COMPOSITION FOR PRODUCTION OF GINSENOSIDE COMPOUND K COMPRISING HIGH TEMPERATURE alpha-L-ARABINOFURANOSIDASE, AND METHOD FOR PREPARING GINSENDOSIDE COMPOUND K

Information

  • Patent Application
  • 20190233868
  • Publication Number
    20190233868
  • Date Filed
    September 28, 2017
    7 years ago
  • Date Published
    August 01, 2019
    5 years ago
Abstract
Disclosed are a composition for production of ginsenoside compound K using a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase, and a method for preparing ginsenoside compound k. The composition for producing ginsenoside compound k and the method for preparing ginsenoside compound k according to one aspect of the present invention allow high temperature-βglycosidase and high temperature-a-L-arabinofuranosidase to exhibit stable activity even at high temperatures, thereby increasing a reaction rate. The composition for producing ginsenoside compound k and the method for preparing ginsenoside compound k according to one aspect of the present invention allow a large quantity of ginsenoside compound k to be produced in a short time, thereby exhibiting an effect of producing a high yield, and thus can be utilized industrially.
Description
TECHNICAL FIELD

Disclosed are a composition for production of ginsenoside compound K using a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase, and a method for preparing ginsenoside compound K.


BACKGROUND ART

Ginsenoside compound K (20(S)-protopanaxadiol-20-O-β-D-glucopyranoside; see the following Formula 1) is an intestinal bacterial metabolite of ginseng saponin components. It is produced by hydrolysis of glucose, arabinopyranose and arabinofuranose moieties in ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rc and ginsenoside Rd, which are protopanaxadiol-type saponins.




embedded image


Until now, ginsenoside compound K has been known to have many excellent effects such as immunity enhancement, inhibition of tumor angiogenesis, inhibition of cancer cell infiltration and inhibition of cancer cell proliferation. Accordingly, there is an increasing demand for mass supply of the compound in the field of health foods and cosmetics. Therefore, there is a growing need for producing it stably and efficiently.


The prior art for production of ginsenoside compound K includes methods for preparing compound K by treating diol-type saponins with enzymes such as β-glycosidase (Korean Patent Laid-Open No. 2003-94757), cellulase isolated from a microorganism of the genus Penicillium or β-galactosidase isolated from the genus Aspergillus (Korean Patent No. 377546), naringinase isolated from the genus Penicillium, or pectinase isolated from the genus Aspergillus (Korean Patent No. 418604), etc.


As described above, ginsenoside compound K is mostly produced using mesophilic enzymes active at a temperature in the range of 10 to 50° C. However, since these enzymes act at a low reaction temperature, they are likely to be contaminated with microorganisms and have a low production yield.


In some cases, ginsenoside compound K is produced using high temperature enzymes. However, α-L-arabinofuranosidase shows poor expression and activity, and thus has difficulty in converting ginsenoside Rc to compound K.


Therefore, in order to solve these problems, there is an urgent need to develop enzymes industrially useful for production of ginsenoside compound K and a preparation method using the same.


SUMMARY OF INVENTION
Technical Problem

Thus, the present inventors have continuously studied to develop a new method for preparing ginsenoside compound K. An object of the present invention is to provide a composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase derived from a high temperature microorganism, Sulfolobus solfataricus, and an α-L-arabinofuranosidase derived from Thermotoga petrophila and a method for producing ginsenoside compound K using the same.


In one aspect of the present invention, these enzymes are cloned from the high temperature microorganisms to produce recombinant expression vectors and microorganisms transformed with the same. Then, a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase are produced by enhancing the expression of an α-L-arabinofuranosidase derived from Thermotoga petrophila, which had a low expression level, and the optimum ratio of these two enzymes are determined. The present inventors have found that when the resultant is reacted with red ginseng extract, a large quantity of ginsenoside compound K is produced in a short time, resulting in a high yield, and thereby completed the present invention. Thus, an object of the present invention is to provide a composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.


In another aspect, an object of the present invention is to provide a preparation method for converting all the protopanaxadiol-type ginsenosides in red ginseng extract into ginsenoside compound K by using a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.


Solution to Problem

In one aspect, the present invention provides a composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.


In one aspect, the present invention may provide the use of a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase for production of ginsenoside compound K.


In one aspect of the present invention, the high temperature-β-glycosidase may be a β-glycosidase of Sulfolobus solfataricus, and the high temperature-αL-arabinofuranosidase may be an α-L-arabinofuranosidase of Thermotoga petrophila.


In one aspect of the present invention, the content of the high temperature-α-L-arabinofuranosidase may be 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.


In one aspect of the present invention, the high temperature-α-L-arabinofuranosidase may be 2.5 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.


In one aspect of the present invention, the high temperature-β-glycosidase may be an enzyme consisting of the amino acid sequence of SEQ ID NO: 2, and the high temperature-α-L-arabinofuranosidase may be an enzyme consisting of the amino acid sequence of SEQ ID NO: 4.


In one aspect of the invention, the method may be a method for preparing a composition for production of ginsenoside compound K, comprising expression in E. coli transformed with a vector comprising the base sequence of SEQ ID NO: 3; and a vector comprising the base sequences of SEQ ID NO: 13 and SEQ ID NO: 14.


In another aspect, the present invention provides a method for preparing ginsenoside compound K, comprising the step of fermenting a saponin-containing material comprising at least one of ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rc, and ginsenoside Rd with a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.


In another aspect of the present invention, the step of fermentation may be fermentation using the composition for production of ginsenoside compound K according to any one of the aspects of the present invention.


In another aspect of the invention, the step of fermentation may be applying each of a high temperature-β-glycosidase and a high temperature-aα-L-arabinofuranosidase.


In another aspect of the present invention, the high temperature-β-glycosidase may be a β-glycosidase of Sulfolobus solfataricus, and the high temperature-α-L-arabinofuranosidase may be an α-L-arabinofuranosidase of Thermotoga petrophila.


In another aspect of the present invention, the high temperature-α-L-arabinofuranosidase may be applied in an amount of 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.


In another aspect of the present invention, the saponin-containing material may be red ginseng extract.


In another aspect of the present invention, the fermentation may be fermentation at a temperature of 70° C. to 95° C.


In another aspect of the present invention, the fermentation may be fermentation at a temperature of 80° C. to 90° C.


Advantageous Effects of Invention

The composition for production of ginsenoside compound K and the method for preparing ginsenoside compound K according to one aspect of the present invention allow high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase to exhibit stable activity even at high temperatures, thereby increasing a reaction rate.


The composition for production of ginsenoside compound K and the method for preparing ginsenoside compound K according to one aspect of the present invention allow a large quantity of ginsenoside compound K to be produced in a short time, thereby exhibiting an effect of producing a high yield, and thus can be utilized industrially.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 shows the results of Test Example 1 regarding α-L-arabinofuranosidases in cell debris, enzyme suspension and purified enzyme liquid when α-L-arabinofuranosidases derived from Thermotoga petrophila were expressed in various host strains and coexpressed with chaperone.



FIG. 2 shows the decrease of compound Mc when the concentration of α-L-arabinofuranosidase was varied while the concentration of high temperature-β-glycosidase was fixed at 2 mg/ml and red ginseng extract was used as a substrate.



FIG. 3 shows the production of ginsenoside compound K by 2 mg/ml of high temperature-β-glycosidase when red ginseng extract was used as a substrate.



FIG. 4 shows the production of ginsenoside compound K by 2 mg/ml of β-glycosidase and 0.05 mg/ml of α-L-arabinofuranosidase when red ginseng extract was used as a substrate.





DESCRIPTION OF EMBODIMENTS
Embodiments

Hereinafter, the present invention will be described in detail.


In one aspect, the present invention provides a composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.


As used herein, the term “high temperature” enzyme refers to an enzyme that exhibits optimum activity at a high temperature of 70-95° C., rather than an intermediate temperature of 10-50° C., which is the optimum temperature for enzyme activity.


In one aspect of the present invention, the high temperature-β-glycosidase may be a β-glycosidase of Sulfolobus solfataricus, and the high temperature-α-L-arabinofuranosidase may be an α-L-arabinofuranosidase of Thermotoga petrophila.


In one aspect of the present invention, the high temperature-β-glycosidase and the high temperature-α-L-arabinofuranosidase of the present invention are obtained from Sulfolobus solfataricus and Thermotoga petrophila, which are high temperature organisms, by 1) directly isolating them from these strains and purifying them or 2) cloning the genes of each of the enzymes from the strains, expressing them in a recombinant expression vector, and purifying them. The method for obtaining the enzymes from microorganisms is a conventional method in the art (Sambrook, J. and Russell, D. W. Molecular Cloning 3rd Ed. Cold Spring Harbor Laboratory, 2001).


When the β-glycosidase obtained by a conventional method is applied to red ginseng extract, ginsenoside Rc and compound Mc among protopanaxadiol-type saponins are left, which limits the production yield of ginsenoside compound K (FIG. 3). Thus, in one aspect, the present invention provides a method for converting all the protopanaxadiol-type saponins in red ginseng extract or tiny-sized ginseng extract to compound K by applying α-L-arabinofuranosidase simultaneously.


In one aspect of the present invention, α-L-arabinofuranosidase derived from Thermotoga petrophila exhibited about 17 times higher activity than α-L-arabinofuranosidase derived from Caldicellulosiruptor saccharolyticus, which has been conventionally used in the production of ginsenoside compound K. Also, its expression pattern was enhanced by host cell selection and the introduction of chaperone (FIG. 1).


In one aspect of the present invention, the content of the high temperature-α-L-arabinofuranosidase may be 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.


Specifically, the content of the temperature-α-L-arabinofuranosidase may be 1 part by weight or more, 1.5 parts by weight or more, 2.0 parts by weight or more, 2.1 parts by weight or more, 2.2 parts by weight or more, 2.3 parts by weight or more, 2.4 parts by weight or more, 2.5 parts by weight or more, 2.6 parts by weight or more, 2.7 parts by weight or more, 2.8 parts by weight or more, or 3.0 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase. Also, the content of the high temperature-α-L-arabinofuranosidase may be 5.0 parts by weight or less, 4.5 parts by weight or less, or 4.0 parts by weight or less based on 100 parts by weight of the high temperature-β-glycosidase.


The high temperature-α-L-arabinofuranosidase can achieve the maximum generation of compound K economically while minimizing the concentration of the enzyme, when the weight ratio of the high temperature-β-glycosidase is within the above range.


Preferably, the content of the temperature-α-L-arabinofuranosidase may be 2 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.


More preferably, the content of the high temperature-α-L-arabinofuranosidase may be 2.5 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase. In one aspect of the present invention, when red ginseng extract is used as a substrate, all of the remaining compounds Mc are converted to compounds K at a concentration ratio of β-glycosidase derived from Thermotoga petrophila and α-L-arabinofuranosidase derived from Sulfolobus solfataricus of 40:1 (FIG. 2).


As described above, the composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase according to one aspect of the present invention controls the reaction rate rapidly at a high temperature of 85° C. and thereby achieves the effect of producing ginsenoside compound K in a short time at a high yield and using a low enzyme concentration, when reacted with a mixture of ginsenosides Rb1, Rb2, Rc, and Rd, which are major diol-type saponins in red ginseng extract, in a mixed solution of a buffer solution and an aqueous solvent.


In one aspect of the present invention, the high temperature-β-glycosidase may be an enzyme consisting of the amino acid sequence of SEQ ID NO: 2, and the high temperature-α-L-arabinofuranosidase may be an enzyme consisting of the amino acid sequence of SEQ ID NO: 4.


In one aspect of the invention, the method may be a method for preparing a composition for production of ginsenoside compound K, comprising expression in E. coli transformed with a vector comprising the base sequence of SEQ ID NO: 3; and a vector comprising the base sequences of SEQ ID NO: 13 and SEQ ID NO: 14. The vector comprising the base sequences of SEQ ID NO: 13 and SEQ ID NO: 14 may be chaperone pGrp7.


In another aspect, the present invention provides a method for preparing ginsenoside compound K, comprising the step of fermenting a saponin-containing material comprising at least one of ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rc, and ginsenoside Rd with a high temperature-β-glycosidase and a temperature-α-L-arabinofuranosidase.


In another aspect of the present invention, the step of fermentation may be fermentation using the composition for production of ginsenoside compound K according to any one of the aspects of the present invention.


In another aspect of the invention, the step of fermentation may be applying each of a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase. In another aspect of the present invention, the high temperature-β-glycosidase may be a β-glycosidase of Sulfolobus solfataricus, and the high temperature-α-L-arabinofuranosidase may be an α-L-arabinofuranosidase of Thermotoga petrophila. In another aspect of the present invention, the high temperature-α-L-arabinofuranosidase may be applied in an amount of 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase. Specifically, the content of the high temperature-α-L-arabinofuranosidase may be 1 part by weight or more, 1.5 parts by weight or more, 2.0 parts by weight or more, 2.1 parts by weight or more, 2.2 parts by weight or more, 2.3 parts by weight or more, 2.4 parts by weight or more, 2.5 parts by weight or more, 2.6 parts by weight or more, 2.7 parts by weight or more, 2.8 parts by weight or more, or 3.0 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase. Also, the content of the high temperature-α-L-arabinofuranosidase may be 5.0 parts by weight or less, 4.5 parts by weight or less, or 4.0 parts by weight or less based on 100 parts by weight of the high temperature-β-glycosidase.


In one embodiment of the present invention, a) PCR is performed with genomic DNA of Sulfolobus solfataricus and Thermotoga petrophila and their respective primers to amplify the DNA fragments comprising each of high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase genes; b) the amplified DNA fragments comprising each of high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase gene are treated with restriction enzymes and each of them is cloned into plasmid vectors pET-24a(+) and pET-21a(+) to construct recombinant expression vectors pET-24a(+)/β-glycosidase and pET-21a(+)/α-L-arabinofuranosidase; c) E. coli ER2566 is transformed with the vectors according to a conventional transformation method; d) E. coli transformed with each of high temperature-β-glycosidase genes and high temperature α-L-arabinofuranosidase genes is cultured; e) gene expression is induced during culture to produce a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase; and f) the expressed high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase proteins are isolated and obtained.


The pET-21a(+)/α-L-arabinofuranosidase in the above step c) may be transformed together with the chaperone vector pGro7 into BL21(DE3), which shows the highest expression among various strains such as E. coli ER2566, BL21(DE3), JM109 and Origami B, as a host.


The process of isolating the high temperature (β-glucosidase and high temperature-α-L-arabinofuranosidase proteins expressed in the above step f) may consist of the steps of: (a) lysing the culture solution of microorganisms; (b) centrifuging the cell lysate to obtain a supernatant; (c) subjecting the supernatant to heat treatment at a high temperature and centrifuging the resultant; and (d) filtering the thus-obtained supernatant to isolate an enzyme liquid.


In the above step (a), preferably, cells are lysed at a pressure of about 15,000 lb/in2 using a device such as a French press. In the above step (c), preferably, the cell supernatant is subjected to heat treatment at a temperature of 75° C. for about 10 minutes. In the above step (d), preferably, the filtration is performed using a filter paper of about 0.45 μm.


Also, the substrate may be ginsenosides Rb1, Rb2, Rc, and Rd, which are diol-type saponins in red ginseng extract, and may be used as a mixture in the preparation of ginsenoside compound K. The reaction solvent may be a buffer solution such as Mcllvaine buffer.


As described above, the reaction between the high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase and the substrate in the reaction solvent is performed preferably at a pH of 5.0 to 7.0 and a temperature of 70 to 95° C., more preferably at a pH of 6.0 and a temperature of 85° C.


The method for preparing ginsenoside compound K using a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase according to the present invention allows a high temperature-β-glycosidase derived from Sulfolobus solfataricus and a high temperature-α-L-arabinofuranosidase derived from Thermotoga petrophila to exhibit stable activity even at high temperatures, thereby increasing a reaction rate. As a result, it allows a large quantity of ginsenoside compound k to be produced in a short time, thereby exhibiting an effect of producing a high yield, and thus can be utilized industrially.


In another aspect of the present invention, the saponin-containing material may be red ginseng extract.


In another aspect of the present invention, the fermentation may be performed at a temperature of 70° C. to 95° C. Specifically, the fermentation temperature may be 70° C. or more, 72° C. or more, 74° C. or more, 76° C. or more, 78° C. or more, 80° C. or more, 82° C. or more, or 84° C. or more. Also, the fermentation temperature may be 95° C. or less, 93° C. or less, 91° C. or less, 90° C. or less, 88° C. or less, 86° C. or less, or 84° C. or less. When the temperature is within the above range, the production yield of ginsenoside K is excellent.


Hereinafter, preferred examples of the present invention will be described to facilitate understanding of the present invention. However, the following examples are provided only to facilitate understanding of the present invention, and the scope of the present invention is not limited thereto.


Example 1

Preparation of a Recombinant Expression Vector Comprising a High Temperature-α-glycosidase Coding Base Sequence or a High Temperature-α-L-arabinofuranosidase Coding Base Sequence, and a Transformed Microorganism


In order to prepare a high temperature-β-glycosidase, a β-glycosidase gene derived from Sulfolobus solfataricus was isolated. Also, in order to prepare a high temperature-α-L-arabinofuranosidase, an α-L-arabinofuranosidase gene derived from Thermotoga petrophila was isolated.


Specifically, Sulfolobus solfataricus and Thermotoga petrophila, whose base sequence and amino acid sequence are already specified, were selected and the genomic DNA of each was extracted. The Sulfolobus solfataricus used was DSM 1617 purchased from the DSMZ (Germany), and the Thermotoga petrophila used was DSM 13995 purchased from the DSMZ (Germany).


Also, primers were prepared using the base sequence of the β-glycosidase gene of Sulfolobus solfataricus (GenBank Accession No. M34696) and the base sequence of the α-L-arabinofuranosidase gene of Thermotoga petrophila (GenBank Accession No. ABQ46651, respectively.


The DNA base sequence of the β-glycosidase of Sulfolobus solfataricus was as shown in SEQ ID NO: 1, and the amino acid sequence thereof was as shown in SEQ ID NO: 2.


The DNA base sequence of the α-L-arabinofuranosidase of Thermotoga petrophila was as shown in SEQ ID NO: 3, and the amino acid sequence thereof was as shown in SEQ ID NO: 4.


The forward and reverse primers for the β-glycosidase of Sulfolobus solfataricus were as shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.


In addition, the forward and reverse primers for α-L-arabinofuranosidase of Thermotoga petrophila were as shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively.


Polymerase chain reaction (PCR) was performed using the genomic DNA and primers to amplify the base sequences of the corresponding genes. After the respective genes were obtained in large quantities by the above procedure, they were inserted into plasmid vectors pET-24a(+) and pET-21a to prepare recombinant expression vectors pET-24a(+)/β-glycosidase and pET-21a/α-L-arabinofuranosidase.


The plasmid vector pET-24a(+) was as shown in SEQ ID NO: 9.


The plasmid vector pET-21a was as shown in SEQ ID NO: 10.


The recombinant expression vector pET-24a(+)/β-glycosidase was as shown in SEQ ID NO: 11.


The recombinant expression vector pET-21a/α-L-arabinofuranosidase was as shown in SEQ ID NO: 12.


Also, the thus-prepared recombinant expression vectors were transformed into E. coli strain ER2566 by a conventional transformation method. pET-21a/α-L-arabinofuranosidase was also transformed into E. coli strains BL21(DE3), JM109 and Origami B.


The E. coli strains ER2566 and BL21(DE3) were purchased from New England Biolabs (NEB).


The E. coli strain JM109 was purchased from Takara.


The E. coli strain Origami B was purchased from Novagen.


BL21(DE3), which among them exhibited the highest expression, as a host was transformed with pET-21a/α-L-arabinofuranosidase and the chaperone vector pGro7, which was a commercial chaperone vector purchased from Takara. The chaperone vector pGro7, which was an independent plasmid, was co-transformed with the pET-21a/α-L-arabinofuranosidase vector into the strain BL21(DE3).


The chaperone vector pGro7 was a vector that simultaneously expresses GroEL and GroES genes. The GroEL gene was as shown in SEQ ID NO: 13, and the GroES gene was as shown in SEQ ID NO: 14. A schematic diagram of the chaperon pGro7 vector is shown in FIG. 5.


The transformed recombinant E. coli is referred to as E. coli strain ER2566 pET-24a(+)/β-glycosidase, E. coli strains ER2566, BL21(DE3), JM109, and Origami B pET-21a/α-L-arabinofuranosidase, and E. coli strain BL21(DE3) pET-21a/α-L-arabinofuranosidase-pGro7.


The transformed E. coli was added with 20% glycerine solution and stored frozen before culture.


Example 2
Expression and Purification of a High Temperature-β-Glycosidase and a High Temperature-α-L-Arabinofuranosidase

In order to mass produce β-glycosidase and α-L-arabinofuranosidase, the frozen E. coli strain ER2566 pET-24a(+)/β-glycosidase, E. coli strains ER2566, BL21(DE3), JM109, and Origami B pET-21a/α-L-arabinofuranosidase, and E. coli strain BL21(DE3) pET-21a/α-L-arabinofuranosidase-pGro7 each were seeded into a 250 ml flask containing 50 ml of LB medium, and then subjected to shaking culture in a shaking incubator at 37° C. until the absorbance at 600 nm reached 2.0. Then, the culture solution was added to a 21 Erlenmeyer flask containing 500 ml of LB medium and cultured until the absorbance at 600 nm reached 0.8. During the process, the stirring speed was 200 rpm and the culture temperature was 37° C. The resultant was added with 0.1 mM IPTG (isopropyl-beta-thiogalactoside) to induce production of the overexpressed enzyme. The stirring speed was adjusted to 150 rpm and the culture temperature was adjusted to 16° C.


In order to purify the thus-obtained high temperature-β-glycosidase and high temperature-α-L-arabinofuranosidase, the cultures of the transformed strains were centrifuged at 4,000×g for 4 to 30 minutes. Then, the cell solutions were lysed using a French press at 15,000 lb/in2. The cell lysates were centrifuged again at 13,000×g for 4 to 20 minutes and subjected to heat treatment at a high temperature of 75° C. for 10 minutes. The thus-obtained heat-treated product was centrifuged again at 13,000×g for 4 to 20 minutes. The resultant supernatant was filtered with a 0.45 μm filter paper and isolated as an enzyme liquid which can be used for the production of ginsenoside compound K.


Test Example 1
Determination of the Expression Level of α-L-Arabinofuranosidase

The expression levels of the α-L-arabinofuranosidase enzyme liquids isolated from various host strains, the enzyme suspensions before subjected to heat treatment, and the cell debris obtained by centrifugation according to Example 2 were qualitatively compared through SDS-PAGE analysis.


As a result, as shown in FIG. 1, it was found from the cell debris that α-L-arabinofuranosidase expressed in the E. coli strain BL21(DE3) (well No. 2) was most expressed. Also, it was found from the purified enzyme liquid and the enzyme suspension that in the case of coexpression using chaperone pGro7 in the E. coli strain BL21(DE3) (well No. 4), α-L-arabinofuranosidase reached the highest concentration, and the expression of α-L-arabinofuranosidase of relatively high solubility was enhanced.


Test Example 2
Experiment on the Optimum Ratio of High Temperature-α-Glycosidase and High Temperature-α-L-Arabinofuranosidase

It was found that when the high temperature-β-glycosidase isolated in Example 2 was applied to red ginseng extract, ginsenoside Rc and compound Mc among protopanaxadiol-type saponins were left, which limited the production yield of ginsenoside compound K (FIG. 3).


In order to convert the residual ginsenoside Rc and compound Mc into compound K, α-L-arabinofuranosidase was added for co-treatment with β-glycosidase, and then the compound K production was compared.


The high temperature-β-glycosidase isolated in Example 2 was added with varying concentration of α-L-arabinofuranosidase, which was confirmed to have enhanced expression in Test Example 1, and the optimum ratio of the enzymes was determined in the following manner. The two enzymes were reacted with red ginseng extract and compared for the degree of compound K production.


In order to determine the optimum concentration ratio of β-glycosidase and α-L-arabinofuranosidase, red ginseng extract containing about 7.5 mg/ml of protopanaxadiol-type saponins, 50 mM Mcilvaine buffer solution (pH 6.0), and a mixture of the two enzymes were applied.


When 2 mg/ml of β-glycosidase alone was applied to red ginseng extract as a substrate, it was found that most of ginsenosides Rd disappeared after 12 hours as shown in FIG. 3.


The concentration of α-L-arabinofuranosidase at which all of compounds Mc (C-Mc) are converted was determined by varying the concentration of α-L-arabinofuranosidase with the concentration of β-glycosidase fixed at 2 mg/ml. Specifically, the concentration of α-L-arabinofuranosidase was decreased from 0.1 mg/ml to 0.0032 mg/ml. As a result, as shown in FIG. 2, it was found that when α-L-arabinofuranosidase at a concentration of 0.05 mg/ml or more was applied with the concentration of β-glycosidase fixed at 2 mg/ml, all of the compounds Mc were converted.


Example 3

Production of Ginsenoside Compound K using High Temperature-β-Glycosidase and High Temperature α-L-Arabinofuranosidase


In order to develop a method for preparing ginsenoside compound K using the high temperature-β-glycosidase of Example 2 and the α-L-arabinofuranosidase with enhanced expression in Test Example 1, the production of ginsenoside compound K over time was measured using red ginseng extract and tiny-sized ginseng extract at an optimum ratio of the enzymes in each substrate as determined above.


The test results are shown in FIG. 4. FIG. 4 is a graph showing the production of ginsenoside compound K by 2.0 mg/ml of β-glycosidase and 0.05 mg/ml of α-L-arabinofuranosidase of the present invention in red ginseng extract containing about 7.5 mg/ml of protopanaxadiol-type saponins as a substrate. FIG. 4 shows that after 12 hours, all of the materials were converted to produce 4.2 mg/ml of ginsenoside compound K (C-K).


Until now, a suspension of β-glycosidase (2.3 mg/ml) from Sulfolobus solfataricus and α-L-arabinofuranosidase (0.39 mg/ml) from Thermotoga petrophila has been found to achieve the highest productivity in production of ginsenoside compound K. It has been reported that the use of the suspension in red ginseng extract containing about 7.5 mg/ml of protopanaxadiol-type saponins resulted in production of 4.2 mg/ml of ginsenoside compound K for 12 hours (Kyung-Chul Shin et al. 2015, Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α-L-arabinofuranosidase from Caldicellulosiruptor saccharolyticus. PLoS One. 28;10(12):e0145876.).


Upon comparing the above case and the present invention, in the case of using the high temperature-β-glycosidase and the high temperature-α-L-arabinofuranosidase according to one aspect of the present invention, the total enzyme concentration was about 1.3 times lower than in the case of using the two enzymes, and the concentration of α-L-arabinofuranosidase among them was 8 times lower than the above case, and the productivity increased by about 1.2 times. Thus, it was confirmed that the productivity per enzyme concentration in this experiment was 1.3 times higher than the above case.












Sequence Listing Free Text















SEQ ID NO: 1








ggatcaatac taggaggagt agcatataat tacgttacac aattttataa cccaatatat
60


tcaatagacc ttatgcttat cctatcctct attctaagat tctcggtatc tcccctattc
120


ttgaccataa aagatactcg ctcaaagctt aaataatatt aatcataaat aaagtcatgt
180


actcatttcc aaatagcttt aggtttggtt ggtcccaggc cggatttcaa tcagaaatgg
240


gaacaccagg gtcagaagat ccaaatactg actggtataa atgggttcat gatccagaaa
300


acatggcagc gggattagta agtggagatc taccagaaaa tgggccaggc tactggggaa
360


actataagac atttcacgat aatgcacaaa aaatgggatt aaaaatagct agactaaatg
420


tggaatggtc taggatattt cctaatccat taccaaggcc acaaaacttt gatgaatcaa
480


aacaagatgt gacagaggtt gagataaacg aaaacgagtt aaagagactt gacgagtacg
540


ctaataaaga cgcattaaac cattacaggg aaatattcaa ggatcttaaa agtagaggac
600


tttactttat actaaacatg tatcattggc cattacctct atggttacac gacccaataa
660


gagtaagaag aggagatttt actggaccaa gtggttggct aagtactaga acagtttacg
720


aattcgctag attctcagct tatatagctt ggaaattcga tgatctagtg gatgagtact
780


caacaatgaa tgaacctaac gttgttggag gtttaggata cgttggtgtt aagtccggtt
840


ttcccccagg atacctaagc tttgaacttt cccgtagggc aatgtataac atcattcaag
900


ctcacgcaag agcgtatgat gggataaaga gtgtttctaa aaaaccagtt ggaattattt
960


acgctaatag ctcattccag ccgttaacgg ataaagatat ggaagcggta gagatggctg
1020


aaaatgataa tagatggtgg ttctttgatg ctataataag aggtgagatc accagaggaa
1080


acgagaagat tgtaagagat gacctaaagg gtagattgga ttggattgga gttaattatt
1140


acactaggac tgttgtgaag aggactgaaa agggatacgt tagcttagga ggttacggtc
1200


acggatgtga gaggaattct gtaagtttag cgggattacc aaccagcgac ttcggctggg
1260


agttcttccc agaaggttta tatgacgttt tgacgaaata ctggaataga tatcatctct
1320


atatgtacgt tactgaaaat ggtattgcgg atgatgccga ttatcaaagg ccctattatt
1380


tagtatctca cgtttatcaa gttcatagag caataaatag tggtgcagat gttagagggt
1440


atttacattg gtctctagct gataattacg aatgggcttc aggattctct atgaggtttg
1500


gtctgttaaa ggtcgattac aacactaaga gactatactg gagaccctca gcactagtat
1560


atagggaaat cgccacaaat ggcgcaataa ctgatgaaat agagcactta aatagcgtac
1620


ctccagtaaa gccattaagg cactaaactt tctcaagtct cactatacca aatgagtttt
1680


cttttaatct tattctaatc tcattttcat tagattgcaa tactttcata ccttctatat
1740


tatttatttt gtaccttttg ggatc
1765










SEQ ID NO: 2


Met Tyr Ser Phe Pro Asn Ser Phe Arg Phe Gly Trp Ser Gln Ala Gly


Phe Gln Ser Glu Met Gly Thr Pro Gly Ser Glu Asp Pro Asn Thr Asp


Trp Tyr Lys Trp Val His Asp Pro Glu Asn Met Ala Ala Gly Leu Val


Ser Gly Asp Leu Pro Glu Asn Gly Pro Gly Tyr Trp Gly Asn Tyr Lys


Thr Phe His Asp Asn Ala Gln Lys Met Gly Leu Lys Ile Ala Arg Leu


Asn Val Glu Trp Ser Arg Ile Phe Pro Asn Pro Leu Pro Arg Pro Gln


Asn Phe Asp Glu Ser Lys Gln Asp Val Thr Glu Val Glu Ile Asn Glu


Asn Glu Leu Lys Arg Leu Asp Glu Tyr Ala Asn Lys Asp Ala Leu Asn


His Tyr Arg Glu Ile Phe Lys Asp Leu Lys Ser Arg Gly Leu Tyr Phe


Ile Leu Asn Met Tyr His Trp Pro Leu Pro Leu Trp Leu His Asp Pro


Ile Arg Val Arg Arg Gly Asp Phe Thr Gly Pro Ser Gly Trp Leu Ser


Thr Arg Thr Val Tyr Glu Phe Ala Arg Phe Ser Ala Tyr Ile Ala Trp


Lys Phe Asp Asp Leu Val Asp Glu Tyr Ser Thr Met Asn Glu Pro Asn


Val Val Gly Gly Leu Gly Tyr Val Gly Val Lys Ser Gly Phe Pro Pro


Gly Tyr Leu Ser Phe Glu Leu Ser Arg Arg Ala Met Tyr Asn Ile Ile


Gln Ala His Ala Arg Ala Tyr Asp Gly Ile Lys Ser Val Ser Lys Lys


Pro Val Gly Ile Ile Tyr Ala Asn Ser Ser Phe Gln Pro Leu Thr Asp


Lys Asp Met Glu Ala Val Glu Met Ala Glu Asn Asp Asn Arg Trp Trp


Phe Phe Asp Ala Ile Ile Arg Gly Glu Ile Thr Arg Gly Asn Glu Lys


Ile Val Arg Asp Asp Leu Lys Gly Arg Leu Asp Trp Ile Gly Val Asn


Tyr Tyr Thr Arg Thr Val Val Lys Arg Thr Glu Lys Gly Tyr Val Ser


Leu Gly Gly Tyr Gly His Gly Cys Glu Arg Asn Ser Val Ser Leu Ala


Gly Leu Pro Thr Ser Asp Phe Gly Trp Glu Phe Phe Pro Glu Gly Leu


Tyr Asp Val Leu Thr Lys Tyr Trp Asn Arg Tyr His Leu Tyr Met Tyr


Val Thr Glu Asn Gly Ile Ala Asp Asp Ala Asp Tyr Gln Arg Pro Tyr


Tyr Leu Val Ser His Val Tyr Gln Val His Arg Ala Ile Asn Ser Gly


Ala Asp Val Arg Gly Tyr Leu His Trp Ser Leu Ala Asp Asn Tyr Glu


Trp Ala Ser Gly Phe Ser Met Arg Phe Gly Leu Leu Lys Val Asp Tyr


Asn Thr Lys Arg Leu Tyr Trp Arg Pro Ser Ala Leu Val Tyr Arg Glu


Ile Ala Thr Asn Gly Ala Ile Thr Asp Glu Ile Glu His Leu Asn Ser


Val Pro Pro Val Lys Pro Leu Arg His





SEQ ID NO: 3








atgtcctaca ggatagtggt tgatccaaaa aaagttgtca agccgattag tagacacatc
60


tacggtcatt tcacggaaca tctgggaagg tgtatctacg gcggaattta tgaagaaggt
120


tctccgctct ccgatgaaag gggtttcaga aaggacgttc tggaggctgt aaagaggata
180


aaagttccga acttgagatg gcccggtgga aactttgtgt cgaactacca ctgggaagac
240


ggaataggtc ccaaagatca gaggcctgtc aggttcgatc tcgcctggca acaggaagag
300


acgaatagat ttggaacgga cgaattcatt gagtactgtc gtgagatagg agcagaacct
360


tacatcagta taaacatggg aactggaaca ctcgacgaag ctctccactg gcttgaatac
420


tgcaatggaa agggtaatac ctactacgct caactcagaa gaaagtacgg tcatccagaa
480


ccttacaacg taaagttctg gggaataggc aacgagatgt acggggaatg gcaggtaggc
540


cacatgacgg cggacgaata cgcaagagcc gccaaagaat acacgaaatg gatgaaggtt
600


ttcgatccta caattaaagc gatcgccgtg ggctgtgacg accctatatg gaatctcagg
660


gttcttcaag aagcaggtga tgtgattgac ttcatatcct accatttcta cacagggtcc
720


gaggattact acgaaacagt ttccacggtt taccttctca aagaaagact catcggagtg
780


aaaaagctca ttgatatggt ggatactgct agaaagagag gtgtcaaaat cgcccttgat
840


gaatggaacg tatggtacag agtgtccgat aacaagctcg aagaacctta cgatctcaaa
900


gatggtatct ttgcatgtgg agtgcttgta cttcttcaaa agatgagcga catagtccca
960


cttgccaatc tcgcacagct tgtaaacgcc cttggagcta tacacaccga gaaagacggt
1020


ctcattctca cacccgttta caaggctttt gaactcatcg tgaatcattc cggagaaaag
1080


cttgtcaaga cccatgttga atcggagact tacaacatag aaggagtcat gttcatcaac
1140


aaaatgcctt tctctgtcga gaacgcaccg ttccttgatg ccgccgcttc catctcagaa
1200


gatggcaaga aacttttcat cgctgttgta aactacagga aagaagacgc tttgaaggtt
1260


ccaatcagag tggaaggtct gggacagaaa aaagccaccg tttatacact cacaggtccg
1320


gacgtgaacg cgagaaacac catggaaaat ccgaacgtcg ttgatattac ctccgaaacc
1380


atcaccgttg acaccgaatt tgaacacacg tttaaaccat tctcttgcag tgtgattgag
1440


gtagaattgg agtaa
1455










SEQ ID NO: 4


Met Ser Tyr Arg Ile Val Val Asp Pro Lys Lys Val Val Lys Pro Ile


Ser Arg His Ile Tyr Gly His Phe Thr Glu His Leu Gly Arg Cys Ile


Tyr Gly Gly Ile Tyr Glu Glu Gly Ser Pro Leu Ser Asp Glu Arg Gly


Phe Arg Lys Asp Val Leu Glu Ala Val Lys Arg Ile Lys Val Pro Asn


Leu Arg Trp Pro Gly Gly Asn Phe Val Ser Asn Tyr His Trp Glu Asp


Gly Ile Gly Pro Lys Asp Gln Arg Pro Val Arg Phe Asp Leu Ala Trp


Gln Gln Glu Glu Thr Asn Arg Phe Gly Thr Asp Glu Phe Ile Glu Tyr


Cys Arg Glu Ile Gly Ala Glu Pro Tyr Ile Ser Ile Asn Met Gly Thr


Gly Thr Leu Asp Glu Ala Leu His Trp Leu Glu Tyr Cys Asn Gly Lys


Gly Asn Thr Tyr Tyr Ala Gln Leu Arg Arg Lys Tyr Gly His Pro Glu


Pro Tyr Asn Val Lys Phe Trp Gly Ile Gly Asn Glu Met Tyr Gly Glu


Trp Gln Val Gly His Met Thr Ala Asp Glu Tyr Ala Arg Ala Ala Lys


Glu Tyr Thr Lys Trp Met Lys Val Phe Asp Pro Thr Ile Lys Ala Ile


Ala Val Gly Cys Asp Asp Pro Ile Trp Asn Leu Arg Val Leu Gln Glu


Ala Gly Asp Val Ile Asp Phe Ile Ser Tyr His Phe Tyr Thr Gly Ser


Glu Asp Tyr Tyr Glu Thr Val Ser Thr Val Tyr Leu Leu Lys Glu Arg


Leu Ile Gly Val Lys Lys Leu Ile Asp Met Val Asp Thr Ala Arg Lys


Arg Gly Val Lys Ile Ala Leu Asp Glu Trp Asn Val Trp Tyr Arg Val


Ser Asp Asn Lys Leu Glu Glu Pro Tyr Asp Leu Lys Asp Gly Ile Phe


Ala Cys Gly Val Leu Val Leu Leu Gln Lys Met Ser Asp Ile Val Pro


Leu Ala Asn Leu Ala Gln Leu Val Asn Ala Leu Gly Ala Ile His Thr


Glu Lys Asp Gly Leu Ile Leu Thr Pro Val Tyr Lys Ala Phe Glu Leu


Ile Val Asn His Ser Gly Glu Lys Leu Val Lys Thr His Val Glu Ser


Glu Thr Tyr Asn Ile Glu Gly Val Met Phe Ile Asn Lys Met Pro Phe


Ser Val Glu Asn Ala Pro Phe Leu Asp Ala Ala Ala Ser Ile Ser Glu


Asp Gly Lys Lys Leu Phe Ile Ala Val Val Asn Tyr Arg Lys Glu Asp


Ala Leu Lys Val Pro Ile Arg Val Glu Gly Leu Gly Gln Lys Lys Ala


Thr Val Tyr Thr Leu Thr Gly Pro Asp Val Asn Ala Arg Asn Thr Met


Glu Asn Pro Asn Val Val Asp Ile Thr Ser Glu Thr Ile Thr Val Asp


Thr Glu Phe Glu His Thr Phe Lys Pro Phe Ser Cys Ser Val Ile Glu


Val Glu Leu Glu





SEQ ID NO: 5








catatgtact catttccaaa tagc
24










SEQ ID NO: 6








ctcgagttag tgccttaatg gctttac
27










SEQ ID NO: 7








catatgatgt cctacaggat agtggttgat c
31










SEQ ID NO: 8








ctcgagctcc aattctacct caatcac
27










SEQ ID NO: 9








atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa
60


ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt
120


tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagtgcggcc gcaagcttgt
180


cgacggagct cgaattcgga tccgcgaccc atttgctgtc caccagtcat gctagccata
240


tgtatatctc cttcttaaag ttaaacaaaa ttatttctag aggggaattg ttatccgctc
300


acaattcccc tatagtgagt cgtattaatt tcgcgggatc gagatctcga tcctctacgc
360


cggacgcatc gtggccggca tcaccggcgc cacaggtgcg gttgctggcg cctatatcgc
420


cgacatcacc gatggggaag atcgggctcg ccacttcggg ctcatgagcg cttgtttcgg
480


cgtgggtatg gtggcaggcc ccgtggccgg gggactgttg ggcgccatct ccttgcatgc
540


accattcctt gcggcggcgg tgctcaacgg cctcaaccta ctactgggct gcttcctaat
600


gcaggagtcg cataagggag agcgtcgaga tcccggacac catcgaatgg cgcaaaacct
660


ttcgcggtat ggcatgatag cgcccggaag agagtcaatt cagggtggtg aatgtgaaac
720


cagtaacgtt atacgatgtc gcagagtatg ccggtgtctc ttatcagacc gtttcccgcg
780


tggtgaacca ggccagccac gtttctgcga aaacgcggga aaaagtggaa gcggcgatgg
840


cggagctgaa ttacattccc aaccgcgtgg cacaacaact ggcgggcaaa cagtcgttgc
900


tgattggcgt tgccacctcc agtctggccc tgcacgcgcc gtcgcaaatt gtcgcggcga
960


ttaaatctcg cgccgatcaa ctgggtgcca gcgtggtggt gtcgatggta gaacgaagcg
1020


gcgtcgaagc ctgtaaagcg gcggtgcaca atcttctcgc gcaacgcgtc agtgggctga
1080


tcattaacta tccgctggat gaccaggatg ccattgctgt ggaagctgcc tgcactaatg
1140


ttccggcgtt atttcttgat gtctctgacc agacacccat caacagtatt attttctccc
1200


atgaagacgg tacgcgactg ggcgtggagc atctggtcgc attgggtcac cagcaaatcg
1260


cgctgttagc gggcccatta agttctgtct cggcgcgtct gcgtctggct ggctggcata
1320


aatatctcac tcgcaatcaa attcagccga tagcggaacg ggaaggcgac tggagtgcca
1380


tgtccggttt tcaacaaacc atgcaaatgc tgaatgaggg catcgttccc actgcgatgc
1440


tggttgccaa cgatcagatg gcgctgggcg caatgcgcgc cattaccgag tccgggctgc
1500


gcgttggtgc ggatatctcg gtagtgggat acgacgatac cgaagacagc tcatgttata
1560


tcccgccgtt aaccaccatc aaacaggatt ttcgcctgct ggggcaaacc agcgtggacc
1620


gcttgctgca actctctcag ggccaggcgg tgaagggcaa tcagctgttg cccgtctcac
1680


tggtgaaaag aaaaaccacc ctggcgccca atacgcaaac cgcctctccc cgcgcgttgg
1740


ccgattcatt aatgcagctg gcacgacagg tttcccgact ggaaagcggg cagtgagcgc
1800


aacgcaatta atgtaagtta gctcactcat taggcaccgg gatctcgacc gatgcccttg
1860


agagccttca acccagtcag ctccttccgg tgggcgcggg gcatgactat cgtcgccgca
1920


cttatgactg tcttctttat catgcaactc gtaggacagg tgccggcagc gctctgggtc
1980


attttcggcg aggaccgctt tcgctggagc gcgacgatga tcggcctgtc gcttgcggta
2040


ttcggaatct tgcacgccct cgctcaagcc ttcgtcactg gtcccgccac caaacgtttc
2100


ggcgagaagc aggccattat cgccggcatg gcggccccac gggtgcgcat gatcgtgctc
2160


ctgtcgttga ggacccggct aggctggcgg ggttgcctta ctggttagca gaatgaatca
2220


ccgatacgcg agcgaacgtg aagcgactgc tgctgcaaaa cgtctgcgac ctgagcaaca
2280


acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc
2340


tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct
2400


acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc
2460


atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca
2520


gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga
2580


aatccccctt acacggaggc atcagtgacc aaacaggaaa aaaccgccct taacatggcc
2640


cgctttatca gaagccagac attaacgctt ctggagaaac tcaacgagct ggacgcggat
2700


gaacaggcag acatctgtga atcgcttcac gaccacgctg atgagcttta ccgcagctgc
2760


ctcgcgcgtt tcggtgatga cggtgaaaac ctctgacaca tgcagctccc ggagacggtc
2820


acagcttgtc tgtaagcgga tgccgggagc agacaagccc gtcagggcgc gtcagcgggt
2880


gttggcgggt gtcggggcgc agccatgacc cagtcacgta gcgatagcgg agtgtatact
2940


ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatata tgcggtgtga
3000


aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct
3060


cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc
3120


ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg
3180


ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg
3240


cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg
3300


actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac
3360


cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca
3420


tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt
3480


gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc
3540


caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag
3600


agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac
3660


tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt
3720


tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa
3780


gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg
3840


gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga acaataaaac
3900


tgtctgctta cataaacagt aatacaaggg gtgttatgag ccatattcaa cgggaaacgt
3960


cttgctctag gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg
4020


ctcgcgataa tgtcgggcaa tcaggtgcga caatctatcg attgtatggg aagcccgatg
4080


cgccagagtt gtttctgaaa catggcaaag gtagcgttgc caatgatgtt acagatgaga
4140


tggtcagact aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc
4200


gtactcctga tgatgcatgg ttactcacca ctgcgatccc cgggaaaaca gcattccagg
4260


tattagaaga atatcctgat tcaggtgaaa atattgttga tgcgctggca gtgttcctgc
4320


gccggttgca ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc
4380


tcgctcaggc gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg
4440


agcgtaatgg ctggcctgtt gaacaagtct ggaaagaaat gcataaactt ttgccattct
4500


caccggattc agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg
4560


ggaaattaat aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc
4620


ttgccatcct atggaactgc ctcggtgagt tttctccttc attacagaaa cggctttttc
4680


aaaaatatgg tattgataat cctgatatga ataaattgca gtttcatttg atgctcgatg
4740


agtttttcta agaattaatt catgagcgga tacatatttg aatgtattta gaaaaataaa
4800


caaatagggg ttccgcgcac atttccccga aaagtgccac ctgaaattgt aaacgttaat
4860


attttgttaa aattcgcgtt aaatttttgt taaatcagct cattttttaa ccaataggcc
4920


gaaatcggca aaatccctta taaatcaaaa gaatagaccg agatagggtt gagtgttgtt
4980


ccagtttgga acaagagtcc actattaaag aacgtggact ccaacgtcaa agggcgaaaa
5040


accgtctatc agggcgatgg cccactacgt gaaccatcac cctaatcaag ttttttgggg
5100


tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga gcccccgatt tagagcttga
5160


cggggaaagc cggcgaacgt ggcgagaaag gaagggaaga aagcgaaagg agcgggcgct
5220


agggcgctgg caagtgtagc ggtcacgctg cgcgtaacca ccacacccgc cgcgcttaat
5280


gcgccgctac agggcgcgtc ccattcgcca
5310










SEQ ID NO: 10








tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg
60


cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc
120


ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg
180


gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc
240


acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt
300


ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc
360


ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta
420


acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt
480


tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta
540


tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat
600


gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt
660


ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg
720


agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga
780


agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg
840


tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt
900


tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg
960


cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga caacgatcgg
1020


aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga
1080


tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc
1140


tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc
1200


ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc
1260


ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg
1320


cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac
1380


gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc
1440


actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt
1500


aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac
1560


caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa
1620


aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc
1680


accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt
1740


aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg
1800


ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc
1860


agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt
1920


accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga
1980


gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct
2040


tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg
2100


cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca
2160


cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa
2220


cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt
2280


ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga
2340


taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga
2400


gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg
2460


tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat
2520


cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct
2580


gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct
2640


gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct
2700


catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt
2760


tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg
2820


ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa
2880


tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc
2940


ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa
3000


aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta
3060


gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg
3120


tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag
3180


acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac
3240


cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca
3300


cccgtggggc cgccatgccg gcgataatgg cctgcttctc gccgaaacgt ttggtggcgg
3360


gaccagtgac gaaggcttga gcgagggcgt gcaagattcc gaataccgca agcgacaggc
3420


cgatcatcgt cgcgctccag cgaaagcggt cctcgccgaa aatgacccag agcgctgccg
3480


gcacctgtcc tacgagttgc atgataaaga agacagtcat aagtgcggcg acgatagtca
3540


tgccccgcgc ccaccggaag gagctgactg ggttgaaggc tctcaagggc atcggtcgag
3600


atcccggtgc ctaatgagtg agctaactta cattaattgc gttgcgctca ctgcccgctt
3660


tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag
3720


gcggtttgcg tattgggcgc cagggtggtt tttcttttca ccagtgagac gggcaacagc
3780


tgattgccct tcaccgcctg gccctgagag agttgcagca agcggtccac gctggtttgc
3840


cccagcaggc gaaaatcctg tttgatggtg gttaacggcg ggatataaca tgagctgtct
3900


tcggtatcgt cgtatcccac taccgagata tccgcaccaa cgcgcagccc ggactcggta
3960


atggcgcgca ttgcgcccag cgccatctga tcgttggcaa ccagcatcgc agtgggaacg
4020


atgccctcat tcagcatttg catggtttgt tgaaaaccgg acatggcact ccagtcgcct
4080


tcccgttccg ctatcggctg aatttgattg cgagtgagat atttatgcca gccagccaga
4140


cgcagacgcg ccgagacaga acttaatggg cccgctaaca gcgcgatttg ctggtgaccc
4200


aatgcgacca gatgctccac gcccagtcgc gtaccgtctt catgggagaa aataatactg
4260


ttgatgggtg tctggtcaga gacatcaaga aataacgccg gaacattagt gcaggcagct
4320


tccacagcaa tggcatcctg gtcatccagc ggatagttaa tgatcagccc actgacgcgt
4380


tgcgcgagaa gattgtgcac cgccgcttta caggcttcga cgccgcttcg ttctaccatc
4440


gacaccacca cgctggcacc cagttgatcg gcgcgagatt taatcgccgc gacaatttgc
4500


gacggcgcgt gcagggccag actggaggtg gcaacgccaa tcagcaacga ctgtttgccc
4560


gccagttgtt gtgccacgcg gttgggaatg taattcagct ccgccatcgc cgcttccact
4620


ttttcccgcg ttttcgcaga aacgtggctg gcctggttca ccacgcggga aacggtctga
4680


taagagacac cggcatactc tgcgacatcg tataacgtta ctggtttcac attcaccacc
4740


ctgaattgac tctcttccgg gcgctatcat gccataccgc gaaaggtttt gcgccattcg
4800


atggtgtccg ggatctcgac gctctccctt atgcgactcc tgcattagga agcagcccag
4860


tagtaggttg aggccgttga gcaccgccgc cgcaaggaat ggtgcatgca aggagatggc
4920


gcccaacagt cccccggcca cggggcctgc caccataccc acgccgaaac aagcgctcat
4980


gagcccgaag tggcgagccc gatcttcccc atcggtgatg tcggcgatat aggcgccagc
5040


aaccgcacct gtggcgccgg tgatgccggc cacgatgcgt ccggcgtaga ggatcgagat
5100


ctcgatcccg cgaaattaat acgactcact ataggggaat tgtgagcgga taacaattcc
5160


cctctagaaa taattttgtt taactttaag aaggagatat acatatggct agcatgactg
5220


gtggacagca aatgggtcgc ggatccgaat tcgagctccg tcgacaagct tgcggccgca
5280


ctcgagcacc accaccacca ccactgagat ccggctgcta acaaagcccg aaaggaagct
5340


gagttggctg ctgccaccgc tgagcaataa ctagcataac cccttggggc ctctaaacgg
5400


gtcttgaggg gttttttgct gaaaggagga actatatccg gat
5443










SEQ ID NO: 11








atccggatat agttcctcct ttcagcaaaa aacccctcaa gacccgttta gaggccccaa
60


ggggttatgc tagttattgc tcagcggtgg cagcagccaa ctcagcttcc tttcgggctt
120


tgttagcagc cggatctcag tggtggtggt ggtggtgctc gagggatcaa tactaggagg
180


agtagcatat aattacgtta cacaatttta taacccaata tattcaatag accttatgct
240


tatcctatcc tctattctaa gattctcggt atctccccta ttcttgacca taaaagatac
300


tcgctcaaag cttaaataat attaatcata aataaagtca tgtactcatt tccaaatagc
360


tttaggtttg gttggtccca ggccggattt caatcagaaa tgggaacacc agggtcagaa
420


gatccaaata ctgactggta taaatgggtt catgatccag aaaacatggc agcgggatta
480


gtaagtggag atctaccaga aaatgggcca ggctactggg gaaactataa gacatttcac
540


gataatgcac aaaaaatggg attaaaaata gctagactaa atgtggaatg gtctaggata
600


tttcctaatc cattaccaag gccacaaaac tttgatgaat caaaacaaga tgtgacagag
660


gttgagataa acgaaaacga gttaaagaga cttgacgagt acgctaataa agacgcatta
720


aaccattaca gggaaatatt caaggatctt aaaagtagag gactttactt tatactaaac
780


atgtatcatt ggccattacc tctatggtta cacgacccaa taagagtaag aagaggagat
840


tttactggac caagtggttg gctaagtact agaacagttt acgaattcgc tagattctca
900


gcttatatag cttggaaatt cgatgatcta gtggatgagt actcaacaat gaatgaacct
960


aacgttgttg gaggtttagg atacgttggt gttaagtccg gttttccccc aggataccta
1020


agctttgaac tttcccgtag ggcaatgtat aacatcattc aagctcacgc aagagcgtat
1080


gatgggataa agagtgtttc taaaaaacca gttggaatta tttacgctaa tagctcattc
1140


cagccgttaa cggataaaga tatggaagcg gtagagatgg ctgaaaatga taatagatgg
1200


tggttctttg atgctataat aagaggtgag atcaccagag gaaacgagaa gattgtaaga
1260


gatgacctaa agggtagatt ggattggatt ggagttaatt attacactag gactgttgtg
1320


aagaggactg aaaagggata cgttagctta ggaggttacg gtcacggatg tgagaggaat
1380


tctgtaagtt tagcgggatt accaaccagc gacttcggct gggagttctt cccagaaggt
1440


ttatatgacg ttttgacgaa atactggaat agatatcatc tctatatgta cgttactgaa
1500


aatggtattg cggatgatgc cgattatcaa aggccctatt atttagtatc tcacgtttat
1560


caagttcata gagcaataaa tagtggtgca gatgttagag ggtatttaca ttggtctcta
1620


gctgataatt acgaatgggc ttcaggattc tctatgaggt ttggtctgtt aaaggtcgat
1680


tacaacacta agagactata ctggagaccc tcagcactag tatataggga aatcgccaca
1740


aatggcgcaa taactgatga aatagagcac ttaaatagcg tacctccagt aaagccatta
1800


aggcactaaa ctttctcaag tctcactata ccaaatgagt tttcttttaa tcttattcta
1860


atctcatttt cattagattg caatactttc ataccttcta tattatttat tttgtacctt
1920


ttgggatcca tatgtatatc tccttcttaa agttaaacaa aattatttct agaggggaat
1980


tgttatccgc tcacaattcc cctatagtga gtcgtattaa tttcgcggga tcgagatctc
2040


gatcctctac gccggacgca tcgtggccgg catcaccggc gccacaggtg cggttgctgg
2100


cgcctatatc gccgacatca ccgatgggga agatcgggct cgccacttcg ggctcatgag
2160


cgcttgtttc ggcgtgggta tggtggcagg ccccgtggcc gggggactgt tgggcgccat
2220


ctccttgcat gcaccattcc ttgcggcggc ggtgctcaac ggcctcaacc tactactggg
2280


ctgcttccta atgcaggagt cgcataaggg agagcgtcga gatcccggac accatcgaat
2340


ggcgcaaaac ctttcgcggt atggcatgat agcgcccgga agagagtcaa ttcagggtgg
2400


tgaatgtgaa accagtaacg ttatacgatg tcgcagagta tgccggtgtc tcttatcaga
2460


ccgtttcccg cgtggtgaac caggccagcc acgtttctgc gaaaacgcgg gaaaaagtgg
2520


aagcggcgat ggcggagctg aattacattc ccaaccgcgt ggcacaacaa ctggcgggca
2580


aacagtcgtt gctgattggc gttgccacct ccagtctggc cctgcacgcg ccgtcgcaaa
2640


ttgtcgcggc gattaaatct cgcgccgatc aactgggtgc cagcgtggtg gtgtcgatgg
2700


tagaacgaag cggcgtcgaa gcctgtaaag cggcggtgca caatcttctc gcgcaacgcg
2760


tcagtgggct gatcattaac tatccgctgg atgaccagga tgccattgct gtggaagctg
2820


cctgcactaa tgttccggcg ttatttcttg atgtctctga ccagacaccc atcaacagta
2880


ttattttctc ccatgaagac ggtacgcgac tgggcgtgga gcatctggtc gcattgggtc
2940


accagcaaat cgcgctgtta gcgggcccat taagttctgt ctcggcgcgt ctgcgtctgg
3000


ctggctggca taaatatctc actcgcaatc aaattcagcc gatagcggaa cgggaaggcg
3060


actggagtgc catgtccggt tttcaacaaa ccatgcaaat gctgaatgag ggcatcgttc
3120


ccactgcgat gctggttgcc aacgatcaga tggcgctggg cgcaatgcgc gccattaccg
3180


agtccgggct gcgcgttggt gcggatatct cggtagtggg atacgacgat accgaagaca
3240


gctcatgtta tatcccgccg ttaaccacca tcaaacagga ttttcgcctg ctggggcaaa
3300


ccagcgtgga ccgcttgctg caactctctc agggccaggc ggtgaagggc aatcagctgt
3360


tgcccgtctc actggtgaaa agaaaaacca ccctggcgcc caatacgcaa accgcctctc
3420


cccgcgcgtt ggccgattca ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg
3480


ggcagtgagc gcaacgcaat taatgtaagt tagctcactc attaggcacc gggatctcga
3540


ccgatgccct tgagagcctt caacccagtc agctccttcc ggtgggcgcg gggcatgact
3600


atcgtcgccg cacttatgac tgtcttcttt atcatgcaac tcgtaggaca ggtgccggca
3660


gcgctctggg tcattttcgg cgaggaccgc tttcgctgga gcgcgacgat gatcggcctg
3720


tcgcttgcgg tattcggaat cttgcacgcc ctcgctcaag ccttcgtcac tggtcccgcc
3780


accaaacgtt tcggcgagaa gcaggccatt atcgccggca tggcggcccc acgggtgcgc
3840


atgatcgtgc tcctgtcgtt gaggacccgg ctaggctggc ggggttgcct tactggttag
3900


cagaatgaat caccgatacg cgagcgaacg tgaagcgact gctgctgcaa aacgtctgcg
3960


acctgagcaa caacatgaat ggtcttcggt ttccgtgttt cgtaaagtct ggaaacgcgg
4020


aagtcagcgc cctgcaccat tatgttccgg atctgcatcg caggatgctg ctggctaccc
4080


tgtggaacac ctacatctgt attaacgaag cgctggcatt gaccctgagt gatttttctc
4140


tggtcccgcc gcatccatac cgccagttgt ttaccctcac aacgttccag taaccgggca
4200


tgttcatcat cagtaacccg tatcgtgagc atcctctctc gtttcatcgg tatcattacc
4260


cccatgaaca gaaatccccc ttacacggag gcatcagtga ccaaacagga aaaaaccgcc
4320


cttaacatgg cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag
4380


ctggacgcgg atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt
4440


taccgcagct gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc
4500


ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc
4560


gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc
4620


ggagtgtata ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata
4680


tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggcgctcttc
4740


cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc
4800


tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat
4860


gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt
4920


ccataggctc cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg
4980


aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc
5040


tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt
5100


ggcgctttct catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa
5160


gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta
5220


tcgtcttgag tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa
5280


caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa
5340


ctacggctac actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt
5400


cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt
5460


ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat
5520


cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat
5580


gaacaataaa actgtctgct tacataaaca gtaatacaag gggtgttatg agccatattc
5640


aacgggaaac gtcttgctct aggccgcgat taaattccaa catggatgct gatttatatg
5700


ggtataaatg ggctcgcgat aatgtcgggc aatcaggtgc gacaatctat cgattgtatg
5760


ggaagcccga tgcgccagag ttgtttctga aacatggcaa aggtagcgtt gccaatgatg
5820


ttacagatga gatggtcaga ctaaactggc tgacggaatt tatgcctctt ccgaccatca
5880


agcattttat ccgtactcct gatgatgcat ggttactcac cactgcgatc cccgggaaaa
5940


cagcattcca ggtattagaa gaatatcctg attcaggtga aaatattgtt gatgcgctgg
6000


cagtgttcct gcgccggttg cattcgattc ctgtttgtaa ttgtcctttt aacagcgatc
6060


gcgtatttcg tctcgctcag gcgcaatcac gaatgaataa cggtttggtt gatgcgagtg
6120


attttgatga cgagcgtaat ggctggcctg ttgaacaagt ctggaaagaa atgcataaac
6180


ttttgccatt ctcaccggat tcagtcgtca ctcatggtga tttctcactt gataacctta
6240


tttttgacga ggggaaatta ataggttgta ttgatgttgg acgagtcgga atcgcagacc
6300


gataccagga tcttgccatc ctatggaact gcctcggtga gttttctcct tcattacaga
6360


aacggctttt tcaaaaatat ggtattgata atcctgatat gaataaattg cagtttcatt
6420


tgatgctcga tgagtttttc taagaattaa ttcatgagcg gatacatatt tgaatgtatt
6480


tagaaaaata aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgaaatt
6540


gtaaacgtta atattttgtt aaaattcgcg ttaaattttt gttaaatcag ctcatttttt
6600


aaccaatagg ccgaaatcgg caaaatccct tataaatcaa aagaatagac cgagataggg
6660


ttgagtgttg ttccagtttg gaacaagagt ccactattaa agaacgtgga ctccaacgtc
6720


aaagggcgaa aaaccgtcta tcagggcgat ggcccactac gtgaaccatc accctaatca
6780


agttttttgg ggtcgaggtg ccgtaaagca ctaaatcgga accctaaagg gagcccccga
6840


tttagagctt gacggggaaa gccggcgaac gtggcgagaa aggaagggaa gaaagcgaaa
6900


ggagcgggcg ctagggcgct ggcaagtgta gcggtcacgc tgcgcgtaac caccacaccc
6960


gccgcgctta atgcgccgct acagggcgcg tcccattcgc ca
7002










SEQ ID NO: 12








ggcgaatggg acgcgccctg tagcggcgca ttaagcgcgg cgggtgtggt ggttacgcgc
60


agcgtgaccg ctacacttgc cagcgcccta gcgcccgctc ctttcgcttt cttcccttcc
120


tttctcgcca cgttcgccgg ctttccccgt caagctctaa atcgggggct ccctttaggg
180


ttccgattta gtgctttacg gcacctcgac cccaaaaaac ttgattaggg tgatggttca
240


cgtagtgggc catcgccctg atagacggtt tttcgccctt tgacgttgga gtccacgttc
300


tttaatagtg gactcttgtt ccaaactgga acaacactca accctatctc ggtctattct
360


tttgatttat aagggatttt gccgatttcg gcctattggt taaaaaatga gctgatttaa
420


caaaaattta acgcgaattt taacaaaata ttaacgttta caatttcagg tggcactttt
480


cggggaaatg tgcgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat
540


ccgctcatga gacaataacc ctgataaatg cttcaataat attgaaaaag gaagagtatg
600


agtattcaac atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt
660


tttgctcacc cagaaacgct ggtgaaagta aaagatgctg aagatcagtt gggtgcacga
720


gtgggttaca tcgaactgga tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa
780


gaacgttttc caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt
840


attgacgccg ggcaagagca actcggtcgc cgcatacact attctcagaa tgacttggtt
900


gagtactcac cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc
960


agtgctgcca taaccatgag tgataacact gcggccaact tacttctgac aacgatcgga
1020


ggaccgaagg agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat
1080


cgttgggaac cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct
1140


gcagcaatgg caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc
1200


cggcaacaat taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg
1260


gcccttccgg ctggctggtt tattgctgat aaatctggag ccggtgagcg tgggtctcgc
1320


ggtatcattg cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg
1380


acggggagtc aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca
1440


ctgattaagc attggtaact gtcagaccaa gtttactcat atatacttta gattgattta
1500


aaacttcatt tttaatttaa aaggatctag gtgaagatcc tttttgataa tctcatgacc
1560


aaaatccctt aacgtgagtt ttcgttccac tgagcgtcag accccgtaga aaagatcaaa
1620


ggatcttctt gagatccttt ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca
1680


ccgctaccag cggtggtttg tttgccggat caagagctac caactctttt tccgaaggta
1740


actggcttca gcagagcgca gataccaaat actgtccttc tagtgtagcc gtagttaggc
1800


caccacttca agaactctgt agcaccgcct acatacctcg ctctgctaat cctgttacca
1860


gtggctgctg ccagtggcga taagtcgtgt cttaccgggt tggactcaag acgatagtta
1920


ccggataagg cgcagcggtc gggctgaacg gggggttcgt gcacacagcc cagcttggag
1980


cgaacgacct acaccgaact gagataccta cagcgtgagc tatgagaaag cgccacgctt
2040


cccgaaggga gaaaggcgga caggtatccg gtaagcggca gggtcggaac aggagagcgc
2100


acgagggagc ttccaggggg aaacgcctgg tatctttata gtcctgtcgg gtttcgccac
2160


ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac
2220


gccagcaacg cggccttttt acggttcctg gccttttgct ggccttttgc tcacatgttc
2280


tttcctgcgt tatcccctga ttctgtggat aaccgtatta ccgcctttga gtgagctgat
2340


accgctcgcc gcagccgaac gaccgagcgc agcgagtcag tgagcgagga agcggaagag
2400


cgcctgatgc ggtattttct ccttacgcat ctgtgcggta tttcacaccg catatatggt
2460


gcactctcag tacaatctgc tctgatgccg catagttaag ccagtataca ctccgctatc
2520


gctacgtgac tgggtcatgg ctgcgccccg acacccgcca acacccgctg acgcgccctg
2580


acgggcttgt ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg
2640


catgtgtcag aggttttcac cgtcatcacc gaaacgcgcg aggcagctgc ggtaaagctc
2700


atcagcgtgg tcgtgaagcg attcacagat gtctgcctgt tcatccgcgt ccagctcgtt
2760


gagtttctcc agaagcgtta atgtctggct tctgataaag cgggccatgt taagggcggt
2820


tttttcctgt ttggtcactg atgcctccgt gtaaggggga tttctgttca tgggggtaat
2880


gataccgatg aaacgagaga ggatgctcac gatacgggtt actgatgatg aacatgcccg
2940


gttactggaa cgttgtgagg gtaaacaact ggcggtatgg atgcggcggg accagagaaa
3000


aatcactcag ggtcaatgcc agcgcttcgt taatacagat gtaggtgttc cacagggtag
3060


ccagcagcat cctgcgatgc agatccggaa cataatggtg cagggcgctg acttccgcgt
3120


ttccagactt tacgaaacac ggaaaccgaa gaccattcat gttgttgctc aggtcgcaga
3180


cgttttgcag cagcagtcgc ttcacgttcg ctcgcgtatc ggtgattcat tctgctaacc
3240


agtaaggcaa ccccgccagc ctagccgggt cctcaacgac aggagcacga tcatgcgcac
3300


ccgtggggcc gccatgccgg cgataatggc ctgcttctcg ccgaaacgtt tggtggcggg
3360


accagtgacg aaggcttgag cgagggcgtg caagattccg aataccgcaa gcgacaggcc
3420


gatcatcgtc gcgctccagc gaaagcggtc ctcgccgaaa atgacccaga gcgctgccgg
3480


cacctgtcct acgagttgca tgataaagaa gacagtcata agtgcggcga cgatagtcat
3540


gccccgcgcc caccggaagg agctgactgg gttgaaggct ctcaagggca tcggtcgaga
3600


tcccggtgcc taatgagtga gctaacttac attaattgcg ttgcgctcac tgcccgcttt
3660


ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg
3720


cggtttgcgt attgggcgcc agggtggttt ttcttttcac cagtgagacg ggcaacagct
3780


gattgccctt caccgcctgg ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc
3840


ccagcaggcg aaaatcctgt ttgatggtgg ttaacggcgg gatataacat gagctgtctt
3900


cggtatcgtc gtatcccact accgagatat ccgcaccaac gcgcagcccg gactcggtaa
3960


tggcgcgcat tgcgcccagc gccatctgat cgttggcaac cagcatcgca gtgggaacga
4020


tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc cagtcgcctt
4080


cccgttccgc tatcggctga atttgattgc gagtgagata tttatgccag ccagccagac
4140


gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc tggtgaccca
4200


atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa ataatactgt
4260


tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg caggcagctt
4320


ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca ctgacgcgtt
4380


gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt tctaccatcg
4440


acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg acaatttgcg
4500


acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac tgtttgcccg
4560


ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc gcttccactt
4620


tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa acggtctgat
4680


aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca ttcaccaccc
4740


tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg cgccattcga
4800


tggtgtccgg gatctcgacg ctctccctta tgcgactcct gcattaggaa gcagcccagt
4860


agtaggttga ggccgttgag caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg
4920


cccaacagtc ccccggccac ggggcctgcc accataccca cgccgaaaca agcgctcatg
4980


agcccgaagt ggcgagcccg atcttcccca tcggtgatgt cggcgatata ggcgccagca
5040


accgcacctg tggcgccggt gatgccggcc acgatgcgtc cggcgtagag gatcgagatc
5100


tcgatcccgc gaaattaata cgactcacta taggggaatt gtgagcggat aacaattccc
5160


ctctagaaat aattttgttt aactttaaga aggagatata catatgatgt cctacaggat
5220


agtggttgat ccaaaaaaag ttgtcaagcc gattagtaga cacatctacg gtcatttcac
5280


ggaacatctg ggaaggtgta tctacggcgg aatttatgaa gaaggttctc cgctctccga
5340


tgaaaggggt ttcagaaagg acgttctgga ggctgtaaag aggataaaag ttccgaactt
5400


gagatggccc ggtggaaact ttgtgtcgaa ctaccactgg gaagacggaa taggtcccaa
5460


agatcagagg cctgtcaggt tcgatctcgc ctggcaacag gaagagacga atagatttgg
5520


aacggacgaa ttcattgagt actgtcgtga gataggagca gaaccttaca tcagtataaa
5580


catgggaact ggaacactcg acgaagctct ccactggctt gaatactgca atggaaaggg
5640


taatacctac tacgctcaac tcagaagaaa gtacggtcat ccagaacctt acaacgtaaa
5700


gttctgggga ataggcaacg agatgtacgg ggaatggcag gtaggccaca tgacggcgga
5760


cgaatacgca agagccgcca aagaatacac gaaatggatg aaggttttcg atcctacaat
5820


taaagcgatc gccgtgggct gtgacgaccc tatatggaat ctcagggttc ttcaagaagc
5880


aggtgatgtg attgacttca tatcctacca tttctacaca gggtccgagg attactacga
5940


aacagtttcc acggtttacc ttctcaaaga aagactcatc ggagtgaaaa agctcattga
6000


tatggtggat actgctagaa agagaggtgt caaaatcgcc cttgatgaat ggaacgtatg
6060


gtacagagtg tccgataaca agctcgaaga accttacgat ctcaaagatg gtatctttgc
6120


atgtggagtg cttgtacttc ttcaaaagat gagcgacata gtcccacttg ccaatctcgc
6180


acagcttgta aacgcccttg gagctataca caccgagaaa gacggtctca ttctcacacc
6240


cgtttacaag gcttttgaac tcatcgtgaa tcattccgga gaaaagcttg tcaagaccca
6300


tgttgaatcg gagacttaca acatagaagg agtcatgttc atcaacaaaa tgcctttctc
6360


tgtcgagaac gcaccgttcc ttgatgccgc cgcttccatc tcagaagatg gcaagaaact
6420


tttcatcgct gttgtaaact acaggaaaga agacgctttg aaggttccaa tcagagtgga
6480


aggtctggga cagaaaaaag ccaccgttta tacactcaca ggtccggacg tgaacgcgag
6540


aaacaccatg gaaaatccga acgtcgttga tattacctcc gaaaccatca ccgttgacac
6600


cgaatttgaa cacacgttta aaccattctc ttgcagtgtg attgaggtag aattggagct
6660


cgagcaccac caccaccacc actgagatcc ggctgctaac aaagcccgaa aggaagctga
6720


gttggctgct gccaccgctg agcaataact agcataaccc cttggggcct ctaaacgggt
6780


cttgaggggt tttttgctga aaggaggaac tatatccgga t
6821










SEQ ID NO: 13








atggcagcta aagacgtaaa attcggtaac gacgctcgtg tgaaaatgct gcgcggcgta
60


aacgtactgg cagatgcagt gaaagttacc ctcggtccga aaggccgtaa cgtagttctg
120


gataaatctt tcggtgcacc gaccatcacc aaagatggtg tttccgttgc tcgtgaaatc
180


gaactggaag acaagttcga aaatatgggt gcgcagatgg tgaaagaagt tgcctccaaa
240


gcgaacgacg ctgcaggcga cggtaccacc actgcaaccg tactggctca ggctatcatc
300


actgaaggtc tgaaagctgt tgctgcgggc atgaacccga tggacctgaa acgtggtatc
360


gacaaagcgg ttaccgctgc agttgaagaa ctgaaagcgc tgtccgtacc gtgctctgat
420


tctaaagcga ttgctcaggt tggtaccatc tccgctaact ccgacgaaac cgtaggtaaa
480


ctgatcgcag aagcgatgga caaagtcggt aaagaaggcg ttatcaccgt tgaagacggt
540


accggtctgc aggacgaact ggacgtggtt gaaggtatgc agttcgaccg tggctacctg
600


tctccttact tcatcaacaa gccggaaact ggcgcagtag aactggaaag cccgttcatc
660


ctgctggctg acaagaaaat ctccaacatc cgcgaaatgc tgccggttct ggaagctgtt
720


gcaaaagcag gtaaaccgct gctgatcatc gctgaagatg tagaaggcga agcgctggca
780


actctggttg ttaacaccat gcgtggcatc gtgaaagtcg ctgcggttaa agcaccgggc
840


ttcggcgatc gtcgtaaagc tatgctgcag gatatcgcaa ccctgactgg cggtaccgtg
900


atctctgaag agatcggtat ggagctggaa aaagcaaccc tggaagacct gggtcaggct
960


aaacgtgttg tgatcaacaa agacaccacc actatcatcg atggcgtggg tgaagaagct
1020


gcaatccagg gccgtgttgc tcagatccgt cagcagattg aagaagcaac ttctgactac
1080


gaccgtgaaa aactgcagga acgcgtagcg aaactggcag gcggcgttgc agttatcaaa
1140


gtaggtgctg ctaccgaagt tgaaatgaaa gagaaaaaag cacgcgttga agatgccctg
1200


cacgcgaccc gtgcagcggt agaagagggc gtggttgctg gtggtggtgt tgcgctgatc
1260


cgcgtagcgt ctaaactggc tgacctgcgt ggtcagaacg aagaccagaa cgtgggtatc
1320


aaagttgcac tgcgtgcaat ggaagctccg ctgcgtcaga tcgtattgaa ctgcggcgaa
1380


gaaccgtctg ttgttgctaa caccgttaaa ggcggcgacg gcaactacgg ttacaacgca
1440


gcaaccgaag aatacggcaa catgatcgac atgggtatcc tggatccaac caaagtaact
1500


cgttctgctc tgcagtacgc agcttctgtg gctggcctga tgatcaccac cgagtgcatg
1560


gttaccgacc tgccgaaaaa cgatgcagct gacttaggcg ctgctggcgg tatgggcggc
1620


atgggtggca tgggcggcat gatgtaa
1647










SEQ ID NO: 14








atgaatattc gtccattgca tgatcgcgtg atcgtcaagc gtaaagaagt tgaaactaaa
60


tctgctggcg gcatcgttct gaccggctct gcagcggcta aatccacccg tggcgaagtg
120


ctggctgtcg gcaatggccg tatccttgaa aatggcgaag tgaagccgct ggatgtgaaa
180


gttggcgaca tcgttatttt caacgatggc tacggtgtga aatctgagaa gatcgacaat
240


gaagaagtgt tgatcatgtc cgaaagcgac attctggcaa ttgttgaagc gtaa
29








Claims
  • 1. A composition for production of ginsenoside compound K comprising a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.
  • 2. The composition for production of ginsenoside compound K according to claim 1, wherein the high temperature-β-glycosidase is a β-glycosidase of Sulfolobus solfataricus, and the high temperature-α-L-arabinofuranosidase is an α-L-arabinofuranosidase of Thermotoga petrophila.
  • 3. The composition for production of ginsenoside compound K according to claim 1, wherein the content of the high temperature-α-L-arabinofuranosidase is 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.
  • 4. The composition for production of ginsenoside compound K according to claim 1, wherein the content of the high temperature-α-L-arabinofuranosidase is 2.5 parts by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.
  • 5. The composition for production of ginsenoside compound K according to claim 2, wherein the high temperature-β-glycosidase is an enzyme consisting of the amino acid sequence of SEQ ID NO: 2 and the high temperature-α-L-arabinofuranosidase is an enzyme consisting of the amino acid sequence of SEQ ID NO: 4.
  • 6. A method for preparing the composition for production of ginsenoside compound K according to claim 1, wherein the method comprises expression in E. coli transformed with a vector comprising the base sequence of SEQ ID NO: 3; and a vector comprising the base sequences of SEQ ID NO:13 and SEQ ID NO: 14.
  • 7. A method for preparing ginsenoside compound K, comprising the step of fermenting a saponin-containing material comprising at least one of ginsenoside Rb 1, ginsenoside Rb2, ginsenoside Rc, and ginsenoside Rd with a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.
  • 8. The method for preparing ginsenoside compound K according to claim 7, wherein the step of fermentation is fermentation using the composition for production of ginsenoside compound K according to claim 1.
  • 9. The method for preparing ginsenoside compound K according to claim 7, wherein the step of fermentation is applying each of a high temperature-β-glycosidase and a high temperature-α-L-arabinofuranosidase.
  • 10. The method for preparing ginsenoside compound K according to claim 9, wherein the high temperature-β-glycosidase is a β-glycosidase of Sulfolobus solfataricus, and the high temperature-α-L-arabinofuranosidase is an α-L-arabinofuranosidase of Thermotoga petrophila.
  • 11. The method for preparing ginsenoside compound K according to claim 9, wherein the high temperature-α-L-arabinofuranosidase is applied in an amount of 1 part by weight or more based on 100 parts by weight of the high temperature-β-glycosidase.
  • 12. The method for preparing ginsenoside compound K according to claim 7, wherein the saponin-containing material is red ginseng extract.
  • 13. The method for preparing ginsenoside compound K according to claim 7, wherein the fermentation is fermentation at a temperature of 70° C. to 95° C.
  • 14. The method for preparing ginsenoside compound K according to claim 7, wherein the fermentation is fermentation at a temperature of 80° C. to 90° C.
Priority Claims (1)
Number Date Country Kind
10-2016-0124986 Sep 2016 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2017/010849 9/28/2017 WO 00