Compositions affecting programmed cell death and their use in the modification of forestry plant development

Information

  • Patent Grant
  • 6451604
  • Patent Number
    6,451,604
  • Date Filed
    Friday, June 4, 1999
    25 years ago
  • Date Issued
    Tuesday, September 17, 2002
    22 years ago
Abstract
Novel isolated polynucleotides associated with programmed cell death and various plant developmental mechanisms are provided, together with genetic constructs comprising such sequences. Methods for the modulation of the content, structure and metabolism of forestry plants, and particularly for the modulation of PCD and various plant developmental mechanisms in forestry plants, are also disclosed, the methods comprising incorporating one or more of the polynucleotides or genetic constructs of the present invention into the genome of a forestry plant.
Description




FIELD OF INVENTION




This invention involves the modification of plant developmental responses. Specifically, this invention relates to polynucleotides and polypeptides that affect programmed cell death. These polynucleotides and polypeptides, and genetic constructs comprising such polynucleotides and polypeptides may be used to modulate programmed cell death and thereby alter the developmental cycle of forestry plant cells, hence altering plant development.




BACKGROUND OF THE INVENTION




Programmed cell death (PCD) refers to an active process, in which gene expression is intimately associated with the events leading to cell death. The plant life cycle contains many instances of such cell death. During plant reproduction and early embryogenesis, events such as organ ablation during unisexual flower development, tapetum degeneration during pollen development and suspensor degeneration during embryo development all involve an active cell death process. During plant morphogenesis and maturation, aleurone cell degradation, the terminal phase of tracheary element differentiation in xylem, leaf blade development in some plants (e.g. genus Monstera), leaf/organ senescence, root cap cell differentiation and the hypersensitive response in plant/pathogen interactions provide further examples of the role of cell death programs in plant developmental cycles.




Most of the scientific investigation relating to programmed cell death to date has involved PCD in mammalian cells. PCD in these cells is evidenced by distinct morphological characteristics, such as cytoplasmic condensation, membrane blebbing, DNA fragmentation, condensation and fragmentation of the nucleus, and finally cell corpse engulfment. In mammalian cells, PCD provides a mechanism for removing unwanted cells, as well as for removing pathogens or pathogen-infected cells. It is also believed that a breakdown in normal PCD mechanisms plays an important role in many disease states, including many malignancies.




The role of PCD in plant systems has not been studied extensively. Preliminary comparisons between plant and mammalian PCD mechanisms suggest some similarities in the mechanisms. The potential similarities include: an oxygen requirement; activation by hydrogen peroxide; a role for calcium in the activation process; a transcription requirement; a dephosphorylation requirement; proteolytic and nucleolytic enzyme involvement and cell condensation and shrinkage. Modulation of the PCD mechanism in any one or more of these areas may affect plant development.




SUMMARY OF THE INVENTION




Briefly, the present invention provides isolated polypeptides, and the polynucleotides encoding the isolated polypeptides, having activity in PCD pathways and various developmental pathways in forestry plant species. Genetic constructs comprising such polynucleotides and methods for the use of such genetic constructs to modulate PCD and various developmental pathways in forestry plants are also provided. Transgenic cells and plants incorporating such genetic constructs and exhibiting a modified content of the polynucleotides and/or polypeptides of the present invention compared to a wild-type plant, are also provided. Methods for modulating plant cell death,. as well as for modulating various forestry plant species developmental pathways, using the polynucleotides and/or polypeptides of the present invention, are disclosed.




In mammalian PCD, regulation of cell cycle entry appears to be important, and it has been suggested that cell cycle checkpoint regulators may be involved in the commitment of a cell to death. For example, the known tumor suppressor p45 is capable of mediating cell cycle arrest and can trigger PCD. One of the key genes involved in p45 mediated responses is the retinoblastoma gene (RB). This tumor suppressor can bind and inhibit the transcription factors that initiate entry into the cell cycle. In addition, RB plays a regulatory role in the cell death process, depending on its phosphorylation status. The regulation of RB proteolysis by phosphorylation status, and the consequent RB levels in the cells are important in the determination of cellular fates. Two polynucleotides encoding retinoblastoma-related polypeptides (SEQ ID NOS: 36, 37) have been isolated from forestry species. Retinoblastoma-related polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 80, 81.




Another tumor suppressor gene, prohibitin, can also arrest the cell cycle. In rat B lymphocytes, the association of prohibitin with membrane-bound IgM has been suggested as a mediator of PCD in these cells. Furthermore, in yeast, the deletion of prohibitin homologs resulted in a decreased replicative lifespan, leading to successive decreases in cell cycle time, ageing and cellular senescence. While the above studies have been conducted in non-plant systems, it is likely that similar cell cycle modulators are effective in plant systems. Several polynucleotides encoding prohibitin-related polypeptides (SEQ ID NOS: 22-26) have been isolated from forestry species. Prohibitin-related polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 67-71.




Polynucleotides associated with cellular housekeeping functions are necessary for cell health and survival, and their loss may lead to cell death. One such polynucleotide, initially identified in temperature-sensitive mutant hamster cell lines, was DAD1 (Defender Against Cell Death 1). Cells in temperature-sensitive mutant hamster cell lines undergo PCD at restrictive temperatures, and it has been shown that the Arabidopsis DAD1 can rescue the hamster temperature-sensitive mutant. The presence of DAD1 can also reduce cell death in the developing embryo of the worm


Caenorhabditis elegans


, which undergoes developmentally-regulated cell death. DAD1 has been shown to be a component of oligosaccharyltransferase, involved in N-linked glycosylation. The induction of cell death by DAD1 inactivation, as well as the ability of DAD1 to reduce PCD during development illustrates the essential role of this housekeeping gene. Several polynucleotides encoding DAD1-related polypeptides (SEQ ID NOS: 6-9) have been isolated from forestry species. DAD1-related polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 51-54.




Another housekeeping polynucleotide which may be used to control cell survival and cell death is the TATA Box Binding Protein (TFIID). TFIID is the most important general factor required for gene transcription by RNA Polymerase II. TFIID binds to the TATA box and participates in the first steps of transcription factor assembly, which is important for the control of gene expression. The ability to developmentally or tissue-specifically knock-out TFIID activity provides a method of specifically inducing cell death. Attempts at TFIID knock-out have not been reported for plants. Polynucleotides encoding TFIID-related transcription initiation factors (SEQ ID NOS: 41, 42) have been isolated from forestry species. TFIID-related transcription initiation factors encoded by the polynucleotides are identified as SEQ ID NOS: 85, 86.




Another transcription factor involved in the control of mammalian cell death is pur-alpha. Pur-alpha is a single-stranded DNA binding protein, which has been shown to play a role in both DNA replication and transcriptional regulation. Pur-alpha is able to suppress PCD of mammalian cells by two mechanisms. The first is the transcriptional repression of Fas (CD-95), a receptor which transduces a cell death signal by interaction with its ligand, and the second is the protection of mammalian cells against cell death mediated by p53. Polynucleotides encoding allelic variants of plant pur-alpha have been isolated (SEQ ID NOS: 90-91) from forestry species. The corresponding amino acid sequences of the pur-alpha polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 141-142.




The actual process of cell death involves the degradation of proteins and nucleic acids, mediated by proteases and nucleases. Experimental work done with mammalian systems suggests that proteases may be an important trigger of cell death. In animals, the caspase family of cysteine proteases are major effectors of this process. Cysteine proteases have been identified in plants which are up-regulated and specifically associated with aleurone and tracheary element cell death. Polynucleotides encoding cysteine proteases in forestry species have been identified as SEQ ID NOS: 92-125. The corresponding amino acid sequences of polypeptides encoded by the polynucleotides are identified by SEQ ID NOS: 143-176. In addition, an aspartic nuclease, nucellin, has been shown to be specifically associated with nucellar cell death. Polynucleotides encoding a nucellin-like aspartic protease (SEQ ID NOS: 15-16) have been isolated from forestry species. The corresponding amino acid sequences of the aspartic nuclease encoded by the polynucleotides are identified in SEQ ID NOS: 60-61.




In addition to actual protease activity, targeting of proteins for proteolytic degradation via the ubiquitin-proteosome pathway is up-regulated during PCD. Human homologs to the Drosophila SINA (Seven In Absentia) gene are activated during PCD. SINA has been shown to target specific proteins for ubiquitination and degradation in both humans and Drosophila. Polynucleotides encoding SINA-related polypeptides (SEQ ID NOS: 38-40, and 200) have been isolated from forestry species. SINA-related polypeptides encoded by the polynucleotides are identified as SEQ ID NOS:. 82-84, and 201.




Nuclear DNA cleavage, nuclear fragmentation and RNA degradation are active processes that occur during PCD in animals and plants. Specific plant DNases and RNases have been identified during PCD in plant aleurone cells, tracheary elements, cells undergoing a hypersensitive response to a pathogen, as well as during salt stress-induced cell death. Polynucleotides encoding a plant DNase (SEQ ID NO: 10) and xylogenic RNase (SEQ ID NO: 45) have been isolated from forestry species. The corresponding amino acid sequences of the DNase and RNase encoded by the polynucleotides are identified in SEQ ID NOS: 55 and 89, respectively.




In mammalian systems, caspase activation can be inhibited by proteins such as Bcl-2, providing protection against cell death. However, other members of the Bcl-2 family, such as Bax, are antagonistic towards the protective effect of Bcl-2 and promote cell death, due to their ability to interact with Bcl-2 and inhibit its protective ability. A recently discovered gene, BI-1 (Bax Inhibitor-1), was found to inhibit Bax-induced cell death. This gene is identical to a previously identified human gene identified as TEGT (Testis Enhanced Gene Transcript). is Polynucleotides encoding TEGT polypeptides isolated from forestry species are identified as SEQ ID NOS: 43-44. The corresponding amino acid sequences of the TEGT polypeptides encoded by the polynucleotides are identified as SEQ ID NOS:87-88.




Another protein involved in inhibition of PCD is BAG-1 (Bcl-2-Associated-athanoGene), a multifunctional protein that blocks apoptosis and interacts with several types of proteins, including Bcl-2 family proteins, the kinase Raf-1, certain tyrosine kinase growth factor receptors, and steroid hormone receptors in mammalian cells. It is identical to a hormone-receptor binding protein RAP46. BAG-1 binds to and potentiates the effect of the anti-apoptotic protein Bcl-2, to make cells more resistant to apoptosis. Human BAG-1 is overexpressed in human leukemias, colon, cervical, breast, prostate and lung cancer cell lines. A polynucleotide encoding a BAG-1 polypeptide isolated from forestry species is identified as SEQ ID NO: 204. The corresponding amino acid sequence of the BAG-1 polypeptide encoded by the polynucleotide is identified as SEQ ID NO: 205. The isolated polynucleotide sequence encoding BAG-1 contains a PROSITE motif for a ubiquitin-like domain that is also present in the human and mouse BAG-1 proteins.




Numerous studies of mammalian systems have shown that treatments that induce PCD also cause oxidative stress, suggesting a role for oxidative stress in PCD. This has been confirmed by observations that the addition of ROS (Reactive Oxygen Species) or a depletion of cellular antioxidants can cause PCD. PCD can be associated with ROS induction, and PCD can be blocked by the addition of compounds with antioxidant properties. Reactive oxygen species such as superoxide, the hydroxyl radical and hydrogen peroxide can react with and damage cell macromolecules. Additionally, they may set in motion chain reactions in which free radicals are passed from one molecule to another, resulting in extensive cell damage and toxicity.




Plants also exhibit ROS induction during PCD, such as during osmotic stress-mediated death, the hypersensitive response and the terminal stages of tracheary element differentiation. In animal cells, the membrane bound NADPH oxidase complex leads to the generation of superoxide, which is then converted to other ROS. In addition, the small cytosolic protein rac2 is required for activation of the oxidase. When a constitutively active rac2 mutant was inserted into mice, a significant enhancement of PCD occurred compared to wild type mice. Biochemical and immunochemical studies have shown that NADPH oxidase and rac2 are present in plant cells and interact during hypersensitive response PCD. Furthermore, the NADPH oxidase is active during osmotic stress-mediated cell death and during the terminal phase of tracheary element differentiation. The gp 91 NADPH oxidase subunit has been cloned from rice and Arabidopsis. Polynucleotides encoding polypeptides relating to Rac2 (SEQ ID NOS: 28-35) and the gp 91 NADPH oxidase subunit (SEQ ID NO 192) have been isolated from forestry species. The corresponding predicted amino acid sequences for the Rac2-related polypeptides encoded by the polynucleotides given in SEQ ID NOS: 28 and 30-45 are given in SEQ ID NOS: 73 and 74-79. The corresponding predicted amino acid sequence for the gp 91 NADPH oxidase subunit related polypeptide is given in SEQ ID NO: 196.




The role of superoxide compounds in plant cell death was illustrated with the discovery of the lesion simulating cell death (lsd1) mutant in Arabidopsis. In this mutant, superoxide was necessary and sufficient to induce and propagate cell death. Lsd1 in wild type plants is believed to serve as a monitor to a superoxide-dependent signal and to act as a negative regulator of a plant cell death pathway. Polynucleotides encoding lsd1-related polypeptides (SEQ ID NOS: 13 and 14) have been isolated from forestry species. Lsd1-related polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 58 and 59.




ATL2 was identified as an Arabidopsis cDNA which was toxic when overexpressed in yeast. The nucleotide sequences of five ATL2 variants isolated from forestry species are given in SEQ ID NOS: 1-5 and the corresponding predicted amino acid sequences in SEQ ID NOS: 46-50.




Another gene, lls1, identified from a maize mutant, is also required to limit the spread of cell death in a developmental manner in leaves. Polynucleotides encoding lethal leaf spot protein lls1-related polypeptides; (SEQ ID NOS: 11-12) have been isolated from forestry species. Polypeptides encoded by the polynucleotides are identified as SEQ ID NOS: 56-57.




Another plant protein from Arabidopsis (oxy5) has been shown to be a member of the annexin family of proteins and protect bacterial cells from oxidative stress. Oxy5 has also been shown to protect mammalian cells from tumor necrosis factor-induced cell death. The involvement of oxidative stress in the various instances of PCD in plants suggests that oxy5 plays a protective role. The annexin sequences show good homology to oxy5, and hence are expected to provide the same function or similar function. The nucleotide sequences of annexin-like proteins isolated from forestry species are given in SEQ ID NOS: 17-21 and the corresponding predicted amino acid sequences in SEQ ID NOS: 62-66.




The most actively investigated example of PCD in plants concerns the hypersensitive response (HR) to pathogens. The HR is found in most responses mediated by disease resistance (R) genes. The HR is invoked by the association of a pathogen avirulence gene product with a receptor. This sets in motion a cascade of events involving ion fluxes, kinase/phosphatase actions and an oxidative burst leading to localized cell death and the induction of systemic acquired resistance (SAR), in which other parts of the plants develop an acquired resistance to the pathogen. A wide range of plant disease receptors have been identified, including polypeptides that span the cell membrane and contain an extracellular and cytoplasmic domain, as well as polypeptides that are strictly cytoplasmic and do not contain an extracellular domain.




Of the cytoplasmic polypeptide receptors involved in the HR, three families are of primary interest. The first is the RPS2-like polypeptide family, in which the polypeptides include an amino-terminal leucine zipper region, a nucleotide-binding site, an internal hydrophobic domain and a carboxy-terminal leucine-rich repeat. The second is the RPP5-like polypeptide family, in which the polypeptides include an amino-terminal Toll-like domain, a nucleotide-binding site, an internal hydrophobic domain and a carboxy-terminal leucine-rich repeat region. The nucleotide sequences of RPP5-like proteins isolated from forestry species are given in SEQ ID NOS:126-140, and the corresponding predicted amino acid sequences in SEQ ID NOS: 177-191.




The third family of cytoplasmic receptors involved in the HR is the PTO-like family, in which the polypeptides include, a serine-threonine kinase domain. The exact mechanisms by which the HR cell death signals are transduced are not known, although protein-protein interactions and kinase reactions have been shown to be involved in the PTO-like family, with several PTO-interacting protein genes identified.




Downstream of the initial avirulence/receptor interaction, the development of SAR occurs, which involves the NPR1 gene. Mutations in the NPR1 gene increase the susceptibility of plants to pathogen infection and prevent the development of HR PCD and SAR. The expression of R genes in transgenic plants has allowed the development of HR PCD and resistance to specific pathogens. In addition, the expression of PTO-like family members, such as Fen, can lead to PCD in the absence of a pathogen. The nucleotide sequences encoding NPR1-like proteins isolated from forestry species are given in SEQ ID NOS: 193-195 and the corresponding predicted amino acid sequences in SEQ ID NOS: 197-199. The nucleotide sequence encoding a Fen-like protein isolated from forestry species is given in SEQ ID-NO: 27, and the corresponding predicted amino acid sequence in SEQ ID NO: 72. Little is known about the roles of these genes in other cases of plant PCD. An interesting point comes from the realisation that members of the plant R gene families and NPR1 show similarity to several proteins that are involved in animal development and defense. The discovery of a shared pathway linking developmental processes and disease resistance suggests that there may be roles for HR-associated genes in other plant PCD and developmental pathways.




In a first aspect, the present invention provides isolated polynucleotide sequences identified in the attached Sequence Listing as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206; variants of those sequences; extended sequences comprising the sequences set out in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, and their variants; probes and primers corresponding to the sequences set out in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, and their variants; polynucleotides comprising at least a specified number of contiguous residues of any of the polynucleotides identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206 (x-mers); and extended sequences comprising portions of the sequences set out in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206; all of which are referred to herein, collectively, as “polynucleotides of the present invention.” The present invention also provides isolated polypeptide sequences identified in the attached Sequence Listing as SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205; polypeptide variants of those sequences; and polypeptides comprising the isolated polypeptide sequences and variants of those sequences.




The polynucleotide sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, were derived from forestry plant sources, namely from


Eucalyptus grandis


and


Pinus radiata


. Some of the polynucleotides of the present invention are “partial” sequences, in that they do not represent a full length gene encoding a full length polypeptide. Such partial sequences may be extended by analyzing and sequencing various DNA libraries using primers and/or probes and well known hybridization and/or PCR techniques. Partial sequences may be extended until an open reading frame encoding a polypeptide, a full length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion of the genome is identified. Such extended sequences, including full length polynucleotides and genes, are described as “corresponding to” a sequence identified as one of the sequences of SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, or a variant thereof, or a portion of one of the sequences of SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, or a variant thereof, when the extended polynucleotide comprises an identified sequence or its variant, or an identified contiguous portion (x-mer) of one of the sequences of SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, or a variant thereof. Similarly, RNA sequences, reverse sequences, complementary sequences, antisense sequences, and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206.




The polynucleotides identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206, may contain open reading frames (“ORFs”) or partial open reading frames encoding polypeptides. Additionally, open reading frames encoding polypeptides may be identified in extended or full length sequences corresponding to the sequences set out as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 202 and 206. Open reading frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame identification based on codon frequencies, etc. Suitable tools and software for ORF analysis are available for example, on the Internet. Open reading frames and portions of open reading frames may be identified in the polynucleotides of the present invention. Once a partial open reading frame is identified, the polynucleotide may be extended in the area of the partial open reading frame using techniques that are well known in the art until the polynucleotide for the full open reading frame is identified. Thus, open reading frames encoding polypeptides may be identified using the polynucleotides of the present invention.




Once open reading frames are identified in the polynucleotides of the present invention, the open reading frames may be isolated and/or synthesized. Expressible genetic constructs comprising the open reading frames and suitable promoters, initiators, terminators, etc., which are well known in the art, may then be constructed. Such genetic constructs may be introduced into a host cell to express the polypeptide encoded by the open reading frame. Suitable host cells may include various prokaryotic and eukaryotic cells, including plant cells, mammalian cells, bacterial cells, algae and the like.




Polypeptides encoded by the pplynucleotides of the present invention may be expressed and used in various assays to determine their biological activity. Such polypeptides may be used to raise antibodies, to isolate corresponding interacting proteins or other compounds, and to quantitatively determine levels of interacting proteins or other compounds.




The present invention also contemplates methods for modulating the polynucleotide and/or polypeptide content and composition of a forestry species, such methods involving stably incorporating into the genome of the organism a genetic construct comprising one or more polynucleotides of the present invention. In one embodiment, the target organism is a forestry species, preferably a woody plant, more preferably a woody plant of the Pinus or Eucalyptus species, and most preferably


Eucalyptus grandis


or


Pinus radiata


. In a related aspect, a method for producing a forestry plant having an altered genotype or phenotype is provided, the method comprising transforming a plant cell with a genetic construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. Forestry plants having an altered genotype or phenotype as a consequence of modulation of the level or content of a polynucleotide or polypeptide of the present invention compared to a wild-type organism, as well as components (seeds, etc.) of such forestry plants, and the progeny of such forestry plants, are contemplated by and encompassed within the present invention.




The isolated polynucleotides of the present invention also have utility in genome mapping, in physical mapping, and in positional cloning of genes. Additionally, the polynucleotide sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, and their variants, may be used to design oligonucleotide probes and primers. Oligonucleotide probes and primers have sequences that are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. Oligonucleotide probes designed using the polynucleotides of the present invention may be used to detect the presence and examine the expression patterns of genes in any organism having sufficiently similar DNA and RNA sequences in their cells using techniques that are well known in the art, such as slot blot DNA hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention may be used for PCR amplifications. Oligonucleotide probes and primers designed using the polynucleotides of the present invention may also be used in connection with various microarray technologies, including the microarray technology used by Synteni (Palo Alto, Calif.).




The polynucleotides of the present invention may also be used to tag or identify an organism or reproductive material therefrom. Such tagging may be accomplished, for example, by stably introducing a non-disruptive non-functional heterologous polynucleotide identifier into an organism, the polynucleotide comprising one of the polynucleotides of the present invention.




The polypeptides of the present invention and the polynucleotides encoding the polypeptides have activity in PCD and various developmental pathways in plants. The polynucleotides were putatively identified by DNA and polypeptide similarity searches. In the attached Sequence Listing, SEQ ID NOS. 1-28, 30-45, 90-140, 192-195, 200 and 204, are polynucleotide sequences that encode the polypeptides listed in SEQ ID NOS. 46-73, 74-89, 141-191, 196-199, 201 and 205, respectively. The polynucleotides and polypeptides of the present invention have demonstrated similarity to the following polypeptides that are known to be involved in PCD and/or plant developmental processes:














TABLE 1













Polynucleotide Polypeptide













POLYPEPTIDE IDENTITY




SEQ ID NO.




SEQ ID NO.









ATL2




1-5




46-50






DAD1 (Defender Against Cell Death)




6-9




51-54






DNase




 10




 55






lls (lethal leaf spot)




11, 12




56, 57






lsd1 (lesion stimulating death)




13, 14




58, 59






Nucellin-like aspartic protease




15, 16




60, 61






Annexin




17-21




62-66






Prohibitin




22-26




67-71






Fen-like protein




 27




 72






Rac2




28-35




73, 74-79






Retinoblastoma-related Protein




36, 37




80, 81






SINA (Seven in absentia)




38-40, 200




82-84, 201






TFIID (Transcription Initiation Factor)




41, 42




85, 86






TEGT (Testis Enhanced Gene Transcript)




43, 44




87, 88






Xylogenic RNase




 45




 89






Pur-alpha




90, 91




141, 142






Cysteine proteases




 92-125




143-176






RPP5-like proteins




126-140




177-191






gp 91 NADPH oxidase subunit




192




196






NPR-like proteins




193-195




197-199






BAG-1




204




205














In one embodiment, isolated polynucleotides of the present invention comprise a sequence selected from the group consisting of: (a) sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; (b) complements of the sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; (c) reverse complements of the sequences recited in SEQ ID NOS: 1-45,;90-140, 192-195, 200, 204 and 206; (d) reverse sequences of the sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; and (e) sequences having at least 50%, 75%, 90%, or 98% identity, as defined herein, to a sequence of (a)-(d) or a specified region of a sequence of (a)-(d).




In a further aspect, isolated polypeptides encoded by the polynucleotides of the present invention are provided. In one embodiment, such polypeptides comprise an amino acid sequence recited in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205, and variants thereof, as well as polypeptides expressed by polynucleotides of the present invention, including polynucleotides comprising a sequence of SEQ ID NOS: 1-45, 90-140, 192-195, 200 and 204.




In another aspect, the invention provides genetic constructs comprising a polynucleotide of the present invention, either alone, in combination with one or more additional polynucleotides of the present invention, or in combination with one or more known polynucleotides, together with cells and target organisms comprising such constructs.




In a related aspect, the present invention provides genetic constructs comprising, in the 5′-3′ direction, a gene promoter sequence, an open reading frame coding for at least a functional portion of a polypeptide encoded by a polynucleotide of the present invention, and a gene termination sequence. The open reading frame may be oriented in either a sense or antisense direction. Genetic constructs comprising a gene promoter sequence, a polynucleotide of the present invention, and a gene termination sequence are also contemplated, as are genetic constructs comprising a gene promoter sequence, an untranslated region of a polynucleotide of the present invention, or a nucleotide sequence complementary to an untranslated region, and a gene termination sequence. The genetic construct may further include a marker for the identification of transformed cells.




The gene promoter and termination sequences are preferably functional in a host plant and, most preferably, are those native to the host plant. Promoter and termination sequences that are generally used in the art, such as the Cauliflower Mosaic Virus (CMV) promoter, with or without enhancers such as the Kozak sequence or Omega enhancer, and


Agrobacterium tumefaciens


nopaline synthase terminator, are useful. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues.




In a further aspect, methods for producing forestry plants having a modified content of a polynucleotide or polypeptide of the present invention compared to a native organism are provided. The methods involve transforming a target forestry plant with a genetic construct of the present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. Cells comprising the genetic constructs of the present invention are provided, together with tissues and forestry plants comprising such transgenic cells; and fruits, seeds and other products, derivatives, or progeny of such forestry plants.




In yet another aspect of the present invention, methods for modulating PCD, and for modulating various developmental pathways of forestry plants are provided, such methods including stably incorporating into the genome of a forestry plant a genetic construct of the present invention. More specifically, methods for modulating developmental pathways, including wood development, senescence and reproductive development, as well as methods for modulating stress responses in forestry plants, are provided. Preferred forestry plants include woody plants, preferably selected from the group consisting of eucalyptus, pine, acacia, poplar, sweetgum, teak and mahogany species, more preferably from the group consisting of pine and eucalyptus species, and most preferably from the group consisting of


Eucalyptus grandis


and


Pinus radiata.






The above-mentioned and additional features of the present invention and the manner of obtaining them will become apparent, and the invention will be best understood by reference to the following more detailed description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a Southern blot analysis of tobacco plants transformed with an antisense sequence of a


Pinus radiata


DAD1 gene (SEQ ID NO: 8).





FIG. 2

shows a Northern blot analysis of tobacco plants transformed with an antisense sequence of


Pinus radiata


DAD1 gene (SEQ ID NO: 8).





FIG. 3

illustrates detection of a Pinus unique sequence identifier in transformed tobacco plants. Lanes A and B show the hybridization of a probe from SEQ ID NO: 202 to the genomic DNA of tobacco plants which lack the Pinus unique sequence identifier (empty-vector transformed control plants or wild type). Lanes C-E show the hybridization of the probe to the. genomic DNA of tobacco plants containing one to three copies of the Pinus unique sequence identifier.





FIG. 4

illustrates detection of a Eucalyptus unique sequence identifier in transformed tobacco plants. Lanes A and B show the hybridization of a probe from SEQ ID NO: 203 to the genomic DNA of tobacco plants which lack the Eucalyptus unique sequence identifier (empty-vector transformed control plants. or wild type). Lanes C-E show the hybridization of the probe to the genomic DNA of tobacco plants containing one to two copies of the Eucalyptus unique sequence identifier.











DESCRIPTION OF PREFERRED EMBODIMENTS




Using the methods and materials of the present invention, PCD and/or specific developmental pathways may be modulated in a forestry plant by modifying the polynucleotide and/or polypeptide content of the target organism, for example, by incorporating sense or antisense copies of polynucleotides of the present invention that encode polypeptides involved in the PCD and/or specific developmental pathways into the genome of the forestry plant. In addition, the number of copies and combination of polynucleotides of the present invention may be manipulated in a forestry plant, to modify the relative amounts of polypeptides synthesized, thereby producing biological materials having an altered composition and/or developmental metabolism.




According to one embodiment, the present invention provides isolated polynucleotides encoding, or partially encoding, polypeptides involved in PCD and/or specific developmental pathways in forestry plants. The polynucleotides of the present invention were isolated from eucalyptus and pine species, but they may alternatively be synthesized using conventional synthesis techniques. Specifically, isolated polynucleotides of the present invention include polynucleotides comprising a sequence selected from the group consisting of sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; complements of the sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; reverse sequences of the sequences identified as SEQ ID NOS: 1-45, 90-140, -192-195, 200, 204 and 206; reverse complements of the sequences identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206; at least a specified number of contiguous residues (x-mers) of any of the above-mentioned polynucleotides; antisense sequences corresponding to any of the above polynucleotides; and variants of any of the above polynucleotides, as that term is described in this specification.




The isolated polynucleotides recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, and 204, encode, or partially encode, polypeptides recited in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205, respectively, that are involved in PCD and/or developmental processes, as identified in Table 1 above. Using methods and materials of the present invention, the polynucleotide and/or polypeptide content of a target organism, such as a forestry plant, may be increased or reduced, thereby modulating PCD in the organism or in a tissue of the organism, or modulating a developmental pathway in the organism or a tissue by incorporating various polynucleotides of the present invention, including untranslated portions of such polynucleotides and antisense copies of such polynucleotides.




In another embodiment, the present invention provides isolated polypeptides encoded by the DNA sequences of SEQ ID NOS: 1-45, 90-140, 192-195, 200and 204. The predicted amino acid sequences corresponding to the polynucleotides set out in SEQ ID NOS: 1-28, 30-45, 90-140, 192-195, 200 and 204, based on the information available at the time of filing this application, are provided in SEQ ID NOS: 46-73, 74-89, 141-191, 196-199, 201 and 205, respectively.




The term “polynucleotide(s),” as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and antisense strands, and comprehends cDNA, genomic, DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. A gene is a DNA sequence that codes for a functional protein or RNA molecule. Operable antisense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of “polynucleotide” therefore includes all such operable antisense fragments. Antisense polynucleotides and techniques involving antisense polynucleotides are well known in the art and are described, for example, in Robinson-Benion, et al., “Antisense techniques,”


Methods in Enzymol


. 254(23): 363-375 (1995); and Kawasaki, et al.,


Artific. Organs


20(8):836-848 (1996). Polynucleotides of the present invention also encompass polynucleotide sequences that differ from the disclosed sequences but which, as a result of the degeneracy of the genetic code, encode a polypeptide which is the same as that encoded by a DNA sequence disclosed herein.




The definitions of the terms “complement”, “reverse complement” and “reverse sequence”, as used herein, are best illustrated by the following examples. For the sequence 5′ AGGACC 3′, the complement, reverse complement and reverse sequences are as follows:





















complement




3′ TCCTGG 5′







reverse complement




3′ GGTCCT 5′







reverse sequence




5′ CCAGGA 3′.















Identification of genomic DNA and heterologous species DNAs can be accomplished by standard DNA/DNA hybridization techniques, under appropriately stringent conditions, using all or part of a cDNA sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on known genomic DNA, cDNA and protein sequences can be used to amplify and identify genomic and cDNA sequences. Synthetic DNA corresponding to the identified sequences and variants may be produced by conventional synthesis methods. All of the polynucleotides described herein are isolated and purified, as those terms are commonly used in the art.




In another aspect, the present invention provides isolated polypeptides encoded, or partially encoded, by the above polynucleotides. As used herein, the term “polypeptide” encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term “polypeptide encoded by a polynucleotide” as used herein, includes polypeptides encoded by a polynucleotide which comprises an isolated DNA sequence or variant provided herein. In specific embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205, as well as variants of such sequences.




Polypeptides of the present invention may be produced recombinantly by inserting a DNA sequence that encodes the polypeptide into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are


E. coli


, insect, yeast or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.




In a related aspect, polypeptides are provided that comprise at least a functional portion of a polypeptide having an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205, and variants thereof. As used herein, the “functional. portion” of a polypeptide is that portion which contains the active site essential for affecting the function of the polypeptide, for example, the portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high binding affinity.




Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using, for example, the representative assays provided below.




A functional portion comprising an active site may be made up of separate portions present on one or more polypeptide chains and generally exhibits high substrate specificity. The term “polypeptide encoded by a polynucleotide” as used herein, includes polypeptides encoded by a polynucleotide comprising a partial isolated polynucleotide of the present invention.




Portions and other variants of the inventive polypeptides may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield,


J. Am. Chem. Soc


. 85: 2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems, Inc. (Foster City, Calif.), and may be operated, according to the manufacturer's instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagensis (Kunkel, T.,


Proc. Natl. Acad. Sci. USA


82: 488-492, 1985). Sections of DNA sequences may also be removed using standard techniques to permit preparation of truncated polypeptides.




In general, the polypeptides disclosed herein are prepared in an isolated, substantially pure form. Preferably, the polypeptides are at least about 80% pure; more preferably at least about 90% pure; and most preferably, at least about 99% pure. In certain preferred embodiments, described in detail below, the isolated polypeptides are incorporated into pharmaceutical compositions or vaccines for use in the treatment of skin disorders.




As used herein, the term “variant” comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 50%; more preferably, at least 75%; and most preferably, at least 90% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.




Polynucleotide and polypeptide sequences may be aligned, and percentage of identical nucleotides in a specified region may be determined against another polynucleotide, using computer algorithms that are publicly available. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. Polynucleotides may also be analyzed using the BLASTX algorithm, which compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database. The, similarity of polypeptide sequences may be examined using the BLASTP algorithm. The BLASTN, BLASTX and BLASTP programs are available on the NCBI anonymous FTP server under/blast/executables/. The BLASTN algorithm version 2.0.4 [Feb-24-1998] and version 2.0.6 [Sep-16-1998], set to the default parameters described in the documentation and distributed with the algorithm, are preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm, set to the default parameters described in the documentation and distributed with the program, is preferred for use in the determination of polypeptide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP, and BLASTX, is described at NCBI's website and in the publication of Altschul, Stephen F., et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,”


Nucleic Acids Res


. 25: 3389-3402, 1997.




The computer algorithm FASTA is available on the Internet. Version 2.0u4, February 1996, set to the default parameters described in the documentation and distributed with the algorithm, may be used in the determination of variants according to the present invention. The use of the FASTA algorithm is described in Pearson, W R and Lipman D J, “Improved Tools for Biological Sequence Analysis,”


Proc. Natl. Acad. Sci. USA


85: 2444-2448, 1988; and W. R. Pearson, “Rapid and Sensitive Sequence Comparison with FASTP and FASTA,”


Methods in Enzymology


183: 63-98, 1990.




The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity for polynucleotide sequences: Unix running command: blastall -p blastn -d embldb -e 10-G0 -E0 - r 1 -v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (blastn only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; and -o BLAST report Output File [File Out] Optional. The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the E values and percentage identity of polypeptide sequences: blastall -p blastp -d swissprotdb -e 10 -G 0 -E 0 -v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out] Optional. The “hits” to one or more database sequences by a queried sequence produced by BLASTN, FASTA, BLASTP or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.




The BLASTN, FASTA, and BLASTP algorithms also produce “Expect” values for alignments. The Expect value (E) indicates the number of hits one can “expect” to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database, such as the preferred EMBL database, indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the polynucleotide sequences then have a probability of 90% of being the same. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN or FASTA algorithm.




According to one embodiment, “variant” polynucleotides and polypeptides, with reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleic or amino acids than each of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that has at least a 99% probability of being the same as the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN, FASTA, or BLASTP algorithms set at parameters described above. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or FASTA algorithms set at parameters described above. Similarly, according to a preferred embodiment, a variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being the same as a polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the parameters described above.




Alternatively, variant polynucleotides or polypeptides of the present invention comprise a sequence exhibiting at least 50%; more preferably at least 75%; more preferably yet at least 90%; and most preferably at least 98% similarity to a polynucleotide or polypeptide of the present invention, determined as described below. The percentage similarity is determined by aligning sequences using one of the BLASTN, FASTA, or BLASTP algorithms, set at the running parameters described above, and identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage similarity. For example, a polynucleotide of the present invention having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 nucleic acids over a stretch of 23 nucleotides in the alignment produced by the BLASTN algorithm-using the parameters described above. The 23 nucleotide hit includes 21 identical nucleotides, one gap and one different nucleotide. The percentage similarity of the polynucleotide of the present invention to the hit in the EMBL library is thus 21/220 times 100, or 9.5%. The polynucleotide sequence in the EMBL database is thus not a variant of a polynucleotide of the present invention.




Alternatively, variant polynucleotides of the present invention hybridize to the polynucleotide sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or complements, reverse sequences, or reverse complements of those sequences under stringent conditions. As used herein, “stringent conditions” refers to prewashing in a solution of 6×SSC, 0.2% SDS; hybridizing at 65° C., 6×SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1×SSC, 0.1% SDS at 65° C. and two washes of 30 minutes each in 0.2×SSC, 0.1% SDS at 65° C.




The present invention also encompasses polynucleotides that differ from the disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar enzymatic activity as a polypeptide encoded by a polynucleotide of the present invention. Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or complements, reverse sequences, or reverse complements of those sequences as a result of conservative substitutions are contemplated by and encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or complements, reverse complements, or reverse sequences as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences recited in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205 as a result of amino acid substitutions, insertions, and/or deletions totalling less than 10% of the total sequence length are contemplated by an encompassed within the present invention, provided the variant polypeptide has activity in a PCD or plant developmental pathway.




The polynucleotides of the present invention may be isolated from various libraries, or may be synthesized using techniques that are well known in the art. The polynucleotides may be synthesized, for example, using automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known in the art of molecular biology. One conventional and exemplary polynucleotide synthesis technique involves synthesis of a single stranded polynucleotide segment having, for example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5 nucleotide overhang. The next segment may then be synthesized in a similar fashion, with a 5 nucleotide overhang on the opposite strand. The “sticky” ends ensure proper ligation when the two portions are hybridized. In this way, a complete polynucleotide of the present invention may be synthesized entirely in vitro.




Some of the polynucleotides identified as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, are referred to as “partial” sequences, in that they do not represent the full coding portion of a gene encoding a naturally occurring polypeptide. The partial polynucleotide sequences disclosed herein may be employed to obtain the corresponding full length genes for various species and organisms by, for example, screening DNA expression libraries using hybridization probes based on the polynucleotides of the present invention, or using PCR amplification with primers based upon the polynucleotides of the present invention. In this way one can, using methods well known in the art, extend a polynucleotide of the present invention upstream and downstream of the corresponding mRNA, as well as identify the corresponding genomic DNA, including the promoter and enhancer regions, of the complete gene. The present invention thus comprehends isolated polynucleotides comprising a sequence identified in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or a variant of one of the specified sequences, that encode a functional polypeptide, including full length genes. Such extended polynucleotides may have a length of from about 50 to about 4,000 nucleic acids or base pairs, and preferably have a length of less than about 4,000 nucleic acids or base pairs, more preferably yet a length of less than about 3,000 nucleic acids or base pairs, more preferably yet a length of less than about 2,000 nucleic acids or base pairs. Under some circumstances, extended polynucleotides of the present invention may have a length of less than about 1,800 nucleic acids or base pairs, preferably less than about 1,600 nucleic acids or base pairs, more preferably less than about 1,400 nucleic acids or base pairs, more preferably yet less than about 1,200 nucleic acids or base pairs, and most preferably less than about 1,000 nucleic acids or base pairs.




Polynucleotides of the present invention also comprehend polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NO: 1-45, 90-140, 192-195, 200, 204 and 206, complements, reverse sequences, and reverse complements of such sequences, and their variants. Similarly, polypeptides of the present invention comprehend polypeptides comprising at least a specified number of contiguous residues (x-mers) of any of the polypeptides identified as SEQ ID NOS: 46-89, 141-191, 196-199, 201, and 205, and their variants. As used herein, the term “x-mer,” with reference to a specific value of “x,” refers to a sequence comprising at least a specified number (“x”) of contiguous residues of any of the polynucleotides identified as SEQ ID NO: 1-45, 90-140, 192-195, 200, 204 and 206, or the polypeptides identified as SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205. According to preferred embodiments, the value of x is preferably at least 20; more preferably, at least 40; more preferably yet, at least 60; and most preferably, at least 80. Thus, polynucleotides and polypeptides of the present invention comprise a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer, or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide or polypeptide identified as SEQ ID NOS: 1-201, and 204-206, and variants thereof.




Polynucleotide probes and primers complementary to and/or corresponding to SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, and variants of those sequences, are also comprehended by the present invention. Such oligonucleotide probes and primers are substantially complementary to the polynucleotide of interest. As used herein, the term “oligonucleotide” refers to a relatively short segment of a polynucleotide sequence, generally comprising between 6 and 60 nucleotides, and comprehends both probes for use in hybridization assays and primers for use in the amplification of DNA by polymerase chain reaction.




An oligonucleotide probe or primer is described as “corresponding to” a polynucleotide of the present invention, including one of the sequences set out as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or a variant, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, or a variant of one of the specified sequences.




Two single stranded sequences are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared, with the appropriate nucleotide insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95%, and more preferably at least 98% to 100%, of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a second DNA strand under stringent hybridization conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5° C., but are generally greater than about 22° C., more preferably greater than about 30° C., and most preferably greater than about 37° C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. The DNA from plants or samples or products containing plant material can be either genomic DNA or DNA derived by preparing cDNA from the RNA present in the sample.




In addition to DNA—DNA hybridization, DNA-RNA or RNA—RNA hybridization assays are also possible. In the first case, the mRNA from expressed genes would then be detected instead of genomic DNA or cDNA derived from mRNA of the sample. In the second case, RNA probes could be used. In addition, artificial analogs of DNA hybridizing specifically to target sequences could also be used.




In specific embodiments, the oligonucleotide probes and/or primers comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous residues, and most preferably at least about 20 contiguous residues complementary to a polynucleotide sequence of the present invention. Probes and primers of the present invention may be from about 8 to 100 base pairs in length or, preferably from about 10 to 50 base pairs in length or, more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA—DNA hybridization stringency, annealing and melting temperatures, and potential for formation of loops and other factors, which are well known in the art. Tools and software suitable for designing probes, and especially suitable for designing PCR primers, are available on the Internet, for example, at URL http://www.horizonpress.com/pcr/. Preferred techniques for designing PCR primers are also disclosed in Dieffenbach, C W and Dyksler, G S,


PCR Primer: a laboratory manual


, CSHL Press: Cold Spring Harbor, N.Y., 1995.




A plurality of oligonucleotide probes or primers corresponding to a polynucleotide of the present invention may be provided in a kit form. Such kits generally comprise multiple DNA or oligonucleotide probes, each probe being specific for a polynucleotide sequence. Kits of the present invention may comprise one or more probes or primers corresponding to a is polynucleotide of the present invention, including a polynucleotide sequence identified in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206.




In one embodiment useful for high-throughput assays, the oligonucleotide probe kits of the present invention comprise multiple probes in an array format, wherein each probe is immobilized at a predefined, spatially addressable location on the surface of a solid substrate. Array formats which may be usefully employed in the present invention are disclosed, for example, in U.S. Pat. Nos. 5,412,087, 5,545,451, and PCT Publication No. WO 95/00450, the disclosures of which are hereby incorporated by reference.




Probes, preferably in the form of an array, may be employed to screen for differences in organisms or samples or products containing genetic material using high-throughput screening techniques that are well known in the art. The significance of using probes in high-throughput screening systems is apparent for applications such as plant breeding and quality control operations in which there is a need to identify large numbers of seed lots and plant seedlings, to examine samples or products for unwanted plant materials, to identify plants or samples or products containing plant material for quarantine purposes, etc., or to ascertain the true origin of plants or samples or products containing plant material. Screening for the presence or absence of polynucleotides of the present invention used as identifiers for tagging plants is valuable for later detecting the amount of gene flow in plant breeding, introgression of genes via dispersed pollen, etc.




In this manner, oligonucleotide probe kits of the present invention may be employed to examine the presence/absence (or relative amounts in case of mixtures) of polynucleotides in different samples or products containing different materials rapidly and in a cost-effective manner. Examples of plant species, which may be examined using the present invention include forestry species, such as pine and eucalyptus species, other tree species, and even agricultural and horticultural plants.




For applications where modulation of PCD and/or a developmental pathway is desired, an open reading frame may be inserted into a genetic construct in a sense or antisense orientation, such that transformation of a forestry plant with the genetic construct produces a change in the copy number of a polynucleotide or the expression level of a polypeptide compared to the polynucleotide copy number and/or polypeptide expression level in a wild-type organism. Transformation with a genetic construct comprising an open reading frame in a sense orientation will generally result in an increased expression level of the polypeptide encoded by the selected polynucleotide, while transformation with a genetic construct comprising an open reading frame in an antisense orientation will generally result in reduced expression of the polypeptide encoded by the selected polynucleotide. A forestry plant transformed with a genetic construct comprising an open reading frame of the present invention in either a sense or antisense orientation may be screened for increased or reduced copy numbers of the selected polynucleotide, or increased or reduced expression of the polypeptide of interest using techniques well known to those of skill in the art. Plants having the desired alterations may thus be identified and isolated. In general, an increase or reduction in the expression level of a polypeptide of interest of at least 25%, compared to expression levels in a corresponding wild-type organism, are significant.




Transformation of a target organism with a genetic construct of the present invention results in a modification in the polypeptide synthesis or content or structure in the target organism, producing a modification from the wild-type plant in the area of PCD or in a developmental pathway. Methods of the present invention involve modulating, generally promoting, and inhibiting, PCD in a forestry species. For example, transformation of a target organism with a genetic construct having an open reading frame coding for a polypeptide encoded by a polynucleotide of the present invention wherein the open reading frame is in a sense orientation and the polypeptide contributes to an increased level of PCD, generally produces a significant increase in the amount or expression of the polypeptide in the target organism and, consequently, a significant increase in PCD. Similarly, transformation of a target organism with a genetic construct having an open reading frame coding for a polypeptide encoded by a polynucleotide of the present invention wherein the open reading frame is in a sense orientation and the polypeptide contributes to a reduced level of PCD, generally produces a significant reduction in the amount or expression of the polypeptide in the target organism and, consequently, a significant reduction in PCD. Transformation of a target organism with a genetic construct comprising an open reading frame in an antisense orientation or an untranslated region of a polynucleotide generally produces a decrease in the level of the corresponding polypeptide, thereby producing a corresponding increase or reduction in PCD, depending on the role of the specific polypeptide. It will be recognized that transformation with other genetic constructs of the present invention will produce changes in the content, composition and/or metabolism of various polypeptides that play a role in PCD and/or plant developmental pathways, thereby producing changes in the content, composition, and/or metabolism of the forestry plant.




More specifically, methods of the present invention contemplate selectively promoting PCD in a forestry plant or cell population by: (1) introducing or increasing the copy number of a polynucleotide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1-5, 10, 15, 16, 27-35, 38-40, 45, 92-140, 192-195, and 200, and variants of such sequences; (2) introducing, or increasing the expression level of, or activating a polypeptide encoded by a polynucleotide comprising a sequence selected from the group of sequences recited in SEQ ID NOS: 1-5, 10, 15, 16, 27-35, 38-40, 45, 92-140, 192-195, and 200, and variants of such sequences; (3) introducing, or increasing the expression level of, or activating a polypeptide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 46-50, 55, 60, 61, 72-79, 82-84, 89, 143-191, 196-199, and 201, and variants of such sequences; (4) reducing the copy number of a polynucleotide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 6-9, 11-14, 17-26, 36, 37, 41-44, 90, 91 and 204, and variants of such sequences; (5) reducing the expression level of or inactivating a polypeptide encoded by a polynucleotide comprising a sequence selected from the group of sequences recited in SEQ ID NOS: 6-9, 11-14, 17-26, 36, 37, 41-44, 90, 91 and 204, and variants of such sequences; or (6) reducing the expression level of or inactivating a polypeptide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 51-54, 56-59, 62-71, 80, 81, 85-88, 141, 142, and 205 and variants of such sequences. Methods of the present invention also contemplate selectively inhibiting PCD in a forestry plant or cell population by: (1) introducing or increasing the copy number of a polynucleotide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 6-9, 11-14, 17-26, 36, 37, 41-44, 90, 91 and 204, and variants of such sequences; (2) introducing, or increasing the expression level of, or activating a polypeptide encoded by a polynucleotide comprising a sequence selected from the group of sequences recited in SEQ ID NOS: 6-9, 11-14, 17-26, 36, 376 41-44, 90, 91 and 204, and variants of such sequences; (3) introducing, or increasing the expression level of, or activating a polypeptide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 51-54, 56-59, 62-71, 80, 81, 85-88, 141, 142 and 205, and variants of such sequences; (4) reducing the copy number of a polynucleotide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 1-5, 10, 15, 16, 27-35, 38-40, 45, 92-140, 192-195, and 200, and variants of such sequences; (5) reducing the expression level or inactivating a polypeptide encoded by a polynucleotide comprising a sequence selected from the group of sequences recited in SEQ ID NOS: 1-5, 10, 15, 16, 27-35, 38-40, 4, 92-140, 192-195, and 200, and variants of such sequences; or (6) reducing the expression level of or inactivating a polypeptide comprising a sequence selected from the group consisting of the sequences recited in SEQ ID NOS: 46-50, 55, 60, 61, 72-79, 82-84, 90, 143-191, 196-199, and 201, and variants of such sequences.




Expression of a polynucleotide involved in PCD or a selected developmental pathway may be inhibited by inserting a portion of an open reading frame of the present invention, in either sense or antisense orientation, in the genetic construct. Such portions need not be full-length but preferably comprise at least 25 and more preferably at least 50 residues of a polynucleotide of the present invention. A much longer portion, or even the full length polynucleotide corresponding to the complete open reading frame, may be employed. The portion of the open reading frame does not need to be precisely the same as the endogenous sequence, provided that there is sufficient sequence similarity to achieve inhibition of the target polynucleotide. Thus a sequence derived from one species may be used to inhibit expression of a polypeptide in a different species.




According to another embodiment, the genetic constructs of the present invention comprise a polynucleotide including an untranslated region of a polynucleotide coding for a polypeptide encoded by a polynucleotide of the present invention, or a polynucleotide complementary to such an untranslated region. Examples of untranslated regions that may be usefully employed in such constructs include introns and 5′-non-coding leader sequences. Transformation of a forestry plant with such a genetic construct generally produces a reduction in the expression level of the polypeptide by the process of cosuppression; in a manner similar to that discussed, for example, by Napoli, et al.,


Plant Cell


2: 279-290, 1990; and de Carvalho Niebel, et al.,


Plant Cell


7: 347-358, 1995.




Alternatively, regulation may be achieved by inserting appropriate sequences or subsequences (e.g. DNA or RNA) in ribozyme constructs (McIntyre C L, Manners J M, “Strategies for the suppression of peroxidase gene expression in tobacco: designing efficient ribozymes,”


Transgenic Res


. 5(4): 257-262, 1966). Ribozymes are synthetic RNA molecules that comprise a hybridizing region complementary to two regions, each of which comprises at least 5 contiguous nucleotides in a mRNA molecule encoded by one of the inventive polynucleotides. Ribozymes possess highly specific endonuclease activity, which autocatalytically cleaves the mRNA.




The genetic constructs of the present invention may further comprise a gene promoter sequence and a gene termination sequence, operably linked to the polynucleotide and capable of controlling expression of the polypeptide. The gene promoter sequence is generally positioned at the 5′ end of a polynucleotide to be transcribed, and is employed to initiate transcription of the polynucleotide. Gene promoter sequences are generally found in the 5′ untranslated region of a gene, but they may exist downstream of the open reading frame or in introns (Luehrsen, K R,


Mol. Gen. Genet


. 225: 81-93, 1991), or in the coding region, as for. example in a plant defense gene (Douglas, et al.,


EMBO J


. 10: 1767-1775, 1991).




Numerous gene promoter sequences that may be usefully employed in genetic constructs of the present invention are well known in the art. The gene promoter sequence, and also the gene termination sequence, may be endogenous to the target host or may be exogenous, provided the promoter is functional in the target host. For example, the promoter and termination sequences used when the target organism is a plant, may be from other plant species, plant viruses, bacterial plasmids and the like. In preferred embodiments, the gene promoter and termination sequences are common to those of the polynucleotide being introduced.




Factors influencing the choice of promoter include the desired tissue specificity of the construct, and the timing of transcription and translation. For example, constitutive promoters, such as the 35S Cauliflower Mosaic Virus (CaMV 35S) promoter with or without enhancers, such as the Kozak sequence or the Omega enhancer, and


Agrobacterium tumefaciens


nopaline synthase terminator, may be usefully employed in the present invention. Use of a tissue specific promoter will result in production of the desired sense or antisense RNA only in the tissue of interest. With genetic constructs employing inducible gene promoter sequences, the rate of RNA polymerase binding and initiation can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and the like. Temporally regulated promoters can be employed to effect modulation of the rate of RNA polymerase binding and initiation at a specific time during development of a transformed cell. Preferably, the original promoters from the gene in question, or promoters from a specific tissue-targeted gene in the organism to be transformed, such as eucalyptus or pine are used. Other examples of gene promoters which may be usefully employed in the present invention include mannopine synthase (mas), octopine synthase (ocs) and those reviewed by Chua et al. (


Science


244: 174-181, 1989).




The gene termination sequence, which is located 3′ to the polynucleotide to be transcribed, may come from the same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art may be usefully employed in the present invention, such as the 3′ end of the Agrobacterium tumefaciens nopaline synthase gene. However, preferred gene terminator sequences are those from the original polynucleotide, or from the target species to be transformed.




The genetic constructs of the present invention may also contain a selection marker that is effective in target cells, such as forestry plant cells, to facilitate the detection of transformed cells containing the genetic construct. Such markers, which are well known in the art, typically confer resistance to one or more toxins. One example of such a marker is the NPTII gene, whose expression results in resistance to kanamycin or hygromycin, antibiotics which are usually toxic to plant cells at a moderate concentration (Rogers et al. in Weissbach, A and Weissbach, H, eds.,


Methods for Plant Molecular Biology


, Academic Press: San Diego, Calif., 1988). Transformed cells can thus be identified by their ability to grow in media containing the antibiotic in question. Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques that are well known in the art, such as Southern and Western blots.




Techniques for operatively linking the components of the genetic constructs of the present invention are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook, et al.,


Molecular Cloning: A Laboratory Manual


, CSHL: Cold Spring Harbor, N.Y., 1989). Genetic constructs of the present invention may be linked to a vector having at least one replication system, for example


E. coli


, whereby after each manipulation, the resulting construct can be cloned and sequenced, and the correctness of the manipulation determined.




The genetic constructs of the present invention are used to transform forestry plants, including gymnosperms (e.g. Scots pine (Aronen,


Finnish Forest Res. Papers


v.595, 1996), white spruce (Ellis et al.,


Biotechnology


11:94-92, 1993), and larch (Huang et al.,


In Vitro Cell


27:201-207, 1991). In one preferred embodiment, the genetic constructs of the present invention are employed to transform woody plants, herein defined as a perennial tree or shrub whose stem increases in diameter each year by the addition of woody tissue. Preferred forestry plants are selected from the group consisting of eucalyptus and pine species, most preferably from the group consisting of


Eucalyptus grandis


and


Pinus radiata


. Other species which may be usefully transformed with the DNA constructs of the present invention include, but are not limited to: pines such as


Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinus jeffreyi, Pinus lambertiana, Pinus monticola, Pinus nigra, Pinus palustrus, Pinus pinaster, Pinus ponderosa, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobus, Pinus sylvestris, Pinus taeda, Pinus virginiana


; other gymnosperm such as


Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnifica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Huniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thuja plicata


; and Eucalypts such as


Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botyroides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dalrympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova


-


anglica, Eucalyptus obliqua, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticornis, Eucalyptus torelliana, Eucalyptus urnigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo, Eucalyptus youmanni.






Techniques for stably incorporating genetic constructs into the genome of specific target organisms are well known in the art. Techniques that are suitable for transforming plants include


Agrobacterium tumefaciens


mediated introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous plants and certain monocots and gymnosperms may be transformed by Agrobacterium Ti plasmid technology, as described, for example by Bevan,


Nucl. Acid Res


. 12:8711-8721, 1984. Targets for the introduction of the genetic constructs of the present invention include tissues, such as leaf tissue, dissociated cells, protoplasts, seeds, embryos, meristematic regions; cotyledons, hypocotyls, and the like. The preferred method for transforming eucalyptus and pine is via


Agrobacterium tumefaciens


using adventitious shoot induction or somatic embryogenesis.




Target cells having non-native genetic constructs incorporated in their genome may be selected by means of a marker, such as the kanamycin resistance marker discussed above. Transgenic cells may then be cultured in an appropriate medium to regenerate whole plants, using techniques that are well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the case of seeds or embryos, an appropriate germination or callus initiation medium is employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. For a review of regeneration of forest trees see Dunstan et al., “Somatic embryogenesis in woody plants,” pp. 471-450 in Thorpe, T A, ed., “In vitro embryogenesis of plants,” (Vol. 20 of


Current Plant Science and Biotechnology in Agriculture


). Specific protocols for the regeneration of spruce are discussed by Roberts et al., “Somatic Embryogenesis of Spruce,” pp. 427-449, in Redenbaugh, K, ed.,


Synseed: applications of synthetic seed to crop improvement


, CRC Press, 1993). The resulting transformed plants may be reproduced sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.




As discussed above, the production of RNA in target plant cells may be controlled by the choice of an appropriate promoter sequence, or by selecting the number of functional copies or the site of integration of the polynucleotides incorporated into the genome of the target host. A target host organism may be transformed with more than one genetic constructs of the present invention, thereby modulating the concentration or activity of more than one polypeptide, affecting more than one tissue, or affecting more than one expression time. Similarly, a genetic construct may be assembled containing more than one open reading frame encoded by a polynucleotide of the present invention or more than one untranslated region of a polynucleotide. The polynucleotides of the present inventive may also be employed in combination with other known sequences encoding various polypeptides.




Additionally, the polynucleotides of the present invention may be used as non-disruptive tags for marking organisms, particularly plants. Genetic constructs comprising polynucleotides of the present invention may be stably introduced into an organism as heterologous, non-functional, non-disruptive tags. It is then possible to identify the origin or source of the organism at a later date by determining the presence or absence of the tag(s) in a sample of material. Organisms other than plants may also be tagged with the polynucleotides of the present invention, including commercially valuable animals, fish, bacteria and yeasts.




Detection of the tag(s) may be accomplished using a variety of conventional techniques, and generally involves the use of nucleic acid probes. Sensitivity in assaying for the presence of probe may be usefully increased by using branched oligonucleotides, as described by Horn, T, Chang, C A, and Urdea, M S, “Chemical synthesis and characterization of branched oligo-deoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays,”


Nucleic Acids Research


25(23): 4842-4849, 1997, enabling detection of as few as 50 DNA molecules in the sample.




The following examples are offered by way of illustration and not by way of limitation.




EXAMPLE 1




Isolation and Characterization of cDNA Clones from


Pinus radiata


and


Eucalyptus grandis








Pinus radiata


and


Eucalyptus grandis


cDNA libraries were constructed using non-subtracted or subtracted methods and screened as follows. Total RNA was extracted from the plant tissue using the protocol of Chang et al.,


Plant Molecular Biology Reporter


11:113-116, 1993. mRNA was isolated from the total RNA preparation using a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, Calif.) or Dynal Oligo (dT)


25


Beads (Dynal, Skogen, Norway). Non-subtracted cDNA libraries were constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene, La Jolla Calif.) or a SuperScript Choice System (Gibco BRL Life Technologies, Gaithersburg Md.), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 μl of sample DNA from the 5 μl ligation mix. Mass excision of the library was done using XL1-Blue MRF′ cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, Md.) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG).




Subtracted


Pinus radiata


cDNA libraries (developed using early wood xylem [tester DNA] subtracted against late wood xylem [driver DNA] or late wood xylem [tester DNA] subtracted against early wood xylem [driver DNA] were constructed as follows. mRNA isolated using Dynal Beads (see above) was used to generate cDNA using manufacturer's instructions from the Clontech PCR-Select™ cDNA Subtraction Kit (Clontech Laboratories Inc, Palo Alto, Calif.). Both the tester and driver double-stranded cDNA preparations were digested with restriction endonuclease RsaI and then only the digested tester cDNA population used to generate. two distinct tester populations each with different adaptors ligated. The first round of hybridization, using both tester cDNA populations and the driver cDNA population combined, was performed to allow for equalization and enrichment of differentially expressed sequences. This was followed by a second round of hybridization to generate the templates for PCR amplification. Using suppression PCR, differentially expressed sequences were favourably amplified exponentially. This resultant population of cDNAs was then used in a second round of PCR amplification to remove background and further enrich for differentially expressed sequences. PCR products were -ligated to T-tailed pBluescript II SK+ (constructed according to the method of Khan et al., TIG 10:7, July 1994; or Hadjeb and Berkowitz,


Biotechniques


, January 1996). Electro-competent XLI-Blue


E. coli


cells were electroporated with recombinant plasmids and cells plated onto. LB-ampicillin plates containing X-gal and IPTG.




Colonies containing cDNA inserts were cultured in NZY broth with the appropriate antibiotic and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, Calif.) according to the manufacturer's protocol.




Polynucleotides for positive clones were obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5′ end and, in some cases, also from the 3′ end. For some clones, internal sequences were obtained using subcloned fragments, exonuclease III deletions, or by direct sequencing using gene-specific primers designed to identified regions of the gene of interest. Subcloning was performed using standard procedures of restriction mapping and subcloning to pBluescript II SK+ vector (Stratagene) and other standard sequencing vectors.




The determined cDNA sequences, including the polynucleotides of the present invention, were compared to and aligned with known sequences in the EMBL database (as updated to end of August, 1998). Specifically, the polynucleotides identified in SEQ ID NOS. 1-45, 90-140, 192-195, 200, 202-204 and 206, were compared to polynucleotides in the EMBL database using the BLASTN algorithm version 2.0.4 [Feb-24-1998] and version 2.0.6 [Sep-16-1998] set to the preferred parameters described above. Specifically, running parameters used for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity were as follows: Unix running command: blastall -p blastn -d embldb -e 10 -G0 -E0 -r 1 -v 30 -b 30 -i queryseq -o results. Multiple alignments of redundant sequences were used to build up reliable consensus sequences. Based on similarity to known sequences from other plant or non-plant species, the isolated polynucleotides of the present invention identified as SEQ ID NOS. 1-45, 90-140, 192-195, 200 and 204, were putatively identified as encoding polypeptides having similarity to the polypeptides shown in Table 1, above.




The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithm BLASTN. The corresponding predicted protein sequences (DNA translated to protein in each of six reading frames) were compared to sequences in the SwissProt database using the computer algorithm BLASTP. Comparisons of DNA sequences provided in SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206, to sequences in the EMBL DNA database (using BLASTN) and amino acid sequences provided in SEQ ID NOS: 46-89, 141-191, 196-199, 201 and 205, to sequences in the SwissProt database (using BLASTP) were made as of March, 1999. Analysis of the amino acid sequences against the EMBL DNA database dynamically translated in all six reading frames (both strands) was. conducted using the TBLASTN algorithm. Analysis of six-frame translations of the polynucleotides of SEQ ID NOS: 1-45, 90-140, 192-195 200, 204 and 206, were also compared to and aligned with the six-frame translations of polynucleotides in the EMBL database using the TBLASTX program.




BLASTN Polynucleotide Analysis




The cDNA sequences of SEQ ID NOS: 1-7, 10-18, 20-31, 35-40, 43, 44, 90-94, 98-107, 109, 110, 112-118, 120, 121, 123-140, 192-195, 200, 204, and 206, were determined to have less than 50% identity, determined as described above, to sequences in the EMBL database using the computer algorithm BLASTN, as described above. The cDNA sequences of SEQ ID NOS: 8, 9, 33, 34, 41, 42, 96, 108, and 111 were determined to have less than 75% identity, determined as described above, to sequences in the EMBL database using BLASTN, as described above. The cDNA sequences of SEQ ID NOS: 32, 95, 97, 119, and 122, were determined to have less than 90% identity, determined as described above, to sequences in the EMBL database using BLASTN, as described above. The cDNA sequence of SEQ ID NO: 9 was determined to have less than 98% identity, determined as described above, to sequences in the EMBL database using BLASTN, as described above.




BLASTP Amino Acid Analysis




The predicted amino acid sequences of SEQ ID NOS: 46, 48-50, 55, 58, 60, 61, 80, 81, 87-89, 141, 142, 144, 156, 157, 160, 161, 173, 174, 177, 179, 180, 182-191, 198 and 205, were determined to have less than 50% identity, determined as described above, to sequences in the SwissProt database using the BLASTP computer algorithm as described above. The predicted amino acid sequences of SEQ ID NOS: 49, 57, 59, 66, 67, 72, 82-84, 143, 145, 149, 150, 152-155, 159, 162-173, 178, 181, 196, 197, 199, and 201, were determined to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The predicted amino acid sequences of SEQ ID NOS: 51-54, 56, 62-65, 68-71, 73, 74, 79, 146, 147, 151, 158, and 176, were determined to have less than 90% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The predicted amino acid sequences of SEQ ID NOS: 75, 78, 85, 86, and 148, were determined to have less than 98% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTP, as described above.




TBLASTN and TBLASTX Analysis




The predicted amino acid sequences of SEQ ID NOS: 46, 47, 49, 50, 58, 60, 61, 80, 83, 87, 89, 141, 157, 160, 161, 174, 175, 177, 179-180, 182-191, and 197-199, were determined to have less than 50% identity, determined as described above, to predicted amino acids dynamically translated in all six reading frames (both strands of polynucleotides) in the EMBL database. The predicted amino acid sequences of SEQ ID NOS: 48, 55, 57, 59, 66, 67, 69, 71, 72, 81, 82, 88, 142-145, 149, 150, 152, 153, 155, 156, 162-165, 167-172, 176, 178, 181 and 205, were determined to have less than 75% identity, determined as described above, to predicted amino acids dynamically translated in all six reading frames (both strands of polynucleotides) in the EMBL database. The predicted amino acid sequences of SEQ ID NOS: 51, 52, 56, 62-65, 68, 73, 74, 84, 146, 147, 151, 154, 158, 159, 166, 173, and 196, were determined to have less than 90% identity; and the predicted amino acid sequences of SEQ ID NOS: 53, 75, 78, 79, 85, 86, and 148, were determined to have less than 98% identity; all to dynamic translations in all six reading frames of sequences in the EMBL DNA database using the TBLASTN algorithm version 2.0.6 [Sept-16-1998] set to the following parameters: Unix running command: blastall -p blastn -d embldb -e10 -G0 -E0 -v30 -b30 -i queryseq -o results.




Finally, the six-frame translations of the polynucleotide sequences of SEQ ID NOS: 1-45, 90-140, 192-195, 200, 204 and 206 were compared to and aligned with six-frame translations of polynucleotides in the EMBL database using the TBLASTX program version 2.0.6 [Sept-16-1998] set to the following running parameters: Unix running command: blastall -p blastn -d embldb -e 10 -G 0 -E 0 -v 30 -b 30 -i queryseq -o results. The translations of the polynucleotides of SEQ ID NOS: 1-8, 10, 12-16, 18, 20-22, 24-27, 31, 34-40, 42-45, 90-140, 192-195, 204, and 206, were determined to have less than 50% identity, determined as described above, to translations of polynucleotides in the EMBL database using the computer algorithm TBLASTX. The translations of the polynucleotides of SEQ ID NOS: 17, 28-30, and 41, were determined to have less than 75% identity, determined as described above, to translations of polynucleotides in the EMBL database using the computer algorithm TBLASTX. The translations of the polynucleotide sequences of SEQ ID NOS: 11, 19, and 23, were determined to have less than 90% identity, determined as described above, to translations of polynucleotides in the EMBL database using the computer algorithm TBLASTX. The translations of the polynucleotide sequence of SEQ ID NO: 9 were determined to have less than 98% identity, determined as described above, to translations of polynucleotides in the EMBL database using is the computer algorithm TBLASTX.




EXAMPLE 2




Use of a DAD1 Gene to Modify Tobacco




Transformation of Tobacco Plants with a


Pinus radiata


DAD1 Gene




A genetic construct comprising the antisense nucleotide of a polynucleotide comprising the coding region of DAD1 (SEQ ID NO: 8) from


P. radiata


was constructed and inserted into


Agrobacterium tumefaciens


by direct transformation using published methods (See An G, Ebert P R, Mitra A, Ha S B, “Binary Vectors,” in Gelvin SB, Schilperoort R A (eds).


Plant Molecular Biology Manual


, Kluwer Academic Publishers: Dordrecht, 1988). The nucleotide sequence of the antisense nucleotide is given in SEQ ID NO: 206. General methods for plant transformation are described in Horsch R, Fry J, Hofman N, Eichholtz N, Rogers S and Fraley R, “A simple and general method for transferring genes into plants,”


Science


227:1229-1231, 1985. ) The antisense DNA construct was made by PCR amplification of the open reading frame for the cDNA, followed by purification and cloning of the PCR product into pART7 plasmid. The plasmid was then digested with restriction endonuclease NotI and the 35S promoter-Insert-OCS 3′UTR cloned into the pART27 plant expression vector (See Gleave A, “A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome,”


Plant Molecular Biology


20:1203-1207, 1992). The presence, integrity and orientation of the transgenic construct was verified by restriction digestion and DNA sequencing.




Tobacco (


Nicotiana tabacum


cv. Samsun) leaf sections were transformed with the antisense construct using the method of Horsch et al. (


Science


227:1229-1231, 1985). Multiple independent transformed plant .lines were established for the sense construct. Transformed plants containing the appropriate gene construct were verified using Southern blot experiments.





FIG. 1

illustrates genomic DNA isolated from seven DAD1 transgenic tobacco lines (lanes 1-7) and from a non-DAD1 control tobacco plant (lane 8). As can be seen, plants 1-7 contain DNA which hybridizes with the pine DAD1 sequence (Final wash conditions: 1×SSC, 0.1% SDS at 65° C.), while the control tobacco plant does not. This demonstrates that the antisense polynucleotides corresponding to DAD1 were successfully transformed into target plants.




Total RNA was isolated from each of the seven DAD1 antisense transformed tobacco plant lines, and from a control (non DAD1-containing) tobacco line. The RNA samples were analysed in a Northern blot experiment to determine the level of expression in each line. mRNA was hybridized with a pine DAD1 probe (Final wash conditions: 0.1×SSC, 0.1% SDS at 65° C.).

FIG. 2

illustrates the presence of the pine DAD1 antisense mRNA in all seven transgenic tobacco lines (lanes 1-7), but not in the control tobacco line (lane 8).




EXAMPLE 3




Demonstration of the Presence/Absence of Unique Sequence Identifiers in Plants




Transgenic tobacco plants were created using unique identifier sequences which are not found in tobacco. The unique identifier sequences inserted were isolated from


Pinus radiata


, SEQ ID NO: 202, and


Eucalyptus grandis


, SEQ ID NO: 203. The unique identifier sequences were inserted into


Agrobacterium tumefaciens


LBA4301 (provided as a gift by Dr. C. Kado, University of California, Davis, Calif.) by direct transformation using published methods (See, An G, Ebert P R, Mitra A, Ha S B, “Binary Vectors,” in Gelvin S B, Schilperoort R A (eds),


Plant Molecular Biology Manual


, Kluwer Academic Publishers: Dordrecht, 1988). The presence and integrity of the unique identifier sequences in the Agrobacterium transgenic constructs were verified by restriction digestion and DNA sequencing.




Tobacco (


Nicotiana tabacum


cv. Samsun) leaf sections were transformed using the method of Horsch et al. (Science, 227:1229-1231, 1985). Three independent transformed plant lines were established for each unique sequence identifier used. Two empty-vector control plant lines were established using an empty gene transfer vector that lacked a unique sequence identifier.




The uniqueness of the sequence identifiers was assayed using Southern blot analyses to test for the presence of the sequence identifier in the genome of the plants. If the sequence identifier is unique and therefore useful as a tag, then the sequence identifier should be clearly absent in plants which have not been tagged and it should be clearly present in plants which have been tagged. In the present example, the unique identifiers would be expected to be absent in the empty-vector transformed control plants. The unique identifier would be expected to be present in the transgenic plants transformed with the unique sequence identifiers.




Genomic DNA was prepared from empty-vector transformed control plants and plants transformed with unique sequence identifiers using the cetyltrimethyl-ammonium bromide (CTAB) extraction method of Murray and Thompson (


Nucleic Acids Research


8:4321-4325, 1980). The DNA samples were digested with the restriction enzyme EcoRI in the case of the plants transformed with the Pinus unique sequence identifier (SEQ ID NO: 202) and the restriction enzyme XbaI in the case of the plants transformed with the Eucalyptus unique sequence identifier (SEQ ID NO: 203). The DNA fragments produced in the restriction digests were resolved on a 1% agarose-gel.




After the agarose gel electrophoresis step, the DNA samples were transferred to Hybond-N+ brand nylon membranes (Amersham Life Science, Little Chalfont, Buckinghamshire, England) using methods established by Southern (


J. Mol. Biol


. 98: 503-517). The nylon membranes were probed with radioactively-labeled probes for the unique sequence identifiers identified above and washed at high stringency (final wash: 0.5×salt sodium citrate buffer (SSC) plus 0.1% sodium dodecyl sulfate (SDS), 15 minutes at 65° C.). The hybridisation of the probes to complementary sequences in the genomic DNA samples was detected using auto-radiography.




The results are shown in

FIGS. 3 and 4

.





FIG. 3

shows the hybridisation pattern detected in the Southern blot analysis using a probe derived from the Pinus sequence identifier (SEQ ID NO: 202). Lanes A-B contain DNA samples from empty-vector transformed control plants and lanes C-E contain DNA from plants transformed with SEQ ID NO: 202. There is no hybridization in lanes A-B indicating that SEQ ID NO: 202 is not present in empty-vector transformed tobacco plants; that is, SEQ ID NO: 202 is a unique tag suitable for unambiguous marking of tobacco plants. There is strong hybridisation in lanes C-E, indicating that the plants which received SEQ ID NO: 202 via transformation have been clearly and unambiguously tagged with the unique sequence contained in SEQ ID NO: 202.





FIG. 4

shows the hybridization pattern detected in the Southern blot analysis using a probe derived from the Eucalyptus sequence identifier (SEQ ID NO: 203). Lanes A-B contain DNA samples from empty-vector transformed control plants and lanes C-E contain DNA from plants transformed with SEQ ID NO: 203. There is no hybridisation in lanes A-B indicating that SEQ ID NO: 203 is not present in empty-vector transformed tobacco plants; that is, SEQ ID NO: 203 is a unique tag suitable for unambiguous marking of tobacco plants. There is strong hybridisation in lanes C-E indicating that the plants which received SEQ ID NO: 203 via transformation have been clearly and unambiguously tagged with the unique sequence contained in SEQ ID NO: 203.




The data clearly demonstrates the utility of the sequences disclosed in this specification for the purposes of unambiguously tagging transgenic materials. A unique sequence was selected from a large number of potential tags and shown to be absent in the genome of the organism to be tagged. The tag was inserted into the genome of the organism to be tagged and a well-established DNA detection method was used to clearly detect the unique sequence identifier used as the tag.




Because of the sequence-specific detection methods used in the example, a user of the invention disclosed in this specification has both a high likelihood of finding a sequence identifier, among the list which has been disclosed, which will be useful for tagging any given organism and an unequivocal method for demonstrating that a tagged organism could only have acquired a given tag through the deliberate addition of the unique sequence to the genome of the organism to be tagged. If the user of this invention maintains the precise sequence of the tag used in a given organism as a secret, then any disputes as to the origin and history of the organism can be unambiguously resolved using the tag detection techniques demonstrated in the present example.




SEQ ID NOS: 1-206 are set out in the attached Sequence Listing. The codes for nucleotide sequences used in the attached Sequence Listing, including the symbol “n,” conform to WIPO Standard ST.25 (1998), Appendix 2, Table 1.




All references cited herein, including patent references and non-patent publications, are hereby incorporated by reference in their entireties. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention.







206




1


860


DNA


Pinus radiata



1
aatgcgtcct cgcagcgttt ttcaccttcg aaaaccattg cgtgttgtaa aagcaagctg 60
cgcccggacg gatttcgtcg gaactcagaa gctttttgag ttttcggatt catatattca 120
tcggaagtgc ttcccactgg aggaaattga aaccacgttg cagcctggca tttttgcagg 180
gcatgatagg gctgaggagc tcagaacggc taattgaaag agatttcaga ggataaattc 240
tgtggtttca atttgataca ggatgaaaat gagtagtttt aattaccctc ctcaggacga 300
tggcgagccc caatatgcta gctcgggcag tggtgagaat cacatgcctg atgatgatga 360
ccccaactgg ggcgatggtt ataaagttta cccacagcca aatcaaggtg aggcccaaga 420
tcagcccgaa tatgcaggct tcaatgagga ttaccaggag cagaaaaatg acatctatgg 480
taaaatcatg ctatctggca tactagtgtt tatttttatt attttgttag ccattttgct 540
gcacgtttat gccagatggt tttggaggcg gtctgctcga ttccccaacc ggaatcgacg 600
gagatcatct tctatccgtc atcggtttaa ttttatagaa gaagaaccgg tatggctgcg 660
gaacgtgggg ttgcaatctg ccgtattaga gacacttccc atctttgtgt ataaatcaca 720
ggatttcaca gatgggctgg agtgcgcagt gtgtctgtgc gaattcgagg agaatgagat 780
agctcggctt ctgcccaatt gcaggcacaa ttttcatgtc gagtgtattg acatgtggtt 840
tcgttcgcat tccacttgcc 860




2


367


DNA


Pinus radiata



2
ccggctggtg ggcgactgca acgccatggg cgacgactac ggcggcggct atcccaacac 60
caaattcccc gacgacgggt cgtccaacgc ctacgccctc aacggcagga tcatgctcgc 120
cgccatcatc gtcctcttct tcgtcgtcat catcatgatc tccctccacc tctacgcccg 180
ctggttcctc ctccgccgcc agcagcgccg ccgcttcctc cgccgcaacc gcctcaaccg 240
ccgcacccag atcgtcttct acgccgactt ccccgccccc caggcctccc gcggcctcga 300
ctcctccgtc ctcaagtccc tccccgtctt caccttctcc tcctccgccg ccgccgccgc 360
cgccgcc 367




3


330


DNA


Pinus radiata



3
gcaacgccat gggcgacgac tacggcttcg gcgatcccaa caccgaattc cgcggcaacg 60
ggcagtccaa cgcctacgcc ctcaacggca ggatcatgct cgccgccatc atcgtcctct 120
tcttcgtcgt catcatcatg atctccctcc acctctacgc ccgctggttc ctcctccgcc 180
gccagcagcg ccgccgcttc ctccgccgca accgcctcaa ccgccgcacc cagatcgtct 240
tctacgccga cttccccgcc ccccaggcct cccgcggcct cgactcctcc gtcctcaagt 300
ccctccccgt cttcaccttc tcctcctccg 330




4


315


DNA


Pinus radiata



4
gaacaagact gtgattgagt ccctcccttt cttcaggttc tcctcgctca agggatcgaa 60
acaagggcta gagtgcgcgg tgtgcttgtc caagttcgaa gacattgaga ttctccggtt 120
actccccaag tgcaggcatg cattccacat cgattgcatc gattattggc ttgagaagca 180
ctcaagctgc ccgctctgcc ggcacaaagt cagtgccgag gacccagcaa atttcaccta 240
tacgaatagc atgaggctga tgagccaatc tgatatgaga caagattcca acttggagct 300
gttcgttcag agaga 315




5


483


DNA


Pinus radiata



5
agctagcagt gctctgccat atttgcagag taggctatca aataatttga gggccgagac 60
caaccccatt tgaaaggaaa tttctgtggc ttcaacatga gttcggttag cgaaacccat 120
gaaccgcctc agtatgggag cgcgcagggt tatgtcatca gtggcaaaat catgttgtcg 180
gcaataatat gtctttttgt tgtggtgttg ctcatgtttt tgctgcacct ttatgccaga 240
tggatttggc gacactctgc taggttttcc cgacggaatc gacgcagatc agcttctagg 300
cgtcgccggc ttcgtttctc gggacaagta ccggcgagtc tccagaatac ggggttggat 360
tcttcgatat tgcagactct gcccatgttt gtgtataaat cccaagattt catcgatggt 420
ctggagtgcg cagtctgtct gtgcgagttg gaggagaatg agaaagcccg gcttctgcca 480
aat 483




6


600


DNA


Pinus radiata



6
caagacgaag acgacgacga cgacgagggt cgagaagcga agcaagggtt gcagcaggaa 60
gaaagaatgg cgagatcgag cggcgacgac gctcaggctc tgttccactc gctccgatcc 120
gcttacgccg ccactcccaa gaacctcaag atcatcgatc tgtacgtggc cttcgccgtc 180
ttcacagcac tgattcaggt tgtttatatg gctctggttg gctctttccc tttcaattcg 240
ttcctggctg ggggcctttc ttgtattgga acggccgtcc tggctgtttg tctccgtatc 300
caagtcaaca aggagaacaa ggagttcaag gatttaccac ctgagcgtgc tttcgcagat 360
tttgttctct gcaatttggt gcttcacttg gtgattatga atttccttgg ttaagctgga 420
gccacgggtt ttgcaggatc tacatagctt gaggagtgat cgaatagtag taaaataact 480
agttgccaat tcattttgct ttactggact gtgaggtgca aagctagtga tatgtgctga 540
atgataggat tttgtggatt gactggggag cccaaattta tgttcttgtt tgaggtacac 600




7


778


DNA


Pinus radiata



7
caagacgaag acgacgacga cgacgagggt cgagaagcga agcaagggtt gcagcaggaa 60
gaaagaatgg cgagatcgag cggcgacgac gctcaggctc tgttccactc gctccgatcc 120
gcttacgccg ccactcccaa gaacctcaag atcatcgatc tgtacgtggc cttcgccgtc 180
ttcacagcac tgattcaggt tgtttatatg gctctggttg gctctttccc tttcaattcg 240
ttcctggctg ggggcctttc ttgtattgga acggccgtcc tggctgtttg tctccgtatc 300
caagtcaaca aggagaacaa ggagttcaag gatttaccac ctgagcgtgc tttcgcagat 360
tttgttctct gcaatttggt gcttcacttg gtgattatga atttccttgg ttaagctgga 420
gccacgggtt ttgcaggatc tacatagctt gaggagtgat cgaatagtag taaaataact 480
agttgccaat tcattttgct ttactggact gtgaggtgca aagctagtga tatgtgctga 540
atgataggat tttgtggatt gactggggag cccaaattta tgttcttgtt tgaggtacac 600
caagaaaaga atgatttttc ttctgccgaa aaaaaaaaaa aaacctttat ttgattagct 660
tagttttgta tcatggttgt gcttagtctg ccgacatttg gtcctgtcaa ggatgtcaat 720
gggctgtggc atgtcggatt ttataagtaa tccaaaattt tctgttcaaa aaaaaaaa 778




8


771


DNA


Pinus radiata



8
attttgtgac cgaaggccgg ggtgatcgaa acaagttgag agatccaagc gaaaatggga 60
acctcaacag ctaaggatgc acaagttctc gttgcatcac ttcgatctgc atattctgca 120
actcctacca agctgaagat catcgatctg tatgtggtct acgcagttct cacggcagtt 180
gtgcaggttg tctacatggc aatagttgga tcatttcctt tcaatgcttt tctttcagga 240
gttctatctt gcacggggtc agctgtgctt gcagtttgtt tgcggatgca agtcaacaaa 300
gaaaacaagg aattcaagga tctccctcca gaaagagcat ttgcagattt tgttttgtgc 360
aatcttgtac ttcacttggt gataatgaac ttcctaggtt agtggacaag gacttgcaga 420
tttggaatga gagggtaccc atcacaaagc aacaaaagaa gaattggcta cttgcctttc 480
cttgaaatat gtcgttgcta aggatttagt ggtagtcaaa tacacaaatg cctgaaattg 540
gctcttcttg gttaatgtag ctcccttaat tttctcgtgc ttttgattct tggcgtagaa 600
gacattgtac tcttacatat tgcaaacata aatataagct attgcattat tataccttcg 660
tattgatcat ttcataatgt ggttcaggtc tttgaactct gttgtatggt ttgactcttg 720
agaatcagtg ctgtcaataa gtatcaagca gaagtgatga gaaaaaaaaa a 771




9


424


DNA


Pinus radiata



9
gccaaggcca gggccggaga gaaatatcca atcaaggatg ggaagttcaa cagccaagga 60
tgcgcacgta ctcgttgcct cgcttcgatc tgcatattct gcaactccca ccaaacttaa 120
gattattgat ctgtatgtgg tttacgccat tctcacggca gttgtgcagg ttgtgtacat 180
ggcaatagtt ggatcgtttc cttttaatgc ttttctttca ggagttctat catgcacagg 240
gacagctgtg cttgcagttt gtttgaggat gcaagtgaac aaagaaaaca aggaattcaa 300
ggatcttcct ccagaaagag catttgcaga ttttgtattg tgcaatcttg tacttcactt 360
ggtgataatg aatttcctag gttaatggat aagcatttgt aaaaccggaa tcagagggtg 420
gcat 424




10


689


DNA


Pinus radiata



10
cagaagcgct catgtttctc tctcatttca ttggagacat tcatcagcct ttgcatgtag 60
gcttcactac agacagaggg gccaacgaaa ttgaggtccg ctggtacacc cggaaacaaa 120
accttcacca tgtttgggat agtaatataa ttgagaccgc tgaagagaga tactacagct 180
cagacacaga cggccttgtt gatgctatcc agcagaacat cacgaatgat tgggcagaag 240
aagttaaagg ctgggagacc tgcagttcta ccaagccacc ttgcccagac atatatgcat 300
ccgaaagtat cgccgcggcc tgtcagtggg catacaaagg tgtcagtgaa ggttcggtat 360
tagaagatcc atatttcctg tcccgtttac ctactgttaa tcttcggtta gctaaagggg 420
gagttcgact tgcagccact ctaaaccgca ttttcatgtg agtggcttca agttctggtt 480
gaaaatatgg gactaaaagg aggacaaggt gaagatttaa ggcatattgg agtgacagag 540
agctactcac agactacaat tgcagttcat gcttgtatag gtagtcatat gttcataccc 600
tactgctttc catcttcttg aattgcccaa ctgttcagtg cgttgtcact aaataaagac 660
attctgtcta ttaaaaaaaa aaaaaaaaa 689




11


484


DNA


Pinus radiata



11
acttcctgtt gttggagatc aaaaatgggt tatatggatc tgctccttca acgtaccaat 60
ggcccctggg aagactcgtt ccatcgtttg cagtgctcga aacttctttc agttcacaat 120
gccagggcca gcttggtggc aggtgatccc gaggtggcat gagcactgga cttcgaataa 180
agtttatgat ggagatatga ttgtccttca gggacaggag aagatcttcc tctccaagtc 240
gatggagggt caggaagacg taaatgagca atacacaaag atcacattta cacccactca 300
agccgatcgg tttgtcctgg cattccgcaa ttggctaaga cggcacggga acagccaacc 360
cgaatggttt ggctcgagca gtcaaaagcc tttgccatct accgtcttgt cgaaacgtca 420
gatgcttgat cggttcgagc aacatactct caagtgctcg tcatgcagaa aagcctacga 480
agca 484




12


769


DNA


Pinus radiata



12
atacaaatgg acgcattaac tcatggaact tctgtcggat tcatcacttt ctcgcccaaa 60
attggcagcc aatgtaataa taaatccaag ggagactgca atttctcgtt cttgacagct 120
aaagaacaat ctataagaag aagaagaaat aattttgcta caaggaggcg ggatttacat 180
gtggtttctg caactgtagc tccgcccacc attcctggct cttcttccgc tgaagatttt 240
gacaaagatc gtgaagcaga ggaggagagt gggaaattta tatggagaga tcattggtat 300
cccgtttctt taattgaaga cctggacccc aagattccta cgcctttcca gctcttgggt 360
cgcgagattg ttctctggca agatgccgag ggaaattgga aagccttcga ggacaagtgc 420
ccccacagac ttgctcctct ctcggaaggg agattggatg agaatggatg gcttcaatgc 480
tcctaccatg gctggtcttt caaggcagat gggtcatgtg ctcgaatccc gcaggccgca 540
tccgaaggac ctgaatctcg ggccgcaagg tcacctcgag cttgtgcagt gagtttcccg 600
acaacagtct ctcagggttt gctgttcgtg tggcccgacg agaatggctg ggaaagggcc 660
tcaaagttcg agcccccatt gctacctgat gcatttagtg atccacgctt ctcaacggtc 720
acaatacaaa gagatctgtt ctatggttat gatacattga tggaaaacg 769




13


482


DNA


Pinus radiata



13
gttcaaagcg ggtggtgatt tagccgaggg cgaagaggag gacgaagaag ggcttcgtaa 60
caaacgtggc gattgatcct accttagcct gaaaatgctg tcaggaggct acgcaaccag 120
atccgacact actactgtca acaacggatc cgctaatggc ccaataggaa gtgctccccc 180
aagaattaac tcgatacaaa ataataatcc aggagctgtc aggcctggct ggggaaccat 240
gccccttcac atgaatcctt atcatcccca atcaatgcct cttccgcccc ccaatggtat 300
gcagggtcag cttgtgtgca gtggatgtag aactcttctt gtttatccgc aaggtgcacc 360
aaatgtttgc tgtgcagtat gcaacacagt cactccagtt ccacctcctg ggacagaaat 420
ggctcagcta atctgtggac gttgtcgtac attgctaatg tatgttcgtg gagcaactag 480
tg 482




14


456


DNA


Pinus radiata



14
tttctgttcc accacaaaga atcgatggac caccgtcagg gacaacaccg tctacttcaa 60
cgtcaatgcc ccaatctact caaactgtag tggttgaaaa ccccatgtcc gttgacgaga 120
gtggcaaact ggtgactaat gtcgtcgtcg gcgtcacaac agagaaaagg tgatctattg 180
ccaacagttg aatatggata tggagattgg ttgtgcatac cttgtgagaa agacattcac 240
atcagtactg gagtccccag tacattcaga ttcctgtcgc tgtattgagg atcttgtaaa 300
acttcgtctt catttgtttg gccctatggt acttgtagag tgaataaaag tcttgatatt 360
cctacatgag cttggacaaa aaaggttatc tacttttatc agttgaatat ggagatggat 420
gttggtttgt atatgatgtg gataatagca ttttat 456




15


1014


DNA


Pinus radiata



15
accaccagaa ataatgtgtc acctgcaact tctaccagtt cttctactgc ttttacaatc 60
caaggcaatg tctatccaga tggactttat tatgtgtcaa tgctcattgg gaacccacca 120
aagccctatc accttgatgt tgacacaggg agtgatttga cttggatcca gtgtgatgct 180
ccttgcagaa gttgtgccaa gggaccacac gctctgtaca aacccaagaa aagccaactt 240
gtatcctgca tggcgcctat gtgtgtgaat gtgcaagcag gtcacagcca tgaatgcaca 300
agtacctctg aacagtgtga ctatgagata gagtatgctg atctgggatc ctctatggga 360
gttcttgcga gagacaatat tagagtgtta ctgacaaatg gctctatagc tcgaacaaat 420
tttgtgtttg gatgtgcata tgaccagcag ggttctcttg cagtttcacc tgcagtgaca 480
gatggagtat tgggccttag cagtgctcag gttagtttgc catcacaatt agcaagtcaa 540
ggtctgacta agaatgtgat tggtcattgt attgctggag atgaaagaga tgaaagaagt 600
gggggttata tgttctttgg caatgatctt gtacctgtgt ggggaatgac atgggttccc 660
atgtttggca agcctgcaat gaaattatat tccgtgggca gtgcaaatat gaaacttgga 720
aacaggccgc ttgtttctaa tgacctaaaa aacaaattag gaggggtggt ttttgatagt 780
ggtagctcct ttacatatct cacacagaca gcttacttcg catttgtctc agcagttaaa 840
gagaatcttt ttggaggagg gttagtacag gatttgtcag ataaaacttt accgctgtgt 900
tggcgggcaa gacatcctat caggtctata gcagatgtga aacctttctt caaaccattg 960
actctggatt ttgggggcaa cccatggctt attaagacca aacagtttga catt 1014




16


530


DNA


Pinus radiata



16
ttcggcacga gattaagacc aaacagtttg acattccccc agaaggttac ttggtcatca 60
gttctcatgg taatgtttgt ctgggaatcc tcaatggcag tgaagtgaac gatggcgcca 120
caaatataat tggagacatt tctttgcaag gacaccttat tgtttatgac aatgtcaaga 180
accagattgg ctgggtccat gcagattgcc acaagccacc taagatgatg aaggccttcc 240
ccttttttaa gtaaaacaat gcagcaggaa ctggttcatg ctttgtaatg agcgatgcaa 300
aattttgaac attttgtcaa atatacagaa gacagttgtt aatgtgcaaa tcgtattatt 360
agtgttggtt atagcttata tgtacattat ttacatccac attttctcat atttggggat 420
ctgtcgagct atcaacgagt cctttcacat atttaagtga aatcactatt ttaatatgtt 480
tgtattgtat atattgcatc gatagtagaa tattatcata aaaaaaaaaa 530




17


1293


DNA


Pinus radiata



17
ctgactctct ctctctctgt tttgtctcct ccctcctctc tctcgttttc gcttcgtcgt 60
gaacgcaccc acacgatctt ccattccctc aacaatgtcg actctcaccg tcccgcagcc 120
actgccccct gtagccgatg actgcgagca gctccggaca gccttcgcag gatggggaac 180
aaatgagaag ctgatcatat ccatattggg tcataggaat gcggcgcaga ggaagctgat 240
tcggcaaacc tatgccgaga cttacggcga ggacctcctc aaggcattgg acagagaact 300
taccaatgat ttcgagaggc tggtggtcct ttggtcactt gatccggctg aacgtgatgc 360
gtacttggcg aatgaagcga cgaaaagatg gacttcaagc aaccaggttc tcatggaaat 420
agcctgcacg aggtctccgc agcagttgct tatggcaaga caagcatatc atgcccgata 480
caagaagtca atggaagagg acgtcgctca ccacacaact ggagattttc gtaagttgct 540
ggtacctctt gggagctcct accgtaatga tggagatgag gtgaatatga ctttggcaaa 600
agcagaggct aagatactcc acgagaagat ctcagagaag gcttatggcc atgaggatct 660
cataaggatt ttggctacta ggagcaaagc acaggtcaat gctacgctga atcactacaa 720
aaatgagttt ggaaatgata tcaacaagga tttgaaaact gatccaaaag acgcgttcct 780
tactatactg agagctacag taaagtgcct gactcgccct gagaagtatt ttgaaaaggt 840
tcttcgtcta gccatcaata agcgaggaac agatgaaggg gctctgacca gagtagttgc 900
taccagggcc gaggttgaca tgaagtttat aagtgaggag taccagagga ggaatagcat 960
ccctctcgat cgtgccattg tcaaggacac tactggagac tatgaaaaaa tgcttctggc 1020
attgattggc cacgtcgagg cttgatttac aagtactcat gaagctatcc tggtggaggc 1080
aatatctctg tttttggtgt ggtttgaggc atttctattt tccttgcttt ccaacaacgt 1140
gtagttacca acatgcctcc ccagttgtca gttgtagcta tgcgaagcaa atacacttct 1200
tataatggcg ttggtttatg tacttatgag aagtctttga ttttgatctt taatcaagac 1260
tgctagtaag tgatcgtgaa aaaaaaaaaa aaa 1293




18


484


DNA


Pinus radiata



18
ggaagctgat tcggcaaacc tatgccgaga cttacggcga ggacctcctc aaggcattgg 60
acagagaact taccaatgat tttgaggtct gatcttcttt aattatttgt attcatccca 120
tggagacgcg tccctctttc tctcagatta atccatattc attccgtatc gtcagaggct 180
ggtggtcctt tggtcgcttg atccggctga acgtgatgcg tacttggcga atgaagcgac 240
gaaaagatgg acttcaagca accaggttct catggaaata gcctgcacga ggtctccaca 300
gcagttgctc atggcaagac aagcatatca tgctcgatac aagaagtcgc tggaagagga 360
cgtcgctcac cacacaactg gagattttcg taagttgctg gtacctcttg tgagctccta 420
ccattatgat ggagatgagg tgaatatgac tttggcaaaa gcagaggcta agatactcca 480
cgag 484




19


221


DNA


Pinus radiata



19
cgtacttggc gaatgaagcg acgaaaagat ggacttcaag caaccaggtt ctaatggaaa 60
tagcctgcac gaggtctccg cagcagttgc ttatggcaag acaagcatat catgcccgat 120
acaagaagtc gctggaagag gacgtcggtc accacacaac tggagatttt cgtaagttgc 180
tggtacctct tgtgagctcc taccgttatg atggagatga g 221




20


789


DNA


Pinus radiata



20
atcgtcttcg gctcctcgcg atatcaccaa cttgcttccg cacagagaga gagagagaga 60
gagagagaga gaatggcgac tatcgcggtg ccaccgtcgg ttccgtctcc ggctgaggat 120
gccgagcagc tccaaaaagc tttcgcagga tgggggacga atgaagatct gatcatatcc 180
atactgcctc acagaaacgc agcgcagcgg aaagtaatcc gacaaacata tgccgagaca 240
tatggggaag atcttctcaa agcgcttgac aaggaactct ctagtgactt tgagagatct 300
gtgcttctgt ggaccctgga tcctgcggag cgtgatgcat tcttgtccaa tgaagctacc 360
aagagattga cttcgagcaa ctgggttctc atggaaattg cttgcacgag gtcttcaatg 420
gagttattca tggtgaggca ggcctatcat gctcgttata agaaatctct tgaagaagac 480
atcgcatatc acactactgg ggatttccgc aagctgcttg ttcctctggc aagtaccttt 540
cggtatgagg ggcctgaggt gaacatgaca ttggcgagat cagaggctaa gatacttcat 600
gagaagattc acgagaaggc ttacaatcat gatgagctca tcagaattgt tactacaaga 660
agtaaagctc agcttaatgc aaccctcaat tactacaaca atgagtttgg gaatgccatc 720
aacaaggatc tgaaggctga tccaaatgat gaatttctga aactgctgag atcagcaatt 780
aagtgcttg 789




21


704


DNA


Pinus radiata



21
gttttgttga gctactagat tttagtaaat caagaattca tcagctataa attgaggcat 60
tcgatttcag ttttagttac attttggtga agttggtcga cctgcattgc tgaagatatc 120
gtgcgaagta tgtgatttgt cgagaagatg tcaacaatta tagtgccagt tccaataccg 180
accccatctg aagactctga acgcctgagg aaggcttttg aagggtgggg cacaaatgag 240
aagtcaatca tacaaatatt aggacataga actgcagcac aacgcaaagt aatccgtcaa 300
agttattttc aactgtacga agaggatctc ttgaagcgat tagaatctga gctttcaagt 360
gactttgaga aagctgtatt cctttgggta ctagatccag ctgaacgtga tgcggtcata 420
tctcatggtg caataaagaa gtggaatgca aagaatatat cgcttttaga aatttccagt 480
gctcgatctt cggctgaact attgatggtg aggcaagcat atcatattcg gtacaaaaag 540
tccctcgaag aagacgtggc tgcacataca agtggaaact tccgtaagtt gctggtagca 600
cttgtaagtt catatcggta tgaaggtccg gaagtggata tgcatttggc aagttatgaa 660
gcaaagaagc taagtgaatc tataaccgag caaaaaagat aatt 704




22


1235


DNA


Pinus radiata



22
cacagctttc cttaaccgga gaagccatag atatgttttg aggttctggg ttttgtgtga 60
agcataacac tgcgataatc gagaagagag agagcaatgt ctgtacaaag agcgttatca 120
aacatagctg cgctagccat cagcgttgga acgggagtcg gcctcctaaa cgcgtcgctg 180
tataccgtgg atggggggca caaagcggtc cttttcgaca gattcagagg cgtcctggac 240
accaccgtgg gggaaggcac ccacttcctc attccatggc ttcagaaacc ctacatattc 300
gagatcagaa cgaaaccccg ctccatcagc accatcacgg gcaccaagga cctccagatg 360
gtgaacatct ctctgaggat acttgccagg cccaaagagg actcgttacc cgacatattc 420
cagaggctcg gcctcgatta cgacgagaga gtgttgccct ccattgggaa tgaggtcttg 480
aaggccgtcg tggcgcagtt caacgctgac cagctcttga ccgagaggcc aacggtttct 540
gctctggtca gggaggctct gctgcatcgc gccaaagatt ttaacatttt gttggacgac 600
gtggccatca cccatctgtc ctatggcccc gagttctcaa aagcagtgga gcagaagcag 660
gtggcgcagc aggaagccga gaggtcgaag tttgtggttg ccaaagctga gcaggagagg 720
agagctgccg tggtgagagc agagggggag agtgaggctg ctaagcttat ttctctggcc 780
acgtctgctg cgggactagg gctaattgag ctcaggcgta tcgaggctgc caaggagatt 840
gcttccaccc tttctcggag ccctaatgtg gtctacttgc cctctggcaa caacatgctc 900
ttgggcttga acccttcgca ttgaacacga ggttactgat ccatcttaga tggtaaggag 960
ttgatgatga gcccaagtca cggatgcgat cagcatgtcc agtgtttctt gataaatata 1020
caagaaatta tttctgtata ttttttatgc ggtggaggtt ttttgggcaa agaatattca 1080
tattaccgat ttagaactcg acaatatttc aaatatcaag atgcagagaa ataacatgct 1140
taagccttct aggaaaaaat aagctttccg aaaaacggct ttgctcggat atatatgtta 1200
ttaatttatc aaggttggga cgtcgacgcg gccgc 1235




23


497


DNA


Pinus radiata



23
ctctctctct atctccgctc gtcgatctgc gcttcgagga ggaagggagg cggggagaat 60
ggggagcagc caggcggcgg tctcgttcct gacgaacgtg gcgcgggcgg cgttcggcct 120
cggcgccgcc gggacggcgc tgaacgcgtc gctgtacacg gtcgacggcg gccagcgggc 180
ggtgatcttc gaccggctcc gcggggtcat ggatgagacg gtcggggagg ggacccactt 240
cctcgtcccc tggctccaga agcccttcat tttcgacatc cggacgaggc cgcacacctt 300
ctcttccgtc tccgggacca aggatctcca gatggtcaac cttactctcc gagttctctc 360
tcggcctcag gtctctcgtt tgccatatat cttccggcac ctgggtctcg agtatgatga 420
gaaggtcctt ccgtcaatcg ggaatgaggt tttgaaagct gttgtcgccc aattcaatgc 480
ggattcagct tcttact 497




24


527


DNA


Pinus radiata



24
gagtgttgcc ttcaatcatc cacgagacac tgaaagctgt ggtagcacag tacaatgcaa 60
gtcaacttat cactcagaga gaggcagtaa gcagagaaat aaggagaatt ttgacggaga 120
gagctgctaa tttttacatt gcattggacg acgtctctat aacaagcctt actttcggaa 180
gagagttcac agctgccatt gaagcaaagc aagttgctgc tcaagaagca gaacgtgcca 240
agtttgttgt cgagaaggca gaacaagata aaaagagtgc tatcattaga gctcagggag 300
aagccacaag tgctcagctt attggtgaag ctatttctaa taatccagct ttcatcacgt 360
tgagaaagat tgaggccagc cgggaaatag cacacactct ctctaactca actaatagga 420
tcttcttgag ttctgattca ttactgctaa accttcagga tatgagcctg gacgatgcac 480
acaagccacc acctaagcct aaaaagtgat gaacacaata aattatt 527




25


483


DNA


Pinus radiata



25
agattcggca cgagagcggt agctgcagcc ttccatcaaa tcaaggagac agagctcaac 60
agatcagaga ttctatacaa gaagccgaga agaaacgggt tgggtagtca gagcaagaga 120
aggaagatga attttaacaa tgtgagggtg cctggagggg gaggagctgc atgggcgcta 180
actaaagccg tagtacttgg tggggctggg ctttacggtg cactcaacag tctctacaat 240
gtcgagggag gtcacagggc cattgtcttc aataggatcg ttggtgtcaa ggataaggta 300
tatcctgaag gcacacatct tatgattccc tggtttgata ggcctgtcat ctatgatgtc 360
agagcacgtc ctcaccttgt agaaagcact tcaggcagcc gtgaccttca gatggttaag 420
attggtctcc gagttcttac aagaccaatg ccagatcagt taccaacaat ttacaggccc 480
ttg 483




26


384


DNA


Pinus radiata



26
cggcacgagt ctctctcccc cccccccccc cctccctcgc tcggtaggtt ccggctggtt 60
cagttcagcg tcgactacga cccatttctc cgattcctcc gaccggtcgg cgagttctct 120
cggggaatgg attttagaaa tgtcaaagtt ccaaaagtgc caggaggagg ggctacttct 180
gctttgctca aactgggagt cataggtggc atagccctct atgcagccac aaacagtctc 240
tacaacgttg agggaggtca tcgagccatt gtattcaatc ggctagttgg tgtaaaggac 300
aaggtttatc ctgaagggac gcacataatg atcccgtggt ttgagaggcc agttatctac 360
gatgtccgtg caagacctca ttta 384




27


768


DNA


Pinus radiata



27
gacggattct agcgagaagt cgtctgcctg ccggaatccg gtgactccga acgccctctg 60
ccctgccgtg gtcttccgcg tcggcgcttc ttctcttctt ctgcgataag cggggtttgg 120
agcgggaact ttccgttagg cttgccgttg agggtttggc agagcttgat ttcagtgaag 180
tgaattatcg tctaaacggg aatacaacat gcgtcggttt ttttgctgta cttgctcaac 240
agagggtgct cctgaacaac ctgaggccca tttcttgaat gcagctaaga acaatggaaa 300
cgggttccag ggagactata agatgtctga gggtgcaaag agtggtccgc cacagaaaat 360
agcacctatt gaagcacctg ctttgtcatt agaagaactg aaggaagcaa ctgataactt 420
tggggcaaag gctttgattg gggaggggtc ctacggaaga gtttactatg caatgttaag 480
tgatggtcaa cctgcagcaa tcaagaaatt ggatgtcaac agccagccag aggcaaattc 540
cgaattctta gctcagattt caatggtctc aaggctgaag catgaccata tagttgagct 600
ggtgggttac tgtgttgagg gaactctccg tgtattggct tatgagtttg caacaatggg 660
ctctttacat gacattttac atggacggaa aggagtgcag ggggctcaac caggtccagt 720
tctggattgg atgcaaaggg tgaaaattgc tgttggtgca gcaaaggg 768




28


932


DNA


Pinus radiata



28
gcaccgacgc caatcggtgc gctgccaaat tgaatgtggg actggaggct tacaagataa 60
aaatgataat agatcagatg attggggtct ctgtaagctc tggaaaatat gagcatttgc 120
aggtttatca agtgcgttac agtgggggat ggagctgtgg ggaagacatg cttgctcatc 180
tcatatacaa gcaacacatt cccaactgac tacgtaccca cagtgttcga taacttcagt 240
gcaaatgtgg tagttgatgg taacaatgtc aatctcggcc tctgggatac tgcagggcaa 300
gaagactaca ataggttgag accactgagt tacaggggga cagacgtgtt cctcttggcg 360
ttttccctga tcagcaaagc cagttatgaa aatgtttcca agaagtggat tcctgaactc 420
aaacattatg tgccatctgt gccaattgtt ctcgtgggaa ccaaactaga tttacgagat 480
gacaagcagt tttttagtga tcatcctggt gcagccccta taacaacagc ccagggagaa 540
gagctaaaga accagattgg ggctgtagca tatattgagt gcagttctaa aacacagcag 600
aacgtcaagg cagtttttga tgctgcaatc aattcggtcc ttcaactacc taaacctgtg 660
aaacctcgaa agaaaaggca aacttgtgct gttctttgag gggaagttgg ggacttcttg 720
aaaatatggt acctggaatc tggcttaaga tttcttgctt acatgtaatt tgatacattt 780
tcttgaatct taacacagtt gccaatatct gcaaacacat tcagcttcag tgtttgctgt 840
gtaaaaaaaa cagctgtatc tagatatcat ggatttggaa gtttatatta ttttttaatc 900
attcggacag gtgattaaca aaatgtaatg tc 932




29


603


DNA


Pinus radiata



29
gctctggaaa atatgagcat ttgcaggttt atcaagtgcg ttacagtggg ggatggagct 60
gtggggaaga catgcttgct catctcatat acaagcaaca cattcccaac tgactacgta 120
cccacagtgt tcgataactt cagtgcaaat gtggtagttg atggtaacaa tgtcaatctc 180
ggcctctggg atactgcagg gcaagaagac tacaataggt tgagaccact gagttacagg 240
gggacagacg tgttcctctt ggcgttttcc ctgatcagca aagccagtta tgaaaatgtt 300
tccaagaagt ggattcctga actcaaacat tatgtgccat ctgtgccaat tgttctcgtg 360
ggaaccaaac tagatttacg agatgacaag cagtttttta gtgatcatcc tggtgcagcc 420
cctataacaa cagcccaggg agaagagcta aagaaccaga ttggggctgt agcatatatt 480
gagtgcagtt ctaaaacaca gcagaacgtc aaggcagttt ttgatgctgc aatcaattcg 540
gtccttcaac tacctaaacc tgtgaaacct cgaaagaaaa ggcaaacttg tgctgttctt 600
tga 603




30


472


DNA


Pinus radiata



30
caaccaaata taaccccaaa agcaggaaaa taaaagaagt tcacaagacc cagaattcca 60
gaatttctgc tttttagatt caaggaaagc ttctttgttc ctttcttcct gggggtgttt 120
cttcaatggc tgcgagtgcg tcaagattca tcaaatgtgt gacagttggt gatggggctg 180
tgggcaagac ttgcatgctg atctgctaca ccagcaacaa gtttccaact gattatatac 240
caacagtatt cgataacttc agtgcaaatg tagtagttga aggtaccact gttaacctgg 300
gactctggga taccgctggg caagaagatt acaatagatt aagacccctg agctacagag 360
gtgcagatgt ctttgtcttg gctttctctt tagttagtcg agctagttac gagaacatac 420
ttaaaaagtg gatccctgaa ctccagcatt atgcaccagg aaatccctct gg 472




31


614


DNA


Pinus radiata



31
ccgagctccg ctttttataa aatcctttaa tcgcaagctg gcaagagttg tctctctcat 60
tccagcccct cctccgtaaa gaaaatcaag aaagaaaatc cctctctctc tctagttcgc 120
tctctctctc tctctctctc tctctcttgt gggtagtcag agtacgtttc cctccgcgga 180
cgacttgctt ttcgctgcct ttccctggtt tcaatgcgcc ccatttcgcg gccacagagt 240
ttcgccgtct ccgttcaaga ctagccggtg aagaggggcg gacgtttccg aagttcttgg 300
gggggcaaga ggaggaggag gaggaggagg atatgagcgc gtcgaggttc atcaagtgcg 360
tcaccgtcgg cgacggggcc gtcggcaaga cttgcatgct catctcctac actagcaaca 420
ccttccccac ggactatgta ccaactgtgt tcgacaattt cagtgcaaat gtcgttgtgg 480
atggaagcac tgttaacctg ggtttgtggg atacagctgg acaggaagac tataatagac 540
taagacctct tagctaccgt ggggctgatg ttttcctgct cactttctct ctcattagca 600
aggccagcta tgaa 614




32


408


DNA


Pinus radiata



32
atcaagtgcg tcaccgtcgg cgacggtgcc gtcggcaaaa cctgcctgtt gatttcttat 60
accagcaaca ctttccccac ggactatgtg cccacggtgt ttgacaattt tagtgcaaat 120
gtggtggtta atggaagtac tgttaatctg ggattgtggg atactgctgg acaagaggat 180
tataacagat taagacctct aagttaccgt ggagcagatg tttttatact tgctttctct 240
ctcataagca aggccagtta tgaaaacgtt tcaaagaagt ggattccaga attaaagcat 300
tatgcacctg gtgtgccaat aattctcgtg ggaacaaagc tggatttgcg ggatgataag 360
cagttcttta tagaccatcc tggtgcagtg cctattacga cccagcag 408




33


331


DNA


Pinus radiata



33
aagtgcgtga cggtcggcga cggggcggtg ggcaagactt gcttgctcat ttcctacacc 60
agcaacacct tccccacgga ttatgtgccc accgtcttcg acaacttcag tgctaatgtg 120
gttgtcaacg gaagcactgt gaacctggga ctgtgggata ctgcaggaca ggaggattac 180
aacagactaa gacctttgag ttatcggggg gcagatgttt tcattctagc attctctctc 240
atcagcaagg ccagctatga aaatgtctct aagaagtgga ttccggtgtt gaagcattat 300
gcacctggtg tcccaattgt tcttgttggg a 331




34


466


DNA


Pinus radiata



34
gagtttttct gaagagtcag agcaaccatg agtactgcca gatttattaa gtgtgtgact 60
gtgggggatg gtgctgtggg aaagacttgc atgcttattt cctacacgag caacacattt 120
ccaacggact atgtaccaac agtgtttgat aacttcagtg caaatgtagt ggtggatgga 180
agtacagtga atcttggcct ctgggacacg gcggggcaag aggattacaa caggctcagg 240
cccctgagtt acagaggtgc agatgtcttc ctcctggctt tctccttgat cagcaaggcc 300
agttatgaaa acattttcaa aaattggatt ccagaattga gacactacgc accatctgtg 360
cctatcattt tggtgggaac aaaattagat ttacgagaag acaaacagtt ttttgcggat 420
catcccggag cagccccaat ctcgacagct caaggtgaaa atttga 466




35


367


DNA


Pinus radiata



35
ctcgtgccgc gattgtctca ttcctcatca aatagttaaa accagcagga caatctgtag 60
cagtgtagcc tggctgtttt ctcctacctc ctcttcaacc tcttctcttc tctctttctc 120
ctccttcaaa gtgtccatca gtttcaactg tggctggaga gcttctcgca tagttccact 180
ggggttttct tgtggggaag aaagatgagc gcctccaagt tcatcaagtg cgtcactgtc 240
ggagatggag ctgtgggcaa gacttgcatg ctcatttgct acaccagcaa caagttccct 300
actgattaca tacccacagt gtttgataac ttcagtgcaa atgtggctgt ggatgggaac 360
atagtca 367




36


549


DNA


Pinus radiata



36
agagttaaag gatattgaca cagacacttt ctcctatttt gagggtctca tggaagagag 60
ttcacttgta tcaagcattc aaatcctaga aaaagattat gaagatgcaa tatatgatag 120
aggggaactt gacgagcgca tgtttgtgaa tgaagaggat agtttgtttg gttcagcaag 180
caactcggga ggttctgtca ctgtgtctgg agtgaagaga aaatttgata gtatttcctc 240
acctacaaag acaataacaa gtccaccatc tccacgaggc tctcctgttg catcccctgt 300
gaaagagagc tctgccactg ccagtactaa gatgccaccc cctacaccag tgagcacagc 360
aatgacaact gcaaagtggc ttcgaactgt tatagctcca cttcctccaa aaccttcttc 420
agagcttggg cattttcttt catcatgtga cagggacatt accgcagatg taagtcaccg 480
agcaagaata gtactagaag caattttcct agtagtcacc tggggaaaga tgtgttgtgg 540
agcccagag 549




37


433


DNA


Pinus radiata



37
cacagatggt tttagctatt ttgagggtct catggaggaa acctccctga attcaagcat 60
aagaatttta gagagtaact acatgaatgc aattcatgat agaggagaac tggatgagag 120
gatgtttgtg aatgatgagg atagtttgtt tggttctgtc catgcatctg ttgattctgt 180
caatatattg ggggcaaagc gaaagtatga ggctatctcc tctccaatga agagaataac 240
aagtccatta tcttccccag tctctccatc agcttcagga acaatatatt caaatgtcaa 300
gatgttgcca cctacaccag tgagcacaac aatgactact gcgaagtggc ttcggactgt 360
catagcacct cttccagctg aaccttgtaa agagcttaac agttttttgc ttcttgtgac 420
agagatgtaa ctg 433




38


383


DNA


Pinus radiata



38
cactggaggc aatggtcgga aactgatttg gcatggggtt cctcgaagca tcagagattg 60
tcacaggaaa gttcatgaca gtagtgacgg actaattata caaagagatg tggcactctt 120
tttctcaggt ggtgacataa atgaattgaa tcttagattg acaggacaca tattgaagga 180
acaataatat atgcactttt caaagatcta tggactagga aaagtaagtc atatctcctg 240
ttatttatct tctcctttgc tgctgattaa tattgtaaag gttcagatcc tttcagtagc 300
aagctgtcat tgccagaaca acgagagaga aaaatcatat ctagaaagtg tataggttga 360
ccacggcaca ggtgtatgcc att 383




39


1036


DNA


Pinus radiata



39
gctcatcatt ttgtgtgaaa ataagcgatg ggttggttcc acaggtgttt tggattcatt 60
agaaagaaga agaagcagaa aagcccaaaa tctgagcctc cgtctcgtga acatttactg 120
aagtccacac aagaagaatt cgagaataca aagggagctc aatacaaata tcaccgcaga 180
tttcctgctg ttagggataa aaccgagcag gttgcgacgc gatcatttgg ggatttggat 240
ggagcttcac taatagaaac tcctggcaga gaaaccctcc aaattgttat aacagagtgc 300
ccaaatactc gtacagtatg ttctggatgt aaatccaggt taagcaactg gtgtccgtcc 360
tgcagatgca accttggaaa ttttaggtgc ttagctcctg aaacggagac atcatctcaa 420
gaacttactt gcatgtatca aagctatggt tgtgaggata tgtatcctta ctacagtgaa 480
ttaagacatg aagctcagtg caattttagg ccatacaact gtccctatgc tggctccgaa 540
tgcaagctag ttggagatat tccctttttg gtggctcatt taagagatga tcacaaagtt 600
tatatgcata atagttgcac ctttgatcat cgatatgtaa agtcaaatcc actcgaggtt 660
gagaatgcta tttggatgcc aactgtaatc aattgttttg ggcaattctt ttgtctacat 720
tttgaagcgt ttctattaga catggcccct gtatatatag cttttctgat tttcatggga 780
gatgataatg aagctaaaaa ctttagctat tgcctcgaga ctggaggcaa tggtcggaaa 840
ctgatttggc atggggttcc tcgaagcatc agagattgtc acaggaaagt tcatgacagt 900
agtgacggac taattataca aagagatgtg gcactctttt tctcaggtgg tgacataaat 960
gaattgaatc ttagattgac aggacacata ttgaaggaac aataatatat gctggatcct 1020
ctagagtcct gcttta 1036




40


563


DNA


Pinus radiata



40
ttttaaaggg cgcaatagtg atcaagtttc ggttgatctc caggttttta gatgccttgg 60
tcagtatttt tgcctgcact tcgaggcctt tcagctcgga atggcaccag tctacatagc 120
attccttcgg tttatgggtg atgacaacga ggcgaaaaac tacagttaca gcctcgaggt 180
tggtgggaac gggagaaaga tgatctggca aggtgtgcct cggagcataa gggacagcca 240
ccgcaaagtc cgcgatagtt tcgatggtct catcatccaa cgcaacatgg ctctcttctt 300
ctctggtggc gaccggaagg aactgaagct tagggtgact ggtaggatct ggaaagaaca 360
gtgacgacag ggtacttccg tctcatgctc ctttagatta tcctgctctt aaaaatcaga 420
atagttcgtc cgcgtagtga tcaccacgtc ttcttgggca tgtatttttt gggaatttta 480
gggggggcaa tgtctctttg cttgaactat gcatcgaata catgaatggg aagacagcaa 540
aaatgtcgta tattccaagc aaa 563




41


868


DNA


Pinus radiata



41
ctctctctct ctctccctct acctccctcc ctccctcctt ctccctcatc cctctctcat 60
ttttaagcct ccagatacaa atctttcatc tataaacata taaaagacgc gccttttcga 120
acttttggcg ctccacccgc ccgttttctt cccttgattc tgctcggatc tgtcccctct 180
gagccgatcc caacggtcaa aaccccgggt ttcgaagaaa aggtggacag gggtttctgt 240
gttggattgt gtgtggagat ttggagcgac gagtcatggc ggatcaggcc ttggagggaa 300
gccaaccggt tgatctgtcc aagcatcctt caggaatcgt tcccactctt cagaacatag 360
tctcaacagt gaatttggac tgcaaattgg atcttaaggc cattgctttg caagctagaa 420
atgctgagta taatcccaag cgttttgctg ctgtaattat gagaataagg gagccaaaga 480
caacggcatt gatatttgct tcagggaaaa tggtttgtac tggagccaag agtgaacaac 540
aatcaaagtt agcagcgcgg aagtatgctc gaatcattca gaaacttgga ttcccggcta 600
aatttaagga tttcaaaatt caaaatattg tgggttcttg tgatgtgaaa ttccccatca 660
ggcttgaagg tcttgcatat tcacatggtg ctttctcaag ttatgaacca gagctgttcc 720
ctggattgat atatcggatg aaacagccaa aaatcgtgct gctaatcttt gtgtcaggaa 780
aaattgtcct cactggggca aaggtgcgag atgagacgta cactgccttt gagaacatat 840
accctgtgct cactgagttc aggaaaat 868




42


722


DNA


Pinus radiata



42
ttttcttcga gactcctctg ccgcagcagc tctctcctcg cccttttgag gatttacaat 60
ccacatactc tataaaaacc gggacaaatc aaatcaactc aattcaaaca ccacctataa 120
atacaaaagc taaccagatt caagagattc tctcaggatt tagtataaga aggatcgaga 180
tttcattttc cgagggcatt ataaaagctt ttctgtttca ttcgatttcg attgtgtagt 240
gaagagcatg gccgaacagg tcttggaagg gagtcagcca gtggatctcg agaagcatcc 300
ttcaggcatc gttcccaccc tccagaatat agtgtccact gtaaacttgg attgcaaatt 360
ggacttgaaa gccattgctc ttcaagctcg aaatgcagag tacaatccca agcgttttgc 420
agcagtcata atgagaataa gggagcccaa aactacagca ctgatatttg catcagggaa 480
gatggtttgc acaggtgcaa aaagtgaaca acagtcaaaa cttgctgcaa gaaagtatgc 540
tcgtattatc caaaaattgg gctttcctgc tcatttcaag gattttaaga tccagaatat 600
cgtggggtct tgtgatgtta aatttcctat tagattggaa gggcttgcat actcccatgg 660
tgctttctca agctatgaac cagaattgtt tccaggccta atttatcgaa tgaaacagcc 720
ca 722




43


884


DNA


Pinus radiata



43
aagggtttat ttgtcgctta gctgtgccct cgtaacagca gcgatcggtg tttatttgca 60
tcttctgttg aatattggag ggctcctcac ggggctcgct tgcattggtt ctgtaatcgg 120
gctcttatcc gtccctactt cctcgaacaa tgagggtaag agagctgcgc tgctcctggc 180
agctgctgcg ttcaagggag ctactctggg accgctcatc gacgcggtca ttaatattga 240
ctccagtata ctggtgagtg cgtttgttgg gacctctttg gccttcgctt gcttttcggc 300
agcagcaatc acagccagga gacgggaata cctatttttg ggaggattat tgggctcggg 360
aatcagcata ttgatgtggc tgcaactagc atcctcgatt tttggtggtt cttcggcgat 420
ttacacattt gagatctact tcggtctgct agttttcctt gggtatatta tatttgacac 480
acagatgatc atcgagaaag cggaccatgg agactatgat tatttaaaac attcactgga 540
cctcttcatt gacttcgttg ctgtatttgt tcgcctgatg gtcataatgg caaagaatgc 600
agacagtaaa tccagggaag ggaaaaagaa gagaagggct tgaactagtg atgtaatgag 660
gcgtctttgg atacaaaaat agaagcactg gttcttgatg gcaatatggc cgtttaggtt 720
gttttcagtt gtaaatacaa catctctctg aacattttgt tttgtttgga tatttcaaat 780
agtggttccg taaaatcttg tagcgatgct ctttcttttt gtgtatggtg ttctatggac 840
agatataaat ataaatagcc tttgtcatta aaaaaaaaaa aaaa 884




44


527


DNA


Pinus radiata



44
ccgatttcga agaacgagtt tggtcgacga tttcgcgatc cgcccgcctg cgaaaaaagt 60
tcatcttcct cccaatcgat cgtttctcgc cgagcatcga atcgacatgg acgcgttcgc 120
ttccctgttc cagtcgagcg gcaaggggtg gagccacgat tccctcaaga acttccgcca 180
gatatctccc gccgtccaat ctcacctcaa gaatgtttat ctgtccttat gctgtgcctt 240
gatggcttcg gccggtggtg cttacctgca tctgatgctg aacatcggcg ggctcctcac 300
gacaattgct tgcatcggaa gcatcgtgtg gctgctttcg attcctccac atgaagagca 360
aaagaggttt ggtctgctca tggcggcggc tctctttgaa ggagcgtgta tcggtcctct 420
catcgaagcg gccattaagg tcgacccgag cattgtgata agcgcatttg tgggatctgc 480
gctggccttc gcttgtttct cgggcgcagc atgttggcta ggcggag 527




45


864


DNA


Pinus radiata



45
aaagttacta gcaggaaatc caactaggta tcatgaagac taccaacgca ggctcgataa 60
tgttggtgct cattattttt gggtgctgtt tcattggggt catagctaca tcttttgatt 120
tctattactt cgttcaacag tggcctggtt catactgcga tactcgtaga ggatgctgtt 180
accctcgcac gggaaggcct gcttccgaat tttccattca tggcctctgg cccaactaca 240
agaccggtaa atggccacag ttctgtggtt cctccgaaga attcgactac tcaaagatct 300
cagatctgga ggaggagctg aacaggtatt ggggttcgtt aagctgtcca agcagcgatg 360
gacaggaatt ttggggacac gagtgggaga aacatggcac ttgctctctc aatcttgatg 420
agcattcata ctttgagaag gctctctcct tgagacaaaa tatagacatt cttggggctc 480
ttaaaactgc aggtattaaa cccgatggaa gccaatacag tttgagcgat atcaaggaag 540
ccattaaaca aaacactggg cagctcccag gaatcgattg caacacgagc gcagagggag 600
agcatcaact atatcaggtg tatgtgtgtg ttgataaatc cgatgcttcc actgttattg 660
aatgccccat ttatccacac agcaattgcc catccatggt tgtgtttcct ccttttgggg 720
aggatcagga ggaccgagat ggttacacag aaggaatgta cgagctgtag atctggacaa 780
acagcatttc ttctctccgc atttgatttt tatcaatgaa atttccgatt ccaacatttt 840
gtaaaaaaaa aaaaaaaaac tcga 864




46


199


PRT


Pinus radiata



46
Met Lys Met Ser Ser Phe Asn Tyr Pro Pro Gln Asp Asp Gly Glu Pro
1 5 10 15
Gln Tyr Ala Ser Ser Gly Ser Gly Glu Asn His Met Pro Asp Asp Asp
20 25 30
Asp Pro Asn Trp Gly Asp Gly Tyr Lys Val Tyr Pro Gln Pro Asn Gln
35 40 45
Gly Glu Ala Gln Asp Gln Pro Glu Tyr Ala Gly Phe Asn Glu Asp Tyr
50 55 60
Gln Glu Gln Lys Asn Asp Ile Tyr Gly Lys Ile Met Leu Ser Gly Ile
65 70 75 80
Leu Val Phe Ile Phe Ile Ile Leu Leu Ala Ile Leu Leu His Val Tyr
85 90 95
Ala Arg Trp Phe Trp Arg Arg Ser Ala Arg Phe Pro Asn Arg Asn Arg
100 105 110
Arg Arg Ser Ser Ser Ile Arg His Arg Phe Asn Phe Ile Glu Glu Glu
115 120 125
Pro Val Trp Leu Arg Asn Val Gly Leu Gln Ser Ala Val Leu Glu Thr
130 135 140
Leu Pro Ile Phe Val Tyr Lys Ser Gln Asp Phe Thr Asp Gly Leu Glu
145 150 155 160
Cys Ala Val Cys Leu Cys Glu Phe Glu Glu Asn Glu Ile Ala Arg Leu
165 170 175
Leu Pro Asn Cys Arg His Asn Phe His Val Glu Cys Ile Asp Met Trp
180 185 190
Phe Arg Ser His Ser Thr Cys
195




47


116


PRT


Pinus radiata



47
Asn Ala Met Gly Asp Asp Tyr Gly Gly Gly Tyr Pro Asn Thr Lys Phe
1 5 10 15
Pro Asp Asp Gly Ser Ser Asn Ala Tyr Ala Leu Asn Gly Arg Ile Met
20 25 30
Leu Ala Ala Ile Ile Val Leu Phe Phe Val Val Ile Ile Met Ile Ser
35 40 45
Leu His Leu Tyr Ala Arg Trp Phe Leu Leu Arg Arg Gln Gln Arg Arg
50 55 60
Arg Phe Leu Arg Arg Asn Arg Leu Asn Arg Arg Thr Gln Ile Val Phe
65 70 75 80
Tyr Ala Asp Phe Pro Ala Pro Gln Ala Ser Arg Gly Leu Asp Ser Ser
85 90 95
Val Leu Lys Ser Leu Pro Val Phe Thr Phe Ser Ser Ser Ala Ala Ala
100 105 110
Ala Ala Ala Ala
115




48


109


PRT


Pinus radiata



48
Asn Ala Met Gly Asp Asp Tyr Gly Phe Gly Asp Pro Asn Thr Glu Phe
1 5 10 15
Arg Gly Asn Gly Gln Ser Asn Ala Tyr Ala Leu Asn Gly Arg Ile Met
20 25 30
Leu Ala Ala Ile Ile Val Leu Phe Phe Val Val Ile Ile Met Ile Ser
35 40 45
Leu His Leu Tyr Ala Arg Trp Phe Leu Leu Arg Arg Gln Gln Arg Arg
50 55 60
Arg Phe Leu Arg Arg Asn Arg Leu Asn Arg Arg Thr Gln Ile Val Phe
65 70 75 80
Tyr Ala Asp Phe Pro Ala Pro Gln Ala Ser Arg Gly Leu Asp Ser Ser
85 90 95
Val Leu Lys Ser Leu Pro Val Phe Thr Phe Ser Ser Ser
100 105




49


104


PRT


Pinus radiata



49
Asn Lys Thr Val Ile Glu Ser Leu Pro Phe Phe Arg Phe Ser Ser Leu
1 5 10 15
Lys Gly Ser Lys Gln Gly Leu Glu Cys Ala Val Cys Leu Ser Lys Phe
20 25 30
Glu Asp Ile Glu Ile Leu Arg Leu Leu Pro Lys Cys Arg His Ala Phe
35 40 45
His Ile Asp Cys Ile Asp Tyr Trp Leu Glu Lys His Ser Ser Cys Pro
50 55 60
Leu Cys Arg His Lys Val Ser Ala Glu Asp Pro Ala Asn Phe Thr Tyr
65 70 75 80
Thr Asn Ser Met Arg Leu Met Ser Gln Ser Asp Met Arg Gln Asp Ser
85 90 95
Asn Leu Glu Leu Phe Val Gln Arg
100




50


129


PRT


Pinus radiata



50
Met Ser Ser Val Ser Glu Thr His Glu Pro Pro Gln Tyr Gly Ser Ala
1 5 10 15
Gln Gly Tyr Val Ile Ser Gly Lys Ile Met Leu Ser Ala Ile Ile Cys
20 25 30
Leu Phe Val Val Val Leu Leu Met Phe Leu Leu His Leu Tyr Ala Arg
35 40 45
Trp Ile Trp Arg His Ser Ala Arg Phe Ser Arg Arg Asn Arg Arg Arg
50 55 60
Ser Ala Ser Arg Arg Arg Arg Leu Arg Phe Ser Gly Gln Val Pro Ala
65 70 75 80
Ser Leu Gln Asn Thr Gly Leu Asp Ser Ser Ile Leu Gln Thr Leu Pro
85 90 95
Met Phe Val Tyr Lys Ser Gln Asp Phe Ile Asp Gly Leu Glu Cys Ala
100 105 110
Val Cys Leu Cys Glu Leu Glu Glu Asn Glu Lys Ala Arg Leu Leu Pro
115 120 125
Asn




51


115


PRT


Pinus radiata



51
Met Ala Arg Ser Ser Gly Asp Asp Ala Gln Ala Leu Phe His Ser Leu
1 5 10 15
Arg Ser Ala Tyr Ala Ala Thr Pro Lys Asn Leu Lys Ile Ile Asp Leu
20 25 30
Tyr Val Ala Phe Ala Val Phe Thr Ala Leu Ile Gln Val Val Tyr Met
35 40 45
Ala Leu Val Gly Ser Phe Pro Phe Asn Ser Phe Leu Ala Gly Gly Leu
50 55 60
Ser Cys Ile Gly Thr Ala Val Leu Ala Val Cys Leu Arg Ile Gln Val
65 70 75 80
Asn Lys Glu Asn Lys Glu Phe Lys Asp Leu Pro Pro Glu Arg Ala Phe
85 90 95
Ala Asp Phe Val Leu Cys Asn Leu Val Leu His Leu Val Ile Met Asn
100 105 110
Phe Leu Gly
115




52


115


PRT


Pinus radiata



52
Met Ala Arg Ser Ser Gly Asp Asp Ala Gln Ala Leu Phe His Ser Leu
1 5 10 15
Arg Ser Ala Tyr Ala Ala Thr Pro Lys Asn Leu Lys Ile Ile Asp Leu
20 25 30
Tyr Val Ala Phe Ala Val Phe Thr Ala Leu Ile Gln Val Val Tyr Met
35 40 45
Ala Leu Val Gly Ser Phe Pro Phe Asn Ser Phe Leu Ala Gly Gly Leu
50 55 60
Ser Cys Ile Gly Thr Ala Val Leu Ala Val Cys Leu Arg Ile Gln Val
65 70 75 80
Asn Lys Glu Asn Lys Glu Phe Lys Asp Leu Pro Pro Glu Arg Ala Phe
85 90 95
Ala Asp Phe Val Leu Cys Asn Leu Val Leu His Leu Val Ile Met Asn
100 105 110
Phe Leu Gly
115




53


115


PRT


Pinus radiata



53
Met Gly Thr Ser Thr Ala Lys Asp Ala Gln Val Leu Val Ala Ser Leu
1 5 10 15
Arg Ser Ala Tyr Ser Ala Thr Pro Thr Lys Leu Lys Ile Ile Asp Leu
20 25 30
Tyr Val Val Tyr Ala Val Leu Thr Ala Val Val Gln Val Val Tyr Met
35 40 45
Ala Ile Val Gly Ser Phe Pro Phe Asn Ala Phe Leu Ser Gly Val Leu
50 55 60
Ser Cys Thr Gly Ser Ala Val Leu Ala Val Cys Leu Arg Met Gln Val
65 70 75 80
Asn Lys Glu Asn Lys Glu Phe Lys Asp Leu Pro Pro Glu Arg Ala Phe
85 90 95
Ala Asp Phe Val Leu Cys Asn Leu Val Leu His Leu Val Ile Met Asn
100 105 110
Phe Leu Gly
115




54


115


PRT


Pinus radiata



54
Met Gly Ser Ser Thr Ala Lys Asp Ala His Val Leu Val Ala Ser Leu
1 5 10 15
Arg Ser Ala Tyr Ser Ala Thr Pro Thr Lys Leu Lys Ile Ile Asp Leu
20 25 30
Tyr Val Val Tyr Ala Ile Leu Thr Ala Val Val Gln Val Val Tyr Met
35 40 45
Ala Ile Val Gly Ser Phe Pro Phe Asn Ala Phe Leu Ser Gly Val Leu
50 55 60
Ser Cys Thr Gly Thr Ala Val Leu Ala Val Cys Leu Arg Met Gln Val
65 70 75 80
Asn Lys Glu Asn Lys Glu Phe Lys Asp Leu Pro Pro Glu Arg Ala Phe
85 90 95
Ala Asp Phe Val Leu Cys Asn Leu Val Leu His Leu Val Ile Met Asn
100 105 110
Phe Leu Gly
115




55


152


PRT


Pinus radiata



55
Glu Ala Leu Met Phe Leu Ser His Phe Ile Gly Asp Ile His Gln Pro
1 5 10 15
Leu His Val Gly Phe Thr Thr Asp Arg Gly Ala Asn Glu Ile Glu Val
20 25 30
Arg Trp Tyr Thr Arg Lys Gln Asn Leu His His Val Trp Asp Ser Asn
35 40 45
Ile Ile Glu Thr Ala Glu Glu Arg Tyr Tyr Ser Ser Asp Thr Asp Gly
50 55 60
Leu Val Asp Ala Ile Gln Gln Asn Ile Thr Asn Asp Trp Ala Glu Glu
65 70 75 80
Val Lys Gly Trp Glu Thr Cys Ser Ser Thr Lys Pro Pro Cys Pro Asp
85 90 95
Ile Tyr Ala Ser Glu Ser Ile Ala Ala Ala Cys Gln Trp Ala Tyr Lys
100 105 110
Gly Val Ser Glu Gly Ser Val Leu Glu Asp Pro Tyr Phe Leu Ser Arg
115 120 125
Leu Pro Thr Val Asn Leu Arg Leu Ala Lys Gly Gly Val Arg Leu Ala
130 135 140
Ala Thr Leu Asn Arg Ile Phe Met
145 150




56


161


PRT


Pinus radiata



56
Leu Pro Val Val Gly Asp Gln Lys Trp Val Ile Trp Ile Cys Ser Phe
1 5 10 15
Asn Val Pro Met Ala Pro Gly Lys Thr Arg Ser Ile Val Cys Ser Ala
20 25 30
Arg Asn Phe Phe Gln Phe Thr Met Pro Gly Pro Ala Trp Trp Gln Val
35 40 45
Ile Pro Arg Trp His Glu His Trp Thr Ser Asn Lys Val Tyr Asp Gly
50 55 60
Asp Met Ile Val Leu Gln Gly Gln Glu Lys Ile Phe Leu Ser Lys Ser
65 70 75 80
Met Glu Gly Gln Glu Asp Val Asn Glu Gln Tyr Thr Lys Ile Thr Phe
85 90 95
Thr Pro Thr Gln Ala Asp Arg Phe Val Leu Ala Phe Arg Asn Trp Leu
100 105 110
Arg Arg His Gly Asn Ser Gln Pro Glu Trp Phe Gly Ser Ser Ser Gln
115 120 125
Lys Pro Leu Pro Ser Thr Val Leu Ser Lys Arg Gln Met Leu Asp Arg
130 135 140
Phe Glu Gln His Thr Leu Lys Cys Ser Ser Cys Arg Lys Ala Tyr Glu
145 150 155 160
Ala




57


256


PRT


Pinus radiata



57
Ile Gln Met Asp Ala Leu Thr His Gly Thr Ser Val Gly Phe Ile Thr
1 5 10 15
Phe Ser Pro Lys Ile Gly Ser Gln Cys Asn Asn Lys Ser Lys Gly Asp
20 25 30
Cys Asn Phe Ser Phe Leu Thr Ala Lys Glu Gln Ser Ile Arg Arg Arg
35 40 45
Arg Asn Asn Phe Ala Thr Arg Arg Arg Asp Leu His Val Val Ser Ala
50 55 60
Thr Val Ala Pro Pro Thr Ile Pro Gly Ser Ser Ser Ala Glu Asp Phe
65 70 75 80
Asp Lys Asp Arg Glu Ala Glu Glu Glu Ser Gly Lys Phe Ile Trp Arg
85 90 95
Asp His Trp Tyr Pro Val Ser Leu Ile Glu Asp Leu Asp Pro Lys Ile
100 105 110
Pro Thr Pro Phe Gln Leu Leu Gly Arg Glu Ile Val Leu Trp Gln Asp
115 120 125
Ala Glu Gly Asn Trp Lys Ala Phe Glu Asp Lys Cys Pro His Arg Leu
130 135 140
Ala Pro Leu Ser Glu Gly Arg Leu Asp Glu Asn Gly Trp Leu Gln Cys
145 150 155 160
Ser Tyr His Gly Trp Ser Phe Lys Ala Asp Gly Ser Cys Ala Arg Ile
165 170 175
Pro Gln Ala Ala Ser Glu Gly Pro Glu Ser Arg Ala Ala Arg Ser Pro
180 185 190
Arg Ala Cys Ala Val Ser Phe Pro Thr Thr Val Ser Gln Gly Leu Leu
195 200 205
Phe Val Trp Pro Asp Glu Asn Gly Trp Glu Arg Ala Ser Lys Phe Glu
210 215 220
Pro Pro Leu Leu Pro Asp Ala Phe Ser Asp Pro Arg Phe Ser Thr Val
225 230 235 240
Thr Ile Gln Arg Asp Leu Phe Tyr Gly Tyr Asp Thr Leu Met Glu Asn
245 250 255




58


129


PRT


Pinus radiata



58
Met Leu Ser Gly Gly Tyr Ala Thr Arg Ser Asp Thr Thr Thr Val Asn
1 5 10 15
Asn Gly Ser Ala Asn Gly Pro Ile Gly Ser Ala Pro Pro Arg Ile Asn
20 25 30
Ser Ile Gln Asn Asn Asn Pro Gly Ala Val Arg Pro Gly Trp Gly Thr
35 40 45
Met Pro Leu His Met Asn Pro Tyr His Pro Gln Ser Met Pro Leu Pro
50 55 60
Pro Pro Asn Gly Met Gln Gly Gln Leu Val Cys Ser Gly Cys Arg Thr
65 70 75 80
Leu Leu Val Tyr Pro Gln Gly Ala Pro Asn Val Cys Cys Ala Val Cys
85 90 95
Asn Thr Val Thr Pro Val Pro Pro Pro Gly Thr Glu Met Ala Gln Leu
100 105 110
Ile Cys Gly Arg Cys Arg Thr Leu Leu Met Tyr Val Arg Gly Ala Thr
115 120 125
Ser




59


56


PRT


Pinus radiata



59
Ser Val Pro Pro Gln Arg Ile Asp Gly Pro Pro Ser Gly Thr Thr Pro
1 5 10 15
Ser Thr Ser Thr Ser Met Pro Gln Ser Thr Gln Thr Val Val Val Glu
20 25 30
Asn Pro Met Ser Val Asp Glu Ser Gly Lys Leu Val Thr Asn Val Val
35 40 45
Val Gly Val Thr Thr Glu Lys Arg
50 55




60


338


PRT


Pinus radiata



60
Thr Thr Arg Asn Asn Val Ser Pro Ala Thr Ser Thr Ser Ser Ser Thr
1 5 10 15
Ala Phe Thr Ile Gln Gly Asn Val Tyr Pro Asp Gly Leu Tyr Tyr Val
20 25 30
Ser Met Leu Ile Gly Asn Pro Pro Lys Pro Tyr His Leu Asp Val Asp
35 40 45
Thr Gly Ser Asp Leu Thr Trp Ile Gln Cys Asp Ala Pro Cys Arg Ser
50 55 60
Cys Ala Lys Gly Pro His Ala Leu Tyr Lys Pro Lys Lys Ser Gln Leu
65 70 75 80
Val Ser Cys Met Ala Pro Met Cys Val Asn Val Gln Ala Gly His Ser
85 90 95
His Glu Cys Thr Ser Thr Ser Glu Gln Cys Asp Tyr Glu Ile Glu Tyr
100 105 110
Ala Asp Leu Gly Ser Ser Met Gly Val Leu Ala Arg Asp Asn Ile Arg
115 120 125
Val Leu Leu Thr Asn Gly Ser Ile Ala Arg Thr Asn Phe Val Phe Gly
130 135 140
Cys Ala Tyr Asp Gln Gln Gly Ser Leu Ala Val Ser Pro Ala Val Thr
145 150 155 160
Asp Gly Val Leu Gly Leu Ser Ser Ala Gln Val Ser Leu Pro Ser Gln
165 170 175
Leu Ala Ser Gln Gly Leu Thr Lys Asn Val Ile Gly His Cys Ile Ala
180 185 190
Gly Asp Glu Arg Asp Glu Arg Ser Gly Gly Tyr Met Phe Phe Gly Asn
195 200 205
Asp Leu Val Pro Val Trp Gly Met Thr Trp Val Pro Met Phe Gly Lys
210 215 220
Pro Ala Met Lys Leu Tyr Ser Val Gly Ser Ala Asn Met Lys Leu Gly
225 230 235 240
Asn Arg Pro Leu Val Ser Asn Asp Leu Lys Asn Lys Leu Gly Gly Val
245 250 255
Val Phe Asp Ser Gly Ser Ser Phe Thr Tyr Leu Thr Gln Thr Ala Tyr
260 265 270
Phe Ala Phe Val Ser Ala Val Lys Glu Asn Leu Phe Gly Gly Gly Leu
275 280 285
Val Gln Asp Leu Ser Asp Lys Thr Leu Pro Leu Cys Trp Arg Ala Arg
290 295 300
His Pro Ile Arg Ser Ile Ala Asp Val Lys Pro Phe Phe Lys Pro Leu
305 310 315 320
Thr Leu Asp Phe Gly Gly Asn Pro Trp Leu Ile Lys Thr Lys Gln Phe
325 330 335
Asp Ile




61


83


PRT


Pinus radiata



61
Arg His Glu Ile Lys Thr Lys Gln Phe Asp Ile Pro Pro Glu Gly Tyr
1 5 10 15
Leu Val Ile Ser Ser His Gly Asn Val Cys Leu Gly Ile Leu Asn Gly
20 25 30
Ser Glu Val Asn Asp Gly Ala Thr Asn Ile Ile Gly Asp Ile Ser Leu
35 40 45
Gln Gly His Leu Ile Val Tyr Asp Asn Val Lys Asn Gln Ile Gly Trp
50 55 60
Val His Ala Asp Cys His Lys Pro Pro Lys Met Met Lys Ala Phe Pro
65 70 75 80
Phe Phe Lys




62


316


PRT


Pinus radiata



62
Met Ser Thr Leu Thr Val Pro Gln Pro Leu Pro Pro Val Ala Asp Asp
1 5 10 15
Cys Glu Gln Leu Arg Thr Ala Phe Ala Gly Trp Gly Thr Asn Glu Lys
20 25 30
Leu Ile Ile Ser Ile Leu Gly His Arg Asn Ala Ala Gln Arg Lys Leu
35 40 45
Ile Arg Gln Thr Tyr Ala Glu Thr Tyr Gly Glu Asp Leu Leu Lys Ala
50 55 60
Leu Asp Arg Glu Leu Thr Asn Asp Phe Glu Arg Leu Val Val Leu Trp
65 70 75 80
Ser Leu Asp Pro Ala Glu Arg Asp Ala Tyr Leu Ala Asn Glu Ala Thr
85 90 95
Lys Arg Trp Thr Ser Ser Asn Gln Val Leu Met Glu Ile Ala Cys Thr
100 105 110
Arg Ser Pro Gln Gln Leu Leu Met Ala Arg Gln Ala Tyr His Ala Arg
115 120 125
Tyr Lys Lys Ser Met Glu Glu Asp Val Ala His His Thr Thr Gly Asp
130 135 140
Phe Arg Lys Leu Leu Val Pro Leu Gly Ser Ser Tyr Arg Asn Asp Gly
145 150 155 160
Asp Glu Val Asn Met Thr Leu Ala Lys Ala Glu Ala Lys Ile Leu His
165 170 175
Glu Lys Ile Ser Glu Lys Ala Tyr Gly His Glu Asp Leu Ile Arg Ile
180 185 190
Leu Ala Thr Arg Ser Lys Ala Gln Val Asn Ala Thr Leu Asn His Tyr
195 200 205
Lys Asn Glu Phe Gly Asn Asp Ile Asn Lys Asp Leu Lys Thr Asp Pro
210 215 220
Lys Asp Ala Phe Leu Thr Ile Leu Arg Ala Thr Val Lys Cys Leu Thr
225 230 235 240
Arg Pro Glu Lys Tyr Phe Glu Lys Val Leu Arg Leu Ala Ile Asn Lys
245 250 255
Arg Gly Thr Asp Glu Gly Ala Leu Thr Arg Val Val Ala Thr Arg Ala
260 265 270
Glu Val Asp Met Lys Phe Ile Ser Glu Glu Tyr Gln Arg Arg Asn Ser
275 280 285
Ile Pro Leu Asp Arg Ala Ile Val Lys Asp Thr Thr Gly Asp Tyr Glu
290 295 300
Lys Met Leu Leu Ala Leu Ile Gly His Val Glu Ala
305 310 315




63


111


PRT


Pinus radiata



63
Ser Ile Phe Ile Pro Tyr Arg Gln Arg Leu Val Val Leu Trp Ser Leu
1 5 10 15
Asp Pro Ala Glu Arg Asp Ala Tyr Leu Ala Asn Glu Ala Thr Lys Arg
20 25 30
Trp Thr Ser Ser Asn Gln Val Leu Met Glu Ile Ala Cys Thr Arg Ser
35 40 45
Pro Gln Gln Leu Leu Met Ala Arg Gln Ala Tyr His Ala Arg Tyr Lys
50 55 60
Lys Ser Leu Glu Glu Asp Val Ala His His Thr Thr Gly Asp Phe Arg
65 70 75 80
Lys Leu Leu Val Pro Leu Val Ser Ser Tyr His Tyr Asp Gly Asp Glu
85 90 95
Val Asn Met Thr Leu Ala Lys Ala Glu Ala Lys Ile Leu His Glu
100 105 110




64


73


PRT


Pinus radiata



64
Tyr Leu Ala Asn Glu Ala Thr Lys Arg Trp Thr Ser Ser Asn Gln Val
1 5 10 15
Leu Met Glu Ile Ala Cys Thr Arg Ser Pro Gln Gln Leu Leu Met Ala
20 25 30
Arg Gln Ala Tyr His Ala Arg Tyr Lys Lys Ser Leu Glu Glu Asp Val
35 40 45
Gly His His Thr Thr Gly Asp Phe Arg Lys Leu Leu Val Pro Leu Val
50 55 60
Ser Ser Tyr Arg Tyr Asp Gly Asp Glu
65 70




65


239


PRT


Pinus radiata



65
Met Ala Thr Ile Ala Val Pro Pro Ser Val Pro Ser Pro Ala Glu Asp
1 5 10 15
Ala Glu Gln Leu Gln Lys Ala Phe Ala Gly Trp Gly Thr Asn Glu Asp
20 25 30
Leu Ile Ile Ser Ile Leu Pro His Arg Asn Ala Ala Gln Arg Lys Val
35 40 45
Ile Arg Gln Thr Tyr Ala Glu Thr Tyr Gly Glu Asp Leu Leu Lys Ala
50 55 60
Leu Asp Lys Glu Leu Ser Ser Asp Phe Glu Arg Ser Val Leu Leu Trp
65 70 75 80
Thr Leu Asp Pro Ala Glu Arg Asp Ala Phe Leu Ser Asn Glu Ala Thr
85 90 95
Lys Arg Leu Thr Ser Ser Asn Trp Val Leu Met Glu Ile Ala Cys Thr
100 105 110
Arg Ser Ser Met Glu Leu Phe Met Val Arg Gln Ala Tyr His Ala Arg
115 120 125
Tyr Lys Lys Ser Leu Glu Glu Asp Ile Ala Tyr His Thr Thr Gly Asp
130 135 140
Phe Arg Lys Leu Leu Val Pro Leu Ala Ser Thr Phe Arg Tyr Glu Gly
145 150 155 160
Pro Glu Val Asn Met Thr Leu Ala Arg Ser Glu Ala Lys Ile Leu His
165 170 175
Glu Lys Ile His Glu Lys Ala Tyr Asn His Asp Glu Leu Ile Arg Ile
180 185 190
Val Thr Thr Arg Ser Lys Ala Gln Leu Asn Ala Thr Leu Asn Tyr Tyr
195 200 205
Asn Asn Glu Phe Gly Asn Ala Ile Asn Lys Asp Leu Lys Ala Asp Pro
210 215 220
Asn Asp Glu Phe Leu Lys Leu Leu Arg Ser Ala Ile Lys Cys Leu
225 230 235




66


184


PRT


Pinus radiata



66
Met Ser Thr Ile Ile Val Pro Val Pro Ile Pro Thr Pro Ser Glu Asp
1 5 10 15
Ser Glu Arg Leu Arg Lys Ala Phe Glu Gly Trp Gly Thr Asn Glu Lys
20 25 30
Ser Ile Ile Gln Ile Leu Gly His Arg Thr Ala Ala Gln Arg Lys Val
35 40 45
Ile Arg Gln Ser Tyr Phe Gln Leu Tyr Glu Glu Asp Leu Leu Lys Arg
50 55 60
Leu Glu Ser Glu Leu Ser Ser Asp Phe Glu Lys Ala Val Phe Leu Trp
65 70 75 80
Val Leu Asp Pro Ala Glu Arg Asp Ala Val Ile Ser His Gly Ala Ile
85 90 95
Lys Lys Trp Asn Ala Lys Asn Ile Ser Leu Leu Glu Ile Ser Ser Ala
100 105 110
Arg Ser Ser Ala Glu Leu Leu Met Val Arg Gln Ala Tyr His Ile Arg
115 120 125
Tyr Lys Lys Ser Leu Glu Glu Asp Val Ala Ala His Thr Ser Gly Asn
130 135 140
Phe Arg Lys Leu Leu Val Ala Leu Val Ser Ser Tyr Arg Tyr Glu Gly
145 150 155 160
Pro Glu Val Asp Met His Leu Ala Ser Tyr Glu Ala Lys Lys Leu Ser
165 170 175
Glu Ser Ile Thr Glu Gln Lys Arg
180




67


275


PRT


Pinus radiata



67
Met Ser Val Gln Arg Ala Leu Ser Asn Ile Ala Ala Leu Ala Ile Ser
1 5 10 15
Val Gly Thr Gly Val Gly Leu Leu Asn Ala Ser Leu Tyr Thr Val Asp
20 25 30
Gly Gly His Lys Ala Val Leu Phe Asp Arg Phe Arg Gly Val Leu Asp
35 40 45
Thr Thr Val Gly Glu Gly Thr His Phe Leu Ile Pro Trp Leu Gln Lys
50 55 60
Pro Tyr Ile Phe Glu Ile Arg Thr Lys Pro Arg Ser Ile Ser Thr Ile
65 70 75 80
Thr Gly Thr Lys Asp Leu Gln Met Val Asn Ile Ser Leu Arg Ile Leu
85 90 95
Ala Arg Pro Lys Glu Asp Ser Leu Pro Asp Ile Phe Gln Arg Leu Gly
100 105 110
Leu Asp Tyr Asp Glu Arg Val Leu Pro Ser Ile Gly Asn Glu Val Leu
115 120 125
Lys Ala Val Val Ala Gln Phe Asn Ala Asp Gln Leu Leu Thr Glu Arg
130 135 140
Pro Thr Val Ser Ala Leu Val Arg Glu Ala Leu Leu His Arg Ala Lys
145 150 155 160
Asp Phe Asn Ile Leu Leu Asp Asp Val Ala Ile Thr His Leu Ser Tyr
165 170 175
Gly Pro Glu Phe Ser Lys Ala Val Glu Gln Lys Gln Val Ala Gln Gln
180 185 190
Glu Ala Glu Arg Ser Lys Phe Val Val Ala Lys Ala Glu Gln Glu Arg
195 200 205
Arg Ala Ala Val Val Arg Ala Glu Gly Glu Ser Glu Ala Ala Lys Leu
210 215 220
Ile Ser Leu Ala Thr Ser Ala Ala Gly Leu Gly Leu Ile Glu Leu Arg
225 230 235 240
Arg Ile Glu Ala Ala Lys Glu Ile Ala Ser Thr Leu Ser Arg Ser Pro
245 250 255
Asn Val Val Tyr Leu Pro Ser Gly Asn Asn Met Leu Leu Gly Leu Asn
260 265 270
Pro Ser His
275




68


146


PRT


Pinus radiata



68
Met Gly Ser Ser Gln Ala Ala Val Ser Phe Leu Thr Asn Val Ala Arg
1 5 10 15
Ala Ala Phe Gly Leu Gly Ala Ala Gly Thr Ala Leu Asn Ala Ser Leu
20 25 30
Tyr Thr Val Asp Gly Gly Gln Arg Ala Val Ile Phe Asp Arg Leu Arg
35 40 45
Gly Val Met Asp Glu Thr Val Gly Glu Gly Thr His Phe Leu Val Pro
50 55 60
Trp Leu Gln Lys Pro Phe Ile Phe Asp Ile Arg Thr Arg Pro His Thr
65 70 75 80
Phe Ser Ser Val Ser Gly Thr Lys Asp Leu Gln Met Val Asn Leu Thr
85 90 95
Leu Arg Val Leu Ser Arg Pro Gln Val Ser Arg Leu Pro Tyr Ile Phe
100 105 110
Arg His Leu Gly Leu Glu Tyr Asp Glu Lys Val Leu Pro Ser Ile Gly
115 120 125
Asn Glu Val Leu Lys Ala Val Val Ala Gln Phe Asn Ala Asp Ser Ala
130 135 140
Ser Tyr
145




69


168


PRT


Pinus radiata



69
Val Leu Pro Ser Ile Ile His Glu Thr Leu Lys Ala Val Val Ala Gln
1 5 10 15
Tyr Asn Ala Ser Gln Leu Ile Thr Gln Arg Glu Ala Val Ser Arg Glu
20 25 30
Ile Arg Arg Ile Leu Thr Glu Arg Ala Ala Asn Phe Tyr Ile Ala Leu
35 40 45
Asp Asp Val Ser Ile Thr Ser Leu Thr Phe Gly Arg Glu Phe Thr Ala
50 55 60
Ala Ile Glu Ala Lys Gln Val Ala Ala Gln Glu Ala Glu Arg Ala Lys
65 70 75 80
Phe Val Val Glu Lys Ala Glu Gln Asp Lys Lys Ser Ala Ile Ile Arg
85 90 95
Ala Gln Gly Glu Ala Thr Ser Ala Gln Leu Ile Gly Glu Ala Ile Ser
100 105 110
Asn Asn Pro Ala Phe Ile Thr Leu Arg Lys Ile Glu Ala Ser Arg Glu
115 120 125
Ile Ala His Thr Leu Ser Asn Ser Thr Asn Arg Ile Phe Leu Ser Ser
130 135 140
Asp Ser Leu Leu Leu Asn Leu Gln Asp Met Ser Leu Asp Asp Ala His
145 150 155 160
Lys Pro Pro Pro Lys Pro Lys Lys
165




70


119


PRT


Pinus radiata



70
Met Asn Phe Asn Asn Val Arg Val Pro Gly Gly Gly Gly Ala Ala Trp
1 5 10 15
Ala Leu Thr Lys Ala Val Val Leu Gly Gly Ala Gly Leu Tyr Gly Ala
20 25 30
Leu Asn Ser Leu Tyr Asn Val Glu Gly Gly His Arg Ala Ile Val Phe
35 40 45
Asn Arg Ile Val Gly Val Lys Asp Lys Val Tyr Pro Glu Gly Thr His
50 55 60
Leu Met Ile Pro Trp Phe Asp Arg Pro Val Ile Tyr Asp Val Arg Ala
65 70 75 80
Arg Pro His Leu Val Glu Ser Thr Ser Gly Ser Arg Asp Leu Gln Met
85 90 95
Val Lys Ile Gly Leu Arg Val Leu Thr Arg Pro Met Pro Asp Gln Leu
100 105 110
Pro Thr Ile Tyr Arg Pro Leu
115




71


86


PRT


Pinus radiata



71
Met Asp Phe Arg Asn Val Lys Val Pro Lys Val Pro Gly Gly Gly Ala
1 5 10 15
Thr Ser Ala Leu Leu Lys Leu Gly Val Ile Gly Gly Ile Ala Leu Tyr
20 25 30
Ala Ala Thr Asn Ser Leu Tyr Asn Val Glu Gly Gly His Arg Ala Ile
35 40 45
Val Phe Asn Arg Leu Val Gly Val Lys Asp Lys Val Tyr Pro Glu Gly
50 55 60
Thr His Ile Met Ile Pro Trp Phe Glu Arg Pro Val Ile Tyr Asp Val
65 70 75 80
Arg Ala Arg Pro His Leu
85




72


186


PRT


Pinus radiata



72
Met Arg Arg Phe Phe Cys Cys Thr Cys Ser Thr Glu Gly Ala Pro Glu
1 5 10 15
Gln Pro Glu Ala His Phe Leu Asn Ala Ala Lys Asn Asn Gly Asn Gly
20 25 30
Phe Gln Gly Asp Tyr Lys Met Ser Glu Gly Ala Lys Ser Gly Pro Pro
35 40 45
Gln Lys Ile Ala Pro Ile Glu Ala Pro Ala Leu Ser Leu Glu Glu Leu
50 55 60
Lys Glu Ala Thr Asp Asn Phe Gly Ala Lys Ala Leu Ile Gly Glu Gly
65 70 75 80
Ser Tyr Gly Arg Val Tyr Tyr Ala Met Leu Ser Asp Gly Gln Pro Ala
85 90 95
Ala Ile Lys Lys Leu Asp Val Asn Ser Gln Pro Glu Ala Asn Ser Glu
100 105 110
Phe Leu Ala Gln Ile Ser Met Val Ser Arg Leu Lys His Asp His Ile
115 120 125
Val Glu Leu Val Gly Tyr Cys Val Glu Gly Thr Leu Arg Val Leu Ala
130 135 140
Tyr Glu Phe Ala Thr Met Gly Ser Leu His Asp Ile Leu His Gly Arg
145 150 155 160
Lys Gly Val Gln Gly Ala Gln Pro Gly Pro Val Leu Asp Trp Met Gln
165 170 175
Arg Val Lys Ile Ala Val Gly Ala Ala Lys
180 185




73


196


PRT


Pinus radiata



73
Met Ser Ile Cys Arg Phe Ile Lys Cys Val Thr Val Gly Asp Gly Ala
1 5 10 15
Val Gly Lys Thr Cys Leu Leu Ile Ser Tyr Thr Ser Asn Thr Phe Pro
20 25 30
Thr Asp Tyr Val Pro Thr Val Phe Asp Asn Phe Ser Ala Asn Val Val
35 40 45
Val Asp Gly Asn Asn Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln
50 55 60
Glu Asp Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Thr Asp Val
65 70 75 80
Phe Leu Leu Ala Phe Ser Leu Ile Ser Lys Ala Ser Tyr Glu Asn Val
85 90 95
Ser Lys Lys Trp Ile Pro Glu Leu Lys His Tyr Val Pro Ser Val Pro
100 105 110
Ile Val Leu Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Gln Phe
115 120 125
Phe Ser Asp His Pro Gly Ala Ala Pro Ile Thr Thr Ala Gln Gly Glu
130 135 140
Glu Leu Lys Asn Gln Ile Gly Ala Val Ala Tyr Ile Glu Cys Ser Ser
145 150 155 160
Lys Thr Gln Gln Asn Val Lys Ala Val Phe Asp Ala Ala Ile Asn Ser
165 170 175
Val Leu Gln Leu Pro Lys Pro Val Lys Pro Arg Lys Lys Arg Gln Thr
180 185 190
Cys Ala Val Leu
195




74


115


PRT


Pinus radiata



74
Met Ala Ala Ser Ala Ser Arg Phe Ile Lys Cys Val Thr Val Gly Asp
1 5 10 15
Gly Ala Val Gly Lys Thr Cys Met Leu Ile Cys Tyr Thr Ser Asn Lys
20 25 30
Phe Pro Thr Asp Tyr Ile Pro Thr Val Phe Asp Asn Phe Ser Ala Asn
35 40 45
Val Val Val Glu Gly Thr Thr Val Asn Leu Gly Leu Trp Asp Thr Ala
50 55 60
Gly Gln Glu Asp Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Ala
65 70 75 80
Asp Val Phe Val Leu Ala Phe Ser Leu Val Ser Arg Ala Ser Tyr Glu
85 90 95
Asn Ile Leu Lys Lys Trp Ile Pro Glu Leu Gln His Tyr Ala Pro Gly
100 105 110
Asn Pro Ser
115




75


94


PRT


Pinus radiata



75
Met Ser Ala Ser Arg Phe Ile Lys Cys Val Thr Val Gly Asp Gly Ala
1 5 10 15
Val Gly Lys Thr Cys Met Leu Ile Ser Tyr Thr Ser Asn Thr Phe Pro
20 25 30
Thr Asp Tyr Val Pro Thr Val Phe Asp Asn Phe Ser Ala Asn Val Val
35 40 45
Val Asp Gly Ser Thr Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln
50 55 60
Glu Asp Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Ala Asp Val
65 70 75 80
Phe Leu Leu Thr Phe Ser Leu Ile Ser Lys Ala Ser Tyr Glu
85 90




76


136


PRT


Pinus radiata



76
Ile Lys Cys Val Thr Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu
1 5 10 15
Leu Ile Ser Tyr Thr Ser Asn Thr Phe Pro Thr Asp Tyr Val Pro Thr
20 25 30
Val Phe Asp Asn Phe Ser Ala Asn Val Val Val Asn Gly Ser Thr Val
35 40 45
Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asn Arg Leu
50 55 60
Arg Pro Leu Ser Tyr Arg Gly Ala Asp Val Phe Ile Leu Ala Phe Ser
65 70 75 80
Leu Ile Ser Lys Ala Ser Tyr Glu Asn Val Ser Lys Lys Trp Ile Pro
85 90 95
Glu Leu Lys His Tyr Ala Pro Gly Val Pro Ile Ile Leu Val Gly Thr
100 105 110
Lys Leu Asp Leu Arg Asp Asp Lys Gln Phe Phe Ile Asp His Pro Gly
115 120 125
Ala Val Pro Ile Thr Thr Gln Gln
130 135




77


110


PRT


Pinus radiata



77
Lys Cys Val Thr Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu Leu
1 5 10 15
Ile Ser Tyr Thr Ser Asn Thr Phe Pro Thr Asp Tyr Val Pro Thr Val
20 25 30
Phe Asp Asn Phe Ser Ala Asn Val Val Val Asn Gly Ser Thr Val Asn
35 40 45
Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asn Arg Leu Arg
50 55 60
Pro Leu Ser Tyr Arg Gly Ala Asp Val Phe Ile Leu Ala Phe Ser Leu
65 70 75 80
Ile Ser Lys Ala Ser Tyr Glu Asn Val Ser Lys Lys Trp Ile Pro Val
85 90 95
Leu Lys His Tyr Ala Pro Gly Val Pro Ile Val Leu Val Gly
100 105 110




78


146


PRT


Pinus radiata



78
Met Ser Thr Ala Arg Phe Ile Lys Cys Val Thr Val Gly Asp Gly Ala
1 5 10 15
Val Gly Lys Thr Cys Met Leu Ile Ser Tyr Thr Ser Asn Thr Phe Pro
20 25 30
Thr Asp Tyr Val Pro Thr Val Phe Asp Asn Phe Ser Ala Asn Val Val
35 40 45
Val Asp Gly Ser Thr Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln
50 55 60
Glu Asp Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Ala Asp Val
65 70 75 80
Phe Leu Leu Ala Phe Ser Leu Ile Ser Lys Ala Ser Tyr Glu Asn Ile
85 90 95
Phe Lys Asn Trp Ile Pro Glu Leu Arg His Tyr Ala Pro Ser Val Pro
100 105 110
Ile Ile Leu Val Gly Thr Lys Leu Asp Leu Arg Glu Asp Lys Gln Phe
115 120 125
Phe Ala Asp His Pro Gly Ala Ala Pro Ile Ser Thr Ala Gln Gly Glu
130 135 140
Asn Leu
145




79


54


PRT


Pinus radiata



79
Met Ser Ala Ser Lys Phe Ile Lys Cys Val Thr Val Gly Asp Gly Ala
1 5 10 15
Val Gly Lys Thr Cys Met Leu Ile Cys Tyr Thr Ser Asn Lys Phe Pro
20 25 30
Thr Asp Tyr Ile Pro Thr Val Phe Asp Asn Phe Ser Ala Asn Val Ala
35 40 45
Val Asp Gly Asn Ile Val
50




80


182


PRT


Pinus radiata



80
Glu Leu Lys Asp Ile Asp Thr Asp Thr Phe Ser Tyr Phe Glu Gly Leu
1 5 10 15
Met Glu Glu Ser Ser Leu Val Ser Ser Ile Gln Ile Leu Glu Lys Asp
20 25 30
Tyr Glu Asp Ala Ile Tyr Asp Arg Gly Glu Leu Asp Glu Arg Met Phe
35 40 45
Val Asn Glu Glu Asp Ser Leu Phe Gly Ser Ala Ser Asn Ser Gly Gly
50 55 60
Ser Val Thr Val Ser Gly Val Lys Arg Lys Phe Asp Ser Ile Ser Ser
65 70 75 80
Pro Thr Lys Thr Ile Thr Ser Pro Pro Ser Pro Arg Gly Ser Pro Val
85 90 95
Ala Ser Pro Val Lys Glu Ser Ser Ala Thr Ala Ser Thr Lys Met Pro
100 105 110
Pro Pro Thr Pro Val Ser Thr Ala Met Thr Thr Ala Lys Trp Leu Arg
115 120 125
Thr Val Ile Ala Pro Leu Pro Pro Lys Pro Ser Ser Glu Leu Gly His
130 135 140
Phe Leu Ser Ser Cys Asp Arg Asp Ile Thr Ala Asp Val Ser His Arg
145 150 155 160
Ala Arg Ile Val Leu Glu Ala Ile Phe Leu Val Val Thr Trp Gly Lys
165 170 175
Met Cys Cys Gly Ala Gln
180




81


142


PRT


Pinus radiata



81
Thr Asp Gly Phe Ser Tyr Phe Glu Gly Leu Met Glu Glu Thr Ser Leu
1 5 10 15
Asn Ser Ser Ile Arg Ile Leu Glu Ser Asn Tyr Met Asn Ala Ile His
20 25 30
Asp Arg Gly Glu Leu Asp Glu Arg Met Phe Val Asn Asp Glu Asp Ser
35 40 45
Leu Phe Gly Ser Val His Ala Ser Val Asp Ser Val Asn Ile Leu Gly
50 55 60
Ala Lys Arg Lys Tyr Glu Ala Ile Ser Ser Pro Met Lys Arg Ile Thr
65 70 75 80
Ser Pro Leu Ser Ser Pro Val Ser Pro Ser Ala Ser Gly Thr Ile Tyr
85 90 95
Ser Asn Val Lys Met Leu Pro Pro Thr Pro Val Ser Thr Thr Met Thr
100 105 110
Thr Ala Lys Trp Leu Arg Thr Val Ile Ala Pro Leu Pro Ala Glu Pro
115 120 125
Cys Lys Glu Leu Asn Ser Phe Leu Leu Leu Val Thr Glu Met
130 135 140




82


61


PRT


Pinus radiata



82
Thr Gly Gly Asn Gly Arg Lys Leu Ile Trp His Gly Val Pro Arg Ser
1 5 10 15
Ile Arg Asp Cys His Arg Lys Val His Asp Ser Ser Asp Gly Leu Ile
20 25 30
Ile Gln Arg Asp Val Ala Leu Phe Phe Ser Gly Gly Asp Ile Asn Glu
35 40 45
Leu Asn Leu Arg Leu Thr Gly His Ile Leu Lys Glu Gln
50 55 60




83


325


PRT


Pinus radiata



83
Met Gly Trp Phe His Arg Cys Phe Gly Phe Ile Arg Lys Lys Lys Lys
1 5 10 15
Gln Lys Ser Pro Lys Ser Glu Pro Pro Ser Arg Glu His Leu Leu Lys
20 25 30
Ser Thr Gln Glu Glu Phe Glu Asn Thr Lys Gly Ala Gln Tyr Lys Tyr
35 40 45
His Arg Arg Phe Pro Ala Val Arg Asp Lys Thr Glu Gln Val Ala Thr
50 55 60
Arg Ser Phe Gly Asp Leu Asp Gly Ala Ser Leu Ile Glu Thr Pro Gly
65 70 75 80
Arg Glu Thr Leu Gln Ile Val Ile Thr Glu Cys Pro Asn Thr Arg Thr
85 90 95
Val Cys Ser Gly Cys Lys Ser Arg Leu Ser Asn Trp Cys Pro Ser Cys
100 105 110
Arg Cys Asn Leu Gly Asn Phe Arg Cys Leu Ala Pro Glu Thr Glu Thr
115 120 125
Ser Ser Gln Glu Leu Thr Cys Met Tyr Gln Ser Tyr Gly Cys Glu Asp
130 135 140
Met Tyr Pro Tyr Tyr Ser Glu Leu Arg His Glu Ala Gln Cys Asn Phe
145 150 155 160
Arg Pro Tyr Asn Cys Pro Tyr Ala Gly Ser Glu Cys Lys Leu Val Gly
165 170 175
Asp Ile Pro Phe Leu Val Ala His Leu Arg Asp Asp His Lys Val Tyr
180 185 190
Met His Asn Ser Cys Thr Phe Asp His Arg Tyr Val Lys Ser Asn Pro
195 200 205
Leu Glu Val Glu Asn Ala Ile Trp Met Pro Thr Val Ile Asn Cys Phe
210 215 220
Gly Gln Phe Phe Cys Leu His Phe Glu Ala Phe Leu Leu Asp Met Ala
225 230 235 240
Pro Val Tyr Ile Ala Phe Leu Ile Phe Met Gly Asp Asp Asn Glu Ala
245 250 255
Lys Asn Phe Ser Tyr Cys Leu Glu Thr Gly Gly Asn Gly Arg Lys Leu
260 265 270
Ile Trp His Gly Val Pro Arg Ser Ile Arg Asp Cys His Arg Lys Val
275 280 285
His Asp Ser Ser Asp Gly Leu Ile Ile Gln Arg Asp Val Ala Leu Phe
290 295 300
Phe Ser Gly Gly Asp Ile Asn Glu Leu Asn Leu Arg Leu Thr Gly His
305 310 315 320
Ile Leu Lys Glu Gln
325




84


120


PRT


Pinus radiata



84
Phe Lys Gly Arg Asn Ser Asp Gln Val Ser Val Asp Leu Gln Val Phe
1 5 10 15
Arg Cys Leu Gly Gln Tyr Phe Cys Leu His Phe Glu Ala Phe Gln Leu
20 25 30
Gly Met Ala Pro Val Tyr Ile Ala Phe Leu Arg Phe Met Gly Asp Asp
35 40 45
Asn Glu Ala Lys Asn Tyr Ser Tyr Ser Leu Glu Val Gly Gly Asn Gly
50 55 60
Arg Lys Met Ile Trp Gln Gly Val Pro Arg Ser Ile Arg Asp Ser His
65 70 75 80
Arg Lys Val Arg Asp Ser Phe Asp Gly Leu Ile Ile Gln Arg Asn Met
85 90 95
Ala Leu Phe Phe Ser Gly Gly Asp Arg Lys Glu Leu Lys Leu Arg Val
100 105 110
Thr Gly Arg Ile Trp Lys Glu Gln
115 120




85


197


PRT


Pinus radiata



85
Met Ala Asp Gln Ala Leu Glu Gly Ser Gln Pro Val Asp Leu Ser Lys
1 5 10 15
His Pro Ser Gly Ile Val Pro Thr Leu Gln Asn Ile Val Ser Thr Val
20 25 30
Asn Leu Asp Cys Lys Leu Asp Leu Lys Ala Ile Ala Leu Gln Ala Arg
35 40 45
Asn Ala Glu Tyr Asn Pro Lys Arg Phe Ala Ala Val Ile Met Arg Ile
50 55 60
Arg Glu Pro Lys Thr Thr Ala Leu Ile Phe Ala Ser Gly Lys Met Val
65 70 75 80
Cys Thr Gly Ala Lys Ser Glu Gln Gln Ser Lys Leu Ala Ala Arg Lys
85 90 95
Tyr Ala Arg Ile Ile Gln Lys Leu Gly Phe Pro Ala Lys Phe Lys Asp
100 105 110
Phe Lys Ile Gln Asn Ile Val Gly Ser Cys Asp Val Lys Phe Pro Ile
115 120 125
Arg Leu Glu Gly Leu Ala Tyr Ser His Gly Ala Phe Ser Ser Tyr Glu
130 135 140
Pro Glu Leu Phe Pro Gly Leu Ile Tyr Arg Met Lys Gln Pro Lys Ile
145 150 155 160
Val Leu Leu Ile Phe Val Ser Gly Lys Ile Val Leu Thr Gly Ala Lys
165 170 175
Val Arg Asp Glu Thr Tyr Thr Ala Phe Glu Asn Ile Tyr Pro Val Leu
180 185 190
Thr Glu Phe Arg Lys
195




86


158


PRT


Pinus radiata



86
Met Ala Glu Gln Val Leu Glu Gly Ser Gln Pro Val Asp Leu Glu Lys
1 5 10 15
His Pro Ser Gly Ile Val Pro Thr Leu Gln Asn Ile Val Ser Thr Val
20 25 30
Asn Leu Asp Cys Lys Leu Asp Leu Lys Ala Ile Ala Leu Gln Ala Arg
35 40 45
Asn Ala Glu Tyr Asn Pro Lys Arg Phe Ala Ala Val Ile Met Arg Ile
50 55 60
Arg Glu Pro Lys Thr Thr Ala Leu Ile Phe Ala Ser Gly Lys Met Val
65 70 75 80
Cys Thr Gly Ala Lys Ser Glu Gln Gln Ser Lys Leu Ala Ala Arg Lys
85 90 95
Tyr Ala Arg Ile Ile Gln Lys Leu Gly Phe Pro Ala His Phe Lys Asp
100 105 110
Phe Lys Ile Gln Asn Ile Val Gly Ser Cys Asp Val Lys Phe Pro Ile
115 120 125
Arg Leu Glu Gly Leu Ala Tyr Ser His Gly Ala Phe Ser Ser Tyr Glu
130 135 140
Pro Glu Leu Phe Pro Gly Leu Ile Tyr Arg Met Lys Gln Pro
145 150 155




87


213


PRT


Pinus radiata



87
Arg Val Tyr Leu Ser Leu Ser Cys Ala Leu Val Thr Ala Ala Ile Gly
1 5 10 15
Val Tyr Leu His Leu Leu Leu Asn Ile Gly Gly Leu Leu Thr Gly Leu
20 25 30
Ala Cys Ile Gly Ser Val Ile Gly Leu Leu Ser Val Pro Thr Ser Ser
35 40 45
Asn Asn Glu Gly Lys Arg Ala Ala Leu Leu Leu Ala Ala Ala Ala Phe
50 55 60
Lys Gly Ala Thr Leu Gly Pro Leu Ile Asp Ala Val Ile Asn Ile Asp
65 70 75 80
Ser Ser Ile Leu Val Ser Ala Phe Val Gly Thr Ser Leu Ala Phe Ala
85 90 95
Cys Phe Ser Ala Ala Ala Ile Thr Ala Arg Arg Arg Glu Tyr Leu Phe
100 105 110
Leu Gly Gly Leu Leu Gly Ser Gly Ile Ser Ile Leu Met Trp Leu Gln
115 120 125
Leu Ala Ser Ser Ile Phe Gly Gly Ser Ser Ala Ile Tyr Thr Phe Glu
130 135 140
Ile Tyr Phe Gly Leu Leu Val Phe Leu Gly Tyr Ile Ile Phe Asp Thr
145 150 155 160
Gln Met Ile Ile Glu Lys Ala Asp His Gly Asp Tyr Asp Tyr Leu Lys
165 170 175
His Ser Leu Asp Leu Phe Ile Asp Phe Val Ala Val Phe Val Arg Leu
180 185 190
Met Val Ile Met Ala Lys Asn Ala Asp Ser Lys Ser Arg Glu Gly Lys
195 200 205
Lys Lys Arg Arg Ala
210




88


140


PRT


Pinus radiata



88
Met Asp Ala Phe Ala Ser Leu Phe Gln Ser Ser Gly Lys Gly Trp Ser
1 5 10 15
His Asp Ser Leu Lys Asn Phe Arg Gln Ile Ser Pro Ala Val Gln Ser
20 25 30
His Leu Lys Asn Val Tyr Leu Ser Leu Cys Cys Ala Leu Met Ala Ser
35 40 45
Ala Gly Gly Ala Tyr Leu His Leu Met Leu Asn Ile Gly Gly Leu Leu
50 55 60
Thr Thr Ile Ala Cys Ile Gly Ser Ile Val Trp Leu Leu Ser Ile Pro
65 70 75 80
Pro His Glu Glu Gln Lys Arg Phe Gly Leu Leu Met Ala Ala Ala Leu
85 90 95
Phe Glu Gly Ala Cys Ile Gly Pro Leu Ile Glu Ala Ala Ile Lys Val
100 105 110
Asp Pro Ser Ile Val Ile Ser Ala Phe Val Gly Ser Ala Leu Ala Phe
115 120 125
Ala Cys Phe Ser Gly Ala Ala Cys Trp Leu Gly Gly
130 135 140




89


245


PRT


Pinus radiata



89
Met Lys Thr Thr Asn Ala Gly Ser Ile Met Leu Val Leu Ile Ile Phe
1 5 10 15
Gly Cys Cys Phe Ile Gly Val Ile Ala Thr Ser Phe Asp Phe Tyr Tyr
20 25 30
Phe Val Gln Gln Trp Pro Gly Ser Tyr Cys Asp Thr Arg Arg Gly Cys
35 40 45
Cys Tyr Pro Arg Thr Gly Arg Pro Ala Ser Glu Phe Ser Ile His Gly
50 55 60
Leu Trp Pro Asn Tyr Lys Thr Gly Lys Trp Pro Gln Phe Cys Gly Ser
65 70 75 80
Ser Glu Glu Phe Asp Tyr Ser Lys Ile Ser Asp Leu Glu Glu Glu Leu
85 90 95
Asn Arg Tyr Trp Gly Ser Leu Ser Cys Pro Ser Ser Asp Gly Gln Glu
100 105 110
Phe Trp Gly His Glu Trp Glu Lys His Gly Thr Cys Ser Leu Asn Leu
115 120 125
Asp Glu His Ser Tyr Phe Glu Lys Ala Leu Ser Leu Arg Gln Asn Ile
130 135 140
Asp Ile Leu Gly Ala Leu Lys Thr Ala Gly Ile Lys Pro Asp Gly Ser
145 150 155 160
Gln Tyr Ser Leu Ser Asp Ile Lys Glu Ala Ile Lys Gln Asn Thr Gly
165 170 175
Gln Leu Pro Gly Ile Asp Cys Asn Thr Ser Ala Glu Gly Glu His Gln
180 185 190
Leu Tyr Gln Val Tyr Val Cys Val Asp Lys Ser Asp Ala Ser Thr Val
195 200 205
Ile Glu Cys Pro Ile Tyr Pro His Ser Asn Cys Pro Ser Met Val Val
210 215 220
Phe Pro Pro Phe Gly Glu Asp Gln Glu Asp Arg Asp Gly Tyr Thr Glu
225 230 235 240
Gly Met Tyr Glu Leu
245




90


1323


DNA


Pinus radiata



90
actttttctc ttaatttgtg aatccattac aatgatggta tgcaggtgaa aggaatagga 60
gtgggattct tattaagcaa tggaaggtta cgctgcgaat aacgatgcag aacttctgag 120
caaaaccctt caagtggaac agaagttgtt ctatttcgat ctcaaggaaa acccccgagg 180
tcaatacctt aaaatctctg agaagacctc cggctcacgg tctacaataa ttgtgcccat 240
tggtggagtt gcatggttcc tcgatctctt taattattat gtcgacggag atgacgagga 300
agttttgagc aaggaattgc agctggatgc caaggtattt tatttcgatg ttggggtgaa 360
taaaaggggt cggttcttga agatttctga agcatctaca tcctacagtc gcagcacaat 420
cattgtacct gtaggaaaca caagaaaaga tggttgggca gcatttagaa atattttagg 480
agagataaat gaagcttccc aacaagcttc tggcccatcc gaacatttgg gagggctttc 540
cgatgaagtt ggtgctggtt tcctatcagg tggaagtgga gaagcagcat ttgaggcaga 600
cacaactggt gacagagcca tgggtttaac tccagcagaa gatacgggtg aagcagttgt 660
ttcaaaagtg attcgagctg atcagaaacg tttctttttt gatcttgggt gtaacaaccg 720
gggccagttt cttagaattt ctgaggtgat aggtcctgac cgttcagcta ttattgttcc 780
tgtatctgct ttggagcagt ttcatgatgt gctaggccat tttgttgaca tcaccagaac 840
tcagggtctt gcagctgcaa gtggtgcaaa tgtgcgcaca gtagcagctg cacacagacg 900
aaatgaaaac tagattacct gcatataaac cgaaatgtga tttgattgga ctgatcatag 960
ggagcattgg aaatggtcaa tgacacttca caagtttatg actgtcattt gcggccattt 1020
catcatgcaa ataatcttct ttgttgccat cacattatgt gagtataacc tgtttgttga 1080
agtgctactg aagcacatga ccattataac ctttgctatt ggtggacttt tgaaggaaag 1140
gcaccaatga aacttcatgg gttatttgag gtttacatat atggttggcg gatctatatc 1200
acttaaggag agtttttatg caacagcatt tttgtttcta tcagaaggct gctttaatcc 1260
agaagccatt aaacaatttc aaaatgaaat aaatttgtct taaatttcaa aaaaaaaaaa 1320
aaa 1323




91


344


DNA


Pinus radiata



91
aaattaatgg actcagcgag gtgaaaggaa taggagtggg attcttatta agcaatggaa 60
ggttacgctg cgaataacga tgcagaactt ctgagcaaaa cccttcaagt ggaacagaag 120
ttgttctatt tcgatctcaa ggaaaacccc cgtggtcaat accttaaaat ctctgagaag 180
acctccggct cacggtctac aataattgtg cccattggtg gagttgcatg gttcctcgat 240
ctctttaatt attatgtcga cggagatgac gaggaagttt tgagcaagga attgcagctg 300
gatgccaagg tattttattt cgatgttggg gtgaataaaa gggg 344




92


1463


DNA


Eucalyptus grandis



92
cctcctcctc ctcctccttc ttccttcttc ttcctccaat cttcctcctt catagtcgtc 60
gtccatccat ggcgatcccg gccaccgccg ccgcggccct cctcctcttc tgcgccgtcg 120
ccgccgtcgc tgcggccgcg aggaccgacg aggaggtcat gggcatgtac gagctctggc 180
tcgccaagca cggcaaggcc tacaacggcc tcggcgagcg ggagcggcgg ttcgagatct 240
tccgcgacaa cctccggttc gtcgacgagc acaacgccct caaccggtcg tacaccctcg 300
ggatgaaccg gttcgccgac ctcaccaacg aggagtaccg cgccgtctac ctcggcaccc 360
ggagcgaccc catgcgccgg gtggcgaagg cggcgcgcgc gagcggccgc tacgcccccc 420
gccccgacga catgctgccg gcagccgtcg actggaggac ccgtggcgcc gttaacaagg 480
tcaaggacca gggagcttgc ggaagctgct gggccttctc taccatagct gctgtggaag 540
gaatcaacca gatcgtcacc ggcgagttca tatccctctc cgagcaagag ctcgtggatt 600
gtgaccgggc ctacgatgcc ggttgcaatg gtgggctcat ggactatgcc ttccagttca 660
tcattgacaa tggtggcatt gacactgatg aggactactc ttacacggga gtcgatggaa 720
cctgtgatgc gtctaaggtt aactcaaagg tggtgagcat tgatgggtac gaggatgtcc 780
cggcctttga cgagagagcc ttgaagaagg ctgtggctca tcaacccgtg agtgttgcca 840
ttgaagctgg aggcagagat ttccaacttt atgaatccgg cgtgttcact ggagaatgtg 900
gaactgcact ggaccacggt gtgatcgcag ttggatacgg gaggcaacat ggtgctgact 960
actggcttgt aaggaactcg tggggctcct tgtggggcga gagcggatac atcaagatgg 1020
agaggaactt ggccaacaac tactttggca agtgcggtat cgcaatggag gcttcttacc 1080
ctgtcaagac cactcagaac cctgctagta aatattcttc aatgggaagc agtggtggca 1140
tcgagctcgt cagcagttct tgaagcccgg aatagaggaa aacttacaga aaggtgcaag 1200
attgattgtc tttgagttcg gggatcactc tgggttcaca taattgtgtt atattccttc 1260
ccgggggtcg gtttatggaa gggggaaagg aatatggatg cacatcgggc ggttttctta 1320
tgattctact gtaaatatct ttcatttcgt caacatttga attccgaaga attgcaccat 1380
aagaagcaat agttattgta actcgaactg cctagttcaa gtcttcaatt gaaactcctc 1440
tctttcacaa aaaaaaaaaa aaa 1463




93


330


DNA


Eucalyptus grandis



93
ccttcctcca atcttcctcc ttcatcgtcc ttgtccatcc atggcgatcc cggccgccgc 60
cgccgccgcc ctcctcctct tctccgccgt cgccgccgtc gccgccgccg ctgcgaggac 120
tgacgaggag gtcatgggca tgtacgagct ttggctcgtc aagcacggca aggcctacaa 180
cggcctcggc gagcgggagc ggcggttcga gatcttccgc gacaacctcc ggttcgtgga 240
cgagcacacc ggcctcaacc ggtcgtacgc cctcgggatg aaccggttcg ccgacctcac 300
caacgaggag taccgcgcca tctacctcgg 330




94


886


DNA


Eucalyptus grandis



94
cagatcgtca ccggtgagct catatccctc tctgagcaag agcttgtgga ttgtgaccgg 60
tcctatgatg ccggttgcaa tggtgggctc atggactatg ccttccagtt catcattgac 120
aatggtggca tcgacactga tgaggactac tcttacacgg gagtcgatgg aacctgtgat 180
gcgtccaagg ttaactcaaa ggtggtgagc attgatgggt acgaggatgt cccggccttt 240
gacgagagag ccttgaagaa ggctgtggct catcaacccg tgagtgttgc cattgaagct 300
ggaggcagag atttccaact ttatgaatcc ggcgtgttca ctggcgaatg tggaactgca 360
ctggaccacg gtgtgatcgc ggttggatac gggaggcaac atggtgctga ctactggctt 420
gtaaggaact cgtggggctc cttgtggggt gagagcggat acatcaagat ggagaggaac 480
ttggccaaca actactttgg caagtgcggc atcgcaatgg aggcttctta ccctgtcaag 540
acctcccaga accctgctag taaatattct tcaatgggaa gcagcggtgg catcgagctt 600
gtcagcagtt cttgaagccc ggaatagagg aaaacttaca gaaaggtgca agatcgattg 660
tctttgagtt cggggatcac tctgggttca cataattgtg ttatattcct tccggggggt 720
cggtttatgg aagggggaaa ggaatatgga tgcacatcgg gcggttttct tatgattcta 780
ctgtaaatat ctttcatttc atcaacattt gaattccgaa gaattgcacc ataagaagta 840
atagttattg taactcgaac tgcctagttc aagtcttcaa ttgaaa 886




95


948


DNA


Pinus radiata



95
acaaagtggt caggcccttt tgcttctctt ggtcaatgcc ctctctgcgt taacatttcg 60
ttcgcagcaa gccaccggga aaggcctgat ccagccaaaa gaagtacgga tctcgaggtg 120
gaagatctac tgtagatatg ggaattcttc tgttctttgc tctgctggca atgttagcca 180
tggctggcaa tgcatcaaga gcggattttt ccatcatcag caacaaggat ctgagagaag 240
atgacgcaat catggagctc tatgaactgt ggcttgcaga gcacaaaaaa gcctacaatg 300
gtcttgacga gaagcagaag aggttcactg tattcaaaga caattttctg tatattcacg 360
agcacaacca ggggaatcgg tcctacaaac tgggtctgaa ccagtttgca gatctgagcc 420
acgaggaatt caaggccaca tatctgggtg ccaagctgga tactaagaaa cgcttgctga 480
ggtctcccag ccctcgatac cagtattccg acggcgagga tttgccaaag tccattgact 540
ggagagaaaa gggagccgtg gctcctgtga aggaccaggg tgcatgtgga agttgttggg 600
cgttctcaac tgtggcggcc gttgaaggaa tcaatcaaat cgtgaccggc gatttgattt 660
cgctgtccga gcaagaactg gtggactgtg atacttctta caaccaagga tgcaacggtg 720
gcctcatgga ttacgctttc gagtttatca taaacaatgg tggacttgac agcgaggagg 780
attaccccta cacggcctac gatggatcat gtgacgctta caggaaaaat gcccatgtgg 840
tgacaatcga tgactacgaa gatgtgcctg aaaacgatga gaaatcgttg aagaaggctg 900
cggctaatca gccaattagc gttgccatcg aagccagcgg gagggagt 948




96


883


DNA


Pinus radiata



96
gtggtcaggc ccttttgctt ctcttggtca atgccctctc tgcgttagca tttcgttcgc 60
agcaagccac cgggaaaggc ctgatccagc caaaagaagt acggatctcg aggtggaaga 120
tctactgtag atatgggaat tcttctgttc tttgctctgc tggcaatgtc agccatggct 180
ggcagtgcat caagagcgga tttttccatc atcagcaaca aggatctgag agaagatgac 240
gcaatcatgg agctctatga actgtggctt gcagagcaca aaaaagccta caatggtctt 300
gacgagaagc agaagaggtt caccgtattc aaagacaatt ttctgtatat tcacgagcac 360
aaccagggga atcggtccta caaactgggt ctgaaccagt ttgcagatct gagccacgag 420
gaattcaagg ccacatatct gggtgccaag ctggatacta agaaacgctt gctgaggtct 480
cccagccctc gataccagta ttccgacggc gaggatttgc caaagtccat tgactggaga 540
gaaaagggag ccgtggctcc tgtgaaggac cagggtgcat gtggaagttg ttgggcgttc 600
tcaactgtgg cggccgttga aggaatcaat caaatcgtga ccggcgattt gatttcgctg 660
tccgagcaag aactggtgga ctgtgatact tcttacaacc aaggatgcaa cggtggcctc 720
atggattacg ctttcgagtt tatcataaac aatggtggac ttgacagcga ggaggattac 780
ccctacacgg cctacgatgg atcatgtgac gcttacagga aaaatgccca tgtggtgaca 840
atcgatgact acgaagatgt gcctgaaaac gatgagaaat cgt 883




97


1066


DNA


Pinus radiata



97
caggaacgcc cacccttttc attttgaggg tgactgcttt gcttggtcca tccatgtggc 60
tttgaatcct ttgagagact ggtttggttt tcagcgaggg ttacgcccag accggtggag 120
agaaattccc tatttgtgcc caaatcagtc aaaaactaag attgtatcag tatgggaatc 180
cttctgctgt ttgctctgct ggcactgttt gccatggcag gcagtgcttc cagagcagat 240
ttttccatca tcgggtatga tagcaaagat ctgagggaag atgatgcgat catggagctt 300
tatgaactgt ggctcgctca gcacaggaaa gcctataatg gccttgacga gaaacagaag 360
aggttctctg tatttaaaga caattttctg tatattcatc agcacaacaa ccaagggaac 420
ccatccttca aaatggggct gaaccagttt gcagacctaa gtcacgagga attcaaggcc 480
acatatttgg ggtgcgaact ggataccaag aaacgcttgt ccaagtctcc cagccctcga 540
taccagtatt cggagggcga gaatttgcca gagtccgttg actggagaga aaagggagcc 600
gtggctgctg ttaaggacca gggctcctgc ggaagttgtt gggcgttctc gacggtggct 660
gccgttgaag gcatcaatca aattgtgact ggcaatttga cttccctgtc cgagcaggaa 720
ctggtggatt gcgatacttc ttacaaccaa ggatgcaatg gcggtctcat ggattatgct 780
ttccagttta tcatagacaa cggtgggctt gacagtgagg atgattaccc ttacatggcc 840
aacgatggca gctgtgacgc ttaccgaaaa aatgcccatg tggtgacaat tgatagctac 900
gaagatgtgc ctgagaacga tgagaagtcg ctgaagaagg ccgcggcgca tcagccgatt 960
agcgttgcca tcgaagccag cggaagggcg ttccagtttt acgaatctgg cgtgttcaca 1020
agcacctgcg gaactcagct ggaccacggt gtcactctgg tagggg 1066




98


1600


DNA


Eucalyptus grandis



98
attttctctc tctatacttc tctctctctc ctctgatgct ccgatcggat acgccgaagc 60
caagaagatg gatctcaaat cgccgccggc ggcggccgcc gtggccgtcc tcgccctcgc 120
gctggccctg acgacgatcg cctccgccct cgacatgtcc atcgtcagct acgatcgggc 180
ccacggcgac cggtcctcct cctcctcctc ctcctggagg tccgacgacg aggtgatggc 240
cgtctacgag agctggctcg ccaagcacgg caaggcctac aacgccctgg gcgagaagga 300
gaagcgcttc caggtcttca aggacaacct ccggttcatc gacgaccaca acgccggcgg 360
ggaccggacc tacacggtcg gcctcaacca gttcgccgac ctcactaacg aggagtaccg 420
gtccatgtac ctgggcgcca ggatggatcg gtcggggcgg cggctcggga gggcccgcag 480
cgatcggtac gccgtggccg ccggggagga gctgccggcg tccgtcgatt ggaggaagga 540
aggcgccgtt gttgacgtca aggaccaggg aagctgcggg agttgctggg cgttctctac 600
aattgctgct gtggagggga taaacaagct tgtgactggt gatttgatct ctctgtccga 660
gcaggaactt gtggactgcg atacatccta caatgaagga tgtaatggcg ggctcatgga 720
ttatgccttt gaattcatta tcaacaacgg aggcattgat accgaggaag attatcccta 780
tagagctgta gatagcactt gtgaccaata caggaagaac gcaaaggttg tgacgattga 840
cgattatgaa gatgttccag aaaatgatga gaaagcattg caaaaggcag ttgctaatca 900
accagtcagt gtggccattg aagcaggagg ccgggaattc cagttttatg attcgggtat 960
atttactggc aaatgtggga cagctctgga tcatggggtt actgcagtcg gatatggcac 1020
agaaaacgga gttgattact ggatagtgaa gaactcatgg ggcggtagct ggggagagca 1080
agggtacatc aaaatggcac gaaatgtggc caatagcccc actggcaaat gtggtatagc 1140
aatggaggcc tcctacccca tcaagaaagg ccaaaatcct cctaatcccg gcccatctcc 1200
tccatctcca gtgaagcccc caactgtctg cgacaattac tactcttgtc ccgagagcaa 1260
cacctgctgc tgtgtctatg agtatgcaaa ctactgcttt gcctggggat gctgccctct 1320
cgaggcagcc acctgttgtg aagaccacta tagttgctgc cctcaagact tcccggtctg 1380
caatgtaaac gctgggacct gccagatgag caaagacaat ccactaggag tcaaggcatt 1440
gaagcgcact cctgctaaat ttcactgggc ttttggaagt gatggacaga agagcagtgc 1500
ataaaaaaaa aacttgggat tgtatgctgt agatggagat tcttaaggag agtcaagaaa 1560
atcacagcga ctcatcttct cctcattctc attaaactgc 1600




99


700


DNA


Pinus radiata



99
ggatcaaggc gactgtggaa gttgttgggc attctcggca gcggcagcta tggaagggat 60
taccatgatc aagaagggga agttggtgcc actctcagta caagaactcg tggattgtga 120
cgttgacgat aatggctgcc atggcgggct catggacagg gccttcaagt ttatcaagag 180
caagggcgga ctctcgactg aggcgaacta cccctaccag gcaaataacg gaacctgcaa 240
tacggccaag atggcaaacc ccgtggcctc aataactgga taccaggatg tgccggccaa 300
taacgaaaag gccctcttgc aggccgtggc aaaccagcca gtctcggtgg caattgaggg 360
gagcgggttc aatttccaat tctactcaag cggtgtgttc tctggctcgt gtggaaccag 420
tatcgaccat gccgtcacgg cggtcgggta tgggaagacc tccaggggaa ccaagtattg 480
gctgctgaag aattcatggg gcactggatg gggtgagagc gggtacatga ggatccagag 540
ggacgtgagt tctaacgctg gtctctgtgg ccttgccatg gaagcttctt atccaaccgc 600
atgaagaaag aagaagaaga aaaaatacag tatgagctta tataagtgat actggttctt 660
aggctctcta tacgtatgaa ataatgtcta gtgtctctgt 700




100


739


DNA


Eucalyptus grandis



100
caattacttg aggacgaaca agctcctctc tctttccgag caagagctgg tggactgcga 60
caacacacaa aaccacgggt gcaacggcgg gctcatggat attgcattcg aattcatcaa 120
gcagaaggga ggcatcacgt ccgagtcgaa ttacccttac caagcaagca atgggacctg 180
tgacgctgcc aaggagaatt ccccggtggt gtcgatcgat ggacatgaaa atgttcccgc 240
caacgacgag gatgcgttgc agaaggcggt cgctaatcag cctgtgtctg tggccataga 300
agcaagcggt gcagattttc aattctactc cgagggtgta ttcactggaa gctgtggcac 360
acacctagat cacggagtcg cgattgtcgg ctacgggagc actctccagg ggaccaagta 420
ctggattgtg aggaactcct ggggtccaga atggggcgag aagggctacc taaggatgga 480
gcgtgggatc gaagctaagg aagggctgtg cggcatagcc atggaggcct cataccccat 540
caagaactcc tcagataatc ccgccggagt ttcatctcct gtcaaggatg aactctaggc 600
aatgactcaa gattgactag tgatcacagt ttcttaggct ttcgtttgtg tcctctgctt 660
gatagtgtgc atgtcctgtg tccacataga cacaaataat gtctgctccc tatgattaca 720
cagtgaatgt ttatagggc 739




101


1474


DNA


Eucalyptus grandis



101
aagacacagg gaagaagaaa agaatccgtg caaaatcatc tgctaaaaga aagttacaac 60
tcaccaagtc actccaattg tgtcctagac agtacccaga gcacgactat ggccaaacaa 120
aaccaattct cattcctcac atcagctgct cttttggtca ttatagtttc tgtttcggaa 180
acgctttgtc gccctcttga agaggaacag ttgttaaagc aacatgagga gtggatggca 240
atccacgggc gtgtctacaa ggacgcggtc gaaaaggcaa aacggtatga gatatttaaa 300
gagaacgtta agcgcatcaa cgcctttaat aatggtaagg acgtggggta taaaatggct 360
gtgaataagt tcgcagacct aaccaatgag gagttccgcg cttcctacac cggctacaag 420
aggaggccca caagggtcct gtcctctggc gaaaaaaaac cgttcaagta tgccaacttc 480
accgccattc cagctgcctt agactggcga accaagaagg ctgtgacacc tgttaaggat 540
caaggcggct gtggaagttg ttgggcattc tcggctgtgg cagctatgga agggattacc 600
atgatcaaga aggggaagtt ggtgccactc tcggtgcaag aactcgtgga ttgtgatgat 660
aacgatgaag gttgcagggg cgggctcatg gacagtgcct tcaagttcat tgtaagcaat 720
ggtggcctca cgactgaggc gaactatcct taccagggaa atgacgggac ctgcaatacg 780
gccaagacgg caaaccccgc agcctcaata actgggtatc aggatgtgcc ggccaacaac 840
gagaaggccc tcttgcaggc cgtggcaaac cagccagtct cggtggcaat tgaggggggc 900
gggtataatt tccaattcta ctcaagcggc gtgttcacag gctcatgtgg gaccgacatc 960
gaccacgcgg tcacggcagt cgggtatggg aagacctctg gctctggcgg gaccaagtat 1020
tggctgatga agaattcgtg gggcaccggg tggggagaga aagggtacat gaggatccag 1080
aaggatgtga gctctaaggc tggtctctgt ggtcttgcca cggaagcttc ttatccagct 1140
gcatgaagaa ataagaagat gaaaaaataa attatgagtc catatatgtg atagtggttc 1200
ttgggctctc tatatgtatg aaatgtagtc tagcgtctct gtaaaagaag caagttttaa 1260
gtgacagtac gtcactaggg ttggtgtgtc ctacaacaga aactaaatgt tgtaagcaaa 1320
attaggagcc tactaactaa acttggttct aagtgttcaa ataaatgtgt gggacaagat 1380
aaaagaacag tcccgtgaat gaatggaaca gtttcgtcag cgtaatttta tagtaaaaaa 1440
aaaaaaaaaa aaaactcgag actaggtctc tctc 1474




102


2167


DNA


Pinus radiata



102
aagaaaatcg tcttcccctt tctccacaca aattctcatt atctctctga attttgttgt 60
tatttcgtga tggcgagtgt ttcaaaggca accctgttac tcttccttgc gaccaccttg 120
tggactttat cagccaatgc ttcggattct tcccccggat ttacagatga agacctcaag 180
tctgaggaaa gtctgcgact cctttatgac aaatgggcac ttcggcatcg caccaccaga 240
agtttggatt cggatgagca tgccaaacga ttcgagatat tcaaagacaa tgtgaaatat 300
atcgactccg tgaatcagaa ggatggtcca tacaaacttg gattgaataa gtttacagat 360
ctgagtaacg aagaattcaa ggccatgcac atgacaacta gaatggagaa gcacaagagt 420
ctgcgccgag acagaggaac acacagtgga tcattcatgt accaaaactc cgacaacctg 480
ccagagtcta ttgattggag agaaaaggga gccgttaatc ctgtgaagaa ccaaggccaa 540
tgtggaagtt gttgggcatt ttcaactata gcttctgtag agggcattag ctatgtcaaa 600
acagggaagc tggtttcttt atccgagcaa cagttggtag attgcagtaa agagaacgca 660
ggctgcaacg gagggcttat ggacagcgcc ttccaatata tcatagataa tggtgggatc 720
gttgctgaag atgagtatcc atatactgct gaagccagcg aatgcagtcc ctccaaggtt 780
aaaccgaatg caatagcagc aactattgat ggttttgaag atgttcctgc taacaatgaa 840
aaagctctta aagaagcagt gggccaccaa cctgtgtctg tcgccattga agcaagtggt 900
aaagattttc aattttattc aaaaggagta ttcactggtg aatgtggcac tgaacttgac 960
catggagttg tagccgttgg ttatggcaag tctcctgagg gaattaatta ttggatagtt 1020
aggaactctt ggggacctga atggggagaa gaagggtata taaaaatgca acgagatatt 1080
gaagcagtag aagggaagtg tggtattgcc atgcaagctt catatccgac gaagaaaaca 1140
caaggcattg atattgaact ggatgtcgct catgttagtg acgaactgtg aaaattgtct 1200
caacaaaaaa ttggtattgt gaattcaata atatgaagat tcgttcttca tttattagtt 1260
aaatttagtc attatactac attattgttc ataggtacgc gttccacgag cgccacgaga 1320
agaaacaaga cgaggaaacc gaggaagccg aaggtggccg caagcctcgc cacaatctct 1380
tctgaatttg gccatgcctc tctaatggtg gacttttgga gcaaaagcca attatagcag 1440
ttggtgatta ctatgttcag tgttaagtag taataaagtt atgtaatttt ttttcagtgg 1500
acttgttaca gtaaggtagt taggtgctgt cgttacttga gttacagttc agttgaattt 1560
gtgatatgta tctctgtata tgagtgaata taaagtacct cagatcactg tttgctttga 1620
cattgatgcc aatggtatcc tgaacgtctc tgctgaggat aaaacgacgg ggcagaaaaa 1680
caagatcacc attaccaatg acaagggcag gctaagcaag gatgagatag aaaagatggt 1740
tcaggatgca gagaaataca aggctgagga tgaagagctc aaattgaagg tagaagctaa 1800
aaattctcta gagaactatg catacaacat gaggaatacc atcaaagatg ataagattgc 1860
aggaaagttg gaccctgctg acaagaagaa aatcgaggat gcagttgatg gaattatcag 1920
ctggttggat ggaaaccagt tggccgagaa ggaagagttt gaggataagt tgaaagagct 1980
ggagtctact tgcaatccta tcattgcaaa aatgtaccag ggtgaagggg gtgcgggatt 2040
tccaggtgct gatgcttttg gtggagcttc tggagctggt gacgagggtg caagtggccc 2100
tggtcccaag atcgaggaag tcgactagat atatttcttc atcacctcct acgtgttttt 2160
tttgtta 2167




103


557


DNA


Eucalyptus grandis



103
gaagattatc cgtataaagc tgtcgatggc aaatgtgacc aatatcgaaa gaatgccaaa 60
gttgttacga tagatgatta tgaagatgtt ccagcgaacg atgagaaagc attgcaaaag 120
gcagttgcta atcaaccagt gagtgtggcc attgaagccg gtggtcgggc atttcagttg 180
taccagtcgg gtgttttcag tggacgatgt ggtactgcac tggaccacgg agtgactgcc 240
gtaggatatg gcacagaaaa aggtatgaat tactggatcg taaagaactc ttggggcaaa 300
agctggggag agcagggtta catcagaatg gagcgtagct tgaccaatac tataactggc 360
aagtgtggga tcgcaatgga agcatcttac cccatcaaaa atggcccgaa tcccccgaac 420
ccagggccat ctcccccgtc tccaataaaa ccaccgacca cttgtgatcg ttattactct 480
tgtgctgaga gcacgacttg ctgctgcgtc tatcagtatg ccaactattg cttcgcctgg 540
ggatgctgcc cgcttga 557




104


482


DNA


Eucalyptus grandis



104
catcaacacc caggaactcc tcccaagtca attctttcaa gtaccaaggt tcgaatagca 60
tcccagagag catcgattgg gtccaaaaag gtgctgtcaa ccctatcaaa taccaacgtc 120
aatgtggatc ttgctggtcg ttctccgtgg tggcggcagt agaagcaatc acacagatca 180
ccactggcgt gctaccgagc ctgtccgagc agcaactcat agactgcacc actgatggga 240
accacggctg tgaaggcggc tcaatggaca atggcttcga gtacatcatc aacaataacg 300
gcatcagctc cgagacgaac tacccatacg ttggggtcga cggcacctgc aatgtgcagg 360
cctcctctgt cgccgaggcc aaaatatcag accacaagga cgtcccctca aacgaggatg 420
acatgctgaa ggccgtggcg atgcagccgg tgtcggcggc aatcgatgca aacggagacg 480
tg 482




105


817


DNA


Eucalyptus grandis



105
agtcactcca attgtgtcct agatagtacc cacaccagta ctatggccaa acaaaaccaa 60
ctcccattcc tcacattagc cactcttttg gtcatcatag tttttgtttc ggaaacgctt 120
tgccgccccc ttggagagga acacctgtta aagcaacatg agcagtggat ggcggttcac 180
gggcgcgtgt acaaggatgc ggatgaaaaa gcgaaacggt atgagatatt caaacagaac 240
gttaaccgca tcaacgcctt taataatgat aaggacgcgg cgtataaact ggctgtgaac 300
aagttcgcgg acctaaccaa cgaggagttc cgcgcttcct tcaccggcta caagaggagg 360
tccacccgtg tcctgacctc tgtggacgag aaaccgttca agtacgcgaa cttcaccgct 420
gctccacccg tcttggactg gcgaaccaag aaagctgtga catctgtcaa ggatcaaagc 480
agctgtggag cttgttgggc gttctcggct gtggcggcta tggaagggat taccatgctc 540
aagaagggga agttggtgtc actctcggag caagaactcg tggattgcga tgttaacggt 600
gtcaaccaag gctgcgaggg cgggctcatg gacagtgcct tccagttcat caaaagcaag 660
ggtggcctca cctccgaggc aaactaccct ttccagggga atgacgggac ctgcagaacg 720
gccaaggcgg cgaatatcgt ggcctcgata gcaggctacc aggatgtgcc ggccaacaat 780
gagaaggccc ttctgcaggc ccgtggcgaa ccagcca 817




106


368


DNA


Eucalyptus grandis



106
agtcactcca attgtgtcct agatagtacc cacaccagta ctatggccaa acaaaaccaa 60
ctcccattcc tcacattagc cactcttttg gtcatcatag tttctgtttc ggaaacgctt 120
tgccgccctc tcggagagga acacctgtta aagcaacatg agcagtggat ggcggttcac 180
gggcgtgtgt acaaggacgc ggatgaaaaa gcgaaacggt atgagatatt caaacagaac 240
gttaaccgca tcaacgcctt taataatgat aaggacgcgg ggtataaact ggctgtgaac 300
aagttcgcgg acctaaccaa cgaggagttc cgcgcttcct tcaccggcta caagaggagg 360
tccacccg 368




107


1407


DNA


Eucalyptus grandis



107
ccgacccaca tttcttggaa tccacagaga gagagagaga gagagagaga gagagaaatg 60
gctcgcgcga ggctcctgtg ctccgccgtc ctcctcctcg tcgccgtcgt cgtctccgcc 120
gcggcgtcga gcttcgagga gtccaacccc atccggctct tccccgacgg cggcctccgc 180
gacctcgagt cctccatcgt ccagatcgtc ggccgcaccc gccacgcctt ctccttcgcc 240
cgcttcgcca acaggtatgg gaagaggtac gagaccgcgg aggagatcaa gctgcggttc 300
gagatcttca gggagaatct caagttgatc cgatccacca acaagaaggg cttgccctac 360
accctcggtg tcaataagtt tgctgattgg agctgggagg agttcaggag gcacagactg 420
ggagctgctc aaaactgctc tgccaccacc aagggcaacc acaagctcac cgacgaagct 480
cttcccgaga tgaaagactg gagagaaaag ggcattgtaa gcccaattaa agatcagggg 540
cactgtggat cttgctggac tttcagtacc actggagctc ttgaggctgc ttatcaccaa 600
gcattcggga aacaaatctc tctgtctgag cagcagctcg tggactgtgc tggggctttc 660
aacaactttg gatgtagtgg tggactgcca tcccaagcct ttgagtacgt caagtacaac 720
ggtggccttg ataccgagga agcatatcct tataccgcag tggatggtag ctgcaaattc 780
tcggctgata atgttggtgt ccaagtgctc gactctgtta acatcacctt gggtgctgag 840
gatgaactaa agcatgcagt tgccttcgtc cggccagtga gtgtggcatt ccaggtcgtg 900
aaagacttca gattgtacaa gtcgggtgtc tacacgagcg atacatgcgg tagcacttcc 960
atggatgtga accatgctgt tctcgctgtt ggttatggag ttgaagatgg tgttccgttc 1020
tggctcatca agaattcctg gggagcagac tggggtgacc acggatactt caagatggag 1080
atgggaaaga acatgtgtgg agtcgctact tgtgcatcat accctgttgt ggcctagatt 1140
gtttccagag gatcaatggg ttcgtgtgcc aggtaattcg agatatatat atatttcgca 1200
tgaagaattg ctccgccctg agttggaatg ctatagtgtt agcacaaaag ggtttagctt 1260
agtgcaaaaa ataatcatca ggacagctgc aactccatat ggttattgtt atatgaacaa 1320
agaccttgta aatacctttc tatgtttgtg tggcatggaa cgctatcttt gcaagaataa 1380
cgcatcaaat tcccaccaaa aaaaaaa 1407




108


388


DNA


Pinus radiata



108
agccatgcat atgaaaacca ggatggagaa gcacaggagc ctgcgcggag acagaggagt 60
gcagggtgga tcattcatgt atcaaaactc taagcacctg ccggcgtcta tcgattggag 120
aaaaaaggga gcggttactc cagtgaagaa tcaaggccaa tgcggaagtt gttgggcatt 180
ttcaactgta gcttcggtag agggcattaa ctatatcaaa acagggaagc tggtttcttt 240
atcagagcaa cagttggtag attgcagtaa agagaacgca ggttgcaacg gagggcttat 300
ggacaacgcc tttcaatata tcatagataa tggcgggatc gttagtgaag cagagtatcc 360
ttacactgcc gaagctaggg agtgcagt 388




109


1062


DNA


Eucalyptus grandis



109
gctcaaccca agttgagaga acatcatcat gggttcttct ccaagaactc atcatcaact 60
aggtcttgcc atcctcttct ttgcttccct cgcgcgcctg tctctgtcac acgcctctct 120
ccccagcgag tactcgatca tcggccatgg acaggacccg aatggcgccg tgtcggacga 180
acgtgccgtc gagctcttcc ggagatggca ggcgcagcac aagaaggtgt acaagcacgc 240
cggggaggcc gagaggcggc tcgagaactt caaaaggaac ctgaggtacg tgatggagag 300
aagccggagg gatggcggca agcagcatgg cgtggggctg aacaagttcg ccgacctgag 360
caacgaggag ttcaggcagc gctacctgtc caaggtgaag aagtcggtga accagaagtg 420
gagggccaag agggagagct tgatgaggaa caagaggaag ggagcggagt cctgcaaggc 480
gccgtcgtct ctggattgga ggaactacgg cattgtcacc ggcgtgaagg accagggaga 540
atgcggaagt tgctgggcgt tctcttcgac cggagcaatg gaaggaatca atgcgctcaa 600
gagcggggac ctgatcagcc tttccgagca agagctcgtg gactgcgaca ccaccaacga 660
cggctgcgac ggcggctaca tggactatgc gttcgagtgg gtcatcaaca acggcggtat 720
cgattcggaa gaagactatc cctacaccag cgtctttggc gagggtggta tctgcaacgt 780
caccaaggag gagaacaaca aggcggtcac cattgatggg tatgtggacg tttatccgtc 840
ggacgacggc cttctctgca cggtcatcca acagccgatt agcgtcggca tggacggctc 900
ggcgatagat ttccagctct acactggggg catctacgac ggtagctgtt cagcgaatcc 960
cgacgacatc gaccatgcgg tcctgatagt tggttatggc tccgaaggcg gcgaagatta 1020
ttggatcgtg aaagaactcc ttggggaaca gatttgggga gt 1062




110


765


DNA


Eucalyptus grandis



110
caagctcaac ccaagttgag agaacatcat catgggttct tctccaagaa ctcatcatca 60
actaggtctt gccatcctcg tctttgcttc cctcgcgcgc ctgtctctgt cacacgcctc 120
tctccccagc gagtactcga tcatcggcca tggacaggac ccgaacggcg ccgtgtcgga 180
cgaacgagcc gtcgagctct tccggagatg gcaggcgcag cacaagaagg tgtacaagca 240
cgccggggag gccgagaggc ggctcgagaa cttcaaaagg aacctgaggt acgtgatgga 300
gagaagccgg agggatggcg gcaagcagca tggcgtgggg ctgaacaagt tcgccgacct 360
gagcaacgag gagttcaggc agctctacct gtccaaggtg aagaagtcgg tgaaccagaa 420
gtggagggcc aagagggaga gcttgatgag gaacaagagg aagggagcgg agtcctgcaa 480
ggcgccgtcg tctctggact ggaggaacta cggcattgtc accggcgtga aggaccaggg 540
agaatgcgga agttgctggg cgttctcttc gaccggagca atggaaggaa tcaatgcgct 600
caagagcggt gacctgatca gcctttccga gcaagagctc gtggactgcg acaccaccaa 660
cgacgggtgc gacggcggct acatggacta tgccttcgag tgggtcatca acaacggcgg 720
tatcgattcg gaagaagact atccctacac cagcgtcttt ggcga 765




111


677


DNA


Eucalyptus grandis



111
gagagagaga gagagaatgg ctggtgctag atttctgtgt tccttcctcc tcctcttgac 60
cgcttgctcc gccacagcag ctggcttcca gggcgccgac ctcgagtcct ccatcctcca 120
aaccgttggc cacggccgtc ccgccctctc cttcgtagac tttgccagca ggtacgagaa 180
gaggtacgag acagcggagg agatcaagtt gaggttcgat aattacaggg agaatctcaa 240
gctcattcga tccaccaacc agaagggctt gccttacact ctcgctgtta atcagtatgc 300
tgactggagc tgggaggagt tcaagacgca cagactggga gcttctcaag actgctctgc 360
caccaccaag ggcagccaca agctcaccga cgctgttctt cccaaaacga aagactggag 420
aaaagagggc attgtaagcc cagttaaaaa tcaaggcggc tgtggatctt gctggagttt 480
cagcgccact ggagctctcg aggctgctta tcaccaagca cacgggaaag gaatctctct 540
gtctgagcag cagctcgtgg actgcgctac ggctttcaac aactttggat gcgatggcgg 600
gttgccgtca caagccttcg agtacatcaa gtacaacggt ggccttgaga ccgaggaagc 660
ttatccttat actgcac 677




112


522


DNA


Eucalyptus grandis



112
cacagtttgt ggaaaccaca gggagagaga gagagagaga gaatggctgg tgctagattt 60
ctgtgttcct tcctcctcgt cgtgaccgct tgctccgccg cagcagctgg cttcgagggc 120
gctgaccttg agtcctccat cctccaaacc gtcggccaca cccgtcccgc cctctccttc 180
gtagacttcg cccgcgggca cgggaagact tacaagacag cggaggagat caagttgagg 240
ttcgataatt acagggagaa tctcaagctc attcgatcca ccaaccagaa gggcttgcct 300
tacactctcg ctgttaatca gtatgctgac tggagctggg aggagttcaa gacgcacaga 360
ctgggagctt ctcaagactg ctctgccacc accaagggca gccacaagct caccgacgat 420
gttcttcccg aaacgaaaga ctgggagaga aaagggcatt gtaggcccca gttaaagatc 480
aaggcggctt gtggatcttg ctggagtttc agcgcaactg ga 522




113


392


DNA


Eucalyptus grandis



113
ctggattggg tggcaaaagg agccgtaaat gccataaaag atcaaggtcg atgtggctct 60
tgctgggcct tctcagcggt agcggcaata gaatcgatta cccagatcaa gactggtaag 120
ttactggaac tatcagagca acaattggta gactgtacta tcgaaaacta tggctgcagt 180
gggggttgga tggacaccgc gttcgactac ataatacaaa atggaggcat ctcctctgaa 240
actaattatc cctacaattc atcggacgga acatgcaatg ctcacatggc gtccctgagc 300
gtggccaaaa ttgtgggtta tgaggatgtc cctgacaaca atgagggaga gatcttaaag 360
gccgtggcga tgcaaccggt ctcggtcgcc ct 392




114


835


DNA


Eucalyptus grandis



114
tcttcttctg cgcactcttc accaaccatg aatcgcttcc tctctctcct cgctctcttc 60
tccctcgcca tcgtctcggc ctacgcctcc tcggaggtcg acggcgatgc gctgatccgg 120
caggtcgtgg acggcgccgc cgccgatggc gacctctcga ccgaggacca ccgccacttc 180
tcgctcttca agaggcgttt cggcaagtcg tacgcctccc aggaggagca cgatcaccga 240
ttcgcggtgt tcagggcgaa cctgcgccgc gcgaggaggc accaggagct cgatccctcg 300
gcggtccacg gcgtcactcg gttctccgac ctgacgccct ccgagttcag gaggagtcat 360
ttggggatca gaggcgggct ccggttgccg aaggacgcga atgaggcccc gctcctgccg 420
accgacgacc tgcccgagga tttcgattgg agagatcacg gagctgtcac cggtgtcaaa 480
aatcaaggct cgtgtgggtc atgctggagt ttcagcgcga caggagcact ggaaggcgcg 540
cattaccttg ctactggaga actagttagc ctcagcgagc aacaacttgt ggattgtgat 600
catgagtgtg atccagatga acccggttca tgtgactctg gatgcaatgg tggattgatg 660
aacagtgctt ttgagtacac tcttaaagca ggtgggctta tgcgagaggg tgactacccc 720
tacactggca ctgatcgcgg aacttgcaaa tttgacaagt ccaagattgc tgcatcagtg 780
tccaacttca gcgttgtttc ccttaatgaa gatcaaattg cagcaaatct tgtga 835




115


291


DNA


Pinus radiata



115
cttcgctctc cgagcaagag ctcatcgact gtgacacaac ttacaacaat gggtgcaatg 60
gcggtctcat ggactatgca ttctcttaca ttatctcaaa tggcgggctt cacaaggaag 120
aagactatcc ttacatcatg gaagaaggaa cctgcgagat gaccaaggac caatcggagg 180
tggtaactat cactggctac aaggatgtgc cggtggacaa tgagcagggc ctcttgaagg 240
cactcgccaa ccagccactc agtgttgcca tcgaagcctc gggcagagac t 291




116


445


DNA


Eucalyptus grandis



116
aaaatgaccc tcgaggcggc ctcaaacctc ccgacatctt gttcaccccg attattgcag 60
ttctccgacc tgaccccgtc ggagttccgg aggacgcacc tggggctccg gaggaaggtc 120
aagctgccca aggacgcgaa cgaggcgccg atcttgccca cccaggatct gccgaaagat 180
ttcgattgga gagatcatgg agccgtcacc gcggtcaaga atcagggttc atgcggatcg 240
tgctggagtt tcagcaccac cggagccttg gaaggcgcaa actaccttgc aaccgggaaa 300
cttgtcagcc tcagcgagca acagcttgtg gactgtgatc acgagtgtga tccagaagaa 360
ccaggttcct gtgactcggg ttgcaatggt ggtttgatga acagtgcctt tgaatacact 420
ctcagtaccg gtgtatgggt agtct 445




117


360


DNA


Eucalyptus grandis



117
ggcccaccag ggtcctgtcc tctgtggatg tgaaaccgtt caagtacgcg aacttcaccg 60
ccattccagc tgccttggat tggcgaacca agaaggccgt gacgtctgtc aaggatcaag 120
gcgtctgcgg atgttgttgg gcattctcgg cagtggcagc tatggaaggg cttacccagc 180
tcaagaagag gaagttggtg ccactctcgg tgcaagaact tgtcgattgc gatgttaatg 240
gtaaggataa aggctgcagg ggcggttaca tggacagtgc ctttgagttc gtaataagca 300
acggcggcct cacgactgag gcagaatatc cttaccaggg aactgaccgg acctgcaaca 360




118


1428


DNA


Pinus radiata



118
aattgctcaa caatgggatc ctccacgctg ctgcttttgg ctctctgtat ttcctctgta 60
atttgccttt cctcggccat aaggcctgac gatgacctta ttcgtcaagt gacggacgaa 120
gtagattcag atccacagat cctcgatgct cggagcgccc tgttcaacgc tgaagcgcac 180
ttcaggcgct tcatcaggcg ctacgggaag aagtactcgg ggccggaaga gcacgagcac 240
cgcttcggtg tcttcaagag caatttacta agagccttgg agcaccagaa gctcgacccc 300
caggcctccc atggcgtcac agaattctct gatttgacac aagaggagtt ccgacgacag 360
tatctagggc tcagggcacc accgatccga gacgcccacg atgctccaat tttgcccaca 420
aacgatctgc cggaggagtt cgattggaga gagaagggag ccgtgaccga ggttaagaat 480
cagggatcgt gcggttcctg ctgggctttc agcacaaccg gggcgctaga gggcgcgaat 540
ttcctgaaga cggggaagct ggtgagcctg agcgagcaac aattggtgga ctgcgatcac 600
gagtgcgatc cttcggacgc aagatcatgt gattctggtt gcaatggtgg gctaatgacg 660
agtgcttatc aatatgctct gaaagctggt ggattggaga aggaagagga ctacccatat 720
actggaaaag acggaacttg cagctttaac aagaacaaaa ttgtggcaca ggtttcgaat 780
ttcagcgttg tttctattga tgaagatcaa attgctgcaa atctggtgaa gaatggacct 840
ctatcagtgg gaatcaatgc tgcatttatg cagacatacg taggaggtgt atcttgccca 900
tacatctgca gcaagcgcat gttggatcat ggtgtgctcc tggtaggata tggttctgca 960
ggctttgctc ccattagaat gaaggacaaa ccctactgga tcataaagaa ctcatgggga 1020
cctaactggg gagaaaatgg attctacaaa ctttgcaggg gacataacgt ttgcggaatc 1080
aacaacatgg tttccactgt tgcagctatc tgagcattca aattagatca gtttcttgta 1140
tatacctgtt tctttagact ttggttgaaa ctatgttgtt gaatgcacat acatattcaa 1200
tatacattga atatagttta ttcaagtata ctgaaggatt taagtattta aaggatttac 1260
aaatgaagca ctctgatgaa tactcttaag aatattaata tggtttgtgg ttcaaaaaac 1320
tgccagtcaa gggcttcaaa ctctggtttc caagtttgtt tgaggtgatg taaatatggg 1380
agtttatgat ttgtcataat atgggaaatt gtcgaatcaa aaaaaaaa 1428




119


413


DNA


Pinus radiata



119
ctcaacaatg ggatcctcca cgctgctgct tttggctctc tgtatttcct ctgtaatttg 60
cctttcctcg gccataaggc ctgacgatga ccttattcgt caagtgacgg acgaagtaga 120
ttcagaccca cagatcctcg atgctcggag cgccctgttc aacgctgaag cgcacttcag 180
gcgcttcatc aggcgctacg ataagaagta ctcggggccg gaagagcacg agcatcgctt 240
cggtgtcttc aagagcaatt tactaagagc cttggagcac cagaagctcg acccccaggc 300
ctcccatggc gtcacagaat tctctgattt gacacaagag gagttccgac gacagtatct 360
agggctcagg gcaccaccga tccgagacgc ccacgatgct ccaattttgc cca 413




120


475


DNA


Pinus radiata



120
caatcccaag tctctagagt ttgcggagtt cgctgtcaga tatggcaaga ggtacgattc 60
tgtccatcag cttgtgcata gattcaatgt ctttgtgaag aacgtggagc tgatcgagtc 120
aagaaacaga atgaagcttc cttatacttt ggcaataaat gagtttgctg acataacatg 180
ggaggaattc catggacaat atttgggtgc ttcacagaac tgttcggcta cccacagtaa 240
ccataagttg acgtatgccc agcttcctgc gaagaaagac tggagacaag aaggcatagt 300
gagtcctgta aaaaaccaag cccattgtgg atcctgctgg acattcagca ctactggagc 360
actagaagct gcctatactc aggctacagg aaagactgtt atcctgtctg aacagcagct 420
ggttgactgt gctggagcat ttaacaactt tggttgcaat ggtggactgc catcc 475




121


399


DNA


Eucalyptus grandis



121
cagcggcgga gagatggaca ccgcgttttc cttcatccaa cgcaacggcg gcatcacttc 60
cgagtccgat tatccctacc gaggacggga cggatcttgc gacgcggcca tgctcaggag 120
tcacgcggcc acgattagcg gatacggcga tgtgcccccc aacgatgagc ggagcctgca 180
agccgcggtg gctcgccaac cgatctccgt ggccatcgac gcgggcggac tggaattcca 240
gctatactcc agggggattt tcacgggcat atgcggatac gacttgaatc acggggtggc 300
ggcggtcggg tacggatccg agggctcgag aaattattgg atcgtgaaga attcgtgggg 360
gcgcgactgg ggcgaggacg gctacgtaag gatgctcaa 399




122


441


DNA


Pinus radiata



122
acatacaagc ttggattgaa taaatttgca gatctgagta acgaagaatt caaagccatg 60
catatgacaa ccacgatgga gaaccacagg agtctgcgca gagatagagg agtgcagagt 120
ggatcattca tgtatcaaaa ttcgaagcat ttgccagcat ctattgattg gagaaaaaag 180
ggagctgtta ctccggtgaa gagtcaaggc caatgcggaa gttgttgggc attttcaact 240
gtagcttcgg tagagggcat taactatatc aaaacaggga agctggtttc tttatcagag 300
cacaggttgg tagattgcag taaagagaac gcaggttgca atggaggact tatggataac 360
gccttccaat atatcataga taatggcggg atcgttagtg aagcagagta tccttacact 420
gccgaagcga gcgagtgcag t 441




123


370


DNA


Pinus radiata



123
gatggcgagt gtttccaagg caaccctgtt actcttcctt gcgaccacct tgtggacttt 60
atcagcccat gcttcggatt cttcccctgg atttacagat gaagacctca agtctgagga 120
aagtctgcga ctcctttatg acaaatgggc acttcggcat cgcaccacca gaagtttgga 180
ttcggatgag catgccaaac gattcgagat attcaaagac aatgtgaaat atatcgactc 240
cgtgaatcag aaggatggtc catacaaact tggattgaat aagtttacag atctgagtaa 300
cgaagaattc aaggccatgc acatgacaac tagaatggag aagcacaaga gtctgcgccg 360
agacagagga 370




124


370


DNA


Pinus radiata



124
gatggcgagt gtttccaagg caaccctgtt actcttcctt gcgaccacct tgtggacttt 60
atcagcccat gcttcggatt cttcccctgg atttacagat gaagacctca agtctgagga 120
aagtctgcga ctcctttatg acaaatgggc acttcggcat cgcaccacca gaagtttgga 180
ttcggatgag catgccaaac gattcgagat attcaaagac aatgtgaaat atatcgactc 240
cgtgaatcag aaggatggtc catacaaact tggattgaat aagtttacag atctgagtaa 300
cgaagaattc aaggccatgc acatgacaac tagaatggag aagcacaaga gtctgcgccg 360
agacagagga 370




125


392


DNA


Eucalyptus grandis



125
gcaaactata agaatccatc caccccccct cctctctctc tatctctaac aaacttctgc 60
accagaagct cgacccctcg gccgcccacg gcgtgacgca gttctccgac ctgaccccgt 120
cggagttccg gaggacgcac ctggggctcc ggaggaaggt caagctgccc aaggacgcga 180
acgaggcgcc gatcttgccc acccaggatc tgccgaaaga tttcgattgg agagatcatg 240
gagccgtcac cgcggtcaag aatcagggtt catgcggatc gtgctggagt ttcagcacca 300
ccggagcctt ggaaggcgca aactaccttg caaccgggaa acttgtcagc ctcagcgagc 360
aacagcttgt ggactgtgat cacgagtgtg at 392




126


452


DNA


Eucalyptus grandis



126
ggcacgagct taggcaactc attgttcatt gttaaccttc tctcttcctt gagaggaacc 60
ccaaaggagt tacgaagtaa tggcttcttc ttcctccaag gggcccaaaa ggagttacga 120
tgcaatggct tcttcttcct ccaagaagcc cagaagaagt tacgatgtct tcctgagttt 180
cagaggtcca gatgtccgca atcactttct cagtcatctc tacgtagctc tagatcaagc 240
agggatatcc acttacatcg acaaaaaaga gctggggaag ggagaacaaa tatcacctgc 300
acttatgaaa gcgatcgagg aatcgcacat cgcgatcgtg gttttctctg aggactacgc 360
ctcttcgtca tggtgtttgg aagagttaac gaaaatcatg gagtgcaagg agcaaaaagg 420
cctcatggtc tttccagtgt tttacaaagt ag 452




127


452


DNA


Eucalyptus grandis



127
gcaactcatt gttcattgtt aaccttctct cttccttgag aggaacccca aaggagttac 60
gaagtaatgg cttcttctcc ctccaaggag cccaaaagga gttacgatgt cttcctgagt 120
ttcagaggtc cagatgtccg caatcacttt ctcagtcatc tctacgcagc tctagatcaa 180
gtagggatat ccacttacat cgacaatgaa gagctgagga agggagaaca aatatcacct 240
gcacttatga aagcgattga ggaatcgcaa attgcaattg tggttttctc tgagaactac 300
gcctcttcaa catggtgttt ggaagagata tcgaaaatca tggagtgcaa ggagaaaaaa 360
ggcctcaagg tccttccggt gttttacaaa gtagaaccaa gagaagtgag agggcagaaa 420
cagagctatg gaaaagctat ggatgagcat ga 452




128


3095


DNA


Pinus radiata



128
agctggagct cgcgcgcctg caggtcgaca ctagtggatc caaagaattc ggcacgaggc 60
tgttttgttt tcaatcgtgt gcccaaacat tggggtgttg atacacacac aagaatagca 120
aaggcgcagc tggtaagttg cttgccctcc agaatctttc tgacgcaaat attgagtctc 180
accgcacttt ctccatctct gcaaaatatc ttcgatctta cttctctgtt attctgtatc 240
caatggcaaa cgttaacttt acccccgccg cccgtgacgg aacatcctcc gcatccacct 300
cccagggcaa taccaacagc tatgtgtatc aagtgtttct gaatcaccgc ggtcctgacg 360
taaagaaagg actcgctacc cacatctacc atcgtcttaa agatctcgga ttatcagttt 420
ttctggacca gcaagaactg caaagaggag agaagttgga gccccaaatc gaaggggcta 480
ttcgaacagc ttctgttcat gtagcgatat tctcgccaaa ttatgctcaa tctagatggt 540
gtctggatga actcgtccag atgttggaga tgttggagtc agggtccaca ataattccag 600
tcttctacaa agtagatccc gcagatctcc ggtggacgcg cggaggaaaa ggagtttatg 660
ctagagattt gggcgagctt gaaaggaaga gagcatctga ttctcaggaa ccacggtacg 720
accccgagac catagaaaaa tggaggaatg ctctttctgc tgtggcggat atagtcggtt 780
ttgagctgaa ggacaaggaa gagtcgcagc tcgtccagga ggtcgtccaa caagttgtga 840
aaaaggttcg caaaccgcct ctcaacgtcg ccaaatatcc tactggcctc gatgaaaaaa 900
ttgaagatgt ggacagaaca ttgtcactgc agcggcaaag cgagaaggct acaattttgg 960
gaattgtagg ttttggcggg gtcgggaagt ctaccctggc taaacaattc ttcaaccgag 1020
aaagatcaaa ttacgatcga tcttgcttct tatctgatat cagatccaaa tctttgcctt 1080
ccgtgcagag tagccttctt aaggatctga ttcaatcgga tgcacaaata aatagcgttg 1140
ctgaaggcat agagaagctc aaaagagttt ctcaacggtg tcttatcatt ttagatgata 1200
ttgatcatat tgatcaaatg gatgcattat atgcacccgt tataaggtct attcatgtag 1260
gtagcttaat tttaattaca tcccgtaata aggatgtgct tagaagcgca ggcattggag 1320
agtcatccat ttgcacactg aaaggtctca atggagagca ctcgcaagag ctcttttgct 1380
ggcatgcctt cggtcgaccc agtcctgttg taggatttga aaaagtggtt gagaagtttt 1440
tgaatgcctg caatggtttg cccctctcgc ttaaagtgct tggggcgctc cttcatggaa 1500
aagacgattt gaagctttgg aatgcgcaat tgcgcaaaac ctccaaagta cttccggaag 1560
atatacggag cacacttaga attagctatg atgctctaga taaagaggaa aagcaaatat 1620
ttttagatat cgcctgtttc tttataggga aaaacaggga tagtgctata agagtatggg 1680
atggatccaa ctgggaaggg ttgctgggtc tttggaagct ggaaaacaga tgcctcgtgg 1740
aggtggacag ttcgaactgt ctcagaatgc atgaccacct tcgagacata ggcagaggta 1800
tagctgaata tctagaatat ccccgtcgtc tttggcattt cgaagagaat tttcttgtaa 1860
gtattctgaa gctttcgacg gactttcaaa atagcccctt gttatcaaaa ttgtctgtca 1920
atttctaaat cttaaaacta acagcttggg gtgaacaatt cagatgcagg tgcatggaat 1980
tagcaggtcc aaccgaagca tgttgcagct gcttaggact gaaagtgact ctgttgaacg 2040
aatattcagc agtgaacagt taccgccgct tgtatatctg cactggaagc gctgtccgaa 2100
gtcctcttta gctccctgga ttccattaaa taatttaagt gtgttacata tagaggggga 2160
tcaactggaa acactctcac tctggcaaca tgaatttcag gcacctctgc aattgaggga 2220
gttgcatatt gatgctcccc tttcaaaggt tccagagtcc attggaaaac tgaagtacct 2280
tgaaaaagtt catctggaga gcaagcagct gcagacgcta ccagagtcga ttgggaacct 2340
gtcgggcctc caaagtcttg acctgatcgg gtgctccagt ctgcagacac tcccagactc 2400
agtggggaac ctgtcgggcc tccaaagtct taaattggtc ttctgcttca gtctgcagac 2460
actcccagac tcagtgggga acctgtcggg cctccaaagt cttgacttga tcgggtgctc 2520
cagtctgcag acactcccag actcagtggg gaacctgtcg ggcctccaaa gtcttaactt 2580
gaacatgtgc aggagtctgc agacactccc agactcagtg ggtaacctgt cgggcctcca 2640
aagtcttaac ttgagcgggt gcaggagtct gcagacactc ccagactcaa tggggaacct 2700
gtcgggcctc caaagtcttg acttgagctg gtgcaaaaaa ctgcggacac tcccacactc 2760
actggagaac ctgtcgggcc tccaacgtcg cgacgatgat tatttgaatt ttgatcacaa 2820
aatccacaaa atctgataag tgattttatt gggagttgtc tataatgcga ctttttggag 2880
attccggtga cggaatccgg cggatgtaat gaggttaaat cttgattttt agcagttaaa 2940
atggtttttt aactggattc agcgccctga aaaacccctg ggagcctttc attgtgcaga 3000
aactagctat caaacttggg attccaatga attgctgccg gatttttacc ggaaaaatcg 3060
gccaaaaaga ttttcaaaaa aaaaaaaaaa aaaaa 3095




129


543


DNA


Pinus radiata



129
gcatctgatt ctcagaaatc acggtacgac accgatacca tagaaaaatg gaggaatgct 60
ctttcttctg tggcggatat agtcggtttt gagctgaaag acaaggaaga gtcgcagctc 120
gtccaggagg tcgtccaaca agttgtgaaa aagtttccca aaccgcctct cgacgtcgcc 180
aaatatccta ctggcctcga cgaaaaaatt aaagatgtgg acagaacatt gtcactgcag 240
cggcaaagcg agaaggctac aattttggga attgtaggtt ttggcggggt cgggaagtct 300
accctggcta aacaattctt caaccgagaa agatcaaatt acgatcgatc ttgcttctta 360
tttgatatca gatccaaatc tttgccttcc gtgcagagta gccttctcac ggatctgatt 420
caaccgaatg cacaaataaa caacgttgat gaaggcatag agaggctcaa aacagtttct 480
caacggtgtc ttatcatttt agatgatatt gatcatattg atcaaatgga tgcattatat 540
gca 543




130


397


DNA


Pinus radiata



130
attgatcaac tggatgcatt atgtgcaccc gttatagata ctattgatgt aggtagctta 60
attttaatta catctcggaa taaggatgta cttagaagcg caggtattgg agagtcatcc 120
atttacacac tgaaaggtct caatggaaag cactcgcaag agctcttttg ctggcatgcc 180
ttcggtcaac ccagtcctgt tgtaggattt gaaaaagtgg ttgagaagtt tttgaatgtc 240
tgccatggtt tgcccctctc gcttaaagtg tttggggcgc ttcttcgtgg aaaagacgat 300
ttggagcttt ggaatgcgga attgcgcaaa acctccaaag tacttccgaa agatatacgg 360
agcacactta gaattagcta tgatgctcta gataagc 397




131


3124


DNA


Pinus radiata



131
ggtctatata agcagagctg gtttagtgaa ccgtcagatc cgctagccgc aattacttgt 60
gagttagctc actcattagg caccccaggc tttacacttt atacttccgg ctcgtatatt 120
gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc ttgattacgc 180
caagctcgaa attaaccctc actaaaggga acaaaagctg gagctcgcgc gcctgcaggt 240
cgacactagt ggatccaaag aattcggcac gagacccaat cttctacaat ttctctgcgc 300
ttttaaaaca gtgaatcgtc ccgttgcaga ctctgtgtct atagcatcca accattacta 360
ccttaatttc tgttttgatc tcggcaatgg catcatcttc atcctccacc ttctccagca 420
acaaatccca ccaagttttc ataaaccatc gcggggttga tgtgaagaaa accttcgcca 480
ggtctctata ccttcgcctt cgcgagaaag gattgacggc tttcctcgat gacgaagaga 540
tgcaagtcgg atatgaaatt tctcctcaac tcgcagacgc tattaggacg gcctccgttc 600
atgtggccat cttctctccg agatacgctg aatcagaatg gtgcctcaat gagctccttg 660
agatgttaaa gtcaaagaaa cctataattc ctgtatttta cggcatcagt ccggctgagg 720
ttcggtggat gcagggcgtc tatggtaaag ctctacaaac tcataaagag aagccgcgaa 780
atgatcccag cactattgaa gaatggagaa atgcactcca tcaagttgca aacaggagcg 840
ggttcgagct ggacaagtac cctgggtaaa aactcaaacc ttcctctggc tgtattttat 900
attggataaa taggcataga cgtttgtttc tcactaggtc tacttaattt ctccagccag 960
gatttggtgc tggaactgct agataaggtg gttaaacatc tgttggaatt ggtgccaaag 1020
ccagatttgt acgtggcgga gtatccaacc ggcctcgatg acaaactgaa agattttgaa 1080
gatacagtcc tgttgaggca acaacagggc cgaaaacccc agatcttagg gattgtgggg 1140
ttaggtggtg tgggaaagac aacacttgcc acagcattct tcaataagaa gaaatcagct 1200
tatcatagaa gttgtttttt atgtgatgtc agagaaaata caaccaatag gtctttacat 1260
ttgttgcaga gtcaacttct taatagcttg actggcttca ataatcaggt aaacagtgag 1320
cgtgaaggta aggggatgct tatagagcct ctcaaatctt gtaaagccat aatgatcttt 1380
gatgatgttg acgatgtgga tcaggtgaag gcatttttgc cccaatctga tgtactcaat 1440
tcagagagct taatattgat tacaactaga gataggaatg ttttgagaag cttaaaagtt 1500
gaaaattcat caatttatag cctatcagga cttaataaag agcactccct agaactcttt 1560
tgttcccatg ccttcagccc agcatttcct ctcccagaat ttaaatccct ggtagataag 1620
ttcatagatt attgtaatgg attgcccctg tctttaaaaa tatttggggc acttctttat 1680
ggtaaagata tatctcagtg gaaagaagaa tgggagagtc ttagacaaat agctcccatt 1740
gccatacatg acacatttaa aataagctat gactccctca atcaagagga aaaagatata 1800
ttcttagaca ttgcatgctt tttgcgatgt caccacagag atgccgcaat aagcatatgg 1860
aacaaatcgg gctggagagg aaatcggggg tttctaaatc tacaggacaa atctcttgtg 1920
gaagttgacg cctttaattg tatacagatg cacaaccacc taagggacct gggaagacag 1980
gttgcagcgt cttcgttgcc tcctcgtctt ttaataacaa agaacctcat ccataatttg 2040
tcacaccaat catctgtaag tgttcagtca ttcaatcctt tgtttgttat tcactaaaag 2100
tcagagattg tttgttgaat gaagaagtaa taacgattgt ttttcaacaa tggacaggaa 2160
ataaccttcc gcggaattgg gatggttccc ggtgaatata gtgcccaaga tgatgatgat 2220
gatgatgtat ttggcgtcgt tgatactgaa aatgctgtct tggaacgcag tttcaggagt 2280
gtgcaaattc ttgaaatgga aggttgtcac ctggaaccca ttttgaggaa ggcaaagcca 2340
ccaaacctat catgcctcag ctggaacaga tgtcctcact cttccctgcc ttcctgggtt 2400
tcagtgaaga atttaaggat tctacatctg gagcaatgcg aactaaaggc attgtggcct 2460
tcccagtttt cagtgaagaa tttatgggct ctattgtggc actggaaaag tgaatcacag 2520
tcacctctgc agtttccgat atctttggag cagctggtgg tacgccaatg tgagaaattg 2580
agaagcataa ccgggttggt gcatgcgaca aatcttcggg agctaaatgt ttctaactgc 2640
tctgagttag aagaactgtc tagtttggaa gcattggtat cgttggagca tttgcaggct 2700
gatggatgta agaaactgaa agccatacga gggttggtgc atgcgacaag gcttagagta 2760
ctggatgttt ctaactgctc tgagttagaa gaacttccta gtttggaaac attggtatcg 2820
ttggagggtt tgtgggctga tggatgtaag aaactgaaag gcatacgagg tttagcccac 2880
gccacaaatc ttcggacgct aagtgttcgt gagtgctttg ccttggaaga attcagagat 2940
gtctctgaat gtcacaaatt gagtcacaaa ttggtgtggg aatagcggag cagttgtttg 3000
ggaatagtcg atgtctctga atgtcacaaa ttggtcctcc tgtccatcat gtatagtggt 3060
gtcatttaaa cacaactcca caaaagaatt tataaattat ttgtactaaa aaaaaaaaaa 3120
aaaa 3124




132


1653


DNA


Pinus radiata



132
agacgaaaat attgaggttc accgctcatt cccaatctct gtaaaacatc ttggatctcg 60
cttgcttctt tcttctctgt aaaacgtctt ggatctcgct tgcttctttc ttcttctgtg 120
tccgatggcg gaccataccg gggatatcac atgcatcgcc tcttcttcgt cttcatccac 180
caacactggc caggtttttg acgttttcct caaccaccgc ggtcccgaca caaagaaagg 240
cctcgccagc catatctacc gtggccttat tgtccgtggg ttaagagtat ttctcgacca 300
gcccgagttg cgtaagggag aggacaacct ttctcaaatc aaagaggcta ttcgaaccgc 360
ctcagtgcat gttgcaatat tttctccaaa ctatgctcaa tcaagatggt gtcttgatga 420
gctggcacta atggtggaat ccgagtcgac aataattcca gtcttccatg atgtcgatcc 480
ctccgaactt cggtggcagc agagtggaga tggagtcgag agtatcatcc gctgtctctg 540
tccgtgtcta ctgggcggaa agggacggta tgctcgagac ctgcacatgc tccaaaagaa 600
gacaacattg gatcctcata ccaacaaaaa gaagccacga catgactcga gaactctgca 660
aaaatggagg aaagctctct ctgatgtctc caataaaagc ggttttatta tcaacgcata 720
caatggtgac gaagggcagc tagttgatgc ggtcgtcgaa gaagtgtggc gaaaggttga 780
gaaaacacct cttaatgtgg ccaaataccc tactggcctc gttgagaaaa tagaagacgt 840
gggaagaatg gtactcttgc agcatcaaag ccagaagact aaggttgtgg gaattgtggg 900
tcttggcggt gtagggaaaa cgacccttgc aaaagaattc ttcaacagac acagatcaaa 960
ttatgatcga tcttgttttc tgtttgatgt gagagaaacc gcagccaaga gctctttaag 1020
ttcattgcag acacaacttc ttaaacactt ggctcatttg caggacgagc aaataagaaa 1080
caccgatgaa gtcatagaga agctccgaaa gcatctctca tcctcccccc gatctctgat 1140
agtcttagat gatgttgatc atattgatca acttgacgca ttgttttcac cggtgataga 1200
taccattcag gccagtagtt taatcttagt tacttctcgc aatagggatg tacttataag 1260
ctcgggaatt ctagaggcgt ctatttacca gcaaacaggt cttaacccac aacagtccag 1320
agaactattc tgctcgcatg cctttgacca gagttgtcct gtgacgggat ttgaacaact 1380
ggttgaagat tttttggatt tctgtgatgg attgccctta tctcttaagg tcatcggagc 1440
ggctattcgt ggaaaagatt ctgagttttg gataggacag ctagacaaaa acagaagaat 1500
acttcacacg gatattcata gcaagcttaa aattagctat gatggtctgg ataaagagga 1560
gcagcagatc tttttagacg tcgcttgttt ttttatagga gaaaacagag ataccgccat 1620
cagaagatgg aatggatctg acggtaagtg tac 1653




133


346


DNA


Pinus radiata



133
cagccatatc taccgtggcc ttattgtccg tgggttaaga gtatttctgg accagcccga 60
gttgcgtaag ggaaaggaca tcccttctca aatcaaagag gctattcgaa ccgactcagt 120
gcatgttgca atattttctc caacatatgc tcaatcaaga tggtgtcttg atgagctcgc 180
actaatggtg gaatccaagt cgacaattat tccagtcttc catgatgtcg atcccttcga 240
acttcggtgg ccgcagagtg gagatggagt cgagagtatc atccgctgtc tctgtccgtg 300
tctactgggc ggaaagggac ggtatgctcg agacctgcac atgctc 346




134


1737


DNA


Pinus radiata



134
cttgtagaga tcgacagtga agggtgtata agaatgcacg accacctgcg cgatctcggc 60
agagatgtag cagaaaagga acatccgctt cggctttcgc gaccaaatgt caatcttctt 120
cgtactcttt ccccctcatc gcctgtgcga ggaattagca tgaattatgg aaatggcggc 180
aaacaatttt tggaatacat tagggtcaac tgcaacctaa gcaggttgga actgcttagg 240
ggtgaaggtt cttttgttga aagcatattc agtgcagggg agatacgaca actggtatat 300
ctccaatgga aggagtgtcc gatctcctca atatctttca caatcccaac aaggaattta 360
agcgtgttat acatacaggg ttatgctttg aaaacactct ggcaacatga atctcaggca 420
ccactacagt tgacggaatt gtatattgat gctacccttt cagaggttcc acagtctatt 480
ggtaaactga atcagctcga aagaattgtc ctgaaaaatg gttattttaa aactttacca 540
aatgaattct atgatatgca ttcattgaag catatcacgt tacaaaactg tgaacaaatg 600
atgttgctgc cggattcagt tgggatcttg acgggccgcc aaacgcacga cttttccggg 660
tgctccaacc tgcaagcgct cccagactcg gtggggcagc tgacgggcct caagacgctc 720
gacttggaag actgcaccag cctgcagggg ctcccagact cggtggggca gctgacgggc 780
ctccagagcc tcgacttgga acactgcacc agcctgcagg ggctcccaga ctcggtgggg 840
cagctgacgg gcctccagac actcgacttg cgtgggtgct ccagcctgca ggggctgcca 900
gactcggtgg ggcagctgac gggcctcgag ggactctact tgagcgggtg cttcagcctg 960
caagggctcc cagactcggt ggagcagctg acgggcctcg agggactcta cttgagcggg 1020
tgcttcagcc tgcaagggct cccagactcg gtggggcagc tgacgggcct ccagagcctc 1080
aacttggaat actgcaccag cctggagggg ctcccagact cggtggggca gctgacggac 1140
ctcccgatac tcgacttgaa tacgtgcatc agcctgcagg ggcttccaga ctcggtgggg 1200
cagctgaggg gcctccagaa cctcgacttg cgttggtgcg acagcctgca ggggctccca 1260
gactcggtgg ggcaactgac gggcctccag atactcgact tgagtgggtg caccagcttg 1320
caggggctcc cagactccgt ggggcagctg acgggcctcc ggacgctcca cttggaaaac 1380
tgcaccagcc tgcaggggct cccagactca gtcgggaact taacgagtct caaatggctt 1440
aacttatctg ggtgttccaa tttacagatg ctgcccaatt tccgtcattt gagctcgttg 1500
gaggagcttc acttgtctgg atgttccaat ttacagatgc cgcccaatgt tcagcatttg 1560
agctcgctgg tggagctttc tgtgtctcac tgttcaaaac tgcaatgggg tgctggagta 1620
gtcgagtccc tgcgccatcg actgggaaat ggcttcatcg aagaaggcgg cgaaaacatt 1680
gataaagaaa gttgggaaga aggcagcgaa aaaagtgata aagaaagttg ggaagaa 1737




135


527


DNA


Pinus radiata



135
cggtcctcca gacactcgac ttgcgtaggt gctccagcct gcaggggctg ccagagtcgg 60
tggggcagct gacgggcctc cagagcctca acttggaaaa gtgcaccaga ctacaggggc 120
tgccagagtc ggtggggcag ctgacgggcc tccagacact cgacttgcgt aggtgctcca 180
gcctacaggg gctgccagag tcggtggggc agctgacggg cctccagagc ctcaacttga 240
aagagtgcac tagcttgcag gggctcccaa actctctggg gcagctgacg ggcctccata 300
gcctctactt ggttgagtgc tccagcctgc aggggctccc agactcggtg gggcagctga 360
cgggcctcca gagcatcaac ttgcaaggct gctccagcct gcaggggctc ccagattcgg 420
tggggcagct gacgggcctc cacagcctca acttagaagg ctgctccaga ctgcaggggc 480
tcccagactt ggtggggcag ctgacaggcc tccagagcct caaattg 527




136


485


DNA


Pinus radiata



136
tggaccgctg ctccagcctg caggggctcc cagactcggt ggggcagctg acgggcctcc 60
ggcaactcaa cttgaacggg tgctccagcc tgcaggggct cccagactcg gtggggcagc 120
tgacgggcct ctggatactc gacctgaccg ggtgctccag cctgcagggg ctcccagact 180
cggtgaggca gctgaggtgc ctccggggcg gaagcggacg ggcctgcgga cgggcagcgg 240
aagcaccagc ctacaatggc gggctgccag gcgggctcgc agaatcacga ttagcgagag 300
gctattggct taacttgtct gggtgttcca atttacagat gccgcccaat gttcagcatt 360
tgagctcgct gttgaagctt tatgtgtctc actgttcaaa actgcaatgg ggtgctggag 420
tagtcgagtc cctgcgccat cgactggaaa taacttcgtc gaagaaggcg gcgaaaacat 480
caatg 485




137


918


DNA


Pinus radiata



137
ggggctccca gactcggtgg ggcagctgac gggcctccag acactcgact tgcgtgggtg 60
ctccagcctg caggggctgc cagactcggt ggggcagctg acgggcctcg agggactcta 120
cttgagcggg tgcttcagcc tgcaagggct cccagactcg gtggagcagc tgacgggcct 180
cgagggactc tacttgagcg ggtgcttcag cctgcaaggg ctcccagact cggtggggca 240
gctgacgggc ctccagagcc tcaacttgga atactgcacc agcctggagg ggctcccaga 300
ctcggtgggg cagctgacgg acctcccgat actcgacttg aatacgtgca tcagcctgca 360
ggggcttcca gactcggtgg ggcagctgag gggcctccag aacctcgact tgcgttggtg 420
cgacagcctg caggggctcc cagactcggt ggggcaactg acgggcctcc agatactcga 480
cttgagtggg tgcaccagct tgcaggggct cccagactcc gtggggcagc tgacgggcct 540
ccggacgctc cacttggaaa actgcaccag cctgcagggg ctcccagact cagtcgggaa 600
cttaacgagt ctcaaatggc ttaacttatc tgggtgttcc aatttacaga tgctgcccaa 660
tttccgtcat ttgagctcgt tggaggagct tcacttgtct ggatgttcca atttacagat 720
gccgcccaat gttcagcatt tgagctcgct ggtggagctt tctgtgtctc actgttcaaa 780
actgcaatgg ggtgctggag tagtcgagtc cctgcgccat cgactgggaa atggcttcat 840
cgaagaaggc ggcgaaaaca ttgataaaga aagttgggaa gaaggcagcg aaaaaagtga 900
taaagaaagt tgggaaga 918




138


257


DNA


Pinus radiata



138
atgctgcccc attttcggca tttgagcttg atggaggagc ttcacttgtc tggatgttcc 60
aatttacaga tgccgcccaa tgttcagcat ttgagctcgc tggtgaagct ttatgtgtct 120
cactgttcaa aactgcaatg gggtgctgga gtagtcgagt ccctgcgcca tcgactggga 180
aatggcttca tcgaagaagg cggagaaaac agtaatgaat acaactgcag cgagttgtat 240
aatataagag aacttct 257




139


1166


DNA


Pinus radiata



139
tgaacagctg caccagcctg caggggctcc cagactcggt ggggcagctg acgggcctcc 60
ggacactcga cttgaacagc tgcaccagcc tgcaggggct cccagactcg gtggggcagc 120
tgacgggcct ccggacactc gacttgcaca gctgcaccag cctgcagggg ctcccagact 180
cggtggggca gctgacgggc ctcgagacac tcgacttgca agactgcacc agcctgcagg 240
ggctcccaga ctcggtgggg cagctgacgg gcctccaggt actctacttg agacggtgct 300
ccaacctgca ggggctccca gactcggtgg ggcagctgac gtgcctcaag gtactgtgct 360
tgagatggtg ctccaacctg caagcgctcc cagactcggt ggggcagcta acgggcctca 420
aggcactcaa cttgcaagac tgcaccagcc tgcaggggct cccagacttg gtggggcagc 480
tgacgggcct caaggcactc aacttgcaaa actgcaccag cctgcagggg ctcccagact 540
cggtggggca gctgaccggt ctccaggtac tctacttgag acagtgctcc aacctgcaag 600
cgctcccaga ctcagtgggg cagctgacgg gcctgaataa actctacttg aacgggtgct 660
ccagcctaca ggggctccca gactcagtcg agaacttaac gagactcaaa tggcttatat 720
tgtctgggtg ttccaattta cagatgctgc ccaattttcg gcatttgagg tcgttggaga 780
ggcttcactt gtctggatgt tccaatttac agatgccgcc caatgttcag catttgagct 840
cgctggtgca gctttatgtg tctcactgtt caaaactgca atggggtgct ggagtagtcg 900
agtccctgcg ccatcgactg ggaaatggct tcatcgaaga aggcggcgaa aacagtaatg 960
aataaagctg cagctagttg tataatataa gagaacttct taagatcaga tggccacggt 1020
gctcattaat cttcatagag ctgtaatcag aggcaaaatg aattacacaa tgtacagaat 1080
gctctacatt ttaaaaaaaa aaaaaaaaaa aaaactcgag agtacttcta gagcggccgc 1140
gggcccatcg attttccacc ccaggt 1166




140


1921


DNA


Pinus radiata



140
cttgcattat aggttgttct aaagtttctg aaactggttt gcaatttaca tcaatcattg 60
aaagctatcc atcgcttatt cggcaatggc atccaccgcc tccactgcca tcaacacaag 120
caattatcaa tacgacgtgt ttctgaatca tcgcggccgc gatacgaaga acgacttcgc 180
cggtcatctc tactctcgcc ttcgttcacg tggaatccgt gtctttctgg acaaggaaga 240
gatgcaagtg ggagacgatt taacttatca gataaaagcc gttattaaaa ccgcctctgt 300
ccatctggcc attttcagtg agaactacgc cgagtcaaag tggtgccttg atgagcttgt 360
gctgatggtc gagtcggagg ctaccatcat ccccgtcttt tttaaaaatg tggaacctga 420
tcatcttcag tggattggaa gccagactcg ggataccgag cagagcgggg ataccaagca 480
gagcggaagc cagactcggg aaaccgagca gagcggaagc caagcaaaca agaagccaca 540
gaagacaaag tttgctgatg gcttctggaa acttcaaaat aagacggata atgggcagcg 600
gcgacacaaa catgagacta ttggaaaatg ggcatctgct ctttcaacag tttccgaaag 660
aacctgtttc aagctggcag cgtttaatgg gtgagaactc aatttccctt ttcagtatgc 720
tacatagatg taaatggacg tttctcactt gttctattta ctctcttgtg aataaccagc 780
gacgaggtgg agctaatcga gaagatcgtc cagtctgtgt tagaaaaagt gaatagatct 840
tccttctatg tgcccaaata tgaggtcggt ttggatgaga atgtagaaaa gtttcgtaaa 900
aaggtaaaag aatggtcgca gcagcggcag aatgaaaaag ctcaggtcgt ggggatagtg 960
gggttgggtg atgttggaaa gacaacgcta gtaaaggaat tcttccctac agagagtcca 1020
gcataccgta acttctgctt ttaccctgtg aggcgaaatg gatgtataac acgtccagat 1080
tgtttgattg gagagctttt taagggctcg agtggtttgg tttcgtcacc aaccagcgtt 1140
gatgcagtta aaatattgcc ggacgcgtct aatccctcag tagacatgat tcgaaacaat 1200
ccctccttag tagttttaga tggagtagat aatgttgagg agagggagaa tcttttgaaa 1260
attcaagaaa ggctccactc caaaagttta atattgatta catctaggga cccagaagtt 1320
ctgaggtgct cagaagttga aaagatttat cacttaaatg gccttaatga accgtgttcc 1380
cgaaagcttt tttgcttcca tgccttccac caggcagctc cacttcaagg gtatgaatac 1440
ctggttgctt gggttttaag agtatgcgac ggattgcctt tattattgaa actgttgggg 1500
gcattacttt gtggaaataa tgacagattt tattgggaag acctatgtga tagtcttcaa 1560
gcaaaaaaga tagaggaaaa gcttaaagtt atttacgaca cgttgggaac agaggaacaa 1620
cagacctttt tggacattgc ctgtaatttg gtgggtaaaa acgcagatat ttggttaaaa 1680
tcaggaaaga aaggtattat ttggtttcag attctactgg aaaagcgtct agtggaggtg 1740
gatagtgaaa attgtataca gatgcatgat cttcttaaaa atttgggagg agaaattgct 1800
aaggcaacaa aatcgccgcg tcctcttttt ttcggctgat tagtcgcaaa aatcccatgt 1860
aagtgtaata aaaatctgtg cagagttttt taattcttca tcatttttaa gcaaaaaact 1920
c 1921




141


278


PRT


Pinus radiata



141
Ala Met Glu Gly Tyr Ala Ala Asn Asn Asp Ala Glu Leu Leu Ser Lys
1 5 10 15
Thr Leu Gln Val Glu Gln Lys Leu Phe Tyr Phe Asp Leu Lys Glu Asn
20 25 30
Pro Arg Gly Gln Tyr Leu Lys Ile Ser Glu Lys Thr Ser Gly Ser Arg
35 40 45
Ser Thr Ile Ile Val Pro Ile Gly Gly Val Ala Trp Phe Leu Asp Leu
50 55 60
Phe Asn Tyr Tyr Val Asp Gly Asp Asp Glu Glu Val Leu Ser Lys Glu
65 70 75 80
Leu Gln Leu Asp Ala Lys Val Phe Tyr Phe Asp Val Gly Val Asn Lys
85 90 95
Arg Gly Arg Phe Leu Lys Ile Ser Glu Ala Ser Thr Ser Tyr Ser Arg
100 105 110
Ser Thr Ile Ile Val Pro Val Gly Asn Thr Arg Lys Asp Gly Trp Ala
115 120 125
Ala Phe Arg Asn Ile Leu Gly Glu Ile Asn Glu Ala Ser Gln Gln Ala
130 135 140
Ser Gly Pro Ser Glu His Leu Gly Gly Leu Ser Asp Glu Val Gly Ala
145 150 155 160
Gly Phe Leu Ser Gly Gly Ser Gly Glu Ala Ala Phe Glu Ala Asp Thr
165 170 175
Thr Gly Asp Arg Ala Met Gly Leu Thr Pro Ala Glu Asp Thr Gly Glu
180 185 190
Ala Val Val Ser Lys Val Ile Arg Ala Asp Gln Lys Arg Phe Phe Phe
195 200 205
Asp Leu Gly Cys Asn Asn Arg Gly Gln Phe Leu Arg Ile Ser Glu Val
210 215 220
Ile Gly Pro Asp Arg Ser Ala Ile Ile Val Pro Val Ser Ala Leu Glu
225 230 235 240
Gln Phe His Asp Val Leu Gly His Phe Val Asp Ile Thr Arg Thr Gln
245 250 255
Gly Leu Ala Ala Ala Ser Gly Ala Asn Val Arg Thr Val Ala Ala Ala
260 265 270
His Arg Arg Asn Glu Asn
275




142


97


PRT


Pinus radiata



142
Ala Met Glu Gly Tyr Ala Ala Asn Asn Asp Ala Glu Leu Leu Ser Lys
1 5 10 15
Thr Leu Gln Val Glu Gln Lys Leu Phe Tyr Phe Asp Leu Lys Glu Asn
20 25 30
Pro Arg Gly Gln Tyr Leu Lys Ile Ser Glu Lys Thr Ser Gly Ser Arg
35 40 45
Ser Thr Ile Ile Val Pro Ile Gly Gly Val Ala Trp Phe Leu Asp Leu
50 55 60
Phe Asn Tyr Tyr Val Asp Gly Asp Asp Glu Glu Val Leu Ser Lys Glu
65 70 75 80
Leu Gln Leu Asp Ala Lys Val Phe Tyr Phe Asp Val Gly Val Asn Lys
85 90 95
Arg




143


386


PRT


Eucalyptus grandis



143
Ser Ser Ser Ser Ser Phe Phe Leu Leu Leu Pro Pro Ile Phe Leu Leu
1 5 10 15
His Ser Arg Arg Pro Ser Met Ala Ile Pro Ala Thr Ala Ala Ala Ala
20 25 30
Leu Leu Leu Phe Cys Ala Val Ala Ala Val Ala Ala Ala Ala Arg Thr
35 40 45
Asp Glu Glu Val Met Gly Met Tyr Glu Leu Trp Leu Ala Lys His Gly
50 55 60
Lys Ala Tyr Asn Gly Leu Gly Glu Arg Glu Arg Arg Phe Glu Ile Phe
65 70 75 80
Arg Asp Asn Leu Arg Phe Val Asp Glu His Asn Ala Leu Asn Arg Ser
85 90 95
Tyr Thr Leu Gly Met Asn Arg Phe Ala Asp Leu Thr Asn Glu Glu Tyr
100 105 110
Arg Ala Val Tyr Leu Gly Thr Arg Ser Asp Pro Met Arg Arg Val Ala
115 120 125
Lys Ala Ala Arg Ala Ser Gly Arg Tyr Ala Pro Arg Pro Asp Asp Met
130 135 140
Leu Pro Ala Ala Val Asp Trp Arg Thr Arg Gly Ala Val Asn Lys Val
145 150 155 160
Lys Asp Gln Gly Ala Cys Gly Ser Cys Trp Ala Phe Ser Thr Ile Ala
165 170 175
Ala Val Glu Gly Ile Asn Gln Ile Val Thr Gly Glu Phe Ile Ser Leu
180 185 190
Ser Glu Gln Glu Leu Val Asp Cys Asp Arg Ala Tyr Asp Ala Gly Cys
195 200 205
Asn Gly Gly Leu Met Asp Tyr Ala Phe Gln Phe Ile Ile Asp Asn Gly
210 215 220
Gly Ile Asp Thr Asp Glu Asp Tyr Ser Tyr Thr Gly Val Asp Gly Thr
225 230 235 240
Cys Asp Ala Ser Lys Val Asn Ser Lys Val Val Ser Ile Asp Gly Tyr
245 250 255
Glu Asp Val Pro Ala Phe Asp Glu Arg Ala Leu Lys Lys Ala Val Ala
260 265 270
His Gln Pro Val Ser Val Ala Ile Glu Ala Gly Gly Arg Asp Phe Gln
275 280 285
Leu Tyr Glu Ser Gly Val Phe Thr Gly Glu Cys Gly Thr Ala Leu Asp
290 295 300
His Gly Val Ile Ala Val Gly Tyr Gly Arg Gln His Gly Ala Asp Tyr
305 310 315 320
Trp Leu Val Arg Asn Ser Trp Gly Ser Leu Trp Gly Glu Ser Gly Tyr
325 330 335
Ile Lys Met Glu Arg Asn Leu Ala Asn Asn Tyr Phe Gly Lys Cys Gly
340 345 350
Ile Ala Met Glu Ala Ser Tyr Pro Val Lys Thr Thr Gln Asn Pro Ala
355 360 365
Ser Lys Tyr Ser Ser Met Gly Ser Ser Gly Gly Ile Glu Leu Val Ser
370 375 380
Ser Ser
385




144


109


PRT


Eucalyptus grandis



144
Leu Pro Pro Ile Phe Leu Leu His Arg Pro Cys Pro Ser Met Ala Ile
1 5 10 15
Pro Ala Ala Ala Ala Ala Ala Leu Leu Leu Phe Ser Ala Val Ala Ala
20 25 30
Val Ala Ala Ala Ala Ala Arg Thr Asp Glu Glu Val Met Gly Met Tyr
35 40 45
Glu Leu Trp Leu Val Lys His Gly Lys Ala Tyr Asn Gly Leu Gly Glu
50 55 60
Arg Glu Arg Arg Phe Glu Ile Phe Arg Asp Asn Leu Arg Phe Val Asp
65 70 75 80
Glu His Thr Gly Leu Asn Arg Ser Tyr Ala Leu Gly Met Asn Arg Phe
85 90 95
Ala Asp Leu Thr Asn Glu Glu Tyr Arg Ala Ile Tyr Leu
100 105




145


204


PRT


Eucalyptus grandis



145
Gln Ile Val Thr Gly Glu Leu Ile Ser Leu Ser Glu Gln Glu Leu Val
1 5 10 15
Asp Cys Asp Arg Ser Tyr Asp Ala Gly Cys Asn Gly Gly Leu Met Asp
20 25 30
Tyr Ala Phe Gln Phe Ile Ile Asp Asn Gly Gly Ile Asp Thr Asp Glu
35 40 45
Asp Tyr Ser Tyr Thr Gly Val Asp Gly Thr Cys Asp Ala Ser Lys Val
50 55 60
Asn Ser Lys Val Val Ser Ile Asp Gly Tyr Glu Asp Val Pro Ala Phe
65 70 75 80
Asp Glu Arg Ala Leu Lys Lys Ala Val Ala His Gln Pro Val Ser Val
85 90 95
Ala Ile Glu Ala Gly Gly Arg Asp Phe Gln Leu Tyr Glu Ser Gly Val
100 105 110
Phe Thr Gly Glu Cys Gly Thr Ala Leu Asp His Gly Val Ile Ala Val
115 120 125
Gly Tyr Gly Arg Gln His Gly Ala Asp Tyr Trp Leu Val Arg Asn Ser
130 135 140
Trp Gly Ser Leu Trp Gly Glu Ser Gly Tyr Ile Lys Met Glu Arg Asn
145 150 155 160
Leu Ala Asn Asn Tyr Phe Gly Lys Cys Gly Ile Ala Met Glu Ala Ser
165 170 175
Tyr Pro Val Lys Thr Ser Gln Asn Pro Ala Ser Lys Tyr Ser Ser Met
180 185 190
Gly Ser Ser Gly Gly Ile Glu Leu Val Ser Ser Ser
195 200




146


286


PRT


Pinus radiata



146
Ser Ser Gln Lys Lys Tyr Gly Ser Arg Gly Gly Arg Ser Thr Val Asp
1 5 10 15
Met Gly Ile Leu Leu Phe Phe Ala Leu Leu Ala Met Leu Ala Met Ala
20 25 30
Gly Asn Ala Ser Arg Ala Asp Phe Ser Ile Ile Ser Asn Lys Asp Leu
35 40 45
Arg Glu Asp Asp Ala Ile Met Glu Leu Tyr Glu Leu Trp Leu Ala Glu
50 55 60
His Lys Lys Ala Tyr Asn Gly Leu Asp Glu Lys Gln Lys Arg Phe Thr
65 70 75 80
Val Phe Lys Asp Asn Phe Leu Tyr Ile His Glu His Asn Gln Gly Asn
85 90 95
Arg Ser Tyr Lys Leu Gly Leu Asn Gln Phe Ala Asp Leu Ser His Glu
100 105 110
Glu Phe Lys Ala Thr Tyr Leu Gly Ala Lys Leu Asp Thr Lys Lys Arg
115 120 125
Leu Leu Arg Ser Pro Ser Pro Arg Tyr Gln Tyr Ser Asp Gly Glu Asp
130 135 140
Leu Pro Lys Ser Ile Asp Trp Arg Glu Lys Gly Ala Val Ala Pro Val
145 150 155 160
Lys Asp Gln Gly Ala Cys Gly Ser Cys Trp Ala Phe Ser Thr Val Ala
165 170 175
Ala Val Glu Gly Ile Asn Gln Ile Val Thr Gly Asp Leu Ile Ser Leu
180 185 190
Ser Glu Gln Glu Leu Val Asp Cys Asp Thr Ser Tyr Asn Gln Gly Cys
195 200 205
Asn Gly Gly Leu Met Asp Tyr Ala Phe Glu Phe Ile Ile Asn Asn Gly
210 215 220
Gly Leu Asp Ser Glu Glu Asp Tyr Pro Tyr Thr Ala Tyr Asp Gly Ser
225 230 235 240
Cys Asp Ala Tyr Arg Lys Asn Ala His Val Val Thr Ile Asp Asp Tyr
245 250 255
Glu Asp Val Pro Glu Asn Asp Glu Lys Ser Leu Lys Lys Ala Ala Ala
260 265 270
Asn Gln Pro Ile Ser Val Ala Ile Glu Ala Ser Gly Arg Glu
275 280 285




147


266


PRT


Pinus radiata



147
Ser Ser Gln Lys Lys Tyr Gly Ser Arg Gly Gly Arg Ser Thr Val Asp
1 5 10 15
Met Gly Ile Leu Leu Phe Phe Ala Leu Leu Ala Met Ser Ala Met Ala
20 25 30
Gly Ser Ala Ser Arg Ala Asp Phe Ser Ile Ile Ser Asn Lys Asp Leu
35 40 45
Arg Glu Asp Asp Ala Ile Met Glu Leu Tyr Glu Leu Trp Leu Ala Glu
50 55 60
His Lys Lys Ala Tyr Asn Gly Leu Asp Glu Lys Gln Lys Arg Phe Thr
65 70 75 80
Val Phe Lys Asp Asn Phe Leu Tyr Ile His Glu His Asn Gln Gly Asn
85 90 95
Arg Ser Tyr Lys Leu Gly Leu Asn Gln Phe Ala Asp Leu Ser His Glu
100 105 110
Glu Phe Lys Ala Thr Tyr Leu Gly Ala Lys Leu Asp Thr Lys Lys Arg
115 120 125
Leu Leu Arg Ser Pro Ser Pro Arg Tyr Gln Tyr Ser Asp Gly Glu Asp
130 135 140
Leu Pro Lys Ser Ile Asp Trp Arg Glu Lys Gly Ala Val Ala Pro Val
145 150 155 160
Lys Asp Gln Gly Ala Cys Gly Ser Cys Trp Ala Phe Ser Thr Val Ala
165 170 175
Ala Val Glu Gly Ile Asn Gln Ile Val Thr Gly Asp Leu Ile Ser Leu
180 185 190
Ser Glu Gln Glu Leu Val Asp Cys Asp Thr Ser Tyr Asn Gln Gly Cys
195 200 205
Asn Gly Gly Leu Met Asp Tyr Ala Phe Glu Phe Ile Ile Asn Asn Gly
210 215 220
Gly Leu Asp Ser Glu Glu Asp Tyr Pro Tyr Thr Ala Tyr Asp Gly Ser
225 230 235 240
Cys Asp Ala Tyr Arg Lys Asn Ala His Val Val Thr Ile Asp Asp Tyr
245 250 255
Glu Asp Val Pro Glu Asn Asp Glu Lys Ser
260 265




148


302


PRT


Pinus radiata



148
Asp Cys Ile Ser Met Gly Ile Leu Leu Leu Phe Ala Leu Leu Ala Leu
1 5 10 15
Phe Ala Met Ala Gly Ser Ala Ser Arg Ala Asp Phe Ser Ile Ile Gly
20 25 30
Tyr Asp Ser Lys Asp Leu Arg Glu Asp Asp Ala Ile Met Glu Leu Tyr
35 40 45
Glu Leu Trp Leu Ala Gln His Arg Lys Ala Tyr Asn Gly Leu Asp Glu
50 55 60
Lys Gln Lys Arg Phe Ser Val Phe Lys Asp Asn Phe Leu Tyr Ile His
65 70 75 80
Gln His Asn Asn Gln Gly Asn Pro Ser Phe Lys Met Gly Leu Asn Gln
85 90 95
Phe Ala Asp Leu Ser His Glu Glu Phe Lys Ala Thr Tyr Leu Gly Cys
100 105 110
Glu Leu Asp Thr Lys Lys Arg Leu Ser Lys Ser Pro Ser Pro Arg Tyr
115 120 125
Gln Tyr Ser Glu Gly Glu Asn Leu Pro Glu Ser Val Asp Trp Arg Glu
130 135 140
Lys Gly Ala Val Ala Ala Val Lys Asp Gln Gly Ser Cys Gly Ser Cys
145 150 155 160
Trp Ala Phe Ser Thr Val Ala Ala Val Glu Gly Ile Asn Gln Ile Val
165 170 175
Thr Gly Asn Leu Thr Ser Leu Ser Glu Gln Glu Leu Val Asp Cys Asp
180 185 190
Thr Ser Tyr Asn Gln Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe
195 200 205
Gln Phe Ile Ile Asp Asn Gly Gly Leu Asp Ser Glu Asp Asp Tyr Pro
210 215 220
Tyr Met Ala Asn Asp Gly Ser Cys Asp Ala Tyr Arg Lys Asn Ala His
225 230 235 240
Val Val Thr Ile Asp Ser Tyr Glu Asp Val Pro Glu Asn Asp Glu Lys
245 250 255
Ser Leu Lys Lys Ala Ala Ala His Gln Pro Ile Ser Val Ala Ile Glu
260 265 270
Ala Ser Gly Arg Ala Phe Gln Phe Tyr Glu Ser Gly Val Phe Thr Ser
275 280 285
Thr Cys Gly Thr Gln Leu Asp His Gly Val Thr Leu Val Gly
290 295 300




149


500


PRT


Eucalyptus grandis



149
Phe Ser Leu Ser Ile Leu Leu Ser Leu Ser Ser Asp Ala Pro Ile Gly
1 5 10 15
Tyr Ala Glu Ala Lys Lys Met Asp Leu Lys Ser Pro Pro Ala Ala Ala
20 25 30
Ala Val Ala Val Leu Ala Leu Ala Leu Ala Leu Thr Thr Ile Ala Ser
35 40 45
Ala Leu Asp Met Ser Ile Val Ser Tyr Asp Arg Ala His Gly Asp Arg
50 55 60
Ser Ser Ser Ser Ser Ser Ser Trp Arg Ser Asp Asp Glu Val Met Ala
65 70 75 80
Val Tyr Glu Ser Trp Leu Ala Lys His Gly Lys Ala Tyr Asn Ala Leu
85 90 95
Gly Glu Lys Glu Lys Arg Phe Gln Val Phe Lys Asp Asn Leu Arg Phe
100 105 110
Ile Asp Asp His Asn Ala Gly Gly Asp Arg Thr Tyr Thr Val Gly Leu
115 120 125
Asn Gln Phe Ala Asp Leu Thr Asn Glu Glu Tyr Arg Ser Met Tyr Leu
130 135 140
Gly Ala Arg Met Asp Arg Ser Gly Arg Arg Leu Gly Arg Ala Arg Ser
145 150 155 160
Asp Arg Tyr Ala Val Ala Ala Gly Glu Glu Leu Pro Ala Ser Val Asp
165 170 175
Trp Arg Lys Glu Gly Ala Val Val Asp Val Lys Asp Gln Gly Ser Cys
180 185 190
Gly Ser Cys Trp Ala Phe Ser Thr Ile Ala Ala Val Glu Gly Ile Asn
195 200 205
Lys Leu Val Thr Gly Asp Leu Ile Ser Leu Ser Glu Gln Glu Leu Val
210 215 220
Asp Cys Asp Thr Ser Tyr Asn Glu Gly Cys Asn Gly Gly Leu Met Asp
225 230 235 240
Tyr Ala Phe Glu Phe Ile Ile Asn Asn Gly Gly Ile Asp Thr Glu Glu
245 250 255
Asp Tyr Pro Tyr Arg Ala Val Asp Ser Thr Cys Asp Gln Tyr Arg Lys
260 265 270
Asn Ala Lys Val Val Thr Ile Asp Asp Tyr Glu Asp Val Pro Glu Asn
275 280 285
Asp Glu Lys Ala Leu Gln Lys Ala Val Ala Asn Gln Pro Val Ser Val
290 295 300
Ala Ile Glu Ala Gly Gly Arg Glu Phe Gln Phe Tyr Asp Ser Gly Ile
305 310 315 320
Phe Thr Gly Lys Cys Gly Thr Ala Leu Asp His Gly Val Thr Ala Val
325 330 335
Gly Tyr Gly Thr Glu Asn Gly Val Asp Tyr Trp Ile Val Lys Asn Ser
340 345 350
Trp Gly Gly Ser Trp Gly Glu Gln Gly Tyr Ile Lys Met Ala Arg Asn
355 360 365
Val Ala Asn Ser Pro Thr Gly Lys Cys Gly Ile Ala Met Glu Ala Ser
370 375 380
Tyr Pro Ile Lys Lys Gly Gln Asn Pro Pro Asn Pro Gly Pro Ser Pro
385 390 395 400
Pro Ser Pro Val Lys Pro Pro Thr Val Cys Asp Asn Tyr Tyr Ser Cys
405 410 415
Pro Glu Ser Asn Thr Cys Cys Cys Val Tyr Glu Tyr Ala Asn Tyr Cys
420 425 430
Phe Ala Trp Gly Cys Cys Pro Leu Glu Ala Ala Thr Cys Cys Glu Asp
435 440 445
His Tyr Ser Cys Cys Pro Gln Asp Phe Pro Val Cys Asn Val Asn Ala
450 455 460
Gly Thr Cys Gln Met Ser Lys Asp Asn Pro Leu Gly Val Lys Ala Leu
465 470 475 480
Lys Arg Thr Pro Ala Lys Phe His Trp Ala Phe Gly Ser Asp Gly Gln
485 490 495
Lys Ser Ser Ala
500




150


200


PRT


Eucalyptus grandis



150
Asp Gln Gly Asp Cys Gly Ser Cys Trp Ala Phe Ser Ala Ala Ala Ala
1 5 10 15
Met Glu Gly Ile Thr Met Ile Lys Lys Gly Lys Leu Val Pro Leu Ser
20 25 30
Val Gln Glu Leu Val Asp Cys Asp Val Asp Asp Asn Gly Cys His Gly
35 40 45
Gly Leu Met Asp Arg Ala Phe Lys Phe Ile Lys Ser Lys Gly Gly Leu
50 55 60
Ser Thr Glu Ala Asn Tyr Pro Tyr Gln Ala Asn Asn Gly Thr Cys Asn
65 70 75 80
Thr Ala Lys Met Ala Asn Pro Val Ala Ser Ile Thr Gly Tyr Gln Asp
85 90 95
Val Pro Ala Asn Asn Glu Lys Ala Leu Leu Gln Ala Val Ala Asn Gln
100 105 110
Pro Val Ser Val Ala Ile Glu Gly Ser Gly Phe Asn Phe Gln Phe Tyr
115 120 125
Ser Ser Gly Val Phe Ser Gly Ser Cys Gly Thr Ser Ile Asp His Ala
130 135 140
Val Thr Ala Val Gly Tyr Gly Lys Thr Ser Arg Gly Thr Lys Tyr Trp
145 150 155 160
Leu Leu Lys Asn Ser Trp Gly Thr Gly Trp Gly Glu Ser Gly Tyr Met
165 170 175
Arg Ile Gln Arg Asp Val Ser Ser Asn Ala Gly Leu Cys Gly Leu Ala
180 185 190
Met Glu Ala Ser Tyr Pro Thr Ala
195 200




151


198


PRT


Eucalyptus grandis



151
Asn Tyr Leu Arg Thr Asn Lys Leu Leu Ser Leu Ser Glu Gln Glu Leu
1 5 10 15
Val Asp Cys Asp Asn Thr Gln Asn His Gly Cys Asn Gly Gly Leu Met
20 25 30
Asp Ile Ala Phe Glu Phe Ile Lys Gln Lys Gly Gly Ile Thr Ser Glu
35 40 45
Ser Asn Tyr Pro Tyr Gln Ala Ser Asn Gly Thr Cys Asp Ala Ala Lys
50 55 60
Glu Asn Ser Pro Val Val Ser Ile Asp Gly His Glu Asn Val Pro Ala
65 70 75 80
Asn Asp Glu Asp Ala Leu Gln Lys Ala Val Ala Asn Gln Pro Val Ser
85 90 95
Val Ala Ile Glu Ala Ser Gly Ala Asp Phe Gln Phe Tyr Ser Glu Gly
100 105 110
Val Phe Thr Gly Ser Cys Gly Thr His Leu Asp His Gly Val Ala Ile
115 120 125
Val Gly Tyr Gly Ser Thr Leu Gln Gly Thr Lys Tyr Trp Ile Val Arg
130 135 140
Asn Ser Trp Gly Pro Glu Trp Gly Glu Lys Gly Tyr Leu Arg Met Glu
145 150 155 160
Arg Gly Ile Glu Ala Lys Glu Gly Leu Cys Gly Ile Ala Met Glu Ala
165 170 175
Ser Tyr Pro Ile Lys Asn Ser Ser Asp Asn Pro Ala Gly Val Ser Ser
180 185 190
Pro Val Lys Asp Glu Leu
195




152


381


PRT


Eucalyptus grandis



152
Lys Thr Gln Gly Arg Arg Lys Glu Ser Val Gln Asn His Leu Leu Lys
1 5 10 15
Glu Ser Tyr Asn Ser Pro Ser His Ser Asn Cys Val Leu Asp Ser Thr
20 25 30
Gln Ser Thr Thr Met Ala Lys Gln Asn Gln Phe Ser Phe Leu Thr Ser
35 40 45
Ala Ala Leu Leu Val Ile Ile Val Ser Val Ser Glu Thr Leu Cys Arg
50 55 60
Pro Leu Glu Glu Glu Gln Leu Leu Lys Gln His Glu Glu Trp Met Ala
65 70 75 80
Ile His Gly Arg Val Tyr Lys Asp Ala Val Glu Lys Ala Lys Arg Tyr
85 90 95
Glu Ile Phe Lys Glu Asn Val Lys Arg Ile Asn Ala Phe Asn Asn Gly
100 105 110
Lys Asp Val Gly Tyr Lys Met Ala Val Asn Lys Phe Ala Asp Leu Thr
115 120 125
Asn Glu Glu Phe Arg Ala Ser Tyr Thr Gly Tyr Lys Arg Arg Pro Thr
130 135 140
Arg Val Leu Ser Ser Gly Glu Lys Lys Pro Phe Lys Tyr Ala Asn Phe
145 150 155 160
Thr Ala Ile Pro Ala Ala Leu Asp Trp Arg Thr Lys Lys Ala Val Thr
165 170 175
Pro Val Lys Asp Gln Gly Gly Cys Gly Ser Cys Trp Ala Phe Ser Ala
180 185 190
Val Ala Ala Met Glu Gly Ile Thr Met Ile Lys Lys Gly Lys Leu Val
195 200 205
Pro Leu Ser Val Gln Glu Leu Val Asp Cys Asp Asp Asn Asp Glu Gly
210 215 220
Cys Arg Gly Gly Leu Met Asp Ser Ala Phe Lys Phe Ile Val Ser Asn
225 230 235 240
Gly Gly Leu Thr Thr Glu Ala Asn Tyr Pro Tyr Gln Gly Asn Asp Gly
245 250 255
Thr Cys Asn Thr Ala Lys Thr Ala Asn Pro Ala Ala Ser Ile Thr Gly
260 265 270
Tyr Gln Asp Val Pro Ala Asn Asn Glu Lys Ala Leu Leu Gln Ala Val
275 280 285
Ala Asn Gln Pro Val Ser Val Ala Ile Glu Gly Gly Gly Tyr Asn Phe
290 295 300
Gln Phe Tyr Ser Ser Gly Val Phe Thr Gly Ser Cys Gly Thr Asp Ile
305 310 315 320
Asp His Ala Val Thr Ala Val Gly Tyr Gly Lys Thr Ser Gly Ser Gly
325 330 335
Gly Thr Lys Tyr Trp Leu Met Lys Asn Ser Trp Gly Thr Gly Trp Gly
340 345 350
Glu Lys Gly Tyr Met Arg Ile Gln Lys Asp Val Ser Ser Lys Ala Gly
355 360 365
Leu Cys Gly Leu Ala Thr Glu Ala Ser Tyr Pro Ala Ala
370 375 380




153


396


PRT


Pinus radiata



153
Lys Lys Ile Val Phe Pro Phe Leu His Thr Asn Ser His Tyr Leu Ser
1 5 10 15
Glu Phe Cys Cys Tyr Phe Val Met Ala Ser Val Ser Lys Ala Thr Leu
20 25 30
Leu Leu Phe Leu Ala Thr Thr Leu Trp Thr Leu Ser Ala Asn Ala Ser
35 40 45
Asp Ser Ser Pro Gly Phe Thr Asp Glu Asp Leu Lys Ser Glu Glu Ser
50 55 60
Leu Arg Leu Leu Tyr Asp Lys Trp Ala Leu Arg His Arg Thr Thr Arg
65 70 75 80
Ser Leu Asp Ser Asp Glu His Ala Lys Arg Phe Glu Ile Phe Lys Asp
85 90 95
Asn Val Lys Tyr Ile Asp Ser Val Asn Gln Lys Asp Gly Pro Tyr Lys
100 105 110
Leu Gly Leu Asn Lys Phe Thr Asp Leu Ser Asn Glu Glu Phe Lys Ala
115 120 125
Met His Met Thr Thr Arg Met Glu Lys His Lys Ser Leu Arg Arg Asp
130 135 140
Arg Gly Thr His Ser Gly Ser Phe Met Tyr Gln Asn Ser Asp Asn Leu
145 150 155 160
Pro Glu Ser Ile Asp Trp Arg Glu Lys Gly Ala Val Asn Pro Val Lys
165 170 175
Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Thr Ile Ala Ser
180 185 190
Val Glu Gly Ile Ser Tyr Val Lys Thr Gly Lys Leu Val Ser Leu Ser
195 200 205
Glu Gln Gln Leu Val Asp Cys Ser Lys Glu Asn Ala Gly Cys Asn Gly
210 215 220
Gly Leu Met Asp Ser Ala Phe Gln Tyr Ile Ile Asp Asn Gly Gly Ile
225 230 235 240
Val Ala Glu Asp Glu Tyr Pro Tyr Thr Ala Glu Ala Ser Glu Cys Ser
245 250 255
Pro Ser Lys Val Lys Pro Asn Ala Ile Ala Ala Thr Ile Asp Gly Phe
260 265 270
Glu Asp Val Pro Ala Asn Asn Glu Lys Ala Leu Lys Glu Ala Val Gly
275 280 285
His Gln Pro Val Ser Val Ala Ile Glu Ala Ser Gly Lys Asp Phe Gln
290 295 300
Phe Tyr Ser Lys Gly Val Phe Thr Gly Glu Cys Gly Thr Glu Leu Asp
305 310 315 320
His Gly Val Val Ala Val Gly Tyr Gly Lys Ser Pro Glu Gly Ile Asn
325 330 335
Tyr Trp Ile Val Arg Asn Ser Trp Gly Pro Glu Trp Gly Glu Glu Gly
340 345 350
Tyr Ile Lys Met Gln Arg Asp Ile Glu Ala Val Glu Gly Lys Cys Gly
355 360 365
Ile Ala Met Gln Ala Ser Tyr Pro Thr Lys Lys Thr Gln Gly Ile Asp
370 375 380
Ile Glu Leu Asp Val Ala His Val Ser Asp Glu Leu
385 390 395




154


185


PRT


Eucalyptus grandis



154
Glu Asp Tyr Pro Tyr Lys Ala Val Asp Gly Lys Cys Asp Gln Tyr Arg
1 5 10 15
Lys Asn Ala Lys Val Val Thr Ile Asp Asp Tyr Glu Asp Val Pro Ala
20 25 30
Asn Asp Glu Lys Ala Leu Gln Lys Ala Val Ala Asn Gln Pro Val Ser
35 40 45
Val Ala Ile Glu Ala Gly Gly Arg Ala Phe Gln Leu Tyr Gln Ser Gly
50 55 60
Val Phe Ser Gly Arg Cys Gly Thr Ala Leu Asp His Gly Val Thr Ala
65 70 75 80
Val Gly Tyr Gly Thr Glu Lys Gly Met Asn Tyr Trp Ile Val Lys Asn
85 90 95
Ser Trp Gly Lys Ser Trp Gly Glu Gln Gly Tyr Ile Arg Met Glu Arg
100 105 110
Ser Leu Thr Asn Thr Ile Thr Gly Lys Cys Gly Ile Ala Met Glu Ala
115 120 125
Ser Tyr Pro Ile Lys Asn Gly Pro Asn Pro Pro Asn Pro Gly Pro Ser
130 135 140
Pro Pro Ser Pro Ile Lys Pro Pro Thr Thr Cys Asp Arg Tyr Tyr Ser
145 150 155 160
Cys Ala Glu Ser Thr Thr Cys Cys Cys Val Tyr Gln Tyr Ala Asn Tyr
165 170 175
Cys Phe Ala Trp Gly Cys Cys Pro Leu
180 185




155


160


PRT


Eucalyptus grandis



155
Ser Thr Pro Arg Asn Ser Ser Gln Val Asn Ser Phe Lys Tyr Gln Gly
1 5 10 15
Ser Asn Ser Ile Pro Glu Ser Ile Asp Trp Val Gln Lys Gly Ala Val
20 25 30
Asn Pro Ile Lys Tyr Gln Arg Gln Cys Gly Ser Cys Trp Ser Phe Ser
35 40 45
Val Val Ala Ala Val Glu Ala Ile Thr Gln Ile Thr Thr Gly Val Leu
50 55 60
Pro Ser Leu Ser Glu Gln Gln Leu Ile Asp Cys Thr Thr Asp Gly Asn
65 70 75 80
His Gly Cys Glu Gly Gly Ser Met Asp Asn Gly Phe Glu Tyr Ile Ile
85 90 95
Asn Asn Asn Gly Ile Ser Ser Glu Thr Asn Tyr Pro Tyr Val Gly Val
100 105 110
Asp Gly Thr Cys Asn Val Gln Ala Ser Ser Val Ala Glu Ala Lys Ile
115 120 125
Ser Asp His Lys Asp Val Pro Ser Asn Glu Asp Asp Met Leu Lys Ala
130 135 140
Val Ala Met Gln Pro Val Ser Ala Ala Ile Asp Ala Asn Gly Asp Val
145 150 155 160




156


272


PRT


Eucalyptus grandis



156
Ser His Ser Asn Cys Val Leu Asp Ser Thr His Thr Ser Thr Met Ala
1 5 10 15
Lys Gln Asn Gln Leu Pro Phe Leu Thr Leu Ala Thr Leu Leu Val Ile
20 25 30
Ile Val Phe Val Ser Glu Thr Leu Cys Arg Pro Leu Gly Glu Glu His
35 40 45
Leu Leu Lys Gln His Glu Gln Trp Met Ala Val His Gly Arg Val Tyr
50 55 60
Lys Asp Ala Asp Glu Lys Ala Lys Arg Tyr Glu Ile Phe Lys Gln Asn
65 70 75 80
Val Asn Arg Ile Asn Ala Phe Asn Asn Asp Lys Asp Ala Ala Tyr Lys
85 90 95
Leu Ala Val Asn Lys Phe Ala Asp Leu Thr Asn Glu Glu Phe Arg Ala
100 105 110
Ser Phe Thr Gly Tyr Lys Arg Arg Ser Thr Arg Val Leu Thr Ser Val
115 120 125
Asp Glu Lys Pro Phe Lys Tyr Ala Asn Phe Thr Ala Ala Pro Pro Val
130 135 140
Leu Asp Trp Arg Thr Lys Lys Ala Val Thr Ser Val Lys Asp Gln Ser
145 150 155 160
Ser Cys Gly Ala Cys Trp Ala Phe Ser Ala Val Ala Ala Met Glu Gly
165 170 175
Ile Thr Met Leu Lys Lys Gly Lys Leu Val Ser Leu Ser Glu Gln Glu
180 185 190
Leu Val Asp Cys Asp Val Asn Gly Val Asn Gln Gly Cys Glu Gly Gly
195 200 205
Leu Met Asp Ser Ala Phe Gln Phe Ile Lys Ser Lys Gly Gly Leu Thr
210 215 220
Ser Glu Ala Asn Tyr Pro Phe Gln Gly Asn Asp Gly Thr Cys Arg Thr
225 230 235 240
Ala Lys Ala Ala Asn Ile Val Ala Ser Ile Ala Gly Tyr Gln Asp Val
245 250 255
Pro Ala Asn Asn Glu Lys Ala Leu Leu Gln Ala Arg Gly Glu Pro Ala
260 265 270




157


122


PRT


Eucalyptus grandis



157
Ser His Ser Asn Cys Val Leu Asp Ser Thr His Thr Ser Thr Met Ala
1 5 10 15
Lys Gln Asn Gln Leu Pro Phe Leu Thr Leu Ala Thr Leu Leu Val Ile
20 25 30
Ile Val Ser Val Ser Glu Thr Leu Cys Arg Pro Leu Gly Glu Glu His
35 40 45
Leu Leu Lys Gln His Glu Gln Trp Met Ala Val His Gly Arg Val Tyr
50 55 60
Lys Asp Ala Asp Glu Lys Ala Lys Arg Tyr Glu Ile Phe Lys Gln Asn
65 70 75 80
Val Asn Arg Ile Asn Ala Phe Asn Asn Asp Lys Asp Ala Gly Tyr Lys
85 90 95
Leu Ala Val Asn Lys Phe Ala Asp Leu Thr Asn Glu Glu Phe Arg Ala
100 105 110
Ser Phe Thr Gly Tyr Lys Arg Arg Ser Thr
115 120




158


378


PRT


Eucalyptus grandis



158
Pro Thr His Ile Ser Trp Asn Pro Gln Arg Glu Arg Glu Arg Glu Arg
1 5 10 15
Glu Arg Glu Met Ala Arg Ala Arg Leu Leu Cys Ser Ala Val Leu Leu
20 25 30
Leu Val Ala Val Val Val Ser Ala Ala Ala Ser Ser Phe Glu Glu Ser
35 40 45
Asn Pro Ile Arg Leu Phe Pro Asp Gly Gly Leu Arg Asp Leu Glu Ser
50 55 60
Ser Ile Val Gln Ile Val Gly Arg Thr Arg His Ala Phe Ser Phe Ala
65 70 75 80
Arg Phe Ala Asn Arg Tyr Gly Lys Arg Tyr Glu Thr Ala Glu Glu Ile
85 90 95
Lys Leu Arg Phe Glu Ile Phe Arg Glu Asn Leu Lys Leu Ile Arg Ser
100 105 110
Thr Asn Lys Lys Gly Leu Pro Tyr Thr Leu Gly Val Asn Lys Phe Ala
115 120 125
Asp Trp Ser Trp Glu Glu Phe Arg Arg His Arg Leu Gly Ala Ala Gln
130 135 140
Asn Cys Ser Ala Thr Thr Lys Gly Asn His Lys Leu Thr Asp Glu Ala
145 150 155 160
Leu Pro Glu Met Lys Asp Trp Arg Glu Lys Gly Ile Val Ser Pro Ile
165 170 175
Lys Asp Gln Gly His Cys Gly Ser Cys Trp Thr Phe Ser Thr Thr Gly
180 185 190
Ala Leu Glu Ala Ala Tyr His Gln Ala Phe Gly Lys Gln Ile Ser Leu
195 200 205
Ser Glu Gln Gln Leu Val Asp Cys Ala Gly Ala Phe Asn Asn Phe Gly
210 215 220
Cys Ser Gly Gly Leu Pro Ser Gln Ala Phe Glu Tyr Val Lys Tyr Asn
225 230 235 240
Gly Gly Leu Asp Thr Glu Glu Ala Tyr Pro Tyr Thr Ala Val Asp Gly
245 250 255
Ser Cys Lys Phe Ser Ala Asp Asn Val Gly Val Gln Val Leu Asp Ser
260 265 270
Val Asn Ile Thr Leu Gly Ala Glu Asp Glu Leu Lys His Ala Val Ala
275 280 285
Phe Val Arg Pro Val Ser Val Ala Phe Gln Val Val Lys Asp Phe Arg
290 295 300
Leu Tyr Lys Ser Gly Val Tyr Thr Ser Asp Thr Cys Gly Ser Thr Ser
305 310 315 320
Met Asp Val Asn His Ala Val Leu Ala Val Gly Tyr Gly Val Glu Asp
325 330 335
Gly Val Pro Phe Trp Leu Ile Lys Asn Ser Trp Gly Ala Asp Trp Gly
340 345 350
Asp His Gly Tyr Phe Lys Met Glu Met Gly Lys Asn Met Cys Gly Val
355 360 365
Ala Thr Cys Ala Ser Tyr Pro Val Val Ala
370 375




159


129


PRT


Pinus radiata



159
Ala Met His Met Lys Thr Arg Met Glu Lys His Arg Ser Leu Arg Gly
1 5 10 15
Asp Arg Gly Val Gln Gly Gly Ser Phe Met Tyr Gln Asn Ser Lys His
20 25 30
Leu Pro Ala Ser Ile Asp Trp Arg Lys Lys Gly Ala Val Thr Pro Val
35 40 45
Lys Asn Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Thr Val Ala
50 55 60
Ser Val Glu Gly Ile Asn Tyr Ile Lys Thr Gly Lys Leu Val Ser Leu
65 70 75 80
Ser Glu Gln Gln Leu Val Asp Cys Ser Lys Glu Asn Ala Gly Cys Asn
85 90 95
Gly Gly Leu Met Asp Asn Ala Phe Gln Tyr Ile Ile Asp Asn Gly Gly
100 105 110
Ile Val Ser Glu Ala Glu Tyr Pro Tyr Thr Ala Glu Ala Arg Glu Cys
115 120 125
Ser




160


348


PRT


Eucalyptus grandis



160
Glu Asn Ile Ile Met Gly Ser Ser Pro Arg Thr His His Gln Leu Gly
1 5 10 15
Leu Ala Ile Leu Phe Phe Ala Ser Leu Ala Arg Leu Ser Leu Ser His
20 25 30
Ala Ser Leu Pro Ser Glu Tyr Ser Ile Ile Gly His Gly Gln Asp Pro
35 40 45
Asn Gly Ala Val Ser Asp Glu Arg Ala Val Glu Leu Phe Arg Arg Trp
50 55 60
Gln Ala Gln His Lys Lys Val Tyr Lys His Ala Gly Glu Ala Glu Arg
65 70 75 80
Arg Leu Glu Asn Phe Lys Arg Asn Leu Arg Tyr Val Met Glu Arg Ser
85 90 95
Arg Arg Asp Gly Gly Lys Gln His Gly Val Gly Leu Asn Lys Phe Ala
100 105 110
Asp Leu Ser Asn Glu Glu Phe Arg Gln Arg Tyr Leu Ser Lys Val Lys
115 120 125
Lys Ser Val Asn Gln Lys Trp Arg Ala Lys Arg Glu Ser Leu Met Arg
130 135 140
Asn Lys Arg Lys Gly Ala Glu Ser Cys Lys Ala Pro Ser Ser Leu Asp
145 150 155 160
Trp Arg Asn Tyr Gly Ile Val Thr Gly Val Lys Asp Gln Gly Glu Cys
165 170 175
Gly Ser Cys Trp Ala Phe Ser Ser Thr Gly Ala Met Glu Gly Ile Asn
180 185 190
Ala Leu Lys Ser Gly Asp Leu Ile Ser Leu Ser Glu Gln Glu Leu Val
195 200 205
Asp Cys Asp Thr Thr Asn Asp Gly Cys Asp Gly Gly Tyr Met Asp Tyr
210 215 220
Ala Phe Glu Trp Val Ile Asn Asn Gly Gly Ile Asp Ser Glu Glu Asp
225 230 235 240
Tyr Pro Tyr Thr Ser Val Phe Gly Glu Gly Gly Ile Cys Asn Val Thr
245 250 255
Lys Glu Glu Asn Asn Lys Ala Val Thr Ile Asp Gly Tyr Val Asp Val
260 265 270
Tyr Pro Ser Asp Asp Gly Leu Leu Cys Thr Val Ile Gln Gln Pro Ile
275 280 285
Ser Val Gly Met Asp Gly Ser Ala Ile Asp Phe Gln Leu Tyr Thr Gly
290 295 300
Gly Ile Tyr Asp Gly Ser Cys Ser Ala Asn Pro Asp Asp Ile Asp His
305 310 315 320
Ala Val Leu Ile Val Gly Tyr Gly Ser Glu Gly Gly Glu Asp Tyr Trp
325 330 335
Ile Val Lys Glu Leu Leu Gly Glu Gln Ile Trp Gly
340 345




161


248


PRT


Eucalyptus grandis



161
Glu Asn Ile Ile Met Gly Ser Ser Pro Arg Thr His His Gln Leu Gly
1 5 10 15
Leu Ala Ile Leu Val Phe Ala Ser Leu Ala Arg Leu Ser Leu Ser His
20 25 30
Ala Ser Leu Pro Ser Glu Tyr Ser Ile Ile Gly His Gly Gln Asp Pro
35 40 45
Asn Gly Ala Val Ser Asp Glu Arg Ala Val Glu Leu Phe Arg Arg Trp
50 55 60
Gln Ala Gln His Lys Lys Val Tyr Lys His Ala Gly Glu Ala Glu Arg
65 70 75 80
Arg Leu Glu Asn Phe Lys Arg Asn Leu Arg Tyr Val Met Glu Arg Ser
85 90 95
Arg Arg Asp Gly Gly Lys Gln His Gly Val Gly Leu Asn Lys Phe Ala
100 105 110
Asp Leu Ser Asn Glu Glu Phe Arg Gln Leu Tyr Leu Ser Lys Val Lys
115 120 125
Lys Ser Val Asn Gln Lys Trp Arg Ala Lys Arg Glu Ser Leu Met Arg
130 135 140
Asn Lys Arg Lys Gly Ala Glu Ser Cys Lys Ala Pro Ser Ser Leu Asp
145 150 155 160
Trp Arg Asn Tyr Gly Ile Val Thr Gly Val Lys Asp Gln Gly Glu Cys
165 170 175
Gly Ser Cys Trp Ala Phe Ser Ser Thr Gly Ala Met Glu Gly Ile Asn
180 185 190
Ala Leu Lys Ser Gly Asp Leu Ile Ser Leu Ser Glu Gln Glu Leu Val
195 200 205
Asp Cys Asp Thr Thr Asn Asp Gly Cys Asp Gly Gly Tyr Met Asp Tyr
210 215 220
Ala Phe Glu Trp Val Ile Asn Asn Gly Gly Ile Asp Ser Glu Glu Asp
225 230 235 240
Tyr Pro Tyr Thr Ser Val Phe Gly
245




162


225


PRT


Eucalyptus grandis



162
Arg Glu Arg Glu Arg Met Ala Gly Ala Arg Phe Leu Cys Ser Phe Leu
1 5 10 15
Leu Leu Leu Thr Ala Cys Ser Ala Thr Ala Ala Gly Phe Gln Gly Ala
20 25 30
Asp Leu Glu Ser Ser Ile Leu Gln Thr Val Gly His Gly Arg Pro Ala
35 40 45
Leu Ser Phe Val Asp Phe Ala Ser Arg Tyr Glu Lys Arg Tyr Glu Thr
50 55 60
Ala Glu Glu Ile Lys Leu Arg Phe Asp Asn Tyr Arg Glu Asn Leu Lys
65 70 75 80
Leu Ile Arg Ser Thr Asn Gln Lys Gly Leu Pro Tyr Thr Leu Ala Val
85 90 95
Asn Gln Tyr Ala Asp Trp Ser Trp Glu Glu Phe Lys Thr His Arg Leu
100 105 110
Gly Ala Ser Gln Asp Cys Ser Ala Thr Thr Lys Gly Ser His Lys Leu
115 120 125
Thr Asp Ala Val Leu Pro Lys Thr Lys Asp Trp Arg Lys Glu Gly Ile
130 135 140
Val Ser Pro Val Lys Asn Gln Gly Gly Cys Gly Ser Cys Trp Ser Phe
145 150 155 160
Ser Ala Thr Gly Ala Leu Glu Ala Ala Tyr His Gln Ala His Gly Lys
165 170 175
Gly Ile Ser Leu Ser Glu Gln Gln Leu Val Asp Cys Ala Thr Ala Phe
180 185 190
Asn Asn Phe Gly Cys Asp Gly Gly Leu Pro Ser Gln Ala Phe Glu Tyr
195 200 205
Ile Lys Tyr Asn Gly Gly Leu Glu Thr Glu Glu Ala Tyr Pro Tyr Thr
210 215 220
Ala
225




163


174


PRT


Eucalyptus grandis



163
His Ser Leu Trp Lys Pro Gln Gly Glu Arg Glu Arg Glu Arg Met Ala
1 5 10 15
Gly Ala Arg Phe Leu Cys Ser Phe Leu Leu Val Val Thr Ala Cys Ser
20 25 30
Ala Ala Ala Ala Gly Phe Glu Gly Ala Asp Leu Glu Ser Ser Ile Leu
35 40 45
Gln Thr Val Gly His Thr Arg Pro Ala Leu Ser Phe Val Asp Phe Ala
50 55 60
Arg Gly His Gly Lys Thr Tyr Lys Thr Ala Glu Glu Ile Lys Leu Arg
65 70 75 80
Phe Asp Asn Tyr Arg Glu Asn Leu Lys Leu Ile Arg Ser Thr Asn Gln
85 90 95
Lys Gly Leu Pro Tyr Thr Leu Ala Val Asn Gln Tyr Ala Asp Trp Ser
100 105 110
Trp Glu Glu Phe Lys Thr His Arg Leu Gly Ala Ser Gln Asp Cys Ser
115 120 125
Ala Thr Thr Lys Gly Ser His Lys Leu Thr Asp Asp Val Leu Pro Glu
130 135 140
Thr Lys Asp Trp Glu Arg Lys Gly His Cys Arg Pro Gln Leu Lys Ile
145 150 155 160
Lys Ala Ala Cys Gly Ser Cys Trp Ser Phe Ser Ala Thr Gly
165 170




164


130


PRT


Eucalyptus grandis



164
Leu Asp Trp Val Ala Lys Gly Ala Val Asn Ala Ile Lys Asp Gln Gly
1 5 10 15
Arg Cys Gly Ser Cys Trp Ala Phe Ser Ala Val Ala Ala Ile Glu Ser
20 25 30
Ile Thr Gln Ile Lys Thr Gly Lys Leu Leu Glu Leu Ser Glu Gln Gln
35 40 45
Leu Val Asp Cys Thr Ile Glu Asn Tyr Gly Cys Ser Gly Gly Trp Met
50 55 60
Asp Thr Ala Phe Asp Tyr Ile Ile Gln Asn Gly Gly Ile Ser Ser Glu
65 70 75 80
Thr Asn Tyr Pro Tyr Asn Ser Ser Asp Gly Thr Cys Asn Ala His Met
85 90 95
Ala Ser Leu Ser Val Ala Lys Ile Val Gly Tyr Glu Asp Val Pro Asp
100 105 110
Asn Asn Glu Gly Glu Ile Leu Lys Ala Val Ala Met Gln Pro Val Ser
115 120 125
Val Ala
130




165


278


PRT


Eucalyptus grandis



165
Ser Ser Ser Ala His Ser Ser Pro Thr Met Asn Arg Phe Leu Ser Leu
1 5 10 15
Leu Ala Leu Phe Ser Leu Ala Ile Val Ser Ala Tyr Ala Ser Ser Glu
20 25 30
Val Asp Gly Asp Ala Leu Ile Arg Gln Val Val Asp Gly Ala Ala Ala
35 40 45
Asp Gly Asp Leu Ser Thr Glu Asp His Arg His Phe Ser Leu Phe Lys
50 55 60
Arg Arg Phe Gly Lys Ser Tyr Ala Ser Gln Glu Glu His Asp His Arg
65 70 75 80
Phe Ala Val Phe Arg Ala Asn Leu Arg Arg Ala Arg Arg His Gln Glu
85 90 95
Leu Asp Pro Ser Ala Val His Gly Val Thr Arg Phe Ser Asp Leu Thr
100 105 110
Pro Ser Glu Phe Arg Arg Ser His Leu Gly Ile Arg Gly Gly Leu Arg
115 120 125
Leu Pro Lys Asp Ala Asn Glu Ala Pro Leu Leu Pro Thr Asp Asp Leu
130 135 140
Pro Glu Asp Phe Asp Trp Arg Asp His Gly Ala Val Thr Gly Val Lys
145 150 155 160
Asn Gln Gly Ser Cys Gly Ser Cys Trp Ser Phe Ser Ala Thr Gly Ala
165 170 175
Leu Glu Gly Ala His Tyr Leu Ala Thr Gly Glu Leu Val Ser Leu Ser
180 185 190
Glu Gln Gln Leu Val Asp Cys Asp His Glu Cys Asp Pro Asp Glu Pro
195 200 205
Gly Ser Cys Asp Ser Gly Cys Asn Gly Gly Leu Met Asn Ser Ala Phe
210 215 220
Glu Tyr Thr Leu Lys Ala Gly Gly Leu Met Arg Glu Gly Asp Tyr Pro
225 230 235 240
Tyr Thr Gly Thr Asp Arg Gly Thr Cys Lys Phe Asp Lys Ser Lys Ile
245 250 255
Ala Ala Ser Val Ser Asn Phe Ser Val Val Ser Leu Asn Glu Asp Gln
260 265 270
Ile Ala Ala Asn Leu Val
275




166


96


PRT


Eucalyptus grandis



166
Ser Leu Ser Glu Gln Glu Leu Ile Asp Cys Asp Thr Thr Tyr Asn Asn
1 5 10 15
Gly Cys Asn Gly Gly Leu Met Asp Tyr Ala Phe Ser Tyr Ile Ile Ser
20 25 30
Asn Gly Gly Leu His Lys Glu Glu Asp Tyr Pro Tyr Ile Met Glu Glu
35 40 45
Gly Thr Cys Glu Met Thr Lys Asp Gln Ser Glu Val Val Thr Ile Thr
50 55 60
Gly Tyr Lys Asp Val Pro Val Asp Asn Glu Gln Gly Leu Leu Lys Ala
65 70 75 80
Leu Ala Asn Gln Pro Leu Ser Val Ala Ile Glu Ala Ser Gly Arg Asp
85 90 95




167


148


PRT


Eucalyptus grandis



167
Lys Met Thr Leu Glu Ala Ala Ser Asn Leu Pro Thr Ser Cys Ser Pro
1 5 10 15
Arg Leu Leu Gln Phe Ser Asp Leu Thr Pro Ser Glu Phe Arg Arg Thr
20 25 30
His Leu Gly Leu Arg Arg Lys Val Lys Leu Pro Lys Asp Ala Asn Glu
35 40 45
Ala Pro Ile Leu Pro Thr Gln Asp Leu Pro Lys Asp Phe Asp Trp Arg
50 55 60
Asp His Gly Ala Val Thr Ala Val Lys Asn Gln Gly Ser Cys Gly Ser
65 70 75 80
Cys Trp Ser Phe Ser Thr Thr Gly Ala Leu Glu Gly Ala Asn Tyr Leu
85 90 95
Ala Thr Gly Lys Leu Val Ser Leu Ser Glu Gln Gln Leu Val Asp Cys
100 105 110
Asp His Glu Cys Asp Pro Glu Glu Pro Gly Ser Cys Asp Ser Gly Cys
115 120 125
Asn Gly Gly Leu Met Asn Ser Ala Phe Glu Tyr Thr Leu Ser Thr Gly
130 135 140
Val Trp Val Val
145




168


119


PRT


Eucalyptus grandis



168
Pro Thr Arg Val Leu Ser Ser Val Asp Val Lys Pro Phe Lys Tyr Ala
1 5 10 15
Asn Phe Thr Ala Ile Pro Ala Ala Leu Asp Trp Arg Thr Lys Lys Ala
20 25 30
Val Thr Ser Val Lys Asp Gln Gly Val Cys Gly Cys Cys Trp Ala Phe
35 40 45
Ser Ala Val Ala Ala Met Glu Gly Leu Thr Gln Leu Lys Lys Arg Lys
50 55 60
Leu Val Pro Leu Ser Val Gln Glu Leu Val Asp Cys Asp Val Asn Gly
65 70 75 80
Lys Asp Lys Gly Cys Arg Gly Gly Tyr Met Asp Ser Ala Phe Glu Phe
85 90 95
Val Ile Ser Asn Gly Gly Leu Thr Thr Glu Ala Glu Tyr Pro Tyr Gln
100 105 110
Gly Thr Asp Arg Thr Cys Asn
115




169


370


PRT


Pinus radiata



169
Asn Cys Ser Thr Met Gly Ser Ser Thr Leu Leu Leu Leu Ala Leu Cys
1 5 10 15
Ile Ser Ser Val Ile Cys Leu Ser Ser Ala Ile Arg Pro Asp Asp Asp
20 25 30
Leu Ile Arg Gln Val Thr Asp Glu Val Asp Ser Asp Pro Gln Ile Leu
35 40 45
Asp Ala Arg Ser Ala Leu Phe Asn Ala Glu Ala His Phe Arg Arg Phe
50 55 60
Ile Arg Arg Tyr Gly Lys Lys Tyr Ser Gly Pro Glu Glu His Glu His
65 70 75 80
Arg Phe Gly Val Phe Lys Ser Asn Leu Leu Arg Ala Leu Glu His Gln
85 90 95
Lys Leu Asp Pro Gln Ala Ser His Gly Val Thr Glu Phe Ser Asp Leu
100 105 110
Thr Gln Glu Glu Phe Arg Arg Gln Tyr Leu Gly Leu Arg Ala Pro Pro
115 120 125
Ile Arg Asp Ala His Asp Ala Pro Ile Leu Pro Thr Asn Asp Leu Pro
130 135 140
Glu Glu Phe Asp Trp Arg Glu Lys Gly Ala Val Thr Glu Val Lys Asn
145 150 155 160
Gln Gly Ser Cys Gly Ser Cys Trp Ala Phe Ser Thr Thr Gly Ala Leu
165 170 175
Glu Gly Ala Asn Phe Leu Lys Thr Gly Lys Leu Val Ser Leu Ser Glu
180 185 190
Gln Gln Leu Val Asp Cys Asp His Glu Cys Asp Pro Ser Asp Ala Arg
195 200 205
Ser Cys Asp Ser Gly Cys Asn Gly Gly Leu Met Thr Ser Ala Tyr Gln
210 215 220
Tyr Ala Leu Lys Ala Gly Gly Leu Glu Lys Glu Glu Asp Tyr Pro Tyr
225 230 235 240
Thr Gly Lys Asp Gly Thr Cys Ser Phe Asn Lys Asn Lys Ile Val Ala
245 250 255
Gln Val Ser Asn Phe Ser Val Val Ser Ile Asp Glu Asp Gln Ile Ala
260 265 270
Ala Asn Leu Val Lys Asn Gly Pro Leu Ser Val Gly Ile Asn Ala Ala
275 280 285
Phe Met Gln Thr Tyr Val Gly Gly Val Ser Cys Pro Tyr Ile Cys Ser
290 295 300
Lys Arg Met Leu Asp His Gly Val Leu Leu Val Gly Tyr Gly Ser Ala
305 310 315 320
Gly Phe Ala Pro Ile Arg Met Lys Asp Lys Pro Tyr Trp Ile Ile Lys
325 330 335
Asn Ser Trp Gly Pro Asn Trp Gly Glu Asn Gly Phe Tyr Lys Leu Cys
340 345 350
Arg Gly His Asn Val Cys Gly Ile Asn Asn Met Val Ser Thr Val Ala
355 360 365
Ala Ile
370




170


137


PRT


Pinus radiata



170
Ser Thr Met Gly Ser Ser Thr Leu Leu Leu Leu Ala Leu Cys Ile Ser
1 5 10 15
Ser Val Ile Cys Leu Ser Ser Ala Ile Arg Pro Asp Asp Asp Leu Ile
20 25 30
Arg Gln Val Thr Asp Glu Val Asp Ser Asp Pro Gln Ile Leu Asp Ala
35 40 45
Arg Ser Ala Leu Phe Asn Ala Glu Ala His Phe Arg Arg Phe Ile Arg
50 55 60
Arg Tyr Asp Lys Lys Tyr Ser Gly Pro Glu Glu His Glu His Arg Phe
65 70 75 80
Gly Val Phe Lys Ser Asn Leu Leu Arg Ala Leu Glu His Gln Lys Leu
85 90 95
Asp Pro Gln Ala Ser His Gly Val Thr Glu Phe Ser Asp Leu Thr Gln
100 105 110
Glu Glu Phe Arg Arg Gln Tyr Leu Gly Leu Arg Ala Pro Pro Ile Arg
115 120 125
Asp Ala His Asp Ala Pro Ile Leu Pro
130 135




171


158


PRT


Pinus radiata



171
Asn Pro Lys Ser Leu Glu Phe Ala Glu Phe Ala Val Arg Tyr Gly Lys
1 5 10 15
Arg Tyr Asp Ser Val His Gln Leu Val His Arg Phe Asn Val Phe Val
20 25 30
Lys Asn Val Glu Leu Ile Glu Ser Arg Asn Arg Met Lys Leu Pro Tyr
35 40 45
Thr Leu Ala Ile Asn Glu Phe Ala Asp Ile Thr Trp Glu Glu Phe His
50 55 60
Gly Gln Tyr Leu Gly Ala Ser Gln Asn Cys Ser Ala Thr His Ser Asn
65 70 75 80
His Lys Leu Thr Tyr Ala Gln Leu Pro Ala Lys Lys Asp Trp Arg Gln
85 90 95
Glu Gly Ile Val Ser Pro Val Lys Asn Gln Ala His Cys Gly Ser Cys
100 105 110
Trp Thr Phe Ser Thr Thr Gly Ala Leu Glu Ala Ala Tyr Thr Gln Ala
115 120 125
Thr Gly Lys Thr Val Ile Leu Ser Glu Gln Gln Leu Val Asp Cys Ala
130 135 140
Gly Ala Phe Asn Asn Phe Gly Cys Asn Gly Gly Leu Pro Ser
145 150 155




172


132


PRT


Eucalyptus grandis



172
Ser Gly Gly Glu Met Asp Thr Ala Phe Ser Phe Ile Gln Arg Asn Gly
1 5 10 15
Gly Ile Thr Ser Glu Ser Asp Tyr Pro Tyr Arg Gly Arg Asp Gly Ser
20 25 30
Cys Asp Ala Ala Met Leu Arg Ser His Ala Ala Thr Ile Ser Gly Tyr
35 40 45
Gly Asp Val Pro Pro Asn Asp Glu Arg Ser Leu Gln Ala Ala Val Ala
50 55 60
Arg Gln Pro Ile Ser Val Ala Ile Asp Ala Gly Gly Leu Glu Phe Gln
65 70 75 80
Leu Tyr Ser Arg Gly Ile Phe Thr Gly Ile Cys Gly Tyr Asp Leu Asn
85 90 95
His Gly Val Ala Ala Val Gly Tyr Gly Ser Glu Gly Ser Arg Asn Tyr
100 105 110
Trp Ile Val Lys Asn Ser Trp Gly Arg Asp Trp Gly Glu Asp Gly Tyr
115 120 125
Val Arg Met Leu
130




173


147


PRT


Pinus radiata



173
Thr Tyr Lys Leu Gly Leu Asn Lys Phe Ala Asp Leu Ser Asn Glu Glu
1 5 10 15
Phe Lys Ala Met His Met Thr Thr Thr Met Glu Asn His Arg Ser Leu
20 25 30
Arg Arg Asp Arg Gly Val Gln Ser Gly Ser Phe Met Tyr Gln Asn Ser
35 40 45
Lys His Leu Pro Ala Ser Ile Asp Trp Arg Lys Lys Gly Ala Val Thr
50 55 60
Pro Val Lys Ser Gln Gly Gln Cys Gly Ser Cys Trp Ala Phe Ser Thr
65 70 75 80
Val Ala Ser Val Glu Gly Ile Asn Tyr Ile Lys Thr Gly Lys Leu Val
85 90 95
Ser Leu Ser Glu His Arg Leu Val Asp Cys Ser Lys Glu Asn Ala Gly
100 105 110
Cys Asn Gly Gly Leu Met Asp Asn Ala Phe Gln Tyr Ile Ile Asp Asn
115 120 125
Gly Gly Ile Val Ser Glu Ala Glu Tyr Pro Tyr Thr Ala Glu Ala Ser
130 135 140
Glu Cys Ser
145




174


123


PRT


Pinus radiata



174
Met Ala Ser Val Ser Lys Ala Thr Leu Leu Leu Phe Leu Ala Thr Thr
1 5 10 15
Leu Trp Thr Leu Ser Ala His Ala Ser Asp Ser Ser Pro Gly Phe Thr
20 25 30
Asp Glu Asp Leu Lys Ser Glu Glu Ser Leu Arg Leu Leu Tyr Asp Lys
35 40 45
Trp Ala Leu Arg His Arg Thr Thr Arg Ser Leu Asp Ser Asp Glu His
50 55 60
Ala Lys Arg Phe Glu Ile Phe Lys Asp Asn Val Lys Tyr Ile Asp Ser
65 70 75 80
Val Asn Gln Lys Asp Gly Pro Tyr Lys Leu Gly Leu Asn Lys Phe Thr
85 90 95
Asp Leu Ser Asn Glu Glu Phe Lys Ala Met His Met Thr Thr Arg Met
100 105 110
Glu Lys His Lys Ser Leu Arg Arg Asp Arg Gly
115 120




175


123


PRT


Pinus radiata



175
Met Ala Ser Val Ser Lys Ala Thr Leu Leu Leu Phe Leu Ala Thr Thr
1 5 10 15
Leu Trp Thr Leu Ser Ala His Ala Ser Asp Ser Ser Pro Gly Phe Thr
20 25 30
Asp Glu Asp Leu Lys Ser Glu Glu Ser Leu Arg Leu Leu Tyr Asp Lys
35 40 45
Trp Ala Leu Arg His Arg Thr Thr Arg Ser Leu Asp Ser Asp Glu His
50 55 60
Ala Lys Arg Phe Glu Ile Phe Lys Asp Asn Val Lys Tyr Ile Asp Ser
65 70 75 80
Val Asn Gln Lys Asp Gly Pro Tyr Lys Leu Gly Leu Asn Lys Phe Thr
85 90 95
Asp Leu Ser Asn Glu Glu Phe Lys Ala Met His Met Thr Thr Arg Met
100 105 110
Glu Lys His Lys Ser Leu Arg Arg Asp Arg Gly
115 120




176


127


PRT


Eucalyptus grandis



176
Glu Ser Ile His Pro Pro Ser Ser Leu Ser Ile Ser Asn Lys Leu Leu
1 5 10 15
His Gln Lys Leu Asp Pro Ser Ala Ala His Gly Val Thr Gln Phe Ser
20 25 30
Asp Leu Thr Pro Ser Glu Phe Arg Arg Thr His Leu Gly Leu Arg Arg
35 40 45
Lys Val Lys Leu Pro Lys Asp Ala Asn Glu Ala Pro Ile Leu Pro Thr
50 55 60
Gln Asp Leu Pro Lys Asp Phe Asp Trp Arg Asp His Gly Ala Val Thr
65 70 75 80
Ala Val Lys Asn Gln Gly Ser Cys Gly Ser Cys Trp Ser Phe Ser Thr
85 90 95
Thr Gly Ala Leu Glu Gly Ala Asn Tyr Leu Ala Thr Gly Lys Leu Val
100 105 110
Ser Leu Ser Glu Gln Gln Leu Val Asp Cys Asp His Glu Cys Asp
115 120 125




177


133


PRT


Eucalyptus grandis



177
Glu Glu Pro Gln Arg Ser Tyr Glu Val Met Ala Ser Ser Ser Ser Lys
1 5 10 15
Gly Pro Lys Arg Ser Tyr Asp Ala Met Ala Ser Ser Ser Ser Lys Lys
20 25 30
Pro Arg Arg Ser Tyr Asp Val Phe Leu Ser Phe Arg Gly Pro Asp Val
35 40 45
Arg Asn His Phe Leu Ser His Leu Tyr Val Ala Leu Asp Gln Ala Gly
50 55 60
Ile Ser Thr Tyr Ile Asp Lys Lys Glu Leu Gly Lys Gly Glu Gln Ile
65 70 75 80
Ser Pro Ala Leu Met Lys Ala Ile Glu Glu Ser His Ile Ala Ile Val
85 90 95
Val Phe Ser Glu Asp Tyr Ala Ser Ser Ser Trp Cys Leu Glu Glu Leu
100 105 110
Thr Lys Ile Met Glu Cys Lys Glu Gln Lys Gly Leu Met Val Phe Pro
115 120 125
Val Phe Tyr Lys Val
130




178


137


PRT


Eucalyptus grandis



178
Glu Glu Pro Gln Arg Ser Tyr Glu Val Met Ala Ser Ser Pro Ser Lys
1 5 10 15
Glu Pro Lys Arg Ser Tyr Asp Val Phe Leu Ser Phe Arg Gly Pro Asp
20 25 30
Val Arg Asn His Phe Leu Ser His Leu Tyr Ala Ala Leu Asp Gln Val
35 40 45
Gly Ile Ser Thr Tyr Ile Asp Asn Glu Glu Leu Arg Lys Gly Glu Gln
50 55 60
Ile Ser Pro Ala Leu Met Lys Ala Ile Glu Glu Ser Gln Ile Ala Ile
65 70 75 80
Val Val Phe Ser Glu Asn Tyr Ala Ser Ser Thr Trp Cys Leu Glu Glu
85 90 95
Ile Ser Lys Ile Met Glu Cys Lys Glu Lys Lys Gly Leu Lys Val Leu
100 105 110
Pro Val Phe Tyr Lys Val Glu Pro Arg Glu Val Arg Gly Gln Lys Gln
115 120 125
Ser Tyr Gly Lys Ala Met Asp Glu His
130 135




179


608


PRT


Pinus radiata



179
Tyr Thr His Lys Asn Ser Lys Gly Ala Ala Gly Lys Leu Leu Ala Leu
1 5 10 15
Gln Asn Leu Ser Asp Ala Asn Ile Glu Ser His Arg Thr Phe Ser Ile
20 25 30
Ser Ala Lys Tyr Leu Arg Ser Tyr Phe Ser Val Ile Leu Tyr Pro Met
35 40 45
Ala Asn Val Asn Phe Thr Pro Ala Ala Arg Asp Gly Thr Ser Ser Ala
50 55 60
Ser Thr Ser Gln Gly Asn Thr Asn Ser Tyr Val Tyr Gln Val Phe Leu
65 70 75 80
Asn His Arg Gly Pro Asp Val Lys Lys Gly Leu Ala Thr His Ile Tyr
85 90 95
His Arg Leu Lys Asp Leu Gly Leu Ser Val Phe Leu Asp Gln Gln Glu
100 105 110
Leu Gln Arg Gly Glu Lys Leu Glu Pro Gln Ile Glu Gly Ala Ile Arg
115 120 125
Thr Ala Ser Val His Val Ala Ile Phe Ser Pro Asn Tyr Ala Gln Ser
130 135 140
Arg Trp Cys Leu Asp Glu Leu Val Gln Met Leu Glu Met Leu Glu Ser
145 150 155 160
Gly Ser Thr Ile Ile Pro Val Phe Tyr Lys Val Asp Pro Ala Asp Leu
165 170 175
Arg Trp Thr Arg Gly Gly Lys Gly Val Tyr Ala Arg Asp Leu Gly Glu
180 185 190
Leu Glu Arg Lys Arg Ala Ser Asp Ser Gln Glu Pro Arg Tyr Asp Pro
195 200 205
Glu Thr Ile Glu Lys Trp Arg Asn Ala Leu Ser Ala Val Ala Asp Ile
210 215 220
Val Gly Phe Glu Leu Lys Asp Lys Glu Glu Ser Gln Leu Val Gln Glu
225 230 235 240
Val Val Gln Gln Val Val Lys Lys Val Arg Lys Pro Pro Leu Asn Val
245 250 255
Ala Lys Tyr Pro Thr Gly Leu Asp Glu Lys Ile Glu Asp Val Asp Arg
260 265 270
Thr Leu Ser Leu Gln Arg Gln Ser Glu Lys Ala Thr Ile Leu Gly Ile
275 280 285
Val Gly Phe Gly Gly Val Gly Lys Ser Thr Leu Ala Lys Gln Phe Phe
290 295 300
Asn Arg Glu Arg Ser Asn Tyr Asp Arg Ser Cys Phe Leu Ser Asp Ile
305 310 315 320
Arg Ser Lys Ser Leu Pro Ser Val Gln Ser Ser Leu Leu Lys Asp Leu
325 330 335
Ile Gln Ser Asp Ala Gln Ile Asn Ser Val Ala Glu Gly Ile Glu Lys
340 345 350
Leu Lys Arg Val Ser Gln Arg Cys Leu Ile Ile Leu Asp Asp Ile Asp
355 360 365
His Ile Asp Gln Met Asp Ala Leu Tyr Ala Pro Val Ile Arg Ser Ile
370 375 380
His Val Gly Ser Leu Ile Leu Ile Thr Ser Arg Asn Lys Asp Val Leu
385 390 395 400
Arg Ser Ala Gly Ile Gly Glu Ser Ser Ile Cys Thr Leu Lys Gly Leu
405 410 415
Asn Gly Glu His Ser Gln Glu Leu Phe Cys Trp His Ala Phe Gly Arg
420 425 430
Pro Ser Pro Val Val Gly Phe Glu Lys Val Val Glu Lys Phe Leu Asn
435 440 445
Ala Cys Asn Gly Leu Pro Leu Ser Leu Lys Val Leu Gly Ala Leu Leu
450 455 460
His Gly Lys Asp Asp Leu Lys Leu Trp Asn Ala Gln Leu Arg Lys Thr
465 470 475 480
Ser Lys Val Leu Pro Glu Asp Ile Arg Ser Thr Leu Arg Ile Ser Tyr
485 490 495
Asp Ala Leu Asp Lys Glu Glu Lys Gln Ile Phe Leu Asp Ile Ala Cys
500 505 510
Phe Phe Ile Gly Lys Asn Arg Asp Ser Ala Ile Arg Val Trp Asp Gly
515 520 525
Ser Asn Trp Glu Gly Leu Leu Gly Leu Trp Lys Leu Glu Asn Arg Cys
530 535 540
Leu Val Glu Val Asp Ser Ser Asn Cys Leu Arg Met His Asp His Leu
545 550 555 560
Arg Asp Ile Gly Arg Gly Ile Ala Glu Tyr Leu Glu Tyr Pro Arg Arg
565 570 575
Leu Trp His Phe Glu Glu Asn Phe Leu Val Ser Ile Leu Lys Leu Ser
580 585 590
Thr Asp Phe Gln Asn Ser Pro Leu Leu Ser Lys Leu Ser Val Asn Phe
595 600 605




180


181


PRT


Pinus radiata



180
Ala Ser Asp Ser Gln Lys Ser Arg Tyr Asp Thr Asp Thr Ile Glu Lys
1 5 10 15
Trp Arg Asn Ala Leu Ser Ser Val Ala Asp Ile Val Gly Phe Glu Leu
20 25 30
Lys Asp Lys Glu Glu Ser Gln Leu Val Gln Glu Val Val Gln Gln Val
35 40 45
Val Lys Lys Phe Pro Lys Pro Pro Leu Asp Val Ala Lys Tyr Pro Thr
50 55 60
Gly Leu Asp Glu Lys Ile Lys Asp Val Asp Arg Thr Leu Ser Leu Gln
65 70 75 80
Arg Gln Ser Glu Lys Ala Thr Ile Leu Gly Ile Val Gly Phe Gly Gly
85 90 95
Val Gly Lys Ser Thr Leu Ala Lys Gln Phe Phe Asn Arg Glu Arg Ser
100 105 110
Asn Tyr Asp Arg Ser Cys Phe Leu Phe Asp Ile Arg Ser Lys Ser Leu
115 120 125
Pro Ser Val Gln Ser Ser Leu Leu Thr Asp Leu Ile Gln Pro Asn Ala
130 135 140
Gln Ile Asn Asn Val Asp Glu Gly Ile Glu Arg Leu Lys Thr Val Ser
145 150 155 160
Gln Arg Cys Leu Ile Ile Leu Asp Asp Ile Asp His Ile Asp Gln Met
165 170 175
Asp Ala Leu Tyr Ala
180




181


132


PRT


Pinus radiata



181
Ile Asp Gln Leu Asp Ala Leu Cys Ala Pro Val Ile Asp Thr Ile Asp
1 5 10 15
Val Gly Ser Leu Ile Leu Ile Thr Ser Arg Asn Lys Asp Val Leu Arg
20 25 30
Ser Ala Gly Ile Gly Glu Ser Ser Ile Tyr Thr Leu Lys Gly Leu Asn
35 40 45
Gly Lys His Ser Gln Glu Leu Phe Cys Trp His Ala Phe Gly Gln Pro
50 55 60
Ser Pro Val Val Gly Phe Glu Lys Val Val Glu Lys Phe Leu Asn Val
65 70 75 80
Cys His Gly Leu Pro Leu Ser Leu Lys Val Phe Gly Ala Leu Leu Arg
85 90 95
Gly Lys Asp Asp Leu Glu Leu Trp Asn Ala Glu Leu Arg Lys Thr Ser
100 105 110
Lys Val Leu Pro Lys Asp Ile Arg Ser Thr Leu Arg Ile Ser Tyr Asp
115 120 125
Ala Leu Asp Lys
130




182


395


PRT


Pinus radiata



182
Ile Gly Ile Asp Val Cys Phe Ser Leu Gly Leu Leu Asn Phe Ser Ser
1 5 10 15
Gln Asp Leu Val Leu Glu Leu Leu Asp Lys Val Val Lys His Leu Leu
20 25 30
Glu Leu Val Pro Lys Pro Asp Leu Tyr Val Ala Glu Tyr Pro Thr Gly
35 40 45
Leu Asp Asp Lys Leu Lys Asp Phe Glu Asp Thr Val Leu Leu Arg Gln
50 55 60
Gln Gln Gly Arg Lys Pro Gln Ile Leu Gly Ile Val Gly Leu Gly Gly
65 70 75 80
Val Gly Lys Thr Thr Leu Ala Thr Ala Phe Phe Asn Lys Lys Lys Ser
85 90 95
Ala Tyr His Arg Ser Cys Phe Leu Cys Asp Val Arg Glu Asn Thr Thr
100 105 110
Asn Arg Ser Leu His Leu Leu Gln Ser Gln Leu Leu Asn Ser Leu Thr
115 120 125
Gly Phe Asn Asn Gln Val Asn Ser Glu Arg Glu Gly Lys Gly Met Leu
130 135 140
Ile Glu Pro Leu Lys Ser Cys Lys Ala Ile Met Ile Phe Asp Asp Val
145 150 155 160
Asp Asp Val Asp Gln Val Lys Ala Phe Leu Pro Gln Ser Asp Val Leu
165 170 175
Asn Ser Glu Ser Leu Ile Leu Ile Thr Thr Arg Asp Arg Asn Val Leu
180 185 190
Arg Ser Leu Lys Val Glu Asn Ser Ser Ile Tyr Ser Leu Ser Gly Leu
195 200 205
Asn Lys Glu His Ser Leu Glu Leu Phe Cys Ser His Ala Phe Ser Pro
210 215 220
Ala Phe Pro Leu Pro Glu Phe Lys Ser Leu Val Asp Lys Phe Ile Asp
225 230 235 240
Tyr Cys Asn Gly Leu Pro Leu Ser Leu Lys Ile Phe Gly Ala Leu Leu
245 250 255
Tyr Gly Lys Asp Ile Ser Gln Trp Lys Glu Glu Trp Glu Ser Leu Arg
260 265 270
Gln Ile Ala Pro Ile Ala Ile His Asp Thr Phe Lys Ile Ser Tyr Asp
275 280 285
Ser Leu Asn Gln Glu Glu Lys Asp Ile Phe Leu Asp Ile Ala Cys Phe
290 295 300
Leu Arg Cys His His Arg Asp Ala Ala Ile Ser Ile Trp Asn Lys Ser
305 310 315 320
Gly Trp Arg Gly Asn Arg Gly Phe Leu Asn Leu Gln Asp Lys Ser Leu
325 330 335
Val Glu Val Asp Ala Phe Asn Cys Ile Gln Met His Asn His Leu Arg
340 345 350
Asp Leu Gly Arg Gln Val Ala Ala Ser Ser Leu Pro Pro Arg Leu Leu
355 360 365
Ile Thr Lys Asn Leu Ile His Asn Leu Ser His Gln Ser Ser Val Ser
370 375 380
Val Gln Ser Phe Asn Pro Leu Phe Val Ile His
385 390 395




183


523


PRT


Pinus radiata



183
Asn Val Leu Asp Leu Ala Cys Phe Phe Leu Leu Leu Cys Pro Met Ala
1 5 10 15
Asp His Thr Gly Asp Ile Thr Cys Ile Ala Ser Ser Ser Ser Ser Ser
20 25 30
Thr Asn Thr Gly Gln Val Phe Asp Val Phe Leu Asn His Arg Gly Pro
35 40 45
Asp Thr Lys Lys Gly Leu Ala Ser His Ile Tyr Arg Gly Leu Ile Val
50 55 60
Arg Gly Leu Arg Val Phe Leu Asp Gln Pro Glu Leu Arg Lys Gly Glu
65 70 75 80
Asp Asn Leu Ser Gln Ile Lys Glu Ala Ile Arg Thr Ala Ser Val His
85 90 95
Val Ala Ile Phe Ser Pro Asn Tyr Ala Gln Ser Arg Trp Cys Leu Asp
100 105 110
Glu Leu Ala Leu Met Val Glu Ser Glu Ser Thr Ile Ile Pro Val Phe
115 120 125
His Asp Val Asp Pro Ser Glu Leu Arg Trp Gln Gln Ser Gly Asp Gly
130 135 140
Val Glu Ser Ile Ile Arg Cys Leu Cys Pro Cys Leu Leu Gly Gly Lys
145 150 155 160
Gly Arg Tyr Ala Arg Asp Leu His Met Leu Gln Lys Lys Thr Thr Leu
165 170 175
Asp Pro His Thr Asn Lys Lys Lys Pro Arg His Asp Ser Arg Thr Leu
180 185 190
Gln Lys Trp Arg Lys Ala Leu Ser Asp Val Ser Asn Lys Ser Gly Phe
195 200 205
Ile Ile Asn Ala Tyr Asn Gly Asp Glu Gly Gln Leu Val Asp Ala Val
210 215 220
Val Glu Glu Val Trp Arg Lys Val Glu Lys Thr Pro Leu Asn Val Ala
225 230 235 240
Lys Tyr Pro Thr Gly Leu Val Glu Lys Ile Glu Asp Val Gly Arg Met
245 250 255
Val Leu Leu Gln His Gln Ser Gln Lys Thr Lys Val Val Gly Ile Val
260 265 270
Gly Leu Gly Gly Val Gly Lys Thr Thr Leu Ala Lys Glu Phe Phe Asn
275 280 285
Arg His Arg Ser Asn Tyr Asp Arg Ser Cys Phe Leu Phe Asp Val Arg
290 295 300
Glu Thr Ala Ala Lys Ser Ser Leu Ser Ser Leu Gln Thr Gln Leu Leu
305 310 315 320
Lys His Leu Ala His Leu Gln Asp Glu Gln Ile Arg Asn Thr Asp Glu
325 330 335
Val Ile Glu Lys Leu Arg Lys His Leu Ser Ser Ser Pro Arg Ser Leu
340 345 350
Ile Val Leu Asp Asp Val Asp His Ile Asp Gln Leu Asp Ala Leu Phe
355 360 365
Ser Pro Val Ile Asp Thr Ile Gln Ala Ser Ser Leu Ile Leu Val Thr
370 375 380
Ser Arg Asn Arg Asp Val Leu Ile Ser Ser Gly Ile Leu Glu Ala Ser
385 390 395 400
Ile Tyr Gln Gln Thr Gly Leu Asn Pro Gln Gln Ser Arg Glu Leu Phe
405 410 415
Cys Ser His Ala Phe Asp Gln Ser Cys Pro Val Thr Gly Phe Glu Gln
420 425 430
Leu Val Glu Asp Phe Leu Asp Phe Cys Asp Gly Leu Pro Leu Ser Leu
435 440 445
Lys Val Ile Gly Ala Ala Ile Arg Gly Lys Asp Ser Glu Phe Trp Ile
450 455 460
Gly Gln Leu Asp Lys Asn Arg Arg Ile Leu His Thr Asp Ile His Ser
465 470 475 480
Lys Leu Lys Ile Ser Tyr Asp Gly Leu Asp Lys Glu Glu Gln Gln Ile
485 490 495
Phe Leu Asp Val Ala Cys Phe Phe Ile Gly Glu Asn Arg Asp Thr Ala
500 505 510
Ile Arg Arg Trp Asn Gly Ser Asp Gly Lys Cys
515 520




184


115


PRT


Pinus radiata



184
Ser His Ile Tyr Arg Gly Leu Ile Val Arg Gly Leu Arg Val Phe Leu
1 5 10 15
Asp Gln Pro Glu Leu Arg Lys Gly Lys Asp Ile Pro Ser Gln Ile Lys
20 25 30
Glu Ala Ile Arg Thr Asp Ser Val His Val Ala Ile Phe Ser Pro Thr
35 40 45
Tyr Ala Gln Ser Arg Trp Cys Leu Asp Glu Leu Ala Leu Met Val Glu
50 55 60
Ser Lys Ser Thr Ile Ile Pro Val Phe His Asp Val Asp Pro Phe Glu
65 70 75 80
Leu Arg Trp Pro Gln Ser Gly Asp Gly Val Glu Ser Ile Ile Arg Cys
85 90 95
Leu Cys Pro Cys Leu Leu Gly Gly Lys Gly Arg Tyr Ala Arg Asp Leu
100 105 110
His Met Leu
115




185


579


PRT


Pinus radiata



185
Leu Val Glu Ile Asp Ser Glu Gly Cys Ile Arg Met His Asp His Leu
1 5 10 15
Arg Asp Leu Gly Arg Asp Val Ala Glu Lys Glu His Pro Leu Arg Leu
20 25 30
Ser Arg Pro Asn Val Asn Leu Leu Arg Thr Leu Ser Pro Ser Ser Pro
35 40 45
Val Arg Gly Ile Ser Met Asn Tyr Gly Asn Gly Gly Lys Gln Phe Leu
50 55 60
Glu Tyr Ile Arg Val Asn Cys Asn Leu Ser Arg Leu Glu Leu Leu Arg
65 70 75 80
Gly Glu Gly Ser Phe Val Glu Ser Ile Phe Ser Ala Gly Glu Ile Arg
85 90 95
Gln Leu Val Tyr Leu Gln Trp Lys Glu Cys Pro Ile Ser Ser Ile Ser
100 105 110
Phe Thr Ile Pro Thr Arg Asn Leu Ser Val Leu Tyr Ile Gln Gly Tyr
115 120 125
Ala Leu Lys Thr Leu Trp Gln His Glu Ser Gln Ala Pro Leu Gln Leu
130 135 140
Thr Glu Leu Tyr Ile Asp Ala Thr Leu Ser Glu Val Pro Gln Ser Ile
145 150 155 160
Gly Lys Leu Asn Gln Leu Glu Arg Ile Val Leu Lys Asn Gly Tyr Phe
165 170 175
Lys Thr Leu Pro Asn Glu Phe Tyr Asp Met His Ser Leu Lys His Ile
180 185 190
Thr Leu Gln Asn Cys Glu Gln Met Met Leu Leu Pro Asp Ser Val Gly
195 200 205
Ile Leu Thr Gly Arg Gln Thr His Asp Phe Ser Gly Cys Ser Asn Leu
210 215 220
Gln Ala Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Lys Thr Leu
225 230 235 240
Asp Leu Glu Asp Cys Thr Ser Leu Gln Gly Leu Pro Asp Ser Val Gly
245 250 255
Gln Leu Thr Gly Leu Gln Ser Leu Asp Leu Glu His Cys Thr Ser Leu
260 265 270
Gln Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Thr Leu
275 280 285
Asp Leu Arg Gly Cys Ser Ser Leu Gln Gly Leu Pro Asp Ser Val Gly
290 295 300
Gln Leu Thr Gly Leu Glu Gly Leu Tyr Leu Ser Gly Cys Phe Ser Leu
305 310 315 320
Gln Gly Leu Pro Asp Ser Val Glu Gln Leu Thr Gly Leu Glu Gly Leu
325 330 335
Tyr Leu Ser Gly Cys Phe Ser Leu Gln Gly Leu Pro Asp Ser Val Gly
340 345 350
Gln Leu Thr Gly Leu Gln Ser Leu Asn Leu Glu Tyr Cys Thr Ser Leu
355 360 365
Glu Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Asp Leu Pro Ile Leu
370 375 380
Asp Leu Asn Thr Cys Ile Ser Leu Gln Gly Leu Pro Asp Ser Val Gly
385 390 395 400
Gln Leu Arg Gly Leu Gln Asn Leu Asp Leu Arg Trp Cys Asp Ser Leu
405 410 415
Gln Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Ile Leu
420 425 430
Asp Leu Ser Gly Cys Thr Ser Leu Gln Gly Leu Pro Asp Ser Val Gly
435 440 445
Gln Leu Thr Gly Leu Arg Thr Leu His Leu Glu Asn Cys Thr Ser Leu
450 455 460
Gln Gly Leu Pro Asp Ser Val Gly Asn Leu Thr Ser Leu Lys Trp Leu
465 470 475 480
Asn Leu Ser Gly Cys Ser Asn Leu Gln Met Leu Pro Asn Phe Arg His
485 490 495
Leu Ser Ser Leu Glu Glu Leu His Leu Ser Gly Cys Ser Asn Leu Gln
500 505 510
Met Pro Pro Asn Val Gln His Leu Ser Ser Leu Val Glu Leu Ser Val
515 520 525
Ser His Cys Ser Lys Leu Gln Trp Gly Ala Gly Val Val Glu Ser Leu
530 535 540
Arg His Arg Leu Gly Asn Gly Phe Ile Glu Glu Gly Gly Glu Asn Ile
545 550 555 560
Asp Lys Glu Ser Trp Glu Glu Gly Ser Glu Lys Ser Asp Lys Glu Ser
565 570 575
Trp Glu Glu




186


175


PRT


Pinus radiata



186
Val Leu Gln Thr Leu Asp Leu Arg Arg Cys Ser Ser Leu Gln Gly Leu
1 5 10 15
Pro Glu Ser Val Gly Gln Leu Thr Gly Leu Gln Ser Leu Asn Leu Glu
20 25 30
Lys Cys Thr Arg Leu Gln Gly Leu Pro Glu Ser Val Gly Gln Leu Thr
35 40 45
Gly Leu Gln Thr Leu Asp Leu Arg Arg Cys Ser Ser Leu Gln Gly Leu
50 55 60
Pro Glu Ser Val Gly Gln Leu Thr Gly Leu Gln Ser Leu Asn Leu Lys
65 70 75 80
Glu Cys Thr Ser Leu Gln Gly Leu Pro Asn Ser Leu Gly Gln Leu Thr
85 90 95
Gly Leu His Ser Leu Tyr Leu Val Glu Cys Ser Ser Leu Gln Gly Leu
100 105 110
Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Ser Ile Asn Leu Gln
115 120 125
Gly Cys Ser Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln Leu Thr
130 135 140
Gly Leu His Ser Leu Asn Leu Glu Gly Cys Ser Arg Leu Gln Gly Leu
145 150 155 160
Pro Asp Leu Val Gly Gln Leu Thr Gly Leu Gln Ser Leu Lys Leu
165 170 175




187


161


PRT


Pinus radiata



187
Asp Arg Cys Ser Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln Leu
1 5 10 15
Thr Gly Leu Arg Gln Leu Asn Leu Asn Gly Cys Ser Ser Leu Gln Gly
20 25 30
Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Trp Ile Leu Asp Leu
35 40 45
Thr Gly Cys Ser Ser Leu Gln Gly Leu Pro Asp Ser Val Arg Gln Leu
50 55 60
Arg Cys Leu Arg Gly Gly Ser Gly Arg Ala Cys Gly Arg Ala Ala Glu
65 70 75 80
Ala Pro Ala Tyr Asn Gly Gly Leu Pro Gly Gly Leu Ala Glu Ser Arg
85 90 95
Leu Ala Arg Gly Tyr Trp Leu Asn Leu Ser Gly Cys Ser Asn Leu Gln
100 105 110
Met Pro Pro Asn Val Gln His Leu Ser Ser Leu Leu Lys Leu Tyr Val
115 120 125
Ser His Cys Ser Lys Leu Gln Trp Gly Ala Gly Val Val Glu Ser Leu
130 135 140
Arg His Arg Leu Glu Ile Thr Ser Ser Lys Lys Ala Ala Lys Thr Ser
145 150 155 160
Met




188


305


PRT


Pinus radiata



188
Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Thr Leu Asp
1 5 10 15
Leu Arg Gly Cys Ser Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln
20 25 30
Leu Thr Gly Leu Glu Gly Leu Tyr Leu Ser Gly Cys Phe Ser Leu Gln
35 40 45
Gly Leu Pro Asp Ser Val Glu Gln Leu Thr Gly Leu Glu Gly Leu Tyr
50 55 60
Leu Ser Gly Cys Phe Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln
65 70 75 80
Leu Thr Gly Leu Gln Ser Leu Asn Leu Glu Tyr Cys Thr Ser Leu Glu
85 90 95
Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Asp Leu Pro Ile Leu Asp
100 105 110
Leu Asn Thr Cys Ile Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln
115 120 125
Leu Arg Gly Leu Gln Asn Leu Asp Leu Arg Trp Cys Asp Ser Leu Gln
130 135 140
Gly Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Ile Leu Asp
145 150 155 160
Leu Ser Gly Cys Thr Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln
165 170 175
Leu Thr Gly Leu Arg Thr Leu His Leu Glu Asn Cys Thr Ser Leu Gln
180 185 190
Gly Leu Pro Asp Ser Val Gly Asn Leu Thr Ser Leu Lys Trp Leu Asn
195 200 205
Leu Ser Gly Cys Ser Asn Leu Gln Met Leu Pro Asn Phe Arg His Leu
210 215 220
Ser Ser Leu Glu Glu Leu His Leu Ser Gly Cys Ser Asn Leu Gln Met
225 230 235 240
Pro Pro Asn Val Gln His Leu Ser Ser Leu Val Glu Leu Ser Val Ser
245 250 255
His Cys Ser Lys Leu Gln Trp Gly Ala Gly Val Val Glu Ser Leu Arg
260 265 270
His Arg Leu Gly Asn Gly Phe Ile Glu Glu Gly Gly Glu Asn Ile Asp
275 280 285
Lys Glu Ser Trp Glu Glu Gly Ser Glu Lys Ser Asp Lys Glu Ser Trp
290 295 300
Glu
305




189


85


PRT


Pinus radiata



189
Met Leu Pro His Phe Arg His Leu Ser Leu Met Glu Glu Leu His Leu
1 5 10 15
Ser Gly Cys Ser Asn Leu Gln Met Pro Pro Asn Val Gln His Leu Ser
20 25 30
Ser Leu Val Lys Leu Tyr Val Ser His Cys Ser Lys Leu Gln Trp Gly
35 40 45
Ala Gly Val Val Glu Ser Leu Arg His Arg Leu Gly Asn Gly Phe Ile
50 55 60
Glu Glu Gly Gly Glu Asn Ser Asn Glu Tyr Asn Cys Ser Glu Leu Tyr
65 70 75 80
Asn Ile Arg Glu Leu
85




190


320


PRT


Pinus radiata



190
Asn Ser Cys Thr Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln Leu
1 5 10 15
Thr Gly Leu Arg Thr Leu Asp Leu Asn Ser Cys Thr Ser Leu Gln Gly
20 25 30
Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Arg Thr Leu Asp Leu
35 40 45
His Ser Cys Thr Ser Leu Gln Gly Leu Pro Asp Ser Val Gly Gln Leu
50 55 60
Thr Gly Leu Glu Thr Leu Asp Leu Gln Asp Cys Thr Ser Leu Gln Gly
65 70 75 80
Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Val Leu Tyr Leu
85 90 95
Arg Arg Cys Ser Asn Leu Gln Gly Leu Pro Asp Ser Val Gly Gln Leu
100 105 110
Thr Cys Leu Lys Val Leu Cys Leu Arg Trp Cys Ser Asn Leu Gln Ala
115 120 125
Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Lys Ala Leu Asn Leu
130 135 140
Gln Asp Cys Thr Ser Leu Gln Gly Leu Pro Asp Leu Val Gly Gln Leu
145 150 155 160
Thr Gly Leu Lys Ala Leu Asn Leu Gln Asn Cys Thr Ser Leu Gln Gly
165 170 175
Leu Pro Asp Ser Val Gly Gln Leu Thr Gly Leu Gln Val Leu Tyr Leu
180 185 190
Arg Gln Cys Ser Asn Leu Gln Ala Leu Pro Asp Ser Val Gly Gln Leu
195 200 205
Thr Gly Leu Asn Lys Leu Tyr Leu Asn Gly Cys Ser Ser Leu Gln Gly
210 215 220
Leu Pro Asp Ser Val Glu Asn Leu Thr Arg Leu Lys Trp Leu Ile Leu
225 230 235 240
Ser Gly Cys Ser Asn Leu Gln Met Leu Pro Asn Phe Arg His Leu Arg
245 250 255
Ser Leu Glu Arg Leu His Leu Ser Gly Cys Ser Asn Leu Gln Met Pro
260 265 270
Pro Asn Val Gln His Leu Ser Ser Leu Val Gln Leu Tyr Val Ser His
275 280 285
Cys Ser Lys Leu Gln Trp Gly Ala Gly Val Val Glu Ser Leu Arg His
290 295 300
Arg Leu Gly Asn Gly Phe Ile Glu Glu Gly Gly Glu Asn Ser Asn Glu
305 310 315 320




191


355


PRT


Pinus radiata



191
Ile Thr Ser Asp Glu Val Glu Leu Ile Glu Lys Ile Val Gln Ser Val
1 5 10 15
Leu Glu Lys Val Asn Arg Ser Ser Phe Tyr Val Pro Lys Tyr Glu Val
20 25 30
Gly Leu Asp Glu Asn Val Glu Lys Phe Arg Lys Lys Val Lys Glu Trp
35 40 45
Ser Gln Gln Arg Gln Asn Glu Lys Ala Gln Val Val Gly Ile Val Gly
50 55 60
Leu Gly Asp Val Gly Lys Thr Thr Leu Val Lys Glu Phe Phe Pro Thr
65 70 75 80
Glu Ser Pro Ala Tyr Arg Asn Phe Cys Phe Tyr Pro Val Arg Arg Asn
85 90 95
Gly Cys Ile Thr Arg Pro Asp Cys Leu Ile Gly Glu Leu Phe Lys Gly
100 105 110
Ser Ser Gly Leu Val Ser Ser Pro Thr Ser Val Asp Ala Val Lys Ile
115 120 125
Leu Pro Asp Ala Ser Asn Pro Ser Val Asp Met Ile Arg Asn Asn Pro
130 135 140
Ser Leu Val Val Leu Asp Gly Val Asp Asn Val Glu Glu Arg Glu Asn
145 150 155 160
Leu Leu Lys Ile Gln Glu Arg Leu His Ser Lys Ser Leu Ile Leu Ile
165 170 175
Thr Ser Arg Asp Pro Glu Val Leu Arg Cys Ser Glu Val Glu Lys Ile
180 185 190
Tyr His Leu Asn Gly Leu Asn Glu Pro Cys Ser Arg Lys Leu Phe Cys
195 200 205
Phe His Ala Phe His Gln Ala Ala Pro Leu Gln Gly Tyr Glu Tyr Leu
210 215 220
Val Ala Trp Val Leu Arg Val Cys Asp Gly Leu Pro Leu Leu Leu Lys
225 230 235 240
Leu Leu Gly Ala Leu Leu Cys Gly Asn Asn Asp Arg Phe Tyr Trp Glu
245 250 255
Asp Leu Cys Asp Ser Leu Gln Ala Lys Lys Ile Glu Glu Lys Leu Lys
260 265 270
Val Ile Tyr Asp Thr Leu Gly Thr Glu Glu Gln Gln Thr Phe Leu Asp
275 280 285
Ile Ala Cys Asn Leu Val Gly Lys Asn Ala Asp Ile Trp Leu Lys Ser
290 295 300
Gly Lys Lys Gly Ile Ile Trp Phe Gln Ile Leu Leu Glu Lys Arg Leu
305 310 315 320
Val Glu Val Asp Ser Glu Asn Cys Ile Gln Met His Asp Leu Leu Lys
325 330 335
Asn Leu Gly Gly Glu Ile Ala Lys Ala Thr Lys Ser Pro Arg Pro Leu
340 345 350
Phe Phe Gly
355




192


433


DNA


Pinus radiata



192
ctgaggaaga aggcgtaagt ttctttaaaa gttttcattt tggtttttat ccccgagctt 60
aaatctttga ttttctcctc taaatggtta gcatttgcag agcattgcaa atgtaggaaa 120
aagtaagaaa aaaactttca atacagttcg tgcattcttc tactgggtta ctaaagagga 180
aggatcattt gattggttca agggagtcat gaatgaagtg gcagaaattg atcaaaaggg 240
cataattgag ttgcacaact attgcacaag tgtttatgaa gagggtgatg ctcgatcagc 300
attgatcgct atgttgcagg cactaaatca tgccaaacat ggtgttgata ttgtatcggg 360
caccagggtt tgcacacact ttgccaagcc taattggaga aacgcttcaa gagtattgct 420
ctcatgcaca aag 433




193


431


DNA


Eucalyptus grandis



193
agacccctta cgtgagaaga gaattaagag aattcacaaa gccttagact ccgatgatat 60
tgaacttgtt acgcttctct tgagcgagtc caatatcaac ttagatgaag cctatggctt 120
acattatgct gcagcttact gtgaccccaa ggttgtctct gagttgcttg gtttgggctt 180
ggctaacgtc aaccttcgga acccaagggg atacactgtg ctccatgttg ctgcaatgag 240
gaaggagact aagatcatag tctcattgtt gtcaaaaggt gcttgtgcat cggaattgac 300
acctgatgga cagaatgctg tcagcatctg ccgaaggttg acaaggccta aggattataa 360
tgctaaaaca gagcagtgcc aggaagcaaa caaggacagg ctatgcatag atgtactgga 420
gagggaattg t 431




194


427


DNA


Eucalyptus grandis



194
tcaataagat catcgatacc ggtgacttgt catggctggg aactgttggt gatgacactc 60
cagaggaaca acttcgtaag aagcaaaggc atatggaagt tgaagaacag atgactgaag 120
cttatactca agacaaagag gagactgata agtctagtat attgtcttct tcatcgtcga 180
cttcaatgag tttccttaag cctaatggta aattaacgac aagtgaccag cagcggcact 240
gcgagattta agatgccaaa agacatcttt ctcattgtac aatattccaa ttttttccca 300
tgtgatgtat ctttatagcc agtcgtttgt aagtactcat ctacacagca aatagatgag 360
gagtgatata cgtacatgca gatgattgtc ttaatagaaa atcatttctc ttaaaaaaaa 420
aaaaaaa 427




195


306


DNA


Eucalyptus grandis



195
cacaggtgct tgttggcggc tcggagccag tttcttcacg agtttttcaa gcagggaggc 60
ggcgacaatg caagggaagg aaagccgagg tatcccattt cggacttagt gaaaaagggt 120
catgttggat gtgaggcttt taaatatgtg ttgagataca tgtacacggg gaagctcaag 180
ctatttccag cggaggtgtc gacatgcgtg gacagcagtt gcgcacatga cgtgtgcggc 240
cctgctatta attatgccgt ggagttgatg tatgcctcgg ccacttttga gatagcagag 300
ttagtg 306




196


114


PRT


Pinus radiata



196
His Leu Gln Ser Ile Ala Asn Val Gly Lys Ser Lys Lys Lys Thr Phe
1 5 10 15
Asn Thr Val Arg Ala Phe Phe Tyr Trp Val Thr Lys Glu Glu Gly Ser
20 25 30
Phe Asp Trp Phe Lys Gly Val Met Asn Glu Val Ala Glu Ile Asp Gln
35 40 45
Lys Gly Ile Ile Glu Leu His Asn Tyr Cys Thr Ser Val Tyr Glu Glu
50 55 60
Gly Asp Ala Arg Ser Ala Leu Ile Ala Met Leu Gln Ala Leu Asn His
65 70 75 80
Ala Lys His Gly Val Asp Ile Val Ser Gly Thr Arg Val Cys Thr His
85 90 95
Phe Ala Lys Pro Asn Trp Arg Asn Ala Ser Arg Val Leu Leu Ser Cys
100 105 110
Thr Lys




197


143


PRT


Eucalyptus grandis



197
Asp Pro Leu Arg Glu Lys Arg Ile Lys Arg Ile His Lys Ala Leu Asp
1 5 10 15
Ser Asp Asp Ile Glu Leu Val Thr Leu Leu Leu Ser Glu Ser Asn Ile
20 25 30
Asn Leu Asp Glu Ala Tyr Gly Leu His Tyr Ala Ala Ala Tyr Cys Asp
35 40 45
Pro Lys Val Val Ser Glu Leu Leu Gly Leu Gly Leu Ala Asn Val Asn
50 55 60
Leu Arg Asn Pro Arg Gly Tyr Thr Val Leu His Val Ala Ala Met Arg
65 70 75 80
Lys Glu Thr Lys Ile Ile Val Ser Leu Leu Ser Lys Gly Ala Cys Ala
85 90 95
Ser Glu Leu Thr Pro Asp Gly Gln Asn Ala Val Ser Ile Cys Arg Arg
100 105 110
Leu Thr Arg Pro Lys Asp Tyr Asn Ala Lys Thr Glu Gln Cys Gln Glu
115 120 125
Ala Asn Lys Asp Arg Leu Cys Ile Asp Val Leu Glu Arg Glu Leu
130 135 140




198


82


PRT


Eucalyptus grandis



198
Asn Lys Ile Ile Asp Thr Gly Asp Leu Ser Trp Leu Gly Thr Val Gly
1 5 10 15
Asp Asp Thr Pro Glu Glu Gln Leu Arg Lys Lys Gln Arg His Met Glu
20 25 30
Val Glu Glu Gln Met Thr Glu Ala Tyr Thr Gln Asp Lys Glu Glu Thr
35 40 45
Asp Lys Ser Ser Ile Leu Ser Ser Ser Ser Ser Thr Ser Met Ser Phe
50 55 60
Leu Lys Pro Asn Gly Lys Leu Thr Thr Ser Asp Gln Gln Arg His Cys
65 70 75 80
Glu Ile




199


102


PRT


Eucalyptus grandis



199
His Arg Cys Leu Leu Ala Ala Arg Ser Gln Phe Leu His Glu Phe Phe
1 5 10 15
Lys Gln Gly Gly Gly Asp Asn Ala Arg Glu Gly Lys Pro Arg Tyr Pro
20 25 30
Ile Ser Asp Leu Val Lys Lys Gly His Val Gly Cys Glu Ala Phe Lys
35 40 45
Tyr Val Leu Arg Tyr Met Tyr Thr Gly Lys Leu Lys Leu Phe Pro Ala
50 55 60
Glu Val Ser Thr Cys Val Asp Ser Ser Cys Ala His Asp Val Cys Gly
65 70 75 80
Pro Ala Ile Asn Tyr Ala Val Glu Leu Met Tyr Ala Ser Ala Thr Phe
85 90 95
Glu Ile Ala Glu Leu Val
100




200


1425


DNA


Pinus radiata



200
atcattttgt gtgaaaataa gcgatgggtt ggttccacag gtgttttgga ttcattagaa 60
agaagaagaa gcagaaaagc ccaaaatctg agcctccgtc tcgtgaacat ttactgaagt 120
ccacacaaga agaattcgag aatacaaagg gagctcaata caaatatcac cgcagatttc 180
ctgctgttag ggataaaacc gagcaggttg cgacgcgatc atttggggat ttggatggag 240
cttcactaat agaaactcct ggcagagaaa ccctccaaat tgttataaca gagtgcccaa 300
atactcgtac agtatgttct ggatgtaaat ccaggttaag caactggtgt ccgtcctgca 360
gatgcaacct tggaaatttt aggtgcttag ctcctgaaac ggagacatca tctcaagaac 420
ttacttgcat gtatcaaagc tatggttgtg aggatatgta tccttactac agtgaattaa 480
gacatgaagc tcactgcaat tttaggccat acaactgtcc ctatgctggc tccgaatgca 540
agctagttgg agatattccc tttttggtgg ctcatttaag agatgatcac aaagtttata 600
tgcataatag ttgcaccttt gatcatcgat atgtaaagtc aaatccactc gaggttgaga 660
atgctatttg gatgccaact gtaatcaatt gttttgggca attcttttgt ctacattttg 720
aagcgtttct attagacatg gcccctgtat atatagcttt tctgattttc atgggagatg 780
ataatgaagc taaaaacttt agctattgcc tcgagactgg aggcaatggt cggaaactga 840
tttggcatgg ggttcctcga agcatcagag attgtcacag gaaagttcat gacagtagtg 900
acggactaat tatacaaaga gatgtggcac tctttttctc aggtggtgac ataaatgaat 960
tgaatcttag attgacagga cacatattga aggaacaata atatatgcac ttttcaaaga 1020
tctatggact aggaaaagta agtcatatct cctgttattt atcttctcct ttgctgctga 1080
ttaatattgt aaaggttcag atcctttcag tagcaagctg tcattgccag aacaacgaga 1140
gagaaaaatc atatctagaa agtgtatagg ttgaccacgg cacaggtgta tgccattttc 1200
tcatgtaaag acattctcct aattgctaaa gaatgtactt gaattgaatt gaatgccctt 1260
tatttatgga ttgtctgatc gtaatcatgg agagaatatt tgttgttgtt taccactgcc 1320
aacaatacta cgagcgggag aggatttggg tggtagtggt tgtgtaggaa ttaagaatcc 1380
ggactcaaag gttttgataa taaggtttga atcttaaaaa aaaaa 1425




201


325


PRT


Pinus radiata



201
Met Gly Trp Phe His Arg Cys Phe Gly Phe Ile Arg Lys Lys Lys Lys
1 5 10 15
Gln Lys Ser Pro Lys Ser Glu Pro Pro Ser Arg Glu His Leu Leu Lys
20 25 30
Ser Thr Gln Glu Glu Phe Glu Asn Thr Lys Gly Ala Gln Tyr Lys Tyr
35 40 45
His Arg Arg Phe Pro Ala Val Arg Asp Lys Thr Glu Gln Val Ala Thr
50 55 60
Arg Ser Phe Gly Asp Leu Asp Gly Ala Ser Leu Ile Glu Thr Pro Gly
65 70 75 80
Arg Glu Thr Leu Gln Ile Val Ile Thr Glu Cys Pro Asn Thr Arg Thr
85 90 95
Val Cys Ser Gly Cys Lys Ser Arg Leu Ser Asn Trp Cys Pro Ser Cys
100 105 110
Arg Cys Asn Leu Gly Asn Phe Arg Cys Leu Ala Pro Glu Thr Glu Thr
115 120 125
Ser Ser Gln Glu Leu Thr Cys Met Tyr Gln Ser Tyr Gly Cys Glu Asp
130 135 140
Met Tyr Pro Tyr Tyr Ser Glu Leu Arg His Glu Ala His Cys Asn Phe
145 150 155 160
Arg Pro Tyr Asn Cys Pro Tyr Ala Gly Ser Glu Cys Lys Leu Val Gly
165 170 175
Asp Ile Pro Phe Leu Val Ala His Leu Arg Asp Asp His Lys Val Tyr
180 185 190
Met His Asn Ser Cys Thr Phe Asp His Arg Tyr Val Lys Ser Asn Pro
195 200 205
Leu Glu Val Glu Asn Ala Ile Trp Met Pro Thr Val Ile Asn Cys Phe
210 215 220
Gly Gln Phe Phe Cys Leu His Phe Glu Ala Phe Leu Leu Asp Met Ala
225 230 235 240
Pro Val Tyr Ile Ala Phe Leu Ile Phe Met Gly Asp Asp Asn Glu Ala
245 250 255
Lys Asn Phe Ser Tyr Cys Leu Glu Thr Gly Gly Asn Gly Arg Lys Leu
260 265 270
Ile Trp His Gly Val Pro Arg Ser Ile Arg Asp Cys His Arg Lys Val
275 280 285
His Asp Ser Ser Asp Gly Leu Ile Ile Gln Arg Asp Val Ala Leu Phe
290 295 300
Phe Ser Gly Gly Asp Ile Asn Glu Leu Asn Leu Arg Leu Thr Gly His
305 310 315 320
Ile Leu Lys Glu Gln
325




202


1474


DNA


Pinus radiata



202
gaattcggca cgagaaaacg tccatagctt ccttgccaac tgcaagcaat acagtacaag 60
agccagacga tcgaatcctg tgaagtggtt ctgaagtgat gggaagcttg gaatctgaaa 120
aaactgttac aggatatgca gctcgggact ccagtggcca cttgtcccct tacacttaca 180
atctcagaaa gaaaggacct gaggatgtaa ttgtaaaggt catttactgc ggaatctgcc 240
actctgattt agttcaaatg cgtaatgaaa tggacatgtc tcattaccca atggtccctg 300
ggcatgaagt ggtggggatt gtaacagaga ttggcagcga ggtgaagaaa ttcaaagtgg 360
gagagcatgt aggggttggt tgcattgttg ggtcctgtcg cagttgcggt aattgcaatc 420
agagcatgga acaatactgc agcaagagga tttggaccta caatgatgtg aaccatgacg 480
gcacacctac tcagggcgga tttgcaagca gtatggtggt tgatcagatg tttgtggttc 540
gaatcccgga gaatcttcct ctggaacaag cggcccctct gttatgtgca ggggttacag 600
ttttcagccc aatgaagcat ttcgccatga cagagcccgg gaagaaatgt gggattttgg 660
gtttaggagg cgtggggcac atgggtgtca agattgccaa agcctttgga ctccacgtga 720
cggttatcag ttcgtctgat aaaaagaaag aagaagccat ggaagtcctc ggcgccgatg 780
cttatcttgt tagcaaggat actgaaaaga tgatggaagc agcagagagc ctagattaca 840
taatggacac cattccagtt gctcatcctc tggaaccata tcttgccctt ctgaagacaa 900
atggaaagct agtgatgctg ggcgttgttc cagagccgtt gcacttcgtg actcctctct 960
taatacttgg gagaaggagc atagctggaa gtttcattgg cagcatggag gaaacacagg 1020
aaactctaga tttctgtgca gagaagaagg tatcatcgat gattgaggtt gtgggcctgg 1080
actacatcaa cacggccatg gaaaggttgg agaagaacga tgtccgttac agatttgtgg 1140
tggatgttgc tagaagcaag ttggataatt agtctgcaat caatcaatca gatcaatgcc 1200
tgcatgcaag atgaatagat ctggactagt agcttaacat gaaagggaaa ttaaattttt 1260
atttaggaac tcgatactgg tttttgttac tttagtttag cttttgtgag gttgaaacaa 1320
ttcagatgtt tttttaactt gtatatgtaa agatcaattt ctcgtgacag taaataataa 1380
tccaatgtct tctgccaaat taatatatgt attcgtattt ttatatgaaa aaaaaaaaaa 1440
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1474




203


414


DNA


Eucalyptus grandis



203
cacgctcgac gaattcggta ccccgggttc gaaatcgata agcttggatc caaagcaaca 60
cattgaactc tctctctctc tctctctctc tctctctctc tcccccaccc ccccttccca 120
accccaccca catacagaca agtagatacg cgcacacaga agaagaaaag atgggggttt 180
caatgcagtc aatcgcacta gcgacggttc tggccgtcct aacgacatgg gcgtggaggg 240
cggtgaactg ggtgtggctg aggccgaaga ggctcgagag gcttctgaga cagcaaggtc 300
tctccggcaa gtcctacacc ttcctggtcg gcgacctcaa ggagaacctg cggatgctca 360
aggaagccaa gtccaagccc atcgccgtct ccgatgacat caagcctcgt ctct 414




204


755


DNA


Pinus radiata



204
ggcggccgtt cctaaggctc caatggcgat gggtgggagt gcagccaagg atgtggcaga 60
ttccattgat tgggaggtta ggcctggagg aatgctggtt atgtggcaga ttccattgat 120
tgggaggtta ggcctggagg aatgctggtt caaggtcaga gtcacctacg gctcttcctt 180
gcatgaagtt tctgtcagta tgcagaccac atttggtgag ttgaaaaaac tacttgctcc 240
tgagactgga ttagaaccac aagatcaaaa gcttatcttt agaggaaaag aaagggatgg 300
caaggacttc ttagatttag caggtgtgaa agacaagtca aagatcgtgc ttatggaaga 360
tccgatgagt cgagaaaaga agtacattga aatgaggaag aatgcaaaaa ttgagagggc 420
gaccagagct attgctgacg tgagcctaga ggtggataaa cttgcagcac agttgtcttc 480
cctggaagca ctgattgtta aaggcaaaag agtagctgaa aatgatttgg ttgacctcat 540
tgaaatgctt atgagacaac tagtaaaatt agatagcatc ccagctgatg gagatgccaa 600
attgcagaga agaatgcagg ttagaagggt gcaaaagtat gtcgagacat tggatgttct 660
gaaggttccc aatgctacac agaactcatc atctcaacaa cctgtagtgg tgacaacaaa 720
gtgggaaacc ttcgaaactt aattgccacc atgga 755




205


246


PRT


Pinus radiata



205
Ala Ala Val Pro Lys Ala Pro Met Ala Met Gly Gly Ser Ala Ala Lys
1 5 10 15
Asp Val Ala Asp Ser Ile Asp Trp Glu Val Arg Pro Gly Gly Met Leu
20 25 30
Val Met Trp Gln Ile Pro Leu Ile Gly Arg Leu Gly Leu Glu Glu Cys
35 40 45
Trp Phe Lys Val Arg Val Thr Tyr Gly Ser Ser Leu His Glu Val Ser
50 55 60
Val Ser Met Gln Thr Thr Phe Gly Glu Leu Lys Lys Leu Leu Ala Pro
65 70 75 80
Glu Thr Gly Leu Glu Pro Gln Asp Gln Lys Leu Ile Phe Arg Gly Lys
85 90 95
Glu Arg Asp Gly Lys Asp Phe Leu Asp Leu Ala Gly Val Lys Asp Lys
100 105 110
Ser Lys Ile Val Leu Met Glu Asp Pro Met Ser Arg Glu Lys Lys Tyr
115 120 125
Ile Glu Met Arg Lys Asn Ala Lys Ile Glu Arg Ala Thr Arg Ala Ile
130 135 140
Ala Asp Val Ser Leu Glu Val Asp Lys Leu Ala Ala Gln Leu Ser Ser
145 150 155 160
Leu Glu Ala Leu Ile Val Lys Gly Lys Arg Val Ala Glu Asn Asp Leu
165 170 175
Val Asp Leu Ile Glu Met Leu Met Arg Gln Leu Val Lys Leu Asp Ser
180 185 190
Ile Pro Ala Asp Gly Asp Ala Lys Leu Gln Arg Arg Met Gln Val Arg
195 200 205
Arg Val Gln Lys Tyr Val Glu Thr Leu Asp Val Leu Lys Val Pro Asn
210 215 220
Ala Thr Gln Asn Ser Ser Ser Gln Gln Pro Val Val Val Thr Thr Lys
225 230 235 240
Trp Glu Thr Phe Glu Thr
245




206


347


DNA


Pinus radiata



206
tacccttgga gttgtcgatt cctacgtgtt caagagcaac gtagtgaagc tagacgtata 60
agacgttgag catggttcga cttctagtag ctagacatac accagatgcg tcaagagtgc 120
cgtcaacacg tccaacagat ctaccgttat caacctagta aaggaaagtt acgaaaagaa 180
agtcctcaag atagaacgtg ccccagtcga cacgaacgtc aaacaaacgc ctacgttcag 240
ttgtttcttt tgttccttaa gttcctagag ggaggtcttt ctctaaacgt ctaaaacaaa 300
acacgttaga acatgaagtg aaccactatt acttgaagga tccaatc 347






Claims
  • 1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (1) the sequence recited in SEQ ID NO: 98; and (2) the complement of the sequence recited in SEQ ID NO: 98.
  • 2. An isolated polynucleotide comprising a nucleotide sequence having at least 90% identity to the nucleotide sequence recited in SEQ ID NO:98, wherein the nucleotide sequence encodes a cysteine protease.
  • 3. An isolated polynucleotide comprising a nucleotide sequence that hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
  • 4. A genetic construct comprising at least one polynucleotide described in any one of claims 1, 2 or 3.
  • 5. A transgenic forestry plant cell comprising at least one genetic construct according to claim 4.
  • 6. A genetic construct comprising, in the 5′-3′ direction:(a) a gene promoter sequence; (b) a polynucleotide sequence comprising a polynucleotide of claim 1, 2, or 3; and (c) a gene termination sequence.
  • 7. The construct of claim 6, wherein the polynucleotide is in a sense orientation.
  • 8. The construct of claim 6, wherein the polynucleotide is in an antisense orientation.
  • 9. The construct of claim 6, wherein the gene promoter sequence and gene termination sequences are functional in a forestry plant host.
  • 10. A forestry plant cell comprising a construct of claim 6.
  • 11. The forestry plant cell of claim 10, wherein the polynucleotide is in a sense orientation.
  • 12. The forestry plant cell of claim 10, wherein the polynucleotide is in an antisense orientation.
  • 13. A forestry plant comprising a forestry plant cell according to claim 10.
  • 14. The forestry plant of claim 13, wherein the forestry plant is a woody plant.
  • 15. The forestry plant of claim 14, wherein the plant is selected from the group consisting of eucalyptus and pine species.
  • 16. A method for modulating a plant cell death pathway in a forestry plant, comprising stably incorporating into the genome of the forestry plant a construct of claim 4.
  • 17. The method of claim 16, wherein the construct incorporated into the genome of the forestry plant comprises a polynucleotide encoding a cysteine protease that is not present in a native form of the forestry plant.
  • 18. A method for modulating a cell death pathway in a forestry plant, comprising stably incorporating into the genome of the forestry plant a construct of claim 6.
  • 19. A method for producing a forestry plant having an altered cell death pathway, comprising:(a) transforming a plant cell with a construct of claim 4 to provide a transgenic plant cell; and (b) cultivating the transgenic plant cell under conditions conducive to regeneration and mature plant growth.
Non-Patent Literature Citations (22)
Entry
Eric P. Beers, et al. “Plant proteolytic enzymes; possible roles during programmed cell death”; Plant Molecular Biology, 48: 399-413, 2000.
PCT International Search Report; In re Genesis Research and Development Corporation, Ltd.; International Application No. PCT/NZ00/00086, filed Jun. 2, 2000.
Martinez-Garcie, M. et al.; EMBL Accession No. L76926, submitted Aug. 27, 1997.
Perry, D.J., et al., EMBL Accession No. AF051247, submitted Mar. 25, 1998.
Perez-Amador, M.A., et al., EMBL Accession No. U90265, submitted Jan. 6, 1999.
Perez-Amador, M.A., et al., EMBL Accession No. U90266, submitted Jan. 6, 1999.
Gray, J. et al., EMBL Accession No. U77345, submitted Apr. 18, 1997.
Newman, T. et al., EMBL Accession No. U77347, submitted Jun. 19, 1997.
Shin, H. et al., EMBL Accession No. U89609, submitted Sep. 4, 1998.
Seals, D.F. et al., EMBL Accession No. AF113545, submitted Apr. 12, 1999.
Sun, L. et al., EMBL Accession No. U66593, submitted Jan. 6, 1999.
Delmer, D.P. et al., EMBL Accession No. S79309, submitted Dec. 4, 1995.
Hassanain, H.H. et al., EMBL Accession No. AF126055, submitted Jun. 3, 1999.
Winge, P. et al., EMBL Accession No. AF115476, submitted Apr. 26, 1999.
Park, J.M. et al., Swiss-Prot Accession No. Q42808 submitted Jul. 15, 1998.
Holdsworth, M.J. et al., Swiss-Prot Accession No. P26357, submitted May 1, 1992.
Dou, Q. Ping and Bing An. “RB and Apoptotic Cell Death,” Frontiers in Bioscience 3, d419-430, (24 pages) Apr. 6, 1981, reprinted online through www.bioscience.org/1998/v3/d/dou/d419-430.htm.
Greenberg, Jean T. “Programmed Cell Death in Plant-Pathogen Interactions,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 525-545, 1997.
Hammond-Kosack, Kim E. and Jonathan D.G. Jones. “Plant Disease Resistance Genes,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 575-607, 1997.
Jones, Alan M. and Jeffery L. Dangl. “Logjam at the Styx: programmed cell death in plants,” Trends in Plant Science, v.1, No. 4: pp. 114-119, Apr. 1996.
Wilson, Iain Wilson, John Vogel, and Shauna Somerville. “A common theme in plants and animals?” Current Biology, v. 7, No. 3: R175-R178, 1997.
Yang, Yinong, Jyoti Shah, and Daniel F. Klessig. “Signal perception and transduction in plant defense responses,” Genes & Development, pp. 1621-1639.