Wickenden et al., Growth of Epitaxial Layers of Gallium Nitride on Silicon Carbine and Corundum Substrates, Journal of Crystal Growth 9, pp. 158-164 (1971). |
Sugiyama et al., Vapor Phase Epitaxial Growth and Characterization of Ga.sub.1-2y In.sub.y As.sub.1-x P.sub.x Quarterly Alloys, Japanese Journal of Applied Physics, pp. 2197-2203 (Dec., 1977). |
Holmes & Kamath, Growth Characteristics of LPE InSb and InGaSb, Journal of Electronic Materials, vol. 9, pp. 95-111, (Nov. 1, 1980). |
Noreika, Francombe & Wood, Growth of Sb and InSb by Molecular-Beam Epitaxy, Journal of Applied Physics 52(12), pp. 7416-7420, (Dec., 1981). |
Wood, Noreika & Francombe, Thallium Incorporation in Molecular-Beam-Epitaxial InSb, J.Appl.Phys. 59(10), pp. 3610-3612 (May, 1986). |
Williams et al., Molecular-Beam Epitaxy of (100) InSb for CdTe/InSb Device Applications, J.Appl.Phys. 63(5), pp. 1526-1532 (Mar. 1, 1988). |
Kurtz et al., High Photoconductive Gain in Lateral InAsSb strained-Layer Superlattice Infrared Detectors, Appl. Phys. Lett. 53(20), pp. 1960-1963 (Nov. 14, 1988). |
Chyi et al., Growth of InSb and InAs.sub.1-x Sb.sub.x on GaAs By Molecular Beam Epitaxy, Appl.Phys.Lett. 53(12), pp. 1092-1094 (Sep. 19, 1988). |
Williams et al., Heteroepitaxial Growth of InSb on (100) GaAs Using Molecular Beam Epitaxy, Appl.Phys.Lett. 53(13), pp. 1189-1191 (Sep. 26, 1988). |
Chyi et al., Growth of InSb and InAs.sub.1-x Sb.sub.x on GaAs By Molecular Beam Epitaxy, Appl.Phys.Lett. 53(12), pp. 1092-1094 (Sep. 19, 1988). |
Razeghi, A Survey of GaInAsP-InP for Photonic and Electronic Applications, vol. 1, The MOCVD Challenge, Chapters 1,4 & 5 (1989). |
Akasaki et al., Effects of Ain Buffer Layer on Crystallographic Structure and on Electrical and Optical Properties of GaN and Ga.sub.1-x Al.sub.x N Films Grown on Sapphire Substrate by Movpe, Journal of Crystal Growth 98, pp. 209-219 (1989). |
Chyi et al., Molecular Beam Epitaxial Growth and Characterization of InSb on Si, Appl.Phys.Lett. 54(11), pp. 1016-1018 (Mar. 13, 1989). |
Davis & Thompson, Molecular Beam Epitaxy Growth of InSb Films on GaAs, Appl. Phys. Lett. 54(22). pp. 2235-2237 (May 29, 1989. |
Oh et al., Molecular Beam Epitaxial Growth of High-Quality InSb on InP and GaAs Substrates, J. Appl. Phys. 66(8), pp. 3618-3621 (Oct. 15, 1989). |
Ma et al., Organometallic Vapor Phase Epitaxial Growth and Characterization of InAsSbBi, Appl. Phys. Lett. 55 (23), pp. 2420-2422 (Dec. 4, 1989). |
Zhang et al., A Transmission Electron Microscopy and Reflection High-Energy Electron Diffraction Study of the Initial Stages of the Heteroepitaxial Growth of InSb on GaAs (001) by Molecular Beam Epitaxy, J. Appl. Phys. 67(2), pp. 800-806 (Jan. 15, 1990). |
Oliveira et al., A Generalized Model for the Reconstruction of (001) Surfaces of III-V Compound Semiconductors Based on a Rheed Study of InSb(001), Surface Science 227, pp. 150-156 (1990). |
Chow et al., Growth and Characterization of InAs/Ga.sub.1-x In.sup.x Sb Strained-Layer Superlattices, Appl. Phys. Lett. 56(15), pp. 1418-1420 (Apr. 9, 1990). |
Razeghi et al., Ga.sup.0.51 In.sup.0.49 P/Ga.sup.x In.sup.1-x As Lattice-Matched (x=0.85) and Strained (x=0.85) Two-Dimensional Electron Gas Field-Effect Transistors, Semicond. Sci. Technol. 6, pp. 103-107 (1991). |
Biefeld & Hebner, Growth of InSb on GaAs by Metalorganic Chemical Vapor Deposition, Journal of Crystal Growth 109, pp. 272-278 (1991). |
Gaskill et al., High Mobility InSb Grown By Organometallic Vapor Phase Epitaxy, Appl. Phys. Lett. 58(17), pp. 1905-1907 (Apr. 29, 1991). |
Thompson et al., Use of Atomic Layer Epitaxy Buffer for The Growth of InSb on GaAs by Molecular Beam Epitaxy, J. Appl. Phys. 69(10), pp. 7166-7172 (May 15, 1991). |
Garbuzov et al., High-Power 0.8 m InGaAsP-GaAs SCH SQW Lasers, IEEE Journal of Quantum Electronics, vol. 27. No. 6 (Jun. 6, 1991). |
Edgar, J.H., Prospects for Device Implementation of Wide Band Gap Semiconductors, J. Mater. Res., vol. 7, No. 1, pp. 235-252 (Jan. 1, 1992). |
Chen et al., Accurate Determination of Misfit Strain, Layer Thickness, and Critical Layer Thickness in Ultrathin Buried Strained InGaAs/GaAs Layer by X-Ray Diffraction, J.Vac.Sci.Techno. B 10(2), pp. 769-770 (Mar./Apr. 1992). |
Soderstrom et al., Molecular Beam Epitaxy Growth and Characterization of InSb Layers on GaAs Substrates, Semicond. Sci. Techno. 7, pp. 337-343 (1992). |
Kuo et al., Gas Source Molecular-Beam Epitaxial Growth of Normal Incidence GaAs/AlGaAs Quantum Well Infrared Photodetectors, J. Vac. Sci. Techno. B 10(2), pp. 995-997 (Mar./Apr. 1992). |
Ferguson et al., RHEED Intensity Effects During the Growth of InAs, InSb and In(As, Sb) By Molecular Beam Epitaxy, Journal of Crystal Growth 121, pp. 267-277 (1992). |
Strite & Morkoc, aN, AIN, and InN: A Review, J. Vac. Sci Techno. B 10(4), pp. 1237-1248 (Jul./Aug. 1992). |
Chung & Gershenzon, The Influence of Oxygen on the Electrical and Optical Properties of GaN Crystals Grown By Metalorganic Vapor Phase Epitaxy, J. Appl. Phys. 72(2), pp. 651-659 (Jul. 15, 1992). |
Levine et al., Photoexcited Escape Probability, Optical Gain, and Noise in Quantum Well Infrared Photodetectors, J. Appl. Phys. 72 (9), pp. 4429-4443 (Nov. 1, 1992). |
Lee et al., Characterization of Molecular Beam Epitaxially Grown InSb Layers and Diode Structures, Solid-State Electronics vol. 36, No. 3, pp. 387-389 (1993). |
Li et al., Molecular-Beam Epitaxial Growth of InSb on GaAs and Si for Infrared Detector Applications, J. Vac. Sci. Techno. 11(3), pp. 872-874 (May/Jun. 1993). |
Choi et al., High Quality InSb Growth on GaAs and Si By Low Pressure Metalorganic Chemical Vapor Deposition, Mat. Res. Soc. Syrup. Proc. vol. 281, pp. 375-380 (1993). |
Schifgaarde et al., InTISb: An Infrared Detector Material?, Appl. Phys. Lett. 62(16), pp. 1857-1859 (Apr. 19, 1993). |
Besikci et al., Anomalous Hall Effect in InSb Layers Grown By Metal Organic Chemical Vapor Deposition on GaAs Substrates, J.Appl. Phys. 73 (10), pp. 5009-5013 (May 15, 1993). |
Choi et al., Growth of In.sup.1-x TI.sup.x Sb, a New Infrared Material, By Low-Pressure Metalorganic Chemical Vapor Deposition, Appl. Phys. Lett. 63 (3), pp. 361-363 (Jul. 19, 1993). |
Razeghi et al., In.sup.1-x TI.sup.x Sb for Long Wavelength Infrared Photodetectors (Invited Talk), Electrochemical Society, Inc. 184 Meeting Program, 3 pages (Oct. 10-15, 1993). |
Partin et al., Growth of High Mobility InSb by Metalorganic Chemical Vapor Deposition, Journal of Electronic Materials, vol. 23, No. 2 (Jun. 11, 1993). |
Staveteig et al., Photoconductance Measurements on InTISb/InSb/GaAs Grown By Low-Pressure Metalorganic Chemical Vapor Deposition, pp. 460-462 (Jan. 24, 1994). |
Choi et al., Charterization of InTISb/InSb Grown by Low-Pressure Metal-Organic Chemical Vapor Deposition On a GaAs Substrate, J.Appl. Phys. 75 (6), vol. 75, No. 6 (Mar. 15, 1994). |
Diaz et al., Efficiency of Photoluminescence and Excess Carrier Confinement in InGaAsP/GaAs Structures Prepared By Metal-Organic Chemical-Vapor Deposition, J. Appl. Phys. 76(2), pp. 700-704 (Jul. 15, 1994). |
Cengiz et al., Electron Transport Properties of Ga0.51In0.4P for Device Applications, IEEE Transaction on Electron Devices, vol. 4, No. 6, pp. 1066-1069 (Jun., 1994). |
Diaz et at., High-Power InGaAsP/GaAs 0.8 Laser Diodes and Peculiarities of Operational Characteristics, Appl. Phys. Lett. 65 (8), pp.1004-1005 (Aug. 22, 1994). |
Hoff et al., Intersubband Hold Absorption in GaAs-GainP Quantum Wells Grown by Gas Source Molecular Beam Epitaxy, Appl. Phys. Lett 65(9), pp. 1130-1132 (Aug. 29, 1994). |
Kiernan, ARPA Seeks Cheaper, Better Laser Weapons, Laser Focus World, p. 53 (Jul., 1994). |
Mitchel et al., Interface Roughness Scattering in Thin, Undoped GainP/GaAs Quantum Wells, Appl. Phys. Lett. 65 (12), pp. 1578-1580, (Sep. 19, 1994). |
Besikei & Razeghi, On the Description of the Collision Terms in Three-Valley Hydrodynamic Models for GaAs Device Modeling, IEEE Transactions on Electron Devices, vol. 42, No. 8, pp. 1471-1475 (Aug. 8, 1994). |
Jungbluth, Aluminum-Free High-Power Diodes Have Long Lifetimes, Laser Focus World, pp. 26-27 (Aug. 26, 1994). |
Diaz et al., Theoretical Investigation of Minority Carrier Leakages of High-Power 0.8 um InGaAsP/InGaP/GaAs Laser Diodes, Appl. Phys. Lett. 65(18), pp. 2260-2262 (Oct. 31, 1994). |
InGaAsP Laser Diodes Outperform AlGaAs, Opto & Laser Europe, Issue 14, pp. 37-38 (Oct., 1994). |
Michel et al., Molecular Beam Epitaxial Growth of High Quality InSb, Appl. Phys. Lett. 65(26), pp. 3338-3340 (Dec. 26, 1994). |
Elhamri et al., Persistent Photoconductivity in Thin Undoped GainP/GaAs Quantum Wells, Appl. Phys. Lett. 66(2), pp. 171-173 (Jan. 16, 1995). |
Dobbelaere et al., Growth and Optical Characterization of InAs.sup.1-x Sb.sup.x on GaAs and on GaAs-Coated Si By Molecular Beam Epitaxy, Appl. Phys. Left. 55, pp. 1856-1858 (1989). |
Razeghi, High-Power Laser Diodes Based on InGaAsP Alloys, Nature, vol. 369, pp. 631-633 (Jun. 23, 1994). |
Diaz et al., InGaP/InGaAsP/GaAs 0.808um Separate Confinement Laser Diodes Grown by Metalorganic Chemical Vapor Deposition, IEEE Photonics Technology Letters, vol. 6, No. 2, pp. 132-134 (Feb., 1994). |
Bezinski & Razeghi, Electron Transport Properties of Ga.sub.0.51 In.sub.0.49 P for Device Applications, IEEE Transactions on Electron Devices, vol. 41, No. 6, pp. 1066-1069 (Jun., 1994). |
Diaz et al., High-Power InGaP/InGaAsP/GaAs 0.8 um Laser Diodes and Peculiarities of Operational Characteristics, Appl. Phys. Lett. 65(8), pp. 1004-1005 (Aug. 22, 1994). |
Brown & Hegde, Intersubband Hole Absorption in GaAs-GainP Quantum Wells Grown By Gas Source Molecular Beam Epitaxy, Appl. Phys. Lett. 65(9), pp. 1130-1132 (Aug. 29, 1994). |