Composition for removing cementitious material from a surface and associated methods

Information

  • Patent Grant
  • 7938912
  • Patent Number
    7,938,912
  • Date Filed
    Tuesday, April 7, 2009
    15 years ago
  • Date Issued
    Tuesday, May 10, 2011
    13 years ago
Abstract
A composition is provided for use in cleaning a surface of a cementitious material. The composition includes HCl, urea, complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate, and a ketone. A method of using the composition includes applying the composition to a surface from which it is desired to clean a cementitious material and removing the composition and released cementitious material from the surface.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention relates to compositions and methods for cleaning surfaces, and, more particularly, to such compositions and methods for cleaning surfaces of cementitious materials.


2. Background


The removal of water-insoluble cementitious and lime materials from surfaces is known to be a difficult process. Compositions that have been known for use in the past have included acid (e.g., hydrochloric, hydrofluoric, phosphoric, and sulfuric) washes and urea hydrochloride solutions.


However, the solutions known in the art can cause corrosion and flash rusting to metal and metal alloy surfaces, and also can dissolve away surface coatings and underlying metals. Thus, the use of such compositions can decrease the life of a surface and its coating significantly. For example, when used on vehicles and other industrial and construction equipment, such compositions can greatly increase the frequency at which the treated surfaces must be re-painted, re-coated, or re-sealed.


Additionally, many prior known compositions are not environmentally safe, and contain components that are non-OSHA and -EPA compliant. Some jurisdictions have regulations as to materials that can be drained so as to ultimately reach ground water. Resource Conservation and Recovery Act (RCRA) metals are among those substances that are regulated, and include arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. As an example, chromium is often used as a lustrous coating on bumpers, mirrors, hydraulic rams, and trim parts on vehicles such as concrete trucks. Since construction equipment is typically washed outdoors, the resulting process water usually drains directly into the ground, and, thus, if the equipment is coated with an RCRA or other undesirable material that can be released with the washing composition, the material will enter the groundwater.


Therefore, it would be beneficial to provide a composition and method of use that are effective at removing cementitious materials from surfaces without causing corrosion or rusting, which can damage the target surface and release harmful substances such as RCRA materials into the environment. Preferably the composition should also include components that are environmentally safe and OSHA- and EPA-compliant.


SUMMARY

A composition is provided for use in cleaning a surface of a cementitious material. The composition comprises HCl, urea, complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate, and a ketone.


A method of using the composition includes applying the composition to a surface to release a cementitious material therefrom and removing the composition and released cementitious material from the surface.


The composition comprises an organic, cationic inhibitor for both corrosion and flash rusting that minimizes pitting and attack on metal and alloy surfaces, such as are common in construction equipment and trucks. As the composition is non-corrosive to metals, it has been deemed non-regulated by the U.S. Department of Transportation (DOT), and is environmentally safe and OSHA- and EPA-compliant. The composition has been shown to reduce corrosion levels to well below the DOT corrosion limits of 6.25 mmpy.


In an exemplary embodiment, the inhibitor, which is used at a level of approximately 0.5% in the composition, comprises 10-30% surfactant, 10-30% complex substituted keto-amine-hydrochloride, 1-10% 3-methyl butynol, 1-10% isopropyl alcohol, 1-10% methyl vinyl ketone, and <1% acetone. This inhibitor has been shown to substantially eliminate corrosion of target surfaces.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A description of preferred embodiments will now be presented.


In a preferred embodiment, a composition comprises HCl, urea, complex substituted keto-amine-hydrochloride, at least one alcohol, an ethoxylate, and a ketone. Preferably, the HCl and the urea are present in a range of: HCl, 40-60 wt %, and urea, 30-45 wt %, and, most preferably, at approximately HCl, 55 wt %, and urea, 42 wt %.


Preferably the alcohol comprises at least one of isopropyl alcohol and propargyl alcohol. In a particular embodiment, the isopropyl alcohol and propargyl alcohol are present at approximately isopropyl alcohol, 0.067 wt %, and propargyl alcohol, 0.022 wt %.


The ethoxylate can comprise ethoxylated nonylphenol, which can be present at approximately 0.022 wt %.


The ketone can comprise methyl vinyl ketone, which can present at approximately 0.022 wt %.


In a particular embodiment, the composition can comprise: HCl, 55 wt %; urea, 42 wt %; complex substituted keto-amine-hydrochloride, 0.067 wt %; isopropyl alcohol, 0.067 wt %; ethoxylated nonylphenol, 0.022 wt %; propargyl alcohol, 0.022 wt %; methyl vinyl ketone, 0.022 wt %; acetone, 0.022 wt %; and acetophenone, 0.0022 wt %.


The composition can be used as a base for a plurality of dilution levels to be used for different applications. For example, sufficient water can be added to the composition to dilute the base in a range of 1:1 to 6:1 water:base.


A plurality of exemplary compositions using the composition described above can be used as a base for removing cementitious material from a variety of surfaces. For example, concrete can be removed from equipment with a composition comprising: base (25 wt %), nonylphenol 9.5 mole (0.25 wt %), quaternary ammonium compounds (0.15 wt %), glycol ether EB (0.20 wt %), and water (74.4 wt %). This formula can be used on, for example, ready-mixed concrete, cement, and masonry, although these uses are not intended to be limiting.


Another composition for use as concrete removing agent on equipment can comprise: base (35 wt %), nonylphenol 9.5 mole (0.25 wt %), quaternary ammonium compounds (0.15 wt %), glycol ether EB (0.20 wt %), and water (64.4 wt %). This formula can be used on, for example, ready-mixed concrete, cement, and masonry, although these uses are not intended to be limiting.


Yet another composition can be used as an efflorescence remover on cementitious materials (concrete block, brick, precast, paver, cement, and masonry). An exemplary formula for this composition is: base (15 wt %), nonylphenol 9.5 mole (0.25 wt %), quaternary ammonium compounds (0.15 wt %), glycol ether EB (0.20 wt %), and water (84.4 wt %). This formula can be used on, for example, concrete block, brick, precast, cement, and masonry, although these uses are not intended to be limiting.


A basic composition for use as a concrete removing agent on tools and equipment includes base (25 wt %) and water (75 wt %). This formula can be used on, for example, ready-mixed concrete, cement, and masonry, although these uses are not intended to be limiting.


Another composition for use as a concrete removing agent on equipment comprises base (60.0 wt %), nonylphenol 9.5 mole (0.25 wt %), quaternary ammonium compounds (0.15 wt %), glycol ether EB (0.20 wt %), and water (39.4 wt %). This formula can be used on, for example, ready-mixed concrete, cement, and masonry, although these uses are not intended to be limiting.


One of skill in the art will recognize that these compositions are not intended to be limiting, and variations in ingredients and proportions can be made without departing from the spirit of the invention.


Having now described the invention and use of preferred embodiments thereof, and the advantageous new and useful results obtained thereby, the new and useful constructions, and reasonable equivalents thereof obvious to those skilled in the art, are set forth in the appended claims.

Claims
  • 1. A method for cleaning a surface of a cementitious material comprising: providing a composition comprising HCl, urea, complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate, and a ketone;applying the composition to a surface to release a cementitious material therefrom; andremoving the composition and released cementitious material from the surface.
  • 2. The method recited in claim 1, wherein the alcohol comprises at least one of isopropyl alcohol and propargyl alcohol.
  • 3. The method recited in claim 1, wherein the ethoxylate comprises ethoxylated nonylphenol.
  • 4. The method recited in claim 1, wherein the ketone comprises methyl vinyl ketone.
  • 5. The method recited in claim 1, wherein the composition comprises: HCl, 40-60 wt %; urea, 42 wt %; complex substituted keto-amine-hydrochloride, 0.067 wt %; isopropyl alcohol, 0.067 wt %; ethoxylated nonylphenol, 0.022 wt %; propargyl alcohol, 0.022 wt %; methyl vinyl ketone, 0.022 wt %; acetone, 0.022 wt %; and acetophenone, 0.0022 wt %.
  • 6. The method recited in claim 1, further comprising, prior to the applying step, diluting the composition with water in a range of 1:1 to 6:1 water:composition.
  • 7. The method recited in claim 1, wherein the removing step comprises abrading the surface to assist in releasing the cementitious material from the surface.
  • 8. The method recited in claim 1, further comprising, following the applying step, leaving the composition on the surface for a period of time to permit the composition to soak into the cementitious material on the surface to assist in releasing the cementitious material from the surface.
US Referenced Citations (4)
Number Name Date Kind
4673522 Young Jun 1987 A
5672279 Sargent et al. Sep 1997 A
20060063689 Netherton Mar 2006 A1
20100288909 Rosati Nov 2010 A1