AP) replenishment. It is known that in pregnant women placental ALP is significant upregulated during the second and last trimester of pregnancy and is cleared out of circulation with a half-life (T1/2) of 7 days. We would favour the administration of human Placental-ALP as chronic disease treatment in RA patients. Also it is described that the clinical phenotype of many auto-immune diseases are ameliorated during these trimesters, but reappear after pregnancy with the same kinetics as the clearance of placental AP. Human placental-ALP is an enzyme that is fully glycosylated exposing terminal sialic acid on its oligosaccharide side chains, and therefore is not cleared fast from circulation through the liver asialoglycoprotein receptor.
In principle, the intestinal AP-isoenzyme may also be used as it is very similar to placental type alkaline phosphatase, however we would propose to use rather placental over intestinal type due to its favourable plasma residence time of about 6-7 days, thereby being compatible with acceptable treatment regimes for chronic disease treatment. The intestinal isoenzyme, compared to the placental isoenzyme has short plasma residence time, making the intestinal enzyme ideal to be applied in specific acute therapeutic interventions, like major surgery where it combats ischemic injury mediated complications.
According to another preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the tissue specific ectophosphatase is selected from the group of intestinal AP (IAP), placental ALP (PALP) and liver AP (LAP), preferably IAP, more preferably PALP, or a combination thereof.
According to yet another preferred embodiment, the present invention relates to the composition, wherein the ectophosphatase is a tissue non specific ectophosphatase and said treatment is a non-chronic arthritis disease treatment.
According to a preferred embodiment, the present invention relates to the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, wherein the ectophosphatase in combination with a disease-modifying anti-rheumatic drugs (DMARDS) for use, is administered at least once a month, preferably at least two times a month, more preferably at least three times a month, even more preferably at least four times a month, and most preferably at least five times a month. Furthermore the present invention relates to the composition, wherein the combination is administered at least once weekly, more preferably 2 times a month, preferably at least 3 weekly, more preferably at least once every month, and most preferably in periods extending one month periods. Furthermore the combination of present invention can be administered at least once every 2 months, preferably at least once every 3 months, more preferably at least once every 4 months, and most preferably at least once every 5 months. The combination of present invention may be administered at least once a week.
As mentioned above, the advantage of Placental AP (e.g. native placental AP or recombinant human alkaline phosphatase (hRESCAP)) over both intestinal and bone, liver or kidney isozyme supplementation is the extreme plasma residence time of 6-7 days. Given this T1/2 it allows for acceptable parenteral administration twice a month, whereas e.g. intestinal AP would have to be administered daily, which is not preferred in chronic treatment dosing schedules.
The present invention will be further detailed in the following example, the example relates to figures wherein:
Impact of hRESCAP (AP Treatment) on Synovial Macrophage Infiltration in Arthritic Rats
Experiments were performed using a rat model for RA as published by Chandruputla et al. (BioMed Int, 2015) to show the effects of recombinant human alkaline phosphatase (hRESCAP) on RA. hRESCAP was compared with MTX used as a positive control. The antigen-induced rat model uses two subcutaneous immunizations with a mixture of methylated bovine serum albumin (mBSA), CFA (complete Freund's adjuvant antigen) and CBP (custom Bordetella pertussis antigen) and intra-articular injections of mBSA on one side knee and saline (negative control) on the counter knee. Immunohistochemical (IHC) analysis specifically focussed on infiltration with macrophages and knee swelling is followed over time after therapeutic treatment with MTX, or hRESCAP.
In the rat model, RA is induced in the right knee (RA knee), the contralateral left knee serves as a internal control (control knee). The model allows various options for therapeutic interventions, either before intra-articular injections or during boosts injections with mBSA. Dosing of hRESCAP (700 U/kg, i.p.) was administered in different schedules as indicated in the figures. Two hours prior to AP administration, rats received a dose of levamisole (50 mg/kg, s.c.). For comparison, arthritic rats received treatment with methotrexate (1 mg/kg, i.p.).
At the end of the experiment, rats were sacrificed and knees were decalcified and processed for IHC analysis of synovial macrophage infiltration, including 2 rat macrophage antibodies; ED1 (homolog of human CD68) and ED2 (homolog of human CD163, a proposed marker for human M2 anti-inflammatory macrophages). IHC analysis of ED1 and ED2 macrophages was performed in multiple quadrants of synovial tissue, as described by Chandruputla et al (BioMed Int, 2015). Macrophage counting included synovial lining layer (SL 1-10) and synovial sublining layers (SL 1-20).
Animals
Groups of 3-6 Wistar rats (male, 150-200 grams, Charles River International Inc, Sulzfeld, Germany) were provided with standard food, water (ad libitum) and conditions. The animal experiments performed fulfilled the criteria's of European Community Council Directive 2010/63/EU for laboratory animal care and the Dutch Law on animal experimentation. The experimental protocol was validated and approved by the local committee on animal experimentation of the VU University Medical Center (DEC PET13-07).
Arthritic Induction and Therapeutic Interventions
All rats (except healthy) were immunized and arthritis was induced via 1× or 4× intra-articular (i.a) mBSA injections, 4 or 5 days apart in the arthritic (right) knee, the contralateral (left, non-arthritic) knee serving as control knee. For therapeutic interventions, AP (human recombinant placenta AP, TNO, Zeist, The Netherlands) was administered subcutaneously (s.c.) at a dose of 700 U/kg (≈200 μg), MTX (VU University Medical Centers' Pharmacy) was administered intra-peritoneal (i.p.) at two dosages: 0.3 mg/kg (low dose) and 1.0 mg/kg (high dose). The rats were divided in 8 groups, based on different treatments and treatment schedules. In a prophylactic setting, two rats received AP twice prior to intra-articular (i.a.) arthritis induction and four rats received AP twice prior to intra-articular and 4× PBS in between i.a. injections. In the treatment groups, arthritic rats were administered AP twice or 4× after arthritis induction, either as standalone therapy or in combination with low or high dose MTX. Control rats received 500 μL of PBS (i.p.). Healthy rat did not receive arthritic induction or any treatment. At the end of study, all rats were sacrificed and tissues were excised for further processing and various analyses.
Alkaline Phosphatase Activity
An enzymatic assay was used to determine plasma concentrations of alkaline phosphatase prior to and 0-4 hours after administration a dose of 700 U/kg AP to healthy rats and arthritic rats,
The enzymatic assay for AP is based on the conversion of the substrate paranitrophenol-phosphate (PNP; 104105, Sigma-Aldrich, Zwijdrecht, the Netherlands) to paranitrophenol which is measured spectrophotometrically at 405 nm at 25° C. To a 3 ml reaction cuvette was added 2.9 ml substrate solution (containing final concentrations of 25 mM glycine, 10 mM MgCl2, 3 mM PNP, adjusted to pH 9.6 with NaOH). The reaction was started by adding 30 μl of plasma sample, 1:1 diluted in enzyme diluent buffer (25 mM glycine, 1 mM MgCl2, 0.1 mM ZnCl2, 10% (v/v) glycerol, adjusted to pH 9.6 with NaOH). In parallel a reference cuvette was assayed without substrate. The reaction was followed on line for 5 min at 25° C. with continuous monitoring increase of absorbance at 405 nm using a (10037-434, VWR, Radnor, Pa.<USA) spectrophotometer. From the linear phase of A405 increments, AP activity in plasma samples (in U/L) was calculated from a standard curve with serial dilutions of a human recombinant placenta AP stock solution. One Unit of activity is defined as the amount of enzyme decomposing 1 μmol of PNP/min at 25° C.
Histopathology and Immunohistochemistry
The arthritic and contralateral knees from all rats were dissected in toto and fixed for 7 days at 4° C. in 10% freshly made paraformaldehyde in PBS with 2% sucrose (pH=7.3) prior to decalcification in osteosoft (101728, Merck, Germany) for ˜2.5 weeks at room temperature. Thereafter, knees were embedded in paraffin. Sections of 5 μm were cut through the centre of the joint in longitudinal direction and stained with haematoxylin and eosin (HE) to assess the degree of inflammation in synovial tissue. Liver and spleen sections from all rats were dissected and fixed in 4% paraformaldehyde for 24 h before embedding in paraffin. Sections of 5 μm were cut and stained initially with HE and then for macrophages Staining for macrophages with ED1 (homologous to human CD68), and ED2 (homologous to human CD163, a marker for M2 anti-inflammatory macrophages), or isotype control antibody was performed. Images were captured using a Leica 4000B microscope and Leica digital camera DC500 (Microsystems B. V. Rijswijk, The Netherlands).
FRβ Immunofluorescence and Microscopy
Liver and spleen tissues collected at the end of the study were snap frozen in liquid nitrogen and stored at −80° C. Tissues were embedded in appropriate media (OCT; SKU4583, Tissue-Tek, Netherlands), cut using a cryotome cryostat (−20° C.) (Leica, The Netherlands) and placed on Superfrost (4951PLUS4, ThermoFisher, The Netherlands) glass slides for immunofluorescence (IF) staining Sections of 8 μm were cut and stained with haematoxylin and eosin. Immunostaining of FRβ was performed with a mouse anti-rat FRβ antibody or isotype control antibody. Specifically, liver and spleen tissue sections were first brought to room temperature (RT) for 30 min, fixed in acetone (439126, Sigma-Aldrich, Netherlands) for 10 min (−20° C.) and air dried for 10 min (RT). A DAKO pen was used to mark the sections (S2002, DAKO, Santa Carla, Calif., USA), which were subsequently washed 3× with PBS on a shaker. Hereafter, sections were incubated with 100% fetal bovine serum (FBS) for 30 min (RT) to block non-specific binding and washed again in PBS (3×5 min). Thereafter, sections were incubated with anti-rat FRβ (1:50) in 10% FBS/PBS or with 10% FBS/PBS for 24 hours at 4° C. After washing (3×5 min in PBS on a shaker), sections were incubated for 1 hour at RT with secondary antibody goat-anti-mouse Alexa 488 (1:500) (R37120) ThermoFisher Scientific, Netherlands) in 10% FBS/PBS, air dried and mounted (2 μl of MOWIOL mounting medium (81381, Merck, Zwijndrecht, The Netherlands). The 2D IF slides were imaged with a Zeiss Axiovert 200M Marianas™ inverted microscope, (40× oil-immersion lens). The microscope, camera and data processing were controlled by SlideBook™ software (SlideBook™ version 6 (Intelligent Imaging Innovations, Denver, Colo.)).
Quantification Macrophages in Knee Sections, Liver and Spleen
All stained slides were blinded and counted by two independent observers for ED1- and ED2-positive synovial macrophages. For this, the knee section was divided into four quadrants (Q1 to Q4), each representing the joint capsule with synovial tissue lining on either side of the proximal and distal side of the bone. Under the microscope (Leica) at 400× magnification, 2-3 areas in each quadrant were counted for macrophages in the lining and sub-lining (1-10 layers) of the synovium. The average number of macrophages per area from all four quadrants were combined and depicted as total number of ED1 or ED2 macrophages (±SD).
Stained slides of liver and spleen sections of arthritic rats and AP-treated arthritic rats were blinded and counted by two independent observers for FRβ, ED1- and ED2-positive synovial macrophages. For quantification, representative areas of liver and spleen sections were divided into 4 regions, each representing a central pulp and vein, respectively. The FRβ, ED1- and ED2-positive macrophages were counted at 400× magnification as described above. The average number of macrophages per area from all four regions were combined and depicted as total number of FRβ, ED1 or ED2 macrophages. As a reference liver and spleen sections of healthy rats were analyzed as control.
[18F]fluoro-PEG-folate and PET-CT
The macrophage PET tracer [18F]fluoro-PEG-folate was synthesized, with a radiochemical purity of >96.5% and mean specific activity of 27.6±3.5 GBq/μmol. Untreated and 4× AP-treated arthritic were anesthetized using inhalation anaesthetics (isoflurane 2-2.5% and oxygen 0.45 volume %). The tail vein was cannulated with a poly-urethane 3 French cannula (0.7 mm×19 mm, BD Angiocath, Breda, The Netherlands). During PET-CT (Mediso nanoPET-CT, Budapest, Hungary) rats were place in an integrated heating bed (˜35° C.) while monitoring respiratory function. Computed tomography (CT) scan was performed for 5 min, followed by tracer administration (10.7±1.8 MBq) at the start of a dynamic PET scan of 60 min. PET data were normalized, and corrected for scatter, randoms, attenuation, decay and dead time. The list mode PET data were rebinned in 19 successive frames (4×5, 4×10, 2×30, 3×60, 2×300, 3×600 and 1×900 s), which were reconstructed using an iterative 3D Poisson ordered-subsets expectation-maximization algorithm with 4 iterations and 6 subsets. Resulting images had a matrix size of 225×225×236 voxels, each with a dimension of 0.4×0.4×0.46 mm3 Images were analysed using AMIDE software (A Medical Image Data Examiner, version 0.9.2) and were expressed as standardized uptake values (SUV). The CT and PET images were superimposed for drawing the regions of interest (ROI). Using the last frame fixed size ellipsoidal shaped ROI (dimensions: 7×4×8 mm3) were manually drawn over the area of both arthritic and contralateral knees. The time activity curve (TAC) was extracted by projecting the ROI's onto the dynamic image sequence. TACs were expressed as standardized uptake values (SUV), i.e. mean ROI radioactivity concentration normalized to injected dose and body weight.
Ex Vivo Tissue Distribution Studies
At the end of the treatment period, arthritic rats receiving 4× AP, 4× AP/low dose MTX, 4× AP/high dose MTX treatment, and untreated rats, were administered with [18F]fluoro-PEG-folate tracer. Sixty minutes after tracer administration, rats were sacrificed. Low and high dose MTX treated arthritic rats were sacrificed without tracer administration. Upon sacrificing, all rats were excised and knees, blood and various internal organs were collected, rinsed, dipped dry, weighed and the amount of radioactivity determined using an LKB 1282 Compugamma CS gamma counter (LKB, Wallac, Turku, Finland). Results for tracer uptake in the various tissues were expressed as percentage of the injected dose per gram tissue (%ID/g).
Statistical Analysis
Statistical analysis was performed using SPSS (version 15) for Windows (SPSS INc, Chicago, Ill., USA). The Wilcoxon signed rank (exact) test was used to determine differences in paired observations, such as macrophage infiltration in arthritic versus contralateral knees. Mann-Whitney (exact) tests were performed to analyse differences in macrophage infiltration in groups; arthritic versus and PBS treated knees. A p-value<0.05 was considered as statistically significant. All results are presented as mean±standard deviation (SD).
Arthritis Induction and AP/MTX Therapeutic Interventions
Arthritis induction in rats was associated with macroscopic thickening of the arthritic knee compared with the contralateral control knee (data not shown). Therapeutic interventions with AP, MTX, or their combination were well tolerated and not associated with any adverse effects, nor were significant changes in the body weight observed.
Alkaline Phosphatase Pharmacokinetics Plasma AP-pharmacokinetics were assessed in healthy rats and arthritic rats following i.p. injection of 700 U/kg human recombinant placenta AP, the amount of AP used in therapeutic interventions depicted in
Effect of AP, MTX and AP/MTX Combination Therapy on Synovial Macrophage Infiltration
The ability of AP, MTX and AP/MTX to suppress synovial macrophage infiltration in knee joints of arthritic rats was used as a primary endpoint for therapy efficacy assessment. To this end, macrophage numbers were quantified in arthritic knee section versus the contralateral knee section of arthritic rats by immunohistochemical assessment of the abundance of total ED1-positive macrophages and ED2-positive macrophages, the latter being representative marker for anti-inflammatory macrophages. Representative images and quantification of ED1- and ED2-positive macrophages in arthritic and contralateral knee sections, before and after therapeutic interventions, are shown in
[18F]fluoro-PEG-Folate Macrophage PET Imaging
To examine whether the AP-treatment induced reduction of synovial macrophage infiltration in arthritic rats could also be monitored by PET imaging, a PET scan was made with macrophage tracer [18F]fluoro-PEG-folate for one of the 4× AP-treated rats and compared with an untreated (only PBS) arthritic rat (
Ex Vivo Tissue Distribution Studies
The impact of standalone AP treatment or combined with MTX on [18F]fluoro-PEG-folate tracer uptake in other tissues is depicted in Table 1. In all treatment groups, [18F]fluoro-PEG-folate was rapidly cleared from plasma (Table 1). Notably, AP and AP/MTX treatments also showed reductions of [18F]fluoro-PEG-folate uptake in high macrophage resident organs, i.e. lung, heart, liver and spleen (Table 1). Consistent with high expression of folate receptor α in kidney and intestine tracer uptake was high in these organs, but not impacted by AP and AP/MTX treatments.
Impact of AP on Systemic Inflammation in Arthritic Rats
To examine whether the reduced tracer uptake in liver and spleen of AP-treated arthritic rats is associated with reduced macrophage infiltration in these organs, ED1 and ED2 immunohistochemistry was performed on liver (
Here we have shown that interventions with alkaline phosphatase (AP) elicited prophylactic anti-arthritic activity in rats by suppressing arthritis induction after intra-articular antigen injection. Moreover, in a therapeutic setting, i.e. after arthritis induction, AP intervention also conveyed local anti-arthritic effects represented by a marked reduction of synovial macrophage infiltration in arthritic rats as well as systemic anti-arthritic effects as represented by lowered macrophage infiltration in liver and spleen of arthritic rats. Lastly, AP preserves activity in treatment combinations with MTX.
Multiple interventions with human recombinant placenta AP (hRESCAP) spaced for 4 days were well tolerated by arthritic rats. A once every 4 day schedule was designed taken into account the half life time of hRESCAP in rats of≈3 days. Monitoring AP plasma pharmacokinetics after a single i.p. dose of 700 U/kg AP in healthy and arthritic rats showed peak plasma levels after 1 hour of 50-70% above baseline (
Inflamed RA synovium is characterized by the presence of polarized macrophages covering a spectrum of pro-inflammatory (so-called M1-type) and anti-inflammatory macrophages (so-called M2-type). AP interventions impacted both ED1- and ED2-positive macrophage infiltration in the synovial tissue. ED2 represents the rat homologue of human CD163, which has been assigned a marker for M2-type macrophages. This classification may not be that rigid since M2-marcrophages in an arthritic synovial microenvironment with ACPA antibodies and complex IgG autoantibodies were found to produce pro-inflammatory cytokines. AP may thus impact synovial infiltration of polarized inflammatory macrophages.
Since many cDMARD and bDMARD treatments in RA are combined with MTX, we tested the efficacy of AP and MTX combinations in arthritic rats. AP/MTX combinations were well tolerated and more effective in terms of reducing synovial macrophage infiltration. This was previously demonstrated for the 1.0 mg/kg MTX dose, but also applied for a lower dose of 0.3 mg/kg MTX, indicating that MTX dosages can be further reduced to identify the schedule for optimal efficacy in combination with AP. Conceivably, AP synergizes with the mode of action of MTX by complementing the extracellular conversion of pro-inflammatory AMP, ADP, ATP into anti-inflammatory adenosine by the action of ectophosphatases CD39 and CD73 on immune-competent cells.
Ex vivo tissue distribution studies with the macrophage PET tracer [18F]fluoro-PEG-folate indicate that AP and AP/MTX combinations had systemic effects beyond reducing synovial macrophage infiltration. Systemic inflammation, indicated by increased macrophage infiltration in liver and spleen, has been reported in rats with adjuvant-induced arthritis. In the present study, liver and spleen of arthritic rats also featured increased infiltration of macrophages, which were markedly decreased upon AP treatment (
Altogether, ectophosphatase intervention by AP fulfills a novel, unique and unmet niche in RA treatment by combining different, yet synergistic mode of actions with MTX and other cDMARDs and bDMARDs. AP as anti-inflammatory protein could be positioned in ‘drug-off’ periods due to discontinuation of either cDMARDs (due to development of resistance or toxicity) or biologic therapies (due to tolerisation). Given its totally different mode of action, AP can be applied as stand-alone therapeutic or can be combined with other treatment modalities, thereby establishing significant leverage in the treatment windows. Being an endogenous protein, AP lacks resistance formation or tolerisation effects. Finally, AP's potential is further supported by an extreme wide “safety window of use” and proven safety of recombinant human AP in human safety studies.
AP, both as prophylactic and as therapeutic intervention, demonstrated favourable articular and systemic anti-arthritic efficacy in a rat model of arthritis. These studies warrant further preclinical and clinical evaluation as a putative novel therapeutic entity for arthritis.
Number | Date | Country | Kind |
---|---|---|---|
17150448 | Jan 2017 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/082337 | 12/12/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/127363 | 7/12/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20090232731 | Funk et al. | Sep 2009 | A1 |
20110206654 | Hodin et al. | Aug 2011 | A1 |
20160199415 | Ghosh et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
WO2008104200 | Sep 2008 | WO |
WO2015112017 | Jul 2015 | WO |
Entry |
---|
https://www.rheumatology.org/I-Am-A/Patient-Caregiver/Treatments/Sulfasalazine-Azulfidine retrieved using wayback machine Mar. 1, 2016 (Year: 2016). |
ESGCT and FSGT Collaborative Congress Helsinki, Finland Sep. 17-20, 2015 Abstracts, Human Gene Therapy, Sep. 17, 2015 (Sep. 17, 2015), XP055215257, ISSN: 1043-0342, DOI: 10.1089/hum.2015.29008.abstracts. |
Number | Date | Country | |
---|---|---|---|
20200121765 A1 | Apr 2020 | US |