COMPOSITIONS AND METHOD FOR MEASURING AND CALIBRATING AMPLIFICATION BIAS IN MULTIPLEXED PCR REACTIONS

Information

  • Patent Application
  • 20150203897
  • Publication Number
    20150203897
  • Date Filed
    January 09, 2015
    9 years ago
  • Date Published
    July 23, 2015
    8 years ago
Abstract
Compositions and methods are described for standardizing the DNA amplification efficiencies of a highly heterogeneous set of oligonucleotide primers as may typically be used to amplify a heterogeneous set of DNA templates that contains rearranged lymphoid cell DNA encoding T cell receptors (TCR) or immunoglobulins (IG). The presently disclosed embodiments are useful to overcome undesirable bias in the utilization of a subset of amplification primers, which leads to imprecision in multiplexed N high throughput sequencing of amplification products to quantify unique TCR or Ig encoding genomes in a sample. Provided is a composition comprising a diverse plurality of template oligonucleotides in substantially equimolar amounts, for use as a calibration standard for amplification primer sets. Also provided are methods for identifying and correcting biased primer efficiency during amplification.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates generally to quantitative high-throughput sequencing of adaptive immune receptor encoding DNA (e.g., DNA encoding T cell receptors (TCR) and immunoglobulins (IG) in multiplexed nucleic acid amplification reactions. In particular, the compositions and methods described herein overcome undesirable distortions in the quantification of adaptive immune receptor encoding sequences that can result from biased over-utilization and/or under-utilization of specific oligonucleotide primers in multiplexed DNA amplification.


2. Description of the Related Art


The adaptive immune system employs several strategies to generate a repertoire of T- and B-cell antigen receptors, i.e., adaptive immune receptors, with sufficient diversity to recognize the universe of potential pathogens. The ability of T cells to recognize the universe of antigens associated with various cancers or infectious organisms is conferred by its T cell antigen receptor (TCR), which is a heterodimer of an α (alpha) chain from the TCRA locus and β (beta) chain from the TCRB locus, or a heterodimer of a γ (gamma) chain from the TCRG locus and a δ (delta) chain from the TCRD locus. The proteins which make up these chains are encoded by DNA, which in lymphoid cells employs a unique rearrangement mechanism for generating the tremendous diversity of the TCR. This multi-subunit immune recognition receptor associates with the CD3 complex and binds to peptides presented by either the major histocompatibility complex (MHC) class I or MHC class II proteins on the surface of antigen-presenting cells (APCs). Binding of TCR to the antigenic peptide on the APC is the central event in T cell activation, which occurs at an immunological synapse at the point of contact between the T cell and the APC.


Each TCR peptide contains variable complementarity determining regions (CDRs), as well as framework regions (FRs) and a constant region. The sequence diversity of αβT cells is largely determined by the amino acid sequence of the third complementarity-determining region (CDR3) loops of the α and β chain variable domains, which diversity is a result of recombination between variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments in the β chain locus, and between analogous Jα and Jα gene segments in the α chain locus, respectively. The existence of multiple such gene segments in the TCR α and β chain loci allows for a large number of distinct CDR3 sequences to be encoded. CDR3 sequence diversity is further increased by independent addition and deletion of nucleotides at the Vβ-Dβ, Dβ-Jβ, and Vα-Jαjunctions during the process of TCR gene rearrangement. In this respect, immunocompetence is derived from the diversity of TCRs.


The γδ TCR heterodimer is distinctive from the αβTCR in that it encodes a receptor that interacts closely with the innate immune system, and recognizes antigen in a non-HLA-dependent manner. TCRγδ is expressed early in development, and has specialized anatomical distribution, unique pathogen and small-molecule specificities, and a broad spectrum of innate and adaptive cellular interactions. A biased pattern of TCRγ V and J segment expression is established early in ontogeny. Consequently, the diverse TCRγ repertoire in adult tissues is the result of extensive peripheral expansion following stimulation by environmental exposure to pathogens and toxic molecules.


Immunoglobulins (Igs or IG), also referred to herein as B cell receptors (BCR), are proteins expressed by B cells consisting of four polypeptide chains, two heavy chains (H chains) from the IGH locus and two light chains (L chains) from either the IGK or the IGL locus, forming an H2L2 structure. H and L chains each contain three complementarity determining regions (CDR) involved in antigen recognition, as well as framework regions and a constant domain, analogous to TCR. The H chains of Igs are initially expressed as membrane-bound isoforms using either the IGM or IGD constant region exons, but after antigen recognition the constant region can class-switch to several additional isotypes, including IGG, IGE and IGA. As with TCR, the diversity of naïve Igs within an individual is mainly determined by the hypervariable complementarity determining regions (CDR). Similar to TCRB, the CDR3 domain of H chains is created by the combinatorial joining of the VH, DH, and JH gene segments. Hypervariable domain sequence diversity is further increased by independent addition and deletion of nucleotides at the VH-DH, DH-JH, and VH-JH junctions during the process of Ig gene rearrangement. Distinct from TCR, Ig sequence diversity is further augmented by somatic hypermutation (SHM) throughout the rearranged IG gene after a naïve B cell initially recognizes an antigen. The process of SHM is not restricted to CDR3, and therefore can introduce changes to the germline sequence in framework regions, CDR1 and CDR2, as well as in the somatically rearranged CDR3.


As the adaptive immune system functions in part by clonal expansion of cells expressing unique TCRs or BCRs, accurately measuring the changes in total abundance of each T cell or B cell clone is important to understanding the dynamics of an adaptive immune response. For instance, a healthy human has a few million unique rearranged TCRβ chains, each carried in hundreds to thousands of clonal T-cells, out of the roughly trillion T cells in a healthy individual. Utilizing advances in high-throughput sequencing, a new field of molecular immunology has recently emerged to profile the vast TCR and BCR repertoires. Compositions and methods for the sequencing of rearranged adaptive immune receptor gene sequences and for adaptive immune receptor clonotype determination are described in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; and PCT/US2011/049012, all herein incorporated by reference.


To date, several different strategies have been employed to sequence nucleic acids encoding adaptive immune receptors quantitatively at high throughput, and these strategies may be distinguished, for example, by the approach that is used to amplify the CDR3-encoding regions, and by the choice of sequencing genomic DNA (gDNA) or messenger RNA (mRNA).


Sequencing mRNA is a potentially easier method than sequencing gDNA, because mRNA splicing events remove the intron between J and C segments. This allows for the amplification of adaptive immune receptors (e.g., TCRs or Igs) having different V regions and J regions using a common 3′ PCR primer in the C region. For each TCRβ, for example, the thirteen J segments are all less than 60 base pairs (bp) long. Therefore, splicing events bring identical polynucleotide sequences encoding TCRβ constant regions (regardless of which V and J sequences are used) within less than 100 bp of the rearranged VDJ junction. The spliced mRNA can then be reverse transcribed into complementary DNA (cDNA) using poly-dT primers complementary to the poly-A tail of the mRNA, random small primers (usually hexamers or nonamers) or C-segment-specific oligonucleotides. This should produce an unbiased library of TCR cDNA (because all cDNAs are primed with the same oligonucleotide, whether poly-dT, random hexamer, or C segment-specific oligo) that may then be sequenced to obtain information on the V and J segment used in each rearrangement, as well as the specific sequence of the CDR3. Such sequencing could use single, long reads spanning CDR3 (“long read”) technology, or could instead involve shotgun assembly of the longer sequences using fragmented libraries and higher throughput shorter sequence reads.


Efforts to quantify the number of cells in a sample that express a particular rearranged TCR (or Ig) based on mRNA sequencing are difficult to interpret, however, because each cell potentially expresses different quantities of TCR mRNA. For example, T cells activated in vitro have 10-100 times as much mRNA per cell than quiescent T cells. To date, there is very limited information on the relative amount of TCR mRNA in T cells of different functional states, and therefore quantitation of mRNA in bulk does not necessarily accurately measure the number of cells carrying each clonal TCR rearrangement.


Most T cells, on the other hand, have one productively rearranged TCRα and one productively rearranged TCRβ gene (or two rearranged TCRγ and TCRδ), and most B cells have one productively rearranged Ig heavy-chain gene and one productively rearranged Ig light-chain gene (either ICK or IGL) so quantification in a sample of genomic DNA encoding TCRs or BCRs should directly correlate with, respectively, the number of T or B cells in the sample. Genomic sequencing of polynucleotides encoding any one or more of the adaptive immune receptor chains desirably entails amplifying with equal efficiency all of the many possible rearranged CDR3 sequences that are present in a sample containing DNA from lymphoid cells of a subject, followed by quantitative sequencing, such that a quantitative measure of the relative abundance of each rearranged CDR3 clonotype can be obtained.


Difficulties are encountered with such approaches, however, in that equal amplification and sequencing efficiencies may not be achieved readily for each rearranged clone using multiplex PCR. For example, at TCRB each clone employs one of 54 possible germline V region-encoding genes and one of 13 possible J region-encoding genes. The DNA sequence of the V and J segments is necessarily diverse, in order to generate a diverse adaptive immune repertoire. This sequence diversity makes it impossible to design a single, universal primer sequence that will anneal to all V segments (or J segments) with equal affinity, and yields complex DNA samples in which accurate determination of the multiple distinct sequences contained therein is hindered by technical limitations on the ability to quantify a plurality of molecular species simultaneously using multiplexed amplification and high throughput sequencing.


One or more factors can give rise to artifacts that skew the correlation between sequencing data outputs and the number of copies of an input clonotype, compromising the ability to obtain reliable quantitative data from sequencing strategies that are based on multiplexed amplification of a highly diverse collection of TCRβ gene templates. These artifacts often result from unequal use of diverse primers during the multiplexed amplification step. Such biased utilization of one or more oligonucleotide primers in a multiplexed reaction that uses diverse amplification templates may arise as a function of differential annealing kinetics due to one or more of differences in the nucleotide base composition of templates and/or oligonucleotide primers, differences in template and/or primer length, the particular polymerase that is used, the amplification reaction temperatures (e.g., annealing, elongation and/or denaturation temperatures), and/or other factors (e.g., Kanagawa, 2003 J. Biosci. Bioeng. 96:317; Day et al., 1996 Hum. Mol. Genet. 5:2039; Ogino et al., 2002 J. Mol. Diagnost. 4:185; Barnard et al., 1998 Biotechniques 25:684; Aird et al., 2011 Genome Biol. 12:R18).


Clearly there remains a need for improved compositions and methods that will permit accurate quantification of adaptive immune receptor-encoding DNA sequence diversity in complex samples, in a manner that avoids skewed results such as misleading over- or underrepresentation of individual sequences due to biases in the amplification of specific templates in an oligonucleotide primer set used for multiplexed amplification of a complex template DNA population. The presently described embodiments address this need and provide other related advantages.


SUMMARY OF THE INVENTION

A composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, each adaptive immune receptor comprising a variable region and a joining region, the composition comprising a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula: 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [1] wherein: (a) V is a polynucleotide comprising at least 20 and not more than 1000 contiguous nucleotides of an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof, and each V polynucleotide comprising a unique oligonucleotide sequence; (b) J is a polynucleotide comprising at least 15 and not more than 600 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and each J polynucleotide comprising a unique oligonucleotide sequence; (c) U1 is either nothing or comprises an oligonucleotide sequence that is selected from (i) a first universal adaptor oligonucleotide sequence and (ii) a first sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a first universal adaptor oligonucleotide sequence; (d) U2 is either nothing or comprises an oligonucleotide sequence that is selected from (i) a second universal adaptor oligonucleotide sequence, and (ii) a second sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a second universal adaptor oligonucleotide sequence; (e) B1, B2, B3, and B4 are each independently either nothing or each comprises an oligonucleotide B that comprises a barcode sequence of 3-25 contiguous nucleotides, wherein each B1, B2, B3 and B4 comprises an oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence of (a) and (ii) the unique J oligonucleotide sequence of (b);(f) R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from (a)-(e), and wherein: (g) the plurality of template oligonucleotides comprises at least a or at least b unique oligonucleotide sequences, whichever is larger, wherein a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide.


In one embodiment, a is 1 to a number of maximum V gene segments in the mammalian genome of the subject. In another embodiment, b is 1 to a number of maximum J gene segments in the mammalian genome of the subject. In other embodiments, a is 1 or b is 1.


In some embodiments, the plurality of template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the mammalian subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the mammalian subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment. In one embodiment, J comprises a constant region of the adaptive immune receptor J region encoding gene sequence.


In another embodiment, the adaptive immune receptor is selected from the group consisting of TCRB, TCRG, TCRA, TCRD, IGH, IGK, and IGL. In some embodiments, the V polynucleotide of (a) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor V-region polypeptide. In other embodiments, the J polynucleotide of (b) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor J-region polypeptide.


In some embodiments, a stop codon is between V and B2.


In one embodiment, each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount. In another embodiment, the plurality of template oligonucleotides have a plurality of sequences of general formula (I) that is selected from: (1) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOs. in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13; (2) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOs. in FIGS. 6a and 6b as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5; (3) the plurality of oligonucleotide sequences of general formula (I) in which the V and J polynucleotides have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOs. in FIGS. 7a-7m as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9; (4) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:3157-4014; (5) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4015-4084; (6) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:4085-5200; (7) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS:5579-5821; (8) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 5822-6066; and (9) the plurality of oligonucleotide sequences of general formula (I) as set forth in SEQ ID NOS: 6067-6191.


In some embodiments, V is a polynucleotide comprising at least 30, 60, 90, 120, 150, 180, or 210 contiguous nucleotides of the adaptive immune receptor V region encoding gene sequence, or the complement thereof. In another embodiment, V is a polynucleotide comprising not more than 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor V region encoding gene sequence, or the complement thereof.


In other embodiments, J is a polynucleotide comprising at least 16-30, 31-60, 61-90, 91-120, or 120-150 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof. In another embodiment, J is a polynucleotide comprising not more than 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence, or the complement thereof.


In some embodiments, each template oligonucleotide is less than 1000, 900, 800, 700, 600, 500, 400, 300 or 200 nucleotides in length.


In other embodiments, the composition includes a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors comprising a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers. In some embodiments, a′ is 1 to a number of maximum V gene segments in the mammalian genome, and b′ is 1 to a number of maximum number of J gene segments in the mammalian genome. In one embodiment, a′ is a. In another embodiment, b′ is b.


In yet another embodiment, each V-segment oligonucleotide primer and each J-segment oligonucleotide primer in the oligonucleotide primer set is capable of specifically hybridizing to at least one template oligonucleotide in the plurality of template oligonucleotides. In other embodiments, each V-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment. In another embodiment, each J-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.


In other embodiments, the composition comprises at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each V-segment oligonucleotide primer can specifically hybridize, and at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each J-segment oligonucleotide primer can specifically hybridize.


The invention comprises a method for determining non-uniform nucleic acid amplification potential among members of a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject. The method includes steps for: (a) amplifying the composition as described herein in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides; (b) sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; and (c) comparing a frequency of occurrence of each of said template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said template oligonucleotide sequences and said expected distribution indicates a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers.


In one embodiment, the predetermined molar ratios are equimolar. In another embodiment, the expected distribution comprises a uniform amplification level for said set of template oligonucleotides amplified by said set of oligonucleotide primers. In yet another embodiment, each amplified template nucleic acid molecule is less than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80 or 70 nucleotides in length.


The method includes steps comprising for each member of the set of oligonucleotide primers that exhibits non-uniform amplification potential relative to the expected distribution, adjusting the relative representation of the oligonucleotide primer member in the set of oligonucleotide amplification primers. In one embodiment, adjusting comprises increasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers. In another embodiment, adjusting comprises decreasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.


In other embodiments, the set of oligonucleotide primers does not include oligonucleotide primers that specifically hybridize to a V-region pseudogene or orphon or to a J-region pseudogene or orphon.


The method also includes steps comprising: for each member of the set of oligonucleotide amplification primers that exhibits non-uniform amplification potential relative to the expected distribution, calculating a proportionately increased or decreased frequency of occurrence of the amplified template nucleic acid molecules, the amplification of which is promoted by said member, thereby correcting for non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.


The invention includes a method for quantifying a plurality of rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, each adaptive immune receptor comprising a variable (V) region and a joining (J) region, the method comprising: (A) amplifying rearranged nucleic acid molecules in a multiplex polymerase chain reaction (PCR) that comprises: (1) rearranged nucleic acid molecules from the biological sample that comprises lymphoid cells of the mammalian subject; (2) the composition as described herein wherein a known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence is present; (3) an oligonucleotide amplification primer set that is capable of amplifying rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors from the biological sample.


In some embodiments, the primer set comprises: (a) in substantially equimolar amounts, a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor V region-encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional adaptive immune receptor V region-encoding gene segments that are present in the composition, and (b) in substantially equimolar amounts, a plurality of J-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor J region-encoding gene segment and wherein the plurality of J-segment primers specifically hybridize to substantially all functional adaptive immune receptor J region-encoding gene segments that are present in the composition.


In another embodiment, the V-segment and J-segment oligonucleotide primers are capable of promoting amplification in said multiplex polymerase chain reaction (PCR) of (i) substantially all template oligonucleotides in the composition to produce a multiplicity of amplified template oligonucleotides, said multiplicity of amplified template nucleic acid molecules being sufficient to quantify diversity of the template oligonucleotides in the composition, and (ii) substantially all rearranged nucleic acid molecules encoding adaptive immune receptors in the biological sample to produce a multiplicity of amplified rearranged DNA molecules, said multiplicity of amplified rearranged nucleic acid molecules being sufficient to quantify diversity of the rearranged nucleic acid molecules in the DNA from the biological sample.


In one embodiment, each amplified nucleic acid molecule in the plurality of amplified template oligonucleotides and in the plurality of amplified rearranged nucleic acid molecules is less than 1000 nucleotides in length; (B) quantitatively sequencing said amplified template oligonucleotides and said amplified rearranged nucleic acid molecules to quantify (i) a template product number of amplified template oligonucleotides which contain at least one oligonucleotide barcode sequence, and (ii) a rearranged product number of amplified rearranged nucleic acid molecules which lack an oligonucleotide barcode sequence; (C) calculating an amplification factor by dividing the template product number of (B)(i) by the known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence of (A)(2); and (D) dividing the rearranged product number of (B)(ii) by the amplification factor calculated in (C) to quantify the number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample.


In other embodiments, the quantified number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample is the number of unique B cell or unique T cell genome templates in the sample.


The invention includes a method for calculating an average amplification factor in a multiplex PCR assay, comprising: obtaining a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject; contacting said sample with a known quantity of template oligonucleotides comprising a composition as described herein; amplifying the template oligonucleotides and the rearranged nucleic acid molecules from lymphoid cells of the mammalian subject in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides and a plurality of amplified rearranged nucleic acid molecules; sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; and determining an average amplification factor for said multiplex PCR reaction based on an average number of copies of said plurality of amplified template oligonucleotides and said known quantity of said template oligonucleotides.


The method also includes sequencing said plurality of amplified rearranged nucleic acid molecules from lymphoid cells of the mammalian subject to determine for each unique rearranged nucleic acid molecule comprising said plurality, i) a rearranged nucleic acid molecule sequence and (ii) a number of occurrences of said rearranged nucleic acid molecule sequence; and determining the number of lymphoid cells in said sample, based on the average amplification factor for said multiplex PCR reaction and said number of occurrences of said rearranged nucleic acid molecules.


In other embodiments, the method comprises determining the number of lymphoid cells in said sample comprises generating a sum of the number of occurrences of each of said amplified rearranged nucleic acid sequences and dividing said sum by said average amplification factor. In some embodiments, the known quantity is one copy each of said template oligonucleotides. In one embodiment, 100≦a≦500. In another embodiment, 100≦b≦500.


A method is provided for correcting for amplification bias in an multiplex PCR amplification reaction to quantify rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject, comprising: (a) contacting said sample with a composition described herein to generate a template-spiked sample, wherein said templates and said rearranged nucleic acid molecules comprise corresponding V and J region sequences; (b) amplifying said template-spiked sample in a multiplex PCR reaction to obtain a plurality of amplified template oligonucleotides and a plurality of amplified rearranged nucleic acid molecules encoding a plurality of adaptive immune receptors; (c) sequencing said plurality of amplified template oligonucleotides to determine, for each unique template oligonucleotide comprising said plurality, (i) a template oligonucleotide sequence and (ii) a frequency of occurrence of said template oligonucleotide sequence; (d) sequencing said plurality of amplified rearranged nucleic acid molecules encoding one or a plurality of adaptive immune receptors, for each unique rearranged nucleic acid molecules encoding said plurality of adaptive immune receptors comprising said plurality, (i) a rearranged nucleic acid molecule sequence and (ii) a frequency of occurrence of said rearranged nucleic acid molecule sequence; (e) comparing frequency of occurrence of said template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said template oligonucleotide sequences and said expected distribution indicates non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers; (f) generating a set of correction values for a set of template molecules and rearranged nucleic acid molecule sequences amplified by said members of the set of oligonucleotide amplification primers having said indicated non-uniform nucleic acid amplification potential, wherein said set of correction values corrects for amplification bias in said multiplex PCR reaction; and (g) optionally applying said set of correction values to said frequency of occurrence of said rearranged nucleic acid molecule sequences to correct for amplification bias in said multiplex PCR reaction.


The invention comprises a kit, comprising: reagents comprising: a composition comprising a plurality of template oligonucleotides and a set of oligonucleotide primers as described herein; instructions for determining a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers that are capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample that comprises rearranged nucleic acid molecules from lymphoid cells of a mammalian subject.


In another embodiment, the kit comprises instructions for correcting for one or more members of the set of oligonucleotide primers having a non-uniform nucleic acid amplification potential.


In other embodiments, the kit comprises instructions for quantifying the number of unique adaptive immune receptor encoding rearranged nucleic acid molecules in the sample


These and other aspects of the herein described invention embodiments will be evident upon reference to the following detailed description and attached drawings. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference in their entirety, as if each was incorporated individually. Aspects and embodiments of the invention can be modified, if necessary, to employ concepts of the various patents, applications and publications to provide yet further embodiments.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:



FIG. 1 shows a schematic diagram of an exemplary template oligonucleotide for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding an adaptive immune receptor (TCR or BCR). U1, U2, universal adaptor oligonucleotides; B1-4, barcode oligonucleotides; V, variable region oligonucleotide; J, joining region oligonucleotide; R, restriction enzyme recognition site; S, optional stop codon.



FIG. 2 shows post-amplification frequencies of individual TCRB V gene segment sequences amplified from a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560) using an equimolar (unadjusted) pool of 52 PCR primers (SEQ ID NOS:1753-1804) and quantitatively sequenced on the Illumina HiSeg™ DNA sequencer. Frequency in the absence of bias was calculated as 0.0188.



FIG. 3 shows the results of quantitative sequencing following cross-amplification of template oligonucleotides using TCRB V region-specific primers. Y-axis indicates individual amplification primers (SEQ ID NOS:1753-1804) that were present in each separate amplification reaction at twice the molar concentration (2×) of the other primers from the same primer set, for amplification of a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560); X-axis is not labeled but data points are presented in the same order as for Y-axis, with X-axis representing corresponding amplified V gene templates as identified by quantitative sequencing. Black squares indicate no change in degree of amplification with the respective primer present at 2× relative to equimolar concentrations of all other primers; white squares indicate 10-fold increase in amplification; grey squares indicate intermediate degrees (on a greyscale gradient) of amplification between zero and 10-fold. Diagonal line of white squares indicates that 2× concentration for a given primer resulted in about 10-fold increase in amplification of the respective template for most primers. Off-diagonal white squares indicate non-corresponding templates to which certain primers were able to anneal and amplify.



FIG. 4 shows post-amplification frequencies of individual TCRB V gene segment sequences amplified from a standardizing oligonucleotide template composition (an equimolar pool of the templates set forth in SEQ ID NOS:872-1560), using equimolar concentrations of all members of a TCRB amplification primer set (SEQ ID NOS:1753-1804) prior to adjusting for primer utilization bias (black bars, all V-region primers present in equimolar concentrations), and using the same primer set (SEQ ID NOS:1753-1804) after adjusting multiple individual primer concentrations to compensate for bias (grey bars, concentrations of highly efficient primers were reduced and concentrations of poorly efficient primers were increased, see Table 6). Post-amplification frequencies were determined by quantitative sequencing on the Illumina HiSeq™ DNA sequencer.



FIGS. 5
a-5l show TCRB V/J sets (68 V+13 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human T cell receptor β (TCRB) chain polypeptides.



FIGS. 6
a and 6b show TCRG V/J sets (14 V+5 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human T cell receptor γ (TCRG) chain polypeptides.



FIGS. 7
a-7m show IGH V/J sets (127 V+9 J) for use in template compositions that comprise a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ [I], for use in standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of human immunoglobulin heavy (IGH) chain polypeptides.



FIG. 8 shows the results of calculating an amplification factor for each VJ pair in a template composition that was added to a multiplexed PCR amplification of IGH sequences, and then averaging the amplification factor across all synthetic templates to estimate fold sequence coverage across all synthetic template molecules.



FIG. 9 shows a plot of the numbers of B cells that were estimated using a synthetic template composition and amplification factor as described herein, versus the known numbers of B cells used as a source of natural DNA templates.



FIG. 10 shows a pre-PCR amplification sequencing count for each of 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules.



FIG. 11 shows TCRB-primer iterations for synthetic TCRB VJ templates graphed against relative amplification bias.



FIG. 12 shows IGH primer iterations for synthetic IGH VJ templates graphed against relative amplification bias.



FIG. 13 shows the relative amplification bias for 27 synthetic IGH DJ templates of the V gene.



FIGS. 14
a-d show TCRG-primer iterations for 55 synthetic TCRG VJ templates. Relative amplification bias was determined for the TCRG VJ primers prior to chemical bias control correction (FIG. 14a), 1st iteration of chemical correction (FIG. 14b), 2nd iteration of chemical correction (FIG. 14c), and final iteration of chemical correction (FIG. 14d).





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, in certain embodiments and as described herein, compositions and methods that are useful for reliably quantifying large and structurally diverse populations of rearranged genes encoding adaptive immune receptors, such as immunoglobulins (Ig) and/or T cell receptors (TCR). These rearranged genes may be present in a biological sample containing DNA from lymphoid cells of a subject or biological source, including a human subject.


A “rearranged nucleic acid molecule,” as used herein, can include any genomic DNA, cDNA, or mRNA obtained directly or indirectly from a lymphoid cell line that includes sequences that encode a rearranged adaptive immune receptor.


Disclosed herein are unexpectedly advantageous approaches for the standardization and calibration of complex oligonucleotide primer sets that are used in multiplexed nucleic acid amplification reactions to generate a population of amplified rearranged DNA molecules from a biological sample containing rearranged genes encoding adaptive immune receptors, prior to quantitative high throughput sequencing of such amplified products. Multiplexed amplification and high throughput sequencing of rearranged TCR and BCR (IG) encoding DNA sequences are described, for example, in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S. Application No. 61/550,311, and U.S. Application No. 61/569,118; accordingly these disclosures are incorporated by reference and may be adapted for use according to the embodiments described herein.


Briefly and according to non-limiting theory, the present compositions and methods overcome inaccuracies that may arise in current methods which quantify TCR and BCR gene diversity by sequencing the products of multiplexed nucleic acid amplification. To accommodate the vast diversity of TCR and BCR gene template sequences that may be present in a biological sample, oligonucleotide primer sets used in multiplexed amplification reactions typically comprise a wide variety of sequence lengths and nucleotide compositions (e.g., GC content). Consequently, under a given set of amplification reaction conditions, the efficiencies at which different primers anneal to and support amplification of their cognate template sequences may differ markedly, resulting in non-uniform utilization of different primers, which leads to artifactual biases in the relative quantitative representation of distinct amplification products.


For instance, relative overutilization of some highly efficient primers results in overrepresentation of certain amplification products, and relative underutilization of some other low-efficiency primers results in underrepresentation of certain other amplification products. Quantitative determination of the relative amount of each template species that is present in the lymphoid cell DNA-containing sample, which is achieved by sequencing the amplification products, may then yield misleading information with respect to the actual relative representation of distinct template species in the sample prior to amplification. In pilot studies, for example, it was observed that multiplexed PCR, using a set of oligonucleotide primers designed to be capable of amplifying a sequence of every possible human TCRB variable (V) region gene from human lymphoid cell DNA templates, did not uniformly amplify TCRB V gene segments. Instead, some V gene segments were relatively overamplified (representing ˜10% of total sequences) and other V gene segments were relatively underamplified (representing about 4×10−3% of total sequences); see also, e.g., FIG. 2.


To overcome the problem of such biased utilization of subpopulations of amplification primers, the present disclosure provides for the first time a template composition and method for standardizing the amplification efficiencies of the members of an oligonucleotide primer set, where the primer set is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptors (TCR or Ig) in a biological sample that comprises DNA from lymphoid cells. The template composition comprises a plurality of diverse template oligonucleotides of general formula (I) as described in greater detail herein:





5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  (1)


The constituent template oligonucleotides, of which the template composition is comprised, are diverse with respect to the nucleotide sequences of the individual template oligonucleotides. The individual template oligonucleotides thus may vary in nucleotide sequence considerably from one another as a function of significant sequence variability amongst the large number of possible TCR or BCR variable (V) and joining (J) region polynucleotides. Sequences of individual template oligonucleotide species may also vary from one another as a function of sequence differences in U1, U2, B (B1, B2, B3, and B4) and R oligonucleotides that are included in a particular template within the diverse plurality of templates.


In certain embodiments barcode oligonucleotides B (B1, B2, B3, and B4) may independently and optionally comprise an oligonucleotide barcode sequence, wherein the barcode sequence is selected to identify uniquely a particular paired combination of a particular unique V oligonucleotide sequence and a particular unique J oligonucleotide sequence. The relative positioning of the barcode oligonucleotides B1 and B4 and universal adaptors advantageously permits rapid identification and quantification of the amplification products of a given unique template oligonucleotide by short sequence reads and paired-end sequencing on automated DNA sequencers (e.g., Illumina HiSeg™ or Illumina MiSEQ®, or GeneAnalyzer™-2, Illumina Corp., San Diego, Calif.). In particular, these and related embodiments permit rapid high-throughput determination of specific combinations of a V and a J sequence that are present in an amplification product, thereby to characterize the relative amplification efficiency of each V-specific primer and each J-specific primer that may be present in a primer set which is capable of amplifying rearranged TCR or BCR encoding DNA in a sample. Verification of the identities and/or quantities of the amplification products may be accomplished by longer sequence reads, optionally including sequence reads that extend to B2.


In use, each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount, which in certain preferred embodiments includes preparations in which the molar concentrations of all oligonucleotides are within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 percent of each other. In certain other preferred embodiments as provided herein, template olignucleotides are regarded as being present in a substantially equimolar amount when the molar concentrations of all oligonucleotides are within one order of magnitude of each other, including preparations in which the greatest molar concentration that any given unique template oligonucleotide species may have is no more than 1000, 900, 800, 700, 600, 500, 440, 400, 350, 300, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40 or 30 percent greater than the molar concentration at which is present the unique template oligonucleotide species having the lowest concentration in the composition.


In a similar manner, certain embodiments disclosed herein contemplate oligonucleotide primer sets for amplification, in which sets the component primers may be provided in substantially equimolar amounts. As also described herein, according to certain other embodiments, the concentration of one or more primers in a primer set may be adjusted deliberately so that certain primers are not present in equimolar amounts or in substantially equimolar amounts.


The template composition described herein may, in preferred embodiments, be employed as a nucleic acid amplification (e.g., PCR) template to characterize an oligonucleotide primer set, such as the complex sets of V-segment and J-segment oligonucleotide primers that may be used in multiplexed amplification of rearranged TCR or Ig genes, for example, a primer set as provided herein or any of the primer sets described in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S. Application No. 61/550,311, and U.S. Application No. 61/569,118, or the like.


Preferably all templates in the template composition for standardizing amplification efficiency, which is described herein and which comprises a plurality of template oligonucleotides having diverse sequences and the general structure of general formula (I), are oligonucleotides of substantially identical length. Without wishing to be bound by theory, it is generally believed that in a nucleic acid amplification reaction such as a polymerase chain reaction (PCR), template DNA length can influence the amplification efficiency of oligonucleotide primers by affecting the kinetics of interactions between primers and template DNA molecules to which the primers anneal by specific, nucleotide sequence-directed hybridization through nucleotide base complementarity. Longer templates are generally regarded as operating less efficiently than relatively shorter templates. In certain embodiments, the presently disclosed template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of TCR or BCR comprises a plurality of template oligonucleotides of general formula (I) as provided herein, wherein the template oligonucleotides are of an identical length or a substantially identical length that is not more than 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150 or 100 nucleotides in length, including all integer values therebetween.


Accordingly, in order to reduce, remove or minimize the potential contribution to undesirable biases in oligonucleotide primer utilization during multiplexed amplification, preferred embodiments disclosed herein may employ a plurality of template oligonucleotides wherein all template oligonucleotides in the sequence-diverse plurality of template oligonucleotides are of substantially identical length. A plurality of template oligonucleotides may be of substantially identical length when all (e.g., 100%) or most (e.g., greater than 50%) such oligonucleotides in a template composition are oligonucleotides that each have the exact same number of nucleotides, or where one or more template oligonucleotides in the template composition may vary in length from one another by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 60, 70, 80, 90 or 100 nucleotides in length. It will be appreciated from the present disclosure that even in situations where not all template oligonucleotides have exactly the same length, the herein described compositions and methods may still be employed to determine and optionally correct non-uniform nucleic acid amplification potential among members of a set of oligonucleotide amplification primers.


According to certain presently disclosed embodiments, (i) each template oligonucleotide of the presently described template composition is provided in a substantially equimolar amount, (ii) the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptor comprises a plurality of V-segment oligonucleotide primers that are provided in substantially equimolar amounts, (iii) the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of adaptive immune receptor comprises a plurality of J-segment oligonucleotide primers that are provided in substantially equimolar amounts, and (iv) amplification scales linearly with the number of starting templates of a given sequence.


Hence, an expected yield for the amplification product of each template can be calculated and arbitrarily assigned a theoretical uniform amplification level value of 100%. After permitting the primer sets to amplify the sequences of the template oligonucleotides in an amplification reaction, any statistically significant deviation from substantial equivalence that is observed among the relative proportions of distinct amplification products indicates that there has been bias (i.e., unequal efficiency) in primer utilization during amplification. In other words, quantitative differences in the relative amounts of different amplification products that are obtained indicate that not all primers in the primer set have amplified their respective templates with comparable efficiencies. Certain embodiments contemplate assigning a range of tolerances above and below a theoretical 100% yield, such that any amplification level value within the range of tolerances may be regarded as substantial equivalence.


In certain such embodiments, the range of amplification product yields may be regarded as substantially equivalent when the product yields are all within the same order of magnitude (e.g., differ by less than a factor of ten). In certain other such embodiments, the range of amplification product yields may be regarded as substantially equivalent when the product yields differ from one another by no more than nine-fold, eight-fold, seven-fold, six-fold, five-fold, four-fold or three-fold. In certain other embodiments, product yields that may be regarded as being within an acceptable tolerance range may be more or less than a calculated 100% yield by as much as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 100, or 200%.


Because the method involves determining the nucleotide sequence of each amplification product using known techniques as part of the quantification process, the primer(s) responsible for amplification of each unique (as defined by sequence) product can be identified and their relative amount(s) in the primer set can be adjusted (e.g., increased or decreased in a statistically significant manner) accordingly. The concentrations of excessively efficient primers in the primer set can be reduced relative to the concentrations of other primers, so that the level of specific amplification by such primers of templates in the herein described template composition is substantially equivalent to the level of amplification delivered by the majority of primers which deliver the theoretical uniform amplification level, or which deliver a level that is within the acceptable tolerance range. The concentrations of poorly efficient primers in the primer set can be increased relative to the concentrations of other primers, so that the level of specific amplification by such primers of templates in the herein described template composition is substantially equivalent to the level of amplification delivered by the majority of primers which deliver the theoretical uniform amplification level, or which deliver a level within the acceptable tolerance range.


Accordingly and as described herein, there are thus presently provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is designed to amplify coding sequences for a complete repertoire of a given TCR or Ig chain, a method for determining non-uniform amplification efficiency (“non-uniform amplification potential”) among members of such a primer set, and a method for correcting such non-uniform amplification potential. By providing the herein described template composition as a standard with which oligonucleotide primer sets can be calibrated, and in particular embodiments, where each template oligonucleotide is present in a substantially equimolar amount so that individual primer concentrations can be adjusted to yield substantially uniform amplification of a structurally diverse array of amplification products, the present disclosure thus advantageously overcomes the above described problems associated with biases in individual primer efficiency.


Using the compositions and methods provided herein, individual primers may be identified as having a non-uniform amplification potential by virtue of their promotion of non-uniform amplification as evidenced by increased (e.g., greater in a statistically significant manner) or decreased (e.g., lower in a statistically significant manner) amplification of specific template oligonucleotides relative to the uniform amplification level, despite the presence in an amplification reaction (i) of all template oligonucleotides in substantially equimolar amounts to one another, (ii) of all V-segment primers in substantially equimolar amounts to one another, and (iii) of all J-segment primers in substantially equimolar amounts to one another.


The relative concentrations of such primers may then be decreased or increased to obtain a modified complete set of primers in which all primers are not present in substantially equimolar amounts relative to one another, to compensate, respectively, for the increased or decreased level of amplification relative to the uniform amplification level. The primer set may then be retested for its ability to amplify all sequences in the herein disclosed template composition at the uniform amplification level, or within an acceptable tolerance range.


The process of testing modified primer sets for their ability to amplify the herein disclosed template composition, in which all template oligonucleotides are provided in substantially equimolar amounts to one another, may be repeated iteratively until all products are amplified at the uniform amplification level, or within an acceptable tolerance range. By such a process using the herein disclosed template composition, the amplification efficiency of an oligonucleotide primer set may be standardized, where the primer set is capable of amplifying productively rearranged DNA encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject.


Additionally or alternatively, according to the present disclosure it may be determined whether any particular pair of oligonucleotide amplification primers exhibits non-uniform amplification potential, such as increased or decreased amplification of the template composition relative to a uniform amplification level exhibited by a majority of the oligonucleotide amplification primers, and a normalizing adjustment factor can then be used to calculate, respectively, a proportionately decreased or increased frequency of occurrence of the amplification products that are promoted by each such amplification primer pair. The present template compositions thus, in certain embodiments, provide a method of correcting for non-uniform nucleic acid amplification potential among members of a set of oligonucleotide amplification primers.


Certain such embodiments may advantageously permit correction, calibration, standardization, normalization, or the like, of data that are obtained as a consequence of non-uniform amplification events. Thus, the present embodiments permit correction of data inaccuracies, such as may result from biased oligonucleotide primer utilization, without the need for iteratively adjusting the concentrations of one or more amplification primers and repeating the steps of amplifying the herein described template compositions. Advantageous efficiencies may thus be obtained where repetition of the steps of quantitatively sequencing the amplification products can be avoided. Certain other contemplated embodiments may, however, employ such an iterative approach.


Accordingly, and as described herein, there is presently provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set, along with methods for using such a template composition to determine non-uniform nucleic acid amplification potential (e.g., bias) among individual members of the oligonucleotide primer set. Also described herein are methods for correcting such non-uniform nucleic acid amplification potentials (e.g., biases) among members of the oligonucleotide primer set. These and related embodiments exploit previously unrecognized benefits that are obtained by calibrating complex oligonucleotide primer sets to compensate for undesirable amplification biases using the template composition for standardizing amplification efficiency having the features described herein, and will find uses in improving the accuracy with which specific clonotypic TCR and/or Ig encoding DNA sequences can be quantified, relative to previously described methodologies.


As also noted above and described elsewhere herein, prior to the present disclosure there existed unsatisfactory and difficult-to-discern discrepancies between (i) the actual quantitative distribution of rearranged adaptive immune receptor-encoding DNA templates having unique sequences in a biological sample comprising lymphoid cell DNA from a subject, and (ii) the relative representation of nucleic acid amplification products of such templates, following multiplexed amplification using a complex set of oligonucleotide amplification primers designed to amplify substantially all productively rearranged adaptive immune receptor genes in the sample. Due to, e.g., the heterogeneity of both the template population and the amplification primer set, and as shown herein, significant disparities in the amplification efficiencies of different amplification primers may be common, leading to substantial skewing in the relative proportions of amplification products that are obtained and quantitatively sequenced following an amplification reaction.


Templates and Primers


According to certain preferred embodiments there is thus provided a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA (which in certain embodiments may refer to productively rearranged DNA but which in certain other embodiments need not be so limited) encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject, the template composition comprising a plurality of template oligonucleotides of general formula (I):





5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  (I)


as provided herein. In certain preferred embodiments each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount, which in certain embodiments and as noted above may refer to a composition in which each of the template oligonucleotides is present at an equimolar concentration or at a molar concentration that deviates from equimolar by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 50, 60, 70, 80, 90, 100 or 200% on a molar basis, and which in certain other embodiments may refer to a composition in which all of the template oligonucleotides are present at molar concentrations that are within an order of magnitude of one another. The plurality of templates may comprise at least 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 or more discrete oligonucleotide species each having a distinct nucleotide sequence, including every intermediate integer value therebetween.


The herein disclosed template composition thus comprises a plurality of template oligonucleotides of general formula:





5′-U1-B1-V-B2-R-B3-J-B4-U2-3′  [I]


wherein, briefly and as elaborated in greater detail elsewhere herein, according to certain preferred embodiments:


V is a polynucleotide comprising at least 20, 30, 60, 90, 120, 150, 180, or 210, and not more than 1000, 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof, and in each of the plurality of template oligonucleotide sequences V comprises a unique oligonucleotide sequence;


J is a polynucleotide comprising at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and in each of the plurality of template oligonucleotide sequences J comprises a unique oligonucleotide sequence;


U1 and U2 are each either nothing or each comprise an oligonucleotide having, independently, a sequence that is selected from (i) a universal adaptor oligonucleotide sequence, and (ii) a sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to the universal adaptor oligonucleotide sequence;


B1, B2, B3, and B4 are each independently either nothing or each comprise an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 contiguous nucleotides (including all integer values therebetween), wherein in each of the plurality of template oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, or identifies as a paired combination, (i) the unique V oligonucleotide sequence of the template oligonucleotide and (ii) the unique J oligonucleotide sequence of the template oligonucleotide; and


R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from V, J, U1, U2, B1, B2, B3, and B4.


In some embodiments, the template oligonucleotide composition comprises additional non-coding or random oligonucleotides. These oligonucleotides may be inserted in various sections between or within the components in the general formula T (5′-U1-B1-V-B2-R-B3-J-B4-U2-3′) and be of various lengths in size.


In one embodiment, a is 1 to a number of maximum V gene segments in the mammalian genome of the subject. In another embodiment, b is 1 to a number of maximum J gene segments in the mammalian genome of the subject. In other embodiments, a is 1 or b is 1. In some embodiments, a can range from 1 V gene segment to 54 V gene segments for TCRA, 1-76 V gene segments for TCRB, 1-15 V gene segments for TCRG, 1-7 V gene segments for TCRD, 1-165 V gene segments for IGH, 1-111 for IGK, or 1-79 V gene segments for IGL. In other embodiments, b can range from 1 J gene segment to 61 J gene segments for TCRA, 1-14 J gene segments for TCRB, 1-5 J gene segments for TCRG, 1-4 gene segments for TCRD, 1-9 J gene segments for IGH, 1-5 J gene segments for IGK, or 1-11 J gene segments for IGL.


The table below lists the number of V gene segments (a) and J gene segments (b) for each human adaptive immune receptor loci, including functional V and J segments.



















functional V

Functional J



V segments*
segments**
J segments*
segments**




















TCRA
54
45
61
50


TCRB
76
48
14
13


TCRG
15
6
5
5


TCRD
7
7
4
4


IGH
165
51
9
6


IGK
111
44
5
5


IGL
79
33
11
7





*Total variable and joining segment genes


**Variable and joining segment genes with at least one functional allele






In some embodiments, the J polynucleotide comprises at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor J constant region, or the complement thereof.


In certain embodiments the plurality of template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in a subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment.


The presently contemplated invention is not intended to be so limited, however, such that in certain embodiments, a substantially fewer number of template oligonucleotides may advantageously be used. In these and related embodiments, where a is the number of unique adaptive immune receptor V region-encoding gene segments in a subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, the minimum number of unique oligonucleotide sequences of which the plurality of template oligonucleotides is comprised may be determined by whichever is the larger of a and b, so long as each unique V polynucleotide sequence and each unique J polynucleotide sequence is present in at least one template oligonucleotide in the template composition. Thus, according to certain related embodiments the template composition may comprise at least one template oligonucleotide for each unique V polynucleotide, e.g., that includes a single one of each unique V polynucleotide according to general formula (I), and at least one template oligonucleotide for each unique J polynucleotide, e.g., that includes a single one of each unique J polynucleotide according to general formula (I).


In certain other embodiments, the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal.


That is, in certain embodiments, the template composition comprises at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each V-segment oligonucleotide primer can specifically hybridize, and at least one template oligonucleotide having an oligonucleotide sequence of general formula (I) to which each J-segment oligonucleotide primer can specifically hybridize.


According to such embodiments the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding one or a plurality of adaptive immune receptors comprises a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers. The plurality of a′ V-segment oligonucleotide primers are each independently capable of annealing or specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment. The plurality of b′ 0.1-segment oligonucleotide primers are each independently capable of annealing or specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.


In some embodiments, a′ is the same as a (described above for template oligonucleotides). In other embodiments, b′ is the same as b (described above for template oligonucleotides).


Thus, in certain embodiments and as also discussed elsewhere herein, the present template composition may be used in amplification reactions with amplification primers that are designed to amplify all rearranged adaptive immune receptor encoding gene sequences, including those that are not expressed, while in certain other embodiments the template composition and amplification primers may be designed so as not to yield amplification products of rearranged genes that are not expressed (e.g., pseudogenes, orphons). It will therefore be appreciated that in certain embodiments only a subset of rearranged adaptive immune receptor encoding genes may desirably be amplified, such that suitable amplification primer subsets may be designed and employed to amplify only those rearranged V−J sequences that are of interest. In these and related embodiments, correspondingly, a herein described template composition comprising only a subset of interest of rearranged V−J rearranged sequences may be used, so long as the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal. The actual number of template oligonucleotides in the template composition may thus vary considerably among the contemplated embodiments, as a function of the amplification primer set that is to be used.


For example, in certain related embodiments, in the template composition the plurality of template oligonucleotides may have a plurality of sequences of general formula (I) that is selected from (1) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOS, respectively, as set forth in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13; (2) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIG. 6 as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5; and (3) the plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIG. 7 as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


In certain embodiments, V is a polynucleotide sequence that encodes at least 10-70 contiguous amino acids of an adaptive immune receptor V-region, or the complement thereof; J is a polynucleotide sequence that encodes at least 5-30 contiguous amino acids of an adaptive immune receptor J-region, or the complement thereof; U1 and U2 are each either nothing or comprise an oligonucleotide comprising a nucleotide sequence that is selected from (i) a universal adaptor oligonucleotide sequence, and (ii) a sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to the universal adaptor oligonucleotide sequence; B1, B2, B3 and B4 are each independently either nothing or each comprise an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleotides, wherein in each of the plurality of oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence and (ii) the unique J oligonucleotide sequence; and R is either nothing or comprises a restriction enzyme recognition site that comprises an oligonucleotide sequence that is absent from V, J, U1, U2, B1, B2, B3, and B4. In certain preferred embodiments the plurality of template oligonucleotides comprises at least either a or b unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises a plurality of template oligonucleotides that comprise at least whichever is the greater of a or b unique template oligonucleotide sequences, provided that at least one V polynucleotide corresponding to each V region-encoding gene segment and at least one J polynucleotide corresponding to each J region-encoding gene segment is included.


A large number of adaptive immune receptor variable (V) region and joining (J) region gene sequences are known as nucleotide and/or amino acid sequences, including non-rearranged genomic DNA sequences of TCR and Ig loci, and productively rearranged DNA sequences at such loci and their encoded products, and also including pseudogenes at these loci, and also including related orphons. See, e.g., U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; PCT/US2011/049012. These and other sequences known to the art may be used according to the present disclosure for the design and production of template oligonucleotides to be included in the presently provided template composition for standardizing amplification efficiency of an oligonucleotide primer set, and for the design and production of the oligonucleotide primer set that is capable of amplifying rearranged DNA encoding TCR or Ig polypeptide chains, which rearranged DNA may be present in a biological sample comprising lymphoid cell DNA.


In formula (I), V is a polynucleotide sequence of at least 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400 or 450 and not more than 1000, 900, 800, 700, 600 or 500 contiguous nucleotides of an adaptive immune receptor (e.g., TCR or BCR) variable (V) region gene sequence, or the complement thereof, and in each of the plurality of oligonucleotide sequences V comprises a unique oligonucleotide sequence. Genomic sequences for TCR and BCR V region genes of humans and other species are known and available from public databases such as Genbank; V region gene sequences include polynucleotide sequences that encode the products of expressed, rearranged TCR and BCR genes and also include polynucleotide sequences of pseudogenes that have been identified in the V region loci. The diverse V polynucleotide sequences that may be incorporated into the presently disclosed templates of general formula (I) may vary widely in length, in nucleotide composition (e.g., GC content), and in actual linear polynucleotide sequence, and are known, for example, to include “hot spots” or hypervariable regions that exhibit particular sequence diversity.


The polynucleotide V in general formula (I) (or its complement) includes sequences to which members of oligonucleotide primer sets specific for TCR or BCR genes can specifically anneal. Primer sets that are capable of amplifying rearranged DNA encoding a plurality of TCR or BCR are described, for example, in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or as described therein may be designed to include oligonucleotide sequences that can specifically hybridize to each unique V gene and to each J gene in a particular TCR or BCR gene locus (e.g., TCR α, β, γ or γ, or IgH μ, γ, δ, α or ε, or IgL κ or λ). For example by way of illustration and not limitation, an oligonucleotide primer of an oligonucleotide primer amplification set that is capable of amplifying rearranged DNA encoding one or a plurality of TCR or BCR may typically include a nucleotide sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides, or more, and may specifically anneal to a complementary sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides of a V or a J polynucleotide as provided herein. In certain embodiments the primers may comprise at least 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides, and in certain embodiment the primers may comprise sequences of no more than 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 contiguous nucleotides. Primers and primer annealing sites of other lengths are also expressly contemplated, as disclosed herein.


The entire polynucleotide sequence of each polynucleotide V in general formula (I) may, but need not, consist exclusively of contiguous nucleotides from each distinct V gene. For example and according to certain embodiments, in the template composition described herein, each polynucleotide V of formula (I) need only have at least a region comprising a unique V oligonucleotide sequence that is found in one V gene and to which a single V region primer in the primer set can specifically anneal. Thus, the V polynucleotide of formula (I) may comprise all or any prescribed portion (e.g., at least 15, 20, 30, 60, 90, 120, 150, 180 or 210 contiguous nucleotides, or any integer value therebetween) of a naturally occurring V gene sequence (including a V pseudogene sequence) so long as at least one unique V oligonucleotide sequence region (the primer annealing site) is included that is not included in any other template V polynucleotide.


It may be preferred in certain embodiments that the plurality of V polynucleotides that are present in the herein described template composition have lengths that simulate the overall lengths of known, naturally occurring V gene nucleotide sequences, even where the specific nucleotide sequences differ between the template V region and any naturally occurring V gene. The V region lengths in the herein described templates may differ from the lengths of naturally occurring V gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent.


The V polynucleotide in formula (I) may thus, in certain embodiments, comprise a nucleotide sequence having a length that is the same or similar to that of the length of a typical V gene from its start codon to its CDR3 encoding region and may, but need not, include a nucleotide sequence that encodes the CDR3 region. CDR3 encoding nucleotide sequences and sequence lengths may vary considerably and have been characterized by several different numbering schemes (e.g., Lefranc, 1999 The Immunologist 7:132; Kabat et al., 1991 In: Sequences of Proteins of Immunological Interest, NIH Publication 91-3242; Chothia et al., 1987 J. Mol. Biol. 196:901; Chothia et al., 1989 Nature 342:877; Al-Lazikani et al., 1997 J. Mol. Biol. 273:927; see also, e.g., Rock et al., 1994 J. Exp. Med. 179:323; Saada et al., 2007 Immunol. Cell Biol. 85:323).


Briefly, the CDR3 region typically spans the polypeptide portion extending from a highly conserved cysteine residue (encoded by the trinucleotide codon TGY; Y=T or C) in the V segment to a highly conserved phenylalanine residue (encoded by TTY) in the J segment of TCRs, or to a highly conserved tryptophan (encoded by TGG) in IGH. More than 90% of natural, productive rearrangements in the TCRB locus have a CDR3 encoding length by this criterion of between 24 and 54 nucleotides, corresponding to between 9 and 17 encoded amino acids. The CDR3 lengths of the presently disclosed synthetic template oligonucleotides should, for any given TCR or BCR locus, fall within the same range as 95% of naturally occurring rearrangements. Thus, for example, in a herein described template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying rearranged DNA encoding a plurality of TCRB polypeptides, the CDR3 encoding portion of the V polynucleotide may have a length of from 24 to 54 nucleotides, including every integer therebetween. The numbering schemes for CDR3 encoding regions described above denote the positions of the conserved cysteine, phenylalanine and tryptophan codons, and these numbering schemes may also be applied to pseudogenes in which one or more codons encoding these conserved amino acids may have been replaced with a codon encoding a different amino acid. For pseudogenes which do not use these conserved amino acids, the CDR3 length may be defined relative to the corresponding position at which the conserved residue would have been observed absent the substitution, according to one of the established CDR3 sequence position numbering schemes referenced above.


It may also be preferred, in certain embodiments, that the plurality of V polynucleotides that are present in the herein described template composition have nucleotide compositions (e.g., percentage of GC content) that simulate the overall nucleotide compositions of known, naturally occurring V gene sequences, even where the specific nucleotide sequences differ. Such template V region nucleotide compositions may differ from the nucleotide compositions of naturally occurring V gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent. Optionally and according to certain embodiments, the V polynucleotide of the herein described template oligonucleotide includes a stop codon at or near the 3′ end of V in general formula (I).


In formula (I) J is a polynucleotide comprising at least 15-30, 31-60, 61-90, 91-120, or 120-150, and not more than 600, 500, 400, 300 or 200 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof, and in each of the plurality of oligonucleotide sequences J comprises a unique oligonucleotide sequence.


The polynucleotide J in general formula (I) (or its complement) includes sequences to which members of oligonucleotide primer sets specific for TCR or BCR genes can specifically anneal. Primer sets that are capable of amplifying rearranged DNA encoding a plurality of TCR or BCR are described, for example, in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or as described therein may be designed to include oligonucleotide sequences that can specifically hybridize to each unique V gene and to each unique J gene in a particular TCR or BCR gene locus (e.g., TCR α, β, γ or δ, or IgH μ, γ, δ, α or ε, or IgL κ or λ).


The entire polynucleotide sequence of each polynucleotide J in general formula (I) may, but need not, consist exclusively of contiguous nucleotides from each distinct J gene. For example and according to certain embodiments, in the template composition described herein, each polynucleotide J of formula (I) need only have at least a region comprising a unique J oligonucleotide sequence that is found in one J gene and to which a single V region primer in the primer set can specifically anneal. Thus, the V polynucleotide of formula (I) may comprise all or any prescribed portion (e.g., at least 15, 20, 30, 60, 90, 120, 150, 180 or 210 contiguous nucleotides, or any integer value therebetween) of a naturally occurring V gene sequence (including a V pseudogene sequence) so long as at least one unique V oligonucleotide sequence region (the primer annealing site) is included that is not included in any other template J polynucleotide.


It may be preferred in certain embodiments that the plurality of J polynucleotides that are present in the herein described template composition have lengths that simulate the overall lengths of known, naturally occurring J gene nucleotide sequences, even where the specific nucleotide sequences differ between the template J region and any naturally occurring J gene. The J region lengths in the herein described templates may differ from the lengths of naturally occurring J gene sequences by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 percent.


The J polynucleotide in formula (I) may thus, in certain embodiments, comprise a nucleotide sequence having a length that is the same or similar to that of the length of a typical naturally occurring J gene and may, but need not, include a nucleotide sequence that encodes the CDR3 region, as discussed above.


Genomic sequences for TCR and BCR J region genes of humans and other species are known and available from public databases such as Genbank; J region gene sequences include polynucleotide sequences that encode the products of expressed and unexpressed rearranged TCR and BCR genes. The diverse J polynucleotide sequences that may be incorporated into the presently disclosed templates of general formula (I) may vary widely in length, in nucleotide composition (e.g., GC content), and in actual linear polynucleotide sequence.


Alternatives to the V and J sequences described herein, for use in construction of the herein described template oligonucleotides and/or V-segment and J-segment oligonucleotide primers, may be selected by a skilled person based on the present disclosure using knowledge in the art regarding published gene sequences for the V- and J-encoding regions of the genes for each TCR and Ig subunit. Reference Genbank entries for human adaptive immune receptor sequences include: TCRα: (TCRA/D): NC000014.8 (chr14:22090057 . . . 23021075); TCRβ: (TCRB): NC000007.13 (chr7:141998851 . . . 142510972); TCRγ: (TCRG): NC000007.13 (chr7:38279625 . . . 38407656); immunoglobulin heavy chain, IgH (IGH): NC000014.8 (chr14: 106032614 . . . 107288051); immunoglobulin light chain-kappa, IgLκ (IGK): NC000002.11 (chr2: 89156874 . . . 90274235); and immunoglobulin light chain-lambda, IgLλ (IGL): NC000022.10 (chr22: 22380474 . . . 23265085). Reference Genbank entries for mouse adaptive immune receptor loci sequences include: TCRβ: (TCRB): NC000072.5 (chr6: 40841295 . . . 41508370), and immunoglobulin heavy chain, IgH (IGH): NC000078.5 (chr12:114496979 . . . 117248165).


Template and primer design analyses and target site selection considerations can be performed, for example, using the OLIGO primer analysis software and/or the BLASTN 2.0.5 algorithm software (Altschul et al., Nucleic Acids Res. 1997, 25(17):3389-402), or other similar programs available in the art.


Accordingly, based on the present disclosure and in view of these known adaptive immune receptor gene sequences and oligonucleotide design methodologies, for inclusion in the instant template oligonucleotides those skilled in the art can design a plurality of V region-specific and J region-specific polynucleotide sequences that each independently contain oligonucleotide sequences that are unique to a given V and J gene, respectively. Similarly, from the present disclosure and in view of known adaptive immune receptor sequences, those skilled in the art can also design a primer set comprising a plurality of V region-specific and J region-specific oligonucleotide primers that are each independently capable of annealing to a specific sequence that is unique to a given V and J gene, respectively, whereby the plurality of primers is capable of amplifying substantially all V genes and substantially all J genes in a given adaptive immune receptor-encoding locus (e.g., a human TCR or IgH locus). Such primer sets permit generation, in multiplexed (e.g., using multiple forward and reverse primer pairs) PCR, of amplification products that have a first end that is encoded by a rearranged V region-encoding gene segment and a second end that is encoded by a J region-encoding gene segment.


Typically and in certain embodiments, such amplification products may include a CDR3-encoding sequence although the invention is not intended to be so limited and contemplates amplification products that do not include a CDR3-encoding sequence. The primers may be preferably designed to yield amplification products having sufficient portions of V and J sequences and/or of V−J barcode (B) sequences as described herein, such that by sequencing the products (amplicons), it is possible to identify on the basis of sequences that are unique to each gene segment (i) the particular V gene, and (ii) the particular J gene in the proximity of which the V gene underwent rearrangement to yield a functional adaptive immune receptor-encoding gene. Typically, and in preferred embodiments, the PCR amplification products will not be more than 600 base pairs in size, which according to non-limiting theory will exclude amplification products from non-rearranged adaptive immune receptor genes. In certain other preferred embodiments the amplification products will not be more than 500, 400, 300, 250, 200, 150, 125, 100, 90, 80, 70, 60, 50, 40, 30 or 20 base pairs in size, such as may advantageously provide rapid, high-throughput quantification of sequence-distinct amplicons by short sequence reads.


In certain preferred embodiments, the plurality of template oligonucleotides comprises at least a or at least b unique oligonucleotide sequences, whichever is larger, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject, and the composition comprises at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide. It will be appreciated that because the template oligonucleotides have a plurality of oligonucleotide sequences of general formula (I), which includes a V polynucleotide and which also includes a J polynucleotide, that the template composition may thus comprise fewer than (a×b) unique oligonucleotide sequences, but will comprise at least the larger of a or b unique oligonucleotide sequences. Accordingly, the composition may accommodate at least one occurrence of each unique V polynucleotide sequence and at least one occurrence of each unique J polynucleotide sequence, where in some instances the at least one occurrence of a particular unique V polynucleotide will be present in the same template oligonucleotide in which may be found the at least one occurrence of a particular unique J polynucleotide. Thus, for example, “at least one template oligonucleotide for each unique V polynucleotide and at least one template oligonucleotide for each unique J polynucleotide” may in certain instances refer to a single template oligonucleotide in which one unique V polynucleotide and one unique J polynucleotide are present.


As also disclosed elsewhere herein, in certain other preferred embodiments the template composition comprises at least one template oligonucleotide to which each oligonucleotide amplification primer in an amplification primer set can anneal. Hence, the composition may comprise fewer than a or b unique sequences, for example, where an amplification primer set may not include a unique primer for every possible V and/or J sequence.


It will be noted that certain embodiments contemplate a template composition for standardizing the amplification efficiency of an oligonucleotide primer set that is capable of amplifying productively rearranged DNA encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject as provided herein, wherein the template composition comprises a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula 5′-U1-B1-V-B2-R-B3-J-B4-U2-3′ (I) as described herein. According to these and related embodiments and as also described elsewhere herein, the set of oligonucleotide amplification primers that is capable of amplifying productively rearranged DNA may exclude any oligonucleotide primers that specifically hybridize to a V-region pseudogene or orphon or to a J-region pseudogene or orphon. Hence, in such embodiments the template composition will desirably exclude template oligonucleotides of general formula (I) in which unique V oligonucleotide sequences and/or unique J oligonucleotide sequences are sequences that are, respectively, unique to a V-region pseudogene or orphon or to a J-region pseudogene or orphon.


An exemplary TCRB template composition comprising 858 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:3157-4014. Another exemplary TCRB template composition comprising 871 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:1-871. Another exemplary TCRB template composition comprising 689 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:872-1560.


An exemplary TCRG template composition comprising 70 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4015-4084. An exemplary TCRG template composition comprising 70 distinct template oligonucleotides is also disclosed in the Sequence Listing in SEQ ID NOS:1561-1630.


An exemplary IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200. An exemplary IGH template composition comprising 1116 distinct template oligonucleotides is also disclosed in the Sequence Listing in SEQ ID NOS:1805-2920.


Also disclosed herein are exemplary sets of V and J polynucleotides for inclusion in the herein described template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). For TCRB, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRB V and J sequences set forth in at least one set of 68 TCRB V and J SEQ ID NOS, respectively, as set forth in FIG. 5 as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13.


For TCRG, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the TCRG V and J sequences set forth in at least one set of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIG. 6 as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5.


For IGH, the plurality of template oligonucleotides may have a plurality of oligonucleotide sequences of general formula (I) in which polynucleotides V and J have the IGH V and J sequences set forth in at least one set of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIG. 7 as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


Primers


According to the present disclosure, oligonucleotide primers are provided in an oligonucleotide primer set that comprises a plurality of V-segment primers and a plurality of J-segment primers, where the primer set is capable of amplifying rearranged DNA encoding adaptive immune receptors in a biological sample that comprises lymphoid cell DNA. Suitable primer sets are known in the art and disclosed herein, for example, the primer sets in U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012; or the like; or those shown in Table 1. In certain embodiments the primer set is designed to include a plurality of V sequence-specific primers that includes, for each unique V region gene (including pseudogenes) in a sample, at least one primer that can specifically anneal to a unique V region sequence; and for each unique J region gene in the sample, at least one primer that can specifically anneal to a unique J region sequence.


Primer design may be achieved by routine methodologies in view of known TCR and BCR genomic sequences. Accordingly, the primer set is preferably capable of amplifying every possible V−J combination that may result from DNA rearrangements in the TCR or BCR locus. As also described below, certain embodiments contemplate primer sets in which one or more V primers may be capable of specifically annealing to a “unique” sequence that may be shared by two or more V regions but that is not common to all V regions, and/or in which in which one or more J primers may be capable of specifically annealing to a “unique” sequence that may be shared by two or more J regions but that is not common to all J regions.


In particular embodiments, oligonucleotide primers for use in the compositions and methods described herein may comprise or consist of a nucleic acid of at least about 15 nucleotides long that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of the target V- or J-segment (i.e., portion of genomic polynucleotide encoding a V-region or J-region polypeptide). Longer primers, e.g., those of about 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, or 50, nucleotides long that have the same sequence as, or sequence complementary to, a contiguous sequence of the target V- or J-region encoding polynucleotide segment, will also be of use in certain embodiments. All intermediate lengths of the presently described oligonucleotide primers are contemplated for use herein. As would be recognized by the skilled person, the primers may have additional sequence added (e.g., nucleotides that may not be the same as or complementary to the target V- or J-region encoding polynucleotide segment), such as restriction enzyme recognition sites, adaptor sequences for sequencing, bar code sequences, and the like (see e.g., primer sequences provided in the Tables and sequence listing herein). Therefore, the length of the primers may be longer, such as about 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 80, 85, 90, 95, 100 or more nucleotides in length or more, depending on the specific use or need.


Also contemplated for use in certain embodiments are adaptive immune receptor V-segment or J-segment oligonucleotide primer variants that may share a high degree of sequence identity to the oligonucleotide primers for which nucleotide sequences are presented herein, including those set forth in the Sequence Listing. Thus, in these and related embodiments, adaptive immune receptor V-segment or J-segment oligonucleotide primer variants may have substantial identity to the adaptive immune receptor V-segment or J-segment oligonucleotide primer sequences disclosed herein, for example, such oligonucleotide primer variants may comprise at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity compared to a reference polynucleotide sequence such as the oligonucleotide primer sequences disclosed herein, using the methods described herein (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding ability of an oligonucleotide primer variant to anneal to an adaptive immune receptor segment-encoding polynucleotide by taking into account codon degeneracy, reading frame positioning and the like.


Typically, oligonucleotide primer variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the annealing ability of the variant oligonucleotide is not substantially diminished relative to that of an adaptive immune receptor V-segment or J-segment oligonucleotide primer sequence that is specifically set forth herein.


Table 1 presents as a non-limiting example an oligonucleotide primer set that is capable of amplifying productively rearranged DNA encoding TCR β-chains (TCRB) in a biological sample that comprises DNA from lymphoid cells of a subject. In this primer set the J segment primers share substantial sequence homology, and therefore may cross-prime amongst more than one target J polynucleotide sequence, but the V segment primers are designed to anneal specifically to target sequences within the CDR2 region of V and are therefore unique to each V segment. An exception, however, is present in the case of several V primers where the within-family sequences of the closely related target genes are identical (e.g., V6-2 and V6-3 are identical at the nucleotide level throughout the coding sequence of the V segment, and therefore may have a single primer, TRB2V6-2/3).


It will therefore be appreciated that in certain embodiments the number of different template oligonucleotides in the template composition, and/or the number of different oligonucleotide primers in the primer set, may be advantageously reduced by designing template and/or primers to exploit certain known similarities in V and/or J sequences. Thus, in these and related embodiments, “unique” oligonucleotide sequences as described herein may include specific V polynucleotide sequences that are shared by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 distinct template oligonucleotides and/or specific J polynucleotide sequences that are shared by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or 13 distinct template oligonucleotides, where such templates differ in sequence from one another by other than the shared V and/or J sequences.


According to certain presently contemplated embodiments, it may be useful to decrease (e.g., reduce in a statistically significant manner) template amplification bias such as non-uniform nucleic acid amplification potential among members of a set of amplification primers that can result from unequal primer efficiencies (e.g., unequal primer utilization) only for a limited subset of all naturally occurring V and J genes. For example, in analyses of the TCR or BCR immune repertoire involved in an immune response, whether to a specific antigen, as in a vaccine, or to a tissue, as in an autoimmune disease, only the productive TCR or IG rearrangements may be of interest. In such circumstances, it may be economically advantageous to identify and correct non-uniform nucleic acid amplification potential only for those V and J segment primers that contribute to productive rearrangements of TCR or BCR encoding DNA, and to exclude efforts to correct non-uniform amplification of pseudogenes and orphons (i.e., TCR or BCR V region-encoding segments that have been duplicated onto other chromosomes).


In the human IGH locus, for instance, the ImmunoGeneTics (IMGT) database (M.-P. LeFranc, Université Montpellier, Montpellier, France; www.imgt.org) annotates 165 V segment genes, of which 26 are orphons on other chromosomes and 139 are in the IGH locus at chromosome 14. Among the 139 V segments within the IGH locus, 51 have at least one functional allele, while 6 are ORFs (open-reading frames) which are missing at least one highly conserved amino-acid residue, and 81 are pseudogenes. Pseudogenes may include V segments that contain an in-frame stop codon within the V-segment coding sequence, a frameshift between the start codon and the CDR3 encoding sequence, one or more repeat-element insertions, and deletions of critical regions, such as the first exon or the RSS. To characterize functional IGH rearrangements in a sample while avoiding the time and expense of characterizing pseudogenes and/or orphons, it is therefore contemplated to use a subset of the herein described synthetic template oligonucleotides which is designed to include only those V segments that participate in a functional rearrangement to encode a TCR or BCR, without having to synthesize or calibrate amplification primers and template oligonucleotides specific to the pseudogene sequences. Advantageous efficiencies with respect, inter alia, to time and expense are thus obtained.









TABLE 1







Exemplary Oligonucleotide Primer Set


(hsTCRB PCR Primers)











SEQ




ID


Name
Sequence
NO:





TRBJ1-1
TTACCTACAACTGTGAGTCTGGTGCCTTGTCC
1631



AAA






TRBJ1-2
ACCTACAACGGTTAACCTGGTCCCCGAACCGAA
1632





TRBJ1-3
ACCTACAACAGTGAGCCAACTTCCCTCTCCAAA
1633





TRBJ1-4
CCAAGACAGAGAGCTGGGTTCCACTGCCAAA
1634





TRBJ1-5
ACCTAGGATGGAGAGTCGAGTCCCATCACCAAA
1635





TRBJ1-6
CTGTCACAGTGAGCCTGGTCCCGTTCCCAAA
1636





TRBJ2-1
CGGTGAGCCGTGTCCCTGGCCCGAA
1637





TRBJ2-2
CCAGTACGGTCAGCCTAGAGCCTTCTCCAAA
1638





TRBJ2-3
ACTGTCAGCCGGGTGCCTGGGCCAAA
1639





TRBJ2-4
AGAGCCGGGTCCCGGCGCCGAA
1640





TRBJ2-5
GGAGCCGCGTGCCTGGCCCGAA
1641





TRBJ2-6
GTCAGCCTGCTGCCGGCCCCGAA
1642





TRBJ2-7
GTGAGCCTGGTGCCCGGCCCGAA
1643





TRB2V10-1
AACAAAGGAGAAGTCTCAGATGGCTACAG
1644





TRB2V10-2
GATAAAGGAGAAGTCCCCGATGGCTATGT
1645





TRB2V10-3
GACAAAGGAGAAGTCTCAGATGGCTATAG
1646





TRB2V6-2/3
GCCAAAGGAGAGGTCCCTGATGGCTACAA
1647





TRB2V6-8
CTCTAGATTAAACACAGAGGATTTCCCAC
1648





TRB2V6-9
AAGGAGAAGTCCCCGATGGCTACAATGTA
1649





TRB2V6-5
AAGGAGAAGTCCCCAATGGCTACAATGTC
1650





TRB2V6-6
GACAAAGGAGAAGTCCCGAATGGCTACAAC
1651





TRB2V6-7
GTTCCCAATGGCTACAATGTCTCCAGATC
1652





TRB2V6-1
GTCCCCAATGGCTACAATGTCTCCAGATT
1653





TRB2V6-4
GTCCCTGATGGTTATAGTGTCTCCAGAGC
1654





TRB2V24-1
ATCTCTGATGGATACAGTGTCTCTCGACA
1655





TRB2V25-1
TTTCCTCTGAGTCAACAGTCTCCAGAATA
1656





TRB2V27
TCCTGAAGGGTACAAAGTCTCTCGAAAAG
1657





TRB2V26
CTCTGAGAGGTATCATGTTTCTTGAAATA
1658





TRB2V28
TCCTGAGGGGTACAGTGTCTCTAGAGAGA
1659





TRB2V19
TATAGCTGAAGGGTACAGCGTCTCTCGGG
1660





TRB2V4-1
CTGAATGCCCCAACAGCTCTCTCTTAAAC
1661





TRB2V4-2/3
CTGAATGCCCCAACAGCTCTCTCTTAAAC
1662





TRB2V2P
CCTGAATGCCCTGACAGCTCTCGCTTATA
1663





TRB2V3-1
CCTAAATCTCCAGACAAAGCTCACTTAAA
1664





TRB2V3-2
CTCACCTGACTCTCCAGACAAAGCTCAT
1665





TRB2V16
TTCAGCTAAGTGCCTCCCAAATTCACCCT
1666





TRB2V23-1
GATTCTCATCTCAATGCCCCAAGAACGC
1667





TRB2V18
ATTTTCTGCTGAATTTCCCAAAGAGGGCC
1668





TRB2V17
ATTCACAGCTGAAAGACCTAACGGAACGT
1669





TRB2V14
TCTTAGCTGAAAGGACTGGAGGGACGTAT
1670





TRB2V2
TTCGATGATCAATTCTCAGTTGAAAGGCC
1671





TRB2V12-1
TTGATTCTCAGCACAGATGCCTGATGT
1672





TRB2V12-2
GCGATTCTCAGCTGAGAGGCCTGATGG
1673





TRB2V12-3/4
TCGATTCTCAGCTAAGATGCCTAATGC
1674





TRB2V12-5
TTCTCAGCAGAGATGCCTGATGCAACTTTA
1675





TRB2V7-9
GGTTCTCTGCAGAGAGGCCTAAGGGATCT
1676





TRB2V7-8
GCTGCCCAGTGATCGCTTCTTTGCAGAAA
1677





TRB2V7-4
GGCGGCCCAGTGGTCGGTTCTCTGCAGAG
1678





TRB2V7-6/7
ATGATCGGTTCTCTGCAGAGAGGCCTGAGG
1679





TRB2V7-2
AGTGATCGCTTCTCTGCAGAGAGGACTGG
1680





TRB2V7-3
GGCTGCCCAACGATCGGTTCTTTGCAGT
1681





TRB2V7-1
TCCCCGTGATCGGTTCTCTGCACAGAGGT
1682





TRB2V11-
CTAAGGATCGATTTTCTGCAGAGAGGCTC
1683


123







TRB2V13
CTGATCGATTCTCAGCTCAACAGTTCAGT
1684





TRB2V5-1
TGGTCGATTCTCAGGGCGCCAGTTCTCTA
1685





TRB2V5-3
TAATCGATTCTCAGGGCGCCAGTTCCATG
1686





TRB2V5-4
TCCTAGATTCTCAGGTCTCCAGTTCCCTA
1687





TRB2V5-8
GGAAACTTCCCTCCTAGATTTTCAGGTCG
1688





TRB2V5-5
AAGAGGAAACTTCCCTGATCGATTCTCAGC
1689





TRB2V5-6
GGCAACTTCCCTGATCGATTCTCAGGTCA
1690





TRB2V9
GTTCCCTGACTTGCACTCTGAACTAAAC
1691





TRB2V15
GCCGAACACTTCTTTCTGCTTTCTTGAC
1692





TRB2V30
GACCCCAGGACCGGCAGTTCATCCTGAGT
1693





TRB2V20-1
ATGCAAGCCTGACCTTGTCCACTCTGACA
1694





TRB2V29-1
CATCAGCCGCCCAAACCTAACATTCTCAA
1695









In certain embodiments, the V-segment and J-segment oligonucleotide primers as described herein are designed to include nucleotide sequences such that adequate information is present within the sequence of an amplification product of a rearranged adaptive immune receptor (TCR or Ig) gene to identify uniquely both the specific V and the specific J genes that give rise to the amplification product in the rearranged adaptive immune receptor locus (e.g., at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), preferably at least about 22, 24, 26, 28, 30, 32, 34, 35, 36, 37, 38, 39 or 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and in certain preferred embodiments greater than 40 base pairs of sequence upstream of the V gene recombination signal sequence (RSS), and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 base pairs downstream of the J gene RSS, preferably at least about 22, 24, 26, 28 or 30 base pairs downstream of the J gene RSS, and in certain preferred embodiments greater than 30 base pairs downstream of the J gene RSS).


This feature stands in contrast to oligonucleotide primers described in the art for amplification of TCR-encoding or Ig-encoding gene sequences, which rely primarily on the amplification reaction merely for detection of presence or absence of products of appropriate sizes for V and J segments (e.g., the presence in PCR reaction products of an amplicon of a particular size indicates presence of a V or J segment but fails to provide the sequence of the amplified PCR product and hence fails to confirm its identity, such as the common practice of spectratyping).


Oligonucleotides (e.g., primers) can be prepared by any suitable method, including direct chemical synthesis by a method such as the phosphotriester method of Narang et al., 1979, Meth. Enzymol. 68:90-99; the phosphodiester method of Brown et al., 1979, Meth. Enzymol. 68:109-151; the diethylphosphoramidite method of Beaucage et al., 1981, Tetrahedron Lett. 22:1859-1862; and the solid support method of U.S. Pat. No. 4,458,066, each incorporated herein by reference. A review of synthesis methods of conjugates of oligonucleotides and modified nucleotides is provided in Goodchild, 1990, Bioconjugate Chemistry 1(3): 165-187, incorporated herein by reference.


The term “primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation of DNA synthesis under suitable conditions. Such conditions include those in which synthesis of a primer extension product complementary to a nucleic acid strand is induced in the presence of four different nucleoside triphosphates and an agent for extension (e.g., a DNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.


A primer is preferably a single-stranded DNA. The appropriate length of a primer depends on the intended use of the primer but typically ranges from 6 to 50 nucleotides, or in certain embodiments, from 15-35 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template nucleic acid, but must be sufficiently complementary to hybridize with the template. The design of suitable primers for the amplification of a given target sequence is well known in the art and described in the literature cited herein.


As described herein, primers can incorporate additional features which allow for the detection or immobilization of the primer but do not alter the basic property of the primer, that of acting as a point of initiation of DNA synthesis. For example, primers may contain an additional nucleic acid sequence at the 5′ end which does not hybridize to the target nucleic acid, but which facilitates cloning, detection, or sequencing of the amplified product. The region of the primer which is sufficiently complementary to the template to hybridize is referred to herein as the hybridizing region.


As used herein, a primer is “specific,” for a target sequence if, when used in an amplification reaction under sufficiently stringent conditions, the primer hybridizes primarily to the target nucleic acid. Typically, a primer is specific for a target sequence if the primer-target duplex stability is greater than the stability of a duplex formed between the primer and any other sequence found in the sample. One of skill in the art will recognize that various factors, such as salt conditions as well as base composition of the primer and the location of the mismatches, will affect the specificity of the primer, and that routine experimental confirmation of the primer specificity will be needed in many cases. Hybridization conditions can be chosen under which the primer can form stable duplexes only with a target sequence. Thus, the use of target-specific primers under suitably stringent amplification conditions enables the selective amplification of those target sequences which contain the target primer binding sites.


In particular embodiments, primers for use in the methods described herein comprise or consist of a nucleic acid of at least about 15 nucleotides long that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence of the target V or J segment. Longer primers, e.g., those of about 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, or 50, nucleotides long that have the same sequence as, or sequence complementary to, a contiguous sequence of the target V or J segment, will also be of use in certain embodiments. All intermediate lengths of the aforementioned primers are contemplated for use herein. As would be recognized by the skilled person, the primers may have additional sequence added (e.g., nucleotides that may not be the same as or complementary to the target V or J segment), such as restriction enzyme recognition sites, adaptor sequences for sequencing, bar code sequences, and the like (see e.g., primer sequences provided herein and in the sequence listing). Therefore, the length of the primers may be longer, such as 55, 56, 57, 58, 59, 60, 65, 70, 75, nucleotides in length or more, depending on the specific use or need. For example, in one embodiment, the forward and reverse primers are both modified at the 5′ end with the universal forward primer sequence compatible with a DNA sequencer.


Also contemplated for use in certain embodiments are adaptive immune receptor V-segment or J-segment oligonucleotide primer variants that may share a high degree of sequence identity to the oligonucleotide primers for which nucleotide sequences are presented herein, including those set forth in the Sequence Listing. Thus, in these and related embodiments, adaptive immune receptor V-segment or J-segment oligonucleotide primer variants may have substantial identity to the adaptive immune receptor V-segment or J-segment oligonucleotide primer sequences disclosed herein, for example, such oligonucleotide primer variants may comprise at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or higher sequence identity compared to a reference polynucleotide sequence such as the oligonucleotide primer sequences disclosed herein, using the methods described herein (e.g., BLAST analysis using standard parameters). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding ability of an oligonucleotide primer variant to anneal to an adaptive immune receptor segment-encoding polynucleotide by taking into account codon degeneracy, reading frame positioning and the like.


Typically, oligonucleotide primer variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the annealing ability of the variant oligonucleotide is not substantially diminished relative to that of an adaptive immune receptor V-segment or J-segment oligonucleotide primer sequence that is specifically set forth herein. As also noted elsewhere herein, in preferred embodiments adaptive immune receptor V-segment and J-segment oligonucleotide primers are designed to be capable of amplifying a rearranged TCR or IGH sequence that includes the coding region for CDR3.


According to certain embodiments contemplated herein, the primers for use in the multiplex PCR methods of the present disclosure may be functionally blocked to prevent non-specific priming of non-T or B cell sequences. For example, the primers may be blocked with chemical modifications as described in U.S. patent application publication US2010/0167353. According to certain herein disclosed embodiments, the use of such blocked primers in the present multiplex PCR reactions involves primers that may have an inactive configuration wherein DNA replication (i.e., primer extension) is blocked, and an activated configuration wherein DNA replication proceeds. The inactive configuration of the primer is present when the primer is either single-stranded, or when the primer is specifically hybridized to the target DNA sequence of interest but primer extension remains blocked by a chemical moiety that is linked at or near to the 3′ end of the primer.


The activated configuration of the primer is present when the primer is hybridized to the target nucleic acid sequence of interest and is subsequently acted upon by RNase H or another cleaving agent to remove the 3′ blocking group, thereby allowing an enzyme (e.g., a DNA polymerase) to catalyze primer extension in an amplification reaction. Without wishing to be bound by theory, it is believed that the kinetics of the hybridization of such primers are akin to a second order reaction, and are therefore a function of the T cell or B cell gene sequence concentration in the mixture. Blocked primers minimize non-specific reactions by requiring hybridization to the target followed by cleavage before primer extension can proceed. If a primer hybridizes incorrectly to a sequence that is related to the desired target sequence but which differs by having one or more non-complementary nucleotides that result in base-pairing mismatches, cleavage of the primer is inhibited, especially when there is a mismatch that lies at or near the cleavage site. This strategy to improve the fidelity of amplification reduces the frequency of false priming at such locations, and thereby increases the specificity of the reaction. As would be recognized by the skilled person, reaction conditions, particularly the concentration of RNase H and the time allowed for hybridization and extension in each cycle, can be optimized to maximize the difference in cleavage efficiencies between highly efficient cleavage of the primer when it is correctly hybridized to its true target sequence, and poor cleavage of the primer when there is a mismatch between the primer and the template sequence to which it may be incompletely annealed.


As described in US2010/0167353, a number of blocking groups are known in the art that can be placed at or near the 3′ end of the oligonucleotide (e.g., a primer) to prevent extension. A primer or other oligonucleotide may be modified at the 3′-terminal nucleotide to prevent or inhibit initiation of DNA synthesis by, for example, the addition of a 3′ deoxyribonucleotide residue (e.g., cordycepin), a 2′,3′-dideoxyribonucleotide residue, non-nucleotide linkages or alkane-diol modifications (U.S. Pat. No. 5,554,516). Alkane diol modifications which can be used to inhibit or block primer extension have also been described by Wilk et al., (1990 Nucleic Acids Res. 18 (8):2065), and by Arnold et al. (U.S. Pat. No. 6,031,091). Additional examples of suitable blocking groups include 3′ hydroxyl substitutions (e.g., 3′-phosphate, 3′-triphosphate or 3′-phosphate diesters with alcohols such as 3-hydroxypropyl), 2′3′-cyclic phosphate, 2′ hydroxyl substitutions of a terminal RNA base (e.g., phosphate or sterically bulky groups such as triisopropyl silyl (TIPS) or tert-butyl dimethyl silyl (TBDMS)). 2′-alkyl silyl groups such as TIPS and TBDMS substituted at the 3′-end of an oligonucleotide are described by Laikhter et al., U.S. patent application Ser. No. 11/686,894, which is incorporated herein by reference. Bulky substituents can also be incorporated on the base of the 3′-terminal residue of the oligonucleotide to block primer extension.


In certain embodiments, the oligonucleotide may comprise a cleavage domain that is located upstream (e.g., 5′ to) of the blocking group used to inhibit primer extension. As examples, the cleavage domain may be an RNase H cleavage domain, or the cleavage domain may be an RNase H2 cleavage domain comprising a single RNA residue, or the oligonucleotide may comprise replacement of the RNA base with one or more alternative nucleosides. Additional illustrative cleavage domains are described in US2010/0167353.


Thus, a multiplex PCR system may use 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or more forward primers, wherein each forward primer is complementary to a single functional TCR or Ig V segment or a small family of functional TCR or Ig V segments, e.g., a TCR VP segment, (see e.g., the TCRBV primers as shown in Table 1, SEQ ID NOS:1644-1695), and, for example, thirteen reverse primers, each specific to a TCR or Ig J segment, such as TCR Jβ segment (see e.g., TCRBJ primers in Table 1, SEQ ID NOS:1631-1643). In another embodiment, a multiplex PCR reaction may use four forward primers each specific to one or more functional TCRγ V segment and four reverse primers each specific for one or more TCRγ J segments. In another embodiment, a multiplex PCR reaction may use 84 forward primers each specific to one or more functional V segments and six reverse primers each specific for one or more J segments.


Thermal cycling conditions may follow methods of those skilled in the art. For example, using a PCR Express™ thermal cycler (Hybaid, Ashford, UK), the following cycling conditions may be used: 1 cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94° C. for 30 seconds, 59° C. for 30 seconds and 72° C. for 1 minute, followed by one cycle at 72° C. for 10 minutes. As will be recognized by the skilled person, thermal cycling conditions may be optimized, for example, by modifying annealing temperatures, annealing times, number of cycles and extension times. As would be recognized by the skilled person, the amount of primer and other PCR reagents used, as well as PCR parameters (e.g., annealing temperature, extension times and cycle numbers), may be optimized to achieve desired PCR amplification efficiency.


Alternatively, in certain related embodiments also contemplated herein, “digital PCR” methods can be used to quantitate the number of target genomes in a sample, without the need for a standard curve. In digital PCR, the PCR reaction for a single sample is performed in a multitude of more than 100 microcells or droplets, such that each droplet either amplifies (e.g., generation of an amplification product provides evidence of the presence of at least one template molecule in the microcell or droplet) or fails to amplify (evidence that the template was not present in a given microcell or droplet). By simply counting the number of positive microcells, it is possible directly to count the number of target genomes that are present in an input sample.


Digital PCR methods typically use an endpoint readout, rather than a conventional quantitative PCR signal that is measured after each cycle in the thermal cycling reaction (see, e.g., Pekin et al., 2011 Lab. Chip 11(13):2156; Zhong et al., 2011 Lab. Chip 11(13):2167; Tewhey et al., 2009 Nature Biotechnol. 27:1025; 2010 Nature Biotechnol. 28:178; Vogelstein and Kinzler, 1999 Proc. Natl. Acad. Sci. USA 96:9236-41; Pohl and Shih, 2004 Expert Rev. Mol. Diagn. 4(1);41-7, 2004). Compared with traditional PCR, dPCR has the following advantages: (1) there is no need to rely on references or standards, (2) desired precision may be achieved by increasing the total number of PCR replicates, (3) it is highly tolerant to inhibitors, (4) it is capable of analyzing complex mixtures, and (5) it provides a linear response to the number of copies present in a sample to allow for small change in the copy number to be detected. Accordingly, any of the herein described compositions (e.g., template compositions and adaptive immune receptor gene-specific oligonucleotide primer sets) and methods may be adapted for use in such digital PCR methodology, for example, the ABI QuantStudio™ 12K Flex System (Life Technologies, Carlsbad, Calif.), the QX100™ Droplet Digital™ PCR system (BioRad, Hercules, Calif.), the QuantaLife™ digital PCR system (BioRad, Hercules, Calif.) or the RainDance™ microdroplet digital PCR system (RainDance Technologies, Lexington, Mass.).


Adaptors


The herein described template oligonucleotides of general formula (I) also may in certain embodiments comprise first (U1) and second (U2) universal adaptor oligonucleotide sequences, or may lack either or both of U1 and U2. U1 thus may comprise either nothing or an oligonucleotide having a sequence that is selected from (i) a first universal adaptor oligonucleotide sequence, and (ii) a first sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a first universal adaptor oligonucleotide sequence, and U2 may comprise either nothing or an oligonucleotide having a sequence that is selected from (i) a second universal adaptor oligonucleotide sequence, and (ii) a second sequencing platform-specific oligonucleotide sequence that is linked to and positioned 5′ to a second universal adaptor oligonucleotide sequence.


U1 and/or U2 may, for example, comprise universal adaptor oligonucleotide sequences and/or sequencing platform-specific oligonucleotide sequences that are specific to a single-molecule sequencing technology being employed, for example the HiSeg™ or GeneAnalyzer™-2 (GA-2) systems (Illumina, Inc., San Diego, Calif.) or another suitable sequencing suite of instrumentation, reagents and software. Inclusion of such platform-specific adaptor sequences permits direct quantitative sequencing of the presently described template composition, which comprises a plurality of different template oligonucleotides of general formula (I), using a nucleotide sequencing methodology such as the HiSeq™ or GA2 or equivalent. This feature therefore advantageously permits qualitative and quantitative characterization of the template composition.


In particular, the ability to sequence all components of the template composition directly allows for verification that each template oligonucleotide in the plurality of template oligonucleotides is present in a substantially equimolar amount. For example, a set of the presently described template oligonucleotides may be generated that have universal adaptor sequences at both ends, so that the adaptor sequences can be used to further incorporate sequencing platform-specific oligonucleotides at each end of each template.


Without wishing to be bound by theory, platform-specific oligonucleotides may be added onto the ends of such modified templates using 5′ (5 ‘-platform sequence-universal adaptor-1 sequence-3’) and 3′ (5′-platform sequence-universal adaptor-2 sequence-3′) oligonucleotides in as little as two cycles of denaturation, annealing and extension, so that the relative representation in the template composition of each of the component template oligonucleotides is not quantitatively altered. Unique identifier sequences (e.g., barcode sequences B comprising unique V and B oligonucleotide sequences that are associated with and thus identify, respectively, individual V and J regions, as described herein) are placed adjacent to the adaptor sequences, thus permitting quantitative sequencing in short sequence reads, in order to characterize the template population by the criterion of the relative amount of each unique template sequence that is present.


Where such direct quantitative sequencing indicates that one or more particular oligonucleotides may be over- or underrepresented in a preparation of the template composition, adjustment of the template composition can be made accordingly to obtain a template composition in which all oligonucleotides are present in substantially equimolar amounts. The template composition in which all oligonucleotides are present in substantially equimolar amounts may then be used as a calibration standard for amplification primer sets, such as in the presently disclosed methods for determining and correcting non-uniform amplification potential among members of a primer set.


In addition to adaptor sequences described in the Examples and included in the exemplary template sequences in the Sequence Listing (e.g., at the 5′ and 3′ ends of SEQ ID NOS:1-1630), other oligonucleotide sequences that may be used as universal adaptor sequences will be known to those familiar with the art in view of the present disclosure, including selection of adaptor oligonucleotide sequences that are distinct from sequences found in other portions of the herein described templates. Non-limiting examples of additional adaptor sequences are shown in Table 2 and set forth in SEQ ID NOS:1710-1731.









TABLE 2







Exemplary Adaptor Sequences











SEQ ID


Adaptor (primer) name
Sequence
NO:





T7 Promotor
AATACGACTCACTATAGG
1710





T7 Terminator
GCTAGTTATTGCTCAGCGG
1711





T3
ATTAACCCTCACTAAAGG
1712





SP6
GATTTAGGTGACACTATAG
1713





M13F(−21)
TGTAAAACGACGGCCAGT
1714





M13F(−40)
GTTTTCCCAGTCACGAC
1715





M13R Reverse
CAGGAAACAGCTATGACC
1716





AOX1 Forward
GACTGGTTCCAATTGACAAGC
1717





AOX1 Reverse
GCAAATGGCATTCTGACATCC
1718





pGEX Forward (GST 5,
GGGCTGGCAAGCCACGTTTGGTG
1719


pGEX 5′)







pGEX Reverse (GST 3,
CCGGGAGCTGCATGTGTCAGAGG
1720


pGEX 3′)







BGH Reverse
AACTAGAAGGCACAGTCGAGGC
1721





GFP (C′ terminal, CFP,
CACTCTCGGCATGGACGAGC
1772


YFP or BEP)







GFP Reverse
TGGTGCAGATGAACTTCAGG
1723





GAG
GTTCGACCCCGCCTCGATCC
1724





GAG Reverse
TGACACACATTCCACAGGGTC
1725





CYC1 Reverse
GCGTGAATGTAAGCGTGAC
1726





pFastBacF
5′-d (GGATTATTCATACCGTCCCA)-3′
1727





pFastBacR
5′-d (CAAATGTGGTATGGCTGATT)-3′
1728





pBAD Forward
5′-d (ATGCCATAGCATTTTTATCC)-3′
1729





pBAD Reverse
5′-d (GATTTAATCTGTATCAGG)-3′
1730





CMV-Forward
5′-d (CGCAAATGGGCGGTAGGCGTG)-3′
1731









Barcodes


As described herein, certain embodiments contemplate designing the template oligonucleotide sequences to contain short signature sequences that permit unambiguous identification of the template sequence, and hence of at least one primer responsible for amplifying that template, without having to sequence the entire amplification product. In the herein described template oligonucleotides of general formula (I), B1, B2, B3, and B4 are each independently either nothing or each comprises an oligonucleotide B that comprises an oligonucleotide barcode sequence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 or more contiguous nucleotides (including all integer values therebetween), wherein in each of the plurality of template oligonucleotide sequences B comprises a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) the unique V oligonucleotide sequence of the template oligonucleotide and (ii) the unique J oligonucleotide sequence of the template oligonucleotide.


Thus, for instance, template oligonucleotides having barcode identifier sequences may permit relatively short amplification product sequence reads, such as barcode sequence reads of no more than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80, 70, 60, 55, 50, 45, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or fewer nucleotides, followed by matching this barcode sequence information to the associated V and J sequences that are incorporated into the template having the barcode as part of the template design. By this approach, a large number of amplification products can be simultaneously partially sequenced by high throughput parallel sequencing, to identify primers that are responsible for amplification bias in a complex primer set.


Exemplary barcodes may comprise a first barcode oligonucleotide of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 nucleotides that uniquely identifies each V polynucleotide in the template and a second barcode oligonucleotide of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 nucleotides that uniquely identifies each J polynucleotide in the template, to provide barcodes of, respectively, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or 32 nucleotides in length, but these and related embodiments are not intended to be so limited. Barcode oligonucleotides may comprise oligonucleotide sequences of any length, so long as a minimum barcode length is obtained that precludes occurrence of a given barcode sequence in two or more template oligonucleotides having otherwise distinct sequences (e.g., V and J sequences).


Thus, the minimum barcode length, to avoid such redundancy amongst the barcodes that are used to uniquely identify different V−J sequence pairings, is X nucleotides, where 4X is greater than the number of distinct template species that are to be differentiated on the basis of having non-identical sequences. For example, for the set of 871 template oligonucleotides set forth herein as SEQ ID NOS:1-871, the minimum barcode length would be five nucleotides, which would permit a theoretical total of 1024 (i.e., greater than 871) different possible pentanucleotide sequences. In practice, barcode oligonucleotide sequence read lengths may be limited only by the sequence read-length limits of the nucleotide sequencing instrument to be employed. For certain embodiments, different barcode oligonucleotides that will distinguish individual species of template oligonucleotides should have at least two nucleotide mismatches (e.g., a minimum hamming distance of 2) when aligned to maximize the number of nucleotides that match at particular positions in the barcode oligonucleotide sequences.


In preferred embodiments, for each distinct template oligonucleotide species having a unique sequence within the template composition of general formula (I), B 1, B2, B3, and B4 will be identical.


The skilled artisan will be familiar with the design, synthesis, and incorporation into a larger oligonucleotide or polynucleotide construct, of oligonucleotide barcode sequences of, for instance, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 300, 500 or more contiguous nucleotides, including all integer values therebetween. For non-limiting examples of the design and implementation of oligonucleotide barcode sequence identification strategies, see, e.g., de Carcer et al., 2011 Adv. Env. Microhiol. 77:6310; Parameswaran et al., 2007 Nucl. Ac. Res. 35(19):330; Roh et al., 2010 Trends Biotechnol. 28:291.


Typically, barcodes are placed in templates at locations where they are not found naturally, i.e., barcodes comprise nucleotide sequences that are distinct from any naturally occurring oligonucleotide sequences that may be found in the vicinity of the sequences adjacent to which the barcodes are situated (e.g., V and/or J sequences). Such barcode sequences may be included, according to certain embodiments described herein, as elements B1, B2 and/or B3 of the presently disclosed template oligonucleotide of general formula (I). Accordingly, certain of the herein described template oligonucleotides of general formula (I) may also in certain embodiments comprise one, two or all three of barcodes B1, B2 and B3, while in certain other embodiments some or all of these barcodes may be absent. In certain embodiments all barcode sequences will have identical or similar GC content (e.g., differing in GC content by no more than 20%, or by no more than 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10%).


In the template compositions according to certain herein disclosed embodiments the barcode-containing element B (e.g., B1, B2, B3, and/or B4) comprises the oligonucleotide sequence that uniquely identifies a single paired V−J combination. Optionally and in certain embodiments the barcode-containing element B may also include a random nucleotide, or a random polynucleotide sequence of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 300, 500 or more contiguous nucleotides, situated upstream and/or downstream of the specific barcode sequence that uniquely identifies each specific paired V−J combination. When present both upstream and downstream of the specific barcode sequence, the random nucleotide or random polynucleotide sequence are independent of one another, that is, they may but need not comprise the same nucleotide or the same polynucleotide sequence.


Restriction Enzyme Sites


According to certain embodiments disclosed herein, the template oligonucleotide may comprise a restriction endonuclease (RE) recognition site that is situated between the V and J sequences and does not occur elsewhere in the template oligonucleotide sequence. The RE recognition site may optionally be adjacent to a barcode site that identifies the V region sequence. The RE site may be included for any of a number of purposes, including without limitation as a structural feature that may be exploited to destroy templates selectively by contacting them with the appropriate restriction enzyme. It may be desirable to degrade the present template oligonucleotides selectively by contacting them with a suitable RE, for example, to remove template oligonucleotides from other compositions into which they may have been deliberately or accidentally introduced. Alternatively, the RE site may be usefully exploited in the course of sequencing template oligonucleotides in the template composition, and/or as a positional sequence marker in a template oligonucleotide sequence regardless of whether or not it is cleaved with a restriction enzyme. An exemplary RE site is the oligonucleotide motif GTCGAC, which is recognized by the restriction enzyme Sal I. A large number of additional restriction enzymes and their respective RE recognition site sequences are known in the art and are available commercially (e.g., New England Biolabs, Beverly, Mass.). These include, for example, EcoRI (GAATTC) and SphI (GCATGC). Those familiar with the art will appreciate that any of a variety of such RE recognition sites may be incorporated into particular embodiments of the presently disclosed template oligonucleotides.


Sequencing


Sequencing may be performed using any of a variety of available high throughput single molecule sequencing machines and systems. Illustrative sequence systems include sequence-by-synthesis systems such as the Illumina Genome Analyzer and associated instruments (Illumina, Inc., San Diego, Calif.), Helicos Genetic Analysis System (Helicos BioSciences Corp., Cambridge, Mass.), Pacific Biosciences PacBio RS (Pacific Biosciences, Menlo Park, Calif.), or other systems having similar capabilities. Sequencing is achieved using a set of sequencing oligonucleotides that hybridize to a defined region within the amplified DNA molecules. The sequencing oligonucleotides are designed such that the V- and J-encoding gene segments can be uniquely identified by the sequences that are generated, based on the present disclosure and in view of known adaptive immune receptor gene sequences that appear in publicly available databases. See, e.g., U.S. application Ser. No. 13/217,126; U.S. application Ser. No. 12/794,507; PCT/US2011/026373; or PCT/US2011/049012. Exemplary TCRB J-region sequencing primers are set forth in Table 3:









TABLE 3







TCRBJ Sequencing Primers











SEQ ID


PRIMER
SEQUENCE
NO:





>Jseq1-1
ACAACTGTGAGTCTGGTGCCTTGTCCAAAGAAA
1696





>Jseq1-2
ACAACGGTTAACCTGGTCCCCGAACCGAAGGTG
1697





>Jseq1-3
ACAACAGTGAGCCAACTTCCCTCTCCAAAATAT
1698





>Jseq1-4
AAGACAGAGAGCTGGGTTCCACTGCCAAAAAAC
1699





>Jseq1-5
AGGATGGAGAGTCGAGTCCCATCACCAAAATGC
1700





>Jseq1-6
GTCACAGTGAGCCTGGTCCCGTTCCCAAAGTGG
1701





>Jseq2-1
AGCACGGTGAGCCGTGTCCCTGGCCCGAAGAAC
1702





>Jseq2-2
AGTACGGTCAGCCTAGAGCCTTCTCCAAAAAAC
1703





>Jseq2-3
AGCACTGTCAGCCGGGTGCCTGGGCCAAAATAC
1704





>Jseq2-4
AGCACTGAGAGCCGGGTCCCGGCGCCGAAGTAC
1705





>Jseq2-5
AGCACCAGGAGCCGCGTGCCTGGCCCGAAGTAC
1706





>Jseq2-6
AGCACGGTCAGCCTGCTGCCGGCCCCGAAAGTC
1707





>Jseq2-7
GTGACCGTGAGCCTGGTGCCCGGCCCGAAGTAC
1708









The term “gene” means the segment of DNA involved in producing a polypeptide chain such as all or a portion of a TCR or Ig polypeptide (e.g., a CDR3-containing polypeptide); it includes regions preceding and following the coding region “leader and trailer” as well as intervening sequences (introns) between individual coding segments (exons), and may also include regulatory elements (e.g., promoters, enhancers, repressor binding sites and the like), and may also include recombination signal sequences (RSSs) as described herein.


The nucleic acids of the present embodiments, also referred to herein as polynucleotides, may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. A coding sequence which encodes a TCR or an immunoglobulin or a region thereof (e.g., a V region, a D segment, a J region, a C region, etc.) for use according to the present embodiments may be identical to the coding sequence known in the art for any given TCR or immunoglobulin gene regions or polypeptide domains (e.g., V-region domains, CDR3 domains, etc.), or may be a different coding sequence, which, as a result of the redundancy or degeneracy of the genetic code, encodes the same TCR or immunoglobulin region or polypeptide.


In certain embodiments, the amplified J-region encoding gene segments may each have a unique sequence-defined identifier tag of 2, 3, 4, 5, 6, 7, 8, 9, 10 or about 15, 20 or more nucleotides, situated at a defined position relative to a RSS site. For example, a four-base tag may be used, in the Jβ-region encoding segment of amplified TCRβ CDR3-encoding regions, at positions+11 through +14 downstream from the RSS site. However, these and related embodiments need not be so limited and also contemplate other relatively short nucleotide sequence-defined identifier tags that may be detected in J-region encoding gene segments and defined based on their positions relative to an RSS site. These may vary between different adaptive immune receptor encoding loci.


The recombination signal sequence (RSS) consists of two conserved sequences (heptamer, 5′-CACAGTG-3′, and nonamer, 5′-ACAAAAACC-3′), separated by a spacer of either 12+/−1 bp (“12-signal”) or 23+/−1 bp (“23-signal”). A number of nucleotide positions have been identified as important for recombination including the CA dinucleotide at position one and two of the heptamer, and a C at heptamer position three has also been shown to be strongly preferred as well as an A nucleotide at positions 5, 6, 7 of the nonamer. (Ramsden et. al 1994; Akamatsu et. al. 1994; Hesse et. al. 1989). Mutations of other nucleotides have minimal or inconsistent effects. The spacer, although more variable, also has an impact on recombination, and single-nucleotide replacements have been shown to significantly impact recombination efficiency (Fanning et. al. 1996, Larijani et. al 1999; Nadel et. al. 1998). Criteria have been described for identifying RSS polynucleotide sequences having significantly different recombination efficiencies (Ramsden et. al 1994; Akamatsu et. al. 1994; Hesse et. al. 1989 and Cowell et. al. 1994). Accordingly, the sequencing oligonucleotides may hybridize adjacent to a four base tag within the amplified J-encoding gene segments at positions+11 through+14 downstream of the RSS site. For example, sequencing oligonucleotides for TCRB may be designed to anneal to a consensus nucleotide motif observed just downstream of this “tag”, so that the first four bases of a sequence read will uniquely identify the J-encoding gene segment (see, e.g., WO/2012/027503).


The average length of the CDR3-encoding region, for the TCR, defined as the nucleotides encoding the TCR polypeptide between the second conserved cysteine of the V segment and the conserved phenylalanine of the J segment, is 35+/−3 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the J segment tag of a particular TCR or IgH J region (e.g., TCR Jβ, TCR Jγ or IgH JH as described herein) will nearly always capture the complete V-D-J junction in a 50 base pair read. The average length of the IgH CDR3 region, defined as the nucleotides between the conserved cysteine in the V segment and the conserved phenylalanine in the J segment, is less constrained than at the TCRβ locus, but will typically be between about 10 and about 70 nucleotides. Accordingly and in certain embodiments, PCR amplification using V-segment oligonucleotide primers with J-segment oligonucleotide primers that start from the IgH J segment tag will capture the complete V-D-J junction in a 100 base pair read.


PCR primers that anneal to and support polynucleotide extension on mismatched template sequences are referred to as promiscuous primers. In certain embodiments, the TCR and Ig J-segment reverse PCR primers may be designed to minimize overlap with the sequencing oligonucleotides, in order to minimize promiscuous priming in the context of multiplex PCR. In one embodiment, the TCR and Ig J-segment reverse primers may be anchored at the 3′ end by annealing to the consensus splice site motif, with minimal overlap of the sequencing primers. Generally, the TCR and Ig V and J-segment primers may be selected to operate in PCR at consistent annealing temperatures using known sequence/primer design and analysis programs under default parameters.


For the sequencing reaction, the exemplary IGHJ sequencing primers extend three nucleotides across the conserved CAG sequences as described in WO/2012/027503.


Samples


The subject or biological source, from which a test biological sample may be obtained, may be a human or non-human animal, or a transgenic or cloned or tissue-engineered (including through the use of stem cells) organism. In certain preferred embodiments of the invention, the subject or biological source may be known to have, or may be suspected of having or being at risk for having, a circulating or solid tumor or other malignant condition, or an autoimmune disease, or an inflammatory condition, and in certain preferred embodiments of the invention the subject or biological source may be known to be free of a risk or presence of such disease.


Certain preferred embodiments contemplate a subject or biological source that is a human subject such as a patient that has been diagnosed as having or being at risk for developing or acquiring cancer according to art-accepted clinical diagnostic criteria, such as those of the U.S. National Cancer Institute (Bethesda, Md., USA) or as described in DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology (2008, Lippincott, Williams and Wilkins, Philadelphia/Ovid, N.Y.); Pizzo and Poplack, Principles and Practice of Pediatric Oncology (Fourth edition, 2001, Lippincott, Williams and Wilkins, Philadelphia/Ovid, N.Y.); and Vogelstein and Kinzler, The Genetic Basis of Human Cancer (Second edition, 2002, McGraw Hill Professional, New York); certain embodiments contemplate a human subject that is known to be free of a risk for having, developing or acquiring cancer by such criteria.


Certain other embodiments contemplate a non-human subject or biological source, for example a non-human primate such as a macaque, chimpanzee, gorilla, vervet, orangutan, baboon or other non-human primate, including such non-human subjects that may be known to the art as preclinical models, including preclinical models for solid tumors and/or other cancers. Certain other embodiments contemplate a non-human subject that is a mammal, for example, a mouse, rat, rabbit, pig, sheep, horse, bovine, goat, gerbil, hamster, guinea pig or other mammal; many such mammals may be subjects that are known to the art as preclinical models for certain diseases or disorders, including circulating or solid tumors and/or other cancers (e.g., Talmadge et al., 2007 Am. J. Pathol. 170:793; Kerbel, 2003 Canc. Biol. Therap. 2(4 Suppl 1):5134; Man et al., 2007 Canc. Met. Rev. 26:737; Cespedes et al., 2006 Clin. Transl. Oncol. 8:318). The range of embodiments is not intended to be so limited, however, such that there are also contemplated other embodiments in which the subject or biological source may be a non-mammalian vertebrate, for example, another higher vertebrate, or an avian, amphibian or reptilian species, or another subject or biological source.


Biological samples may be provided by obtaining a blood sample, biopsy specimen, tissue explant, organ culture, biological fluid or any other tissue or cell preparation from a subject or a biological source. Preferably the sample comprises DNA from lymphoid cells of the subject or biological source, which, by way of illustration and not limitation, may contain rearranged DNA at one or more TCR or BCR loci. In certain embodiments a test biological sample may be obtained from a solid tissue (e.g., a solid tumor), for example by surgical resection, needle biopsy or other means for obtaining a test biological sample that contains a mixture of cells.


According to certain embodiments, it may be desirable to isolate lymphoid cells (e.g., T cells and/or B cells) according to any of a large number of established methodologies, where isolated lymphoid cells are those that have been removed or separated from the tissue, environment or milieu in which they naturally occur. B cells and T cells can thus be obtained from a biological sample, such as from a variety of tissue and biological fluid samples including bone marrow, thymus, lymph glands, lymph nodes, peripheral tissues and blood, but peripheral blood is most easily accessed. Any peripheral tissue can be sampled for the presence of B and T cells and is therefore contemplated for use in the methods described herein. Tissues and biological fluids from which adaptive immune cells, may be obtained include, but are not limited to skin, epithelial tissues, colon, spleen, a mucosal secretion, oral mucosa, intestinal mucosa, vaginal mucosa or a vaginal secretion, cervical tissue, ganglia, saliva, cerebrospinal fluid (CSF), bone marrow, cord blood, serum, serosal fluid, plasma, lymph, urine, ascites fluid, pleural fluid, pericardial fluid, peritoneal fluid, abdominal fluid, culture medium, conditioned culture medium or lavage fluid. In certain embodiments, adaptive immune cells may be isolated from an apheresis sample. Peripheral blood samples may be obtained by phlebotomy from subjects. Peripheral blood mononuclear cells (PBMC) are isolated by techniques known to those of skill in the art, e.g., by Ficoll-Hypaque® density gradient separation. In certain embodiments, whole PBMCs are used for analysis.


For nucleic acid extraction, total genomic DNA may be extracted from cells using methods known in the art and/or commercially available kits, e.g., by using the QIAamp® DNA blood Mini Kit (QIAGEN®). The approximate mass of a single haploid genome is 3 pg. Preferably, at least 100,000 to 200,000 cells are used for analysis, i.e., about 0.6 to 1.2 μg DNA from diploid T or B cells. Using PBMCs as a source, the number of T cells can be estimated to be about 30% of total cells. The number of B cells can also be estimated to be about 30% of total cells in a PBMC preparation.


The Ig and TCR gene loci contain many different variable (V), diversity (D), and joining (J) gene segments, which are subjected to rearrangement processes during early lymphoid differentiation. Ig and TCR V, D and J gene segment sequences are known in the art and are available in public databases such as GENBANK. The V-D-J rearrangements are mediated via a recombinase enzyme complex in which the RAG1 and RAG2 proteins play a key role by recognizing and cutting the DNA at the recombination signal sequences (RSS), which are located downstream of the V gene segments, at both sides of the D gene segments, and upstream of the J gene segments. Inappropriate RSS reduce or even completely prevent rearrangement. The recombination signal sequence (RSS) includes two consensus sequences (heptamer, 5′-CACAGTG-3′, and nonamer, 5′-ACAAAAACC-3′), separated by a spacer of either 12+/−1 bp (“12-signal”) or 23+/−1 bp (“23-signal”). At the 3′ end of the V segment and D segment the RSS sequence is heptamer (CACAGTG)-spacer-nonamer (ACAAAAACC). At the 5′ end of the J segment and D segment the RSS sequence is nonamer (GGTTTTTGT)-spacer-heptamer (CACTGTG), with substantial sequence variation in the heptamer and nonamer sequence of each specific gene segment.


A number of nucleotide positions have been identified as important for recombination including the CA dinucleotide at position one and two of the heptamer, and a C at heptamer position three has also been shown to be strongly preferred as well as an A nucleotide at positions 5, 6, 7 of the nonamer. (Ramsden et. al 1994 Nucl. Ac. Res. 22:1785; Akamatsu et. al. 1994 J. Immunol. 153:4520; Hesse et. al. 1989 Genes Dev. 3:1053). Mutations of other nucleotides have minimal or inconsistent effects. The spacer, although more variable, also has an impact on recombination, and single-nucleotide replacements have been shown to significantly impact recombination efficiency (Fanning et. al. 1996 Cell. Immunol. Immumnopath. 79:1, Larijani et. al 1999 Nucl. Ac. Res. 27:2304; Nadel et. al. 1998 J. Immunol. 161:6068; Nadel et al., 1998 J. Exp. Med. 187:1495). Criteria have been described for identifying RSS polynucleotide sequences having significantly different recombination efficiencies (Ramsden et. al 1994 Nucl. Ac. Res. 22:1785; Akamatsu et. al. 1994 J. Immunol. 153:4520; Hesse et. al. 1989 Genes Dev. 3:1053, and Lee et al., 2003 PLoS 1(1):E1).


The rearrangement process at the Ig heavy chain (IgH), TCR beta (TCRB), and TCR delta (TCRD) genes generally starts with a D to J rearrangement followed by a V to D-J rearrangement, while direct V to J rearrangements occur at Ig kappa (IgK), Ig lambda (IgL), TCR alpha (TCRA), and TCR gamma (TCRG) genes. The sequences between rearranging gene segments are generally deleted in the form of a circular excision product, also called TCR excision circle (TREC) or B cell receptor excision circle (BREC).


The many different combinations of V, D, and J gene segments represent the so-called combinatorial repertoire, which is estimated to be ˜2×106 for Ig molecules, ˜3×106 for TCRαβ and ˜5×103 for TCRγδ molecules. At the junction sites of the V, D, and J gene segments, deletion and random insertion of nucleotides occurs during the rearrangement process, resulting in highly diverse junctional regions, which significantly contribute to the total repertoire of Ig and TCR molecules, estimated to be >1012 possible amino acid sequences.


Mature B-lymphocytes further extend their Ig repertoire upon antigen recognition in germinal centers via somatic hypermutation, a process leading to affinity maturation of the Ig molecules. The somatic hypermutation process focuses on the V- (D-) J exon of IgH and Ig light chain genes and primarily generates single nucleotide mutations but sometimes also insertions or deletions of nucleotides. Somatically-mutated Ig genes are also typically found in mature B-cell malignancies.


In certain embodiments described herein, V-segment and J-segment primers may be employed in a PCR reaction to amplify rearranged TCR or BCR CDR3-encoding DNA regions in a test biological sample, wherein each functional TCR or Ig V-encoding gene segment comprises a V gene recombination signal sequence (RSS) and each functional TCR or Ig J-encoding gene segment comprises a J gene RSS. In these and related embodiments, each amplified rearranged DNA molecule may comprise (i) at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 (including all integer values therebetween) or more contiguous nucleotides of a sense strand of the TCR or Ig V-encoding gene segment, with the at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 or more contiguous nucleotides being situated 5′ to the V gene RSS and/or each amplified rearranged DNA molecule may comprise (ii) at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 (including all integer values therebetween) or more contiguous nucleotides of a sense strand of the TCR or Ig J-encoding gene segment, with the at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 or more contiguous nucleotides being situated 3′ to the J gene RSS.


Amplification Factor Determination


In addition to the use of the presently disclosed template compositions for standardizing amplification efficiency of oligonucleotide amplification primer sets as described herein, certain other embodiments contemplate use of the template composition to determine amplification factors for estimating the number of rearranged adaptive immune receptor encoding sequences in a sample. These and related embodiments may find use to quantify the number of adaptive immune receptor encoding sequences in a DNA sample that has been obtained from lymphoid cells, including lymphoid cells that are present in a mixture of cells that comprises cells in which DNA encoding an adaptive immune receptor has undergone DNA rearrangement, but where the sample also contains DNA from cells in which no such rearrangement has taken place (e.g., non-lymphoid cells, immature cells, mesenchymal cells, cancer cells, etc.).


The total number of different members of a given class of adaptive immune receptors (e.g., TCRs or IGs) in a subject may be estimated by multiplexed PCR using a comprehensive V−J amplification primer set followed by quantitative sequencing of amplification products. Multiplexed amplification and high throughput sequencing of rearranged TCR and BCR (IG) encoding DNA sequences are described, for example, in Robins et al., 2009 Blood 114, 4099; Robins et al., 2010 Sci. Translat. Med. 2:47ra64; Robins et al., 2011 J. Immunol. Meth. doi:10.1016/j.jim.2011.09.001; Sherwood et al. 2011 Sci. Translat. Med. 3:90ra61; U.S. application Ser. No. 13/217,126 (US Pub. No. 2012/0058902), U.S. application Ser. No. 12/794,507 (US Pub. No. 2010/0330571), WO/2010/151416, WO/2011/106738 (PCT/US2011/026373), WO2012/027503 (PCT/US2011/049012), U.S. Application No. 61/550,311, and U.S. Application No. 61/569,118.


This methodology typically involves sampling DNA from a subpopulation of lymphoid cells, such as lymphoid cells that are present in a blood sample, which is known also to contain nucleated cells that lack rearranged TCR or IG encoding DNA. The present compositions and methods may permit improved accuracy and precision in the determination of the number of rearranged TCR and IG encoding DNA molecules in such a sample. As described herein, for instance, by spiking the DNA sample with the present template composition, an internal amplification template standard is provided for assessing the relative efficiencies across the range of oligonucleotide primers that are present in the multiplexed amplification primer set. By so assessing the amplification products of the present artificial template composition, which is added to the amplification reaction in known amounts, an amplification factor (e.g., a multiplicative, normalizing, scaling or geometric factor, etc.) can be determined for the oligonucleotide amplification primer set and can then be used to calculate the number of natural DNA templates in the sample.


As another example, these and related embodiments permit quantification of Minimal Residual Disease (MRD) in lymphoma or leukemia, by quantitative detection of rearranged TCR or IG encoding DNA in samples obtained from mixed preparations of lymphoid and non-lymphoid cells, including persistent lymphoma or leukemia cells. Prior methods determine MRD as the number of malignant cells that are detectable as a proportion of the total number of cells in a sample. In contrast, the present methods permit estimation of the total number of cells in a sample that have rearranged TCR or IG encoding DNA, so that malignant cells (e.g., those having a particular TCR or IG rearrangement, such as a clonotype) can be quantified as a proportion of such rearranged cells instead of as a proportion of all cells. By way of non-limiting theory, it is believed that because the representation of all rearranged cells in a clinical sample from a subject having or suspected of having MRD is typically very low, the present methods will dramatically improve the sensitivity with which MRD can be detected, including improving such sensitivity by increasing the signal-to-noise ratio.


Accordingly certain embodiments thus provide a method for quantifying rearranged DNA molecules encoding one or a plurality of adaptive immune receptors in a biological sample that comprises DNA from lymphoid cells of a subject, each adaptive immune receptor comprising a variable region and a joining region. Briefly, the method comprises the steps of:


(A) in a multiplexed amplification reaction using the herein described oligonucleotide amplification primer set that is capable of amplifying substantially all V−J encoding combinations for a given adaptive immune receptor, amplifying DNA from the sample to which has been added a known amount of the herein described template composition for standardizing amplification efficiency, to obtain amplification products;


(B) quantitatively sequencing the amplification products of (A) to quantify (i) template amplification products, which are amplification products of the herein described template composition and will be identifiable because they contain at least one barcode oligonucleotide sequence, and (ii) amplification products of rearranged adaptive immune receptor encoding DNA sequences in the sample, which will be identifiable because they contain specific V and J sequences but lack an oligonucleotide barcode sequence;


(C) calculating an amplification factor based on quantitative information obtained in step (B); and


(D) using the amplification factor of (C) to determine, by calculation, the number of unique adaptive immune receptor encoding DNA molecules in the sample.


Without wishing to be bound by theory, according to these and related methods, the number of rearranged TCR or IG encoding DNA molecules that are sampled in a multiplexed amplification reaction is measured. To do so, a sequence coverage value, e.g., the number of output sequence reads that are determined for each input (template) molecule, is determined and averaged across the entire number of different template oligonucleotides that are present, to obtain an average sequence coverage value. By dividing (i) the number of reads that are obtained for a given sequence by (ii) the average sequence coverage value, the number of rearranged molecules that are present as templates at the start of the amplification reaction can be calculated.


Thus, for example, to calculate the sequence coverage value, a known quantity of a set of synthetic molecules of the presently disclosed template composition is added to each PCR amplification, the synthetic templates having the basic structure of formula (I) 5′U-B1-V-B2-R-(B3)-J-B4-U 3′ where each V is a 300 base pair segment having a sequence that matches a TCR or IG V gene sequence and J is a 100 base pair segment having a sequence that matches a TCR or IG J gene. B2 is a unique barcode oligonucleotide sequence that uniquely identifies each VJ pair and that also differentiates amplification products of the synthetic DNA templates (which will contain the barcode sequence) from amplification products of naturally occurring biologic template DNA molecules that are contributed by the lymphoid DNA sample (which will lack the barcode sequence). In this example, B3 of formula (I) is nothing. After PCR amplification and sequencing, the numbers of each sequenced synthetic molecule (i.e., amplification products containing the barcode sequence) are counted. The sequence coverage of the synthetic molecules is then calculated based on the known number of starting synthetic template molecules used to spike the amplification reaction.


For example, a pool of 5000 synthetic, barcode-containing template molecules comprising 4-5 copies each of 1100 unique synthetic template oligonucleotide sequences (representing every possible VJ pair) may be added to the amplification reaction. If the amplification products include 50,000 sequences that match the synthetic template molecules, a sequence coverage value of 10× has been obtained and the amplification factor is 10. To estimate the number of natural VDJ-rearranged template molecules in the DNA obtained from the sample, the number of amplification products of the natural templates (i.e., amplification products that lack any barcode sequence) is then divided by the amplification factor. For added accuracy, because in this example the 5000 synthetic molecules are a complex pool of 1100 molecules representing every VJ pair, the amplification factor for every VJ pair can be individually calculated. The amplification factor can then be averaged across all of the synthetic molecules (FIG. 8). The accuracy and robustness of the method is shown in FIG. 9 and details are described below in Example 5.


In an alternative embodiment, identical to what is described above and below in this section, except differing in the use of a subset of the total pool of synthetic template molecules is used in a manner resulting in the addition to a sample of not more than 1 copy of a subset of distinct template molecules to the sample. Application of Poisson statistical methods well known to the ordinarily skilled artisan are used to determine the amount of template to add based upon the known properties of the pool (e.g., the total number of distinct sequences and the concentration of template molecules). For example, 200-500 template molecules are added to the amplification reaction, such that there is on average not more than one copy each of a subset of template molecules present in the pool.


Accordingly, in these embodiments the method comprises: (A) amplifying DNA in a multiplex polymerase chain reaction (PCR) that comprises: (1) DNA from the biological sample that comprises lymphoid cells of the subject, (2) the template composition of claim 1 in which a known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence is present, (3) an oligonucleotide amplification primer set that is capable of amplifying rearranged DNA encoding one or a plurality of adaptive immune receptors in the DNA from the biological sample, the primer set comprising: (a) in substantially equimolar amounts, a plurality of V-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor V-region polypeptide or to the complement thereof, wherein each V-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor V region-encoding gene segment and wherein the plurality of V-segment primers specifically hybridize to substantially all functional adaptive immune receptor V region-encoding gene segments that are present in the template composition, and (b) in substantially equimolar amounts, a plurality of 0.1-segment oligonucleotide primers that are each independently capable of specifically hybridizing to at least one polynucleotide encoding an adaptive immune receptor J-region polypeptide or to the complement thereof, wherein each J-segment primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one functional adaptive immune receptor J region-encoding gene segment and wherein the plurality of J-segment primers specifically hybridize to substantially all functional adaptive immune receptor J region-encoding gene segments that are present in the template composition, wherein the V-segment and J-segment oligonucleotide primers are capable of promoting amplification in said multiplex polymerase chain reaction (PCR) of (i) substantially all template oligonucleotides in the template composition to produce a multiplicity of amplified template DNA molecules, said multiplicity of amplified template DNA molecules being sufficient to quantify diversity of the template oligonucleotides in the template composition, and (ii) substantially all rearranged DNA molecules encoding adaptive immune receptors in the biological sample to produce a multiplicity of amplified rearranged DNA molecules, said multiplicity of amplified rearranged DNA molecules being sufficient to quantify diversity of the rearranged DNA molecules in the DNA from the biological sample, and wherein each amplified DNA molecule in the multiplicity of amplified template DNA molecules and in the multiplicity of amplified rearranged DNA molecules is less than 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 90, 80 or 70 nucleotides in length;


(B) quantitatively sequencing all or a sufficient portion of each of said amplified template DNA molecules and each of said amplified rearranged DNA molecules to quantify (i) a template product number of amplified template DNA molecules which contain at least one oligonucleotide barcode sequence, and (ii) a rearranged product number of amplified rearranged DNA molecules which lack an oligonucleotide barcode sequence;


(C) calculating an amplification factor by dividing the template product number of (B)(i) by the known number of each of the plurality of template oligonucleotides having a unique oligonucleotide sequence of (A)(2); and


(D) dividing the rearranged product number of (B)(ii) by the amplification factor calculated in (C) to quantify unique adaptive immune receptor encoding DNA molecules in the sample.


The contemplated embodiments are not intended to be limited to the above described method, such that from the present disclosure the skilled person will appreciate variations that may be employed. An alternative approach, for example, may not use the herein described synthetic template composition as a spiked-in control template in multiplexed PCR amplification of a DNA sample that contains rearranged lymphoid cell TCR and/or IG encoding DNA as well as non-rearranged DNA. Instead, according to one such alternative, to the amplification reaction using V and J amplification primers may be added a known set of oligonucleotide amplification primers that amplify a distinct, highly conserved genomic sequence region. These genomic control primers may amplify every genome that is present in the DNA sample regardless of whether or not it contains rearranged TCR and/or IG encoding sequences, whereas the V and J primers may amplify products only from genomes with a rearranged VDJ region. The ratio between these two classes of amplification product molecules permits estimation of the total number of B cell genomes in the sample.


The practice of certain embodiments of the present invention will employ, unless indicated specifically to the contrary, conventional methods in microbiology, molecular biology, biochemistry, molecular genetics, cell biology, virology and immunology techniques that are within the skill of the art, and reference to several of which is made below for the purpose of illustration. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al., Molecular Cloning: A Laboratory Manual (1982); Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, updated July 2008); Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Glover, DNA Cloning: A Practical Approach, vol. I & II (IRL Press, Oxford Univ. Press USA, 1985); Current Protocols in Immunology (Edited by: John E. Coligan, Ada M. Kruisbeek, David H. Margulies, Ethan M. Shevach, Warren Strober 2001 John Wiley & Sons, NY, NY); Real-Time PCR: Current Technology and Applications, Edited by Julie Logan, Kirstin Edwards and Nick Saunders, 2009, Caister Academic Press, Norfolk, UK; Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, New York, 1992); Guthrie and Fink, Guide to Yeast Genetics and Molecular Biology (Academic Press, New York, 1991); Oligonucleotide Synthesis (N. Gait, Ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, Eds., 1985); Transcription and Translation (B. Hames & S. Higgins, Eds., 1984); Animal Cell Culture (R. Freshney, Ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984); Next-Generation Genome Sequencing (Janitz, 2008 Wiley-VCH); PCR Protocols (Methods in Molecular Biology) (Park, Ed., 3rd Edition, 2010 Humana Press); Immobilized Cells And Enzymes (IRL Press, 1986); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Harlow and Lane, Antibodies, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1998); Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and CC Blackwell, eds., 1986); Riott, Essential Immunology, 6th Edition, (Blackwell Scientific Publications, Oxford, 1988); Embryonic Stein Cells: Methods and Protocols (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2002); Embryonic Stem Cell Protocols: Volume I: Isolation and Characterization (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Embryonic Stem Cell Protocols: Volume II: Differentiation Models (Methods in Molecular Biology) (Kurstad Turksen, Ed., 2006); Human Embryonic Stem Cell Protocols (Methods in Molecular Biology) (Kursad Turksen Ed., 2006); Mesenchymal Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Darwin J. Prockop, Donald G. Phinney, and Bruce A. Bunnell Eds., 2008); Hematopoietic Stem Cell Protocols (Methods in Molecular Medicine) (Christopher A. Klug, and Craig T. Jordan Eds., 2001); Hematopoietic Stem Cell Protocols (Methods in Molecular Biology) (Kevin D. Bunting Ed., 2008) Neural Stem Cells: Methods and Protocols (Methods in Molecular Biology) (Leslie P. Weiner Ed., 2008).


Unless specific definitions are provided, the nomenclature utilized in connection with, and the laboratory procedures and techniques of, molecular biology, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for recombinant technology, molecular biological, microbiological, chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.


Unless the context requires otherwise, throughout the present specification and claims, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including, but not limited to”. By “consisting of” is meant including, and typically limited to, whatever follows the phrase “consisting of.” By “consisting essentially of” is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase “consisting essentially of” indicates that the listed elements are required or mandatory, but that no other elements are required and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.


In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise. As used herein, in particular embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 5%, 6%, 7%, 8% or 9%. In other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 10%, 11%, 12%, 13% or 14%. In yet other embodiments, the terms “about” or “approximately” when preceding a numerical value indicates the value plus or minus a range of 15%, 16%, 17%, 18%, 19% or 20%.


Reference throughout this specification to “one embodiment” or “an embodiment” or “an aspect” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


EXAMPLES
Example 1
Design of Template Oligonucleotides for Calibrating Amplification Primer Bias Control

In this and the following Examples, standard molecular biology and biochemistry materials and methodologies were employed, including techniques described in, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (3rd Edition, 2001); Sambrook, et al., Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al., Molecular Cloning: A Laboratory Manual (1982); Ausubel et al., Current Protocols in Molecular Biology (John Wiley and Sons, updated July 2008); Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Glover, DNA Cloning: A Practical Approach, vol. I & II (IRL Press, Oxford Univ. Press USA, 1985); Anand, Techniques for the Analysis of Complex Genomes, (Academic Press, New York, 1992); Oligonucleotide Synthesis (N. Gait, Ed., 1984); Nucleic Acid Hybridization (B. Hames & S. Higgins, Eds., 1985); Transcription and Translation (B. Hames & S. Higgins, Eds., 1984); Perbal, A Practical Guide to Molecular Cloning (1984); Next-Generation Genome Sequencing (Janitz, 2008 Wiley-VCH); PCR Protocols (Methods in Molecular Biology) (Park, Ed., 3rd Edition, 2010 Humana Press).


A set of double-stranded DNA (dsDNA) template oligonucleotides was designed as a calibration standard for use as a control template that simulated all possible V/J combinations at a specified adaptive immune receptor (TCR or BCR) locus. For each human TCR and BCR locus, a list was compiled of the known genomic V segment sequences 5′ of the RSS, and a list of the known genomic J segments 3′ of the RSS. The coding strand sequences of the dsDNA template are presented here for ease of interpretation, according to the convention by which the 5′-to-3′ orientation is read left-to-right.


A schematic representation of the general structure of the template oligonucleotides is shown in FIG. 1. For use in cross-validation of each unique template oligonucleotide's identity in multiple contexts, a different 16 bp barcode oligonucleotide (B) was incorporated into each template that uniquely identified the V segment polynucleotide of the template with the first 8 bp of the barcode, and the J segment with the second 8 bp of the barcode. Copies of this barcode were incorporated thrice: (B3) between the external adapter (U2) and the J segment sequence (J) so that a short single-end read with standard Illumina or Ion primers can reveal the identity of the unique combination of V and J sequences in each template oligonucleotide, (B2) between the V and J segments so that a standard sequencing strategy (e.g., Illumina GA-2 or HiSeg™ or MiSEQ®) will capture the unique combination of V and J sequences in each template oligonucleotide, and (B3) between the V segment and the other external adapter (U1), so that a short paired-end read can confirm the identity of the unique combination of V and J sequences in each template oligonucleotide if so desired.


As shown in FIG. 1, the template oligonucleotide sequences started with an adapter sequence (U1) that was capable of incorporating sequencing platform-specific short oligonucleotide sequences at the ends of the molecule. In this example the Illumina Nextera™ adaptors were used, but it should be noted that essentially any pair of robust PCR primers would work equally well. As an exemplary adapter, the oligonucleotide sequence GCCTTGCCAGCCCGCTCAG [SEQ ID NO:1746] was attached at the V segment end of U1 (FIG. 1), in order to maintain compatibility with the Nextera™ Illumina Adaptor (Illumina, Inc., San Diego, Calif.) (CAAGCAGAAGACGGCATACGAGATCGGTCTGCCTTGCCAGCCCGCTCAG) [SEQ ID NO:1747] to add on the standard Illumina oligonucleotide, which was compatible with either single or paired end Illumina sequencing flowcclls.


Immediately downstream from (3′ to) U1 was the first copy (B1) of the barcode oligonucleotide ACACACGTGACACTCT [SEQ ID NO:1748]. Next, a fixed length of V segment sequence was incorporated into the template oligonucleotide, with all templates in the template set ending a given number of bases before the natural RSS, in order to mimic a natural TCR or BCR gene rearrangement having a fixed number of bases deleted at the V segment. In this example zero bases were initially deleted before the RSS. To maximize the recognizability of these sequences, all V segment polynucleotide sequences were then trimmed to remove partial codons adjacent to the RSS, so that the residual V segment sequences were in frame with the start codon. Diverse V segment sequences were those shown in the exemplary template oligonucleotide sets presented in the Sequence Listing (e.g., a set of TCRB V segments within the formula (I) sequences of the TCRB template oligonucleotide set in SEQ ID NOS:1-871; a distinct set of TCRB V segments within the formula (I) sequences of the TCRB template oligonucleotide set in SEQ ID NOS:872-1560; a set of TCRG V segments within the formula (I) sequences of the TCRG template oligonucleotide set in SEQ ID NOS:1561-1630); a single exemplary V polynucleotide was as follows:


TCTTATTTTCATAGGCTCCATGGATACTGGAATTACCCAGACACCAAAA TACCTGGTCACAGCAATGGGGAGTAAAAGGACAATGAAACGTGAGCATCTGGGA CATGATTCTATGTATTGGTACAGACAGAAAGCTAAGAAATCCCTGGAGTTCATGT TTTACTACAACTGTAAGGAATTCATTGAAAACAAGACTGTGCCAAATCACTTCAC ACCTGAATGCCCTGACAGCTCTCGCTTATACCTTCATGTGGTCGCACTGCAGCAA GAAGACTCAGCTGCGTATCTCTGCACCAGCAG [SEQ ID NO:1749].


The stop codon TGA was incorporated in-frame at the 3′ end of the V polynucleotide sequence in each template oligonucleotide, to ensure that the template oligonucleotide sequences would not be considered relevant in the event they contaminated a biological sample. Downstream from the stop codon, between the V segment and J segment where the NDN would normally be, the second copy of the V/J identifier barcode sequence B2 (SEQ ID NO:1748) was inserted. Next the Sal1 restriction enzyme recognition site (R) sequence GTCGAC was incorporated; this sequence was selected on the basis of being a sequence that was not naturally present in any of the TCRB V or J segment genomic sequences, conferring the ability to specifically destroy the synthetic template if desired, or for use as an informatic marker to identify the synthetic sequences. The B3 site, in this version of the template is empty.


The J polynucleotide (J) was incorporated as a fixed length of sequence from a J gene segment, measured from a fixed number of bases after the natural RSS to mimic a natural rearrangement, and in the present example extending into the J-C intron. In this example zero bases were deleted bases from the J segment, but in other template oligonucleotide designs a deletion of 5 bp was used to make room for the VJ barcode (B2) at the V−J junction while maintaining an overall J segment length in the natural range. An exemplary J polynucleotide was


ACTGAAGCTTTCTTTGGACAAGGCACCAGACTCACAGTTGTAGGTAAG ACATTTTTCAGGTTCTTTTGCAGATCCGTCACAGGGAAAAGTGGGTCCACAG [SEQ ID NO:1750].


Downstream from the J segment polynucleotide was the third copy (B4) of the V/J barcode identifier oligonucleotide (SEQ ID NO:1748). The exemplary template oligonucleotide sequence the sequence ended with a second adapter sequence (U2) that was capable of incorporating platform-specific sequences at the ends of the molecule. As noted above, a Nextera™-compatible adaptor (CTGATGGCGCGAGGGAGGC) [SEQ ID NO:1751] was used on the J segment end of U2, for use with the Nextera™ Illumina Adaptor (AATGATACGGCGACCACCGAGATCTACACGCCTCCCTCGCGCCATCAG) [SEQ ID NO:1752] to permit adding on the standard Illumina sequencing oligonucleotide, which is compatible with either single or paired end flowcells.


Exemplary TCRB and TCRG template oligonucleotide sets according to the present disclosure were prepared and had the nucleotide sequences set forth in SEQ ID NOS:1-1630. The sets of template oligonucleotides having sequences set forth in SEQ ID NOS:1-871 and 1561-1630 were custom synthesized, based on the sequence design information disclosed herein, by Integrated DNA Technologies, Inc. (Coralville, Iowa) using gBlocks™ Gene Fragments chemistry. The set of template oligonucleotides having sequences set forth in SEQ TD NOS:872-1560 was generated by a PCR tiling approach described in Example 2.


TCRB Template Oligonucleotides (SEQ ID NOS:1-871).


A set of 871 template oligonucleotides of general formula (I) (in which B3 is nothing) was designed using human TCRB V and J polynucleotide sequences:





5′-U1-B1-V-B2-R-(B3)-J-B4-U2-3′  (I).


Each template oligonucleotide consisted of a 495 base pair DNA molecule. Sense strand sequences are presented as SEQ TD NOS:1-871.


A schematic diagram depicting the design of this template set is shown in FIG. 1. By convention, the diagram depicts the oligonucleotide design in the 5′-to’3′ (left-to-right) direction. “V segment” represents an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof “J segment” represents an adaptive immune receptor joining (J) region encoding gene sequence, or the complement thereof. U1 and U2 represent, respectively, first and second universal adaptor oligonucleotide sequences, which may optionally further comprise, respectively, first and second sequencing platform-specific oligonucleotide sequences linked to and positioned 5′ to the first and second universal adaptor oligonucleotide sequences. B1, B2 and B4 represent oligonucleotide barcode sequences that each comprise an oligonucleotide barcode sequence comprising a unique oligonucleotide sequence that uniquely identifies, as a paired combination, (i) a unique V segment sequence, and (ii) a unique J segment sequence; in this Example, B3 was nothing.


S represents an optional stop codon that may be in-frame or out of frame at the 3′ end of V. R represents an optional restriction enzyme recognition site. In SEQ ID NOS:1-871 the U1 and U2 adapters included the 19-mers as described above (SEQ ID NOS:1746 and 1751, respectively) and all (V+J)-identifying barcode (B) sequences (B1, B2, B4) were 16 nucleotides in length; the stop codon TGA and the Sal1 restriction enzyme recognition site (GTCGAC) were included.


TCRB Template Oligonucleotides (SEQ ID NOS:872-1560).


A second set of 689 template oligonucleotides was designed in which, according to general formula (I), V and J comprised, respectively, human TCRB V and J polynucleotide sequences, U1 and U2 independently comprised distinct restriction enzyme recognition sites (R1 and R3), and B1, B3, and B4 were independently nothing, to arrive at general formula (II):





R1-V-B2-R2-J-R3  (II)


wherein B2 was an 8-nucleotide barcode identifier (e.g., a barcode sequence as set forth in Table 7); R1, R2 and R3 were, respectively, the restriction enzyme recognition sites EcoR1 (GAATTC), Sal1 (GTCGAC) and Sph1 (GCATGC); and V and J were, respectively, V region and J region polynucleotides as described herein. Each template oligonucleotide consisted of a 239 base pair DNA molecule. Sense strand sequences are presented as SEQ ID NOS:872-1560.


TCRG Template Oligonucleotides (SEQ ID NOS:1561-1630).


A third set of 70 template oligonucleotides of general formula (I) was designed using human TCRG V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Sense strand sequences are presented as SEQ ID NOS:1561-1630. Details for the 70-oligonucleotide set of TCRG templates (SEQ ID NOS:1561-1630) are representative and were as follows:


Based on previously determined genomic sequences the human TCRG locus was shown to contain 14 Vγ segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 14 Vγ segments included six gene segments known to be expressed, three V segments that were classified as having open reading frames, and five V pseudogenes. The Vγ gene segments were linked to five Jγ gene segments. In order to include all possible V+J gene combinations for the 14 V and 5 J segments, 70 (5×14) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-(B3)-J-B4-U2-3′)(FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 70 templates (SEQ ID NOS:1561-1630) was amplified individually using oligonucleotide primers (Table 4; SEQ ID NOS:1732-1745) designed to anneal to the universal adapter sequences (U1, U2).









TABLE 4







TCRG Amplification Primers











5′

SEQ ID


Primer Name
Adapter
Sequence
NO:





TCRGV01_dev10
pGEXf
GGAGGGGAAGGCCCCACAGTGTCTTC
1732





TCRGV02/3/4/5/8_dev10
pGEXf
GGAGGGGAAGGCCCCACAGCGTCTTC
1733





TCRGV05P_dev10
pGEXf
GGAGGGGAAGACCCCACAGCATCTTC
1734





TCRGV06_dev10
pGEXf
GGAGGGGAAGGCCCCACAGCATCTTC
1735





TCRGV07_dev10
pGEXf
GGCGGGGAAGGCCCCACAGCATCTTC
1736





TCRGV09_dev10
pGEXf
TGAAGTCATACAGTTCCTGGTGTCCAT
1737





TCRGV10_dev10
pGEXf
CCAAATCAGGCTTTGGAGCACCTGATCT
1738





TCRGV11_dev10
pGEXf
CAAAGGCTTAGAATATTTATTACATGT
1739





TCRGVA_dev10
pGEXf
CCAGGTCCCTGAGGCACTCCACCAGCT
1740





TCRGVB_dev10
pGEXf
CTGAATCTAAATTATGAGCCATCTGACA
1741





TCRGJP1_dev10
pGEXr
GTGAAGTTACTATGAGCTTAGTCCCTTC
1742




AGCAAA






TCRGJP2_dev10
pGEXr
CGAAGTTACTATGAGCCTAGTCCCTTTT
1743




GCAAA






TCRGJ1/2_dev10
pGEXr
TGACAACAAGTGTTGTTCCACTGCCAAA
1744





TCRGJP_dev10
pGEXr
CTGTAATGATAAGCTTTGTTCCGGGACC
1745




AAA









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The frequencies of occurrence for each of the 70 possible V−J combinations, as determined by sequencing barcodes B1, are shown in Table 5. The 70 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 70 template oligonucleotides were present at substantially cquimolar concentrations, the pool was sequenced using the Illumina HiSeq™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina Nextera™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 60 bp of the PCR reaction products were sequenced using an Illumina HiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 70 distinct template oligonucleotides was calculated to contain approximately 1.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.14-14%) for all species was desired. The quantitative sequencing revealed that the 70 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.14-14%).









TABLE 5







Relative Representation (number of occurrences of indicated V-J combination) of amplification


products of each TCRG VJ pair (14 V × 5 J) in pre-amplification Template Pool














Count of Jseg









B Labels
TCRGJ
TCRGJ2
TCRGJP
TCRGJP1
TCRGJP2
#N/A
Grand Total

















TCRGV01
17
308
1315
741
822
44
3247


TCRGV02
630
781
2394
2009
122
65
6001


TCRGV03
250
166
2119
157
1105
51
3848


TCRGV04
777
37
2031
1490
1443
76
5854


TCRGV05
323
93
2571
716
150
63
3916


TCRGV05P
294
1161
2946
1552
530
111
6594


TCRGV06
164
1280
1809
401
23
40
3717


TCRGV07
16
234
1849
1697
93
78
3967


TCRGV08
2523
653
944
170
134
57
4481


TCRGV09
55
1004
2057
124
228
42
3510


TCRGV10
351
690
814
384
466
36
2741


TCRGV11
505
648
639
330
181
39
2342


TCRGVA
199
475
112
272
437
12
1507


TCRGVB
210
20
423
874
917
24
2468


#N/A
77
118
309
150
106
531
1291


Grand Total
6391
7668
22332
11067
6757
1269
55484









Example 2
Detection of TCRB V Gene Amplification Bias

This example describes how a set of 689 human TCRB template oligonucleotides of general formula (I) was assembled by tiling together four single stranded oligonucleotides of 50-90 nucleotides each to generate a template set containing hybridization targets for all possible V−J combinations in a set of oligonucleotide primers that was capable of amplifying human TCRB sequences. The set of template oligonucleotides was then used to characterize the relative amplification efficiencies of a set of TCRB V and J amplification primers.


A set of TCRB 689 template oligonucleotides containing polynucleotide sequences representing all possible productively rearranged V and J combinations for human TCRB chains was synthesized by “tiling” together four single-stranded DNA primers in a standard PCR reaction. Briefly, two 90 bp fragments (one in “forward” orientation and the other in “reverse”) were designed for each TCRB V gene segment, one 90 bp fragment (in “reverse” orientation) was designed for each TCRB J gene segment, and a 50 bp (forward) linker molecule was designed to link together the V and J gene fragments. In total, 52 V forward and 52 V reverse, 13 J reverse, and 689 linker molecules were designed. The two 90 bp fragments (one forward, one reverse) that corresponded to each of the V gene segments had 39 bp of complementary overlapping sequence. One end of each V reverse fragment had 25 bp of complementary sequence which overlapped with the 50 bp linker molecule. The remaining 25 bp in each of the linker molecules was a sequence that complementarily overlapped with one end of the J molecule. The molecules were designed so that the complementary sequences would anneal to one another and form double stranded DNA to which Taq polymerase could bind and enzymatically extend the molecule.


Each PCR reaction to assemble the tiled molecules used QIAGEN Multiplex PCR master mix (QIAGEN part number 206145, Qiagen, Valencia, Calif.), 10% Q-solution (QIAGEN), and the four single-stranded oligonucleotide sequences (two TCRB V, a TCRB J and a linker, as described above). The two external molecules (one V forward and one J reverse) were added at a final concentration of 1 μM each while the two internal molecules, (one V reverse and the forward linker), were each added at a final concentration of 0.01 μM. The thermocycler conditions were: 95° C. for 15 minutes, followed by 35 cycles of 94° C. for 30 seconds, 59° C. for 30 seconds, and 72° C. for 1 minute, followed by 1 cycle at 72° C. for 10 minutes. After synthesis, the molecules were quantified by the LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions and the concentration (in ng/μl) of each resulting band was calculated using Caliper LabChip GX software.


The nucleotide sequences for the resulting set of 689 TCRB template oligonucleotides are set forth in SEQ ID NOS:872-1560. In SEQ ID NOS:872-1560, each distinct V region sequence was identified by a unique barcode sequence of eight nucleotides, as shown in Table 7. All 689 templates were normalized to a standard concentration of 25 ng/μl, and then pooled. The resulting pool was used for the TCRB assays described herein to detect biased (non-uniform) utilization of TCRB amplification primers during amplification of the 689-template oligonucleotide set (SEQ ID NOS:872-1560).


Each of the 689 templates was present in the template oligonucleotide pool at experimentally as close as possible to equal molar concentration, and the pool was used as template for the TCRB amplification PCR reaction using an equimolar mixture of 52 TCRB V region primers that included an Illumina adapter-compatible sequence (SEQ ID NOS:1753-1804, Table 6) and an equimolar mix of 13 TCRB J region primers (SEQ ID NOS:1631-1643, Table 1). The members of the pool of 689 templates were amplified using an equimolar pool of the 52 TCRB JβR (forward) primers (the “JF pool”) and an equimolar pool of the 13 TCRB JβR (reverse) primers (the “JR pool”) as shown in Table 1 (SEQ ID NOS:1.631-1695). Polymerase chain reactions (PCR) (50 μL each) were set up at 1.0 μM VF pool (22 nM for each unique TCRB VβF primer), 1.0 μM JR pool (77 nM for each unique TCRB JβR primer), 1 μM QIAGEN Multiplex PCR master mix ((NAG-EN part number 206145, Qiagen Corp., Valencia, Calif.), 10% Q-solution (QIAGEN), and 16 ng/μL genomic DNA (gDNA). The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif., USA): one cycle at 95° C. for 15 minutes, 25 to 40 cycles at 94° C. for 30 seconds, 59° C. for 30 seconds, and 72° C. for one minute, followed by one cycle at 72° C. for 10 minutes. To sample millions of rearranged TCRβ CDR3 loci, 12 to 20 wells of PCR were performed for each library. As noted above, the V and J primers included a tail that corresponded to, and was compatible with, Illumina adapters for sequencing.


Amplification products were quantitatively sequenced on an Illumina HiSeg™ sequencer. A 60-base pair region of each product molecule was sequenced using standard J sequencing primers (Table 3) starting from the J molecules. The frequencies of occurrence of each TCRB sequence in the reaction products are shown in FIG. 2, from which it was apparent that not all TCRB sequences had been amplified to a comparable degree.









TABLE 6







TCRB Amplification Primers












Adjusted





Relative





Primer





Molar



Primer Name
Primer Sequence
Ratio
SEQ ID NO:













TRB2V10-1
CAA GCA GAA GAC GGC ATA CGA
0.77
1753



GCT CTT CCG ATC TAA CAA AGG





AGA AGT CTC AGA TGG CTA CAG







TRB2V10-2
CAA GCA GAA GAC GGC ATA CGA
1.57
1754



GCT CTT CCG ATC TGA TAA AGG





AGA AGT CCC CGA TGG CTA TGT







TRB2V10-3
CAA GCA GAA GAC GGC ATA CGA
2.76
1755



GCT CTT CCG ATC TGA CAA AGG





AGA AGT CTC AGA TGG CTA TAG







TRB2V11-123
CAA GCA GAA GAC GGC ATA CGA
1.88
1756



GCT CTT CCG ATC TCT AAG GAT





CGA TTT TCT GCA GAG AGG CTC







TRB2V12-1
CAA GCA GAA GAC GGC ATA CGA
1
1757



GCT CTT CCG ATC TTT GAT TCT





CAG CAC AGA TGC CTG ATG T







TRB2V12-2
CAA GCA GAA GAC GGC ATA CGA
1
1758



GCT CTT CCG ATC TGC GAT TCT





CAG CTG AGA GGC CTG ATG G







TRB2V12-3/4
CAA GCA GAA GAC GGC ATA CGA
3.24
1759



GCT CTT CCG ATC TTC GAT TCT





CAG CTA AGA TGC CTA ATG C







TRB2V12-5
CAA GCA GAA GAC GGC ATA CGA
1.82
1760



GCT CTT CCG ATC TTT CTC AGC





AGA GAT GCC TGA TGC AAC TTT





A







TRB2V13
CAA GCA GAA GAC GGC ATA CGA
2.14
1761



GCT CTT CCG ATC TCT GAT CGA





TTC TCA GCT CAA CAG TTC AGT







TRB2V14
CAA GCA GAA GAC GGC ATA CGA
1.65
1762



GCT CTT CCG ATC TTC TTA GCT





GAA AGG ACT GGA GGG ACG TAT







TRB2V15
CAA GCA GAA GAC GGC ATA CGA
3.77
1763



GCT CTT CCG ATC TGC CGA ACA





CTT CTT TCT GCT TTC TTG AC







TRB2V16
CAA GCA GAA GAC GGC ATA CGA
1.40
1764



GCT CTT CCG ATC TTT CAG CTA





AGT GCC TCC CAA ATT CAC CCT







TRB2V17
CAA GCA GAA GAC GGC ATA CGA
2.87
1765



GCT CTT CCG ATC TAT TCA CAG





CTG AAA GAC CTA ACG GAA CGT







TRB2V18
CAA GCA GAA GAC GGC ATA CGA
0.80
1766



GCT CTT CCG ATC TAT TTT CTG





CTG AAT TTC CCA AAG AGG GCC







TRB2V19
CAA GCA GAA GAC GGC ATA CGA
0.84
1767



GCT CTT CCG ATC TTA TAG CTG





AAG GGT ACA GCG TCT CTC GGG







TRB2V2
CAA GCA GAA GAC GGC ATA CGA
1.02
1768



GCT CTT CCG ATC TTT CGA TGA





TCA ATT CTC AGT TGA AAG GCC







TRB2V20-1
CAA GCA GAA GAC GGC ATA CGA
1.66
1769



GCT CTT CCG ATC TAT GCA AGC





CTG ACC TTG TCC ACT CTG ACA







TRB2V23-1
CAA GCA GAA GAC GGC ATA CGA
1
1770



GCT CTT CCG ATC TGA TTC TCA





TCT CAA TGC CCC AAG AAC GC







TRB2V24-1
CAA GCA GAA GAC GGC ATA CGA
4.01
1771



GCT CTT CCG ATC TAT CTC TGA





TGG ATA CAG TGT CTC TCG ACA







TRB2V25-1
CAA GCA GAA GAC GGC ATA CGA
1.29
1772



GCT CTT CCG ATC TTT TCC TCT





GAG TCA ACA GTC TCC AGA ATA







TRB2V26
CAA GCA GAA GAC GGC ATA CGA
1
1773



GCT CTT CCG ATC TCT CTG AGA





GGT ATC ATG TTT CTT GAA ATA







TRB2V27
CAA GCA GAA GAC GGC ATA CGA
4.22
1774



GCT CTT CCG ATC TTC CTG AAG





GGT ACA AAG TCT CTC GAA AAG







TRB2V28
CAA GCA GAA GAC GGC ATA CGA
2.37
1775



GCT CTT CCG ATC TTC CTG AGG





GGT ACA GTG TCT CTA GAG AGA







TRB2V29-1
CAA GCA GAA GAC GGC ATA CGA
1.50
1776



GCT CTT CCG ATC TCA TCA GCC





GCC CAA ACC TAA CAT TCT CAA







TRB2V2P
CAA GCA GAA GAC GGC ATA CGA
1
1777



GCT CTT CCG ATC TCC TGA ATG





CCC TGA CAG CTC TCG CTT ATA







TRB2V3-1
CAA GCA GAA GAC GGC ATA CGA
3.35
1778



GCT CTT CCG ATC TCC TAA ATC





TCC AGA CAA AGC TCA CTT AAA







TRB2V3-2
CAA GCA GAA GAC GGC ATA CGA
1
1779



GCT CTT CCG ATC TCT CAC CTG





ACT CTC CAG ACA AAG CTC AT







TRB2V30
CAA GCA GAA GAC GGC ATA CGA
1.48
1780



GCT CTT CCG ATC TGA CCC CAG





GAC CGG CAG TTC ATC CTG AGT







TRB2V4-1
CAA GCA GAA GAC GGC ATA CGA
3.32
1781



GCT CTT CCG ATC TCT GAA TGC





CCC AAC AGC TCT CTC TTA AAC







TRB2V4-2/3
CAA GCA GAA GAC GGC ATA CGA
3.11
1782



GCT CTT CCG ATC TCT GAA TGC





CCC AAC AGC TCT CAC TTA TTC







TRB2V5-1
CAA GCA GAA GAC GGC ATA CGA
1.27
1783



GCT CTT CCG ATC TTG GTC GAT





TCT CAG GGC GCC AGT TCT CTA







TRB2V5-3
CAA GCA GAA GAC GGC ATA CGA
1.75
1784



GCT CTT CCG ATC TTA ATC GAT





TCT CAG GGC GCC AGT TCC ATG







TRB2V5-4
CAA GCA GAA GAC GGC ATA CGA
1.58
1785



GCT CTT CCG ATC TTC CTA GAT





TCT CAG GTC TCC AGT TCC CTA







TRB2V5-5
CAA GCA GAA GAC GGC ATA CGA
0.99
1786



GCT CTT CCG ATC TAA GAG GAA





ACT TCC CTG ATC GAT TCT CAG





C







TRB2V5-6
CAA GCA GAA GAC GGC ATA CGA
0.69
1787



GCT CTT CCG ATC TGG CAA CTT





CCC TGA TCG ATT CTC AGG TCA







TRB2V5-8
CAA GCA GAA GAC GGC ATA CGA
3.30
1788



GCT CTT CCG ATC TGG AAA CTT





CCC TCC TAG ATT TTC AGG TCG







TRB2V6-1
CAA GCA GAA GAC GGC ATA CGA
1.74
1789



GCT CTT CCG ATC TGT CCC CAA





TGG CTA CAA TGT CTC CAG ATT







TRB2V6-2/3
CAA GCA GAA GAC GGC ATA CGA
1.59
1790



GCT CTT CCG ATC TGC CAA AGG





AGA GGT CCC TGA TGG CTA CAA







TRB2V6-4
CAA GCA GAA GAC GGC ATA CGA
1.48
1791



GCT CTT CCG ATC TGT CCC TGA





TGG TTA TAG TGT CTC CAG AGC







TRB2V6-5
CAA GCA GAA GAC GGC ATA CGA
0.45
1792



GCT CTT CCG ATC TAA GGA GAA





GTC CCC AAT GGC TAC AAT GTC







TRB2V6-6
CAA GCA GAA GAC GGC ATA CGA
0.41
1793



GCT CTT CCG ATC TGA CAA AGG





AGA AGT CCC GAA TGG CTA CAA





C







TRB2V6-7
CAA GCA GAA GAC GGC ATA CGA
2.23
1794



GCT CTT CCG ATC TGT TCC CAA





TGG CTA CAA TGT CTC CAG ATC







TRB2V6-8
CAA GCA GAA GAC GGC ATA CGA
1.18
1795



GCT CTT CCG ATC TCT CTA GAT





TAA ACA CAG AGG ATT TCC CAC







TRB2V6-9
CAA GCA GAA GAC GGC ATA CGA
0.96
1796



GCT CTT CCG ATC TAA GGA GAA





GTC CCC GAT GGC TAC AAT GTA







TRB2V7-1
CAA GCA GAA GAC GGC ATA CGA
0.85
1797



GCT CTT CCG ATC TTC CCC GTG





ATC GGT TCT CTG CAC AGA GGT







TRB2V7-2
CAA GCA GAA GAC GGC ATA CGA
0.64
1798



GCT CTT CCG ATC TAG TGA TCG





CTT CTC TGC AGA GAG GAC TGG







TRB2V7-3
CAA GCA GAA GAC GGC ATA CGA
0.84
1799



GCT CTT CCG ATC TGG CTG CCC





AAC GAT CGG TTC TTT GCA GT







TRB2V7-4
CAA GCA GAA GAC GGC ATA CGA
0.48
1800



GCT CTT CCG ATC TGG CGG CCC





AGT GGT CGG TTC TCT GCA GAG







TRB2V7-6/7
CAA GCA GAA GAC GGC ATA CGA
1.01
1801



GCT CTT CCG ATC TAT GAT CGG





TTC TCT GCA GAG AGG CCT GAG





G







TRB2V7-8
CAA GCA GAA GAC GGC ATA CGA
1.57
1802



GCT CTT CCG ATC TGC TGC CCA





GTG ATC GCT TCT TTG CAG AAA







TRB2V7-9
CAA GCA GAA GAC GGC ATA CGA
0.49
1803



GCT CTT CCG ATC TGG TTC TCT





GCA GAG AGG CCT AAG GGA TCT







TRB2V9
CAA GCA GAA GAC GGC ATA CGA
3.46
1804



GCT CTT CCG ATC TGT TCC CTG





ACT TGC ACT CTG AAC TAA AC
















TABLE 7







Barcode sequences used to identify TCRB V


Regions in SEQ ID NOS: 872-1560









TCRBV region name
Nucleotide



of 8 bp barcode
Sequence
SEQ ID NO





TCRBV2_8bpBC
CAAGGTCA
SEQ ID NO: 6375





TCRBV3-1_8bpBC
TACGTACG
SEQ ID NO: 6376





TCRBV4-1_8bpBC
TACGCGTT
SEQ ID NO: 6377





TCRBV4-2_8bpBC
CTCAGTGA
SEQ ID NO: 6378





TCRBV4-3_8bpBC
GTGTCTAC
SEQ ID NO: 6379





TCRBV5-1_8bpBC
AGTACCGA
SEQ ID NO: 6380





TCRBV5-3_8bpBC
TTGCCTCA
SEQ ID NO: 6381





TCRBV5-4_8bpBC
TCGTTAGC
SEQ ID NO: 6382





TCRBV5-5_8bpBC
TGGACATG
SEQ ID NO: 6383





TCRBV5-6_8bpBC
AGGTTGCT
SEQ ID NO: 6384





TCRBV5-7_8bpBC
GTACAGTG
SEQ ID NO: 6385





TCRBV5-8_8bpBC
ATCCATGG
SEQ ID NO: 6386





TCRBV6-1_8bpBC
TGATGCGA
SEQ ID NO: 6387





TCRBV6-2_8bpBC
GTAGCAGT
SEQ ID NO: 6388





TCRBV6-3_8bpBC
GGATCATC
SEQ ID NO: 6389





TCRBV6-4_8bpBC
GTGAACGT
SEQ ID NO: 6390





TCRBV6-5_8bpBC
TGTCATCG
SEQ ID NO: 6391





TCRBV6-6_8bpBC
AGGCTTGA
SEQ ID NO: 6392





TCRBV6-7_8bpBC
ACACACGT
SEQ ID NO: 6393





TCRBV6-8_8bpBC
TCCACAGT
SEQ ID NO: 6394





TCRBV6-9_8bpBC
CAGTCTGT
SEQ ID NO: 6395





TCRBV7-1_8bpBC
TCCATGTG
SEQ ID NO: 6396





TCRBV7-2_8bpBC
TCACTGCA
SEQ ID NO: 6397





TCRBV7-3_8bpBC
CAAGTCAC
SEQ ID NO: 6398





TCRBV7-4_8bpBC
TAGACGGA
SEQ ID NO: 6399





TCRBV7-6_8bpBC
GAGCGATA
SEQ ID NO: 6400





TCRBV7-7_8bpBC
CTCGAGAA
SEQ ID NO: 6401





TCRBV7-8_8bpBC
ATGACACC
SEQ ID NO: 6402





TCRBV7-9_8bpBC
CTTCACGA
SEQ ID NO: 6403





TCRBV9_8bpBC
CGTAGAGT
SEQ ID NO: 6404





TCRBV10-1_8bpBC
TCGTCGAT
SEQ ID NO: 6405





TCRBV10-2_8bpBC
AGCTAGTG
SEQ ID NO: 6406





TCRBV10-3_8bpBC
TGAGACCT
SEQ ID NO: 6407





TCRBV11-1_8bpBC
GATGGCTT
SEQ ID NO: 6408





TCRBV11-2_8bpBC
GCATCTGA
SEQ ID NO: 6409





TCRBV11-3_8bpBC
GACACTCT
SEQ ID NO: 6410





TCRBV12-3_8bpBC
TGCTACAC
SEQ ID NO: 6411





TCRBV12-4_8bpBC
TCAGCTTG
SEQ ID NO: 6412





TCRBV12-5_8bpBC
TTCGGAAC
SEQ ID NO: 6413





TCRBV13_8bpBC
GCAATTCG
SEQ ID NO: 6414





TCRBV14_8bpBC
CAAGAGGT
SEQ ID NO: 6415





TCRBV15_8bpBC
GAATGGAC
SEQ ID NO: 6416





TCRBV16_8bpBC
AACTGCCA
SEQ ID NO: 6417





TCRBV17p_8bpBC
CCTAGTAG
SEQ ID NO: 6418





TCRBV18_8bpBC
CTGACGTT
SEQ ID NO: 6419





TCRBV19_8bpBC
TGCAGACA
SEQ ID NO: 6420





TCRBV20-1_8bpBC
AGTTGACC
SEQ ID NO: 6421





TCRBV24-1_8bpBC
GTCTCCTA
SEQ ID NO: 6422





TCRBV25-1_8bpBC
CTGCAATC
SEQ ID NO: 6423





TCRBV27-1_8bpBC
TGAGCGAA
SEQ ID NO: 6424





TCRBV28_8bpBC
TTGGACTG
SEQ ID NO: 6425





TCRBV29-1_8bpBC
AGCAATCC
SEQ ID NO: 6426





TCRBV30_8bpBC
CGAACTAC
SEQ ID NO: 6427









Using the data that were obtained to generate FIG. 2, as described above, the cross-amplification capability (ability to amplify a V gene segment other than the one for which the primer was specifically designed on the basis of annealing sequence complementarity) was assessed for each amplification primer that had been designed to anneal to a specific V gene segment. 52 independent amplification primer pools were prepared, where each primer pool had 51 of the 52 TCRB V region primers of Table 6 pooled at equimolar concentrations, and the 52nd TCRB V region primer present in the pool at twice the molar concentration of the other 51 primers. A separate amplification primer pool was prepared so that there was one pool for each of the 52 V primers in which a single primer was present at twice the concentration of the other primers, resulting in 52 unique primer pools. 52 separate amplification reactions were then set up, one for each of the unique amplification primer pools, with each reaction using the set of 689 template oligonucleotides (SEQ ID NOS:872-1560) described above. Template oligonucleotides were present at equimolar concentration relative to one another. Amplification and sequencing were conducted using the conditions described above. The results are shown in FIG. 3.


In FIG. 3, black squares indicated no change in the degree of amplification with the respective indicated TCRB V region-specific primer present at twice the concentration relative to equimolar concentrations of all other primers; white squares indicated a 10-fold increase in amplification; grey squares indicated intermediate degrees (on a greyscale gradient) of amplification between zero and 10-fold. The diagonal line indicated that doubling the molar concentration for a given primer resulted in about a 10-fold increase in the amplification of the respective template oligonucleotide having the specific annealing target sequence, in the case of most of the TCRB V regions primers that were tested. The off-diagonal white squares indicated non-corresponding templates to which certain primers were able to anneal and amplify.


Where one or more primers exhibited amplification potential that was significantly greater or lower than an acceptable range of amplification potential (e.g., a designated uniform amplification potential range), further adjustment of the concentrations of individual primer oligonucleotides and reiteration of the template amplification and quantitative sequencing steps were conducted, until each species of product molecule was present within a desired range that was indicative of correction of the non-uniform amplification potential among the primers within an amplification primer set.


Accordingly, primer concentrations were adjusted as indicated in Table 6, in order to determine whether biased amplification results that were apparent in FIGS. 2 and 3 could be reduced in severity by increasing or decreasing the relative presence of, respectively, highly efficient or poorly efficient amplification primers. For multiplexed PCR using an adjusted primer set, the V gene primer sequences remained the same (sequence reported in table 6), however the relative concentration of each primer was either increased, if the primer underamplified its template (FIG. 3), or decreased if the primer over-amplified its template (FIG. 3). The adjusted mixture of amplification primers was then used in a PCR to amplify the template composition containing, in equimolar amounts, the set of 689 template oligonucleotides (SEQ ID NOS:872-1560) that were used to generate the data in FIGS. 2 and 3.


Amplification and quantitative sequencing were performed as described above and the results are shown in FIG. 4, which compares the frequency at which each indicated amplified V region sequence-containing product was obtained when all amplification primers were present at equimolar concentrations (black bars) to the frequency at which each such product was obtained after the concentrations of the amplification primers were adjusted (grey bars) to the concentrations as indicated in Table 6.


Additional hs-TCRB primer sequences are found at SEQ ID NOs. 6192-6264.


Example 3
Correcting Non-Uniform Amplification Potential (PCR Bias) in TCR-Amplifying Oligonucleotide Primer Sets

Diverse TCR amplification primers are designed to amplify every possible combination of rearranged TCR V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers is used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of TCR-specific template oligonucleotides according to formula (I) with at least one template representing every possible V−J combination for the TCR locus. The amplification products are quantitatively sequenced and the frequency of occurrence of each unique V−J product sequence is obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V−J combination.


For TCRG, the TCRG template oligonucleotides (SEQ ID NOS:1561-1630) are amplified using TCRG V- and J-specific primers (SEQ ID NOS:1732-1745, Table 4). J primer independence of respectively paired V primers is identified by separately amplifying each of the eight TCRG V gene segment specific primers with a pool of the five J gene segment specific primers. The amplification products are quantitatively sequenced on an Illumina HiSeg™ sequencing platform and the frequency of occurrence of the internal 16 bp barcode sequences (B) that uniquely identify specific V−J combinations permit quantification of each V−J pair. V primer independence of respectively paired J primers is identified by performing the inverse reaction, i.e., by separately amplifying each of the five TCRG J gene segment primers with a pool of the eight V gene segment specific primers.


To test if TCRG V primers or J primers cross-amplify (e.g., whether gene segment specific primers amplify non-specifically, for instance, to test if the V primer specifically designed to amplify TCRG V7 segments is able to amplify both TCRG V6 and TCRG V7 V gene segments), independent primer pools are generated that contain equimolar concentrations of all but one of the primers, and the omitted primer is then added to the pool at twice the molar concentration of all other primers. The primers are then used to amplify a template composition that comprises a plurality of template oligonucleotides of general formula (I) as described herein, using TCRG V and J gene sequences in, respectively, the V and J polynucleotides of formula (T). Quantitative sequencing reveals the identities of any one or more templates that are over represented among the amplification products when a single amplification primer is present at twice the concentration of all other primers in the pool of primers. The primer mixture is then adjusted to increase or decrease the relative concentrations of one or more primers, to obtain amplification frequencies in iterative rounds that are within acceptable quantitative tolerances. The adjusted primer mixture so obtained is regarded as having been corrected to reduce non-uniform amplification potential among the members of the primer set.


To determine whether a corrected primer mixture exhibits unbiased amplification potential when used to amplify rearranged TCR template DNA in a biological sample from lymphoid cells of a subject, the artificial template compositions as described herein are prepared with all VJ pairs present at similar frequency, and also with varying ratios of the relative representation of certain VJ pairs. Each type of template preparation is separately tested as an amplification template for an amplification primer set that has been corrected to reduce non-uniform amplification potential among certain members of the primer set. Quantitative sequence determination of amplification products identifies that the relative quantitative representation of specific sequences in the template preparation is reflected in the relative quantitative representation of specific sequences among the amplification products.


As an alternative to the iterative process described above, or in addition to such iterative amplification steps followed by quantitative sequencing, amplification bias can also be corrected computationally. According to this computational approach, the starting frequency of each of the species of template oligonucleotide sequences in the synthesized template composition is known. The frequency of each of these species of oligonucleotide sequences among the amplification products that are obtained following PCR amplification is determined by quantitative sequencing. The difference between the relative frequencies of the template oligonucleotide sequences prior to PCR amplification and their frequencies following PCR amplification is the “PCR bias.” This difference is the amplification bias introduced during amplification, for example, as a consequence of different amplification efficiencies among the various amplification primers.


As quantitatively determined for each known template oligonucleotide sequence, the PCR bias for each primer is used to calculate an amplification bias (normalization) factor by which the observed frequency for each amplification product is corrected to reflect the actual frequency of the respective template sequence in the template composition. If PCR bias for an amplification primer set is empirically detected using the present template composition as being within a factor of 10, then the bias can be computationally corrected in amplification products obtained when the same amplification primer set is used to amplify a DNA sample of unknown composition. Improved accuracy in the quantification of template species in the DNA sample is thereby obtained.


Because V and J primers are empirically tested and shown to be independent, an amplification bias factor can be derived for each V species and for each J species, and an amplification factor for each VJ species pair is not necessary. Accordingly, the amplification bias factor for each V species and J species is derived using the present template composition. By the present method, the frequencies of the V and J gene sequences in the template composition are known (or can be calculated based on knowledge of the concentrations of each template oligonucleotide species in the template composition as synthesized) prior to PCR amplification. After PCR amplification, quantitative sequencing is used to detect the frequency of each V and J gene segment sequence in the amplification products. For each sequence, the difference in gene segment frequency is the amplification bias:





Initial Frequency/final frequency=amplification bias factor


Amplification bias factors are calculated for every V gene segment and every J gene segment. These amplification factors, once calculated, can be applied to samples for which the starting frequency of V and J genes is unknown.


In a mixed template population (such as a complex DNA sample obtained from a biological source that comprises DNA from lymphoid cells that are presumed to contain rearranged adaptive immune receptor encoding DNA, or a complex DNA sample which additionally comprises DNA from other cells lacking such rearrangements), where the starting frequency of each V and J gene segment is unknown, the calculated amplification factors for a primer set that has been characterized using the present template composition can be used to correct for residual PCR amplification bias. For each species of sequenced amplification product molecule, the V and J genes that are used by the molecule are determined based on sequence similarity. To correct for amplification bias, the number of times the molecule was sequenced is multiplied by both the correct V and J amplification factors. The resulting sequence count is the computationally “normalized” set.


Example 4
Generation of Additional Template Compositions

Additional template compositions were designed and produced essentially according to the methodologies described above.


V and J Polynucleotides.


TCRB V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 68 TCRB V and J SEQ ID NOS, respectively, as shown in FIGS. 5a-5l as TCRB V/J set 1, TCRB V/J set 2, TCRB V/J set 3, TCRB V/J set 4, TCRB V/J set 5, TCRB V/J set 6, TCRB V/J set 7, TCRB V/J set 8, TCRB V/J set 9, TCRB V/J set 10, TCRB V/J set 11, TCRB V/J set 12 and TCRB V/J set 13.


TCRG V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 14 TCRG V and J SEQ ID NOS, respectively, as set forth in FIGS. 6a-6b as TCRG V/J set 1, TCRG V/J set 2, TCRG V/J set 3, TCRG V/J set 4 and TCRG V/J set 5.


IGH V and J polynucleotide sequences were generated for inclusion in the herein described plurality of template oligonucleotides and are set forth in sets of 127 IGH V and J SEQ ID NOS, respectively, as set forth in FIGS. 7a-7m as IGH V/J set 1, IGH V/J set 2, IGH V/J set 3, IGH V/J set 4, IGH V/J set 5, IGH V/J set 6, IGH V/J set 7, IGH V/J set 8 and IGH V/J set 9.


Template Compositions.


A template composition was prepared for standardizing the amplification efficiency of TCRB amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The TCRB template composition comprising 858 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:3157-4014.


A template composition was prepared for standardizing the amplification efficiency of TCRG amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The TCRG template composition comprising 70 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4015-4084.


A template composition was prepared for standardizing the amplification efficiency of IGH amplification primer sets. The composition comprised a plurality of template oligonucleotides having a plurality of oligonucleotide sequences of general formula (I). The IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200. An IGH template composition comprising a set of 1116 template oligonucleotides is also disclosed in the Sequence Listing in SEQ TD NOS:1805-2920.


Example 5
Use of the Template Composition to Determine Amplification Factor

This example describes quantification of rearranged DNA molecules encoding a plurality of IG molecules, using the presently described template oligonucleotide composition as a “spiked-in” synthetic template in a multiplexed PCR amplification of a DNA sample containing B cell and fibroblast DNA.


Biological Template DNA: Eight biological samples were used as sources of template DNA, with each biological sample containing the same amount of total genomic DNA (gDNA), 300 ng, but in a different proportion of (i) DNA extracted from B cells to (ii) DNA extracted from human fibroblast cells, a cell type in which IG and TCR encoding genes do not rearrange. The samples contained 0, 0.07, 0.3, 1, 4, 18, 75 or 300 ng B cell gDNA, with fibroblast gDNA supplying the balance of each 300 ng gDNA preparation. Four replicates of each sample were made.


Synthetic Template DNA: To each PCR reaction (below) were added 5000 molecules (4-5 molecules of each sequence) from an oligonucleotide template composition comprising a pool of 1116 synthetic IGH template oligonucleotide molecules (SEQ ID NOS:4085-5200). An IGH template composition comprising a set of 1116 template oligonucleotides is also disclosed in the Sequence Listing as SEQ ID NOS:1805-2920.


PCR Reaction: The PCR reaction used QIAGEN Multiplex Plus™ PCR master mix (QIAGEN part number 206152, Qiagen, Valencia, Calif.), 10% Q-solution (QIAGEN), and 300 ng of biological template DNA (described above). The pooled amplification primers were added so the final reaction had an aggregate forward primer concentration of 2 μM and an aggregate reverse primer concentration of 2 μM. The forward primers (SEQ ID NOS:5201-5286) included 86 primers that had at the 3′ end an approximately 20 bp segment that annealed to the IGH V segment encoding sequence and at the 5′ end an approximately 20 bp universal primer pGEXf. The reverse primers (SEQ ID NOS:5287-5293) included an aggregate of J segment specific primers that at the 3′ end had an approximately 20 bp segment that annealed to the IGH J segment encoding sequence and at the 5′ end of the J primers was a universal primer pGEXr. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif., USA): one cycle at 95° C. for 10 minutes, 30 cycles at 94° C. for 30 seconds, 63° C. for 30 seconds, and 72° C. for one minute, followed by one cycle at 72° C. for 10 minutes. Each reaction was run in quadruplicates.


For sequencing, Illumina adapters (Illumina Inc., San Diego, Calif.), which also included a 8 bp tag and a 6 bp random set of nucleotides, were incorporated onto the ends of the PCR reaction products in a 7 cycle PCR reaction. The PCR reagents and conditions were as described above, except for the thermocycle conditions, which were: 95° C. for 5 minutes, followed by 7 cycles of 95° for 30 sec, 68° for 90 sec, and 72° for 30 sec. Following thermal cycling, the reactions were held for 10 minutes at 72° and the primers were the Illumina adaptor tailing primers (SEQ ID NOS:5387-5578). Samples were sequenced on an Illumina MiSEQ™ sequencer using the Illumina PE RD2 primer.


Results:


Sequence data were obtained for each sample and amplification products of synthetic templates were identified by the presence of the barcode oligonucleotide sequence. For each sample, the number of template products was divided by the number of unique synthetic template oligonucleotide sequences (1116) to arrive at a sample amplification factor. The total number of amplification products of the biological templates for each sample was then divided by the amplification factor to calculate the number of rearranged biological template molecules (e.g., VDJ recombinations) in the starting amplification reaction as an estimate of the number of unique B cell genome templates. The average values with standard deviations were plotted against the known number of rearranged biological template molecules based on B cell input (FIG. 9). In FIG. 9, the dots represent the average amplification factor and the bars represent the standard deviation across the four replicates. The use of amplification factors calculated as described herein to estimate the number of VJ-rearranged IG encoding molecules (as a proxy value for the number of B cells) yielded determinations that were consistent with known B cell numbers at least down to an input of 100 B cells. The estimated amplification factor values and the observed amplification factor were highly correlated (FIG. 9, R2=0.9988).


Example 6
IgH, IgL, and IgK BIAS CONTROL TEMPLATES IgH VJ Template Oligonucleotides

In one embodiment, IgH VJ template oligonucleotides were generated and analyzed. A set of 1134 template oligonucleotides of general formula (I) was designed using human IgH V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Details for the 1134-oligonucleotide set of IgH templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgH locus was shown to contain 126 Vh segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 126 Vh segments included 52 gene segments known to be expressed, five V segments that were classified as having open reading frames, and 69 V pseudogenes. The Vh gene segments were linked to 9 Jh gene segments. In order to include all possible V+J gene combinations for the 126 V and 9 J segments, 1134 (9×126) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′)(FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2). Two V segments were nucleotide identical to another two V segments—and thus were not ordered. This reduced the number of included segments from 1134 to 1116. The IGH template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOS:4085-5200.


Each of the 1116 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer. For this application a universal primer coded Nextera was used.









TABLE 8







Universal Primer sequences included in


bias control templates









Primer




Name
Primer Sequence
SEQ ID NO





pGEXF
GGGCTGGCAAGCCACGTTTGGTG
SEQ ID NO: 6428





pGEXR
CCGGGAGCTGCATGTGTCAGAGG
SEQ ID NO: 6429









The universal primer sequences can be annealed to any primer sequence disclosed herein. An example of the PCR primers including the universal primer sequence are shown below:









TABLE 9







Example IGH PCR primers with Universal


Sequences (Bold and Underlined)











SEQ


Primer Name
Primer Sequence
ID NO





pGEXf_IGHV(II)-


GGGCTGGCAAGCCACGTTTGGTG
AG

SEQ ID


15-1_ver10_01
CCCCCAGGGAAGAAGCTGAAGTGG
NO: 6430





pGEXr_IGHJ1/4/


CCGGGAGCTGCATGTGTCAGAGG
CAC

SEQ ID


5_ver10_03
CTGAGGAGACGGTGACCAGGGT
NO: 6431









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 1116 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 1116 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 1116 distinct template oligonucleotides was calculated to contain approximately ˜0.09% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.009%-0.9%) for all species was desired. The quantitative sequencing revealed that the 1116 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.009-0.9%).


IgH DJ Template Oligonucleotides


In another embodiment, IgH DJ template oligonucleotides were generated and analyzed. A set of 243 template oligonucleotides of general formula (I) was designed using human IgH D and J polynucleotide sequences. Each template oligonucleotide consisted of a 382 base pair DNA molecule. The IgH DJ template oligonucleotide sequences are presented in SEQ ID NOs: 5579-5821. Details for the 243-oligonucleotide set of IgH templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgH locus was shown to contain 27 Dh segments. The 27 Dh gene segments were linked to 9 Jh gene segments. To include all possible D+J gene combinations for the 27 D and 9 J segments, 243 (9×27) templates were designed that represented all possible DJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of D gene and J gene segments (B1). However, for these molecules, the 300 bp of V gene specific sequence (V) was replaced with a segment of 182 bp of D gene specific sequence. This segment included both exonic and intronic nucleotide segments. Like the other molecules, these included a 3 base pair (bp) stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 243 templates (SEQ ID NOs: 5579-5821) was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2; See Table 8). These oligonucleotide sequences can be any universal primer; for this application a universal primer coded Nextera was used.


An example of the PCR primers with the universal adapter sequences are shown in Table 10.









TABLE 10







Example IgH DJ PCR primers with Universal


Sequences (Bold and Underlined)











SEQ


Primer Name
Primer Sequence
ID NO





pGEXf_IGHV(II)-


GGGCTGGCAAGCCACGTTTGGTG


SEQ ID


15-1_ver10_01
AGCCCCCAGGGAAGAAGCTGAAGTGG
NO: 6432





pGEXr_IGHJ1/


CCGGGAGCTGCATGTGTCAGAGG


SEQ ID


4/5_ver10_03
CACCTGAGGAGACGGTGACCAGGGT
NO: 6433









The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 243 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 243 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 243 distinct template oligonucleotides was calculated to contain approximately ˜0.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.04%-4.0%) for all species was desired. The quantitative sequencing revealed that the 243 species of adapter-modified template oligonucleotides within the initial pool were not evenly represented.


Accordingly, adjustment of the concentrations of individual template oligonucleotides and reiteration of the quantitative sequencing steps are conducted until each molecule is present within the threshold tolerance concentration (0.04-4.0%). Following normalization, this set was combined with 1116 IgH VJ bias control set for a pool of 1359 templates.



FIG. 10 shows results for a pre-PCR amplification sequencing count for each of the 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules. Individual bias control molecules are along the x-axis. The set includes the 1116 IGH VJ bias control molecules and 243 IGH DJ bias control molecules for a total of 1359 gblocks. The Y axis is the sequence count for each individual gblock. This calculation provides the quantification of the composition of the pre-amplification representation of each VJ pair. This data is used to estimate the change in frequency between the pre-sample and post-PCR amplification sample to calculate the amplification bias introduced by the primers.


IgL VJ Template Oligonucleotides


In another embodiment, IgL VJ template oligonucleotides were generated and analyzed. A set of 245 template oligonucleotides of general formula (I) was designed using human IgL V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. The IgL template oligonucleotides are presented as SEQ ID NOs: 5822-6066. Details for the 245-oligonucleotide set of IgL templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgL locus was shown to contain 75 VL segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 33 VL segments included gene segments known to be expressed, 5 V segments that were classified as having open reading frames, and 37 V pseudogenes. The VL gene segments were linked to five 6 JL gene segments. To include all possible functional and expressed V+J gene combinations for the 33 functional V and 6 J segments, 204 (6×33) templates were designed that represented all possible expressed VJ combinations. In addition, two of the V pseudogenes were questionable; an additional 12 (2×6) VJ templates were designed, resulting in a total of 216. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 216 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer; for this application, a universal primer coded Nextera was used.


The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 216 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 216 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 216 distinct template oligonucleotides was calculated to contain approximately ˜0.46% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.046%-4.6%) for all species was desired. The quantitative sequencing revealed that the 216 species of adapter-modified template oligonucleotides within the initial pool evenly represented.


IgK VJ Template Oligonucleotides


In one embodiment, IgK VJ template oligonucleotides were generated and analyzed. A set of 560 template oligonucleotides of general formula (I) was designed using human IgK V and J polynucleotide sequences. Each template oligonucleotide consisted of a 495 base pair DNA molecule. Examples of IgK template oligonucleotides are found at SEQ ID NOs: 6067-6191. Details for the 560-oligonucleotide set of IgK templates are representative and were as follows.


Based on previously determined genomic sequences, the human IgK locus was shown to contain 112 Vk segments that each had a RSS sequence and were therefore regarded as rearrangement-competent. These 112 Vk segments included 46 gene segments known to be expressed, 8 V segments that were classified as having open reading frames, and 50 V pseudogenes. For this IgK, only expressed IgK VJ rearrangements were analyzed. Genes classified as pseudogenes and open reading frames were excluded. The Vk gene segments were linked to five Jk gene segments. This left us with 230 VJ gene rearrangements (46×5). To include all possible functional V+J gene combinations for the 46 functional V and 5 J segments, 230 (5×46) templates were designed that represented all possible VJ combinations. Each template conformed to the general formula (I) (5′-U1-B1-V-B2-R-J-B4-U2-3′) (FIG. 1) and thus included nine sections, a 19 base pair (bp) universal adapter (U1), a 16 bp nucleotide tag uniquely identifying each paired combination of V gene and J gene segments (B1), 300 bp of V gene specific sequence (V), a 3 bp stop codon (S), another copy of the 16 bp nucleotide tag (B2), a 6 bp junction tag shared by all molecules (R), nothing for B3, 100 bp of J gene specific sequence (J), a third copy of the 16 bp nucleotide tag (B4), and a 19 bp universal adapter sequence (U2).


Each of the 230 templates was amplified individually using oligonucleotide primers designed to anneal to the universal adapter sequences (U1, U2). These oligonucleotide sequences can be any universal primer—for this application a universal primer coded Nextera was used.


The resulting concentration of each amplified template oligonucleotide product was quantified using a LabChip GX™ capillary electrophoresis system (Caliper Life Sciences, Inc., Hopkinton, Mass.) according to the manufacturer's instructions. The 230 amplified template oligonucleotide preparations were normalized to a standard concentration and then pooled.


To verify that all 230 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeq™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 230 distinct template oligonucleotides was calculated to contain approximately ˜0.4% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (4.0%-0.04%) for all species was desired. The quantitative sequencing revealed that the 230 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


Example 7
Combined Assays

IgH DJ and IgH VJ Combined Assay


In some embodiments, it is desired to co-amplify and sequence rearranged IgH VDJ CDR3 chains and rearranged IgH DJ chains. To generate a pool of templates to test a combined IgH DJ and IgH VJ assay using the IgH DJ and IgH VJ templates. When pooled-, the final pool includes 1116 VJ and 243 DJ templates, resulting in a total of 1359 individual templates. The IgH VJ template composition comprising 1116 distinct template oligonucleotides is disclosed in the Sequence Listing in SEQ ID NOs: 4085-5200. The IgH DJ template oligonucleotide sequences are presented in SEQ ID NOs: 5579-5821.


To verify that all 1359 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeg™ sequencing platform according to the manufacturer's recommendations. To incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 1359 distinct template oligonucleotides was calculated to contain approximately ˜0.073% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (0.73%-0.0073%) for all species was desired. The quantitative sequencing revealed that the 1359 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


IgL and IgK Combined Assay


In other embodiments, it is desired to co-amplify and sequence rearranged IgL and IgK rearranged CDR3 chains. To generate a pool of templates to test a combined IgL and IgK assay (the IgL and IgK templates were combined). When pooled, the final pool includes 216 IgL and 230 IgK templates, for a total of 446 individual templates. The IgL template oligonucleotides are presented as SEQ ID NOs: 5822-6066.


To verify that all 446 template oligonucleotides were present at substantially equimolar concentrations, the pool was sequenced using the Illumina MiSeg™ sequencing platform according to the manufacturer's recommendations. Briefly, to incorporate platform-specific oligonucleotide sequences into the pooled template oligonucleotides, tailed primers were designed that annealed to the universal priming sites (U1, U2) and that had Illumina™ adapter sequence tails as the 5′ ends. A seven-cycle PCR reaction was then performed to anneal the Illumina adapters to the template oligonucleotides. The PCR reaction product mixture was then purified using Agencourt® AMPure® XP beads (Beckman Coulter, Inc., Fullerton, Calif.) under the conditions recommended by the manufacturer. The first 29 bp of the PCR reaction products were sequenced using an Illumina MiSEQ™ sequencer (Illumina, Inc., San Diego, Calif.) and analyzed by assessing the frequency of each 16 bp molecular barcode tag (B1).


A substantially equimolar preparation for the set of 446 distinct template oligonucleotides was calculated to contain approximately ˜0.22% of each member of the set, and a threshold tolerance of plus or minus ten-fold frequency (2.2%-0.022%) for all species was desired. The quantitative sequencing revealed that the 446 species of adapter-modified template oligonucleotides within the initial pool were evenly represented.


Example 8
Correcting Non-Uniform Amplification Potential (PCR Bias) in IGH-Amplifying Oligonucleotide Primer Sets

Diverse IgH amplification primers were designed to amplify every possible combination of rearranged IgH V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of IgH-specific template oligonucleotides according to formula (I) with at least one template representing every possible V−J combination for the IgH locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V−J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identified each V−J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements of the IgH locus, as annotated by the IMGT collaboration. See Yousfi Monod M, Giudicelli V, Chaume D, Lefranc. MP. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V−J and V-D-J JUNCTIONs. Bioinformatics. 2004; 20(suppl 1):i379-i385. The locus included 126 unique V genes; 52 functional genes, 6 putative open reading frames lacking critical amino acids for function and 69 pseudogenes; and 9 J genes, 6 functional and 3 pseudogenes. The target sequence for primer annealing was identical for some V segments, allowing amplification of all 126 V segments with 86 unique forward primers. Similarly, 7 unique reverse primers annealed to all 9 J genes. As a baseline for bias assessment, the pool of 1116 templates was amplified using an equimolar pool of the 86 V forward primers (VF; specific to V genes) and an equimolar pool of the 7 J reverse primers (JR; specific to J genes).


Polymerase chain reactions (PCR) (25 μL each) were set up at 2.0 μM VF, 2.0 μM JR pool (Integrated DNA Technologies), 1 μM QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN), and 200,000 target molecules from our synthetic IgH repertoire mix. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C. for 6 minutes, 31 cycles at 95° C. for 30 see, 64° C. for 120 sec, and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of VF and JR primers, 86 mixtures were prepared containing a single VF primer with all JR primers, and 7 mixtures containing a single JR primer with all VF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V or J gene segments, and to identify instances of off-target priming. Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual VF or JF within the context of all other equimolar primers (e.g. 2×-fold IgHV1-01+ all other equimolar VF and JR primers) to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was reiterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. To assess the robustness of the final optimized primer mix and scaling factors to deviations from equimolar template input, we used a highly uneven mixture of IgH reference templates to determine the effect on sequencing output. The final mix was substantially better than an equimolar mix.


Example 9
Correcting Non-Uniform Amplification Potential (PCR Bias) in TCRB-Amplifying Oligonucleotide Primer Sets

Diverse TCRB amplification primers were designed to amplify every possible combination of rearranged TCRB V and J gene segments in a biological sample that contains lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of TCRB-specific template oligonucleotides according to formula (I) with at least one template representing every possible V−J combination for the TCRB locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V−J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V−J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements of the TCRB locus, as annotated by the IMGT collaboration. See Yousfi Monod M, Giudicelli V, Chaume D, Lefranc. MP. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V−J and V-D-J JUNCTIONs. Bioinformatics. 2004; 20(suppl 1):i379-i385. The locus includes 67 unique V genes. The target sequence for primer annealing was identical for some V segments, allowing us to amplify all 67 V segments with 60 unique forward primers. For the J locus, 13 unique reverse primers annealed to 13 J genes. As a baseline for bias assessment, the pool of 868 templates was amplified using an equimolar pool of the 60 V forward primers (VF; specific to V genes) and an equimolar pool of the 13 J reverse primers (JR; specific to J genes). Polymerase chain reactions (PCR) (25 μL each) were set up at 3.0 μM VF, 3.0 μM JR pool (Integrated DNA Technologies), 1 μM QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN and 200,000 target molecules from our synthetic TCRB repertoire mix. The following thermal cycling conditions were used in a 0100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C.′ for 5 minutes, 31 cycles at 95° C. for 30 sec 62° C. for 90 sec. and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of our VF and JR primers, 60 mixtures were prepared containing a single VF primer with all JR primers, and 13 mixtures containing a single JR primer with all VF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V or J gene segments and to identify instances of off-target priming. Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual VF or JF within the context of all other equimolar primers (e.g. 2×-fold TCRBV07-6+ all other equimolar VF and JR primers) to allow us to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was iterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. The final mix was substantially better than an equimolar mix of primers.



FIG. 11 shows TCRB-primer iterations for synthetic TCRB VJ templates graphed against relative amplification bias. Relative amplification bias was determined for 858 synthetic TCRB VJ templates prior to chemical bias control correction (Equimolar Primers (black)), post chemical correction (Optimized Primers (dark grey)), and post chemical and computational correction (After computational adjustment (light grey)). The equimolar primers had a dynamic range of 264, an interquartile range of 0.841, and a sum of squares (log bias) of 132. The optimized primers had a dynamic range of 147, an interquartile range of 0.581, and a sum of squares (log bias) of 50.7. The corrected primers (after computational adjustment) had a dynamic range of 90.8, an interquartile range of 0.248, and a sum of squares (log bias) of 12.8.


Example 10
Correcting Non-Uniform Amplification Potential (PCR Bias) in a Combined IGH VJ and DJ-Amplifying Oligonucleotide Primer Sets

Diverse IgH amplification primers were designed to amplify every possible combination of rearranged IgH V and J gene segments and IgH D and J gene segments in a biological sample that contained lymphoid cell DNA from a subject. A preparation containing equimolar concentrations of the diverse amplification primers was used in multiplexed PCR to amplify a diverse template composition that comprises equimolar concentrations of IgH-specific template oligonucleotides according to formula (I) with at least one template representing every possible V−J combination for the IgH locus and every possible D-J combination for the IgH locus. The amplification products were quantitatively sequenced and the frequency of occurrence of each unique V−J and D-J product sequence was obtained from the frequency of occurrence of each 16 bp molecular barcode sequence (B in formula (I)) that uniquely identifies each V−J and D-J combination.


The multiplex PCR reaction was designed to amplify all possible V and J gene rearrangements AND D and J gene rearrangements of the IgH locus, as annotated by the IMGT collaboration. The locus included 126 unique V genes; 52 functional genes, 6 putative open reading frames lacking critical amino acids for function and 69 pseudogenes; and 9 J genes, 6 functional and 3 pseudogenes. The locus also included 27 unique D genes. The target sequence for primer annealing was identical for some V segments, allowing amplification of all 126 V segments with 86 unique forward primers. Similarly, 7 unique reverse primers annealed to all 9 J genes. For the D-J assay, primers were designed to anneal to rearranged −DJ stems. During B cell development, both alleles undergo rearrangement between the D and J gene segments, resulting in two −DJ stems. A −DJ stem includes a J gene, one N region, and a D gene. Following DJ rearrangements, one of the two alleles V gene rearranges with the −DJ stem to code for the CDR3 gene region (VnDnJ). To amplify the −DJ stem, 27 unique primers were designed to anneal to each specific D genes in an intronic region upstream of the D gene exon. These segments, while present in −DJ stems. are excised following V to −DJ recombination. However, J primers were not re-designed; the DJ assay used the same J primers as the VJ assay.


As a baseline for bias assessment, the pool of 1359 templates was amplified using an optimized (mix 2-1) pool of the 86 V forward primers (VF; specific to V genes), 27 D forward primers (DF; specific to D genes) and an equimolar pool of the 7 J reverse primers (JR; specific to J genes). Polymerase chain reactions (PCR) (25 μL each) were set up at 1.0 VF, 1.0 μM DF, and 2.0 μM JR pool (Integrated DNA Technologies), 1×QIAGEN Multiplex Plus PCR master mix (QIAGEN, Valencia, Calif.), 10% Q-solution (QIAGEN), and 200,000 target molecules from our synthetic IgH VJ and DJ repertoire mix. The following thermal cycling conditions were used in a C100 thermal cycler (Bio-Rad Laboratories, Hercules, Calif.): one cycle at 95° C. for 6 minutes, 31 cycles at 95° C. for 30 sec, 64° C. for 120 sec, and 72° C. for 90 sec, followed by one cycle at 72° C. for 3 minutes. For all experiments, each PCR condition was replicated three times.


Following initial bias assessment, experiments were performed to define all individual primer amplification characteristics. To determine the specificity of our DF and JR primers, 27 mixtures were prepared containing a single DF primer with all JR primers and the previously identified optimized VF pool, and 7 mixtures containing a single JR primer with all VF and DF primers. These primer sets were used to amplify the synthetic template and sequenced the resulting libraries to measure the specificity of each primer for the targeted V, D, or J gene segments, and to identify instances of off-target priming.


Titration experiments were performed using pools of 2-fold and 4-fold concentrations of each individual DF or JF within the context of all other primers—including the optimized mix of VF primers (e.g. 2×-fold IgHD2-08+ all other equimolar DF, optimal VF mix, and JR primers) to allow us to estimate scaling factors relating primer concentration to observed template frequency.


Primer Mix Optimization


Using the cross-amplification test, the DF primers were identified as cross amplified. 12 of the DF primers were removed, resulting in a final pool of 15 DF primers. Using the scaling factors derived by titrating primers one at a time, alternative primer mixes were developed in which the primers were combined at uneven concentrations to minimize amplification bias. The revised primer mixes were then used to amplify the template pool and measure the residual amplification bias. This process was iterated, reducing or increasing each primer concentration appropriately based on whether templates amplified by that primer were over or under-represented in the previous round of results. At each stage of this iterative process, the overall degree of amplification bias was determined by calculating metrics for the dynamic range (max bias/min bias) and sum of squares (SS, calculated on log(bias) values), and iterated the process of adjusting primer concentrations until there was minimal improvement between iterations. The final primer mix has substantially less primer bias than an equimolar primer mix.



FIG. 12 shows IGH primer iterations for synthetic IGH VJ templates graphed against relative amplification bias. Relative amplification bias was determined for 1116 synthetic IGH VJ templates relative amplification bias prior to chemical bias control correction (equimolar primers (black)), post chemical correction (optimized primers (dark grey)), and post chemical and computational correction (After computational adjustment (light grey)). The equimolar primers had a dynamic range of 1130, an interquartile range of 0.991, and a sum of squares (log bias) of 233. The optimized primers had a dynamic range of 129, an interquartile range of 0.732, and a sum of squares (log bias) of 88.2. The after computational adjusted primers had a dynamic range of 76.9, an interquartile range of 0.545, and a sum of squares (log bias) of 37.9.



FIG. 13 shows the relative amplification bias for 27 synthetic IGH DJ templates of the V gene. Relative amplification bias of the V gene segment is shown in three primer iterations: 1) prior to chemical bias control correction (black), 2) a first iteration of chemical correction (white), and 3) a post second iteration of chemical correction (light grey).


Example 11
TCRG VJ Primer Iterations

In other embodiments, TCRG VJ primers were tested for relative amplification bias in multiple primer iterations. FIGS. 14a-d show TCRG-primer iterations for 55 synthetic TCRG VJ templates. Relative amplification bias was determined for the TCRG VJ primers prior to chemical bias control correction (FIG. 14a), a first iteration of chemical correction (FIG. 14b), a second iteration of chemical correction (FIG. 14c), and final iteration of chemical correction (FIG. 14d).


Example 12
Alternative Bias Control and Spike-in Method

In other embodiments, alternative methods can be used to determine amplification bias. Two primary goals of the method are as follows: (1) to remove amplification bias in a multiplex PCR amplification of BCR or TCR genes and (2) to estimate the fraction of B or T cells in the starting template.


The method includes starting with a set of cells comprising DNA, or cDNA (mRNA) extracted from a sample that includes B and/or T cells. In a sample comprising cells, the DNA is extracted using methods standard in the art.


The extracted DNA is divided into multiple parts and put into different PCR wells. In some embodiments, one well is used to full capacity or thousands of wells can be used. In one embodiment, 188 wells are used for PCR (two 96 well plates). The number of TCR or BCR templates per well should be sparse, such that it is rare to have multiple molecules from the same clonotype in the same well.


The method then includes amplifying the DNA separately in each well using the same multiplex set of primers. The sets of primers described herein can be used. As described above, the bar coding method is applied to the amplified molecules in each well with the same barcode sequence. For example, each well gets its own barcode.


The molecules are then sequenced on a high throughput sequencing machine with a sufficient amount of the amplified BCR or TCR sequences to identify by sequence the V and the J chain used, as well as the bar code sequence.


Each well has an average copy count. Since each clonotype appears once in a well, the amount of that template relative to the average is the bias for that V−J combination. Since V and J bias are independent, not every V−J combination is necessary to determine the biases. These relative biases are then used to either re-design primers that are either highly under or over amplifying or to titrate the primer concentration to increase or decrease amplification. The entire process is repeated with a new primer lot and iterated to continue to decrease bias.


After any cycle of the iterations, a set of computational factors (the relative amplification factors) can be applied to remove bias. Bias can be reduced by both (or either) primer changes and computational correction.


The method includes computing a fraction of nucleated cells from a similar assay. For each well, each clonotype is identified, and the number of sequencing reads is determined for each clone. In some embodiments, the number of templates does not need to be sparse. The read counts for each clone are corrected by the bias control factors as described above.


A histogram is created of the corrected read counts, and the graph has a primary mode (the amplification factor). This mode is identified by inspection (based on identification of the first large peak), or by Fourier transform, or other known methods.


The total number of corrected reads in each well is divided by the amplification factor for that well. This is the estimated number of TCR or BCR genome templates that were in the well. The total number of BCR or TCRs from the sample is the sum of the number from all the wells. The total number of genomes in each well is measured prior to PCR. This can be done by nanodrop, or other known methods used to quantify DNA. The measured weight of the DNA is divided by the weight of a double stranded genome (for example, in humans ˜6.2 pico grams).


The fraction of B cells or T cells in the sample is the total number of BCR or TCRs in the samples divided by the total number of double stranded DNA molecules added to the reaction. The result needs a minor correction as a small fraction of T cells have both alleles rearranged. This correction factor is approximately 15% for alpha beta T cells, 10% for B cells. For gamma delta T cells, almost all of the cells have both alleles rearranged, so the correction is a factor of two.


These additional methods can determine amplification bias in a multiplex PCR amplification of BCR or TCR genes and be used to estimate the fraction of B or T cells in the starting template.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.












INFORMAL SEQUENCE LISTING

















Name
Sequence
SEQ ID NO










Bias Control Sequences for hs-IgH-DJ (243 Sequences)










hsIGH_2001_D001_J001_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTGTACAGTGGCCCCGGTCTCTG
SEQ ID NO:



01_IGHJ1
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5579



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGTACAGT



GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT



CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG



GGCCAGGCAAGGACACTCTGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2002_D002_J001_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACGTACAGTGGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ1
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5580



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGTACAGT



GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT



CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG



GGCCAGGCAAGTTCGGAACGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2003_D003_J001_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGGTACAGTGGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ1
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5581



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGTACAGT



GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT



CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG



GGCCAGGCAAGAAGTAACGGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2004_D004_J001_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAGTACAGTGGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ1
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5582



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGTACAGT



GGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCT



CCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTG



GGCCAGGCAAGGTCTCCTAGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2005_D005_J001_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCGTACAGTGAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ1
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5583



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGTAC



AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG



TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA



CTGGGCCAGGCAAGAGAGTGTCGTACAGTGCTGATGGCGCGAGGGAGG



C





hsIGH_2006_D006_J001_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ1
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5584



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGGTTCCGAAGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2007_D007_J001_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ1
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5585



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGCGTTACTTGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2008_D008_J001_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACGTACAGTGAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ1
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5586



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGTAGGAGACGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2009_D009_J001_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACGTACAGTGAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ1
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5587



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCT



GGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGC



CAGGTGTACTGGGCCAGGCAAGGTGTCTACGTACAGTGCTGATGGCGC



GAGGGAGGC





hsIGH_2010_D010_J001_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACGTACAGTGGTGGGCACGGACA
SEQ ID NO:


03_IGHJ1
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5588



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGTGCTACACGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2011_D011_J001_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAGTACAGTGTGGGCACGGACAC
SEQ ID NO:


09_IGHJ1
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5589



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGAACTGCCAGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2012_D012_J001_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGGTACAGTGCGATATTTTGACT
SEQ ID NO:


10_IGHJ1
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5590



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGTTGGACTGGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2013_D013_J001_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACGTACAGTGTGGACGCGGACAC
SEQ ID NO:


16_IGHJ1
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5591



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCA



GGGCACCCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATA



GCGGGGAGCCAGGTGTACTGGGCCAGGCAAGGTAGACACGTACAGTGC



TGATGGCGCGAGGGAGGC





hsIGH_2014_D014_J001_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACGTACAGTGTGGGCATGGACAG
SEQ IDNO:


22_IGHJ1
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5592



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACGTACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCAC



CCTGGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGG



AGCCAGGTGTACTGGGCCAGGCAAGCACTGTACGTACAGTGCTGATGG



CGCGAGGGAGGC





hsIGH_2015_D015_J001_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCGTACAGTGCAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ1
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5593



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGTACAGTG



GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC



CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG



GCCAGGCAAGGATGATCCGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2016_D016_J001_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAGTACAGTGTGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ1
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5594



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGTACAGTG



GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC



CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG



GCCAGGCAAGCGCCAATAGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2017_D017_J001_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTACAGTGGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ1
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5595



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGTACAGTG



GTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTC



CTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGG



GCCAGGCAAGTCAAGCCTGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2018_D018_J001_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTGTACAGTGGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ1
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5596



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGTACA



GTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGT



CTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTAC



TGGGCCAGGCAAGACGTGTGTGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2019_D019_J001_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTACAGTGAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ1
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5597



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGTAC



AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG



TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA



CTGGGCCAGGCAAGTCCGTCTAGTACAGTGCTGATGGCGCGAGGGAGG



C





hsIGH_2020_D020_J001_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ1
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5598



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG



TACAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCA



CCGTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGT



GTACTGGGCCAGGCAAGAAGAGCTGGTACAGTGCTGATGGCGCGAGGG



AGGC





hsIGH_2021_D021_J001_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ1
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5599



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGTAC



AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG



TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA



CTGGGCCAGGCAAGTATCGCTCGTACAGTGCTGATGGCGCGAGGGAGG



C





hsIGH_2022_D022_J001_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCGTACAGTGGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ1
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5600



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGTAC



AGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCG



TCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTA



CTGGGCCAGGCAAGTCAGATGCGTACAGTGCTGATGGCGCGAGGGAGG



C





hsIGH_2023_D023_J001_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTACAGTGAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ1
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5601



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGTACAG



TGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTC



TCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACT



GGGCCAGGCAAGGTGTAGCAGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2024_D024_J001_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTACAGTGAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ1
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5602



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGTA



CAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACC



GTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGT



ACTGGGCCAGGCAAGTGGCAGTTGTACAGTGCTGATGGCGCGAGGGAG



GC





hsIGH_2025_D025_J001_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTACAGTGTGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ1
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5603



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGTA



CAGTGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACC



GTCTCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGT



ACTGGGCCAGGCAAGCAGTCCAAGTACAGTGCTGATGGCGCGAGGGAG



GC





hsIGH_2026_D026_J001_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGGTACAGTGCAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ1
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5604



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGTACAG



TGGTCGACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTC



TCCTCAGGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACT



GGGCCAGGCAAGTACGTACGGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2027_D027_J001_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAGTACAGTGAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ1
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5605



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGTACAGTGGTCG



ACATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCA



GGTGAGTCTGCTGTCTGGGGATAGCGGGGAGCCAGGTGTACTGGGCCA



GGCAAGAGTACCGAGTACAGTGCTGATGGCGCGAGGGAGGC





hsIGH_2028_D001_J002_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTGGATCATCGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJ2
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5606



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGGATCAT



CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG



CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT



GGCTGAGCTGAGACACTCTGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2029_D002_J002_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACGGATCATCGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ2
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5607



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGGATCAT



CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG



CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT



GGCTGAGCTGATTCGGAACGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2030_D003_J002_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGGGATCATCGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ2
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5608



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGGATCAT



CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG



CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT



GGCTGAGCTGAAAGTAACGGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2031_D004_J002_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAGGATCATCGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ2
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5609



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGGATCAT



CGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAG



CCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTT



GGCTGAGCTGAGTCTCCTAGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2032_D005_J002_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCGGATCATCAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ2
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5610



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGGAT



CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG



CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT



TTTGGCTGAGCTGAAGAGTGTCGGATCATCCTGATGGCGCGAGGGAGG



C





hsIGH_2033_D006_J002_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ2
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5611



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGAGTTCCGAAGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2034_D007_J002_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ2
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5612



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGACGTTACTTGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2035_D008_J002_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACGGATCATCAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ2
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5613



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGATAGGAGACGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2036_D009_J002_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACGGATCATCAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ2
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5614



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCT



GGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGC



CGCAGGGTTTTGGCTGAGCTGAGTGTCTACGGATCATCCTGATGGCGC



GAGGGAGGC





hsIGH_2037_D010_J002_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACGGATCATCGTGGGCACGGACA
SEQ ID NO:


03_IGHJ2
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5615



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGATGCTACACGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2038_D011_J002_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAGGATCATCTGGGCACGGACAC
SEQ ID NO:


09_IGHJ2
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5616



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGAAACTGCCAGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2039_D012_J002_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGGGATCATCCGATATTTTGACT
SEQ ID NO:


10_IGHJ2
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5617



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGATTGGACTGGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2040_D013_J002_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACGGATCATCTGGACGCGGACAC
SEQ ID NO:


16_IGHJ2
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5618



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCG



ACCCGCCCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCC



CCTACCAGCCGCAGGGTTTTGGCTGAGCTGAGTAGACACGGATCATCC



TGATGGCGCGAGGGAGGC





hsIGH_2041_D014_J002_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACGGATCATCTGGGCATGGACAG
SEQ ID NO:


22_IGHJ2
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5619



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACGGATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGC



CCTGGAGACCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACC



AGCCGCAGGGTTTTGGCTGAGCTGACACTGTACGGATCATCCTGATGG



CGCGAGGGAGGC





hsIGH_2042_D015_J002_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCGGATCATCCAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ2
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5620



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGGATCATC



GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG



GCTGAGCTGAGATGATCCGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2043_D016_J002_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAGGATCATCTGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ2
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5621



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGGATCATC



GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG



GCTGAGCTGACGCCAATAGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2044_D017_J002_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGGATCATCGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ2
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5622



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGGATCATC



GTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTG



GCTGAGCTGATCAAGCCTGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2045_D018_J002_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTGGATCATCGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ2
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5623



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGGATC



ATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGC



AGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTT



TTGGCTGAGCTGAACGTGTGTGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2046_D019_J002_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGGATCATCAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ2
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5624



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGGAT



CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG



CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT



TTTGGCTGAGCTGATCCGTCTAGGATCATCCTGATGGCGCGAGGGAGG



C





hsIGH_2047_D020_J002_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ2
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5625



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG



GATCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGA



CCGCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAG



GGTTTTGGCTGAGCTGAAAGAGCTGGGATCATCCTGATGGCGCGAGGG



AGGC





hsIGH_2048_D021_J002_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ2
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5626



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGGAT



CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG



CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT



TTTGGCTGAGCTGATATCGCTCGGATCATCCTGATGGCGCGAGGGAGG



C





hsIGH_2049_D022_J002_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCGGATCATCGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ2
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5627



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGGAT



CATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCG



CAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGT



TTTGGCTGAGCTGATCAGATGCGGATCATCCTGATGGCGCGAGGGAGG



C





hsIGH_2050_D023_J002_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGGATCATCAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ2
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5628



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGGATCA



TCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCA



GCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTT



TGGCTGAGCTGAGTGTAGCAGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2051_D024_J002_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGGATCATCAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ2
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5629



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGGA



TCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACC



GCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGG



TTTTGGCTGAGCTGATGGCAGTTGGATCATCCTGATGGCGCGAGGGAG



GC





hsIGH_2052_D025_J002_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGGATCATCTGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ2
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5630



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGGA



TCATCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACC



GCAGCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGG



TTTTGGCTGAGCTGACAGTCCAAGGATCATCCTGATGGCGCGAGGGAG



GC





hsIGH_2053_D026_J002_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGGGATCATCCAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ2
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5631



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGGATCA



TCGTCGACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCA



GCCACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTT



TGGCTGAGCTGATACGTACGGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2054_D027_J002_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAGGATCATCAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ2
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5632



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGGATCATCGTCG



ACTGCTGGGGGCCCCTGGACCCGACCCGCCCTGGAGACCGCAGCCACA



TCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTGGCTG



AGCTGAAGTACCGAGGATCATCCTGATGGCGCGAGGGAGGC





hsIGH_2055_D001_J003_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTTATTGGCGGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJ3
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5633



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTTATTGGC



GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC



TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG



GCACCAGGCCAGACACTCTTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2056_D002_J003_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACTATTGGCGGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ3
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5634



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACTATTGGC



GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC



TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG



GCACCAGGCCATTCGGAACTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2057_D003_J003_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGTATTGGCGGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ3
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5635



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGTATTGGC



GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC



TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG



GCACCAGGCCAAAGTAACGTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2058_D004_J003_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTATATTGGCGGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ3
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5636



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTATATTGGC



GGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTC



TCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAG



GCACCAGGCCAGTCTCCTATATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2059_D005_J003_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCTATTGGCGAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ3
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5637



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCTATT



GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT



GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC



CAGGCACCAGGCCAAGAGTGTCTATTGGCGCTGATGGCGCGAGGGAGG



C





hsIGH_2060_D006_J003_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAATATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ3
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5638



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAATATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCAGTTCCGAATATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2061_D007_J003_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTTATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ3
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5639



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCACGTTACTTTATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2062_D008_J003_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACTATTGGCGAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ3
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5640



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCATAGGAGACTATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2063_D009_J003_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACTATTGGCGAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ3
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5641



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCC



TGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCT



TCTCTGTCCAGGCACCAGGCCAGTGTCTACTATTGGCGCTGATGGCGC



GAGGGAGGC





hsIGH_2064_D010_J003_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACTATTGGCGGTGGGCACGGACA
SEQ ID NO:


03_IGHJ3
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5642



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCATGCTACACTATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2065_D011_J003_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCATATTGGCGTGGGCACGGACAC
SEQ ID NO:


09_IGHJ3
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5643



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCATATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCAAACTGCCATATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2066_D012_J003_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGTATTGGCGCGATATTTTGACT
SEQ ID NO:


10_IGHJ3
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5644



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCATTGGACTGTATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2067_D013_J003_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACTATTGGCGTGGACGCGGACAC
SEQ ID NO:


16_IGHJ3
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5645



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCC



GTGGCACCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCC



TCCCAGTCTTCTCTGTCCAGGCACCAGGCCAGTAGACACTATTGGCGC



TGATGGCGCGAGGGAGGC





hsIGH_2068_D014_J003_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACTATTGGCGTGGGCATGGACAG
SEQ ID NO:


22_IGHJ3
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5646



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACTATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCA



CCCTGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAG



TCTTCTCTGTCCAGGCACCAGGCCACACTGTACTATTGGCGCTGATGG



CGCGAGGGAGGC





hsIGH_2069_D015_J003_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCTATTGGCGCAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ3
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5647



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCTATTGGCG



GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT



CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG



CACCAGGCCAGATGATCCTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2070_D016_J003_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATATATTGGCGTGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ3
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5648



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATATATTGGCG



GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT



CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG



CACCAGGCCACGCCAATATATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2071_D017_J003_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTTATTGGCGGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ3
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5649



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTTATTGGCG



GTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCT



CCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGG



CACCAGGCCATCAAGCCTTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2072_D018_J003_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTTATTGGCGGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ3
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5650



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTTATTG



GCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTG



TCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCC



AGGCACCAGGCCAACGTGTGTTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2073_D019_J003_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTATATTGGCGAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ3
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5651



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTATATT



GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT



GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC



CAGGCACCAGGCCATCCGTCTATATTGGCGCTGATGGCGCGAGGGAGG



C





hsIGH_2074_D020_J003_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ3
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5652



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGT



ATTGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTC



ACTGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCT



GTCCAGGCACCAGGCCAAAGAGCTGTATTGGCGCTGATGGCGCGAGGG



AGGC





hsIGH_2075_D021_J003_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ3
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5653



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCTATT



GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT



GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC



CAGGCACCAGGCCATATCGCTCTATTGGCGCTGATGGCGCGAGGGAGG



C





hsIGH_2076_D022_J003_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCTATTGGCGGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ3
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5654



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCTATT



GGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACT



GTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTC



CAGGCACCAGGCCATCAGATGCTATTGGCGCTGATGGCGCGAGGGAGG



C





hsIGH_2077_D023_J003_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCATATTGGCGAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ3
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5655



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCATATTGG



CGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGT



CTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCA



GGCACCAGGCCAGTGTAGCATATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2078_D024_J003_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTTATTGGCGAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ3
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5656



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTTAT



TGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCAC



TGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGT



CCAGGCACCAGGCCATGGCAGTTTATTGGCGCTGATGGCGCGAGGGAG



GC





hsIGH_2079_D025_J003_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAATATTGGCGTGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ3
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5657



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAATAT



TGGCGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCAC



TGTCTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGT



CCAGGCACCAGGCCACAGTCCAATATTGGCGCTGATGGCGCGAGGGAG



GC





hsIGH_2080_D026_J003_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGTATTGGCGCAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ3
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5658



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGTATTGG



CGGTCGACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGT



CTCCTCAGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCA



GGCACCAGGCCATACGTACGTATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2081_D027_J003_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGATATTGGCGAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ3
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5659



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGATATTGGCGGTCG



ACGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACTGTCTCCTC



AGGTGAGTCCCACTGCAGCCCCCTCCCAGTCTTCTCTGTCCAGGCACC



AGGCCAAGTACCGATATTGGCGCTGATGGCGCGAGGGAGGC





hsIGH_2082_D001_J004_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTAGGCTTGAGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJ4
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5660



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTAGGCTTG



AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT



CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC



TGTGTGGCTGGGACACTCTAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2083_D002_J004_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACAGGCTTGAGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ4
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5661



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACAGGCTTG



AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT



CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC



TGTGTGGCTGGTTCGGAACAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2084_D003_J004_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGAGGCTTGAGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ4
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5662



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGAGGCTTG



AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT



CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC



TGTGTGGCTGGAAGTAACGAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2085_D004_J004_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAAGGCTTGAGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ4
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5663



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAAGGCTTG



AGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGT



CTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTC



TGTGTGGCTGGGTCTCCTAAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2086_D005_J004_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCAGGCTTGAAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ4
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5664



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCAGGC



TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC



CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG



GTCTGTGTGGCTGGAGAGTGTCAGGCTTGACTGATGGCGCGAGGGAGG



C





hsIGH_2087_D006_J004_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ4
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5665



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGGTTCCGAAAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2088_D007_J004_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ4
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5666



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGCGTTACTTAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2089_D008_J004_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACAGGCTTGAAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ4
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5667



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGTAGGAGACAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2090_D009_J004_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACAGGCTTGAAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ4
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5668



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGC



CCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCA



GCCCGGGGGTCTGTGTGGCTGGGTGTCTACAGGCTTGACTGATGGCGC



GAGGGAGGC





hsIGH_2091_D010_J004_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACAGGCTTGAGTGGGCACGGACA
SEQ ID NO:


03_IGHJ4
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5669



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGTGCTACACAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2092_D011_J004_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAAGGCTTGATGGGCACGGACAC
SEQ ID NO:


09_IGHJ4
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5670



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGAACTGCCAAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2093_D012_J004_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGAGGCTTGACGATATTTTGACT
SEQ ID NO:


10_IGHJ4
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5671



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGTTGGACTGAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2094_D013_J004_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACAGGCTTGATGGACGCGGACAC
SEQ ID NO:


16_IGHJ4
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5672



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGC



CAGGGCAGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCC



TGGGTCTCAGCCCGGGGGTCTGTGTGGCTGGGTAGACACAGGCTTGAC



TGATGGCGCGAGGGAGGC





hsIGH_2095_D014_J004_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACAGGCTTGATGGGCATGGACAG
SEQ ID NO:


22_IGHJ4
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5673



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACAGGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGC



AGCCCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTC



TCAGCCCGGGGGTCTGTGTGGCTGGCACTGTACAGGCTTGACTGATGG



CGCGAGGGAGGC





hsIGH_2096_D015_J004_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCAGGCTTGACAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ4
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5674



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCAGGCTTGA



GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC



TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT



GTGTGGCTGGGATGATCCAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2097_D016_J004_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAAGGCTTGATGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ4
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5675



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAAGGCTTGA



GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC



TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT



GTGTGGCTGGCGCCAATAAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2098_D017_J004_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGGCTTGAGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ4
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5676



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTAGGCTTGA



GTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTC



TCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCT



GTGTGGCTGGTCAAGCCTAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2099_D018_J004_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTAGGCTTGAGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ4
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5677



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTAGGCT



TGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACC



GTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGG



TCTGTGTGGCTGGACGTGTGTAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2100_D019_J004_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGGCTTGAAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ4
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5678



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAAGGC



TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC



CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG



GTCTGTGTGGCTGGTCCGTCTAAGGCTTGACTGATGGCGCGAGGGAGG



C





hsIGH_2101_D020_J004_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ4
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5679



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGA



GGCTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGC



CACCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCG



GGGGTCTGTGTGGCTGGAAGAGCTGAGGCTTGACTGATGGCGCGAGGG



AGGC





hsIGH_2102_D021_J004_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ4
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5680



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCAGGC



TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC



CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG



GTCTGTGTGGCTGGTATCGCTCAGGCTTGACTGATGGCGCGAGGGAGG



C





hsIGH_2103_D022_J004_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCAGGCTTGAGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ4
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5681



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCAGGC



TTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCAC



CGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGG



GTCTGTGTGGCTGGTCAGATGCAGGCTTGACTGATGGCGCGAGGGAGG



C





hsIGH_2104_D023_J004_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAAGGCTTGAAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ4
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5682



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAAGGCTT



GAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCG



TCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGT



CTGTGTGGCTGGGTGTAGCAAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2105_D024_J004_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTAGGCTTGAAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ4
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5683



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTAGG



CTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCA



CCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGG



GGTCTGTGTGGCTGGTGGCAGTTAGGCTTGACTGATGGCGCGAGGGAG



GC





hsIGH_2106_D025_J004_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAAGGCTTGATGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ4
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5684



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAAGG



CTTGAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCA



CCGTCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGG



GGTCTGTGTGGCTGGCAGTCCAAAGGCTTGACTGATGGCGCGAGGGAG



GC





hsIGH_2107_D026_J004_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGAGGCTTGACAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ4
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5685



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGAGGCTT



GAGTCGACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCG



TCTCCCTGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGT



CTGTGTGGCTGGTACGTACGAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2108_D027_J004_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAAGGCTTGAAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ4
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5686



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAAGGCTTGAGTCG



ACAAGTGCTTGGAGCACTGGGGCCAGGGCAGCCCGGCCACCGTCTCCC



TGGGAACGTCACCCCTCCCTGCCTGGGTCTCAGCCCGGGGGTCTGTGT



GGCTGGAGTACCGAAGGCTTGACTGATGGCGCGAGGGAGGC





hsIGH_2109_D001_J005_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTACACACGTGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJ5
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5687



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTACACACG



TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT



TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC



CTCTGTCCTGGGACACTCTACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2110_D002_J005_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACACACACGTGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ5
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5688



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACACACACG



TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT



TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC



CTCTGTCCTGGTTCGGAACACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2111_D003_J005_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGACACACGTGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ5
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5689



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGACACACG



TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT



TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC



CTCTGTCCTGGAAGTAACGACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2112_D004_J005_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAACACACGTGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ5
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5690



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAACACACG



TGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCT



TCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTC



CTCTGTCCTGGGTCTCCTAACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2113_D005_J005_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCACACACGTAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ5
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5691



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCACAC



ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC



TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC



GTCCTCTGTCCTGGAGAGTGTCACACACGTCTGATGGCGCGAGGGAGG



C





hsIGH_2114_D006_J005_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAACACACGTAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ5
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5692



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGGTTCCGAAACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2115_D007_J005_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTACACACGTAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ5
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5693



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGCGTTACTTACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2116_D008_J005_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACACACACGTAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ5
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5694



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGTAGGAGACACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2117_D009_J005_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACACACACGTAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ5
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5695



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGG



TCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTG



GGCCCAGCGTCCTCTGTCCTGGGTGTCTACACACACGTCTGATGGCGC



GAGGGAGGC





hsIGH_2118_D010_J005_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACACACACGTGTGGGCACGGACA
SEQ ID NO:


03_IGHJ5
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5696



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGTGCTACACACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2119_D011_J005_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAACACACGTTGGGCACGGACAC
SEQ ID NO:


09_IGHJ5
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5697



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGAACTGCCAACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2120_D012_J005_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGACACACGTCGATATTTTGACT
SEQ ID NO:


10_IGHJ5
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5698



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGTTGGACTGACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2121_D013_J005_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACACACACGTTGGACGCGGACAC
SEQ ID NO:


16_IGHJ5
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5699



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACACACACGTGTCGACCTTTTGATATCTGGGGCCAAG



GGACAATGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTC



CTTTCTCTGGGCCCAGCGTCCTCTGTCCTGGGTAGACACACACACGTC



TGATGGCGCGAGGGAGGC





hsIGH_2122_D014_J005_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACACACACGTTGGGCATGGACAG
SEQ ID NO:


22_IGHJ5
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5700



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACACACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAA



TGGTCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCT



CTGGGCCCAGCGTCCTCTGTCCTGGCACTGTACACACACGTCTGATGG



CGCGAGGGAGGC





hsIGH_2123_D015_J005_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCACACACGTCAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ5
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5701



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCACACACGT



GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT



CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC



TCTGTCCTGGGATGATCCACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2124_D016_J005_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAACACACGTTGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ5
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5702



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAACACACGT



GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT



CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC



TCTGTCCTGGCGCCAATAACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2125_D017_J005_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTACACACGTGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ5
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5703



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTACACACGT



GTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTT



CAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCC



TCTGTCCTGGTCAAGCCTACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2126_D018_J005_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTACACACGTGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ5
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5704



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTACACA



CGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCT



CTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCG



TCCTCTGTCCTGGACGTGTGTACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2127_D019_J005_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAACACACGTAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ5
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5705



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAACAC



ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC



TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC



GTCCTCTGTCCTGGTCCGTCTAACACACGTCTGATGGCGCGAGGGAGG



C





hsIGH_2128_D020_J005_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGACACACGTGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ5
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5706



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGA



CACACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACC



GTCTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCC



AGCGTCCTCTGTCCTGGAAGAGCTGACACACGTCTGATGGCGCGAGGG



AGGC





hsIGH_2129_D021_J005_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCACACACGTGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ5
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5707



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCACAC



ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC



TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC



GTCCTCTGTCCTGGTATCGCTCACACACGTCTGATGGCGCGAGGGAGG



C





hsIGH_2130_D022_J005_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCACACACGTGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ5
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5708



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCACAC



ACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTC



TCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGC



GTCCTCTGTCCTGGTCAGATGCACACACGTCTGATGGCGCGAGGGAGG



C





hsIGH_2131_D023_J005_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAACACACGTAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ5
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5709



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAACACAC



GTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC



TTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGT



CCTCTGTCCTGGGTGTAGCAACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2132_D024_J005_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTACACACGTAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ5
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5710



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTACA



CACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGT



CTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAG



CGTCCTCTGTCCTGGTGGCAGTTACACACGTCTGATGGCGCGAGGGAG



GC





hsIGH_2133_D025_J005_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAACACACGTTGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ5
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5711



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAACA



CACGTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGT



CTCTTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAG



CGTCCTCTGTCCTGGCAGTCCAAACACACGTCTGATGGCGCGAGGGAG



GC





hsIGH_2134_D026_J005_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGACACACGTCAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ5
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5712



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGACACAC



GTGTCGACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTC



TTCAGGTAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGT



CCTCTGTCCTGGTACGTACGACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2135_D027_J005_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAACACACGTAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ5
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5713



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAACACACGTGTCG



ACCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGG



TAAGATGGCTTTCCTTCTGCCTCCTTTCTCTGGGCCCAGCGTCCTCTG



TCCTGGAGTACCGAACACACGTCTGATGGCGCGAGGGAGGC





hsIGH_2136_D001_J006_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTTAGACGGAGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJ6
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5714



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTTAGACGG



AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG



GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG



AGAAGGGCAGGGACACTCTTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2137_D002_J006_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACTAGACGGAGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJ6
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5715



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACTAGACGG



AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG



GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG



AGAAGGGCAGGTTCGGAACTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2138_D003_J006_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGTAGACGGAGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJ6
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5716



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGTAGACGG



AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG



GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG



AGAAGGGCAGGAAGTAACGTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2139_D004_J006_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTATAGACGGAGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJ6
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5717



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTATAGACGG



AGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGG



GTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATG



AGAAGGGCAGGGTCTCCTATAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2140_D005_J006_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCTAGACGGAAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJ6
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5718



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCTAGA



CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA



GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC



ATGAGAAGGGCAGGAGAGTGTCTAGACGGACTGATGGCGCGAGGGAGG



C





hsIGH_2141_D006_J006_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAATAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJ6
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5719



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAATAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGGTTCCGAATAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2142_D007_J006_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTTAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJ6
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5720



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGCGTTACTTTAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2143_D008_J006_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACTAGACGGAAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJ6
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5721



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGTAGGAGACTAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2144_D009_J006_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACTAGACGGAAGCCCCCTGTACA
SEQ ID NO:


21_IGHJ6
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5722



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTG



GCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAG



AGGGTTCCATGAGAAGGGCAGGGTGTCTACTAGACGGACTGATGGCGC



GAGGGAGGC





hsIGH_2145_D010_J006_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACTAGACGGAGTGGGCACGGACA
SEQ ID NO:


03_IGHJ6
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5723



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGTGCTACACTAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2146_D011_J006_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCATAGACGGATGGGCACGGACAC
SEQ ID NO:


09_IGHJ6
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5724



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCATAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGAACTGCCATAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2147_D012_J006_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGTAGACGGACGATATTTTGACT
SEQ ID NO:


10_IGHJ6
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5725



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGTTGGACTGTAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2148_D013_J006_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACTAGACGGATGGACGCGGACAC
SEQ ID NO:


16_IGHJ6
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5726



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGAC



AGTGGTCTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGA



GGCCAGCAGAGGGTTCCATGAGAAGGGCAGGGTAGACACTAGACGGAC



TGATGGCGCGAGGGAGGC





hsIGH_2149_D014_J006_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACTAGACGGATGGGCATGGACAG
SEQ ID NO:


22_IGHJ6
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5727



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACTAGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGT



CTGGCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAG



CAGAGGGTTCCATGAGAAGGGCAGGCACTGTACTAGACGGACTGATGG



CGCGAGGGAGGC





hsIGH_2150_D015_J006_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCTAGACGGACAAGGGTGAGTCA
SEQ ID NO:


04_IGHJ6
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5728



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCTAGACGGA



GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG



TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA



GAAGGGCAGGGATGATCCTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2151_D016_J006_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATATAGACGGATGCCTCTCTCCCC
SEQ ID NO:


11_IGHJ6
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5729



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATATAGACGGA



GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG



TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA



GAAGGGCAGGCGCCAATATAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2152_D017_J006_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTTAGACGGAGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJ6
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5730



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTTAGACGGA



GTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGG



TCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGA



GAAGGGCAGGTCAAGCCTTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2153_D018_J006_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTTAGACGGAGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJ6
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5731



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTTAGAC



GGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAG



GGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCA



TGAGAAGGGCAGGACGTGTGTTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2154_D019_J006_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTATAGACGGAAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJ6
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5732



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTATAGA



CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA



GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC



ATGAGAAGGGCAGGTCCGTCTATAGACGGACTGATGGCGCGAGGGAGG



C





hsIGH_2155_D020_J006_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJ6
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5733



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGT



AGACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTC



TGAGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGT



TCCATGAGAAGGGCAGGAAGAGCTGTAGACGGACTGATGGCGCGAGGG



AGGC





hsIGH_2156_D021_J006_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJ6
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5734



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCTAGA



CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA



GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC



ATGAGAAGGGCAGGTATCGCTCTAGACGGACTGATGGCGCGAGGGAGG



C





hsIGH_2157_D022_J006_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCTAGACGGAGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJ6
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5735



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCTAGA



CGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGA



GGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCC



ATGAGAAGGGCAGGTCAGATGCTAGACGGACTGATGGCGCGAGGGAGG



C





hsIGH_2158_D023_J006_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCATAGACGGAAGGCAGCTGACTC
SEQ ID NO:


06_IGHJ6
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5736



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCATAGACG



GAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGG



GGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCAT



GAGAAGGGCAGGGTGTAGCATAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2159_D024_J006_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTTAGACGGAAGGCAGCTGACCC
SEQ ID NO:


13_IGHJ6
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5737



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTTAG



ACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTG



AGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTC



CATGAGAAGGGCAGGTGGCAGTTTAGACGGACTGATGGCGCGAGGGAG



GC





hsIGH_2160_D025_J006_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAATAGACGGATGAGGTAGCTGGC
SEQ ID NO:


19_IGHJ6
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5738



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAATAG



ACGGAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTG



AGGGGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTC



CATGAGAAGGGCAGGCAGTCCAATAGACGGACTGATGGCGCGAGGGAG



GC





hsIGH_2161_D026_J006_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGTAGACGGACAGCTGGCCTCTG
SEQ ID NO:


25_IGHJ6
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5739



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGTAGACG



GAGTCGACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGG



GGTCAGGCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCAT



GAGAAGGGCAGGTACGTACGTAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2162_D027_J006_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGATAGACGGAAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJ6
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5740



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGATAGACGGAGTCG



ACAGTTGGACTTCCCAGGCCGACAGTGGTCTGGCTTCTGAGGGGTCAG



GCCAGAATGTGGGGTACGTGGGAGGCCAGCAGAGGGTTCCATGAGAAG



GGCAGGAGTACCGATAGACGGACTGATGGCGCGAGGGAGGC





hsIGH_2163_D001_J007_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTCAGCTCTTGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJp1
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5741



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTCAGCTCT



TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC



AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG



CTGCATTTCTGGACACTCTCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2164_D002_J007_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACCAGCTCTTGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJp1
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5742



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACCAGCTCT



TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC



AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG



CTGCATTTCTGTTCGGAACCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2165_D003_J007_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGCAGCTCTTGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJp1
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5743



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGCAGCTCT



TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC



AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG



CTGCATTTCTGAAGTAACGCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2166_D004_J007_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTACAGCTCTTGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJp1
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5744



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAA CAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTACAGCTCT



TGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTC



AGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTG



CTGCATTTCTGGTCTCCTACAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2167_D005_J007_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCCAGCTCTTAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJp1
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5745



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCCAGC



TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT



TTGCTGCATTTCTGAGAGTGTCCAGCTCTTCTGATGGCGCGAGGGAGG



C





hsIGH_2168_D006_J007_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAACAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJp1
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5746



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAACAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGGTTCCGAACAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2169_D007_J007_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTCAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJp1
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5747



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGCGTTACTTCAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2170_D008_J007_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACCAGCTCTTAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJp1
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5748



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGTAGGAGACCAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2171_D009_J007_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACCAGCTCTTAGCCCCCTGTACA
SEQ ID NO:


21_IGHJp1
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5749



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTC



ACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCT



GAAGGGTTTTGCTGCATTTCTGGTGTCTACCAGCTCTTCTGATGGCGC



GAGGGAGGC





hsIGH_2172_D010_J007_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACCAGCTCTTGTGGGCACGGACA
SEQ ID NO:


03_IGHJp1
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5750



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGTGCTACACCAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2173_D011_J007_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCACAGCTCTTTGGGCACGGACAC
SEQ ID NO:


09_IGHJp1
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5751



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCACAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGAACTGCCACAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2174_D012_J007_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGCAGCTCTTCGATATTTTGACT
SEQ ID NO:


10_IGHJp1
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5752



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGTTGGACTGCAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2175_D013_J007_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACCAGCTCTTTGGACGCGGACAC
SEQ ID NO:


16_IGHJp1
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5753



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGA



ACCCTGGTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGC



TTTAACTCTGAAGGGTTTTGCTGCATTTCTGGTAGACACCAGCTCTTC



TGATGGCGCGAGGGAGGC





hsIGH_2176_D014_J007_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACCAGCTCTTTGGGCATGGACAG
SEQ ID NO:


22_IGHJp1
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5754



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACCAGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAAC



TCTGAAGGGTTTTGCTGCATTTCTGCACTGTACCAGCTCTTCTGATGG



CGCGAGGGAGGC





hsIGH_2177_D015_J007_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCCAGCTCTTCAAGGGTGAGTCA
SEQ ID NO:


04_IGHJp1
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5755



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCCAGCTCTT



GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA



GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC



TGCATTTCTGGATGATCCCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2178_D016_J007_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATACAGCTCTTTGCCTCTCTCCCC
SEQ ID NO:


11_IGHJp1
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5756



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATACAGCTCTT



GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA



GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC



TGCATTTCTGCGCCAATACAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2179_D017_J007_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTCAGCTCTTGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJp1
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5757



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTCAGCTCTT



GTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA



GGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGC



TGCATTTCTGTCAAGCCTCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2180_D018_J007_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTCAGCTCTTGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJp1
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5758



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTCAGCT



CTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCC



TCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTT



TGCTGCATTTCTGACGTGTGTCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2181_D019_J007_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTACAGCTCTTAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJp1
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5759



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTACAGC



TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT



TTGCTGCATTTCTGTCCGTCTACAGCTCTTCTGATGGCGCGAGGGAGG



C





hsIGH_2182_D020_J007_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJp1
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5760



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGC



AGCTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGT



CTCCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGG



GTTTTGCTGCATTTCTGAAGAGCTGCAGCTCTTCTGATGGCGCGAGGG



AGGC





hsIGH_2183_D021_J007_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJp1
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5761



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCCAGC



TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT



TTGCTGCATTTCTGTATCGCTCCAGCTCTTCTGATGGCGCGAGGGAGG



C





hsIGH_2184_D022_J007_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCCAGCTCTTGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJp1
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5762



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCCAGC



TCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTT



TTGCTGCATTTCTGTCAGATGCCAGCTCTTCTGATGGCGCGAGGGAGG



C





hsIGH_2185_D023_J007_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCACAGCTCTTAGGCAGCTGACTC
SEQ ID NO:


06_IGHJp1
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5763



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCACAGCTC



TTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT



CAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTT



GCTGCATTTCTGGTGTAGCACAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2186_D024_J007_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTCAGCTCTTAGGCAGCTGACCC
SEQ ID NO:


13_IGHJp1
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5764



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTCAG



CTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT



CCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGT



TTTGCTGCATTTCTGTGGCAGTTCAGCTCTTCTGATGGCGCGAGGGAG



GC





hsIGH_2187_D025_J007_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAACAGCTCTTTGAGGTAGCTGGC
SEQ ID NO:


19_IGHJp1
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5765



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAACAG



CTCTTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCT



CCTCAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGT



TTTGCTGCATTTCTGCAGTCCAACAGCTCTTCTGATGGCGCGAGGGAG



GC





hsIGH_2188_D026_J007_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGCAGCTCTTCAGCTGGCCTCTG
SEQ ID NO:


25_IGHJp1
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5766



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGCAGCTC



TTGTCGACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT



CAGGTGAGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTT



GCTGCATTTCTGTACGTACGCAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2189_D027_J007_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGACAGCTCTTAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJp1
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5767



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGACAGCTCTTGTCG



ACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGGTG



AGTCCTCACAACCTCTCTCCTGCTTTAACTCTGAAGGGTTTTGCTGCA



TTTCTGAGTACCGACAGCTCTTCTGATGGCGCGAGGGAGGC





hsIGH_2190_D001_J008_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTGAGCGATAGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJp2
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5768



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGAGCGAT



AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT



CAGCTTGCCAGGACACTCTGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2191_D002_J008_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACGAGCGATAGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJp2
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5769



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGAGCGAT



AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT



CAGCTTGCCAGTTCGGAACGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2192_D003_J008_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGGAGCGATAGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJp2
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5770



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGAGCGAT



AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT



CAGCTTGCCAGAAGTAACGGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2193_D004_J008_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAGAGCGATAGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJp2
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5771



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGAGCGAT



AGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTC



CTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACT



CAGCTTGCCAGGTCTCCTAGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2194_D005_J008_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCGAGCGATAAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJp2
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5772



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGAGC



GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT



CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG



ACTCAGCTTGCCAGAGAGTGTCGAGCGATACTGATGGCGCGAGGGAGG



C





hsIGH_2195_D006_J008_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJp2
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5773



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGGTTCCGAAGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2196_D007_J008_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJp2
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5774



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGCGTTACTTGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2197_D008_J008_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACGAGCGATAAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJp2
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5775



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGTAGGAGACGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2198_D009_J008_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACGAGCGATAAGCCCCCTGTACA
SEQ ID NO:


21_IGHJp2
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5776



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTG



GTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCAC



TTAGGGAGACTCAGCTTGCCAGGTGTCTACGAGCGATACTGATGGCGC



GAGGGAGGC





hsIGH_2199_D010_J008_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACGAGCGATAGTGGGCACGGACA
SEQ ID NO:


03_IGHJp2
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5777



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGTGCTACACGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2200_D011_J008_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAGAGCGATATGGGCACGGACAC
SEQ ID NO:


09_IGHJp2
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5778



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGAACTGCCAGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2201_D012_J008_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGGAGCGATACGATATTTTGACT
SEQ ID NO:


10_IGHJp2
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5779



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGTTGGACTGGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2202_D013_J008_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACGAGCGATATGGACGCGGACAC
SEQ ID NO:


16_IGHJp2
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5780



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAG



GGAACCCTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTC



TGAGTCCACTTAGGGAGACTCAGCTTGCCAGGTAGACACGAGCGATAC



TGATGGCGCGAGGGAGGC





hsIGH_2203_D014_J008_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACGAGCGATATGGGCATGGACAG
SEQ ID NO:


22_IGHJp2
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5781



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACGAGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACC



CTGGTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTC



CACTTAGGGAGACTCAGCTTGCCAGCACTGTACGAGCGATACTGATGG



CGCGAGGGAGGC





hsIGH_2204_D015_J008_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCGAGCGATACAAGGGTGAGTCA
SEQ ID NO:


04_IGHJp2
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5782



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGAGCGATA



GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC



TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC



AGCTTGCCAGGATGATCCGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2205_D016_J008_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAGAGCGATATGCCTCTCTCCCC
SEQ ID NO:


11_IGHJp2
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5783



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGAGCGATA



GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC



TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC



AGCTTGCCAGCGCCAATAGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2206_D017_J008_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGAGCGATAGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJp2
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5784



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGAGCGATA



GTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCC



TCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTC



AGCTTGCCAGTCAAGCCTGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2207_D018_J008_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTGAGCGATAGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJp2
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5785



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGAGCG



ATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTC



TCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGA



CTCAGCTTGCCAGACGTGTGTGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2208_D019_J008_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGAGCGATAAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJp2
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5786



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGAGC



GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT



CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG



ACTCAGCTTGCCAGTCCGTCTAGAGCGATACTGATGGCGCGAGGGAGG



C





hsIGH_2209_D020_J008_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJp2
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5787



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG



AGCGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCAC



CGTCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGG



GAGACTCAGCTTGCCAGAAGAGCTGGAGCGATACTGATGGCGCGAGGG



AGGC





hsIGH_2210_D021_J008_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJp2
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5788



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGAGC



GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT



CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG



ACTCAGCTTGCCAGTATCGCTCGAGCGATACTGATGGCGCGAGGGAGG



C





hsIGH_2211_D022_J008_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCGAGCGATAGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJp2
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5789



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGAGC



GATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGT



CTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAG



ACTCAGCTTGCCAGTCAGATGCGAGCGATACTGATGGCGCGAGGGAGG



C





hsIGH_2212_D023_J008_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGAGCGATAAGGCAGCTGACTC
SEQ ID NO:


06_IGHJp2
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5790



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGAGCGA



TAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCT



CCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGAC



TCAGCTTGCCAGGTGTAGCAGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2213_D024_J008_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGAGCGATAAGGCAGCTGACCC
SEQ ID NO:


13_IGHJp2
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5791



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGAG



CGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCG



TCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGA



GACTCAGCTTGCCAGTGGCAGTTGAGCGATACTGATGGCGCGAGGGAG



GC





hsIGH_2214_D025_J008_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGAGCGATATGAGGTAGCTGGC
SEQ ID NO:


19_IGHJp2
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5792



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGAG



CGATAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCG



TCTCCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGA



GACTCAGCTTGCCAGCAGTCCAAGAGCGATACTGATGGCGCGAGGGAG



GC





hsIGH_2215_D026_J008_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGGAGCGATACAGCTGGCCTCTG
SEQ ID NO:


25_IGHJp2
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5793



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGAGCGA



TAGTCGACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCT



CCTCAGGTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGAC



TCAGCTTGCCAGTACGTACGGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2216_D027_J008_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAGAGCGATAAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJp2
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5794



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGAGCGATAGTCG



ACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG



GTGAGTCCTCACCACCCCCTCTCTGAGTCCACTTAGGGAGACTCAGCT



TGCCAGAGTACCGAGAGCGATACTGATGGCGCGAGGGAGGC





hsIGH_2217_D001_J009_IGHD1-
GCCTTGCCAGCCCGCTCAGGACACTCTGCATCTGAGCCCCGGTCTCTG
SEQ ID NO:


01_IGHJp3
TGGGTGTTCCGCTAACTGGGGCTCCCAGTGCTCACCCCACAACTAAAG
5795



CGAGCCCCAGCCTCCAGAGCCCCCGAAGGAGATGCCGCCCACAAGCCC



AGCCCCCATCCAGGAGGCCCCAGAGCTCAGGGCGCCGGGGCAGATTCT



GAACAGCCCCGAGTCACGGTGGGTACAACTGGAGACACTCTGCATCTG



AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC



GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT



CTGCTACTGCCGACACTCTGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2218_D002_J009_IGHD1-
GCCTTGCCAGCCCGCTCAGTTCGGAACGCATCTGAGGCCTCGGTCTCT
SEQ ID NO:


07_IGHJp3
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5796



ACGAGCCACAGCCTCAGAGCCCCTGAAGGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCACAGGGCGCCCCGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGATTCGGAACGCATCTG



AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC



GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT



CTGCTACTGCCTTCGGAACGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2219_D003_J009_IGHD1-
GCCTTGCCAGCCCGCTCAGAAGTAACGGCATCTGAGGCCTCGGTCTCT
SEQ ID NO:


14_IGHJp3
GTGGGTGTTCCGCTAGCTGGGGCTCACAGTGCTCACCCCACACCTAAA
5797



ATGAGCCACAGCCTCCGGAGCCCCCGCAGAGACCCCGCCCACAAGCCC



AGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCCCGTCGGATTCC



GAACAGCCCCGAGTCACAGCGGGTATAACCGGAAAGTAACGGCATCTG



AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC



GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT



CTGCTACTGCCAAGTAACGGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2220_D004_J009_IGHD1-
GCCTTGCCAGCCCGCTCAGGTCTCCTAGCATCTGAGTCTCTGTGGGTG
SEQ ID NO:


20_IGHJp3
TTCCGCTAGCTGGGGCCCCCAGTGCTCACCCCACACCTAAAGCGAGCC
5798



CCAGCCTCCAGAGCCCCCTAAGCATTCCCCGCCCAGCAGCCCAGCCCC



TGCCCCCACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGTCGGATTCT



GAACAGCCCCGAGTCACAGTGGGTATAACTGGAGTCTCCTAGCATCTG



AGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCAC



GGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTT



CTGCTACTGCCGTCTCCTAGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2221_D005_J009_IGHD1-
GCCTTGCCAGCCCGCTCAGAGAGTGTCGCATCTGAAGGCCTCAGGCTC
SEQ ID NO:


26_IGHJp3
TGTGGGTGCCGCTAGCTGGGGCTGCCAGTCCTCACCCCACACCTAAGG
5799



TGAGCCACAGCCGCCAGAGCCTCCACAGGAGACCCCACCCAGCAGCCC



AGCCCCTACCCAGGAGGCCCCAGAGCTCAGGGCGCCTGGGTGGATTCT



GAACAGCCCCGAGTCACGGTGGGTATAGTGGGAGCTAGAGTGTCGCAT



CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC



CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT



TTTCTGCTACTGCCAGAGTGTCGCATCTGACTGATGGCGCGAGGGAGG



C





hsIGH_2222_D006_J009_IGHD2-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


02_IGHJp3
CCTGTACAGCACTGGGCTCAGAGTCCTCTCCCACACACCCTGAGTTTC
5800



AGACAAAAACCCCCTGGAAATCATAGTATCAGCAGGAGAACTAGCCAG



AGACAGCAAGAGGGGACTCAGTGACTCCCGCGGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTAGTACCAGCTGCTG



TTCCGAAGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCGTTCCGAAGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2223_D007_J009_IGHD2-
GCCTTGCCAGCCCGCTCAGCGTTACTTGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


08_IGHJp3
CTTGTTCAGCACTGGGCTCAGAGTCCTCTCCAAGACACCCAGAGTTTC
5801



AGACAAAAACCCCCTGGAATGCACAGTCTCAGCAGGAGAGCCAGCCAG



AGCCAGCAAGATGGGGCTCAGTGACACCCGCAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTACTAATGGTGTATGCTC



GTTACTTGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCCGTTACTTGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2224_D008_J009_IGHD2-
GCCTTGCCAGCCCGCTCAGTAGGAGACGCATCTGAAAAGGAGGAGCCC
SEQ ID NO:


15_IGHJp3
CCTATACAGCACTGGGCTCAGAGTCCTCTCTGAGACACCCTGAGTTTC
5802



AGACAACAACCCGCTGGAATGCACAGTCTCAGCAGGAGAACAGACCAA



AGCCAGCAAAAGGGACCTCGGTGACACCAGTAGGGACAGGAGGATTTT



GTGGGGGCTCGTGTCACTGTGAGGATATTGTAGTGGTGGTAGCTGCTT



AGGAGACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCTAGGAGACGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2225_D009_J009_IGHD2-
GCCTTGCCAGCCCGCTCAGGTGTCTACGCATCTGAAGCCCCCTGTACA
SEQ ID NO:


21_IGHJp3
GCACTGGGCTCAGAGTCCTCTCTGAGACAGGCTCAGTTTCAGACAACA
5803



ACCCGCTGGAATGCACAGTCTCAGCAGGAGAGCCAGGCCAGAGCCAGC



AAGAGGAGACTCGGTGACACCAGTCTCCTGTAGGGACAGGAGGATTTT



GTGGGGGTTCGTGTCACTGTGAGCATATTGTGGTGGTGACTGCTGTGT



CTACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGC



AAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGG



GCCTTTGTTTTCTGCTACTGCCGTGTCTACGCATCTGACTGATGGCGC



GAGGGAGGC





hsIGH_2226_D010_J009_IGHD3-
GCCTTGCCAGCCCGCTCAGTGCTACACGCATCTGAGTGGGCACGGACA
SEQ ID NO:


03_IGHJp3
CTGTCCACCTAAGCCAGGGGCAGACCCGAGTGTCCCCGCAGTAGACCT
5804



GAGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTACCTCCTCA



GGTCAGCCCTGGACATCCCGGGTTTCCCCAGGCTGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACGATTTTTGGAGTGGTTATTT



GCTACACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCTGCTACACGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2227_D011_J009_IGHD3-
GCCTTGCCAGCCCGCTCAGAACTGCCAGCATCTGATGGGCACGGACAC
SEQ ID NO:


09_IGHJp3
TATCCACATAAGCGAGGGATAGACCCGAGTGTCCCCACAGCAGACCTG
5805



AGAGCGCTGGGCCCACAGCCTCCCCTCAGAGCCCTGCTGCCTCCTCCG



GTCAGCCCTGGACATCCCAGGTTTCCCCAGGCCTGCCGGTAGGTTTAG



AATGAGGTCTGTGTCACTGTGGTATTACGATATTTTGACTGGTTATTA



ACTGCCAGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCAACTGCCAGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2228_D012_J009_IGHD3-
GCCTTGCCAGCCCGCTCAGTTGGACTGGCATCTGACGATATTTTGACT
SEQ ID NO:


10_IGHJp3
GGTTATTATAACCACAGTGTCACAGAGTCCATCAAAAACCCATGCCTG
5806



GAAGCTTCCCGCCACAGCCCTCCCCATGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCCGGACATCCCGGGTTTCCCCAGGCTGGGCGGTAGGTTTGG



GGTGAGGTCTGTGTCACTGTGGTATTACTATGGTTCGGGGAGTTATTT



TGGACTGGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCTTGGACTGGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2229_D013_J009_IGHD3-
GCCTTGCCAGCCCGCTCAGGTAGACACGCATCTGATGGACGCGGACAC
SEQ ID NO:


16_IGHJp3
TATCCACATAAGCGAGGGACAGACCCGAGTGTTCCTGCAGTAGACCTG
5807



AGAGCGCTGGGCCCACAGCCTCCCCTCGGTGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCAGATGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTATGATTACGTTTGGGGGAGTTA



TCGTTGTAGACACGCATCTGAGTCGACTACTACTACTACTACATGGAC



GTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGC



CACTCTAGGGCCTTTGTTTTCTGCTACTGCCGTAGACACGCATCTGAC



TGATGGCGCGAGGGAGGC





hsIGH_2230_D014_J009_IGHD3-
GCCTTGCCAGCCCGCTCAGCACTGTACGCATCTGATGGGCATGGACAG
SEQ ID NO:


22_IGHJp3
TGTCCACCTAAGCGAGGGACAGACCCGAGTGTCCCTGCAGTAGACCTG
5808



AGAGCGCTGGGCCCACAGCCTCCCCTCGGGGCCCTGCTGCCTCCTCAG



GTCAGCCCTGGACATCCCGGGTTTCCCCAGGCCTGGCGGTAGGTTTGA



AGTGAGGTCTGTGTCACTGTGGTATTACTATGATAGTAGTGGTTATTC



ACTGTACGCATCTGAGTCGACTACTACTACTACTACATGGACGTCTGG



GGCAAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCT



AGGGCCTTTGTTTTCTGCTACTGCCCACTGTACGCATCTGACTGATGG



CGCGAGGGAGGC





hsIGH_2231_D015_J009_IGHD4-
GCCTTGCCAGCCCGCTCAGGATGATCCGCATCTGACAAGGGTGAGTCA
SEQ ID NO:


04_IGHJp3
GACCCTCCTGCCCTCGATGGCAGGCGGAGAAGATTCAGAAAGGTCTGA
5809



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCTCTGGGCACACTCAGGGGCTTTTT



GTGAAGGGTCCTCCTACTGTGTGACTACAGTAGATGATCCGCATCTGA



GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG



GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC



TGCTACTGCCGATGATCCGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2232_D016_J009_IGHD4-
GCCTTGCCAGCCCGCTCAGCGCCAATAGCATCTGATGCCTCTCTCCCC
SEQ ID NO:


11_IGHJp3
AGTGGACACCCTCTTCCAGGACAGTCCTCAGTGGCATCACAGCGGCCT
5810



GAGATCCCCAGGACGCAGCACCGCTGTCAATAGGGGCCCCAAATGCCT



GGACCAGGGCCTGCGTGGGAAAGGTCTCTGGCCACACTCGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACAGTACGCCAATAGCATCTGA



GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG



GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC



TGCTACTGCCCGCCAATAGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2233_D017_J009_IGHD4-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGCATCTGAGGAGGGTGAGTCA
SEQ ID NO:


17_IGHJp3
GACCCACCTGCCCTCGATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5811



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGCGTGGGAAAGGCCGCTGGGCACACTCAGGGGCTTTTT



GTGAAGGCCCCTCCTACTGTGTGACTACGGTGTCAAGCCTGCATCTGA



GTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACG



GTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTC



TGCTACTGCCTCAAGCCTGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2234_D018_J009_IGHD4-
GCCTTGCCAGCCCGCTCAGACGTGTGTGCATCTGAGGAGGGTGAGTCA
SEQ ID NO:


23_IGHJp3
GACCCACCTGCCCTCAATGGCAGGCGGGGAAGATTCAGAAAGGCCTGA
5812



GATCCCCAGGACGCAGCACCACTGTCAATGGGGGCCCCAGACGCCTGG



ACCAGGGCCTGTGTGGGAAAGGCCTCTGGCCACACTCAGGGGCTTTTT



GTGAAGGGCCCTCCTGCTGTGTGACTACGGTGGTAACGTGTGTGCATC



TGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACC



ACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTT



TTCTGCTACTGCCACGTGTGTGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2235_D019_J009_IGHD5-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGCATCTGAAGAGGCCTCTCCA
SEQ ID NO:


05_IGHJp3
GGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCATGTCCCCA
5813



GTCCTGGGGGGCCCCCTGGCACAGCTGTCTGGACCCTCTCTATTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTCCGTCTAGCAT



CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC



CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT



TTTCTGCTACTGCCTCCGTCTAGCATCTGACTGATGGCGCGAGGGAGG



C





hsIGH_2236_D020_J009_IGHD5-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


12_IGHJp3
CAGGGAGACACTGTGCATGTCTGGTACCTAAGCAGCCCCCCACGTCCC
5814



CAGTCCTGGGGGCCCCTGGCTCAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGCGATGTCAGACTGTGGTGGATATAGTGGCTACGAAGAGCTGG



CATCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGG



GACCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTT



TGTTTTCTGCTACTGCCAAGAGCTGGCATCTGACTGATGGCGCGAGGG



AGGC





hsIGH_2237_D021_J009_IGHD5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


18_IGHJp3
CAGGGGGACACTGTGCATGTCTGGTCCCTGAGCAGCCCCCCACGTCCC
5815



CAGTCCTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGTCAGACTGTGGTGGATACAGCTATGTATCGCTCGCAT



CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC



CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT



TTTCTGCTACTGCCTATCGCTCGCATCTGACTGATGGCGCGAGGGAGG



C





hsIGH_2238_D022_J009_IGHD5-
GCCTTGCCAGCCCGCTCAGTCAGATGCGCATCTGAGCAGAGGCCTCTC
SEQ ID NO:


24_IGHJp3
CAGGGGGACACAGTGCATGTCTGGTCCCTGAGCAGCCCCCAGGCTCTC
5816



TAGCACTGGGGGCCCCTGGCACAGCTGTCTGGACCCTCCCTGTTCCCT



GGGAAGCTCCTCCTGACAGCCCCGCCTCCAGTTCCAGGTGTGGTTATT



GTCAGGGGGTGCCAGGCCGTGGTAGAGATGGCTACATCAGATGCGCAT



CTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGAC



CACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGT



TTTCTGCTACTGCCTCAGATGCGCATCTGACTGATGGCGCGAGGGAGG



C





hsIGH_2239_D023_J009_IGHD6-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGCATCTGAAGGCAGCTGACTC
SEQ ID NO:


06_IGHJp3
CTGACTTGGACGCCTATTCCAGACACCAGACAGAGGGGCAGGCCCCCC
5817



AGAACCAGGGATGAGGACGCCCCGTCAAGGCCAGAAAAGACCAAGTTG



TGCTGAGCCCAGCAAGGGAAGGTCCCCAAACAAACCAGGAACGTTTCT



GAAGGTGTCTGTGTCACAGTGGAGTATAGCAGCTGTGTAGCAGCATCT



GAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCA



CGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTT



TCTGCTACTGCCGTGTAGCAGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2240_D024_J009_IGHD6-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGCATCTGAAGGCAGCTGACCC
SEQ ID NO:


13_IGHJp3
CTGACTTGGACCCCTATTCCAGACACCAGACAGAGGCGCAGGCCCCCC
5818



AGAACCAGGGTTGAGGGACGCCCCGTCAAAGCCAGACAAAACCAAGGG



GTGTTGAGCCCAGCAAGGGAAGGCCCCCAAACAGACCAGGAGGTTTCT



GAAGGTGTCTGTGTCACAGTGGGGTATAGCAGCAGCTTGGCAGTTGCA



TCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGA



CCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTG



TTTTCTGCTACTGCCTGGCAGTTGCATCTGACTGATGGCGCGAGGGAG



GC





hsIGH_2241_D025_J009_IGHD6-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGCATCTGATGAGGTAGCTGGC
SEQ ID NO:


19_IGHJp3
CTCTGTCTCGGACCCCACTCCAGACACCAGACAGAGGGGCAGGCCCCC
5819



CAAAACCAGGGTTGAGGGATGATCCGTCAAGGCAGACAAGACCAAGGG



GCACTGACCCCAGCAAGGGAAGGCTCCCAAACAGACGAGGAGGTTTCT



GAAGCTGTCTGTATCACAGTGGGGTATAGCAGTGGCTCAGTCCAAGCA



TCTGAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGA



CCACGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTG



TTTTCTGCTACTGCCCAGTCCAAGCATCTGACTGATGGCGCGAGGGAG



GC





hsIGH_2242_D026_J009_IGHD6-
GCCTTGCCAGCCCGCTCAGTACGTACGGCATCTGACAGCTGGCCTCTG
SEQ ID NO:


25_IGHJp3
TCTCGGACCCCCATTCCAGACACCAGACAGAGGGACAGGCCCCCCAGA
5820



ACCAGTGTTGAGGGACACCCCTGTCCAGGGCAGCCAAGTCCAAGAGGC



GCGCTGAGCCCAGCAAGGGAAGGCCCCCAAACAAACCAGGAGGTTTCT



GAAGCTGTCTGTGTCACAGTCGGGTATAGCAGCGTACGTACGGCATCT



GAGTCGACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCA



CGGTCACCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTT



TCTGCTACTGCCTACGTACGGCATCTGACTGATGGCGCGAGGGAGGC





hsIGH_2243_D027_J009_IGHD7-
GCCTTGCCAGCCCGCTCAGAGTACCGAGCATCTGAAGGGTTGAGGGCT
SEQ ID NO:


27_IGHJp3
GGGGTCTCCCACGTGTTTTGGGGCTAACAGCGGAAGGGAGAGCACTGG
5821



CAAAGGTGCTGGGGGTCCCCTGAACCCGACCCGCCCTGAGACCGCAGC



CACATCAGCCCCCAGCCCCACAGGCCCCCTACCAGCCGCAGGGTTTTT



GGCTGAGCTGAGAACCACTGTGCTAACTAGTACCGAGCATCTGAGTCG



ACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCA



CCGTCTCCTCAGGTAAGAATGGCCACTCTAGGGCCTTTGTTTTCTGCT



ACTGCCAGTACCGAGCATCTGACTGATGGCGCGAGGGAGGC










Bias Control Sequences for hs-IGL










hsIGL_0001_V001_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACGACACTCTGGTCCTGGGCCCAG
SEQ ID NO:



36_IGLJ1_F
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5822



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTAGGAGACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0002_V002_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACGACACTCTCCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ1_F
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5823



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGTGTCTACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0003_V003_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGGACACTCTGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ1_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5824



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGTACAGTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0004_V004_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCGACACTCTGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ1_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5825



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGGATCATCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0005_V005_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGGACACTCTCCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5826


ORF_IGLJ1_F
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTATTGGCGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0006_V006_J001_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGAGACACTCTGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ1_F
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5827



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTAGGCTTGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0007_V007_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ1_F
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5828



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTACACACGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0008_V008_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGAGACACTCTATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ1_F
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5829



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTAGACGGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0009_V009_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ1_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5830



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTCAGCTCTTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0010_V010_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATAGACACTCTATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ1_F
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5831



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGAGCGATAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0011_V011_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGAGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ1_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5832



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGCATCTGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0012_V012_J001_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACGACACTCTGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5833


ORF_IGLJ1_F
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTGCTACACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0013_V013_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCAGACACTCTCTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ1_F
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5834



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTAACTGCCAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0014_V014_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGGACACTCTTTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5835


FP_IGLJ1_F
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTTGGACTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0015_V015_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACGACACTCTTTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ1_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5836



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGTAGACACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0016_V016_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACGACACTCTTTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ1_F
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
5837



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTCACTGTACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0017_V017_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCGACACTCTTTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ1_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
5838



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGATGATCCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0018_V018_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATAGACACTCTTTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ1_F
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
5839



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTCGCCAATAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0019_V019_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGACACTCTTTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ1_F
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
5840



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTCAAGCCTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0020_V020_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTGACACTCTCCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
5841


FP_IGLJ1_F
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTACGTGTGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0021_V021_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGACACTCTTTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ1_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5842



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTCCGTCTAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0022_V022_J001_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGACACTCTCTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ1_F
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
5843



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTAAGAGCTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0023_V023_J001_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCGACACTCTTGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ1_F
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
5844



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTATCGCTCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0024_V024_J001_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCGACACTCTCTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ1_F
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
5845



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTCAGATGCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0025_V025_J001_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGACACTCTCTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ1_F
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
5846



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGTGTAGCAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0026_V026_J001_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGACACTCTTGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ1_F
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
5847



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTGGCAGTTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0027_V027_J001_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGACACTCTTGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ1_F
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
5848



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTCAGTCCAAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0028_V028_J001_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGGACACTCTTGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ1_F
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
5849



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTACGTACGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0029_V029_J001_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGAGACACTCTTGACTCAGCCATCT
SEQ ID NO:


52_IGLJ1_F
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
5850



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTAGTACCGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0030_V030_J001_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGGACACTCTAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ1_F
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5851



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTATCCATGGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0031_V031_J001_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTGACACTCTAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5852


FP_IGLJ1_F
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTGTAGCAGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0032_V032_J001_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTGACACTCTGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ1_F
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
5853



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTATCTTCGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0033_V033_J001_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTGACACTCTTGACTCAGCCACCT
SEQ ID NO:


49_IGLJ1_F
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5854



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTTCCACAGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0034_V034_J001_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCGACACTCTTGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5855


FP_IGLJ1_F
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTATGACACCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0035_V035_J001_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGAGACACTCTCGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5856


ORF_IGLJ1_F
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGAGACACTCTGTCGACTCTTCGGAACTGGGACCAAGGTCACCGTCCTA



GGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCTCACCCTCTGCTGTCCC



TGGAAAATCTGTTTTCTCTCTTCACGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGL_0036_V001_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ2_F
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5857



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTAGGAGACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0037_V002_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACTTCGGAACCCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ2_F
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5858



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTGTCTACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0038_V003_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ2_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5859



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTACAGTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0039_V004_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCTTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ2_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5860



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGGATCATCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0040_V005_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGTTCGGAACCCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5861


ORF_IGLJ2_F
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTATTGGCGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0041_V006_J002_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGATTCGGAACGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ2_F
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5862



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAGGCTTGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0042_V007_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTTTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ2_F
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5863



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTACACACGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0043_V008_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGATTCGGAACATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ2_F
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5864



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTAGACGGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0044_V009_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTTTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ2_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5865



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCAGCTCTTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0045_V010_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATATTCGGAACATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ2_F
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5866



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGAGCGATATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0046_V011_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGATTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ2_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5867



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGCATCTGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0047_V012_J002_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACTTCGGAACGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5868


ORF_IGLJ2_F
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTGCTACACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0048_V013_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCATTCGGAACCTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ2_F
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5869



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAACTGCCATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0049_V014_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGTTCGGAACTTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5870


FP_IGLJ2_F
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTTGGACTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0050_V015_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACTTCGGAACTTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ2_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5871



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTAGACACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0051_V016_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACTTCGGAACTTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ2_F
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
5872



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCACTGTACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0052_V017_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCTTCGGAACTTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ2_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
5873



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGATGATCCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0053_V018_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATATTCGGAACTTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ2_F
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
5874



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCGCCAATATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0054_V019_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTTTCGGAACTTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ2_F
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
5875



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCAAGCCTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0055_V020_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTTTCGGAACCCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
5876


FP_IGLJ2_F
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTACGTGTGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0056_V021_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTATTCGGAACTTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ2_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5877



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCCGTCTATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0057_V022_J002_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGTTCGGAACCTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ2_F
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
5878



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAAGAGCTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0058_V023_J002_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCTTCGGAACTGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ2_F
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
5879



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTATCGCTCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0059_V024_J002_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCTTCGGAACCTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ2_F
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
5880



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCAGATGCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0060_V025_J002_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCATTCGGAACCTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ2_F
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
5881



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTGTAGCATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0061_V026_J002_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTTTCGGAACTGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ2_F
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
5882



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTGGCAGTTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0062_V027_J002_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAATTCGGAACTGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ2_F
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
5883



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCAGTCCAATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0063_V028_J002_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGTTCGGAACTGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ2_F
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
5884



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTACGTACGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0064_V029_J002_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGATTCGGAACTGACTCAGCCATCT
SEQ ID NO:


52_IGLJ2_F
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
5885



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAGTACCGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0065_V030_J002_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGTTCGGAACAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ2_F
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5886



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATCCATGGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0066_V031_J002_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTTTCGGAACAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5887


FP_IGLJ2_F
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTAGCAGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0067_V032_J002_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTTTCGGAACGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ2_F
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
5888



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATCTTCGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0068_V033_J002_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTTTCGGAACTGACTCAGCCACCT
SEQ ID NO:


49_IGLJ2_F
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5889



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCCACAGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0069_V034_J002_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCTTCGGAACTGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5890


FP_IGLJ2_F
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCTTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATGACACCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0070_V035_J002_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGATTCGGAACCGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5891


ORF_IGLJ2_F
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGATTCGGAACGTCGACTATTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCTTCACGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGL_0071_V001_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ3_F
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5892



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTAGGAGACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0072_V002_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACAAGTAACGCCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ3_F
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5893



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTGTCTACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0073_V003_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ3_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5894



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTACAGTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0074_V004_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ3_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5895



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGGATCATCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0075_V005_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGAAGTAACGCCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5896


ORF_IGLJ3_F
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTATTGGCGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0076_V006_J003_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGAAAGTAACGGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ3_F
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5897



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAGGCTTGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0077_V007_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ3_F
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5898



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTACACACGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0078_V008_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGAAAGTAACGATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ3_F
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5899



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTAGACGGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0079_V009_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ3_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5900



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCAGCTCTTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0080_V010_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATAAAGTAACGATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ3_F
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5901



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGAGCGATAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0081_V011_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGAAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ3_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5902



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGCATCTGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0082_V012_J003_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACAAGTAACGGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5903


ORF_IGLJ3_F
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTGCTACACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0083_V013_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCAAAGTAACGCTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ3_F
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5904



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAACTGCCAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0084_V014_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGAAGTAACGTTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5905


FP_IGLJ3_F
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTTGGACTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0085_V015_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACAAGTAACGTTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ3_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5906



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTAGACACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0086_V016_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACAAGTAACGTTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ3_F
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
5907



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCACTGTACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0087_V017_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCAAGTAACGTTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ3_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
5908



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGATGATCCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0088_V018_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATAAAGTAACGTTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ3_F
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
5909



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCGCCAATAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0089_V019_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTAAGTAACGTTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ3_F
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
5910



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCAAGCCTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0090_V020_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTAAGTAACGCCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
5911


FP_IGLJ3_F
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTACGTGTGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0091_V021_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTAAAGTAACGTTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ3_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5912



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCCGTCTAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0092_V022_J003_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGAAGTAACGCTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ3_F
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
5913



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAAGAGCTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0093_V023_J003_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCAAGTAACGTGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ3_F
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
5914



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTATCGCTCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0094_V024_J003_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCAAGTAACGCTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ3_F
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
5915



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCAGATGCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0095_V025_J003_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCAAAGTAACGCTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ3_F
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
5916



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTGTAGCAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0096_V026_J003_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTAAGTAACGTGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ3_F
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
5917



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTGGCAGTTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0097_V027_J003_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAAAAGTAACGTGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ3_F
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
5918



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCAGTCCAAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0098_V028_J003_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGAAGTAACGTGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ3_F
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
5919



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTACGTACGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0099_V029_J003_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGAAAGTAACGTGACTCAGCCATCT
SEQ ID NO:


52_IGLJ3_F
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
5920



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTAGTACCGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0100_V030_J003_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGAAGTAACGAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ3_F
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5921



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATCCATGGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0101_V031_J003_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTAAGTAACGAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5922


FP_IGLJ3_F
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTGTAGCAGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0102_V032_J003_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTAAGTAACGGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ3_F
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
5923



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATCTTCGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0103_V033_J003_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTAAGTAACGTGACTCAGCCACCT
SEQ ID NO:


49_IGLJ3_F
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5924



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTTCCACAGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0104_V034_J003_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCAAGTAACGTGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5925


FP_IGLJ3_F
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTATGACACCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0105_V035_J003_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGAAAGTAACGCGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5926


ORF_IGLJ3_F
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGAAAGTAACGGTCGACTGTTCGGCGGAGGGACCAAGCTGACCGTCCTA



GGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTCTTGGGACAATTTCTGC



TGTTTTTGTTTGTTTCTGTCTTCACGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGL_0106_V001_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ4_P
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5927



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTAGGAGACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0107_V002_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACGTCTCCTACCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ4_P
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5928



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGTGTCTACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0108_V003_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ4_P
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5929



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGTACAGTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0109_V004_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ4_P
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5930



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGGATCATCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0110_V005_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGGTCTCCTACCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5931


ORF_IGLJ4_P
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTATTGGCGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0111_V006_J004_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTCTCCTAGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ4_P
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5932



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGAGGCTTGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0112_V007_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTGTCTCCTAGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ4_P
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5933



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGACACACGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0113_V008_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGAGTCTCCTAATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ4_P
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5934



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTAGACGGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0114_V009_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTCTCCTAGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ4_P
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5935



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGCAGCTCTTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0115_V010_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATAGTCTCCTAATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ4_P
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5936



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGAGCGATAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0116_V011_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGAGTCTCCTAGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ4_P
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5937



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGCATCTGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0117_V012_J004_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACGTCTCCTAGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5938


ORF_IGLJ4_P
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTGCTACACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0118_V013_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCAGTCTCCTACTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ4_P
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5939



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGAACTGCCAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0119_V014_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGGTCTCCTATTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5940


FP_IGLJ4_P
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTTGGACTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0120_V015_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACGTCTCCTATTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ4_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5941



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGTAGACACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0121_V016_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACGTCTCCTATTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ4_P
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
5942



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGCACTGTACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0122_V017_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCGTCTCCTATTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ4_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
5943



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGATGATCCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0123_V018_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATAGTCTCCTATTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ4_P
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
5944



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGCGCCAATAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0124_V019_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTCTCCTATTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ4_P
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
5945



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTCAAGCCTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0125_V020_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTGTCTCCTACCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
5946


FP_IGLJ4_P
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGACGTGTGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0126_V021_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTCTCCTATTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ4_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5947



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTCCGTCTAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0127_V022_J004_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTCTCCTACTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ4_P
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
5948



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGAAGAGCTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0128_V023_J004_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCGTCTCCTATGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ4_P
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
5949



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTATCGCTCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0129_V024_J004_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCGTCTCCTACTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ4_P
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
5950



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTCAGATGCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0130_V025_J004_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTCTCCTACTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ4_P
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
5951



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGTGTAGCAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0131_V026_J004_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTCTCCTATGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ4_P
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
5952



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTGGCAGTTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0132_V027_J004_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTCTCCTATGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ4_P
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
5953



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGCAGTCCAAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0133_V028_J004_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGGTCTCCTATGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ4_P
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
5954



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTACGTACGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0134_V029_J004_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGAGTCTCCTATGACTCAGCCATCT
SEQ ID NO:


52_IGLJ4_P
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
5955



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGAGTACCGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0135_V030_J004_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGGTCTCCTAAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ4_P
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5956



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGATCCATGGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0136_V031_J004_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTGTCTCCTAAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5957


FP_IGLJ4_P
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGGTAGCAGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0137_V032_J004_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTGTCTCCTAGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ4_P
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
5958



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGATCTTCGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0138_V033_J004_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTGTCTCCTATGACTCAGCCACCT
SEQ ID NO:


49_IGLJ4_P
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5959



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGTCCACAGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0139_V034_J004_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCGTCTCCTATGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5960


FP_IGLJ4_P
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGATGACACCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0140_V035_J004_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGAGTCTCCTACGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5961


ORF_IGLJ4_P
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGAGTCTCCTAGTCGACTATTTGGTGGAGGAACCCAGCTGATCATTTTA



GATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTTGGTGACAATTTT



ATTCTGATTTCGATCTTTGCTTCACGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGL_0141_V001_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACAGAGTGTCGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ5_P
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5962



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTAGGAGACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0142_V002_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACAGAGTGTCCCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ5_P
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5963



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGTGTCTACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0143_V003_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGAGAGTGTCGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ5_P
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5964



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGTACAGTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0144_V004_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCAGAGTGTCGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ5_P
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5965



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGGATCATCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0145_V005_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGAGAGTGTCCCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5966


ORF_IGLJ5_P
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTATTGGCGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0146_V006_J005_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGAAGAGTGTCGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ5_P
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
5967



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCAGGCTTGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0147_V007_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTAGAGTGTCGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ5_P
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
5968



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCACACACGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0148_V008_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGAAGAGTGTCATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ5_P
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
5969



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTAGACGGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0149_V009_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTAGAGTGTCGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ5_P
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5970



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCCAGCTCTTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0150_V010_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATAAGAGTGTCATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ5_P
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
5971



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGAGCGATAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0151_V011_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGAAGAGTGTCGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ5_P
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
5972



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGCATCTGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0152_V012_J005_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACAGAGTGTCGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
5973


ORF_IGLJ5_P
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTGCTACACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0153_V013_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCAAGAGTGTCCTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ5_P
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
5974



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCAACTGCCAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0154_V014_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGAGAGTGTCTTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
5975


FP_IGLJ5_P
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTTGGACTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0155_V015_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACAGAGTGTCTTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ5_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5976



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGTAGACACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0156_V016_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACAGAGTGTCTTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ5_P
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
5977



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCCACTGTACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0157_V017_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCAGAGTGTCTTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ5_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
5978



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGATGATCCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0158_V018_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATAAGAGTGTCTTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ5_P
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
5979



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCCGCCAATAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0159_V019_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGAGTGTCTTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ5_P
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
5980



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTCAAGCCTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0160_V020_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTAGAGTGTCCCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
5981


FP_IGLJ5_P
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCACGTGTGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0161_V021_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGAGTGTCTTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ5_P
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
5982



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTCCGTCTAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0162_V022_J005_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGAGTGTCCTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ5_P
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
5983



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCAAGAGCTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0163_V023_J005_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCAGAGTGTCTGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ5_P
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
5984



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTATCGCTCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0164_V024_J005_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCAGAGTGTCCTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ5_P
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
5985



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTCAGATGCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0165_V025_J005_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCAAGAGTGTCCTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ5_P
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
5986



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGTGTAGCAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0166_V026_J005_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTAGAGTGTCTGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ5_P
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
5987



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTGGCAGTTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0167_V027_J005_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAAAGAGTGTCTGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ5_P
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
5988



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCCAGTCCAAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0168_V028_J005_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGAGAGTGTCTGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ5_P
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
5989



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTACGTACGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0169_V029_J005_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGAAGAGTGTCTGACTCAGCCATCT
SEQ ID NO:


52_IGLJ5_P
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
5990



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCAGTACCGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0170_V030_J005_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGAGAGTGTCAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ5_P
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5991



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCATCCATGGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0171_V031_J005_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTAGAGTGTCAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
5992


FP_IGLJ5_P
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCGTAGCAGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0172_V032_J005_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTAGAGTGTCGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ5_P
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
5993



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCATCTTCGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0173_V033_J005_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTAGAGTGTCTGACTCAGCCACCT
SEQ ID NO:


49_IGLJ5_P
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
5994



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCTCCACAGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0174_V034_J005_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCAGAGTGTCTGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
5995


FP_IGLJ5_P
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCATGACACCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0175_V035_J005_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGAAGAGTGTCCGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
5996


ORF_IGLJ5_P
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGAAGAGTGTCGTCGACTGTTTGGTGAGGGGACGGAGCTGACCGTCCTA



GATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCCCCAAGGTACTGGGAAA



TTTTCTGCTGCTTTTGTTCCTTCACGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGL_0176_V001_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACGTTCCGAAGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ6_F
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
5997



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTAGGAGACGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0177_V002_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACGTTCCGAACCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ6_F
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
5998



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGTGTCTACGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0178_V003_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGGTTCCGAAGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ6_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
5999



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGTACAGTGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0179_V004_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCGTTCCGAAGGTCCTGGGCCCAG
SEQ ID NO:


47_IGLJ6_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
6000



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGGATCATCGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0180_V005_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGGTTCCGAACCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6001


ORF_IGLJ6_F
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTATTGGCGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0181_V006_J006_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTTCCGAAGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ6_F
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
6002



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTAGGCTTGAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0182_V007_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTGTTCCGAAGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ6_F
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
6003



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTACACACGTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0183_V008_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGAGTTCCGAAATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ6_F
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
6004



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTAGACGGAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0184_V009_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTTCCGAAGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ6_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
6005



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTCAGCTCTTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0185_V010_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATAGTTCCGAAATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ6_F
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
6006



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGAGCGATAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0186_V011_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGAGTTCCGAAGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ6_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
6007



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGCATCTGAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0187_V012_J006_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACGTTCCGAAGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
6008


ORF_IGLJ6_F
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTGCTACACGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0188_V013_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCAGTTCCGAACTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ6_F
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
6009



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTAACTGCCAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0189_V014_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGGTTCCGAATTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
6010


FP_IGLJ6_F
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTTGGACTGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0190_V015_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACGTTCCGAATTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ6_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
6011



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGTAGACACGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0191_V016_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACGTTCCGAATTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ6_F
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
6012



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTCACTGTACGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0192_V017_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCGTTCCGAATTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ6_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
6013



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGATGATCCGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0193_V018_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATAGTTCCGAATTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ6_F
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
6014



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTCGCCAATAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0194_V019_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTTCCGAATTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ6_F
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
6015



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTCAAGCCTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0195_V020_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTGTTCCGAACCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
6016


FP_IGLJ6_F
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTACGTGTGTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0196_V021_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTTCCGAATTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ6_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
6017



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTCCGTCTAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0197_V022_J006_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTTCCGAACTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ6_F
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
6018



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTAAGAGCTGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0198_V023_J006_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCGTTCCGAATGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ6_F
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
6019



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTATCGCTCGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0199_V024_J006_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCGTTCCGAACTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ6_F
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
6020



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTCAGATGCGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0200_V025_J006_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCAGTTCCGAACTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ6_F
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
6021



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGTGTAGCAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0201_V026_J006_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTGTTCCGAATGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ6_F
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
6022



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTGGCAGTTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0202_V027_J006_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAAGTTCCGAATGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ6_F
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
6023



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTCAGTCCAAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0203_V028_J006_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGGTTCCGAATGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ6_F
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
6024



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTACGTACGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0204_V029_J006_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGAGTTCCGAATGACTCAGCCATCT
SEQ ID NO:


52_IGLJ6_F
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
6025



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTAGTACCGAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0205_V030_J006_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGGTTCCGAAAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ6_F
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
6026



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTATCCATGGGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0206_V031_J006_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTGTTCCGAAAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
6027


FP_IGLJ6_F
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTGTAGCAGTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0207_V032_J006_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTGTTCCGAAGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ6_F
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
6028



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTATCTTCGTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0208_V033_J006_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTGTTCCGAATGACTCAGCCACCT
SEQ ID NO:


49_IGLJ6_F
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
6029



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTTCCACAGTGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0209_V034_J006_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCGTTCCGAATGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
6030


FP_IGLJ6_F
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTATGACACCGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0210_V035_J006_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGAGTTCCGAACGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
6031


ORF_IGLJ6_F
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGAGTTCCGAAGTCGACTGTTCGGCAGTGGCACCAAGGTGACCGTCCTC



GGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGTGAGATCTGGGGAG



ACTTTTCTGTCCTTTCTGTCTTCACGAGTTCCGAACTGATGGCGCGAGG



GAGGC





hsIGL_0211_V001_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGTAGGAGACCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


36_IGLJ7_F
TCTGTGCTGACTCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGG
6032



TCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGT



AAACTGGTACCAGCAGCTCCCAGGAAAGGCTCCCAAACTCCTCATCTAT



TATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGATAGGA



GACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTAGGAGACCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0212_V002_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGGTGTCTACCGTTACTTCCTGGGCCCAGTCT
SEQ ID NO:


40_IGLJ7_F
GTCGTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6033



CCATCTCCTGCACTGGGAGCAGCTCCAACATCGGGGCAGGTTATGATGT



ACACTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGA



TGAGGCTGATTATTACTGCCAGTCCTATGACAGCAGCCTGATGAGTGTC



TACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGTGTCTACCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0213_V003_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGGTACAGTGCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


44_IGLJ7_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
6034



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGT



AAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGTACA



GTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGTACAGTGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0214_V004_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGGGATCATCCGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


47_TGLJ7_F
TCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGG
6035



TCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGT



ATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTAT



AGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGA



TGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGATGAGGATC



ATCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGGATCATCCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0215_V005_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGTATTGGCGCGTTACTTCCTGGGCCCAGTCT
SEQ ID NO:


50-
GTGCTGACGCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCA
6036


ORF_IGLJ7_F
CCATCTCCTGCACTGGGAGCAGCTCCAACATTGGGGCGGGTTATGTTGT



ACATTGGTACCAGCAGCTTCCAGGAACAGCCCCCAAACTCCTCATCTAT



GGTAACAGCAATCGGCCCTCAGGGGTCCCTGACCAATTCTCTGGCTCCA



AGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGA



TGAGGCTGATTATTACTGCAAAGCATGGGATAACAGCCTGATGATATTG



GCGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTATTGGCGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0216_V006_J007_IGLV01-
GCCTTGCCAGCCCGCTCAGAGGCTTGACGTTACTTGGTCCTGGGCCCAG
SEQ ID NO:


51_IGLJ7_F
TCTGTGTTGACGCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGG
6037



TCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTATGT



ATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATTTAT



GACAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCA



AGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGA



CGAGGCCGATTATTACTGCGGAACATGGGATAGCAGCCTGATGAAGGCT



TGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGAGGCTTGACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0217_V007_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGACACACGTCGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


08_IGLJ7_F
CTGCCCTGACTCAGCCTCCCTCCGCGTCCAGGTCTCCTGGACAGTCAGT
6038



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAATGAACACA



CGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGACACACGTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0218_V008_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGTAGACGGACGTTACTTATCCTGGGCTCAGT
SEQ ID NO:


11_IGLJ7_F
CTGCCCTGACTCAGCCTCGCTCAGTGTCCGGGTCTCCTGGACAGTCAGT
6039



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGTGGTTATAACTAT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGATGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GATGAGGCTGATTATTACTGCTGCTCATATGCAGGCAGCTATGATAGAC



GGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTAGACGGACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0219_V009_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGCAGCTCTTCGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


14_IGLJ7_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
6040



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGACAGCT



CTTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGCAGCTCTTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0220_V010_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGGAGCGATACGTTACTTATCCTGGGCTCAGT
SEQ ID NO:


18_IGLJ7_F
CTGCCCTGACTCAGCCTCCCTCCGTGTCCGGGTCTCCTGGACAGTCAGT
6041



CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTAGTTATAACCGT



GTCTCCTGGTACCAGCAGCCCCCAGGCACAGCCCCCAAACTCATGATTT



ATGAGGTCAGTAATCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGGTC



CAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGTGAGAGCG



ATACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGAGCGATACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0221_V011_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGGCATCTGACGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


23_IGLJ7_F
CTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGAT
6042



CACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTT



GTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTT



ATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTC



CAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAG



GACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGTGAGCATC



TGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGCATCTGACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0222_V012_J007_IGLV02-
GCCTTGCCAGCCCGCTCAGTGCTACACCGTTACTTGTCCTGGGCCCAGT
SEQ ID NO:


33-
CTGCCCTGACTCAGCCTCCTTTTGTGTCCGGGGCTCCTGGACAGTCGGT
6043


ORF_IGLJ7_F
CACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGGGATTATGATCAT



GTCTTCTGGTACCAAAAGCGTCTCAGCACTACCTCCAGACTCCTGATTT



ACAATGTCAATACTCGGCCTTCAGGGATCTCTGACCTCTTCTCAGGCTC



CAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAG



GTTGAGGCTAATTATCACTGCAGCTTATATTCAAGTAGTTATGATGCTA



CACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTGCTACACCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0223_V013_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGAACTGCCACGTTACTTCTCTCCTGTAGGAT
SEQ ID NO:


01_IGLJ7_F
CCGTGGCCTCCTATGAGCTGACTCAGCCACCCTCAGTGTCCGTGTCCCC
6044



AGGACAGACAGCCAGCATCACCTGCTCTGGAGATAAATTGGGGGATAAA



TATGCTTGCTGGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGCTGGTCA



TCTATCAAGATAGCAAGCGGCCCTCAGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCT



ATGGATGAGGCTGACTATTACTGTCAGGCGTGGGACAGCAGTGAAACTG



CCACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGAACTGCCACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0224_V014_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGTTGGACTGCGTTACTTTTTTCTTGCAGGTT
SEQ ID NO:


09-
CTGTGGCCTCCTATGAGCTGACTCAGCCACTCTCAGTGTCAGTGGCCCT
6045


FP_IGLJ7_F
GGGACAGGCGGCCAGGATTACCTGTGGGGGAAACAACCTTGGATATAAA



AATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCA



TCTATAGGGATAACAACCGGCCCTCTGGGATCCCTGAGCGATTCTCTGG



CTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCC



GGGGATGAGGCTGACTATTACTGTCAGGTGTGGGACAGCAGTGATTGGA



CTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTTGGACTGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0225_V015_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGGTAGACACCGTTACTTTTGCAGTCTCTGAG
SEQ ID NO:


10_IGLJ7_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
6046



AAACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGCTGGTCATCTAT



GAGGACAGCAAACGACCCTCCGGGATCCCTGAGAGATTCTCTGGCTCCA



GCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGA



TGAAGCTGACTACTACTGTTACTCAACAGACAGCAGTGGTATGAGTAGA



CACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGTAGACACCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0226_V016_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGCACTGTACCGTTACTTTTGCAGGCTCTGCG
SEQ ID NO:


12_IGLJ7_F
ACCTCCTATGAGCTGACTCAGCCACACTCAGTGTCAGTGGCCACAGCAC
6047



AGATGGCCAGGATCACCTGTGGGGGAAACAACATTGGAAGTAAAGCTGT



GCACTGGTACCAGCAAAAGCCAGGCCAGGACCCTGTGCTGGTCATCTAT



AGCGATAGCAACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGA



TGAGGCTGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGACACTG



TACCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGCACTGTACCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0227_V017_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGGATGATCCCGTTACTTTTGCAGGCTCTGAG
SEQ ID NO:


16_IGLJ7_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCTAGGAC
6048



AGATGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAAAAAAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGTTCCCTGTGCTGGTGATATAT



AAAGACAGCGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGA



CGAGGCTGACTATTACTGTCTATCAGCAGACAGCAGTGGTATGAGATGA



TCCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGATGATCCCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0228_V018_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGCGCCAATACGTTACTTTTGCAGGTTCTGTG
SEQ ID NO:


19_IGLJ7_F
GTTTCTTCTGAGCTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGAC
6049



AGACAGTCAGGATCACATGCCAAGGAGACAGCCTCAGAAGCTATTATGC



AAGCTGGTACCAGCAGAAGCCAGGACAGGCCCCTGTACTTGTCATCTAT



GGTAAAAACAACCGGCCCTCAGGGATCCCAGACCGATTCTCTGGCTCCA



GCTCAGGAAACACAGCTTCCTTGACCATCACTGGGGCTCAGGCGGAAGA



TGAGGCTGACTATTACTGTAACTCCCGGGACAGCAGTGGTATGACGCCA



ATACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGCGCCAATACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0229_V019_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGTCAAGCCTCGTTACTTTTGCAGGCTCTGTG
SEQ ID NO:


21_IGLJ7_F
ACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGAA
6050



AGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGT



GCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTAT



TATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



ACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGA



TGAGGCCGACTATTACTGTCAGGTGTGGGACAGTAGTAGTGTGATCAAG



CCTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTCAAGCCTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0230_V020_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGACGTGTGTCGTTACTTCCTCTCTTGCAGGC
SEQ ID NO:


22-
TCTGTTGCCTCCTATGAGCTGACACAGCTACCCTCGGTGTCAGTGTCCC
6051


FP_IGLJ7_F
CAGGACAGAAAGCCAGGATCACCTGCTCTGGAGATGTACTGGGGAAAAA



TTATGCTGACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGAGTTGGTG



ATATACGAAGATAGTGAGCGGTACCCTGGAATCCCTGAACGATTCTCTG



GGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGAC



CGAAGACGAGGCTGACTATTACTGTTTGTCTGGGAATGAGGTGAACGTG



TGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGACGTGTGTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0231_V021_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGTCCGTCTACGTTACTTTTGCAGGCTCTGAG
SEQ ID NO:


25_IGLJ7_F
GCCTCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGTCCCCAGGAC
6052



AGACGGCCAGGATCACCTGCTCTGGAGATGCATTGCCAAAGCAATATGC



TTATTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTGATATAT



AAAGACAGTGAGAGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCA



GCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGA



TGAGGCTGACTATTACTGTCAATCAGCAGACAGCAGTGGTATGATCCGT



CTACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTCCGTCTACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0232_V022_J007_IGLV03-
GCCTTGCCAGCCCGCTCAGAAGAGCTGCGTTACTTCTTTTCTTGCAGTC
SEQ ID NO:


27_IGLJ7_F
TCTGTGGCCTCCTATGAGCTGACACAGCCATCCTCAGTGTCAGTGTCTC
6053



CGGGACAGACAGCCAGGATCACCTGCTCAGGAGATGTACTGGCAAAAAA



ATATGCTCGGTGGTTCCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTG



ATTTATAAAGACAGTGAGCGGCCCTCAGGGATCCCTGAGCGATTCTCCG



GCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGT



TGAGGATGAGGCTGACTATTACTGTTACTCTGCGGCTGACATGAAAGAG



CTGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGAAGAGCTGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0233_V023_J007_IGLV04-
GCCTTGCCAGCCCGCTCAGTATCGCTCCGTTACTTTGCTGACTCAGCCC
SEQ ID NO:


03_IGLJ7_F
CCGTCTGCATCTGCCTTGCTGGGAGCCTCGATCAAGCTCACCTGCACCC
6054



TAAGCAGTGAGCACAGCACCTACACCATCGAATGGTATCAACAGAGACC



AGGGAGGTCCCCCCAGTATATAATGAAGGTTAAGAGTGATGGCAGCCAC



AGCAAGGGGGACGGGATCCCCGATCGCTTCATGGGCTCCAGTTCTGGGG



CTGACCGCTACCTCACCTTCTCCAACCTCCAGTCTGACGATGAGGCTGA



GTATCACTGTGGAGAGAGCCACACGATTGATGGCCAAGTCGTGATATCG



CTCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTATCGCTCCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0234_V024_J007_IGLV04-
GCCTTGCCAGCCCGCTCAGTCAGATGCCGTTACTTCTCTCTCCCAGCCT
SEQ ID NO:


60_IGLJ7_F
GTGCTGACTCAATCATCCTCTGCCTCTGCTTCCCTGGGATCCTCGGTCA
6055



AGCTCACCTGCACTCTGAGCAGTGGGCACAGTAGCTACATCATCGCATG



GCATCAGCAGCAGCCAGGGAAGGCCCCTCGGTACTTGATGAAGCTTGAA



GGTAGTGGAAGCTACAACAAGGGGAGCGGAGTTCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTT



TGAGGATGAGGCTGATTATTACTGTGAGACCTGGGACAGTATGATCAGA



TGCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTCAGATGCCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0235_V025_J007_IGLV04-
GCCTTGCCAGCCCGCTCAGGTGTAGCACGTTACTTCTCTCTCCCAGCTT
SEQ ID NO:


69_IGLJ7_F
GTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCA
6056



AGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATG



GCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAAC



AGTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAG



GCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTC



TGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGTGAGTGTA



GCACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGTGTAGCACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0236_V026_J007_IGLV05-
GCCTTGCCAGCCCGCTCAGTGGCAGTTCGTTACTTTGTGCTGACTCAGC
SEQ ID NO:


37_IGLJ7_F
CACCTTCCTCCTCCGCATCTCCTGGAGAATCCGCCAGACTCACCTGCAC
6057



CTTGCCCAGTGACATCAATGTTGGTAGCTACAACATATACTGGTACCAG



CAGAAGCCAGGGAGCCCTCCCAGGTATCTCCTGTACTACTACTCAGACT



CAGATAAGGGCCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCCAAGCAATGATGGCA



GTTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTGGCAGTTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0237_V027_J007_IGLV05-
GCCTTGCCAGCCCGCTCAGCAGTCCAACGTTACTTTGTGCTGACTCAGC
SEQ ID NO:


39_IGLJ7_F
CAACCTCCCTCTCAGCATCTCCTGGAGCATCAGCCAGATTCACCTGCAC
6058



CTTGCGCAGCGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAATCCAGGGAGTCTTCCCCGGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCT



GAAGATGAGGCTGACTATTACTGTGCCATTTGGTACAGCAGTGACAGTC



CAACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGCAGTCCAACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0238_V028_J007_IGLV05-
GCCTTGCCAGCCCGCTCAGTACGTACGCGTTACTTTGTGCTGACTCAGC
SEQ ID NO:


45_IGLJ7_F
CGTCTTCCCTCTCTGCATCTCCTGGAGCATCAGCCAGTCTCACCTGCAC
6059



CTTGCGCAGTGGCATCAATGTTGGTACCTACAGGATATACTGGTACCAG



CAGAAGCCAGGGAGTCCTCCCCAGTATCTCCTGAGGTACAAATCAGACT



CAGATAAGCAGCAGGGCTCTGGAGTCCCCAGCCGCTTCTCTGGATCCAA



AGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCT



GAGGATGAGGCTGACTATTACTGTATGATTTGGCACAGCAGTGATACGT



ACGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTACGTACGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0239_V029_J007_IGLV05-
GCCTTGCCAGCCCGCTCAGAGTACCGACGTTACTTTGACTCAGCCATCT
SEQ ID NO:


52_IGLJ7_F
TCCCATTCTGCATCTTCTGGAGCATCAGTCAGACTCACCTGCATGCTGA
6060



GCAGTGGCTTCAGTGTTGGGGACTTCTGGATAAGGTGGTACCAACAAAA



GCCAGGGAACCCTCCCCGGTATCTCCTGTACTACCACTCAGACTCCAAT



AAGGGCCAAGGCTCTGGAGTTCCCAGCCGCTTCTCTGGATCCAACGATG



CATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGA



TGAGGCTGACTATTACTGTGGTACATGGCACAGCAACTCTATGAAGTAC



CGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGAGTACCGACGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0240_V030_J007_IGLV07-
GCCTTGCCAGCCCGCTCAGATCCATGGCGTTACTTAGGGTCCAATTCTC
SEQ ID NO:


43_IGLJ7_F
AGACTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
6061



AGTCACTCTCACCTGTGCTTCCAGCACTGGAGCAGTCACCAGTGGTTAC



TATCCAAACTGGTTCCAGCAGAAACCTGGACAAGCACCCAGGGCACTGA



TTTATAGTACAAGCAACAAACACTCCTGGACCCCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCT



GAGGACGAGGCTGAGTATTACTGCCTGCTCTACTATGGTGGTGAATCCA



TGGCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGATCCATGGCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0241_V031_J007_IGLV07-
GCCTTGCCAGCCCGCTCAGGTAGCAGTCGTTACTTAGGGTCCAATTCCC
SEQ ID NO:


46-
AGGCTGTGGTGACTCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGAC
6062


FP_IGLJ7_F
AGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCAT



TATCCCTACTGGTTCCAGCAGAAGCCTGGCCAAGCCCCCAGGACACTGA



TTTATGATACAAGCAACAAACACTCCTGGACACCTGCCCGGTTCTCAGG



CTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCT



GAGGATGAGGCTGAGTATTACTGCTTGCTCTCCTATAGTGGTGAGTAGC



AGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGGTAGCAGTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0242_V032_J007_IGLV08-
GCCTTGCCAGCCCGCTCAGATCTTCGTCGTTACTTGAGTGGATTCTCAG
SEQ ID NO:


61_IGLJ7_F
ACTGTGGTGACCCAGGAGCCATCGTTCTCAGTGTCCCCTGGAGGGACAG
6063



TCACACTCACTTGTGGCTTGAGCTCTGGCTCAGTCTCTACTAGTTACTA



CCCCAGCTGGTACCAGCAGACCCCAGGCCAGGCTCCACGCACGCTCATC



TACAGCACAAACACTCGCTCTTCTGGGGTCCCTGATTGCTTCTCTGGCT



CCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGA



TGATGAATCTGATTATTACTGTGTGCTGTATATGGGTAGTGTGAATCTT



CGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGATCTTCGTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0243_V033_J007_IGLV09-
GCCTTGCCAGCCCGCTCAGTCCACAGTCGTTACTTTGACTCAGCCACCT
SEQ ID NO:


49_IGLJ7_F
TCTGCATCAGCCTCCCTGGGAGCCTCGGTCACACTCACCTGCACCCTGA
6064



GCAGCGGCTACAGTAATTATAAAGTGGACTGGTACCAGCAGAGACCAGG



GAAGGGCCCCCGGTTTGTGATGCGAGTGGGCACTGGTGGGATTGTGGGA



TCCAAGGGGGATGGCATCCCTGATCGCTTCTCAGTCTTGGGCTCAGGCC



TGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGA



CTACCACTGTGGGGCAGACCATGGCAGTGGGAGCAACTTCGTGATCCAC



AGTCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGTCCACAGTCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0244_V034_J007_IGLV10-
GCCTTGCCAGCCCGCTCAGATGACACCCGTTACTTTGTCAGTGGTCCAG
SEQ ID NO:


54-
GCAGGGCTGACTCAGCCACCCTCGGTCTCCAAGGGCTTGAGACAGACCG
6065


FP_IGLJ7_F
CCACACTCACCTGCACTGGGAACAGCAACAATGTTGGCAACCAAGGAGC



AGCTTGGCCTGAGCAGCACCAGGGCCACCCTCCCAAACTCCTATCCTAC



AGGAATAACAACCGGCCCTCAGGGATCTCAGAGAGATTATCTGCATCCA



GGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGA



CGAGGCTGACTATTACTGCTCAGCATGGGACAGCAGCCTCATGAATGAC



ACCCGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGATGACACCCGTTACTTCTGATGGCGCGAGG



GAGGC





hsIGL_0245_V035_J007_IGLV11-
GCCTTGCCAGCCCGCTCAGCTTCACGACGTTACTTCGTGCTGACTCAGC
SEQ ID NO:


55-
CGCCCTCTCTGTCTGCATCCCCGGGAGCAACAGCCAGACTCCCCTGCAC
6066


ORF_IGLJ7_F
CCTGAGCAGTGACCTCAGTGTTGGTGGTAAAAACATGTTCTGGTACCAG



CAGAAGCCAGGGAGCTCTCCCAGGTTATTCCTGTATCACTACTCAGACT



CAGACAAGCAGCTGGGACCTGGGGTCCCCAGTCGAGTCTCTGGCTCCAA



GGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCT



GAGGACGAGGCCGATTATTACTGCCAGGTGTACGAAAGTAGTGACTTCA



CGACGTTACTTGTCGACTGTTCGGAGGAGGCACCCAGCTGACCGTCCTC



GGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGATCCCAAGTTAAACACGG



GGAGTTTTTCCCTTTCCTGCTTCACGACGTTACTTCTGATGGCGCGAGG



GAGGC





Bias Control Sequences for hs-IgK


Name
Sequence
SEQ ID NO


hsIGK_0001_V001_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


05-
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT
6067


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC



CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC



GAAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGTTCCGAAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0002_V002_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGCGTTACTTGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


06-
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6068


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA



CTTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGACGTTACTTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0003_V003_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGGAGACGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


08-
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT
6069


F_IGKJ1
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA



GACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATAGGAGACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0004_V004_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGTGTCTACGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


09-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT
6070


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC



TACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGTGTCTACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0005_V005_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGTACAGTGGACACTCTCCAATCTCAGGTTC
SEQ ID NO:


12-
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT
6071


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA



GTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGTACAGTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0006_V006_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGGATCATCGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


13-
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6072


FP_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT



GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC



ATCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGGATCATCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0007_V007_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGTATTGGCGGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


16-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT
6073


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG



GCGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATATTGGCGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0008_V008_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGAGGCTTGAGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


17-
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6074


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT



TGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAAGGCTTGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0009_V009_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGACACACGTGACACTCTCTAATATCAGATAC
SEQ ID NO:


27-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6075


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA



CGTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAACACACGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0010_V010_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGACGGAGACACTCTCTAATCGCAGGTGC
SEQ ID NO:


33-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6076


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT



GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC



CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC



GGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATAGACGGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0011_V011_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGCAGCTCTTGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


37-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6077


O_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT



CTTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGACAGCTCTTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0012_V012_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGAGCGATAGACACTCTCCAATCTCAGGTGC
SEQ ID NO:


39-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6078


FP_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC



CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG



ATAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGAGCGATAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0013_V013_J001_IGKV1-
GCCTTGCCAGCCCGCTCAGGCATCTGAGACACTCTCCAATCTCAGGTAC
SEQ ID NO:


NL1-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6079


F_IGKJ1
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT



GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC



TGAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGCATCTGAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0014_V014_J001_IGKV2-
GCCTTGCCAGCCCGCTCAGTGCTACACGACACTCTAGTGGGGATATTGT
SEQ ID NO:


24-
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC
6080


F_IGKJ1
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT



AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT



GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG



CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA



CACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATGCTACACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0015_V015_J001_IGKV2-
GCCTTGCCAGCCCGCTCAGAACTGCCAGACACTCTAGTGGGGATATTGT
SEQ ID NO:


28-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC
6081


F_IGKJ1
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT



GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG



CCAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAAACTGCCAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0016_V016_J001_IGKV2-
GCCTTGCCAGCCCGCTCAGTTGGACTGGACACTCTAGTGCGGATATTGT
SEQ ID NO:


29-
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC
6082


FP_IGKJ1
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT



GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT



GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA



CTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATTGGACTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0017_V017_J001_IGKV2-
GCCTTGCCAGCCCGCTCAGGTAGACACGACACTCTAGTGGGGATGTTGT
SEQ ID NO:


30-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC
6083


F_IGKJ1
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT



AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA



CACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGTAGACACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0018_V018_J001_IGKV2-
GCCTTGCCAGCCCGCTCAGCACTGTACGACACTCTGAGGATATTGTGAT
SEQ ID NO:


40-
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC
6084


F_IGKJ1
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG



TACGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGACACTGTACGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0019_V019_J001_IGKV3-
GCCTTGCCAGCCCGCTCAGGATGATCCGACACTCTATCTCAGATACCAC
SEQ ID NO:


07-
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA
6085


F_IGKJ1
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA



TCCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAGATGATCCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0020_V020_J001_IGKV3-
GCCTTGCCAGCCCGCTCAGCGCCAATAGACACTCTCCAATTTCAGATAC
SEQ ID NO:


11-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6086


F_IGKJ1
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA



ATAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGACGCCAATAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0021_V021_J001_IGKV3-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGACACTCTCCAATTTCAGATAC
SEQ ID NO:


15-
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6087


F_IGKJ1
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG



CCTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATCAAGCCTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0022_V022_J001_IGKV3-
GCCTTGCCAGCCCGCTCAGACGTGTGTGACACTCTATCTCAGATACCAC
SEQ ID NO:


20-
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6088


F_IGKJ1
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC



CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG



TGTGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAACGTGTGTGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0023_V023_J001_IGKV3-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGACACTCTCCAATTTCAGATAC
SEQ ID NO:


NL4-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6089


FNG_IGKJ1
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT



CTAGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATCCGTCTAGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0024_V024_J001_IGKV4-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGACACTCTGGGGACATCGTGAT
SEQ ID NO:


01-
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC
6090


F_IGKJ1
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT



CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT



GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG



CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG



CTGGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGAAAGAGCTGGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0025_V025_J001_IGKV5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGACACTCTCCATAATCAGATAC
SEQ ID NO:


02-
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT
6091


F_IGKJ1
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT



TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT



GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT



CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG



CTCGACACTCTGTCGACCGTTCGGCCAAGGGACCAAGGTGGAAATCAAA



CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGTCTGTGTCTTCTGTT



CCCTGTGTCTATGAAGTGATATCGCTCGACACTCTCTGATGGCGCGAGG



GAGGC





hsIGK_0026_V001_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGTTCCGAATTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


05-
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT
6092


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC



CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC



GAATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGTTCCGAATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0027_V002_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGCGTTACTTTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


06-
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6093


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA



CTTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGCGTTACTTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0028_V003_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGGAGACTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


08-
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT
6094


F_IGKJ2
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA



GACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTAGGAGACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0029_V004_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGTGTCTACTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


09-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT
6095


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC



TACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGTGTCTACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0030_V005_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGTACAGTGTTCGGAACCCAATCTCAGGTTC
SEQ ID NO:


12-
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT
6096


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA



GTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGTACAGTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0031_V006_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGGATCATCTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


13-
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6097


FP_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT



GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC



ATCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGGATCATCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0032_V007_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGTATTGGCGTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


16-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT
6098


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG



GCGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTATTGGCGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0033_V008_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGAGGCTTGATTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


17-
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6099


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT



TGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGAGGCTTGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0034_V009_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGACACACGTTTCGGAACCTAATATCAGATAC
SEQ ID NO:


27-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6100


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA



CGTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGACACACGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0035_V010_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGACGGATTCGGAACCTAATCGCAGGTGC
SEQ ID NO:


33-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6101


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT



GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC



CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC



GGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTAGACGGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0036_V011_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGCAGCTCTTTTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


37-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6102


O_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT



CTTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGCAGCTCTTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0037_V012_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGAGCGATATTCGGAACCCAATCTCAGGTGC
SEQ ID NO:


39-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6103


FP_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC



CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG



ATATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGAGCGATATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0038_V013_J002_IGKV1-
GCCTTGCCAGCCCGCTCAGGCATCTGATTCGGAACCCAATCTCAGGTAC
SEQ ID NO:


NL1-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6104


F_IGKJ2
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT



GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC



TGATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGCATCTGATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0039_V014_J002_IGKV2-
GCCTTGCCAGCCCGCTCAGTGCTACACTTCGGAACAGTGGGGATATTGT
SEQ ID NO:


24-
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC
6105


F_IGKJ2
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT



AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT



GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG



CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA



CACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTGCTACACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0040_V015_J002_IGKV2-
GCCTTGCCAGCCCGCTCAGAACTGCCATTCGGAACAGTGGGGATATTGT
SEQ ID NO:


28-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC
6106


F_IGKJ2
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT



GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG



CCATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGAACTGCCATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0041_V016_J002_IGKV2-
GCCTTGCCAGCCCGCTCAGTTGGACTGTTCGGAACAGTGCGGATATTGT
SEQ ID NO:


29-
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC
6107


FP_IGKJ2
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT



GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT



GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA



CTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTTGGACTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0042_V017_J002_IGKV2-
GCCTTGCCAGCCCGCTCAGGTAGACACTTCGGAACAGTGGGGATGTTGT
SEQ ID NO:


30-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC
6108


F_IGKJ2
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT



AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA



CACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGTAGACACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0043_V018_J002_IGKV2-
GCCTTGCCAGCCCGCTCAGCACTGTACTTCGGAACGAGGATATTGTGAT
SEQ ID NO:


40-
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC
6109


F_IGKJ2
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG



TACTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGCACTGTACTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0044_V019_J002_IGKV3-
GCCTTGCCAGCCCGCTCAGGATGATCCTTCGGAACATCTCAGATACCAC
SEQ ID NO:


07-
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA
6110


F_IGKJ2
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA



TCCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGGATGATCCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0045_V020_J002_IGKV3-
GCCTTGCCAGCCCGCTCAGCGCCAATATTCGGAACCCAATTTCAGATAC
SEQ ID NO:


11-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6111


F_IGKJ2
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA



ATATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGCGCCAATATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0046_V021_J002_IGKV3-
GCCTTGCCAGCCCGCTCAGTCAAGCCTTTCGGAACCCAATTTCAGATAC
SEQ ID NO:


15-
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6112


F_IGKJ2
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG



CCTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTCAAGCCTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0047_V022_J002_IGKV3-
GCCTTGCCAGCCCGCTCAGACGTGTGTTTCGGAACATCTCAGATACCAC
SEQ ID NO:


20-
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6113


F_IGKJ2
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC



CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG



TGTTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGACGTGTGTTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0048_V023_J002_IGKV3-
GCCTTGCCAGCCCGCTCAGTCCGTCTATTCGGAACCCAATTTCAGATAC
SEQ ID NO:


NL4-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6114


FNG_IGKJ2
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT



CTATTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTCCGTCTATTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0049_V024_J002_IGKV4-
GCCTTGCCAGCCCGCTCAGAAGAGCTGTTCGGAACGGGGACATCGTGAT
SEQ ID NO:


01-
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC
6115


F_IGKJ2
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT



CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT



GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG



CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG



CTGTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGAAGAGCTGTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0050_V025_J002_IGKV5-
GCCTTGCCAGCCCGCTCAGTATCGCTCTTCGGAACCCATAATCAGATAC
SEQ ID NO:


02-
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT
6116


F_IGKJ2
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT



TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT



GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT



CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG



CTCTTCGGAACGTCGACACTTTTGGCCAGGGGACCAAGCTGGAGATCAA



ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTTGCTAATTAGTTTAC



TTTGTGTTCCTTTGTGTGGTATCGCTCTTCGGAACCTGATGGCGCGAGG



GAGGC





hsIGK_0051_V001_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGGTTCCGAAAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


05-
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT
6117


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC



CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC



GAAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGTTCCGAAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0052_V002_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGCGTTACTTAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


06-
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6118


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA



CTTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGCGTTACTTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0053_V003_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGGAGACAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


08-
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT
6119


F_IGKJ3
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA



GACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTAGGAGACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0054_V004_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGGTGTCTACAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


09-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT
6120


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC



TACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGTGTCTACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0055_V005_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGGTACAGTGAAGTAACGCCAATCTCAGGTTC
SEQ ID NO:


12-
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT
6121


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA



GTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGTACAGTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0056_V006_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGGGATCATCAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


13-
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6122


FP_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT



GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC



ATCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGGATCATCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0057_V007_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGTATTGGCGAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


16-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT
6123


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG



GCGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTATTGGCGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0058_V008_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGAGGCTTGAAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


17-
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6124


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT



TGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGAGGCTTGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0059_V009_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGACACACGTAAGTAACGCTAATATCAGATAC
SEQ ID NO:


27-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6125


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA



CGTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGACACACGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0060_V010_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGACGGAAAGTAACGCTAATCGCAGGTGC
SEQ ID NO:


33-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6126


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT



GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC



CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC



GGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTAGACGGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0061_V011_J003_IGKV1-37-
GCCTTGCCAGCCCGCTCAGCAGCTCTTAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


O_IGKJ3
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6127



GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT



CTTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGCAGCTCTTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0062_V012_J003_IGKV1-39-
GCCTTGCCAGCCCGCTCAGGAGCGATAAAGTAACGCCAATCTCAGGTGC
SEQ ID NO:


FP_IGKJ3
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6128



GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC



CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG



ATAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGAGCGATAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0063_V013_J003_IGKV1-
GCCTTGCCAGCCCGCTCAGGCATCTGAAAGTAACGCCAATCTCAGGTAC
SEQ ID NO:


NL1-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6129


F_IGKJ3
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT



GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC



TGAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGCATCTGAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0064_V014_J003_IGKV2-24-
GCCTTGCCAGCCCGCTCAGTGCTACACAAGTAACGAGTGGGGATATTGT
SEQ ID NO:


F_IGKJ3
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC
6130



TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT



AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT



GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG



CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA



CACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTGCTACACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0065_V015_J003_IGKV2-28-
GCCTTGCCAGCCCGCTCAGAACTGCCAAAGTAACGAGTGGGGATATTGT
SEQ ID NO:


F_IGKJ3
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC
6131



TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT



GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG



CCAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGAACTGCCAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0066_V016_J003_IGKV2-29-
GCCTTGCCAGCCCGCTCAGTTGGACTGAAGTAACGAGTGCGGATATTGT
SEQ ID NO:


FP_IGKJ3
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC
6132



TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT



GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT



GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA



CTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTTGGACTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0067_V017_J003_IGKV2-30-
GCCTTGCCAGCCCGCTCAGGTAGACACAAGTAACGAGTGGGGATGTTGT
SEQ ID NO:


F_IGKJ3
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC
6133



TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT



AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA



CACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGTAGACACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0068_V018_J003_IGKV2-40-
GCCTTGCCAGCCCGCTCAGCACTGTACAAGTAACGGAGGATATTGTGAT
SEQ ID NO:


F_IGKJ3
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC
6134



ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG



TACAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGCACTGTACAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0069_V019_J003_IGKV3-07-
GCCTTGCCAGCCCGCTCAGGATGATCCAAGTAACGATCTCAGATACCAC
SEQ ID NO:


F_IGKJ3
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA
6135



GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA



TCCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGGATGATCCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0070_V020_J003_IGKV3-11-
GCCTTGCCAGCCCGCTCAGCGCCAATAAAGTAACGCCAATTTCAGATAC
SEQ ID NO:


F_IGKJ3
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6136



CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA



ATAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGCGCCAATAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0071_V021_J003_IGKV3-15-
GCCTTGCCAGCCCGCTCAGTCAAGCCTAAGTAACGCCAATTTCAGATAC
SEQ ID NO:


F_IGKJ3
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6137



CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG



CCTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTCAAGCCTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0072_V022_J003_IGKV3-20-
GCCTTGCCAGCCCGCTCAGACGTGTGTAAGTAACGATCTCAGATACCAC
SEQ ID NO:


F_IGKJ3
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6138



GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC



CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG



TGTAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGACGTGTGTAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0073_V023_J003_IGKV3-
GCCTTGCCAGCCCGCTCAGTCCGTCTAAAGTAACGCCAATTTCAGATAC
SEQ ID NO:


NL4-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6139


FNG_IGKJ3
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT



CTAAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTCCGTCTAAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0074_V024_J003_IGKV4-01-
GCCTTGCCAGCCCGCTCAGAAGAGCTGAAGTAACGGGGGACATCGTGAT
SEQ ID NO:


F_IGKJ3
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC
6140



ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT



CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT



GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG



CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG



CTGAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGAAGAGCTGAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0075_V025_J003_IGKV5-02-
GCCTTGCCAGCCCGCTCAGTATCGCTCAAGTAACGCCATAATCAGATAC
SEQ ID NO:


F_IGKJ3
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT
6141



CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT



TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT



GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT



CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG



CTCAAGTAACGGTCGACCTTTCGGCCCTGGGACCAAAGTGGATATCAAA



CGTAAGTACATCTGTCTCAATTATTCGTGAGATTTTAGTGCCATTGTAT



CATTTGTGCAAGTTTTGTGTATCGCTCAAGTAACGCTGATGGCGCGAGG



GAGGC





hsIGK_0076_V001_J004_IGKV1-05-
GCCTTGCCAGCCCGCTCAGGTTCCGAAGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT
6142



GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC



CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC



GAAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGTTCCGAAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0077_V002_J004_IGKV1-06-
GCCTTGCCAGCCCGCTCAGCGTTACTTGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6143



GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA



CTTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATCGTTACTTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0078_V003_J004_IGKV1-08-
GCCTTGCCAGCCCGCTCAGTAGGAGACGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT
6144



ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA



GACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTAGGAGACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0079_V004_J004_IGKV1-09-
GCCTTGCCAGCCCGCTCAGGTGTCTACGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT
6145



GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC



TACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGTGTCTACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0080_V005_J004_IGKV1-12-
GCCTTGCCAGCCCGCTCAGGTACAGTGGTCTCCTACCAATCTCAGGTTC
SEQ ID NO:


F_IGKJ4
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT
6146



GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA



GTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGTACAGTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0081_V006_J004_IGKV1-13-
GCCTTGCCAGCCCGCTCAGGGATCATCGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


FP_IGKJ4
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6147



GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT



GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC



ATCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGGATCATCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0082_V007_J004_IGKV1-16-
GCCTTGCCAGCCCGCTCAGTATTGGCGGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT
6148



GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG



GCGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTATTGGCGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0083_V008_J004_IGKV1-17-
GCCTTGCCAGCCCGCTCAGAGGCTTGAGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6149



GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT



TGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATAGGCTTGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0084_V009_J004_IGKV1-27-
GCCTTGCCAGCCCGCTCAGACACACGTGTCTCCTACTAATATCAGATAC
SEQ ID NO:


F_IGKJ4
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6150



GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA



CGTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATACACACGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0085_V010_J004_IGKV1-33-
GCCTTGCCAGCCCGCTCAGTAGACGGAGTCTCCTACTAATCGCAGGTGC
SEQ ID NO:


F_IGKJ4
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6151



GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT



GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC



CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC



GGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTAGACGGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0086_V011_J004_IGKV1-37-
GCCTTGCCAGCCCGCTCAGCAGCTCTTGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


O_IGKJ4
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6152



GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT



CTTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATCAGCTCTTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0087_V012_J004_IGKV1-39-
GCCTTGCCAGCCCGCTCAGGAGCGATAGTCTCCTACCAATCTCAGGTGC
SEQ ID NO:


FP_IGKJ4
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6153



GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC



CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG



ATAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGAGCGATAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0088_V013_J004_IGKV1-
GCCTTGCCAGCCCGCTCAGGCATCTGAGTCTCCTACCAATCTCAGGTAC
SEQ ID NO:


NL1-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6154


F_IGKJ4
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT



GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC



TGAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGCATCTGAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0089_V014_J004_IGKV2-
GCCTTGCCAGCCCGCTCAGTGCTACACGTCTCCTAAGTGGGGATATTGT
SEQ ID NO:


24-
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC
6155


F_IGKJ4
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT



AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT



GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG



CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA



CACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTGCTACACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0090_V015_J004_IGKV2-
GCCTTGCCAGCCCGCTCAGAACTGCCAGTCTCCTAAGTGGGGATATTGT
SEQ ID NO:


28-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC
6156


F_IGKJ4
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT



GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG



CCAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATAACTGCCAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0091_V016_J004_IGKV2-
GCCTTGCCAGCCCGCTCAGTTGGACTGGTCTCCTAAGTGCGGATATTGT
SEQ ID NO:


29-
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC
6157


FP_IGKJ4
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT



GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT



GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA



CTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTTGGACTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0092_V017_J004_IGKV2-
GCCTTGCCAGCCCGCTCAGGTAGACACGTCTCCTAAGTGGGGATGTTGT
SEQ ID NO:


30-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC
6158


F_IGKJ4
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT



AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA



CACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGTAGACACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0093_V018_J004_IGKV2-
GCCTTGCCAGCCCGCTCAGCACTGTACGTCTCCTAGAGGATATTGTGAT
SEQ ID NO:


40-
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC
6159


F_IGKJ4
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG



TACGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATCACTGTACGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0094_V019_J004_IGKV3-
GCCTTGCCAGCCCGCTCAGGATGATCCGTCTCCTAATCTCAGATACCAC
SEQ ID NO:


07-
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA
6160


F_IGKJ4
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA



TCCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATGATGATCCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0095_V020_J004_IGKV3-
GCCTTGCCAGCCCGCTCAGCGCCAATAGTCTCCTACCAATTTCAGATAC
SEQ ID NO:


11-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6161


F_IGKJ4
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA



ATAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATCGCCAATAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0096_V021_J004_IGKV3-
GCCTTGCCAGCCCGCTCAGTCAAGCCTGTCTCCTACCAATTTCAGATAC
SEQ ID NO:


15-
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6162


F_IGKJ4
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG



CCTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTCAAGCCTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0097_V022_J004_IGKV3-
GCCTTGCCAGCCCGCTCAGACGTGTGTGTCTCCTAATCTCAGATACCAC
SEQ ID NO:


20-
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6163


F_IGKJ4
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC



CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG



TGTGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATACGTGTGTGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0098_V023_J004_IGKV3-
GCCTTGCCAGCCCGCTCAGTCCGTCTAGTCTCCTACCAATTTCAGATAC
SEQ ID NO:


NL4-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6164


FNG_IGKJ4
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT



CTAGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTCCGTCTAGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0099_V024_J004_IGKV4-
GCCTTGCCAGCCCGCTCAGAAGAGCTGGTCTCCTAGGGGACATCGTGAT
SEQ ID NO:


01-
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC
6165


F_IGKJ4
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT



CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT



GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG



CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG



CTGGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATAAGAGCTGGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0100_V025_J004_IGKV5-
GCCTTGCCAGCCCGCTCAGTATCGCTCGTCTCCTACCATAATCAGATAC
SEQ ID NO:


02-
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT
6166


F_IGKJ4
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT



TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT



GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT



CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG



CTCGTCTCCTAGTCGACCTTTCGGCGGAGGGACCAAGGTGGAGATCAAA



CGTAAGTGCACTTTCCTAATGCTTTTTCTTATAAGGTTTTAAATTTGGA



GCGTTTTTGTGTTTGAGATTATCGCTCGTCTCCTACTGATGGCGCGAGG



GAGGC





hsIGK_0101_V001_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGTTCCGAAAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


05-
CAAATGTGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCT
6167


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTA



GCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGC



CTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGAGTTCC



GAAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGTTCCGAAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0102_V002_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGCGTTACTTAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


06-
CAGATGTGCCATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6168


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTACAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAAGATTACAATTGACGTTA



CTTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTCGTTACTTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0103_V003_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGGAGACAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


08-
CAGATGTGCCATCCGGATGACCCAGTCTCCATCCTCATTCTCTGCATCT
6169


F_IGKJ5
ACAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGT



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGATAGGA



GACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTAGGAGACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0104_V004_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGTGTCTACAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


09-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCT
6170


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCA



GTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTGAGTGTC



TACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGTGTCTACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0105_V005_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGTACAGTGAGAGTGTCCCAATCTCAGGTTC
SEQ ID NO:


12-
CAGATGCGACATCCAGATGACCCAGTCTCCATCTTCCGTGTCTGCATCT
6171


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCA



GCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTACTATTGTCAACAGGCTAACAGTTGAGTACA



GTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGTACAGTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0106_V006_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGGATCATCAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


13-
CAGATGTGCCATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6172


FP_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGCA



GTGCTTTAGCCTGATATCAGCAGAAACCAGGGAAAGCTCCTAAGCTCCT



GATCTATGATGCCTCCAGTTTGGAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTTTAATAATTGAGGATC



ATCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGGATCATCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0107_V007_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGTATTGGCGAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


16-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCACTGTCTGCATCT
6173


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGTCCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAAGTTCAGC



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTGATATTG



GCGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTATTGGCGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0108_V008_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGAGGCTTGAAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


17-
CAGGTGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6174


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGGGCATTAGAA



ATGATTTAGGCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCGCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGC



GGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCTACAGCATAATAGTTGAAGGCT



TGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTAGGCTTGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0109_V009_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGACACACGTAGAGTGTCCTAATATCAGATAC
SEQ ID NO:


27-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6175


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTATTTAGCCTGGTATCAGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATGCTGCATCCACTTTGCAATCAGGGGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACTGTCAAAAGTATAACAGTTGAACACA



CGTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTACACACGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0110_V010_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGTAGACGGAAGAGTGTCCTAATCGCAGGTGC
SEQ ID NO:


33-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6176


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCA



ACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGT



GGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGC



CTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATTGATAGAC



GGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTAGACGGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0111_V011_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGCAGCTCTTAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


37-
CAGATGTGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6177


O_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGTGAGTCAGGGCATTAGCA



GTTATTTAAATTGGTATCGGCAGAAACCAGGGAAAGTTCCTAAGCTCCT



GATCTATAGTGCATCCAATTTGCAATCTGGAGTCCCATCTCGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGC



CTGAAGATGTTGCAACTTATTACGGTCAACGGACTTACAATTGACAGCT



CTTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTCAGCTCTTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0112_V012_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGAGCGATAAGAGTGTCCCAATCTCAGGTGC
SEQ ID NO:


39-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6178


FP_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCA



GCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGT



GGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAAC



CTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTTGAGAGCG



ATAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGAGCGATAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0113_V013_J005_IGKV1-
GCCTTGCCAGCCCGCTCAGGCATCTGAAGAGTGTCCCAATCTCAGGTAC
SEQ ID NO:


NL1-
CAGATGTGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCT
6179


F_IGKJ5
GTAGGAGACAGAGTCACCATCACTTGCCGGGCGAGTCAGGGCATTAGCA



ATTCTTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT



GCTCTATGCTGCATCCAGATTGGAAAGTGGGGTCCCATCCAGGTTCAGT



GGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAACTTATTACTGTCAACAGTATTATAGTTGAGCATC



TGAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGCATCTGAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0114_V014_J005_IGKV2-
GCCTTGCCAGCCCGCTCAGTGCTACACAGAGTGTCAGTGGGGATATTGT
SEQ ID NO:


24-
GATGACCCAGACTCCACTCTCCTCACCTGTCACCCTTGGACAGCCGGCC
6180


F_IGKJ5
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTACACAGTGATGGAAACA



CCTACTTGAGTTGGCTTCAGCAGAGGCCAGGCCAGCCTCCAAGACTCCT



AATTTATAAGATTTCTAACCGGTTCTCTGGGGTCCCAGACAGATTCAGT



GGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAG



CTGAGGATGTCGGGGTTTATTACTGCATGCAAGCTACACAATGATGCTA



CACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTGCTACACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0115_V015_J005_IGKV2-
GCCTTGCCAGCCCGCTCAGAACTGCCAAGAGTGTCAGTGGGGATATTGT
SEQ ID NO:


28-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCC
6181


F_IGKJ5
TCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACA



ACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGT



GGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAATGAAACTG



CCAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTAACTGCCAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0116_V016_J005_IGKV2-
GCCTTGCCAGCCCGCTCAGTTGGACTGAGAGTGTCAGTGCGGATATTGT
SEQ ID NO:


29-
GATGACCCAGACTCCACTCTCTCTGTCCGTCACCCCTGGACAGCCGGCC
6182


FP_IGKJ5
TCCATCTCCTGCAAGTCTAGTCAGAGCCTCCTGCATAGTGATGGAAAGA



CCTATTTGTATTGGTACCTGCAGAAGCCAGGCCAGTCTCCACAGCTCCT



GATCTATGAAGTTTCCAGCCGGTTCTCTGGAGTGCCAGATAGGTTCAGT



GGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGAATGCAAGGTATACACTGATTGGA



CTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTTGGACTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0117_V017_J005_IGKV2-
GCCTTGCCAGCCCGCTCAGGTAGACACAGAGTGTCAGTGGGGATGTTGT
SEQ ID NO:


30-
GATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCTTGGACAGCCGGCC
6183


F_IGKJ5
TCCATCTCCTGCAGGTCTAGTCAAAGCCTCGTATACAGTGATGGAAACA



CCTACTTGAATTGGTTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGCCT



AATTTATAAGGTTTCTAACCGGGACTCTGGGGTCCCAGACAGATTCAGC



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGGGTTTATTACTGCATGCAAGGTACACACTGAGTAGA



CACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGTAGACACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0118_V018_J005_IGKV2-
GCCTTGCCAGCCCGCTCAGCACTGTACAGAGTGTCGAGGATATTGTGAT
SEQ ID NO:


40-
GACCCAGACTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCC
6184


F_IGKJ5
ATCTCCTGCAGGTCTAGTCAGAGCCTCTTGGATAGTGATGATGGAAACA



CCTATTTGGACTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCT



GATCTATACGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAGGTTCAGT



GGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGG



CTGAGGATGTTGGAGTTTATTACTGCATGCAACGTATAGAGTGACACTG



TACAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTCACTGTACAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0119_V019_J005_IGKV3-
GCCTTGCCAGCCCGCTCAGGATGATCCAGAGTGTCATCTCAGATACCAC
SEQ ID NO:


07-
CGGAGAAATTGTAATGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCA
6185


F_IGKJ5
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTATCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGGATTATAACTGAGATGA



TCCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTGATGATCCAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0120_V020_J005_IGKV3-
GCCTTGCCAGCCCGCTCAGCGCCAATAAGAGTGTCCCAATTTCAGATAC
SEQ ID NO:


11-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6186


F_IGKJ5
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGACGCCA



ATAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTCGCCAATAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0121_V021_J005_IGKV3-
GCCTTGCCAGCCCGCTCAGTCAAGCCTAGAGTGTCCCAATTTCAGATAC
SEQ ID NO:


15-
CACTGGAGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCT
6187


F_IGKJ5
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCA



GCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGT



GGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGT



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGATCAAG



CCTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTCAAGCCTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0122_V022_J005_IGKV3-
GCCTTGCCAGCCCGCTCAGACGTGTGTAGAGTGTCATCTCAGATACCAC
SEQ ID NO:


20-
CGGAGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCA
6188


F_IGKJ5
GGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGT



GGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC



CTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTGAACGTG



TGTAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTACGTGTGTAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0123_V023_J005_IGKV3-
GCCTTGCCAGCCCGCTCAGTCCGTCTAAGAGTGTCCCAATTTCAGATAC
SEQ ID NO:


NL4-
CACCGGAGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCT
6189


FNG_IGKJ5
CCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGGGTGTTAGCA



GCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCT



CATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGT



GGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGC



CTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGATCCGT



CTAAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTCCGTCTAAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0124_V024_J005_IGKV4-
GCCTTGCCAGCCCGCTCAGAAGAGCTGAGAGTGTCGGGGACATCGTGAT
SEQ ID NO:


01-
GACCCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACC
6190


F_IGKJ5
ATCAACTGCAAGTCCAGCCAGAGTGTTTTATACAGCTCCAACAATAAGA



ACTACTTAGCTTGGTACCAGCAGAAACCAGGACAGCCTCCTAAGCTGCT



CATTTACTGGGCATCTACCCGGGAATCCGGGGTCCCTGACCGATTCAGT



GGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGG



CTGAAGATGTGGCAGTTTATTACTGTCAGCAATATTATAGTTGAAAGAG



CTGAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTAAGAGCTGAGAGTGTCCTGATGGCGCGAGG



GAGGC





hsIGK_0125_V025_J005_IGKV5-
GCCTTGCCAGCCCGCTCAGTATCGCTCAGAGTGTCCCATAATCAGATAC
SEQ ID NO:


02-
CAGGGCAGAAACGACACTCACGCAGTCTCCAGCATTCATGTCAGCGACT
6191


F_IGKJ5
CCAGGAGACAAAGTCAACATCTCCTGCAAAGCCAGCCAAGACATTGATG



ATGATATGAACTGGTACCAACAGAAACCAGGAGAAGCTGCTATTTTCAT



TATTCAAGAAGCTACTACTCTCGTTCCTGGAATCCCACCTCGATTCAGT



GGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAAT



CTGAGGATGCTGCATATTACTTCTGTCTACAACATGATAATTGATATCG



CTCAGAGTGTCGTCGACCCTTCGGCCAAGGGACACGACTGGAGATTAAA



CGTAAGTAATTTTTCACTATTGTCTTCTGAAATTTGGGTCTGATGGCCA



GTATTGACTTTTAGAGGCTTATCGCTCAGAGTGTCCTGATGGCGCGAGG



GAGGC




















Gene specific primer
Primer With Universal





Target
sequence
Sequence
SEQ ID NO











Primer Sequences for hs-TCR13-P10













TCRBV01
GAATGCCCTGACAGCTCTCGC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:





TTATA
AATGCCCTGACAGCTCTCGCTTAT
6192





A







TCRBV02
CTCAGAGAAGTCTGAAATATT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CGATGATCAATTCTCAGTTG
TCAGAGAAGTCTGAAATATTCGAT
6193





GATCAATTCTCAGTTG







TCRBV03-1
CCAAATCGMTTCTCACCTAAA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




TCTCCAGACAAAG
CAAATCGMTTCTCACCTAAATCTC
6194





CAGACAAAG







TCRBV03-2
CACCTGACTCTCCAGACAAAG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CTCAT
ACCTGACTCTCCAGACAAAGCTCA
6195





T







TCRBV04-
CCTGAATGCCCCAACAGCTCT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



1/2/3
C
CTGAATGCCCCAACAGCTCTC
6196







TCRBV05-1
GATTCTCAGGGCGCCAGTTCT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




CTA
ATTCTCAGGGCGCCAGTTCTCTA
6197







TCRBV05-2
CCTAATTGATTCTCAGCTCAC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CACGTCCATA
CTAATTGATTCTCAGCTCACCACG
6198





TCCATA







TCRBV05-3
TCAGGGCGCCAGTTCCATG
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:





CAGGGCGCCAGTTCCATG
6199







TCRBV05-4
TCCTAGATTCTCAGGTCTCCA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:




GTTCCCTA
CCTAGATTCTCAGGTCTCCAGTTC
6200





CCTA







TCRBV05-5
GAGGAAACTTCCCTGATCGAT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




TCTCAGC
AGGAAACTTCCCTGATCGATTCTC
6201





AGC







TCRBV05-6
CAACTTCCCTGATCGATTCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




AGGTCA
AACTTCCCTGATCGATTCTCAGGT
6202





CA







TCRBV05-7
AGGAAACTTCCCTGATCAATT
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




CTCAGGTCA
GGAAACTTCCCTGATCAATTCTCA
6203





GGTCA







TCRBV05-8
GGAAACTTCCCTCCTAGATTT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




TCAGGTCG
GAAACTTCCCTCCTAGATTTTCAG
6204





GTCG







TCRBV06-1
CCCCAATGGCTACAATGTCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CAGATT
CCCAATGGCTACAATGTCTCCAGA
6205





TT







TCRBV06-
GGAGAAGTCCCCAATGGCTAC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



2/3
AA
GAGAGGTCCCTGATGGCTACAA
6206







TCRBV06-4
TCCCTGATGGTTATAGTGTCT
GGGCTGGCAAGCCACGTTTGGTGT




CCAGAGC
CCCTGATGGTTATAGTGTCTCCAG
SEQ ID NO:





AGC
6207







TCRBV06-5
GGAGAAGTCCCCAATGGCTAC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




AATGTC
GAGAAGTCCCCAATGGCTACAATG
6208





TC







TCRBV06-6
AAAGGAGAAGTCCCGAATGGC
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TACAA
AAGGAGAAGTCCCGAATGGCTACA
6209





A







TCRBV06-7
GTTCCCAATGGCTACAATGTC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




TCCAGATC
TTCCCAATGGCTACAATGTCTCCA
6210





GATC







TCRBV06-8
GAAGTCCCCAATGGCTACAAT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




GTCTCTAGATT
AAGTCCCCAATGGCTACAATGTCT
6211





CTAGATT







TCRBV06-9
GAGAAGTCCCCGATGGCTACA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




ATGTA
AGAAGTCCCCGATGGCTACAATGT
6212





A







TCRBV07-1
GTGATCGGTTCTCTGCACAGA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




GGT
TGATCGGTTCTCTGCACAGAGGT
6213







TCRBV07-2
CGCTTCTCTGCAGAGAGGACT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




GG
GCTTCTCTGCAGAGAGGACTGG
6214







TCRBV07-3
GGTTCTTTGCAGTCAGGCCTG
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




A
GTTCTTTGCAGTCAGGCCTGA
6215







TCRBV07-4
CAGTGGTCGGTTCTCTGCAGA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




G
AGTGGTCGGTTCTCTGCAGAG
6216







TCRBV07-5
GCTCAGTGATCAATTCTCCAC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




AGAGAGGT
CTCAGTGATCAATTCTCCACAGAG
6217





AGGT







TCRBV07-
TTCTCTGCAGAGAGGCCTGAG
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:



6/7
G
TCTCTGCAGAGAGGCCTGAGG
6218







TCRBV07-8
CCCAGTGATCGCTTCTTTGCA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




GAAA
CCAGTGATCGCTTCTTTGCAGAAA
6219







TCRBV07-9
CTGCAGAGAGGCCTAAGGGAT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CT
TGCAGAGAGGCCTAAGGGATCT
6220







TCRBV08-1
GAAGGGTACAATGTCTCTGGA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




AACAAACTCAAG
AAGGGTACAATGTCTCTGGAAACA
6221





AACTCAAG







TCRBV08-2
GGGGTACTGTGTTTCTTGAAA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




CAAGCTTGAG
GGGTACTGTGTTTCTTGAAACAAG
6222





CTTGAG







TCRBV09
CAGTTCCCTGACTTGCACTCT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




GAACTAAAC
AGTTCCCTGACTTGCACTCTGAAC
6223





TAAAC







TCRBV10-1
ACTAACAAAGGAGAAGTCTCA
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




GATGGCTACAG
CTAACAAAGGAGAAGTCTCAGATG
6224





GCTACAG







TCRBV10-2
AGATAAAGGAGAAGTCCCCGA
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TGGCTA
GATAAAGGAGAAGTCCCCGATGGC
6225





TA







TCRBV10-3
GATACTGACAAAGGAGAAGTC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




TCAGATGGCTATAG
ATACTGACAAAGGAGAAGTCTCAG
6226





ATGGCTATAG







TCRBV11-
CTAAGGATCGATTTTCTGCAG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:



1/2/3
AGAGGCTC
TAAGGATCGATTTTCTGCAGAGAG
6227





GCTC







TCRBV12-1
TTGATTCTCAGCACAGATGCC
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:




TGATGT
TGATTCTCAGCACAGATGCCTGAT
6228





GT







TCRBV12-2
ATTCTCAGCTGAGAGGCCTGA
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TGG
TTCTCAGCTGAGAGGCCTGATGG
6229







TCRBV12-
GGATCGATTCTCAGCTAAGAT
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:



3/4
GCCTAATGC
GATCGATTCTCAGCTAAGATGCCT
6230





AATGC







TCRBV12-5
CTCAGCAGAGATGCCTGATGC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




AACTTTA
TCAGCAGAGATGCCTGATGCAACT
6231





TTA







TCRBV13
CTGATCGATTCTCAGCTCAAC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




AGTTCAGT
TGATCGATTCTCAGCTCAACAGTT
6232





CAGT







TCRBV14
TAGCTGAAAGGACTGGAGGGA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:




CGTAT
AGCTGAAAGGACTGGAGGGACGTA
6233





T







TCRBV15
CCAGGAGGCCGAACACTTCTT
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




TCT
CAGGAGGCCGAACACTTCTTTCT
6234







TCRBV16
GCTAAGTGCCTCCCAAATTCA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




CCCT
CTAAGTGCCTCCCAAATTCACCCT
6235







TCRBV17
CACAGCTGAAAGACCTAACGG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




AACGT
ACAGCTGAAAGACCTAACGGAACG
6236





T







TCRBV18
CTGCTGAATTTCCCAAAGAGG
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




GCC
TGCTGAATTTCCCAAAGAGGGCC
6237







TCRBV19
AGGGTACAGCGTCTCTCGGG
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:





GGGTACAGCGTCTCTCGGG
6238







TCRBV20
GCCTGACCTTGTCCACTCTGA
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




CA
CCTGACCTTGTCCACTCTGACA
6239







TCRBV21
ATGAGCGATTTTTAGCCCAAT
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




GCTCCA
TGAGCGATTTTTAGCCCAATGCTC
6240





CA







TCRBV22
TGAAGGCTACGTGTCTGCCAA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:




GAG
GAAGGCTACGTGTCTGCCAAGAG
6241







TCRBV23
CTCATCTCAATGCCCCAAGAA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




CGC
TCATCTCAATGCCCCAAGAACGC
6242







TCRBV24
AGATCTCTGATGGATACAGTG
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TCTCTCGACA
GATCTCTGATGGATACAGTGTCTC
6243





TCGACA







TCRBV25
AGATCTTTCCTCTGAGTCAAC
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




AGTCTCCAGAATA
GATCTTTCCTCTGAGTCAACAGTC
6244





TCCAGAATA







TCRBV26
CACTGAAAAAGGAGATATCTC
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




TGAGGGGTATCATG
ACTGAAAAAGGAGATATCTCTGAG
6245





GGGTATCATG







TCRBV27
GTTCCTGAAGGGTACAAAGTC
GGGCTGGCAAGCCACGTTTGGTGG
SEQ ID NO:




TCTCGAAAAG
TTCCTGAAGGGTACAAAGTCTCTC
6246





GAAAAG







TCRBV28
CTGAGGGGTACAGTGTCTCTA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:




GAGAGA
TGAGGGGTACAGTGTCTCTAGAGA
6247





GA







TCRBV29
AGCCGCCCAAACCTAACATTC
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TCAA
GCCGCCCAAACCTAACATTCTCAA
6248







TCRBV30
CCCAGGACCGGCAGTTCA
GGGCTGGCAAGCCACGTTTGGTGC
SEQ ID NO:





CCAGGACCGGCAGTTCA
6249







TCRBVA
TTGATTAGAGACATATCCCTA
GGGCTGGCAAGCCACGTTTGGTGT
SEQ ID NO:




TTGAAAATATTTCCTGGCA
TGATTAGAGACATATCCCTATTGA
6250





AAATATTTCCTGGCA







TCRBVB
AGATGCCCTGAGTCAGCATAG
GGGCTGGCAAGCCACGTTTGGTGA
SEQ ID NO:




TCATTCTAAC
GATGCCCTGAGTCAGCATAGTCAT
6251





TCTAAC







TCRBJ1-1
GTCTTACCTACAACTGTGAGT
CCGGGAGCTGCATGTGTCAGAGGG
SEQ ID NO:




CTGGTGCC
TCTTACCTACAACTGTGAGTCTGG
6252





TGCC







TCRBJ1-2
CCTTACCTACAACGGTTAACC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




TGGTCCC
CTTACCTACAACGGTTAACCTGGT
6253





CCC







TCRBJ1-3
CTTACTCACCTACAACAGTGA
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




GCCAACTTCC
TTACTCACCTACAACAGTGAGCCA
6254





ACTTCC







TCRBJ1-4
ATACCCAAGACAGAGAGCTGG
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:




GTTCC
TACCCAAGACAGAGAGCTGGGTTC
6255





C







TCRBJ1-5
AACTTACCTAGGATGGAGAGT
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:




CGAGTCCC
ACTTACCTAGGATGGAGAGTCGAG
6256





TCCC







TCRBJ1-6
CTGTCACAGTGAGCCTGGTCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




C
TGTCACAGTGAGCCTGGTCCC
6257







TCRBJ2-1
CACGGTGAGCCGTGTCCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:





ACGGTGAGCCGTGTCCC
6258







TCRBJ2-2
CCAGTACGGTCAGCCTAGAGC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:




C
CAGTACGGTCAGCCTAGAGCC
6259







TCRBJ2-3
CACTGTCAGCCGGGTGCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:





ACTGTCAGCCGGGTGCC
6260







TCRBJ2-4
CACTGAGAGCCGGGTCCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:





ACTGAGAGCCGGGTCCC
6261







TCRBJ2-5
ACCAGGAGCCGCGTGCC
CCGGGAGCTGCATGTGTCAGAGGA
SEQ ID NO:





CCAGGAGCCGCGTGCC
6262







TCRBJ2-6
CACGGTCAGCCTGCTGCC
CCGGGAGCTGCATGTGTCAGAGGC
SEQ ID NO:





ACTGTCAGCCGGGTGCC
6263







TCRBJ2-7
GACCGTGAGCCTGGTGCC
CCGGGAGCTGCATGTGTCAGAGGG
SEQ ID NO:





ACCGTGAGCCTGGTGCC
6264











Primer Sequences for hs-IGH-D













IGHD1-
CGCTAGCTGGGGCTCACAGTG
GGGCTGGCAAGCCACGTTTGGTGCG
SEQ ID NO:




14_ver10
CTCA
CTAGCTGGGGCTCACAGTGCTCA
6265







IGHD2-
CACTGGGCTCAGAGTCCTCTC
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:



02_ver10
CCACAC
CTGGGCTCAGAGTCCTCTCCCACAC
6266







IGHD2-
CCTATACAGCACTGGGCTCAG
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:



15_ver10
AGTCCTCTCTGAGAC
TATACAGCACTGGGCTCAGAGTCCT
6267





CTCTGAGAC







IGHD3-
CCTAAGCCAGGGGCAGACCCG
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:



03_ver10
AGT
TAAGCCAGGGGCAGACCCGAGT
6268







IGHD3-
ACAGTGTCACAGAGTCCATCA
GGGCTGGCAAGCCACGTTTGGTGAC
SEQ ID NO:



10_ver10
AAAACCCATGCCTGG
AGTGTCACAGAGTCCATCAAAAACC
6269





CATGCCTGG







IGHD3-
CACTATCCACATAAGCGAGGG
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:



16_ver10
ACAGACCCGAGT
CTATCCACATAAGCGAGGGACAGAC
6270





CCGAGT







IGHD4-
TGCCCTCGATGGCAGGCGGA
GGGCTGGCAAGCCACGTTTGGTGTG
SEQ ID NO:



04_ver10

CCCTCGATGGCAGGCGGA
6271







IGHD4-
CCTCTTCCAGGACAGTCCTCA
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:



11_ver10
GTGGCATCACAG
TCTTCCAGGACAGTCCTCAGTGGCA
6272





TCACAG







IGHD4-
CAGACCCACCTGCCCTCAATG
GGGCTGGCAAGCCACGTTTGGTGCA
SEQ ID NO:



23_ver10
GCAG
GACCCACCTGCCCTCAATGGCAG
6273







IGHD5-
TCTCCAGGGAGACACTGTGCA
GGGCTGGCAAGCCACGTTTGGTGTC
SEQ ID NO:



12_ver10
TGTCTGGTACCTAA
TCCAGGGAGACACTGTGCATGTCTG
6274





GTACCTAA







IGHD5-
GGGACACAGTGCATGTCTGGT
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:



24_ver10
CCCTGA
GACACAGTGCATGTCTGGTCCCTGA
6275







IGHD6-
GGACCCCTATTCCAGACACCA
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:



13_ver10
GACAGAGGC
ACCCCTATTCCAGACACCAGACAGA
6276





GGC







IGHD6-
CCCCACTCCAGACACCAGACA
GGGCTGGCAAGCCACGTTTGGTGCC
SEQ ID NO:



19_ver10
GAGGG
CCACTCCAGACACCAGACAGAGGG
6277







IGHD7-
GGGGTCTCCCACGTGTTTTGG
GGGCTGGCAAGCCACGTTTGGTGGG
SEQ ID NO:



27_ver10
GGCTAAC
GGTCTCCCACGTGTTTTGGGGCTAA
6278





C







IGHD1-
GCTAGCTGGGGCTGCCAGTCC
GGGCTGGCAAGCCACGTTTGGTGGC
SEQ ID NO:



26_ver10
TCA
TAGCTGGGGCTGCCAGTCCTCA
6279











Primer Sequences for IGK and IGL













IGK_V_01-
TCTGCATCTGTAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID




05_F_D10
GAGTCACCATCACTTG
TGTCTGCATCTGTAGGAGACA
NO: 6280





GAGTCACCATCACTTG







IGK_V_01-
TCTGCATCTACAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



08_F_D10
GAGTCACCATCACTTG
TGTCTGCATCTACAGGAGACA
NO: 6281





GAGTCACCATCACTTG







IGK_V_01-
CTGCATCTGTAAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



35_P_D10
GTGTCACCATCACTTG
TGCTGCATCTGTAAGGAGACA
NO: 6282





GTGTCACCATCACTTG







IGK_V_1D-
TCTGCATCTACAGGAGACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



08_F_D10
GAGTCACCATCAGTTG
TGTCTGCATCTACAGGAGACA
NO: 6283





GAGTCACCATCAGTTG







IGK_V_1D-
ACTGCATCTGTAGGAGAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



22_P_D10
GAGTCACCATCACTTG
TGACTGCATCTGTAGGAGAGA
NO: 6284





GAGTCACCATCACTTG







IGK_V_1D-
GCATCTGTAAGGAGACAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



35_P_D10
GTCACCATCACTTG
TGGCATCTGTAAGGAGACAGC
NO: 6285





GTCACCATCACTTG







IGK_V_1D-
GTCTGCATCTGTAGGAGAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



42_F_D10
AGAGTCAGTATCATTTG
TGGTCTGCATCTGTAGGAGAC
NO: 6286





AGAGTCAGTATCATTTG







IGK_V_02-
GGAGAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



04_P_D10
CCTG
TGGGAGAGCCGGCCTCCATCT
NO: 6287





CCTG







IGK_V_02-
CCTGGAGAGCCAGCCTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



10_P_D10
TCTCCTG
TGCCTGGAGAGCCAGCCTCCA
NO: 6288





TCTCCTG







IGK_V_02-
CTGGAGAGCCGGCCTCCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



18_P_D10
CTCTTG
TGCTGGAGAGCCGGCCTCCAT
NO: 6289





CTCTTG







IGK_V_02-
TCTTCCTTGGAGAGCCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



19_P_D10
CTCCATTTCCTG
TGTCTTCCTTGGAGAGCCATC
NO: 6290





CTCCATTTCCTG







IGK_V_02-
GGACAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



24_F_D10
CCTG
TGGGACAGCCGGCCTCCATCT
NO: 6291





CCTG







IGK_V_02-
TGGAGAGCCGGCCTCCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



28_F_D10
TCCTG
TGTGGAGAGCCGGCCTCCATC
NO: 6292





TCCTG







IGK_V_02-
ATAATATTTGTACATAACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



38_P_D10
TTGTACTTCATCTCCTG
TGATAATATTTGTACATAACT
NO: 6293





TTGTACTTCATCTCCTG







IGK_V_2D-
CCCCTGGAAAGCCAGCCTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



14_P_D10
TATCTCCTG
TGCCCCTGGAAAGCCAGCCTC
NO: 6294





TATCTCCTG







IGK_V_2D-
CTCTTCCTTGGAGAGCCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



19_P_D10
CCTCCATTTCCTG
TGCTCTTCCTTGGAGAGCCAT
NO: 6295





CCTCCATTTCCTG







IGK_V_2D-
GGACAGCCGGCCTCCATCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



24_O_D10
CCTT
TGGGACAGCCGGCCTCCATCT
NO: 6296





CCTT







IGK_V_2D-
CCTGGAGAGCAGGCCTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



26_F_D10
TGTCCTG
TGCCTGGAGAGCAGGCCTCCA
NO: 6297





TGTCCTG







IGK_V_03-
CCAGGGGAAAGAGCCACCC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



07_F_D10
TCTCCTG
TGCCAGGGGAAAGAGCCACCC
NO: 6298





TCTCCTG







IGK_V_03-
TCCAGGGGAAAGAGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



07_P_D10
CTCTCCTG
TGTCCAGGGGAAAGAGTCACC
NO: 6299





CTCTCCTG







IGK_V_03-
TCTTTGTCTCTGGAGAAAA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



25_P_D10
AAGCCACCCTGACTTG
TGTCTTTGTCTCTGGAGAAAA
NO: 6300





AAGCCACCCTGACTTG







IGK_V_03-
TCTCTAGGGGAAAAAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



31_P_D10
CCCTCACCTA
TGTCTCTAGGGGAAAAAGCCA
NO: 6301





CCCTCACCTA







IGK_V_03-
GGGGAAGGAGCCACCCTCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



34_P_D10
CCTG
TGGGGGAAGGAGCCACCCTCA
NO: 6302





CCTG







IGK_V_04-
GGGCGAGAGGGCCACCATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



01_F_D10
AACTG
TGGGGCGAGAGGGCCACCATC
NO: 6303





AACTG







IGK_V_05-
GCGACTCCAGGAGACAAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



02_F_D10
TCAACATCTCCTG
TGGCGACTCCAGGAGACAAAG
NO: 6304





TCAACATCTCCTG







IGK_V_06-
CTGTGACTCCAAAGGAGAA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



21_O_D10
AGTCACCATCACCTG
TGCTGTGACTCCAAAGGAGAA
NO: 6305





AGTCACCATCACCTG







IGK_V_6D-
ACTCCAGGGGAGAAAGTCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



41_F_D10
CCATCACCTG
TGACTCCAGGGGAGAAAGTCA
NO: 6306





CCATCACCTG







IGK_V_07-
CAGGACAGAGGGCCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



03_P_D10
CACCTG
TGCAGGACAGAGGGCCACCAT
NO: 6307





CACCTG







IGL_V_R1-
GCAGGACACTCACTCCCCC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



20_P_D10
ACCTG
TGGCAGGACACTCACTCCCCC
NO: 6308





ACCTG







IGL_V_R1-
TGGGCCAGAGGGTCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



63_P_D10
CTCCTG
TGTGGGCCAGAGGGTCACCAT
NO: 6309





CTCCTG







IGL_V_R1-
GGGCAGGTGGGTACCAGCT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



68_P_D10
CCTG
TGGGGCAGGTGGGTACCAGCT
NO: 6310





CCTG







IGL_V_R1-
CGTGGGACAGAAGGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



70_P_D10
CTCTCCTG
TGCGTGGGACAGAAGGTCACC
NO: 6311





CTCTCCTG







IGL_V_R4-
TCTCTGGGAGCATCTTCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



59_P_D10
GACTCACCTG
TGTCTCTGGGAGCATCTTCCA
NO: 6312





GACTCACCTG







IGL_V_R4-
CACCTCCGGATCAGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



64_P_D10
CTCTCCTG
TGCACCTCCGGATCAGCCAGA
NO: 6313





CTCTCCTG







IGL_V_R4-
CCGGGAGCATGAGCCAGAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



65_P_D10
TTACCTG
TGCCGGGAGCATGAGCCAGAC
NO: 6314





TTACCTG







IGL_V_R4-
CTCTGCACATCTGAGAAAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



66-
GCTATAAGACTTCCCTG
TGCTCTGCACATCTGAGAAAT
NO: 6315



1_P_D10

GCTATAAGACTTCCCTG







IGL_V_R5-
TGTGGGAGCCTCGGTCAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



58_P_D10
CTTACCTC
TGTGTGGGAGCCTCGGTCAAG
NO: 6316





CTTACCTC







IGL_V_01-
CCCAGGCAGAGGGTCACCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



36_F_D10
TCTCCTG
TGCCCAGGCAGAGGGTCACCA
NO: 6317





TCTCCTG







IGL_V_01-
CCAGGGCAGAGGGTCACCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



40_F_D10
TCTCCTG
TGCCAGGGCAGAGGGTCACCA
NO: 6318





TCTCCTG







IGL_V_01-
CCGGGCAGAGGGTCACCAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



44_F_D10
CTCTTG
TGCCGGGCAGAGGGTCACCAT
NO: 6319





CTCTTG







IGL_V_01-
CCCCAGGACAGAAGGTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



51_F_D10
CATCTCCTG
TGCCCCAGGACAGAAGGTCAC
NO: 6320





CATCTCCTG







IGL_V_01-
CCACAAGGCAGAGGCTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



62_P_D10
TGTCTCCTG
TGCCACAAGGCAGAGGCTCAC
NO: 6321





TGTCTCCTG







IGL_V_02-
GTCTCCTGGACAGTCAGTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



08_F_D10
ACCATCTCCTG
TGGTCTCCTGGACAGTCAGTC
NO: 6322





ACCATCTCCTG







IGL_V_02-
GTCTCCTGGACAGTCGATC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



14_F_D10
ACCATCTCCTG
TGGTCTCCTGGACAGTCGATC
NO: 6323





ACCATCTCCTG







IGL_V_02-
TCCTGGACAGTCGGTCACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



33_O_D10
ATCTCCTG
TGTCCTGGACAGTCGGTCACC
NO: 6324





ATCTCCTG







IGL_V_02-
CTGGGACTTGGGGTAAACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



34_P_D10
GTCACCATCTTCTG
TGCTGGGACTTGGGGTAAACA
NO: 6325





GTCACCATCTTCTG







IGL_V_03-
CCAGGACAGACAGCCAGCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



01_F_D10
TCACCTG
TGCCAGGACAGACAGCCAGCA
NO: 6326





TCACCTG







IGL_V_03-
CTTTGGGACGTACGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



02_P_D10
GATCATCTG
TGCTTTGGGACAGATGGCCAG
NO: 6327





GATCATCTG







IGL_V_03-
CTTTGGGACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



04_P_D10
GATCACCTG
TGCTTTGGGACAGATGGCCAG
NO: 6328





GATCACCTG







IGL_V_03-
CCAGGACAGGCAGCCATGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



06_P_D10
TCACCTG
TGCCAGGACAGGCAGCCATGA
NO: 6329





TCACCTG







IGL_V_03-
TGGGACAGAGGGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



07_P_D10
CACCTA
TGTGGGACAGAGGGCCAGGAT
NO: 6330





CACCTA







IGL_V_03-
GGGACAGGCGGCCAGGATT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



09_FP_D10
ACCTG
TGGGGACAGGCGGCCAGGATT
NO: 6331





ACCTG







IGL_V_03-
CCAGGACAAACGGCCAGGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



10_F_D10
TCACCTG
TGCCAGGACAAACGGCCAGGA
NO: 6332





TCACCTG







IGL_V_03-
CACAGCACAGATGGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



12_F_D10
ATCACCTG
TGCACAGCACAGATGGCCAGG
NO: 6333





ATCACCTG







IGL_V_03-
CCAGGACAGACAGCCAGGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



13_P_D10
TCAGCTG
TGCCAGGACAGACAGCCAGGA
NO: 6334





TCAGCTG







IGL_V_03-
CCCCAGGACAGATGACCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



15_P_D10
GATCACCTG
TGCCCCAGGACAGATGACCAG
NO: 6335





GATCACCTG







IGL_V_03-
CCCTAGGACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



16_F_D10
GATCACCTG
TGCCCTAGGACAGATGGCCAG
NO: 6336





GATCACCTG







IGL_V_03-
GTGTCTGTGGACAGTCAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



17_P_D10
AAGGGTAACCTG
TGGTGTCTGTGGACAGTCAGC
NO: 6337





AAGGGTAACCTG







IGL_V_03-
GGCCTTGGGACAGACAGTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



19_F_D10
AGGATCACATG
TGGGCCTTGGGACAGACAGTC
NO: 6338





AGGATCACATG







IGL_V_03-
CCCCAGGAAAGACGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



21_F_D10
GATTACCTG
TGCCCCAGGAAAGACGGCCAG
NO: 6339





GATTACCTG







IGL_V_03-
CCCAGGACAGAAAGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



22_FP_D10
ATCACCTG
TGCCCAGGACAGAAAGCCAGG
NO: 6340





ATCACCTG







IGL_V_03-
CAGTAGCTCCAGGACAGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



24_P_D10
GACTAGGATCACCTG
TGCAGTAGCTCCAGGACAGAT
NO: 6341





GACTAGGATCACCTG







IGL_V_03-
CAGGACAGACGGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



25_F_D10
CACCTG
TGCAGGACAGACGGCCAGGAT
NO: 6342





CACCTG







IGL_V_03-
CCTGGGACAGTCAGCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



26_P_D10
GTAACCTG
TGCCTGGGACAGTCAGCCAGG
NO: 6343





GTAACCTG







IGL_V_03-
CGGGACAGACAGCCAGGAT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



27_F_D10
CACCTG
TGCGGGACAGACAGCCAGGAT
NO: 6344





CACCTG







IGL_V_03-
CCCAGGACAGACACCCAGG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



29_P_D10
ATCACCTG
TGCCCAGGACAGACACCCAGG
NO: 6345





ATCACCTG







IGL_V_03-
CCCCATTACAGATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



30_P_D10
GATCACCTG
TGCCCCATTACAGATGGCCAG
NO: 6346





GATCACCTG







IGL_V_03-
GCCTTGGGATAGACAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



31_P_D10
GGATCACCTG
TGGCCTTGGGATAGACAGCCA
NO: 6347





GGATCACCTG







IGL_V_03-
CCTTGGGACAAATGGCCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



32_O_D10
GATCACCTG
TGCCTTGGGACAAATGGCCAG
NO: 6348





GATCACCTG







IGL_V_04-
CTGGGAGCCTCGATCAAGC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



03_F_D10
TCACCTG
TGCTGGGAGCCTCGATCAAGC
NO: 6349





TCACCTG







IGL_V_04-
CCTGGGATCCTCGGTCAAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



60_F_D10
CTCACCTG
TGCCTGGGATCCTCGGTCAAG
NO: 6350





CTCACCTG







IGL_V_04-
GGGAGCCTCGGTCAAGCTC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



69_F_D10
ACCTG
TGGGGAGCCTCGGTCAAGCTC
NO: 6351





ACCTG







IGL_V_05-
TCCTGGAGAATCCGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



37_F_D10
CTCACCTG
TGTCCTGGAGCATCAGCCAGA
NO: 6352





CTCACCTG







IGL_V_05-
TCTCCTGGAGCATCAGCCA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



39_F_D10
GATTCACCTG
TGTCTCCTGGAGCATCAGCCA
NO: 6353





GATTCACCTG







IGL_V_05-
TCCTGGAGCATCAGCCAGT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



45_F_D10
CTCACCTG
TGTCCTGGAGCATCAGCCAGT
NO: 6354





CTCACCTG







IGL_V_05-
TCCTGGAGCATCAGCCAGA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



48_O_D10
CTCACCTG
TGTCCTGGAGCATCAGCCAGA
NO: 6355





CTCACCTG







IGL_V_05-
GCATCTTCTGGAGCATCAG
GGGCTGGCAAGCCACGTTTGG
SEQ ID



52_F_D10
TCAGACTCACCTG
TGGCATCTTCTGGAGCATCAG
NO: 6356





TCAGACTCACCTG







IGL_V_06-
TCCGGGGAAGACGGTAACC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



57_F_D10
ATCTCCTG
TGTCCGGGGAAGACGGTAACC
NO: 6357





ATCTCCTG







IGL_V_07-
CCCAGGAGGGACAGTCACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



35_P_D10
CTCACCTA
TGCCCAGGAGGGACAGTCACT
NO: 6358





CTCACCTA







IGL_V_07-
CCCAGGAGGGACAGTCACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



43_F_D10
CTCACCTG
TGCCCAGGAGGGACAGTCACT
NO: 6359





CTCACCTG







IGL_V_08-
CCCCTGGAGGGACAGTCAC
GGGCTGGCAAGCCACGTTTGG
SEQ ID



61_F_D10
ACTCACTTG
TGCCCCTGGAGGGACAGTCAC
NO: 6360





ACTCACTTG







IGL_V_09-
TGGGAGCCTCGGTCACACT
GGGCTGGCAAGCCACGTTTGG
SEQ ID



49_F_D10
CACCTG
TGTGGGAGCCTCGGTCACACT
NO: 6361





CACCTG







IGL_V_10-
CTTGAGACAGACCGCCACA
GGGCTGGCAAGCCACGTTTGG
SEQ ID



54_F_D10
CTCACCTG
TGCTTGAGACAGACCGCCACA
NO: 6362





CTCACCTG







IGK_J_01_F_D10
TTCTACTCACGTTTGATTT
CCGGGAGCTGCATGTGTCAGA
SEQ ID




CCACCTTGGTCCC
GGTTCTACTCACGTTTGATTT
NO: 6363





CCACCTTGGTCCC







IGK_J_02_F_D10
AAGTACTTACGTTTGATCT
CCGGGAGCTGCATGTGTCAGA
SEQ ID




CCAGCTTGGTCCC
GGAAGTACTTACGTTTGATCT
NO: 6364





CCAGCTTGGTCCC







IGK_J_03_F_D10
ACAGATGTACTTACGTTTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID




ATATCCACTTTGGTCCC
GGACAGATGTACTTACGTTTG
NO: 6365





ATATCCACTTTGGTCCC







IGK_J_04_F_D10
CACTTACGTTTGATCTCCA
CCGGGAGCTGCATGTGTCAGA
SEQ ID




CCTTGGTCCC
GGCACTTACGTTTGATCTCCA
NO: 6366





CCTTGGTCCC







IGK_J_05_F_D10
GAAAAATTACTTACGTTTA
CCGGGAGCTGCATGTGTCAGA
SEQ ID




ATCTCCAGTCGTGTCCC
GGGAAAAATTACTTACGTTTA
NO: 6367





ATCTCCAGTCGTGTCCC







IGL_J_01_F_D10
CTTACCTAGGACGGTGACC
CCGGGAGCTGCATGTGTCAGA
SEQ ID




TTGGTCCC
GGCTTACCTAGGACGGTGACC
NO: 6368





TTGGTCCC







IGL_J_02_F_D10
ACCTAGGACGGTCAGCTTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID




GTCCC
GGACCTAGGACGGTCAGCTTG
NO: 6369





GTCCC







IGL_J_04_O_D10
AAGAAGAGACTCATCTAAA
CCGGGAGCTGCATGTGTCAGA
SEQ ID




ATGATCAGCTGGGTTCC
GGAAGAAGAGACTCATCTAAA
NO: 6370





ATGATCAGCTGGGTTCC







IGL_J_05_O_D10
ATCTAGGACGGTCAGCTCC
CCGGGAGCTGCATGTGTCAGA
SEQ ID




GTCCC
GGATCTAGGACGGTCAGCTCC
NO: 6371





GTCCC







IGL_J_06_F_D10
GAGGACGGTCACCTTGGTG
CCGGGAGCTGCATGTGTCAGA
SEQ ID




CC
GGGAGGACGGTCACCTTGGTG
NO: 6372





CC







IGL_J_07_F_D10
AGGACGGTCAGCTGGGTGC
CCGGGAGCTGCATGTGTCAGA
SEQ ID




C
GGAGGACGGTCAGCTGGGTGC
NO: 6373





C







IGK_J_del_F_D10
CTGCAGACTCATGAGGAGT
CCGGGAGCTGCATGTGTCAGA
SEQ ID




CGCCC
GGCTGCAGACTCATGAGGAGT
NO: 6374





CGCCC









Claims
  • 1. A composition for standardizing the amplification efficiency of an oligonucleotide primer set for amplifying rearranged nucleic acid sequences encoding one or more adaptive immune receptors in a biological sample of a mammalian subject, the composition comprising: a plurality of synthetic template oligonucleotides, each synthetic template oligonucleotide having an oligonucleotide sequence comprising:(a) a V sequence region comprising an oligonucleotide sequence comprising at least 20 contiguous nucleotides of an adaptive immune receptor variable (V) region encoding gene sequence, or the complement thereof, each V sequence region comprising a unique V-region oligonucleotide sequence;(b) a J sequence region comprising an oligonucleotide sequence comprising at least 15 contiguous nucleotides of an adaptive immune receptor joining (J) region encoding gene sequence and flanking intron sequence, or the complement thereof, each J sequence region comprising a unique J-region oligonucleotide sequence;(c) a U1 sequence comprising either nothing or a first sequencing platform-specific oligonucleotide sequence;(d) a U2 sequence comprising either nothing or comprises a second sequencing platform-specific oligonucleotide sequence;(e) at least one barcode sequence B1 comprising a sequence of 4-25 contiguous nucleotides that uniquely identifies, as a paired combination, (i) the unique V-region oligonucleotide sequence of (a) and (ii) the unique J-region oligonucleotide sequence of (b); and(f) at least one random oligonucleotide sequence R comprising at least two contiguous nucleotides,wherein the composition comprises at least one synthetic template oligonucleotide for each unique V-region oligonucleotide sequence and at least one synthetic template oligonucleotide for each unique J-region oligonucleotide sequence.
  • 2. The composition of claim 1, wherein each synthetic template oligonucleotide in the plurality of synthetic template oligonucleotides is present in an equimolar amount.
  • 3. The composition of claim 1, wherein each synthetic template oligonucleotide further comprises at least one additional barcode sequence.
  • 4. The composition of claim 1, wherein each synthetic template oligonucleotide further comprises a restriction enzyme recognition site or other identifying site that comprises an oligonucleotide sequence that is absent from (a)-(e)
  • 5. The composition of claim 1, wherein the random nucleotide sequence R is between 2 and 50 contiguous nucleotide in length.
  • 6. The composition of claim 1, wherein the plurality of synthetic template oligonucleotides comprises a number of at least a or at least b unique oligonucleotide sequences, whichever is larger, wherein a is the number of unique adaptive immune receptor V region-encoding gene segments in the subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the subject.
  • 7. The composition of claim 1, wherein a ranges from 1 to a number of maximum V gene segments in the mammalian genome of the subject and b ranges from 1 to a number of maximum J gene segments in the mammalian genome of the subject.
  • 8. The composition of claim 1, wherein the plurality of synthetic template oligonucleotides comprises at least (a×b) unique oligonucleotide sequences, where a is the number of unique adaptive immune receptor V region-encoding gene segments in the mammalian subject and b is the number of unique adaptive immune receptor J region-encoding gene segments in the mammalian subject, and the composition comprises at least one template oligonucleotide for every possible combination of a V region-encoding gene segment and a J region-encoding gene segment.
  • 9. The composition of claim 1, wherein the adaptive immune receptor has a locus selected from the group consisting of TCRB, TCRG, TCRA, TCRD, IGH, IGK, and IGL.
  • 10. The composition of claim 1, wherein the V sequence of (a) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor V-region polypeptide and wherein the J sequence of (b) encodes a TCRB, TCRG, TCRA, TCRD, IGH, IGK, or IGL receptor J-region polypeptide.
  • 11. The composition of claim 1, wherein V is an oligonucleotide sequence comprising at least 30 contiguous nucleotides and not more than 900 contiguous nucleotides of the adaptive immune receptor V region encoding gene sequence, or the complement thereof and wherein J is an oligonucleotide sequence comprising (i) at least 16 contiguous nucleotides and not more than 500 contiguous nucleotides of an adaptive immune receptor J region encoding gene sequence.
  • 12. The composition of claim 1, wherein each synthetic template oligonucleotide is less than 1000 nucleotides in length.
  • 13. The composition of claim 1, further comprising: a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors comprising a plurality a′ of unique V-segment oligonucleotide primers and a plurality b′ of unique J-segment oligonucleotide primers and capable of amplifying said plurality of synthetic template oligonucleotides.
  • 14. The composition of claim 13, wherein a′ ranges from 1 to a number of maximum V gene segments in the mammalian genome, and b′ ranges from 1 to a number of maximum number of J gene segments in the mammalian genome.
  • 15. The composition of claim 13, wherein each V-segment oligonucleotide primer comprises a nucleotide sequence of at least 14 contiguous nucleotides that is complementary to at least one adaptive immune receptor V region-encoding gene segment and wherein each J-segment oligonucleotide primer comprises a nucleotide sequence of at least 15 contiguous nucleotides that is complementary to at least one adaptive immune receptor J region-encoding gene segment.
  • 16. A method for determining non-uniform nucleic acid amplification potential among members of a set of oligonucleotide primers that is capable of amplifying rearranged nucleic acid molecules encoding one or more adaptive immune receptors in a biological sample from a mammalian subject, the method comprising: (a) amplifying the composition comprising said plurality of synthetic template oligonucleotides using the set of oligonucleotide primers of claim 13 in a single multiplex PCR reaction to obtain a plurality of amplified synthetic template oligonucleotides;(b) sequencing said plurality of amplified synthetic template oligonucleotides to determine, for each unique synthetic template oligonucleotide comprising said plurality, (i) a synthetic template oligonucleotide sequence and (ii) a frequency of occurrence of said synthetic template oligonucleotide sequence; and(c) comparing a frequency of occurrence of each of said synthetic template oligonucleotide sequences to an expected distribution, wherein a deviation between said frequency of occurrence of said synthetic template oligonucleotide sequences and said expected distribution indicates a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide amplification primers.
  • 17. The method in claim 16, wherein said expected distribution is based on determining predetermined molar ratios of said plurality of synthetic template oligonucleotides comprising said composition.
  • 18. The method of claim 17, wherein said predetermined molar ratios are equimolar.
  • 19. The method in claim 16, wherein said expected distribution is determined based on frequencies of each unique synthetic template oligonucleotide, said frequencies determined based on quantifying the frequency of each unique random oligonucleotide sequence R.
  • 20. The method of claim 16, wherein said expected distribution comprises a uniform amplification level for said plurality of synthetic template oligonucleotides amplified by said set of oligonucleotide primers.
  • 21. The method of claim 16, further comprising adjusting the relative representation of the oligonucleotide primer member in the set of oligonucleotide amplification primers for each member of the set of oligonucleotide primers that exhibits non-uniform amplification potential relative to the expected distribution.
  • 22. The method of claim 21, wherein adjusting comprises: increasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers, ordecreasing the relative representation of the member in the set of oligonucleotide primers, thereby correcting non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.
  • 23. The method of claim 17, further comprising calculating a proportionately increased or decreased frequency of occurrence of the amplified template nucleic acid molecules for each member of the set of oligonucleotide amplification primers that exhibits non-uniform amplification potential relative to the expected distribution, thereby correcting for non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers.
  • 24. A method for correcting for amplification bias in a single multiplex PCR amplification reaction to quantify rearranged nucleic acid molecules encoding a plurality of adaptive immune receptors in a biological sample obtained from a mammalian subject, comprising: (a) contacting said sample with a composition comprising said plurality of synthetic template oligonucleotides and said set of oligonucleotide primers of claim 13 to generate a template-spiked sample;(b) amplifying said template-spiked sample in a single multiplex PCR reaction using said set of oligonucleotide primers comprising said V-segment and J-segment oligonucleotide primers to obtain a plurality of amplified synthetic template oligonucleotides and a plurality of amplified rearranged nucleic acid molecules encoding a plurality of adaptive immune receptors from said subject;(c) sequencing said plurality of amplified synthetic template oligonucleotides to determine (i) a synthetic template oligonucleotide sequence and (ii) a frequency of occurrence of said synthetic template oligonucleotide sequence for each unique template oligonucleotide comprising said plurality;(d) sequencing said plurality of amplified rearranged nucleic acid molecules from said subject encoding a plurality of adaptive immune receptors to determine (i) a rearranged nucleic acid molecule sequence and (ii) a frequency of occurrence of said rearranged nucleic acid molecule sequence for each unique rearranged nucleic acid molecule;(e) comparing said frequency of occurrence of said synthetic template oligonucleotide sequences to an expected distribution, wherein said expected distribution is based on predetermined molar ratios of said plurality of synthetic template oligonucleotides comprising said composition, and wherein a deviation between said frequency of occurrence of said synthetic template oligonucleotide sequences and said expected distribution indicates a non-uniform nucleic acid amplification potential among members of the set of oligonucleotide primers;(f) generating a set of correction values for a set of synthetic template oligonucleotide sequences and rearranged nucleic acid molecule sequences amplified by said members of the set of oligonucleotide primers having said indicated non-uniform nucleic acid amplification potential, wherein said set of correction values corrects for amplification bias in said multiplex PCR reaction; and(g) optionally applying said set of correction values to said frequency of occurrence of said rearranged nucleic acid molecule sequences to correct for amplification bias in said multiplex PCR reaction.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/726,489, filed Nov. 14, 2012 and U.S. Provisional Application No. 61/644,294, filed on May 8, 2012, the entire disclosures of which are hereby incorporated by reference in their entireties for all purposes.

Provisional Applications (2)
Number Date Country
61726489 Nov 2012 US
61644294 May 2012 US
Continuations (1)
Number Date Country
Parent 14381967 Aug 2014 US
Child 14594007 US