The present invention relates to fire-fighting field, relating to the use of a fire extinguishing composition and a chemical fire extinguishing substance, and in particular to a fire extinguishing composition which can generate fire extinguishing substance through chemical reaction at high temperature.
Since people found that the Halon fire extinguishing agent can seriously damage the atmospheric ozone layer of the earth, the international community and the Chinese government began to eliminate the Halon fire extinguishing agent; the gas fire extinguishing systems, the powder fire extinguishing systems, the water type fire extinguishing systems and the like, which are environmentally-friendly, are widely used as the substitutes of the Halon fire extinguishing agent.
The fire extinguishing mechanism of an inert gas such as carbon dioxide, IG541 and the like is mainly physical extinguishing, namely, smothering extinguishing by reducing the oxygen concentration of a fire area; such fire extinguishing method is easy to threat the personal safety of workers. The powder fire extinguishing system implements fire extinguishing by the process that the powder spraying under the effect of pressurized gas contacts with the flame to generate physical and chemical inhibition effect. The water spraying fire extinguishing system achieves the purpose of controlling the fire, inhibiting the fire and extinguishing the fire under triple functions of the water mist: cooling, smothering and isolating thermal radiation.
However, these fire extinguishing systems need to be stored under high pressure, not the volume of these systems are larger, but also the risks of physical explosion during the storage process are higher; the document “The Security Analysis of Gas Fire extinguishing System” (Fire Science and Technology 2002 21(5)) analyzes the risks of the gas fire extinguishing system, and enumerates the safety accidents of the storage pressure gas fire extinguishing system.
The aerosol fire extinguishing technology attracts a lot of attention, as it has no toxicity, no corrosion, high volume efficiency, long storage period, total flooding, full range of fire extinguishing and the like; from the end of the last century to the current ten years, the aerosol technology has been rapidly developed, and the related patents are emerged in endlessly. For example, the Russian patents: RU2230726, RU2184587, RU2214848, RU2150310, RU2108124, RU2091106, RU2076761, and the domestic patents: CN1739820A, CN1150952C, CN1222331C.
The disadvantages of the existing aerosol fire extinguishing are that: the fire extinguishing activity generated by itself is seriously attenuated after being filtered by a cooling layer, and the fire extinguishing effectiveness is greatly influenced.
Aiming at the above research situations, the present invention uses the composition which can generate a fire extinguishing substance through chemical reaction at high temperature in the fire extinguishers. The purpose of the present invention is to provide a fire extinguishing composition which is without high-pressure storage, is safer and environment friendly, and has high efficiency.
The present invention relates to a composition generating fire extinguishing substance through chemical reaction of ingredients at high temperature, wherein: the fire extinguishing composition includes a flame retardant, an oxidant, a reducing agent and an adhesive; the weight percent of each ingredient is: the flame retardant: 50% to 90%; the oxidant: 5% to 30%; the reducing agent: 5% to 10%; the adhesive: 0% to 10%. When in use, a pyrotechnic agent is adopted as a heat source and a power source; by igniting the pyrotechnic agent, the oxidant and the reducing agent in the fire extinguishing composition are reacted to generate an active fire extinguishing substance under the effect of high temperature caused by burning the pyrotechnic agent, so as to implement fire extinguishing.
The flame retardant is one or more of a bromine-based flame retardant, a chlorine-based flame retardant, an organophosphorus-based flame retardant, a phosphorus-halogen based flame retardant, a nitrogen-based and phosphorus-nitrogen based flame retardant or an inorganic flame retardant.
The bromine-based flame retardant includes tetrabromobisphenol A, tetrabromobisphenol A ether, 1,2-bis(tribromophenoxy)ethane, 2,4,6-tribromophenyl glycidyl ether, tetrabromophthalic anhydride, N,N-ethylene-bis(tetrabromophthalimide), dimethyl 4-bromophthalate, tetrabromo phthalic disodium, decabromodiphenyl ether, 1,4-Bis(pentabromophenoxy)tetrabromobenzene (ie, DBDPOB), 1,2-bis(pentabromophenyl) ethane, bromo trimethylphenyl indane (ie, BTMPI), pentabromobenzyl acrylate, pentabromobenzyl bromide, hexabromo-benzene, pentabromotoluene, 2,4,6-tribromophenyl maleic imide, hexabromocyclododecane, N,N′-1,2-bis(ethylene-bis(5,6-dibromonorbomane-2,3-dicarboximide) (ie, DEDBFA), pentabromo chlorocyclohexane, tri(2,3-dibromopropyl) iso-melamine ester, brominated styrene copolymer, tetrabromobisphenol A carbonate oligomer, poly(pentabromobenzyl acrylate) (ie, PPBBA), poly(dibromo phenylene ether).
The chlorine-based flame retardant includes chlorendic anhydride, perchloropentacyclodecan, tetrachlorobisphenol A, tetrachlorophthalic anhydride, hexachlorobenzene, chlorinated polypropylene, chlorinated polyvinyl chloride, vinyl chloride-vinylidene chloride copolymer, chlorinated polyether, hexachloroethane.
The organophosphorus-based flame retardant includes 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphorus heterobicyclo[2,2,2]octane, 2,2-dimethyl-1,3-propanediyl-bis(neopentyl glycolato) bisphosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 oxide, bis(4-carboxyphenyl) phenyl phosphine oxide, bis(4-hydroxyphenyl) phenyl phosphine oxide, phenyl phosphate diphenyl sulfone ester oligomer.
The phosphorus-halogen based flame retardant includes tri(2,2-bis(bromomethyl)-3-bromopropyl) phosphate, tri(dibromophenyl) phosphate, 3,9-bis(tribromophenoxy)-2,4,8,10-tetroxa-3,9-diphosphaspiro ring[5,5]-3,9-dioxide undecane, 3,9-bis(pentabromophenoxy)-2,4,8,10-tetroxa-3,9-diphosphaspiro ring[5,5]-3,9-dioxide undecane, 1-oxo-4-tribromophenyl oxycarbonyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane, p-phenylene tetra(2,4,6-tribromophenyl) bisphosphate, 2,2-bis(chloromethyl)-1,3-propanediyl-bis(neopentyl glycolato) bisphosphate, 2,9-bis(tribromo neopentyloxy)-2,4,8,10-tetroxa-3,9-diphosphaspiro ring[5,5]-3,9-dioxide undecane.
The nitrogen-based and phosphorus-nitrogen based flame retardant includes melamine cyanurate, melamine phosphate salt, dimelamine orthophosphate, melamine polyphosphate, melamine borate, melamine octamolybdate, cyanuric acid, tri-hydroxyethyl isocyanurate, 2,4-diamino-6-(3,3,3-trichloropropyl)-1,3,5-triazine, 2,4-bis(N-hydroxymethylamino)-6-(3,3,3-trichloropropyl-1,3,5-triazine), guanidine phosphate dibasic, guanidinium dihydrogen phosphate, guanidine carbonate, guanidine sulfamate, urea, urea dihydrogen phosphate, dicyandiamide, bis(2,6,7-trioxa-1-phosphabicyclo [2,2,2]octane-1-oxy-4-methyl) hydroxy phosphate melamine, 3,9-dihydroxy-3,9-dioxy-2,4,8,10-tetroxa-3,9-diphosphaspiro ring[5,5]undecane-3,9-dimelamine, 1,2-bis(2-oxy-5,5-dimethyl-1,3-dioxa-2-phosphorus heterocyclic hexyl-2-amino)ethane, N,N′-bis(2-oxy-5,5-dimethyl-1,3-dioxa-2-phosphorus heterocyclic hexyl)-2,2′-m-phenylenediamine, tri(2-oxy-5,5-dimethyl-1,3-dioxa-2-heterocyclic hexyl-2-methyl) amine or phosphonitrilic chloride trimer.
The inorganic fire extinguishing material includes ammonium polyphosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, zinc phosphate, aluminium phosphate, boron phosphate, antimony trioxide, aluminium hydroxide, magnesium hydroxide, hydromagnesite, alkaline aluminum oxalate, zinc borate, barium metaborate, zinc oxide, zinc sulfide, zinc sulfate heptahydrate, aluminum borate whisker, ammonium octamolybdate, ammonium heptamolybdate, zinc stannate, tin oxide, tin dioxide, ferrocene, ferric acetone, ferric oxide, ferroferric oxide, ammonium bromide, sodium tungstate, potassium hexafluoro titanate, potassium hexafluoro zirconate, titanium dioxide, calcium carbonate, barium sulfate, sodium bicarbonate, potassium bicarbonate, cobalt carbonate, zinc carbonate, basic zinc carbonate, heavy magnesium carbonate, basic magnesium carbonate, manganese carbonate, ferrous carbonate, strontium carbonate, potassium sodium carbonate hexahydrate, magnesium carbonate, calcium carbonate, dolomite, basic copper carbonate, zirconium carbonate, beryllium carbonate, sodium sesquicarbonate, cerous carbonate, lanthanum carbonate, guanidine carbonate, lithium carbonate, scandium carbonate, vanadium carbonate, chromium carbonate, nickel carbonate, yttrium carbonate, silver carbonate, praseodymium carbonate, neodymium carbonate, samarium carbonate, europium carbonate, gadolinium carbonate, terbium carbonate, dysprosium carbonate, holmium carbonate, erbium carbonate, thulium carbonate, ytterbium carbonate, lutecium carbonate, aluminum hydroxyacetate, calcium acetate, sodium bitartrate, sodium acetate, potassium acetate, zinc acetate, strontium acetate, nickel acetate, copper acetate, sodium oxalate, potassium oxalate, ammonium oxalate, nickel oxalate, manganese oxalate dihydrate, iron nitride, zirconium nitrate, calcium dihydrogen phosphate, sodium dihydrogen phosphate, sodium dihydrogen phosphate dihydrate, monopotassium phosphate, aluminium dihydrogen phosphate, ammonium dihydrogen phosphate, zinc dihydrogen phosphate, manganese dihydrogen phosphate, magnesium dihydrogen phosphate, disodium hydrogen phosphate, diammonium hydrogen phosphate, calcium hydrogen phosphate, magnesium hydrogen phosphate, ammonium phosphate, magnesium ammonium phosphate, ammonium polyphosphate, potassium metaphosphate, potassium tripolyphosphate, sodium trimetaphosphate, ammonium hypophosphite, ammonium orthophosphite di-hydrogen, manganese phosphate, di-zinc hydrogen phosphate, dimanganese hydrogen phosphate, guanidine phosphate, melamine phosphate salt, urea phosphate, hydrogen phosphate metaborate strontium, potassium, boric acid, ammonium pentaborate, potassium tetraborate.8H2O, magnesium metaborate.8H2O, ammonium tetraborate.4H2O, strontium metaborate, strontium tetraborate, strontium tetraborate.4H2O, sodium tetraborate.10H2O, manganese borate, zinc borate, ammonium fluoroborate, ammonium ferrous sulfate, aluminum sulfate, aluminium potassium sulfate, aluminum ammonium sulfate, ammonium sulfate, magnesium hydrogen sulfate, aluminium hydroxide, magnesium hydroxide, ferric hydroxide, cobalt hydroxide, bismuth hydroxide, strontium hydroxide, cerium hydroxide, lanthanum hydroxide, molybdenum hydroxide, ammonium molybdate, zinc stannate, magnesium trisilicate, telluric acid, manganese tungstate, manganite, cobaltocene.
The fire extinguishing material also can be 5-aminotetrazole, azodicarbonamide, nylon powder, oxamide, biuret, pentaerythritol, decabromodiphenyl ether, tetrabromophthalic anhydride, dibromoneopentyl glycol, potassium citrate, sodium citrate, manganese citrate, magnesium citrate, copper citrate or ammonium citrate.
The oxidant is one or more of sodium nitrate, magnesium nitrate, iron oxide, barium nitrate, strontium nitrate and potassium nitrate.
The reducing agent is one or more of magnesium, carbon, aluminium, iron, guanidine nitrate, nitroguanidine and melamine.
The adhesive is one or more of sodium silicate, phenolic resin, shellac and starch.
During the production, the fire extinguishing composition of the present invention can be processed to be required shapes, such as spherical, flake-like, strip-like, block-like and cellular, and can be implemented with the surface coating treatment.
The fire extinguishing mechanism of the fire extinguishing composition is as follows: the pyrotechnic agent can release a lot of heat after being ignited, thus, the oxidant and the reducing agent in the fire extinguishing composition are implemented with an oxidation-reduction reaction to generate a large number of active fire extinguishing substances to extinguish the fire. However, different from the conventional aerosol generating agent, because there are a large number of flame retardants, the composition itself cannot burn if there's no external heat source. The present invention can provide a fire extinguishing composition which is more efficient and safer than the traditional aerosol generating agent.
Respectively adding 30 g of the prepared flake-like fire extinguishing composition in the fire extinguishing device which is filled with 20 g of the K type thermal aerosol generating agent, and respectively implementing a distributing fire extinguishing tests in a 1.0 m3 test box; the test result is as shown in Table 1. The comparison embodiment selects 20 g of commercial K type thermal aerosol generating agent.
According to the test data in the above table, it can see that the fire extinguishing performances of the fire extinguishing compositions of the embodiments 1-7 of the present invention are all superior to the 20 g of commercial K type thermal aerosol generating agent when implementing a distributing fire extinguishing test in the 1.0 m3 test box.
The experimental method is based on the concentration distribution test method of 7.13 in GA 499-2004, the fire extinguishing test is implemented in the 1 m3 test box; five test tanks are put in the test box; the four fuel tanks are put in four corners of the experimental spaces, which are staggered up and down in pairs; in addition, a fuel tank is put at the bottom of the experimental space behind a baffle plate. N-heptane is filled in the fuel tank.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0285497 | Sep 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/079428 | 9/7/2011 | WO | 00 | 3/15/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/034493 | 3/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2901428 | Schulenburg | Aug 1959 | A |
3017348 | Schulenburg et al. | Jan 1962 | A |
4207245 | Halbert | Jun 1980 | A |
5055208 | Stewart et al. | Oct 1991 | A |
5071076 | Chagnon et al. | Dec 1991 | A |
5423385 | Baratov et al. | Jun 1995 | A |
5466386 | Stewart et al. | Nov 1995 | A |
5613562 | Galbraith et al. | Mar 1997 | A |
5831209 | Kozyrev et al. | Nov 1998 | A |
6042664 | Kozyrev et al. | Mar 2000 | A |
8652346 | Guo et al. | Feb 2014 | B2 |
20030197159 | Kinose et al. | Oct 2003 | A1 |
20070018143 | Goossens | Jan 2007 | A1 |
20100179259 | Guo et al. | Jul 2010 | A1 |
20100187465 | Guo et al. | Jul 2010 | A1 |
20130175060 | Guo et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1052880 | Jul 1991 | CN |
1064818 | Sep 1992 | CN |
1222331 | Jul 1999 | CN |
1238226 | Dec 1999 | CN |
1322580 | Nov 2001 | CN |
1481266 | Mar 2004 | CN |
1150952 | May 2004 | CN |
1600391 | Mar 2005 | CN |
1695750 | Nov 2005 | CN |
1713935 | Dec 2005 | CN |
1739820 | Mar 2006 | CN |
101327364 | Dec 2008 | CN |
201260858 | Jun 2009 | CN |
101822883 | Sep 2010 | CN |
2076761 | Apr 1997 | RU |
2091106 | Sep 1997 | RU |
2108124 | Apr 1998 | RU |
2150310 | Jun 2000 | RU |
2184587 | Jul 2002 | RU |
2214848 | Feb 2004 | RU |
2230726 | Jun 2004 | RU |
Entry |
---|
International Search Report for PCT Application No. PCT/CN2011/079428, dated Dec. 15, 2011 (5 pages). |
“The Security Analysis of Gas Fire extinguishing System” (Fire Science and Technology 2002 21(5)) 4 pgs. |
Office Action dated Oct. 9, 2013 for U.S. Appl. No. 13/824,123, filed Mar. 15, 2013 (14 pgs.). |
Office Action dated Oct. 8, 2013 for U.S. Appl. No. 13/824,142, filed Mar. 15, 2013 (14 pgs.). |
Linteries et al., “Flame Inhibition by Ferrocene and Blends of Inert and Catalytic Agents,” Proceedings of the Combustion Institute, vol. 28, pp. 2965-2972, May 2000. |
Linteries et al., “Flame Inhibition by Ferrocene, Alone and with CO2 and CF3H,” Halon Options Technical Working Conference, pp. 129-140, May 2000. |
Shou et al., “Fire safety analysis of gas fire extinguishing system,” 3 pgs., Jun. 2002. |
Number | Date | Country | |
---|---|---|---|
20130181157 A1 | Jul 2013 | US |