In the following, reference is made to the figures, wherein
FIG. 1 shows a schematic representation of a typical liquid crystal test cell. The liquid crystal test cell depicted shows three possible orientations of the liquid crystal material contained therein. The representation is not meant to imply that a liquid crystal material may take a vertical (homeotropic), parallel (homogeneous) and twisted orientation at the same time. The boundary surfaces shown therein may be a special layer introduced for the very purpose of aligning the liquid crystal material that is in contact with such boundary surface. Examples of useful boundary surfaces in accordance with the present invention are rubbed/unrubbed ITO, rubbed/unrubbed polyimide, rubbed/unrubbed CTAB (cetyl trimethyl ammonium bromide), or obliquely/perpendicularly evaporated/sputtered SiOx. The cell is formed of a front plane and a backplane. At each of these planes there is an electrode, frequently formed by ITO, and on top of such electrode there is a boundary surface which, optionally, may be an additional layer or layers, or may be the surfaces of the electrodes themselves.
FIG. 2 shows two structures of example dopants in accordance with the present invention. The term “dopant” as used herein is meant to signify a compound that is added to a liquid crystal composition. In a more specific sense, the term “dopant” refers to the aromatic ether or diaromatic ether or aromatic thioether or diaromatic thioether or aromatic secondary amine or diaromatic secondary amine in accordance with the present invention.
FIG. 3 shows the rise time vs. average field strength (from E10 to E90) for 2%, 4% and 6% BrPhOPh doped negative liquid crystals. Measurements were carried out at 35° C.
FIG. 4 shows temperature dependent speed factors for 4% and 6% BrPhOPh doped negative liquid crystals. Measurements were carried out at 52, 55, 60, 65 and 70° C. 2 μm cells with SiOx alignment layers. 4% & 6% doped mixtures are faster and their switching voltages are lower than the pure material.
FIG. 5 shows rise time vs. averaged field strength (from E10 to E90) for 10% BrPhOPh doped negative liquid crystals. Measurements were carried out at 35° C. 10% doped material is faster and its switching voltages are lower.
FIG. 6 shows decay time vs. applied voltage (from V10 to V90) for 0, 1, 2% & 4% BrPhOPh doped negative liquid crystals. Measurements were carried out at 35° C. There is no significant change in the decay times.
FIG. 7 shows response time improvements at different concentrations of BrPhOPh (10%, 6%, 4% and 2%) in negative liquid crystals, 5 μm thick cells at 35° C. Depending on the applied voltages and the amount of dopants used, response times are from 5% to more than 80% faster than the pure materials.
FIG. 8 shows off transmittance of the negative liquid crystalline material with and without BrPhOPh (1%, 2%, 4% and 6% concentrations). Measurements were carried out at 35° C. No change in the black level. Thus the liquid crystal's director orientation at the alignment layer (boundary surface) remains unaffected FIG. 9 shows Voltage-Transmittance diagram of 4% and 6% BrPhOPh doped negative liquid crystal. 2 μm thick cells with SiOx alignment layer. Measurements were carried out at 50° C. Contrast ratio and brightness of the doped mixtures are as good as the pure material.
FIG. 10 shows V10 and V90 values of 4% and 6% BrPhOPh doped negative liquid crystal. 2 μm cells with SiOx alignment layer at 35° C. Switching voltages are reduced upon doping.
FIG. 11 shows Concentration dependent percentage changes in dielectric anisotropy and rotational viscosity of negative type liquid crystal upon addition of 2%, 4% and 6% of BrPhOPh. Measurements were carried out at 20° C.
FIG. 12 shows rise time vs. averaged field strength (from E10 to E90) for 1%, 2% and 4% ClPhOPh doped negative liquid crystals. Measurements were carried out at 35° C. Doped mixtures are much faster, and the switching voltages are reduced.
FIG. 13 shows decay time vs. applied voltage (from V10 to V90) for 1%, 2% and 4% ClPhOPh doped negative liquid crystals. Measurements were carried out at 35° C. Decay time of the 1% doped mixture is almost the same as that of pure material. Decay times of 2% & 4% doped mixtures are faster than the pure material.
FIG. 14 shows response time improvements upon addition of 2%, 4% & 6% BrPhOPh to positive type liquid crystals. Measurements were carried out at 35° C. Rise time of the doped mixtures are faster.
FIG. 15 shows rise time vs. averaged field strength (from E10 to E90) for 10% BrPhOPh doped positive liquid crystals. Measurements were carried out at 35° C. Rise time of the 10% doped mixture is faster. Also, its switching voltage is lower.
FIG. 16 shows rise time vs. averaged field strength (from E10 to E90) for 2% and 4% ClPhOPh doped positive liquid crystals. Measurements were carried out at 35° C. Rise time of the doped mixtures are faster, and the switching voltages are lower.
FIG. 17 shows voltage holding ratios of 2%, 4% and 6% BrPhOPh doped positive liquid crystal. Measurements were carried out at 35° C. Voltage holding ratios remain unaffected and very high after doping.
FIG. 18 shows voltage holding ratios of 2% and 4% ClPhOPh doped positive liquid crystals. Measurements were carried out at 35° C. Voltage holding ratios remain unaffected and very high after doping.
FIG. 19 shows V10 and V90 values of 2%, 4% and 6% BrPhOPh doped positive liquid crystal. Switching voltages decrease upon doping.
FIG. 20 shows order parameters and dichroic ratios of BrPhOPh doped+LC.
FIG. 21 shows a transmission vs. voltage T-V curve of undoped D-SPDLC (top) and D-SPDLC doped with 5 wt % BrPhOPh (bottom). Reduction of hysteresis can be clearly seen with the doped system.
FIG. 22 shows a hysteresis reduction with BrPhOPh and ClPhOPh concentration. Both dopants reduce the D-SPDLC's hysteresis. Compared to BrPhOPh, a smaller amount of ClPhOPh is needed to achieve the same hysteresis reduction.
FIG. 23 shows hysteresis being defined as “voltage value for Transmission50 when the voltage is increasing” minus “voltage value for Transmission50 when the voltage is decreasing”, and
FIG. 24 shows a schematic graph summarizing an illustrative representation of turn-on (rise) and turn-off (decay or fall) response times.