COMPOSITIONS AND METHODS COMPRISING VIRAL REVERSE TRANSCRIPTASE

Information

  • Patent Application
  • 20200157513
  • Publication Number
    20200157513
  • Date Filed
    April 10, 2018
    6 years ago
  • Date Published
    May 21, 2020
    4 years ago
Abstract
Compositions and methods for making cDNA from RNA templates, including double-stranded RNA (dsRNA) and single-stranded RNA (ssRNA), are provided. The composition and methods include a recombinant or purified or modified or recombinant RNA dependent RNA polymerases (RdRp's). The RdRp has an amino acid sequence that shares identity to a contiguous segment of the amino acid sequence of one or more Partitiviridae virus RdRps, and includes a reverse transcriptase (RT) domain. Kits including dNTPs for use in generating cDNAs are included. The RdRps can function efficiently at lower temperatures than previously available RT enzymes. Methods of making cDNAs are provided using an RdRp are also provided. RdRps can also be used to identify candidate reverse transcriptase inhibitors.
Description
BACKGROUND OF THE DISCLOSURE

The enzyme Reverse Transcriptase (RT) was discovered in two different laboratories in 1970 in the virus particles of RNA tumor viruses. RT copies RNA into DNA, a reaction thought to be impossible prior to this discovery. RT is found in RNA retroviruses, some DNA viruses (called pararetroviruses), and embedded in most genomes associated with retrotransposons and some types of introns. For the past forty-five years virus-derived RT has been used extensively for many molecular biology applications, including cloning, RT-polymerase chain reaction (RT-PCR), diagnostics, RNA sequencing, and the expression of many important pharmaceuticals that were first isolated as messenger RNA. RT is sold by many biotechnology companies, and is a standard component in the toolbox for molecular biology.


One RNA substrate for RT that has been proven to be quite difficult is double-stranded (ds) RNA. RT is, in fact, a single-stranded specific enzyme, and to use it for dsRNA requires several distinct approaches to make the dsRNA into ssRNA. Several methods are available for this process; the simplest method is boiling, but many protocols call for chemicals to keep the RNA single-stranded, and without the use of very toxic chemicals such as methyl mercury, the RNA very quickly reanneals to its dsRNA form. Some protocols use much higher than normal temperatures for the RT reaction, and while this helps keep the dsRNA melted, it also dramatically reduces the fidelity of the RT enzyme, introducing mutations that can be mistaken for single nucleotide polymorphisms (SNPs) with biological significance. All this makes the reaction very inefficient, and in many cases it fails completely.


The analysis of dsRNA as a hallmark of RNA virus infection has gained importance in recent years with the rise of virus discovery work. Virus discovery has revealed the amazing diversity and abundance of viruses in all environments, and the role of viruses in the ecology of life on our planet is slowing being clarified. The significance of the virome in human and animal health also is becoming increasingly apparent, and viruses can stimulate the immune system to counteract infection by pathogens, or act as early surveillance against incoming bacterial pathogens, as well as create risk for a variety of cancers. Other important biological roles for dsRNA are in RNAi, or gene silencing, and in the CRISPR adaptive immune system of bacteria and archaea that has gained widespread use for genetic manipulation of genomes from fungi to humans.


One additional problem with all commercially available RT enzymes is a relatively low fidelity. This has been particularly problematic for studies in RNA virus populations, and transcriptome SNPs. Biotechnology companies have developed a number of mutants of the RT derived from Avian myoblastosis virus that have increased fidelity (e.g. Superscript III, INVITROGEN®/THERMO-FISHER®), but they have not overcome this problem. Thus, there is an ongoing and unmet need for new technology for use in, for example, for siRNA and CRISPR work, as well as for RNAseq, and discovery and diagnostics of RNA viruses. The present disclosure is pertinent to these needs.


SUMMARY

Provided are improved compositions and methods for making cDNA from RNA templates, including double stranded RNA (dsRNA) and single stranded RNA (ssRNA). In certain embodiments, the disclosure provides a recombinant or purified or modified recombinant RNA dependent RNA polymerase (RdRp), wherein the RdRp has an amino acid sequence that is at least 90% identical to a contiguous segment of the amino acid sequence of a Partitiviridae virus RdRp described herein, and wherein the contiguous segment comprises a reverse transcriptase (RT) domain.


In certain embodiments, the disclosure provides a purified or recombinant or modified RdRp that has RT activity for use in producing cDNA from RNA. In embodiments, the RdRp is modified, such as by having one or more amino acids changed relative to a native sequence, or one or more amino acids deleted, or added. In an embodiment, an RdRp of this disclosure is modified by including a tag, such as a purification tag, including but not necessarily limited to a histidine tag (His-tag). In embodiments, such as in methods and kits of this disclosure, the RdRp is present in or provided with one or more buffers that comprise deoxyribonucleotide triphosphates (dNTPs). Separate buffers or a single buffer can be provided such that the dNTPs used in the method and/or provided with a kit comprise all of deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine triphosphate (dGTP), and deoxythymidine triphosphate (dTTP). In embodiments, the method and/or kit is free of added ribose-based NTPs, such as Uridine-5′-triphosphate (UTP), since the disclosure is directed to synthesis of DNA, rather than the ordinary function of an RdRp to synthesize RNA.


All intermediates formed during reactions used to generate cDNA are included within the scope of this disclosure. In an embodiment, the disclosure thus provides an isolated or recombinant or modified RdRp in a complex with an RNA template, wherein the complex is in an in vitro reaction. In an embodiment, the complex of the RdRp and the RNA template further comprises a segment of a cDNA that is complementary to one strand of the RNA template, i.e., the cDNA that is being elongated by the RdRp. In embodiments, cDNA synthesis is performed at a temperature of less than 50° C., or less than 40° C., or less than 30° C., or not more than 25° C. In embodiments, cDNA synthesis is performed at a temperature of from 10-25° C., inclusive, and including all numbers there between. In embodiments, an RdRp of this disclosure exhibits improved fidelity (i.e., a lower error rate as determined by incorporation of mis-paired nucleotides) relative to a control RT, such as an RT from a retrovirus. In embodiments, a method of the disclosure comprises cDNA generation using a one-step RT polymerase chain (PCR) reaction, or a two-step RT PCR reaction. In embodiments, a method of the disclosure comprises separating cDNA from a reaction in which the cDNA is produced. In embodiments, the sequence of the cDNA is determined. The cDNA sequence can be used for a wide variety of purposes, such as new virus discovery, or analysis of ssRNA or dsRNA viruses from any suitable sample. Thus, the disclosure provides compositions and methods that can be used for analysis of viral outbreaks, and for vaccine design, such as in the case of influenza viruses. Accordingly, in certain aspects, the RNA that is used as a template for producing cDNA may be present in a biological sample before the cDNA is generated. The biological sample can be any suitable sample, and can be used directly, or subjected to a processing step prior to cDNA generation.


The disclosure includes expression vectors encoding any RdRp or segment thereof described herein. Any suitable expression vector can be used, and many are commercially available and can be adapted by those skilled in the art to express an RdRp described herein, when given the benefit of this disclosure. Cells comprising the expression vectors are also included, as are methods of making any RdRp described herein by expressing the RdRp in a cell culture, and separating the RdRp from the cell culture.


In another approach the disclosure provides a method of testing test compounds to determine whether or not they are candidates for use as reverse transcriptase inhibitors. The method generally comprises: a) contacting a plurality of distinct test agents divided into separate reactions chambers with an isolated or recombinant RT, an RNA template, and a reverse transcriptase reaction buffer, b) allowing the test agents to be in contact with the RT, and subsequently, c) measuring of cDNA produced, wherein determining less cDNA relative to a control indicates the test agent is a candidate for use in inhibiting reverse transcriptase activity of the RT.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. Purification of Pepper cryptic virus 1 (PCV1) and demonstration of RT activity A. lane M, molecular weight marker, 1, purified PCV1 virions. B. M, molecular weight marker, 1, PCR product from commercially available MMuLV-generated cDNA; 2, water control; 3, PCR product from PCV1-generated cDNA.



FIG. 2. Aggregated PCV1 particles (A), likely due to the use of polyethylene glycol (PEG) in the preparation. Improved preparation with no aggregates (B).



FIG. 3. Image confirming recombinant RT protein expression. Expression was performed using a commercially available vector sold under the tradename pSUMO Vector. The sequence adds a 6× His Tag to the protein and a so-called small ubiquitin-like modifier which can be removed by protease digestion after purification by a 6× His tag, which is also added to the protein during recombinant synthesis.



FIG. 4. RT-PCR products using Zea mays chrysovirus 1 as a template, and primers for the RdRp gene. The following were used as reverse transcriptase: M, marker lane. 1, PCV1 virions; 2, Pseudogymnoascus desctructans partitivirus-pa (PdPV-pa) virions; 3, MMuLV RT (New England Biolabs). Expected size band is ˜500 nt (upper band in gel).



FIG. 5. RT-PCR product from in vitro translated PCV1 RdRp, using PCV1 dsRNA as template and primers for the RdRp gene. M, marker; 1, 1 μl of in vitro translation product; 2, 2 μl of in vitro translation product; 3, MMuLV RT (New England Biolabs).





DESCRIPTION OF THE DISCLOSURE

Unless defined otherwise herein, all technical and scientific terms used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains.


Every numerical range given throughout this specification includes its upper and lower values, as well as every narrower numerical range that falls within it, as if such narrower numerical ranges were all expressly written herein.


The disclosure includes all polynucleotide sequences (RNA and DNA) encoding the RT of this disclosure. Cells comprising such polynucleotides are also included, as are all methods of making the polynucleotides and cells. Every possible DNA and RNA sequence encoding polypeptides disclosed herein are encompassed by this disclosure.


The present disclosure relates generally to a discovery made by our analysis of persistent viruses that are low titer viruses found in fungi and many plants, including crop plants. They are not transmitted horizontally, and remain in their hosts for thousands of years through nearly 100% vertical transmission. Through sequence analysis of a member of the Partitiviridae infecting fungi we discovered a domain in the RNA dependent RNA polymerase (RdRp) that had similarities to an RT conserved domain. A comparison of RT domains is provided in the Table below. Our analysis revealed that all of the RdRp genes from known partitivirus sequences we examined, including those infecting plants and fungi, have these conserved domains. However, and without intending to be constrained by any particular theory, it is believed that there has been no previous analysis of the potential RT activity of these enzymes because to date they are all found associated with viruses with dsRNA genomes. It seems likely, and again without intending to be limited to any particular interpretation, that any potential RT activity in these enzymes has remained undiscovered because these understudied viruses are not usually thought to be very important, and because there is no apparent reason why a dsRNA virus would ever need an RT, let alone preserve an RT domain over such a long evolutionary history. In addition partitivirus-like sequences are found integrated into the genomes of some plants and fungi, although no mechanism for how they were converted to DNA has been demonstrated. These observations, taken together with our sequence analysis, lead to the present demonstration that a partitivirus RdRp does indeed function as an RT.


In more detail, Pepper cryptic virus 1 (PCV1) is a plant persistent virus in the family Partitiviridae. PCV1 is found in all Jalapeño peppers. Since the pepper host of PCV1 is easy to grow, and PCV1 is generally a relatively high titer persistent virus, we selected this virus for further studies. We also compared PCV1 from different cultivars of hot pepper, including the presumed progenitor of all hot peppers, chiltepin. Chiltepin can be found as a wild plant in Mexico, but it is also consumed locally as a spice, and it is grown in tended areas or in gardens. Given the lack of horizontal transmission of persistent viruses, it is most likely that PCV1 has been consistently infecting chiltepin and domestic hot peppers for thousands of years, diverging with the divergence of their hosts. For most RNA viruses, thousands of years of divergence would lead to changes in the genome that might render them too different to be confident of their common origin, but in PCV1 the difference between the virus in Jalapeño peppers and in chiltepin is only 3%. Once again without intending to be restricted to any particular interpretation, these observations indicate that the RdRp of PCV1 has unusually high fidelity (i.e., a lower error rate) which supports an expectation that RT fidelity of the PCV1 RdRp, as well as other RT's described herein, will be unusually high as well.


Additional description of the isolation, demonstration of RT activity, and recombinant production of a PCV1 protein comprising an RT is presented in examples and figures of this disclosure. Additional demonstrations of embodiments of the disclosure are also provided using Pseudogymnoascus destructans partitivirus-pa (PdPV-pa) RdRp. Further, specific and non-limiting examples of a wide variety of RdRP proteins that comprise RT domains are provided, and include members of distinct virus genera, but all in the same family (Partitiviridae). In particular, representative RdRP sequences from Group I, II, III, IV and V (genera Betapartitivirus, Alphapartitivirus, Deltapartitivirus, Gammapartitivirus, and unclassified partitiviruses, respectively) of the Partitiviridae family are provided.


Based at least in part on the demonstrations of making and using RdRPs from two distinct dsRNA viruses, it is contemplated that any RdRp that is isolated from and/or produced recombinantly and/or/derived from any dsRNA virus that has an RdRp which comprises an RT domain will be suitable for use as an RT in embodiments of this disclosure. In certain examples the RdRp that comprises the RT domain is from a dsRNA virus that infects fungi or plants. In embodiments the RdRp that comprises the RT domain is from an encapsidated dsRNA virus. In embodiments the RdRp that contains the RT is a member of one of the Amalgaviridae, Birnaviridae, Chrysoviridae, Cystoviridae, Megabirnaviridae, Partitiviridae, Picobirnaviridae, Reoviridae, or Totiviridae families of plant or fungal viruses. In embodiments, the RdRp that comprises the RT domain is from a dsRNA virus that infects pepper plants. In an embodiment the RdRp that comprises the RT domain is from a dsRNA that is a PCV-1 or Pepper cryptic Virus 1.


In one non-limiting demonstration of an embodiment of the present disclosure, an in vitro translation of an RdRp and use of the translated RT to produce cDNA from a dsRNA template is demonstrated using a PCV1 RdRp that comprises SEQ ID NO:1, which is meant to be illustrative but not limiting. SEQ ID NO:1 is:









(SEQ ID NO: 1)


MVRGTLVGYDYTQFQGDLVKSTHRHPHVVHREIATTYVDQYAYEHIET





FSSLYPELILKGWSRSYYLPEKHLAAVLNYSMPNVPASQLSQSLYRQA





IESAKNGFISLPRVKAFDVLTEMDQVPFKSSSSAGYNYTGRKGLIGDE





NHSRAISIAKAVLWSAIKDDGEGIEHVIRTSVPDVGYTRTQLTDLLEK





TKVRQVWGRAFHYILLEGLVAYPFIQTVMSHKTFIHAGQDPLISVPRL





LSDVALNCKWIYSLDWSQFDATVSRFEIHAAFDIIKSYVDFPNYETEQ





AFEITRQLFIHKKVAVPDGYIYESHKGIPSGSYYTSLVGSIINYLRIN






YLWRLLTGHPPQQCHTLGDDSLVGDNSYVNPQAIEEAANKLGWHFNPD







KTQYSTVPEEITFLGRTYVGGLNKRDLTKCIRLLVYPEYPVESGRISA






YRAKSIAQDAGGLSEVLNRIADKLRRIYGTASEEEVPIYFKRYVFGV.






This sequence is available under GenBank accession no. AEJ07890.1. Conserved RT domains in SEQ ID NO:1 are shown in bold, with highly conserved amino acids shown in enlarged font.


Conserved RT domains were identified by comparison of the PCV1 sequence to other viral proteins, as shown in the following Table:

























Ty3 RT
 106
.[ 94].

XADTFRDLR



FVNVYLDDILIFSES


P
.[4].

KHLDTVLERLKN


ENLIVKKKXCKFA

 253





PCV1 RdRp
 185
.[150].

INYLWRLLT

.[ 5].

QCHTLGDDSLVGDNS


Y


VNPQAIEEAANK


LGWHFNPDKTQYS

 389





CAEV RT
 210
.[100].

MQEILEDWI

.[ 6].

QFGIYMDDIYIGSDL

.[1].
I
.[4].

EIVKDLANYIAQ


YGFTLPEEKRQKG

 370





BLV RT
  41
.[101].

LQEPLRQVS

.[ 6].

LLVSYMDDILYVSPT


E
.[4].

QCYQTMAAHLRD


LGFQVASEKTRQT

 201





Tf2-1 RT
 455
.[ 94].

INTILGEAK

.[ 2].

HVVCYMDDILIHSKS


E
.[4].

KHVKDVLQKLKN


ANLIINQAKCEFH

 604





RTBV RT
1128
.[ 98].

MQESFGDLK



FALLYIDDILIASNN


E
.[4].

EHLKIFFNRVKE


VGCVLSKKKSKMF

1379





GrpII RT
 115
.[133].

LDGLEALLA

.[17].

NYVRYADDFIITGES


K
.[5].

QVLPVVRRFMAE


RGLMLSPEKTKIT

 319





Ty3 RT
 254
.[  1].

EETEFLG

.[ 3].
264











PCV1 RdRp
 390
.[  3].

EEITFLG

.[ 3].
402











CAEV RT
 371
.[  1].

YPAKWLG

.[ 3].
380











BLV RT
 202
.[  1].

SPVPFLG

.[ 3].
212











Tf2-1 RT
 605
.[  1].

SQVKFIG

.[ 3].
615











RTBV RT
1380
.[  1].

KEVEYLG

.[ 3].
1390











GrpII RT
 320
.[  3].

EGFDFLG

.[ 3].
332









In the Table the following abbreviations are used: Ty, gypsy-like element from yeast; PCV1, Pepper cryptic virus; CAEV, Caprine arthritis encephalitis lentivirus; BLV, Bovine leukemia virus; Tf2-1, fungal retrotransposon; RTBV, Rice tungro bacciliform virus (pararetrovirus); GrpII, Group II intron from E. coli.


In the Table, sequences for the amino acid segments for each viral RT or RdRp sequence, from left to right including consecutively the top and bottom panels for each virus are as follows: for Ty3 RT, SEQ ID NOs:4-8; for PCV1 RdRp, SEQ ID NOs: 9-13; for CAEV RT, SEQ ID NO:s 14-18; For BLV RT, SEQ ID NO:19-23; for Tf2-1 RT, SEQ ID NO:s 24-28; for RTBV RT, SEQ ID NOs: 29-33; and for GrpII RT, SEQ ID NOs: 33-38.


In another demonstration of a non-limiting embodiment, isolated virions of Pseudogymnoascus destructans partitivirus-pa (PdPV-pa) (a Group IV partitivirus), comprising an RdRp with an RT domain to produce cDNA from a dsRNA template is demonstrated. The PdPV-pa RdRp comprises SEQ ID NO:2, which is:









(SEQ ID NO: 2)


MEVSPFDPTPLDNVIEGSPLVDDSLLVPSSRTRGSSYDVIPEHFNSPGLT





EIARYGGYPVYSGGSNTDAWVRTSLKEFDRTMYENIYGYTRKPEGPQGMY





KSLLKFSEDKSTFHSLNRVQRRAMIGAIKKARTAFKLPWKREPLDWHEVG





QFLRRDTAAGATFMGKKKGDVMEEIYHEARWLGHRMKQDGREKFNPKKMR





FPPCLAGQRGHMSERDTPKTRLVWVYPAEMLCVEGFYAPQMYRDFMNDRH





TPMLNGKSSQRLYTEWCVGLREGEKLYGLDFSSFDSKVPSWLIRVAFDIL





RQNIEWSTFRGEKVSKREAQKWRNVWDAMVYYFINTPMLMPDGRMFRKRR





GVPSGSWWTQMIDSVVNYILVDYLTQCQTCQIRGLRVLGDDSAFRSCHDF





SLDQASADAAAVLMILNPDKCEVTLDPTKFKLLGTTYEDGHPHRETIDWF





KFALYPESSVSSIDVSLTRLVGLWLGGGMWDLHFCKFMDYFQTCFPCPLE





GWFSKDQRRWLEVIFSGKAPRGWTTKKSLFWHSIFYTYC.






When given the benefit of the present disclosure, conserved RT domains in any of the RdRp amino acid sequences presented herein can be identified using for use in embodiments of the invention, using for example, a domain identification approach described in Marchler-Bauer A et al. (2017), “CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.”Nucleic Acids Res.45(D)200-3, the description of which is incorporated herein by reference. In certain instances an RdRp that comprises an RT domain is referred to herein as an RT.


The disclosure includes amino acid sequences that are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% similar, or identical to amino acid sequences presented herein, and/or to the RT domain of such sequences, such as across the entire length of the RdRp protein, or the RT domain. Additional representative RdRp proteins that comprise RT domains are described below and are encompassed within this disclosure. In embodiments a protein of the disclosure has any of said similarities over a contiguous segment of the sequence that contains the RT domains. In embodiments the protein comprises or consists of any amino acid sequence described herein, or comprises or consists of an RT domain present within any such amino acid sequence. In embodiments, an RdRp and/or RT domain of this disclosure comprises one or more of its amino acid residues substituted with conserved amino acid residues. In certain examples more than one amino acid change can be included. Such changes can comprise conservative or non-conservative amino acid substitutions, insertions, and/or deletions, provided the modified sequence retains or improves on the capability to catalyze the reverse transcription process. In embodiments amino acids substitutions may be substituted with conserved amino acids identified in the RT domain alignment shown in the Table. In embodiments, the disclosure provides recombinant or isolated or modified proteins that comprise RT activity and are at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99%, or 100% identical to the sequence:










(SEQ ID NO 3)





embedded image










embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image









embedded image




wherein X is any amino acid.






SEQ ID NO:3 is a consensus sequence of partitivirus RdRps. Residues in gray highlighting are conserved among all members of the family of RdRps that have RT-like domains. The residues in bold are domains conserved among a wide range of RTs. In embodiments, the disclosure includes an RdRp with RT activity that is from 415 to 756 amino acids in length, inclusive. In embodiments, a protein of this disclosure is from 600-650 amino acids in length, inclusive. In embodiments, a protein of this disclosure is from 550-610 amino acids in length. Proteins of such length can be at least 90% similar to any segment of any amino acid sequence presented herein. In one embodiment an RdRp with RT activity of this disclosure has at least 90% identity with SEQ ID NO:3 over its entire length, and in embodiments, includes any one or any combination of the amino acid sequences GDD, XRPL, SXFD, PSGX, wherein X is any amino acid, within the protein. In an embodiment, the RdRp with RT comprises the GDD sequence. In embodiments, an RT of this disclosure has at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99%, or 100% identity across the contiguous segment of SEQ ID NO:3 spanning amino acids 395-465, inclusive.


Any protein provided by this disclosure can be modified such as by being engineered to include a leader or secretory sequence or a sequence which can be used for purification e.g., a His-tag, and/or to include a proteolytic cleavage site. In a non-limiting embodiment the protein is engineered to comprise a ubiquitin segment and a protease cleavage site for removal of the ubiquitin segment. Modifications can be made at the N-terminus, C-terminus, or within the protein. Such modifications can be made using known reagents and techniques, given the benefit of the present disclosure.


In certain approaches the DNA or RNA sequence encoding a protein of this disclosure can be altered from a naturally occurring sequence, such as by optimizing codons for expression in any particular expression system. In certain approaches a polynucleotide sequence encoding a protein of this disclosure is modified by incorporation into any suitable expression vector, shuttle vector, plasmid, etc., as further described below and demonstrated in non-limiting examples. In certain approaches expression vectors, such as plasmids, are used. A variety of suitable expression vectors known in the art can be adapted to produce the proteins. In general, the expression vector comprises sequences that are operatively linked with the sequences encoding the protein, such as promoters, transcription initiation and termination signals, origins of replication, sequences encoding selectable markers, etc.


The disclosure includes methods of making the RT proteins. Such methods generally comprise either isolating virus that comprises the RdRp from the host where it is found normally and using isolated particles for performing reverse transcription, or by producing the protein recombinantly. Producing the protein recombinantly generally comprises initially introducing an expression vector encoding the RdRp into any suitable host cells by any method known in the art. Methods vary depending upon the type of cellular host, and include but are not limited to transfection employing cationic liposomes, electroporation, calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances as will be apparent to the skilled artisan. In certain embodiments the cells used to produce the protein recombinantly are prokaryotes, including but not necessarily limited to E. coli, but eukaryotic cells may also be used, including but not necessarily limited to plant, fungal, insect and mammalian cells. The methods include allowing for a period of time during which the protein is expressed in the cells, and then separating the protein from the cells, after which the protein can be purified to any desired degree of purity. As discussed above, the proteins may be engineered to contain segments that improve protein expression, secretion, separation and/or purification.


In general, methods of this disclosure comprise combining incubating a fully or partially double-stranded RNA template, or a single-stranded RNA template with a purified or recombinant protein of this disclosure, such that a cDNA of at least one of the strands of the RNA template is produced. The method can optionally further comprise isolating the cDNA, and if desired determining or confirming the sequence of the cDNA. The RT and the RNA template can be combined in vitro to perform one or a plurality of cDNA assays. The RT could also be used to produce a cDNA copy of an RNA within a cell.


In certain embodiments, the disclosure includes generating a cDNA as described herein and determining the sequence of the cDNA. The sequence of the cDNA can be recorded in any tangible medium of expression. In embodiments, a plurality of cDNAs are determined and are compared to one another and/or to a database. In embodiments, the disclosure includes determining the sequence of a cDNA produced from dsRNA or ssRNA from, for example, a virus, and deducing an amino acid sequence encoded by the cDNA. In embodiments, cDNA sequences from cDNAs produced according to this disclosure are from, for example, retroviruses. In embodiments, cDNAs produced according to this disclosure are from samples comprising members of Reoviridae, such as rotaviruses, which comprise dsRNA genomes. In embodiments, cDNAs are produced from samples comprising influenza virus, including Influenza A, B or C viruses. In embodiments, cDNAs produced by amplification of all or a segment of an influenza virus single stranded RNA molecule are used to deduce the amino acid sequence of hemagglutinin (HA) and/or neuraminidase (NA) encoded by the viral genome. Thus, embodiments of this disclosure are suitable for generating genetic information that may be useful in predicting viral outbreaks, and/or for vaccine design. Furthermore, generating cDNA as described herein may be useful in diagnostic applications, such as to provide information about a viral infection in a human, or a non-human animal, or a fungus, or a plant, or a protist, or a bacteria or archaea. Further still, population studies (and other experimental analysis) of RNA viruses are limited by the error rate of the enzyme used for analysis, such as previously available RTs. These studies are critical for understanding virus evolution, including projected evolution of human pathogens such as influenza A virus, that is required for deciding on the specifics of future vaccines. Thus, the lower error rate that is expected to be produced by using an RdRp comprising an RT function as described herein provides advantages that are applicable to numerous applications.


Using an RT of this disclosure to produce a cDNA can be advantageous in a variety of techniques wherein determination of the presence, absence, amount, nucleotide sequence of a strand of an RNA, or combinations thereof would be useful. In this regard it is expected that any RNA can be used as a template for cDNA production using approaches of this disclosure, and there will be no particular upper limit to the bp length or other constraints on nucleotide composition, other than those imposed by the availability of reagents (i.e., dNTPs) to continue the reverse transcription process. In certain approaches, a fully or partially double-stranded RNA template is analyzed by cDNA production using an RT of this disclosure in a cell-free in vitro assay, or in an in vitro assay comprising cells. In the performance of such assays fully or partially double-stranded RNA templates will be in physical association with an RT of this disclosure, thus forming a complex comprising the RT and a dsRNA. The dsRNA may be in physical association with more than one RT of this disclosure at any particular time, and depending on the length of the dsRNA template distinct RTs may be concurrently generating cDNAs from the same dsRNA template in an anti-parallel direction. Those skilled in the art will recognize that a dsRNA template that is being reversed transcribed by an RT of this disclosure may include a segment that is in physical association with the RT but is not itself double-stranded due to the presence of a transcription bubble, wherein the strand being reverse-transcribed is transiently separated from its complementary strand in order to catalyze cDNA synthesis. Thus, the disclosure includes complexes comprising an RT as described herein, wherein the RT is in a physical association with a fully or partially double-stranded RNA template, and wherein the RT is also in physical association with a DNA polynucleotide (e.g., a cDNA) that is being synthesized during the process via RT activity.


In one embodiment the disclosure provides for determining the presence, absence and/or the sequence and/or the amount of a segment of RNA that is in a dsRNA configuration by exposing a sample comprising or suspected of comprising dsRNA with an RT of this disclosure, along with suitable reagents that are typically employed in a Reverse-Transcription PCR (RT-PCR) approach, and after a period of time determining the presence, absence, and/or sequence and/or amount of the cDNA. In an embodiment, by comparison to a suitable control, the absence of cDNA is a basis for inferring a lack of dsRNA in the sample, whereas the presence of cDNA indicates the presence of dsRNA in the sample. In an embodiment the method comprises comparison of ssDNA in the sample with a control reaction that is performed using a portion of the sample and a standard RT, many of which are commercially available, and include Moloney murine leukemia (M-MLV) and Avian Myeloblastosis Virus (AMV) RTs. Determining a difference in ssDNA relative to the control permits determining ssDNA production that it is attributable to the RT component of the RdRp acting on a dsRNA template, whereas the standard RT would not use the dsRNA as a template. Determining the sequence of a cDNA, if present, provides for identification of the sequence of at least one strand of dsRNA that was the template for cDNA synthesis, which also permits deduction of its complementary strand. Generating and determining the sequence of cDNAs is well known in the art, and the present disclosure includes performing this process, but with substitution of the RT of this disclosure for any of the well-known commercially available reverse transcriptase enzymes typically employed in RT-PCR reactions.


Generating cDNAs using an RT of this disclosure can be performed in a one-step RT-PCR, or a two-step RT-PCR. As will be recognized by those skilled in the art, a one-step RT-PCR reaction entails generating a cDNA using the RT, and PCR amplification of the cDNA in a single reaction container. Two-step RT-PCR entails the reverse-transcription reaction being performed in a single reaction chamber to obtain single-stranded cDNAs, which are then separated from the reverse-transcription assay and PCR-amplified in a separate reaction chamber. In certain approaches specific temperature parameters are included to avoid denaturing the RT. In certain approaches the methods of this disclosure include reverse-transcription cDNA generation at a temperature of less than 50° C. In embodiments, cDNA generation is performed at a temperature of less than 40° C. In embodiments, cDNA generation, i.e., producing cDNA by an RT of this disclosure, is performed at a temperature of from 10° C., to room temperature, wherein room temperature can range from 20-25° C. In embodiments, the only application of heat to generate a cDNA according to this disclosure is to temporarily denature dsRNA structures for the purpose of annealing primers. In this regard, those skilled in the art will recognize that at room temperature, currently commercially available and other previously characterized reverse transcriptase enzymes, would not be able to synthesize cDNA from a dsRNA template because the dsRNA renatures, which is not a suitable template for a non-RdRp reverse transcriptase. The kits of this disclosure described below can be adapted for either approach. Further, these approaches can be tailored for quantitative purposes.


In embodiments, an RT of this disclosure has a reduced error rate for nucleotide incorporation into the cDNA, compared to a control, such as a commercially available RT. In embodiments, the control comprises an error for reverse transcription by M-MLV virus reverse transcriptase. In embodiments, the control comprises an error rate for AMV reverse transcriptase. In embodiments, a control error rate ranges, from 1 error for every 17,000 bases to 1 error for every 30,000 bases. The error rate can be applied to a plurality of cDNAs. In embodiments, a cDNA of this disclosure can comprise from 500 nts to 12 kb in length. In embodiments, generation of a cDNA as described herein is performed without using any methyl mercury, such as methylmercury hydroxide. In embodiments, cDNA according to this method is performed without use of any reverse transcriptase obtained or derived from a bacteria, including but not necessarily limited to Thermus aquaticus. In embodiments, a cDNA generated according to this disclosure does not include an A-overhang. In embodiments, a cDNA according to this disclosure is generated without using any RNAase H.


It will be recognized from the foregoing that the present disclosure provides flexible approaches for detecting the presence, absence and/or amount of ssRNA or dsRNA by virtue of detecting the presence, absence and/or an amount of cDNA. Those skilled in the art will appreciate that as described above, this approach can be adapted to test any biological sample for dsRNA or single stranded RNA, which can be a critical step in detection and/or discovery of viruses, as well as other dsRNAs that may be present in a biological sample. Other dsRNAs from which cDNAs may be generated according to this disclosure can include double-stranded segments of RNA polynucleotides present in RNA secondary structures found in ssRNA virus genomes, mRNAs, tRNAs, snoRNAs, miRNAs, siRNAs, shRNAs, etc. Accordingly, in certain approaches an RT of this disclosure can be used for direct dsRNA sequencing and for instance, for RNA secondary structure mapping.


In certain approaches an RT of this disclosure can be used for screening a plurality of test agents to determine if they are candidates for use as an RT inhibitor, including but not necessarily limited to an RT that is a component of an RdRp. In general, the method comprises analyzing test agents using any system wherein the production of cDNA from dsRNA can be measured. In one embodiment, the method comprises screening a plurality of test agents to identify candidates for use in reducing RT activity by: a) contacting a plurality of distinct test agents (which may be divided into separate reactions chambers, such as in a high-throughput screen) with an isolated or recombinant RT of this disclosure in the presence of an RNA and RT-PCR reagents; b) allowing the test agent to be in contact with the RT for a period of time, and subsequently, c) measuring cDNA, wherein determining less cDNA relative to a control indicates the test agent is a candidate for use in inhibiting the RT. The presence and/or amount of the cDNA can be determined using standard approaches.


In an embodiment the disclosure provides a kit comprising an isolated or recombinant/modified RT as described herein. The RT can be provided as a single component or with other components, and can be included in or more sealed vials. The kit can include any reagents required for performing one-step or two-step RT-PCR, including but not limited to amplification buffers, one or more primers, nucleases, and dNTPs, including deoxyadenosine dATP, dCTP, dGTP, and dTTP. In an embodiment, an RdRp comprising RT activity is present in or provided with a buffer, such as a reverse transcriptase reaction buffer, which may comprise added dNTPs. The dNTPs need not include added nucleoside triphosphates that contain ribose as the sugar (NTPs). In embodiments, a buffer or other reaction component of the disclosure does not include uridine-5′-triphosphate (UTP) because the kit and other aspects of the disclosure are designed for DNA synthesis only. Thus, the kit and/or buffer includes dTTP instead of UTP. Accordingly, the disclosure includes buffers to which no UTP is added. In embodiments, the only nucleosides added to a buffer used in embodiments of this disclosure are dNTPs. In embodiments, the only nucleosides in a buffer or other reaction component of this disclosure are one or more dNTPs, and thus a buffer of this disclosure may include a nucleoside or nucleotide component which consists of, or consists essentially of, one or more dNTPs.


The dNTPs may be provided in any suitable molarity, such as from 1-20 μmol. In an embodiment, the dNTPs are provided in 8 μmol solutions. The kit may optionally include instructions for performing the RT that are either written on paper or in a computer-readable format.


In an embodiment, the RT is in a lyophilized form, and the kit further includes instructions for reconstituting the RT for use in cDNA production.


Additional representative RdRp amino acid sequences that comprise suitable RT domains are as follows:


The Following Representative Amino Acid Sequences are from RdRps from Group I Partitiviruses (genus Betapartitivirus)











Atkinsonella hypxylon virus




(SEQ ID NO: 39)



MSTLLIPQDTIAHTFDEAVASESNLRIDEVPENYLERFIHPSEPENFEFYSLRDSDIPSKRIPKNGIQVFENLKYHTNSKD






NLYKDQPSSGPSPMRGVANIIREYFPQYLDDLRTWCRPKSSDDSIFNDFNHEQRITQPFTEERERRLLPLIDHFLGIKPYD





IVHYCDTRFYPWKLSTRADYFHNHSRDRKAHAAKSHPDFATGPTKKSYFINSHLFFDRSTVHNIKEYGFPFRPTTDSARNE





TLLDLWFKKVPTELLVRSHISKRDNLKVRPVYNAPMIYIRIECMLFYPLLAQARKRDCCIMYGLETIRGGMNELERISNAF





NSFLLIDWSRFDHLAPFTISNFFFKKWLPTKILIDHGYAQISNYHDHVHSFSAQAQSHGIPMISKEYQTPPEATVFAKKVL





NLISFLERWYRDMVFVTPDGFAYRRTHAGVPSGILMTQFIDSFVNLTILLDGLIEFGFTDEEIKQLLVFIMGDDNVIFTPW





TLLKLIEFFDWFAKYTLDRFGMVINISKSAVTSIRRKIEVLGYTNNYGFPTRSISKLVGQLAYPERHVTDADMCMRAIGFA





YASCAQSETFHALCKKVFQYYFAKTSINERLILKGRKAELPGMFFAYPDVSEHIRLDHFPSLSEVRILLSKFQGYLKETPF





GTIPTFSTPQTLRDQTQ





Cannabis cryptic virus Fedora


(SEQ ID NO: 40)



MPYNAVRNYLAERMIRTKREWQLYQSSNRDPESTLEHYQDSDYLRYYQNARFNLNQEERFRALNKEYSTLVEAFRTDNLRK






HQPYELHQPIPPDAAPIPDKRQPAPGIKLVPLMYHYGHVVHDTPSTTDDHTSNDDSQSAPSRLLKTTEFGYSIDKQIYDLV





CRRYPTYLSVINLYCRPLGTVDATFSDFNKEQIPSNPIDPDRKEHVLKHIFKFLDATPYLPVHFVDTQFCKTPLVTGTGYH





NRYSFKQKAHAKYSHPEEYATYPSSKGYFYNATYENARTLVHYIKQNGLPFEFDFNLSEESLTDEQIDLFVNRSNAFFNDY





PTLLFTRNHISKRTGPLKVRPVYAVDDIFIIIELMLTFPLTGQARKPSCWIRMARNHSGSNRYIDRLGRSYSTFFFINWAS





YDQPMPRVITDIYYTDFLRSLIVINHGYQPTYEYSFYPDLDEHKLYDRKNNLLFFLHTWYNNMTFLLPDGFAYRRSYCGVP





SGLYNTQYLDSFGNLFLIIDAMIEFGFTDSEIDGFVLLILGDDNTGMTQMHIHRISQFINFLEKYALERYNMVLSATKSVL





TTLRSKIETLGYQCNYGSPKRDIDKLVAQLCFPENGLKPHTMSARAVGIAYAAAGQDYVFHSFCQDVYNMFRSYYKPDARA





NLFFQRQVLQNLEDGIPDLATPVVPPFPSLFEVREMYSEYKGPLSFEPKWNKAHFINDPNDIPPFSKTMRDYEKEHNLPVR





VSPTFETVVPSTKNLP





Cannabis cryptic virus Hemp


(SEQ ID NO: 41)



MPYNAVRNYLAERMIRTKREWQLYQSSNRDPESTLEHYQDSDYLRYYQNARFNLNQEERFRALNKEYSTLVEAFRTDNLRK






HQPYELHQPIPPDAAPIPDKRQPAPGIKLVPLMYHYGHVVHDTPSTTDDHTSNDDSQSAPSRLLKTTEFGYSIDKQIYDLV





CRRYPTYLSVINLYCRPLGTVDATFSDFNKEQIPSNPIDPDRKEHVLKHIFKFLDATPYLPVHFVDTQFCKTPLVTGTGYH





NRYSFKQKAHAKYSHPEEYATYPSSKGYFYNATYENARTLVHYIKQNGLPFEFDFNLSEESLTDEQIDLFVNRSNAFFNDY





PTLLFTRNHISKRTGPLKVRPVYAVDDIFIIIELMLTFPLTVQARKPSCCEVIYGFETIRGSNRYIDRLARSYSTFFSLDW





SSYDQRLPRVITDIYYTDFLRSLIVINHGYQPTYEYSSYPDLDEHKLYDRMNNLLFFLHTWYNNMTFLLPDGFAYRRSYCG





VPSGLYNTQYLDSFGNLFLIIDAMIEFGFTDSEIDGFVLLILGDDNTGMTQMHIHRISQFINFLEKYALERYNMVLSATKS





VLTTLRSKIETLGYQCNYGSPKRDIDKLVAQLCFPENGLKPHTMSARAVGIAYAAAGQDYVFHSFCQDVYNMFRSYYKPDA





RANLFFQRQVLQNLEDGIPDLATPVVPPFPSLFEVREMYSEYKGPLSFEPKWNKAHFINDPNDIPPFSKTMRDYEKEHNLP





VRVSPTFETVVPSTKNLP





Crimson clover cryptic virus 2


(SEQ ID NO: 42)



MPFNAVRNYLNERMTRLKQEWKTYQSTDHDPIKILDTIQDPDYRRYLDNARFNSDNEMKHLMLNKEYSTLVEAYRTDNAKK






HQVYELHQPIPNDAAPVIQSRLPAKGIKLVPLMYHYGHVTHDPVSLTDANRSDDFETQVVPDSDAPTRFGYPIDVRIYNLI





CYRYSKYLEVINAYCRPIGTVNATFEDFNKEQIPSAPIDPKRKENVLSHIHKFLDTKPYLPLHFVDTQFCKTPLVTGTGYH





NRYSFKQKAHAKYSHPAEYATKPISKGYFYNATYENARTIIHFIKEYGLPFNVIRADDKSELTDSDVQKYINEANSFFNDY





PTLLFTRNHISKRDGPLKVRPVYAVDDIFIIMELMLTFPLTIQARKPSCCEVIYGLETIRGSNRYIEQIARDYSTFFSLDW





SSYDQRLPRVITDIYYTDFLRSLLVINNGYQPTYEYPTYPDLDEHKLYHRMDNLLHFLHLWYNNMTFLLPDGYAYRRTSCG





VPSGLYNTQYLDSFGNLFLIIDAMLEFGFTDSEIQKFILLVLGDDNTGMTTIPICRMFNFITFLEKYALERYNMVLSTTKS





VLTTFRSKIESLGYQCNHGSPKRDIDKLVAQLCYPENGLKPHTMAARAIGIAYASAGQDDMFHSFCQDVYNIFRSDYRPDD





RMNLHFKRQIFHNLEDGMPDLAPPIVPPFPSLYEIREMYAYYKGPLDFAPKWNYAHFMSDPDTTPPYSKTMRDYEAENNIS





SRVAPTFETVVPSTINLP






Ceratocystis polonica partitivirus



(SEQ ID NO: 113)



MPSFSANPTYQTLIDDIDFDVPIAHPFSVINTDLQPVDDEETVHDLGSKDFEFYKVVSDNLPPTRAPSIGIESLPNIRYHN






HSNDHRYRDQPPTGPPPMRGVRKIINDSFPQYLPYLKEWCRPKTSSDAIFEDFNQPQIPSIPLSYNRKQRILNLVNHFMGV





KPYDIVHFCDTRFYPWDLSKKADYFHNHSNARKRHAQTSHASTATGPTKKSWFINAHLFHDRSTVHNIKLYGLPFKPHSYE





ARNKILLELWFKKIPTELLVRSHISNPKKLKVRPVNNAPMIFLRIECMLFYPLLAQLRKQQCSIMYGLETIRGGMMEIESL





ATRFSNFMMIDWSKFDQTVPFTLVDMFYQDWIPTLILVDSGYAKIHNYNDHVHSFAAQARKLGVHGDSNLNEAPPEAAVFA





NKVENLLKFINTWFKEMVYITPDGFAYSRTFAGVPSGILCTQLIDSFVNLVVLIDSLFEFGFHESDIKSALILLMGDDNVV





FAPDKLSQLHSFFKFLPDYAKKRWNMKVNVDKSIFTTLRRKIEILGYTNNYGMPVRSLSKLIGQLAYPERHVNDSDMCMRA





IGFAWCAAASDSTFHDFCRKVFIYYYARVNVPIKDLVQSNASALPGMFFAYRDVHQHIKLDHFPSIEEVRQVLSKHHGYLT





EEPLWKYDFFLHPKP






Ceratocystis resinifera partitivirus (SEQ ID NO: 43)



(SEQ ID NO: 43)



MPSFSANPTYQTLIDDIDFDVPIAHPFSIINTDLQPVDDEETVHDLGSKDFEFYKVVSNDLPLNRAPSVGIESLPNIRYHN






HSNDHRYRDQPPTGPPPMRGVHRIINDSFPQYLPYLKEWCRPKTSSDAIFEDFNQPQIPSIPLQHSRKQKILKLVNHFMGV





KPYDIVHFCDTRFYPWDLSKKADYFHNHSNARKRHAQTSHASTATGPTKKSWFINAHLFHDRSTVHNIKLYGLPFKPHSYA





ARNKILQELWFKKIPTELLVRSHISNPKKLKVRPVNNAPMIFLRIECMLFYPLLAQLRKQQCSIMYGLETIRGGMMEIESL





ATRFSNFMMIDWSKFDQTVPFTLVDMFYQDWIPTLILVDSGYAKIHNYNDHVHSFAAQARKLGVHGNSNLNEAPPETAIFA





NKVENLLKFINTWFKEMVYITPDGFAYRRTFAGVPSGILCTQLIDSFVNLVVLIDSLFEFGFHESDITSALILLMGDDNVV





FAPDKLSQLHSFFLFLPGYAKKRWNMTVNVDKSIFTTLRRKIEILGYTNNYGMPVRSLSKLIGQLAYPERHGFDSDMCMRA





IGFAWCAAACDSTFHDFCRKVFMYYYARVNVPIKDLVQANASALPGMFFAYRDVHQHIKLDHFPSIEEVRQVLSKHHGYLT





EEPLWKYDFFIHPKP






Fusarium poae virus 1



(SEQ ID NO: 44)



MLANIRDYFHEKLTRLLYDHKIFQSNSKDPDLTLEAHHSSDIERIYKSIHYDFNRSPAPIDYEAQYQSIKHILEDKQSQQG






FPHEYYRLHESPIPDDRIPPSGIKLLPFEYKSMNVVTATPEVPESGFKIHPRIERLLRSKYPQYLQYVRKYTRPLGTTNAT





VSDFFKPQTPSQPVEPTRINHVMSHVMKKMAITPYLPLHFVDTQYDKRPLANGTGYHNRRSHEMNIHALFSHPKEYESKRT





SKGYYVNAFLESARSLIHWIKLYGNPFRHCPSDLAQSLREFFLQRPTMLFTRNHISDRDGILKQRPVYAVDDLFLTIESML





TFPAHVIARKPECCIIVIYGLETIRGSNQILDKIASDYKSFFTIDWSGFDQRLPWVIVKLFFTEYIPRLLVVNHGYAPTYE





YPSYPDLTTNDMVSRLTNLITFLATWYFNMVFVTADGFSYVREHAGVPSGMLNTQFLDSFGNLFLLIDGLIEFGSTDAEID





DILLFIMGDDNSAFTTWSITHLEQFVSFFETYALSRYGMVLSKTKSITTTLRHKIETLSYQCNFGHPRRPIGKLVAQLCFP





ERGPRPKYMSARAVGMAWASCGQDKTFHDFCRDVYHEFNDDRADLDESAYLHIQSHLPGYLKIDESVRQIVDFQVFPSQQT





VYHTVSRWKGPLSYQPEMGSCSLCQPT






Heterobasidion partitivirus 8



(SEQ ID NO: 45)



MLSKVRDFFHEKLSRLLLQHSIFQSNDKDEEQTLLENQSSDVKRIYNSIHYSFQTDDTQAAYEDQYQHIKHVLEDKDRLSN






FPAEFYLPYDTTTTPDNRVPPSGIDQLPYVYKRTNVVTATDEVPETGYPIQNRLLRLIRSRYPQYLPHVRTFTRPLGTTDA





TVSDFFKPQHPSRLVDPSRISHVMKHVMNKMAITPYLPIHFVDTQYDKRPLSTGTGYYNRRSHEANIHALYSHPKEYENKR





TSKGYYINAFLESARSLVHWIKSYGNPFRSKPADPRESLKKFFLQRPTMLFTRNHISKILGALKQRPVYAVDDLFLTLESM





VTFPAHTIARKIECCIIVIYGYETIRGSNVQLDRLAQRYNSFFTIDWSGFDQRLPWVIVLLFFTEFLPRLLVINHGYAPTY





DFPSYPDLTTEMMYQRLSNILSFLATWYFNMVFITADGFAYVRRFAGVPSGLLNTQFLDSFGNLFLIIDALIEFGAQDEEI





DSILLLIMGDDNSGFTIWSIARLEQFITFLESYALTRYGMVMSKTKSLVTVLRHKIQTLSYTCNFGRPLRPIPELVAHLVF





PEREFKPQFMSARAVGMAWASCAQDKTFHDFCRDVFYEYLEESVPVDNTNIAWIQSHLPGYLRVDPEVTKMIDLNVFPSFL





HVSQKLSRWQGPLSYQPKWDLAHFINQPDVIPDDSITMFEYMQEHSLSLDIQFDLFSA






Hop trefoil virus 2



(SEQ ID NO: 46)



MPFNSVRNYLEERSVRVKKEMMTYQSSNRDPDAILEQSQDPDYRRYYDNARYNPSNDLKYRMLSKEYSTLVEAYRLRNDDK






HQPYELHQPVPQDAAPVPSYRAPAPGIKPVPLMYHYGHVIHDPVSLTESAIDDDSDTLPDSDEPTVTHFGYPINKRIYDLI





CNRYPEYLSVISAYCRPIGTVDATFKDFNKEQIPSGPIDPNRKEEVLTHIFRFLDAQPYLPLHFVDTQFCKTPLVTGTGYH





NRYSFKQKAHAKYSHPEEYAQMPTSKGYFYNATYENARTLVHYIKEYGLPFNIHYTPEDVDFTEEQIQAYIDSANNFFNDY





PTLLFTRNHISKRDGTLKVRPVYAVDDLFIIIELMLTFPLTVQARKQSCCIMYGLETIRGSNHYIERLARSYSTYFSLDWS





SYDQRLPRVITDIYYTDFLRRLIVINDGYQPTYEYPTYPDLDEHKMYTRMDNLLTFLHTWYNNMTFVLADGYAYRRTYCGV





PSGLYNTQYLDSFGNLFLIIDAMIEFGFRTPEIDDFILLVLGDDNTGMTVISIDRIYDFITFLEIYALTRYNMVLSTTKSV





LTTLRSKIETLGYQCNHGSPKRDISKLIAQLCYPENGLKPHTMASRAIGIAYASAGQDYMFHSFCQDVYNMFRLDYKPDAR





TTLNFQRQIYHNLDDGIPDLATPVVPPFPSIFEVREMYSRYQGPLTYAPKWNFAHFINSPDVTPAHYKTMRMYEIENNITI





RPAPTFETVVPTTRNFP






Lentunula edodes partitivirus 1



(SEQ ID NO: 47)



MVFQQIRDFLSERKLRIQEEWRRYQKAVSRDDTELRQSDASDIRRMYEATRDQLTEQEKAAVLDREFQGLIDSMLLKNENK






KENFEFSSTSAFDGFPPNRVPISGIAGIPRRFHTGQIVSESNEVPESGYPLDTLIDTLITNKYPEYRYYVDKYTRPLGTTD





ATFKDFNKEQVLIEPLDSARKERVMMHVHERLATTPYLPIHFVDTQFCKLPLHTGTGYFQRHSFWTQTHSKYSRPEEYHDR





PTSKGYVMNAFLILARTAVHKIKVSGLPFDFDFDDFEDDNAAFNELAKYLDKFLNDHATMLFTRNHISQRDGKLKQRPVYA





VDDLFILIEAMLTFPLLVLARDPACCIMYGLETIRGSMIYIDQISRMFNSFATIDWSEYDQHVPRPITDVYYYEFLPDLIV





INHGYQPTYEYPTYPDLDEHAMYKRIDNLLFFLHFWYNNMTFVTADGYGYRRKHCGVPSGLFNTQYLDSFGNTYLIIDGLC





EFGCSDEEIRLFLIFVMGDDNSLMSYWTLERLIAFIQFFEAYAKMRYNMTLSRTKSTLTAVRSKIEMLGYQCNFGRPSRPI





GKLVAQLCYPERGLFRKFMSYRAIGVAYASAGIDVKFYKFCKDIYFTYLPYAVAASEFNFLRAATHLPGYLKAFDDVSDYI





NFEKFPTIYEIREVYSYYHGPLSYEPKWNRAHFINRPNIVPPSAKTVGDYRRENNLQPRQVPILPTD






Primula malacoides virus



(SEQ ID NO: 48)



MPFNAVRNYLAERLVRVRTELKNFTSSNREPDATLELSQDPDLRRYYDNTRYNSSNDAKYRTLNKEYSTLVEAYRTDNQQK






HQPYELHQPIPADAAPIIDKRQPAPGLKLVPLMYHYGHVIHDPDPDQPDQTKVYPLDSRIYNLIMSTYPSYLSVLHDYCRP





IGTVEATFNDFNTEQIPSAPIDEDRKQQILKHLFKFLDVKPYLPIHFVDTQYCKTPLVTGTGYHNRYSFKQRAHAKYSHPE





EYALKSTSKGYFYNATYENARTLVHLIKTYGLPFNMQFACPKSDLTDEQINLYISKANQFFNDYPTLLFTRNHISKRSGTL





KVRPVYAVDDIFIIIELMLTFPLTIQARKPSCCIMYGLETIRGSNHYIDRLARPYSTFFSLDWSSYDQRLPRVITDIYYTD





FLRSLIVINHGYQPTYEYPTYPDLDEEIKLYSRMDNLLYFLHTWYNNMTFLLPDGYAYRRTHCGVPSGLYNTQYLDSFGNL





FLIIDAMIEFEFTDDEISKFQLLILGGDNTGMTNLAIDRIDKFITFLETYALARYNMVLPKTKCILTSLRSKIVTLGYECN





YGSPKRDIHKLVAQLCFPENGLKAHTMSARATGIAYASAGQDIMFHSFCQDVYNIFRSDYKPDVRANLYFQRQFLNDLEEG





VPDLATPTVPPFPSLYEIRKLYSKYQGPLSFTPKWNSAHFINEPDSVPISAKTMRQFEEEFSIPLMTAATFETVVP






Pleurotus ostreatus virus



(SEQ ID NO: 49)



MSFLRIRDYFTERLKHLSRDWKIFQQSDSDPESTLATHLDSDIARLEHGIKSSLSDDQRQQAYEREYNRIHSALHDKARQD






GFPDEFYRSRSIDDLPDNRIPPSGIIPLPYEYHRSQVVISTEEVPETGFQIDPRIVRILRNKYPQYLPHVTKYVRPLGTTD





ATVKDFFKPQIPSDPIPEARKQRILDLVISFLACTPFLPLHFIDSLWDKTPLHTGTGYFNRHSFAARIHAMFSAPRLYERR





TTSKGYFINYFLETARSTIHNIKLHGFPFDPSKVPDLGSALRSFILKRPTMLFTRNHISDRDGNLKQRPVYAMDDLFIRLE





SMITFPLHVMARKIECCIMYGYETIRGSNRQIDKIASSFRSFFTIDWSGFDQRLPRVITDIFWSDFLERMIVISHGYQPTY





DYPSYPDLTPDKMFQRMDNILFFLHTWYNNLVFVTADGFAYIRTCAGVPSGLLNTQYLDSFSNLFLIFDGLIEFGCSDAEI





YQIFLLVMGDDNSAFTLWSIAKLEEFLSFFESYALRRFGMVLSKTKSVITVIRGKIETLSYQCNYGAPKRPLAKLVAQLCY





PERGPRAKYTSARAIGMAYAACAMDRTFHDLCRDIYYEFLDDSASPDEPFFFEHVQAYLPGILRTDESLSTQISLSSFPSF





LTVQQHISRWQGPLSYYPKWDRAHFINDPDVIPPSAETMAEYRSRNSIPRRDIPSLWQ





Red clover cryptic virus 2


(SEQ ID NO: 50)



MPFNSARNYLAERMIRTKQELMTYQSEDHNPDAILEKSQDPDYRRYYDNTRFDPSNEVKHRILNKEYSTLVEAYRIKNDRK






HQPYELHQPIPEDAAPIPESRVPAPGLKLVPLMYHYGHIVHDPVASESDSDDDNTASERPSKTSIPHFGYPVNKRIYDVIV





NVYPEYLKVIGEYCRPIGTVEATFADFNKEQIPSAPINIERKEQVLTHIFKFLDAQPYLPLHFVDTQFCKTPLVTGTGYHN





RYSFKQKAHAKYSRPEEYAKLPTSKGYFYNATYENARTLVHFIKQFGLPFNLQYAPEDADPTDEQVQSYIDTANSFFNDYP





TLLFTRNHISKRDGTLKVRPVYAVDDLFIIIELMLTFPLTVQARKQSCCIMYGLETIRGSNHYIERLARSYSTYFSLDWSS





YDQRLPRVITDIYYTDFLRRLIVINHGYQPTYEYPTYPDLDEHKLYSRMNNLLYFLHTWYNNMTFVLSDGYAYRRTHCGVP





SGLYNTQYLDSFGNLFLIIDAMLEFGFSESEIDNFILLVLGDDNTGMTVISIDRIYDFINFLEKYALIRYNMVLSPTKSVL





TTLRSKIETLGYQCNHGSPKRDISKLVAQLCYPENGLKPHTMAARAIGIAYAAAGQDPMFHSFCHDVYNLFRLDYKPDART





NLNFQRQIYHNLEDGIPDLATPVVPPFPSLYEVRHMYSKYQGPLSYAPKWNYAHFINDPDVTPPSPKTMRDYEIENDLISR





TAPTFETVVPATRNFP






Rosellinia necatrix partitivirus 1-W8



(SEQ ID NO: 51)



MVLTIIRDYLHEAQLRLKKEWQTFQKSDQESGYSDKLPTDYDLRRYYDSARDYDAEKHKTEEYQHNFALTHERYTQMNADR






NEPFEFYRPLEDNELPDIRFPAPGITVLPFRYHTGQIVETTDELPDSGFSLHPLIDYLTKTKWLHYRPYIDKYCRPLGTTN





ATFSDFNREQIPSAPIDETRKNMVLPLVIYFLNALPFLPIHFVDTRFCGTPKHTATGYFQRFSTFFRTHAYYARNKLYALR





PTSKGYFFNTVYEFSRTWMHHIKEHGYPFVPSHDALDNARQYRIFMQKHVTMLFTRNHISDRDGFLKQRPVYAVDDFFILC





ELMISFPLHVMARYPINGIKSCIMYSFETIRGSNRYLDSIARDFISFFTIDWSSFDQRVPRVITDIFWTDFLRQLIVINHG





YQPTYEYPAYPDLSEHDLYKRMNNLLHFLHTWYNNMVFVTADGFAYLRSAAGVPSGLLNTQYLDSFCNLFLIIDGLFEFGF





TQAEILSIVFFIMGDDNSGFTMMDIERLTQFIEFFESYALKRYNMVLSKTKSVITTLRSRIETLSYQCNGGNPKRPLGKLI





AQLCYPEHGPKDKYMSARAIGIAYAAAAMDEEFHEFCRDIYHTFLPYAAPIDEHTLSMATKHLPGYFKMLDNIASEIKFDS





FPTLEMVQDKYSRWQGYLSHKPKWNDAHFKFLPETVPNNIKTMTDYQLEHKLDTPVPHSLF






Rosellinia necatrix partitivirus 6



(SEQ ID NO: 52)



MSSVFNNVRNYLQERLQHVKREWQIYQATGASSSNMTEERIQQLQDLDTRRMFHTARNAFDTTTNTPGPVSRITEEQRRLI






YDAESDKIMNALRQHDEMRSQPFELFMTRPDSDPIPPNRIAAPGIWQSPLQFHTGQIVHADPSTTSVLHPDEHEDYAESYL





PGDTDQGYEIDPTIYELLTRKYPEYLPYAQQYCRPKGTTDGTFRDFNKEQKPCPPLDSDRKEHVLKHVFKRLAIDPYLPLH





FVDTQYCKLPLVTGTGYHNRYSYRQKAHASFSHPLQYGSRPTSKGYFYNATYENARTIIHNIKESGVPFNIHFAPEDRDIT





DTEIDEYRRKCNNFFDQYPTLLFTRNHISNRDGTLKVRPVYAVDDIFIIIEAMLTFPALVQARKPDCCIMYGLETIRGANH





KLDSLAQSFSTYFTIDWSGYDQRLPRAITDLFYTDFLRRLIVISHGYQPTYEYPTYPDLNEDNMYDRMDKLLKWLHLWYNN





MTFVTADGYAYRRMYAGVPSGLFNTQFLDSFANLYILIDGMIEFGFTDEEIDSFLLFVLGDDNSGMTNLSLARLHEFIQFL





EAYALTRYHMVLSHTKSVITALRNKIESLGYQCNFGLPKRDIGKLVAQLIYPEEIKIKYHTMSARAIGLAYASCAYDKTFY





NFCKSIYNIFLDYYEYDEKTALNLSRFLTTGQDDLTTQFSWKILPPFPTREEIRKQISFYHGPLDYAPKWNFAHFINKPDV





IPPSSKTMYDYEIEHSLRPQPAPTFVAR






Sclerotinia sclerotiorum partitivirus 1



(SEQ ID NO: 53)



MDSIRNIFQELRQTNVLEWKLFQKFGQTTTNPTYSHPDADLRRIQETFRDPHLERSQTQEFKLHYTDTYSGFRESDLSKNE






DFEFYKPIDPSSIPASRLPAPGISVLPIRTHAEQVITATEQVPETGYQLHPLLRHLIVSKYPLYMQHATKLCRPLGTTDAT





FDDFNREQKQYPPIEPELALRIVRIIIHLLYALPFLPLHYIDTFFCKMPLHTGTSYFYRHSYELRTHVAFSAPSEYENKQT





SKGYFFNAFTSWARTVAHRIKEFGYPFDPTQLTPSEITDKLRSFFMEHATMLFTRNHISDRDGALKQRPVYAMDTLFLHLE





AMITFPLHVLARSSRSAIMYSMETIRGGCARMDALASSCQSYLCIDWSSFDQRMPWIIVDLFFTLFLPLLLIISHGYQPTA





EYSEYLGLTPDKMFSRLFNIISFLRLWYYNCVFVTADGYAYVRRFAGIASGMLNTQYLDSFCNLFLMIHALLHFGCTNEEI





LDFIYFVMGDDNVILTQWTIDRLFSFLTFFESHSLSRFGMVISTKKSVITSLRSRIEMLGYQCNCATPKRPISKLVAQLCY





PEHGPNDKYMSSRAVGMAWASAGYDAEFFAFCKDVHTLFTPFAAPPSEQTTQTILKHLPGLFKMLDDVTEFTNPQAFPDIM





TVRNRYATWQGELSPDKKWSRAHFLRRPDDTPLPFQTMFEYMSEHGITFPEPQQLF





White clover cryptic virus 2


(SEQ ID NO: 54)



MPHNSTRNYLAERMIRTKRELMTYQSKDRDPDAILEASQDQDYRRHYDNARYDPSNEVKYRILNKEYSTLVEAYRLRNDRK






HQPYELHQPIPEDAAPIPKSRVPAPGLKLVPLMYHYGHVVHEPAHSDESDSDDNSDAPTRPVKESVPHFGYPVSKKIFDLI





VRVYPEYIKVINTYCRPLGTVEATFADFNKEQIPSAPINSKRRETVLKHIFKFLDTQPYLPLHFVDTQYCKTPLVTGTGYH





NRYSFKQKAHAKYSHPEEYAKMHTSKGYFYNATYENARTLVHFIKQFGLPFNLQYAPEDADLTDDQVQSYIDAANNFFNDY





PTLLFTRNHISKRDGTLKVRPVYAVDDIFIIIELMLTFPLTVQARKQSCCIMYGLETIRGSNHYIERLARSYSTFFSLDWS





SYDQRLPRVITDIYYTDFLRSLIVINHGYQPTYEYPTYPDLDEHKMYSRIDNLLYFLHTWYNNMTFVLSDGYAYRRTHCGV





PSGLYNTQYLDSFGNLFLIIDAMLEFGFSDAEIDDFILLVLGDDNTGMTVIPIDRIYDFINFLEKYALVRYNMVLSPTKSV





LTTLRSKIETLGYECNHGSPKRDISKLIAQLCYPENGLKPHTMAARAIGIAYAAAGQDFMFHSFCHDVYNIYRLDYKPDAR





TNLNFQRQIYHNLEDGIPDLATSVVPPFPSLYEVRHMYSQYQGPLTYAPKWNYAHFINDPDDVPPNPKTMREYEIENDLIS





RTAPTFETVVPATRNFP







The Following Representative Amino Acid Sequences are from RdRps from Group II Partitiviruses (genus Alphapartitivirus)










Amasya cherry disease-associated mycovirus



(SEQ ID NO: 55)



MDHLTSLFELFAITPKTQNNLQFVGIYHRPPHSVRANLRNVEKHKITVAHAMHKYLYPHEIDFVINQMRRSDVTEDAILAD






FFDNNVEPLEPVLDEHFERGLSAMLDAFRPPQKCLPAHIYDVQHHYPYKWQVNAEAPFSTDSYFLANRPTFRAVFERLESL





YTHLATDWHRRYGNKTDNDDFMNDHVPAKFGPMKETVFSWTHRWHHVIKSNFTDTAGLSKDYYFKNRYIFPMLLHTKTAIV





KKDDPNKMRTIWGCSKPWIIADTMLWWEYVAYAKLQPGATPMLWSYETFTGGWLRLNHALFSSYIRHSYITLDWKRFDKKA





YFCIIDKIFDGVETFLDFDNGYLPTKDYPDTKSTWTQERSTRLKRLFDWTKENFYHAPIVLPNGHMYVRKFAGIPSGLFIT





QLIDSWYNYTMLATILSAMGFDPRSCIIKVQGDDSIIRLSALIPPDAHDSFLTKVQELADYYFQSVVSVNKSEVRNELNGC





EVLSYRHRHGLPYRDELAMLAQLYHTKARNPSPEITMAQSIGFAYASFGNHERVRLVLHDIHEYYKLQGYTPNRAGLSLVF





GNSPDLMIPHYTLDHFPSLREIKMFLTNAEYVNEETNSRTWPLNHFLHLPCHRT






Arabidopsis halleri partitivirus 1



(SEQ ID NO: 56)



MKNTVVLEPLPSLARPIYGDTDPGRNPAYQSTVDHALRRLLTAEEFNIVVNGYRRSPWNEDALTADIEKLNSDYHHVNKDE






HYYKAIEHTKKLFTPKEKLRPVHFNDLRHYPWQLSTSIGAPFATSEKWKDYINQKYDGKLKSRDFKDLFKETHGVSLEPYM





IDRRLSKRNFYNEMFYINRINIHHIKDGWTTNPAGHDLRYWHTAHARQHLVEAGDEDKVRLVFGAPSTLLMAELMFIWPIQ





TSLLARGSSSPMLWGYETTTGGWSRLYNWAYSALPRFGAVATLDWSRFDKDARHTVITDIHDLIMRPMFDFNSGYHPTIIN





PRSNPDPQRLENLWNWMKNAILTTPLLLPDGTRLQFQHSGIYSGYFQTQILDSMYNCVMIFTVLSRMGFDLNSVAIKVQGD





DSLILLSHSYTFLQHSFLTTFAHHAAVYFGSTLNVKKSELLPSLEDAEVLRYRNHGMMPYREELQLLAMLRHPERTASLSA





LMARSIGIAYANCGNYTRVHHICEDIHNYLKGIGVKPDAFGLPGGLRFRKNYLPSYEEIDISHFPTWLETVERLLDPSRPL





LTNKHWPTTHFFGIPGES





Beet cryptic virus 1


(SEQ ID NO: 57)



MDYLTSAFNRITHWFNVPSNLEYIGTFSLPPGILRVNEVAISNHKKTLEHSFNKYLYAHEIKLITQDYRRSDIDEESILAD






FFSGDVEKFEVPFDEHVETGLRCMADAFRPPRLCRPAHILDVKHGYPYKWNVNAEPPFSTDEYFLNQRKTFGEFIRMHEYE





HIDKADFFRRHPNTESHDLIRTIVPPKFGYLKSMIFSWTRRWHHIIKEGFTESTGLHTTGYFYNRFIFPMLLHTKTAIVKQ





DDPNKMRTIWGASKPWIIAETMLYWEYIAWIKLNPSVTPMLWGYETFTGGWFRLNRDLFCGFLQRSFLTLDWSRFDKRAYF





PLLRRILYTARTFLTFDEGYVPTHSAPTHPQWDHTKAIRLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATLLSALGFDPKHCIIKVQGDDSIIRLNVLVPQDQHQNLMDNLVQLAVNYFNAVVNVKKSEFGNSLNGREVL





SYRNHNGFPHRDEIMMLAQFYHTKARDPTPEITMAQAIGFAYASCANNKRVLWALKDVYDYYKDLGYTPNRAGLTLTFGDS





PDLFVPEISLEHFPTETEIRRYLTSTSYLNEAQNARTWPRTLFINAPAQ





Carrot cryptic virus


(SEQ ID NO: 58)



MDYLTTAFNRITHWFTTPTDFEYIGNFSLPPGLLRVNDTAISNHKKTLEHSFSKYLCADEIHLITKEYRRSDIDLDSILDD






FFSGDVEKFEIPFDEHVETGLRCMADAFRPPRLCRPAHILDVKHHYPYKWNVNAEPPFSTDEYFLTQRKTFGEFIRMHEYE





HIDKADFFRRHPNHESHDLLQTIVPPKFGYLKSTIFSWTRRWHHVIKDGFKDSSGLQTNGYLYNRFIFPMLLHTKTAIVKH





NDPNKMRTIWGASKPWIIAETMLYWEYIAWIKLNPGTTPMLWGYETFTGGWFRLNHQLYCGMIKHSFLTLDWSRFDKRAYF





PLLRRILYPVRSFLTFDEGYVPTHAAPYHPQWNHEKALRLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATILSALGFDPKQCIIKVQGDDSIIRLTVLIPQETHERFMAULTHLATYYFNAIVNVKKSEVANTLNGREVL





SYRNHNGFPHRDEINMLAQFYHTKARDTTPEITMAQAIGFAYASCGNHNRVLWVLNDIYNYYKDQGYSPNRAGLTLTFGDS





PDLFVPEIPLDHFPTKKEIRRYLTASSYINEAQNARTWPRDLFINRPAE





Dill cryptic virus 1


(SEQ ID NO: 59)



MDYLTTAFNRITNWFTKPANFEFVGLYSLPPGLLRVNDTAISNHKKTLEHSFSKYLYEDEIHLITKEFRRSDIDLDSILDD






FFSGDVEPFEIPFDEHVETGLRCMADAFRPPRLCRPVHILDVKHHYPYKWNVNAEPPFSTDEYFLSQRKTFGEFISMHEYE





HIDKADFFRRHPNRESHDLLKTTVPPKFGYLKSVIFSWTRRWHHVIKDGFKDDTGLKTTGYFYNRFIFPMLLHTKTAIVKH





NDPNKMRTIWGASKPWIIAETMLYWEYIAWIKLHPSVTPMLWGYETFTGGWFRLNNQLFCGMIKHSFLTLDWSRFDKRAYF





PLLRRILYQVRTFLTFDEGYVPTHAAPYHPQWDHEKALRLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATILSSLGFNPKQCIIKVQGDDSIIRLTVLIPHENHLKFMERLTELATYYFNAIVNVKKSEVANTLNGREVL





SYRNHNGFPHRDEINMLAQFYHTKARDPTPEITMAQAIGFAYASCGNHKRVLWVLNDIYNYYKDKGYTPNRAGLSLTFGDS





PDLFVPEIPLDHFPTTKEIRRYLTCSSYVNEAQNARTWPRTLFLKDPAE






Diuris pendunculata cryptic virus



(SEQ ID NO: 60)



MEYLIADFSRITHFFRDTTNLTYSGTYHFHPRHPEVNLNAYEAHQRVLRSLMDTHLFPHEIQLITDELRRSDMTIEAILAD






FFANDVEYHEIPFDSHIEYGIKCMLDAFRPPKRCRPVHLLDVQHHYPYKWQVNAEPPFSTDTYFLDNLPTYRDFWNERTSS





FDKYVDPEELNRRLRHRNIENLLDTKTPAKFGFLKNTVFSWTRRWHHIIKDGFTDTTGLTSDAYLRDRFIFPMLLHTKTAI





VKKLDPNKMRTIWGVSKPWIIAETMLYWEYIAYVKQNTGATPMLWGYETFTGGWLRLNAALYTSHVRFSFLTLDWKRFDKK





AYFPLIYKILLGVRDFLDFDNGYAPTVDYPDTKSTWTPHKSQRLQNLWLWTIENLFNAPIVLPDGRMYKRRFAGIPSGLFI





TQLLDSWYNYTMLASLLSALSMNPKSCIIKVQGDDSIIRLGTLIPPSQHEAFLLKLHALADFYFKASLSLDKSEVRNSLDG





CEILSYRHIRGIPYRDEITMLSQFYHTKARNPTPEIAMAQAAGFAYASCGHHRRVYNYLESVYNHYAVQGYTPNRAGLSLV





FGNSPDLILPHFELDHFPTISEIQHYYTSSVYRNESQMSKIWPLDHFLYPPAET






Heterobasidion partitivirus 7



(SEQ ID NO: 61)



MEYLSNLFSRVLKITKTTNFEFVGTYHNQPSIPQVNQIAIDNHQRTIRVAMERYLTSDEFSLITTGYKRTSLDPATITDDF






FSGDIEPHDEPQDLASQLAIEAGLNAMQRAFCPPNPARPVHLYDVEWHYPYKWQVNAEVPFSTETYFLKLRKKFSDFYDAA





SKTWTHYVNPLDALRRYGPEPPFDTLNQVTPPKFGFMKELIFSFVHSWLHVIKSRFHSNAGYTHSNFLRQRFLFPMQLHIK





TALVKADQPNKLRSIWGVSKLWIIAETMIYWELIAYMKLNRGSTPMLWGYETFTGGWFRLNAELQSSHLRQSITTIDWSRF





DKRAYFWLIRKILFRIRQHLDFNNGYVGTKDYPSSPTDPDKLQALWEWTLEALFDSPIILPDGKMYKRRFAGIPSGLYITQ





LLDSWYNYTMLAAILTYLGLDPERCIIKVQGDDSIIRLYVLIPPSEHDNFLLKMQEVATHLFASRISDQKSEVRDDLNGAE





VLSYRNNRGLPYRDEIQMVAQFYHTKAKDPTPEITMAQAIGFAYAACGNNYRIHSLLEEVYNYYHEQGFTPNPAGLSIVFG





DSPDRPDYPIELDHFPTQQETQRFLLSTDYRNAEQDARTWPLLHFLHAPCSRS






Heterobasidion RNA virus 1



(SEQ ID NO: 62)



MDYLTGLFSRVLHISRKVTNFEFAGTYHYQPSIPQVNEVATENHKRTLRHSFRTYLTSDEYDKIVNGYKRTNLDPSTITED






FFSGDIEDHPEPTDFKSQLSIEYGLQCMIDAFKPPAPARVCHLYDVQWHYPFKWQVNAEAPFSTEKYFLDLRKKFGDFFDP





VTKLWTKYVNPLDALRRYGHTPPADTLNQVTPPKFGFMKNLIFSFVHSWQHVIKSRFTSNAGITHSNFLRQRFLFPMLLHI





KTAIVSFDAPNKLRSIWGVSKLWIISEAMIYWEYIAWIKLNPGSTPMLWGYETFTGGWFRLWRDLHTPGEDVTYITIDWSR





FDKRAYFWLIRKIFIRTRCFLDFTNGYVSTKDYPTSPTDPDKLQALWEWTIEAFFDSPIVLPDGSMFKRLFAGIPSGLFIT





QLMDSWYNYTMLAAILHYMGYDPRRCIIKVQGDDSIIRLYIQIPLHEHDLFLLRMQEVSDHLFGAKISFEKSELRNSLIGS





EVLSYRNIQGLPYRDLIKMLAQFYHTKAKDPTPEITMAQAIGFAYAACGNDFRIHELLRSVYDYYKAQGFTPNPAGLTVVF





GDSPDRPDYPISLDEFPSQMDVQRFFLSTDYRNADQENRTWPSSHFLYAPCSRI





Red clover cryptic virus 1


(SEQ ID NO: 63)



MDYFISAFNRITHWFTTPTNFEYVGNYSLPPGLLRVNDVAIANHKKTLEHSFNKYLYSHEIKLITKEYRRSPIDEDSILED






FFSGDFEYFEIPFDYHVEYGIQCMADAFRPPRLCRPVHILDVKHGYPYKWNVNAEPPFSTDEYFLSQRKTFGEFIRMHEYE





HIDKDDFFRRHPNSESHDLLRTIVPPKFGYLKSMIFSWTRRWHHIIKSGFTESTGLETNGYFYNRFIFPMLLHTKTAIVKK





NDPNKMRTIWGASKPWIIAETMLYWEYIAWVKLNPGVTPMLWGYETFTGGWFRLNNELFCGLIKKSFLTLDWSRFDKRAYF





PLLRKILHTTRTFLTFDEGYVPTFAAPTHPQWNQEKAHRLDRLWIWTLENLFEAPIILPDGRMYKRHFAGIPSGLFITQLL





DSWYNYTMLATILSALHFDPKHCIIKVQGDDSILRLTTLIPVDQHANFMSHVVRLASHYFNSIVNVKKSEVANTLNGREVL





SYRNHNGLPHRDEITMLAQFYHTKARDPTPEITMAQAIGFAYASCANHNRVLWVLHDIYNYYHDLGYRPNRAGLTLTFGDS





PDLFVPEISLDHFPTKSEIRRYLTALHYQNEAQNARTWPRTLFINAPGE






Rhizoctonia fumigata partitivirus



(SEQ ID NO: 64)



MEYLVHAFKMFSLEPSVPQNLQMIGTYHYKPASPHVHTPHVEAHKKTVLKAMEKYLYPREINTIVNELRRSDVNLESILDD






FFDNNVPLHRIPFDEHVEYGLQCMADAFRPPRPARPCHLNDVEHHYPYKWQVNAEAPFATDKYFLDNRHKFRDFYDETTGT





WKHADPIDMERRYGNRLDTVLDQITPPKFGYMKNAIFAWTRRWHHIIKDGFTDLTGLVSSTYVRDRFIFPMLLHTKTAIVK





KDDPNKMRTIWGC SKPWIIAETMLYWEYIAWVKLNPGITPMLWGYETFTGGWLRLNAALFSSLMKNSFVTLDWKRFDKRA





YFELIYRIMLVARTFLDFENGYVPNVNYSATHTDWSHTKAQRIQRLWEWTLDNLFNAPIVLPNGDMYKRNWAGIPSGLFIT





QLLDSWYNYVMLATLLSALGHDPKACIIKVQGDDSVIRLAVLIPPQYHELFLTRLQDLADHYFGAVISIEKSEVRNELNGV





EVLSYKHIHGMPYRDEIAMMAQLYHTKARNPEPSITMAQAVGFAYASCGNHDRVYYALKDIYEYYASQGFAPNPAGLTLVF





GNSPDRFELDVPLDHFPTIHEIKKYLLNFEYRNEHQEHKTWPLDYFLNPPCSTL






Rosellinia necatrix partitivirus 2



(SEQ ID NO: 65)



MKNITDLPFPSKGVPQFRDALPIHGRDPEVPNPVTDASNRIIDFALRKHLTSDEFDQVVNGYRRSPWNEDALNKDIEKLDS






DEHTVIKDQHYENAIQHVQKLLTPEKPLQPVHFADLRRYKWRLSTNIGAPFASSKHWQDYVKAKFNHFRDGTPFENIAHRD





LFVEAHKDSQPLEITDARMTKHNLYTEAFYVSRETIHRIKDGETTDRYGNDARYWNTAFARQHLVKADEDDKVRLVFGAPF





SLLCAELMFIWPLFIFLLSLKGSTAFMLWTFETIIGGWYRLVNFFTTYALRHSTVVTVDWSGFDRYARHTVIKDIHHRIIR





PMFDFSHGYHPTRDYPDTSKTKDGQSNEWRITNLWNWMTDAILSTPLLLPNGRFIRFNHSGIYSGYFQTQILDSIYNLVMI





FTILSRMGFDLDKCVIKVQGDDSIFMLLCCFIMISTSFFTLFKYYAEYYFGAKLNEKKSEIRPSLQDAEVLKYRNRNGIPY





RDRISLLAQLRHPERRTDVDSVAARCIGIAYAACGQDATVYLICEDIYNYLVKKYDAHARQGELDFMFRHLELHDTVPSAA





TFPSWFDTMAHLTDGPRDPVPSHWPTDYFIGLPGRL






Rosellinia necatrix partitivirus 7



(SEQ ID NO: 66)



YNVQTAIDAVTEQFRPNRVLHPIQYPDLRYYPWTLNVSAEAPWTSYNFHFVPMDRSVDFESTQPKLIFDINQVNKLRKFSK






PTDVKTYLRWKQQVGLIENDHITFHNLYDEIFIYNRPLIHQIKEGEEPFWKDGQPVPYLWNTLHVRSHVVAHNEPDKLRGV





FGATKLVLQTEQPFIWPLQASYLNTDAGRLLWGREMSKGGWRKLFSEIYTFGPPSTVLSTDWSQFDKRLLHQLIRIVHRIW





RSYFDFTRYEPTNQYPNANPRDPKRLERLWDWMCNAITDTPILLPNGEIWRWQWNGFGSGYQQTQLMDTFANAIMIYTCLT





ALGVDVTNPKFWARFQGDDSLVAFFEQMFRIYGNDFLIMFSAVAEKYFNAKLNVKKSSILGQAHMATVLSYPNWHGTAFRT





DEDLLRHLMFPERPQDLGRLAASAIGLAQAALGCSERFHNLCEYIFTKLVKGKGVKVKWQALKWMVRAGQFETIEQLKRTE





FPTIEELLSQAQIPAIRTESERQRIWRTTPLSKDSFHFTHDI





Rose partitivirus PB


(SEQ ID NO: 67)



MRNTVVIGHRPVLAKPLFGNPDPGSNPAYGDTVDHALKRHLSPEEFDIVVHKYRRSPWNEDALKDDIAKLDSNEHPVLKDE






HYYRAIEHVKKLFTPEEKLRPVHFADLRYYPWQLSSNIGAPFATSKKWQEYVNDKFTAGQTAPQVRNLFQEAHGTPLEPEV





IDRRMTKRNLYNEMFLINRKNIHLIKDGRKTNDSGHDLRYWHTAFARQHLVEHDEPDKVRLVFGAPSTLLMAELMFIWPIQ





VSLLARGPDSPMLWGYETLTGGWSRLHTWATKAQPRLGSVLTLDWSRFDKDARHTIIKDIHSLIMRPMFTFDNGYHPTVYY





PETPETDPNRLENLWNWMTDSILTTPLILPDGKILQFMHSGIYSGYFQTQILDSMYNSVMLFTILSRMGFNIEKVAIKVQG





DDSIILMPYQYTVIKDTFLQFFSAYAQEYFGSTLNMKKSEILPSLERAEVLRYRNHGTMPERDELQLLAMLRHPERTSSLP





SLMARAIGVAYANCGNHTRVYQICEDIYKYLAKGGFKPDPFGLPGGLRYRQNYIPSYVQ1DISHFPTYFETVMHLQDPHRA





ILTNRHWPTDHFIGTPGKS






Rhizoctonia solani dsRNA virus 2



(SEQ ID NO: 68)



MNLYNRVSALFANWFSSPSNLEFVGSYHHQPGTVPPNPSTQEAHKRFLHNVFKQHLFTYELDYIENEHRRSEATPEAIEND






FFANDVEPHDIPFDVHVEIGLQCMTDAFRPPVPCLPAHLNDVEHHYPFKWQVNAEPPFSTDSYFLDNRKLFSDYYDTESQT





WRGYVDPFEANRRYQHTKDKEGFLNQTVPAKFGFMKDTIFSWTRRWHHIIKEGFQTATNLSSTAYLRDRFIFPMLLHTKTA





IVKKDDPDKMRTIWGCSKPWIIADTMFYWEYIAWIKKHPGVTPMLWGYETMTGGWMRLNSQLFSSYLKKSYVTLDWSRFDK





RAYFKLILAIMCRVRTFLDFDNGYLPNVNYPDTRTDWSPNKAQRLERLWLWTLECLIKSPIVLPDGRMYIRHYAGIPSGLF





ITQLLDSWYNYTMICTILSSIGLNPKHCIIKVQGDDSIVRLGVLIPPEAHEAFLLALQSKADFYFKATISVDKSELGNSLN





NREVLSYRNYNGLPRRDEIKMLAQFYHTKARNPTPEIAMAQAVGFAYASCGTHQRVLDALEHVYTDYKDAGYTPNRAGLSL





VFGNSPDIQLPHYDIDHFPSIEEIKRFLTCNSYDNSVQMAKSWPTSYFISEPCERM





Spinach cryptic virus 1


(SEQ ID NO: 69)



MDYLTSAFNRITHWFTKPTNLEYIGDYSTPPSIIRVNEVAIANHKKTLRYAFEQYLYDHEYRMIVDEYRRSDIDQESILAD






FFSGDIEPFDIPFDEHVEHGLRCMANAFRPPRPCRPAHILDVKHGYPYKWNVNAEPPFSTDPYFLSQRKTFGEFIQMHEYE





HIDKADFFRRHPNTESHDFLTTVVPPKFGYLKSMVFSWTRRWHHVIKTGFQDLTGLENSGYLYNRFIFPMLLHTKTAIVKK





NDPNKMRTIWGAPKPWIIAETMLYWEYIAWIKLNSGKTPMLWGFETFTGGWFRLNNILFCGLIKQSFLTLDWSRFDKRAYF





SLLRRILYTARTFLTFDEGYVPTHAAPTHPKWNHQKALNLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATLLSALGFDPKYCIIKVQGDDSIIKLTTLIPRDQHENFMVQLTALATTYFNATINVKKSEIRNTLNGCEVL





SYKNHNGFPHRDEITMLAQFYHTKARDPTPEITMAQAIGFAYASCGNNKRVLWILRDIYNFYKMRDVTPNRAGLTLTFGDS





PDVFMPEIPLDHFPTITEIRRYLTCSEYRNEAQDARTWPRSLFISGPAE






Sophora japonica powdery mildew-associated partitivirus



(SEQ ID NO: 70)



MASTNLLRLGKIPRSKKHNDPLSRSLRINRIRQGIIKRAIYKICPINLARQVIFGFKRSEGSDDVAETDFLRSDVPYFDMK






RDFHYLRALRVCERLFRPSRTLHPIAFPDLRFYPWSLSVSAEAPFSVEKKRSTLIRSRQSDGEDLDGRLTFHNLYNEIFEL





NRNLIHQIKEGDKSFWNKDGTPRPYWYNTLHTRPHLVKSSEPDKLRAVFGVPKLLLMAENMFIWSLQKEYLNQKIQSPMLW





GFETFKGGWLKIWNRMYSKKCSTFLSADWSGFDRFALFECVDDIHRMWRNWFDFSKYEPTIAESGPPGIQLSYPKSKTNPQ





KIERLWNWMCYCSKYTPIKGQSGQLYQWQYNGIASGYQQTQLIGSFVNSIYMLTCLSDLGINIESDNFQLFVQGDDSLTEF





SEIIQKDDLPKFLTNLAKVAKSRFNANLSVQKTTAGESLNDVEVLSYNNTYGIAFRDEAELLAHLLYPERFQTLEATVSCC





IGIAYASMGCSQYVDDTCLDAYNFLTTQFKVKPDSNFLQDFFRIRGSPLTDDFHNPRFPTKDECFNQNYEVRSRSDSEKQR





LWPSIPTGDYGFHFINE






Sclerotinia sclerotiorum partitivirus S



(SEQ ID NO: 71)



MPALNLRYLFSISRSEMKKIRSSHTKVSPREEATRFSILKHAILKHGSVGLLNQVLLGKRRSDASDERLIQDFHEFEQPVH






PVPRDKHYLRALRVTEKLMKPAKTLHPISFPDLRYYPWTKNVSAEAPYNFEKKYEELLRDKQRLGEIETATATFHNLEDEI





FEDNRYLIHKIKEGDSQFWDKDGKPRPYYHTTLHARAHVVGHEDADKIRAVFGVPKLLLMAENMFIWPLQAYYLNQDTTKH





HLLWGNEIMKGGWKKLWGQLQNGRISRTILSLDWSEFDKRALHEVIDDVHSMWKSWFDFTHYEPTIFYEKGEIPEPHRRIE





NLWIWMTDMVKHYPILQPDGKVYQWTRNGIASGFQQTQLLDSFVNMIMLLTVLSANGINIEHPDFWIKVQGDDSLISIVER





RFQMFGISYLDTLADLASYYFNAKLSVKKSFISDTPQGQYVLGYFNHYGIPYRLDDDLLSHLVFPERPQRLEETAASCVGI





AMASMGCSKVVYSICDDAYTFITKTLRRPAKAGSLFWLERAFGYEMPNIAKMPTFEECLYASYDIPVRTENMKQRLWPTNA





KAKNGFYFLRHLC





Vicia cryptic virus


(SEQ ID NO: 72)



MDYLISAFNRITHWFITPTNFEYIGYFSLPPGLLRVNDVAIANHKCTLERSFHTYLFDHEIKRIMIDHRRSDITEDSILED






FFAGDFPYFEVPFDEHVEYGLQCMADAFRPPRPCRPAHILDVKHGYPYKWNVNAEFPFSTDEYFLTQRKTFGEFIRMHEYE





HIDKDDFFRRHPNLESHDFLRTIVPPKFGYLKSTIFSWTRRWHHIIKLGFTDTTGLDNNGYLYNRFIFPMLLHTKTAIVKK





DDPNKMRTIWGASKPWIIADTMFYWEYQAWVKHNPGSTPMLWGFETFTGGWFRLNQLLFCGLIRRSFITLDWSRFDKRAYF





PLLRKIMYTVKSFLTFEEGYVPTHAAPNHPQWNQDKTDKLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATILHALGFNPSNCIIKVQGDDSIIRLNVLVPSERHDHLMSRIVELAEYYFNSIVNVKKSEIRNRLNGCEVL





SYRNHNGLPFRDEIAMLAQFYHTKARDPTPEITMAQAIGFAYASCATHTRVLWVLEDIYNYYRDQGYTPNRAGLTLTFGDS





PDLTMPEMPLDHFPTKSEIVRYLTCTNYRNEAQNARTWPRTLFINAPAE





White clover cryptic virus 1


(SEQ ID NO: 73)



MDYLITAFNRITHWFLTPTNLEYIGSYSLPPGLLRVNDVAVANHKATLDRSFDKYLYEHEINLITKEYRRSPIDEDSILED






FFSGDLPYFEIPFDEHVERGLECMAAAFRPPRPCRPAHILDVKHGYPYKWNVNAEPPFSTDEYFLSQRKTFGEFIRMHEYE





HIDKEDFFRRHPNIESHDFLRTVVPPKFGFLKSMIFSWTRRWHHIIKSGFQDSTDLEQTGYFFNRFIFPMLLHTKTAIVKK





NDPNKMRTIWGASKPWIIAETMFYWEYLAWIKHNPGATPMLWGYETFTGGWFRLNHELFCGLIQRSFLTLDWSRFDKRAYF





PLLRRILYTVKTFLTFEEGYVPTHAAPTHPQWSQENIDRLERLWLWTLENLFEAPIILPDGRMYRRHFAGIPSGLFITQLL





DSWYNYTMLATILSALHFDPLHCIIKVQGDDSILRLTTLIPVDQHTNFMDHIVRLADTYFNSIVNVKKSEVRNSLNGCEVL





SYRNHNGLPHRDEITMLAQFYHTKARDPTPEITMAQAIGFAYASCANHNRVLWVLEDVYNYYRDLGYRPNRAGLTLTFGDS





PDLTMPEMPLDHFPTKSEIRRYHTETHY





QNEAQNARTWPRTLFINAPGE







The Following Representative Amino Acid Sequences are from RdRps from Group III Partitiviruses (genus Deltapartitivirus)










Alternaria alternata partitivirus 1



(SEQ ID NO: 74)



MLLSEIPNVYQRALALERRLRLRELYPEGIIPYLARQEYAGSIAGPRGPSATVAPSVTTSF






IAKAPLSTYSKPEYTLECTETMQYLGKMDHYAFNNSVPKFDPWFRHVLKSKAPDVVLH





LEETYQRDPCTPERVMKFMKLFDRRWKRMPTGNVMKQAKEIVSEMFSKVGKVDPIDF





NYAGWHEILPHLDMSSSPGLPLRREYATQGECLGHIYDKTKRLNHFAKFLHPGAVRAPP





CMIGLRPGLIKKAEIDEKIKARGVWAYPAEVKVIEMRYCIPLMKRFSEMFGKTPYPVGR





NMTKALPFIIDHLLQDKKFGLVTDISKLDTSVGPDWIDWAFSQLKSFFDFGFTLSSERRD





SNVFDFLHFYFKRTPILLPSGQLVKKAGGVPSGSGFTQLVDTLVTTLATVYSRLRMGHT





KDQIFKMFVVGDDMATSVDHDFSIEEFSHIMGQLGFEINPSKVMFSNKGIELKFLGYSKR





GGGLYRPIEELLQTAFFPEKYVGNPNRSRQRILGQSIAAGLSNSFFDKCNYWMEELVTLS





STLDPDEVFIPQKRWMRNVLSIDEMPKSANVYDLFHLV





Beet cryptic virus 2


(SEQ ID NO: 75)



MRTINNYEYTSFTEDLEETDYTHPHVVRRDPEVTYEDTFAKKELLSRYPALYENLIRGW






SRSYYTGQEHLRAIMQYATPNTNFSECVQHAYTKAITKVTESLHSLPTVRAFNVLEELD





LIPYESSSSAGYTYRGVKGPQHGENHMQAIKTAKAVLWSVIKDDGEGIEHVIDTYVPDV





GYTRTQLTDLREKMKVRGVWGRAFHYILLEGTSAAPLLEAFANSNTFFHIGKDPTVSVP





YLISYTKGQAPWLTAIDWQAFDATVSRFEINAAFDIIKSKITFPNLETEQAFEISRQLFIHK





KLAAPNGKIYRIHKGIPSGSYFTSIIGSVVNRLRIEYLWNLKFNRGPKVCFTQGDDSLIGD





DELYSPMDMAAFVKPLNWFINTSKSMTSKVPEAITFLGRSSLGGLNQRDLKRCLRLLILP





EYPVTSGDISAFRANSIWRDSGSTSQILHEIANALRRKYGIAKEQDVPRYLRPWKA





Botryosphaeria dothidea partitivirus 1


(SEQ ID NO: 76)



MLLTEIPNVYQRALALERRIRVRELFPEGLVPYLKRQEHAGSIASPIGPSRSVAPKVTDKF






IAKAPLEDYPDKRYTLECTSTMQYIGQMDAYPFHSSIPEFDPWFRHVLKARAPDVSLHL





EQTYTRDPCTPDRVMSFLKLFDRTWKRKPTGRLMSQAESIVKKMFKCVGQVNPIDFNY





AGWHEILPHLDMSSSPGLPLRREYATQGECLGHIYDKSKRLNHFAKFLHPAAVRAPPC





MIGLRPGLLKKDELDEKIKARGVWAYPAEVKVIEMRYVIPLLERFKSQFGKIPYPVGVN





LTKALPFIIDHLLNDGKHGFVTDVSKLDTSVGPDWIDWAFSFLKDFYYMGMTESSETRN





SHVFDFLHYYFKRTPILFPSGQLVRKSGGVPSGSGFTQIVDTLCTLLMTTYSMLRMGYQ





EDDIIGKIFAVGDDMATSVPSSFDVEQFSFYVGQLGFEINVDKVMFSNRGIELKFLGYSK





YGGNIWRPIDELLQTAYFPEKYVGNPERSRQRILGQTLASGLTNGFLSKVNYWMEELCS





WHTELDTDEVYIPQKRWMRNVLGLDEIPRSALLFDIFPLC





Citrullus lanatus cryptic virus


(SEQ ID NO: 77)



MNISPLLYEQCLSGWSRSYYLHDKHMQAIIQYGYKDVPISSINDRLYKECVHEVQNRLS






SLPRVRALDVLSELDSVTFKSSSAAGYDYIGAKGPKGGENHTRAMSRAKAIMWSIAET





GETGMKHAIETAVPDVGYTRTQLADITEKTKVRHVWGRAFHYILLEGLTADPLIRAVQ





RADTFIHIGKDPTVSVPRLLSDTAEQCKWLYALDWKQFDATVSRFEIEAAFDIVLNLLDF





PNRETKLMFELSKQLFIHKKIAAPDGKIYWAHKGIPSGSYFTSIIGSIINRTEILMLWRTIT





GHGPIVCYTQGDDSLCGDNILIPPERFAMVANPIGWYFNQEKTEYSTIPELITFLGRSYAG





GLNKRDLKRCLRLLIFPEYPVESGRISAYRAQSISDDVGGLGDVLNKLADRLRRSIP





Diatom colony associated virus 14


(SEQ ID NO: 78)



MQEMTYSGVRYRTSNQGDYITKHPFGLSQIGSHKFTPVRRDPHTTIIDPFMMEAFQDYG






DRFNFAKLDGWSRSLYTREGHMDSIHRIQSHTRFHKPTDTSMTKTDDYCLQIFRTLGTV





RSLDYHTQLGQVPFEPNSAAGIGIPGKKGDSGNLALAINQAVATLQRSLRDGISSVIEDS





TPDMAYTRTQLTQLSAGIKVRNVFGQAFQYILLEGLSASPLMDHFVTNETFFFVGSDRPRI





SVPTLLEDFKKKGSLMMSIDWSAFDTSVENWEIVDAFNLLETILEFPNLETRAAFEFSRIL





FINRKIAAPDGNVYFKQKSVPSGSYYTMLIDSIINWRRILYLHHRATGFFPFDIRTQGDDS





LVATRDSVSPEALMLQIPRNSQWQLNPSKCPIGKSGSSVPFLQRTLKWGDQSRDLDRVE





RLAIYPEYEVESGDISAFRARALWEDCNYESVVLAHATSYLESKYGIPTTVPRRYTNIW





QTLFESKEREGLR





Fragaria chiloensis cryptic virus


(SEQ ID NO: 79)



MEHRFRGIPRGLIELEEIPTRRLREERVVHIDAWSSKAIDAIVPLSLRIELDGWARSYYTL






QAHIDSIMQYDRPKLPQPTNAAWNTTTQHVRTQFARMDKVQTLSYLQLDQVKWVRSS





AAGYGYVGRKSDNDNYFRARKTAFTIAEKLNHDRDYGPLALEDSTPDIAFTRTQLCQIK





VKRKIRNVWGEAFHYVLLEGLFADPIIQHFIRNKSFYFIGEDPLLAVPRLVEKILSEQDYV





YMFDWSGFDASVQEWEIRFAFSLLESILIFPSSVESYIWHFIIELFIYRKIAAPNGKVYLKT





LGIPSGSCFTNIIGSIVNYVRIQYLFFRLTNNFVTVFTHGDDSLVGVSTTQYVQMDNFEPI





CAEHNWTINIAKSAVSHEAGVSFLSRKVREHCHARDELLCLRMLKFPEYVVESGAMS





TLRAHSIHQDAGINSRYLYSIYKYLLHRYGKADSLPLNQQNWDPLEYENLRVSFATQNY





E





Fig cryptic virus


(SEQ ID NO: 80)



MEAGLIEIGNIPERHLRDEFIILVDQPAYDSVRRNAPQADMQEIDGWARSFYTVEGIMAS






IMQFSKPLIHEPTDPIWNDVKRETLMKIGSLFPQVQSLPFEGGFDHVPFESSSSAGYGYD





GKKGEGNNFHRAKSIANAAVRKFSEDIDNQGYDYAVSHLIQQGPDIAFTRTQLAKLPS





IKVRIVFGEAFHNILIEGLSAAPLLEAFKRMDTFYFTGKDPTIYVPRILHKMSTNEGWFIC





LDWKAFDASVQLWEIDHAFNCIQQLLAFPTELSRLAFLFTRESFKQRKLADPNGILWMR





KGGIPSGSYYTNIIGSVINYNRIEYVCKRLGLQKTSCYVQGDDSLIHITGDAKPDLTQLQ





MLGEQFGWTLNIPKCSLTQDSQLVTFLGRSQMHQLNIRERLKVLRLMCFPEYKVEDPKI





STTRVKAIARDAGWSDPVYNKIYLQLKRLYGEVERLPPHLATFVDRFDFQDVNM





Flammulina velutipes browning virus


(SEQ ID NO: 81)



MSDTLIDSFSRLTLSVKNFVFLGFTETQNYPQKSDSAILSHRKVVLNAFEKYLNPIEYNH






VANEYKRSETDLDSTKAAFFKGDIPDHEVPRDEHYNRAFSVIVSKFRPPEPIRPVHYADL





RLYPWPLKPSAEAPFSNDKSLLALLALRNRQGFLPNAKPNFHNLFNWVFGFNRQCVHLI





KKGKDNLGPNEYWPAHGFLYPINIHTKSAIIGIHDPNKVRTIFGVPKLTVMVEAMFFWP





LFRYYRFEQQSPLLWGYETMLGGWYKLNHELHLNPFYQGSILSLDWSFFDGRALFSVIN





DLYSDKGVKSYFEFNNGYIPTVDYPDSSTHPQKLHNLWDWMLTALKFAPCALADGTI





WQRTVRGIASGQFTTQFMDSIYNGLMILTILSRMGFVIDETLPIKLLGDDSVTRLAVSIPA





SMHESFLIEFQRLADYYFSHTINVKKSKISNTPHNVSVLSYANNNGLPVRSRTSLLCALL





YPKSRRPTWEHLKARAIGVYYASCGIDRTVRLICKDIFDYLDSQGIQASSAGLQDLFDPN





FKSGTIPLDVFPSVEQVTTNLRSFHHLDNSDKERYFPTSHFLDTK





Heterobasidion partitivirus 12


(SEQ ID NO: 82)



MQTLLSAVYSIRDAIFGKTLSEPHGLNVNFHFDGYVTDEIKTSIPPRVEMWYSDYQKFL






NPIIRANFTGAEADKIINGYHHPVATIPFMVENLKKGDLSDHPVPHDEHYLRARKMAAD





AFRPPRPIRPVHFADLRFYNWNWHPNVEEPYYSNKRAQEYVQAAHTLGLTPDARMSFG





NLRDYVFMDTRHYLHQIKRNEISNPKTLWPLMKIHVKPALTGTDEQKIRVIYGVSKRHV





LPQCMFFWPLFRHYIENDTDPLLWGFETILGGMMKLNSLMHRLYFQTFVTVDWSGFDL





RSLFSIQREIFDDWRTYFDFSNGYIPTVWYPNSTADPIQLERLWNWQRDACFNMPFVMP





DKSVYRRLFRAIPSGLFVTQFLDSHYNYIMLLTILSAMGFDITIERIRILVQGDDSLKNLIF





FIPANQHDNFKAEFQRLATYYFDHVARPEKTEIYNSPQGVTVLGYTNNNGFPTRDPIKL





MAQLYHPRQVGERWKSVLMAKCAGFAYASAYNYPKVTATLKTVYYKLAAKGFSPAA





LRTQRDIVLFGEAKFQVPTDHFPTAEEVQRHLRVPYKRTEEDSESYFPMKHFLDFA





Heterobasidion partitivirus 13


(SEQ ID NO: 83)



MLPIISQVTDYVYRKFIKPAPTQFKNNYLFQNWLSPLTTPHRDATKYAEYQAYLEKHIR






SNLLGSDAEYVIKRFHHPIATIDSVNETLQRGDLPDHPVPKDEHYYRALTETTKRFAPPQ





LIRPIHFADLRYYEWNWHPNVEEPYVSNSQLKTAVQDAYHAGLLEDGRMSFGNLKNH





VFMDVRHFLHRIKRGQISDPHTLWPLINMHWKPALTETDTTKIRLVFGVSKRHVLPRAM





FFWPLFRYYLDNRDKSPMLWGFETILGGMMLLNSEMLLSRLYYQTFVTVDWSGFDLRS





LFSIIREDIFPAWRTYFDFNNGYMPTKFYKSSTADPDQLERLWNWTNEAVFKMPFRTM





DGATFLRLFRGIPSGLFETQFLDSFYNMLMILTILDAMGFDISTIYIRVQGDDSLLLLTFFL





PADQHAEFKAQFEALAAYYFDHVARQDKTDISNTSQNVAVLGYSNDNGYPSRDWRKL





LAQLFHPRSQRPTLSLLKARCCGIQYASMYKYPQVTNVAKATFNQLDSEGVQPVKLAA





QRDVILHSHKDFYVPTDHFPTLNEVTRYLRIPYTRTEADSETYYPMSHFLSQF





Heterobasidion RNA virus 3


(SEQ ID NO: 84)



MKIFSTLYSSFASFAKWTGLTDPHGFEHNFYFTGYADKKIKVSINPRFQEVYDDYQSYV






GKFIDKHLPGHMAQKIKFGYHHPVASLPFMITNLKKGDLPDHPVPHDQHYTAARKAAA





DAFRPPRLVRPVHFADLRYYKWNWHPNVEEPYYSDPKLQQYVEHCYALGLIDDARLSF





GNLKDFVFMDTRHYLHLIKNGSITDNNQLWPIMKIHVKPALTEPTETKIRVIYGVSKRHI





LAQAMFFWPLFRYYIEEHTSPLLWGNETFTGGMLKIHNLISVPRLYSQTYLTVDWSGFD





LRSLFTIQREIFDDWRTYFDFTAYIPTRTYPDSKTDPIRMERLWNWQRDACFKMPFVLP





DRTTYARLFRSIPSGLFVTQFLDSHYNLIMIYTILSAMGFDITNLMILVQGDDSLIHLKFFL





PADQHDAFKAEFERLAKYYFDHIARPEKTHVTNSPNEVEVLGYTNNNGYPSRDMTKLV





AQLYHPRNVDKTSWKSLLMAKVCGFAYASCYQDSQVIDLLRSIYNNLASKGFKPKSGR





VMRDIILFGESEFEVPTDHFPTLNDVTKYFRRPYVRTQRDADSYFPSWHFNDVF





Pepper cryptic virus 1


(SEQ ID NO: 85)



MVRGTLVGYDYTQFQGDLVKSTHRHPHVVHREIATTYVDQYAYEHIETFSSLYPELILK






GWSRSYYLPEKHLAAVLNYSMPNVPASQLSQSLYRQAIESAKNGFISLPRVKAFDVLTE





MDQVPFKSSSSAGYNYTGRKGLIGDENHSRAISIAKAVLWSAIKDDGEGIEHVIRTSVPD





VGYTRTQLTDLLEKTKVRQVWGRAFHYILLEGLVAYPFIQTVMSHKTFIHAGQDPLISV





PRLLSDVALNCKWIYSLDWSQFDATVSRFEIHAAFDIIKSYVDFPNYETEQAFEITRQLFI





HKKVAVPDGYIYESHKGIPSGSYYTSLVGSIINYLRINYLWRLLTGHPPQQCHTLGDDSL





VGDNSYVNPQAIEEAANKLGWHFNPDKTQYSTVPEEITFLGRTYVGGLNKRDLTKCIRL





LVYPEYPVESGRISAYRAKSIAQDAGGLSEVLNRIADKLRRIYGTASEEEVPIYFKRYVF





GV





Pepper cryptic virus 2


(SEQ ID NO: 86)



MAIYRMLNGYVFTAFGNDLEKLDQRHIHHIRREEATTYRDEFALKELMDLSPILYEQFL






EGWSRSYYEGSKHLQAIIQYGIPDPDPGLIDNDIYNKAGYVVLESLGSLPRVRAFDVLTE





LDSVHYEQSSSAGYDYHGPKGPIQGENHIRAITRAKATLWSAIKDEGEGIEHVIRSAVPD





VGYTRTQLTDLYEKTKIRGVWGRAFHYILLEGTIANPLLDVFKRGGTFYHIGENPQYSV





PDILSQVSECCKYLVAIDWSNFDATVARFEINMAFDLIKTLIMFPNIETELCFEICRQLFIH





KKIAAPDGNIYWSRKGIPSGSYFTSIIGSIVNRLRVEYIFRKAYDVGPKMCYTQGDDSLIG





VDFRVDPDRLSEIAAPLNWKLNPAKTDVSLYPEHVTFLGRTMYGGINQRDLKRCLRLLI





FPEFPVPSGEISAYRAVSIAQDAGGTSEILNSIAKRLRRQYGVAEEHAVPKHFKLYIP





Persimmon cryptic virus


(SEQ ID NO: 87)



MALRSITGYEFHDFQSSLELLNQTHIHIVRRESGVTYHDEFALCELLVDNTRLYEQELEG






WSRSYYTGEQHMKAILQYSLPNTPIQDIDVGCYQQAMTNVQERLSSLPIVRAFDVLTQL





DQVSFESSSAAGYDYTGAKGPKNEGNHERAIRRAKAVLWSAIAQDGEGIEHVLRSSVP





DVGYTRTQLTDLSEKTKVRGVWGRAFHYILPEGTSADPLLQAFKEGGTFYHIGQDPTVS





VPYILSDTAGKCAWLYALDWSSFDATVSRFEIHAAFDLLKQRIEFPNFETEQCYEICRQL





FIHKKIAAPDGKVYWAHKGIPSGSYYTSIIGSIINRLRIEYIWIKLRGHGPTICYTQGDDSL





CGDDERIEPERIADIANPIGWLINPAKTATTRYPEYITFLGRTCYGGLNHRDLIRCLRLLIY





PEYPVPSGAISAYRANSIAEDCGGTSSILNDIARRLTRKYGRVSHEEVPKELRVYRH





Rose cryptic virus 1


(SEQ ID NO: 88)



MEHRFRGIPRGLIELEEIPTRRLREECVIHIDAWSSQAIDAIVPLSLRNELDGWARSYYTL






QAHVDSLMQYDRPKLQPPTNTAWNITTQYIRTEFARMKKVTALSYLQLDQVKWVRSS





AAGYGYTGRKSDGDNYIRARKTAFTLAEKLNHNRDYGPLALEDSTPDVAFTRTQLCQI





KVKRKIRNVWGEAFHYVLLEGLFADPLIQQFMRIKSFYFIGEDPLLAVPRLIEEILSEQDY





IYMFDWSGFDASVQEWELRFAFGLLESILIFPSSVEHQVWQFIIELFIYRKIAAPNGKIYL





KTLGIPSGSCFTNIIGSIVNYVRIQYMFFRLTREFVTAFTHGDDSLVGVPTTQYVQMENF





KPICDENLWTINIAKSAISREAEGVSFLSRKVREMCHARDELICLRMLKFPEYIVETGAM





STLRAFSIHKDAGIHSRYLYQIYKFLLHRYGKADSLPLNQQNWDPIEYENLRVSYATQN





YE





Rosa multiflora cryptic virus


(SEQ ID NO: 89)



MEHRFRGIPRGLIELEEIPTRRLREECVIHIDAWSSQAIDAIVPLSLRNELDGWARSYYTL






QAHVDSLMQYDRPKLQPPTNTAWNITTQYIRTEFARMKKVTALSYLQLDQVKWVRSS





AAGYGYTGRKSDGDNYIRARKTAFTLAEKLNHNRDYGPLALEDSTPDVAFTRTQLCQI





KVKRKIRNVWGEAFHYVLLEGLFADPLIQQFMRIKSFYFIGEDPLLAVPRLIEEILSEQDY





IYMFDWSGFDASVQEWELRFAFGLLESILIFPSSVEHQVWQFIIELFIYRKIAAPNGKIYL





KTLGIPSGSCFTNIIGSIVNYVRIQYMFFRLTREFVTAFTHGDDSLVGVPTTQYVQMENF





KPICDENLWTINIAKSAISREAEGVSFLSRKVREMCHARDELICLRMLKFPEYIVETGAM





STLRAFSIHKDAGINSRYLYQIYKFLLHRYGKADSLPLNQQNWDPIEYENLRVSYATQN





YE





Raphanus sativus cryptic virus 1


(SEQ ID NO: 90)



MSNLEYLGLDHHWPAIPRFAKSPNDWYFACQQLVRSSICLYSSLLGSNDTDTVLNGYY






RSHADEDTAEQFFMRYDVEPFDIIKDNYYSQAFDTVTEWFRPSAPIHPVHFTDVRWYP





WKISTSAERPFTHDPLLKKKVQLSKQLGLLDNARMSFHNCYNDIFTYCRHYTHEVKDA





RPVTLHHIDLHVKPALVRSGEPPKIRTVFGVPKSLIFAEAMFFWPLFSDYFTNSETPLLW





NYETLNGGWYRLNDEFYQQWQSFCTIFNLDWSEFDMRVYFSMLDDCRDAVKSYFCFC





GNYCPTRTYPTCRTNPQRLQNLWNWIGTAYKDTPCTTTTGKVYRRRFAGMPSGIFCTQ





FWDSFYNCIMVVTTLEALGFRITDRYFLKVLGDDVIFGILKHIPISKWADFLQDFSTEAR





RRFNSKLNSKKCGASSGIHGAQVLSYINWNGYPKRDSNQLLAQLLHPKSLRDTYPRLM





ARAIGIYYASCGDPKIRPICNHIYSELKYAGFTPSSTGLHGLFDPNASIGFIELDHFPSENE





VTCRLHRKSKRSAELQALYWPRDHFLEEAGSSRNCPLSFQVETI





Raphanus sativus cryptic virus 2


(SEQ ID NO: 91)



MDHEFRKIREGLIEIGTVSLRVQRDEFKVIIDEYAAEAVFKFVPSTMLSQLQGWARSVYS






LDQHVDAILAYRRQKLPEPTDDVWNQTKQHTLQLFRRFPKITPISYKSFDEVKWISSSSA





GYGYVGHKGDGDNYLKARRTAVTIAEKLDHDRNYAPEAINQSTPDVAFTRTQLSQVK





VKTKVRNVWGEEAFHYVLLEGLFADPLINFFSNEESFYFIGRNPLLSVPTLIEEIFKSKDYV





YAFDWSGFDASVQEWEIRFAFQCLESQLIFPSNVEAQIWRFIVELFIYRKIAAPNGTLFLK





TLGIPSGSCFTNMIGSVVNYVRIQYMFKKLTDDFVEAYTHGDDSLAAVSTAQYIPLEKF





GPICEPFMWSINTLKSEVSREGRLTTFLSRSIRDKQNYRDEFVCLRMLVYPEYEVEDGSIS





ALRAKSIYVDAGIHSQYLYHVFLYLKQKYGLANTLPHNLRTWDPTEHEALRASYSNIM





Rhizoctonia solani dsRNA virus 3


(SEQ ID NO: 92)



MVDALRKGDLPDHVIPKDEHYSKAFAQAAEMFRPPQLVRPVHFADLRMYKWNWHPN






VEEPFYSDADLIRAVSMAAEAGLLPDARMSFGNLRNVVFIKARLFLHQIKRKQITNPAT





LWPMMKIHVKPALTKVDETKVRIIYGVSKLHVMAQAMFLWPLFNYYINSDDDPLLWG





FETILGGMQKLHNIMSIPRLYFQTFVTVDWSGFDLRSVFSLQREVFDVWRTYFDFNNGY





IPTKFYRTSVADPDHLEALWEWQREACFKMPFVMPDRTMYNRLFRCIPSGLFSTQFLDS





HVNLVMILTILDAMHFDISKIKIYVQGDDSIVMLIFHIPADQHIKFKSDFEVLAKYYFDHV





ARPEKTDVYETPQGVEVLGYRNYNGYPERDWRKLLAQLLHPRGALSLETLAARCCGIA





YASMYRNPEVINVCKDIYNYLTTKRNVVPGELRAQRDIILFGEHEFSIPTDHFPERDEVT





RHLRIPYVRTDSDKNDYWPSGHFLSLY





Sinapis alba cryptic virus 1


(SEQ ID NO: 93)



MRPSITGYDYTNFTQDLLKSDRKHPHVVRRETATTYRDDFAFKEVISLDRLAYIQRLEG






WSRSYYLPEKHLEALLQYATPNVPCTALNLNVYRQAIQVVENGLRSLQPVRAFDVLTE





LNQISYKQSSAAGYDYIGAKGPIDGENHKRAISRAKAVLWSVVKEDGEGIDHAIETSVP





DVGYTRTQLADLTEKTKVRQVWGRAFHYILLEGLVAQPFIQSIMEGPSFIHTGRDPTLSV





PQSLAKVSSQCKYIYSLDWKSFDATVNRFEINTSFDIIKSKVIFPNYETEQAFEITRQLFLH





KKVAAPDGYIYEAHKGIPSGSYYTSMVGSIVNRLRIEYIWRIATGHGPIHCETLGDDSLC





GDDIFVPATQLADIANRIGWYFNADKTEYSTIPEGVTFLGRTSTGNLNSRDLTKCLRLLV





YPEYPVTSGRISAYRARSIADDSGGLSDLLNQVAIRLERSYGIASEEEIPAYFKRYVPFM







The Following Representative Amino Acid Sequences are of for RdRp's from Group IV Partitiviruses (genus Gammapartitivirus):










Aspergillus fumigatus partitivirus 1



(SEQ ID NO: 94)



MEDYTQDPTQHYVLAKGSHLIDALQLRPARSGKSSTTSYDVLPSNFESDTLREIARYGG






YSTYSSASNTDPWVRESLKIFDRDQYEAIRGFTRRPQGTPGMYESLKKFSTEERSTFWSL





SPQQRTSMRRAIGKAKRAFKLPYKREPLDWHEVGQFLRRDTSAGATFMGQKKGDVME





QIYHEARWLGHRMKQDGIGPFQPHKMRFPPCLAGQRGGMSERDDPKTRLVWIYPAEM





LVVEGFYAPLMYRDFMNDPNTPMLNGKSAQRLYTEWTCNLREGETLYGIDFSAFDAR





VPAWLIKAAFAILRQNVDFSTFRGKPVNKRDAQKWRNVWDAMVWYFINTPILMPDGR





MFRKFRGVPSGSWWTQMIYSVVNYIMIEYLADCQRVEIRNLRVLGDDSAFRSGDQFDL





DVAKGDAEPTQMLVNTDKSGKSKDPADFKLLGTTYRCGRVHRPTDEWFKLALYPESS





VFSLGLSFTRLIGLWLGGAMHDATFSRFIEFFQQCYPCPEEGWFSKDQRRWLEIVYSGK





APRGWTTKKSLFWRSIFYAYG





Aspergillus ochraceous virus FA0611


(SEQ ID NO: 95)



MDDSHLDPTQLENVIEESLLLDDSTLTPSAKVRGASYNVIPPQFSSPGLSEIARYGGYGT






YSGQSNTDPWVRVALKNFDRNVYDDVYGFTRKPEGTPGMYKSLFKFAEGRSDFRSLN





RAQRKAMQAAISKTKKRFKLPYKSDPLDWHAIGQFLRRDTAAGATFMGCKKGEVMED





IYHEARWLAHRMKQDGRQRFNPKQMRFPPCLAGQRGGMSEASDPKTRLVWIYPAEML





VIEGQYAPTMYHKFMADPHTPMLNGRSSTRLYTDWINDAKEGDKLYGLDFSSFDSKVP





SWLIRVAFNILRQNINFETWNGQPVSKRDRQKWRNVWDAMVYYFINTPILMPDGRMFR





KYRGVPSGSWWTQMVDSVVNDILVQYICLCQEIEPRDLRVLGDDSAFRSCAELVLVQA





ERDAKDVNMVLHPEKCDVKTDPTKMKLLGTTYRNGRAHRDTDEWFKLVLYPESSVRT





IEVSFSRLIGLWIGGAMFDSAFCRFMEYYQTCFQCPEDGWFSKEQRRWLEVVYGNRAP





RGWSAKKSLFWRSIFYAYA





Botryotinia fuckeliana partitivirus 1


(SEQ ID NO: 96)



MEEFTQEPTQHYVLAKGSHLIDALHLRPDTGKGSTTSEDVLSSDYRSPNLAEIARYGGY






STYSSNSNTDPYVRETLKLFSRDTYEDIRGFTRRPEGTPGMYKALEKFSGEKNSFNDLSA





TQKSSMRRAIGKAKKAFKLPYKREPLDWHEVGQFLRRDTSAGSTFMGQKKGDVMEEI





YHEARWLGHRMKQDGKGRFNPTKMRFPPCLAGQRGGMSERDDPKTRLVWIYPAEML





TVEGFYAPLMYRDFMNDPNSPMLNGKSAQRLYTEWCCKLREGETLYGIDFSSFDTKVP





AWLIRIAFDILRQNIEFSTFQGKPVSKKDAQKWRNVWDGMVWYFINTPILMPDGRMFR





KFRGVPSGSWWTQMIDSVVNHILIDYLADCQDVEIRNLKVLGDDSAFRSSDEFQLETAK





LDCKPTGMVIKPEKCEKTADPADFKLLGTKYRSGHVHRDTDEWFKLALYPESSVFTLD





VAFTRLIGLWLGGAMWDKRFCEYMDFFQSSYPCPEEGWFSKDQKRWLEVIYSGKAPR





GWTTKKSLFWRSIFYAYG





Colletotrichum truncatum partitivirus 1


(SEQ ID NO: 97)



MEDFTQDPTQHYVLAKGSHLIDALHLRPAKPGSTTSEDVLSSDFESPNLREIAKYGGYST






YSSNSNTDPWIRETLKIHDRETYEQIWGYTRRPQGTPGMYTALGKFAGEKNVFGDLSSS





QQSSMRRAIGKAKKAFKLPYKREPLDWHEVGQFLRRDTSAGSTFMGQKKGDVMEEIY





HEARWLGHRMKQDGKRSFDPTRMRFPPCLAGQRGGMSERDDPKTRLVWIYPAEMLV





VEGFYAPLMYRDFMNDRNSPMLNGKSAQRLYTEWCCNLREGETLYGIDFSAFDTKVP





AWLIRAAFSILRQNVNFETFQGKPVEKEEAQKWRNVWDAMVWYFINTPILMPDGRMF





RKFRGVPSGSWWTQMIDSVVNYILIEYLADCQKVEIRNLRVLGDDSAFRSGDQFSLESA





KIDCIPTGMIIKPEKCERTKDPSDFKLLGTKYHDLHPFRDTEEWFKLALYPESSVHTLDIS





FTRLIGLWLGGAMWDRKFCEFMDFFQTSYPCPEEGWFSKDQKRWLEVIYSGKAPRGW





TTKKSLFWRSIFYTYG





Discula destructiva virus 1


(SEQ ID NO: 98)



MEEFTQDPTLHNVQAEESHSIDTLHLRDAKRGSSTSEDVLHKGYADPCLREVAKYGGY






STYSSNSNTDPWIRETLKIHDRETYEDIWGKTRRPEGTPGMYKALGRFGGEKCDFDNLS





DPQKSSMRRAIAKAKKAFKLPYKREPLDWHEVGGFLRRDTSAGSTFMGTKKGDVMEEI





YHEARWLGHVMKQDGRKGFDPTKMRFPPCLAGQRGGMSDRTDPKTRLVWIYPAEML





VVEGFYAPLMYHDYMNDPKSPMLNGKSAQRLYTEWCCGLRDGETLYGIDFSAFDSKV





PAWLIRVAFDIVKQNINFETFEGKPVDKHDAQKWSNVWEAMVWYFINTPILMPDGRMF





RKYRGVPSGSWWTQIIDSVVNNILIDYLADCQQLEIRNLKVLGDDSAFRSTDQFDLEVA





KDDCVPTGMVIKPEKCERTEDPNDFKLLGTKYRDGRVYRSTDEWFTLALYPESSVLTL





DVSFTRLVGLWLGGAMWDKQFCAFMDYYQTSYPVPEEGWFSKDQKRWLEVVYSGK





APRGWTTKRSLFWRSIFYAFG





Discula destructiva virus 2


(SEQ ID NO: 99)



MEGFTQEPTNTTVLAEELHSVDTLHLRPGKTRSTTSEDVLPNNYEDPCLREIAKYGGYS






TYSSNSNTDPWIRETLKLHDRQIYEDIWGKTRRPEGTPGMYKALGRFGGERCGFDDLSS





QQKSSMRRAIAKAKKAFKLPYKREPLDWHEVGQFLRRDTSAGSTFMGSKKGDVMEEI





YSEARWLGHRMKQDGRSRFDPTKMRFPPCLAGQRGGMSDRDDPKTRLIWIYPAEMLC





VEGFYAPLMYRDYMSDPNSPMLNGKSSQRLYTEWCCNLREGETLYGIDFSAFDSKVPA





WLIRTAFDIVKQNINFETFEGKPVNKVDAQKWKNVWDAMVWYFINTPILMPDGRMFR





KYRGVPSGSWWTQIIDSVVNNILIDYLADCQSVKIPKPEVLGDDSAFRSNDQFDLEVAK





DDCVPTGMVIRPEKCEKTEDPAEFKLLGTKYRSGRVHRSTDEWFSLALYPESSVLSLDV





SFTRLVGLWLGGAMWDKQFCEFMDYYQTSYPVPEEGWFSKDQKRWLEIIYSGKAPRG





WTTKKSLFWRSIFYAYG





Gremmeniella abietina RNA virus MS1


(SEQ ID NO: 100)



MSEVDNTDPTLQDVAFVKSSGLDTTHLRSSEKTAGASYSVISSNFNSPGLTEIARYGGYS






VYSGNQNTDPWVRATLKNFSRETYEQIYGFTRQPEGVKGMYSSLLKFSDGKCKFDRLN





RVQRKAMIGAIAKAKKAFRLPYKSEPLDWHQVGAHFRRDTAAGVSFMGKKKGEVME





EIYHEARWLGHRLKQNGKARFDPRQMRFPPALAGQRGGMSKRDAPKTRLVWVYPAE





MLVVEGQYAPVMYRAFMDQPDTPMLTGASSQRLYTEWLVGRREGETLHGLDFSSFDT





KVPSWLIRVAFDILRQNIEWETWQGEKVSKRDRQKWRNVWDGMVWYFINTPILMPDG





RMFRKRRGVPSGSWWTQMVDSVVNYILVEYLTECQGVEARGLRVLGDDSAFRSPVEF





SLEQAQSDCEPTGMILKPEKCEKTEDPSDFKLLGTTYRGCHPHRDTNEWFKLALYPESR





VGNLEVSLSRLVGLWIGGAMWDKEFCSYMDYFQSSYPCPTEGWFSKDQRRWLSIVYG





GKAPRGWGDKKSLFWRSIFYTF





Magnaporthe oryzae partitivirus 1


(SEQ ID NO: 101)



MEKTSPDLPFTKDVLTSADWDAVHRSLSYGNPGLTKIPADKWCYKYNVEQTRMNTDP






FVRKAMKLWDETEYKQLYGYTKKASLEHGLNGLNKYGRPQRQKSHMPSEFKGSYHR





ALQEATRVFTPHEPLHRLSVPDVWDNMNLDSAAGFTFPGKKKSEVVEEAFDTASYMA





HFISAGKHIYVPPAKLALRGHLSELEEIKTRPVWVFPFEVTILEGKWAIPYYRFLEEEVPS





VHFGEGAMQRLAKILDSDIASHAEYAELTMDWSGFDTGVPNWMTDDALDILFGAFDE





TAVQHQDDLVVGGEYMAYKNEAVKDFLKTYFKKTKILLPDGSVYKKNHGIPSGSFFTQ





AIGSIINYIAVRTLDFYFGWNGRRFKVLGDDSSYLIPNGLGKVSVDAVSKAAWAAFGFT





LKREKLRIATKQHERKFLGYQVSAYRYERPSDDWLKMALYPERDCEFLEQSASRVFAF





YLLGGCNDATYCDFFHDYLNRYPVVYGSELFPLTKGLKRLFKFVLRLNVERLVFLDLPN





FDPLKGPFALSLGDKPFG





Mycovirus FusoV


(SEQ ID NO: 102)



MVELFVMVDPTTKRRRIQSTLGPFLSVPGLQEIARYGGYATYRAVRNTDPWIRQSLKLF






DPDLYGNIYGFTRRPAGPEGMYKSLMKFGESMPRFTDMSTVQRSAMKTAITAARKRFK





TPVKFEPLEWSEVGQHMRRDTSAGVSFPGKKKGDVMERIYAEGRWLGHRMKQGGKG





RFDPRKVRMPPCLATQRGHLSPRDDPKTRLAWIYPSEMLMVEGLYAPTMYKAFEAMP





DSPLLLGKGSHRLFSEWVSAATPGMRLYGLDFSSGDTKVPAWLIHTAFDILHDNIDWLH





WRGKPTTKRSRQKWKNVWDGMVYYFINTPILMPDGRMFRKRRGVPSGSWWTQLVDS





VVNWILVKYLSLCQGVNAKNLRVLGDDSAFMAAETMDLSVAAEDAAAVGMDLSDEK





SISVEDATELKLLGVRYRDGHAFRETEEWFKLALYPEGDVPDIATSLTRLVGLWIGGAM





WDTKFSRFMEYFQGCYPCPSEGWFSKDQRRWMEIVHGGRAPRGWTKNKNLFWRSIFY





TL





Penicillium aurantiogriseum partitivirus 1


(SEQ ID NO: 103)



MAFTQEPTQHYVLAKGSHLIDSLHLRPAKAGSATSEDVLPTGYNSPNLREIAKFGGYST






YSSASNTDPWVRETLKLFSRERYEEIYGFTRRPEGTPGMYKSLAKFAGEKSHFRDLTVS





QQKAMRRSIAKAKKAFKLPYKREPLDWHEVGQFLRDTSAGSTFMGQKKGDVMEDIY





HEARWLGHRMKQDGESSFNPTKMRFPPCLLAGQRGGMSERDDPKTRLVWIYPAEMLVI





EGFYAPLMYRDFMNDPNSPMLNGKSAPRLYAEWCCGLREGETLYGLDFSAFDTKVPT





WLIYTAFDILRQNIEWSTFQGKPVSKQDAQKWRNVWDGMVWYFVNTPILMPDGRMFR





KYRGVPSGSWWTQMIDSVVNYILIDYLAECQEVEIRNLRVLGDDSAFRSTDQFSLEQAK





VDCEPTHMLLKPEKCEKTKDPCEFKLLGYYTRDGRVHRPTEEWFKLVIYPESSVHTLDI





SFTRLIGLWLGGAMWDKEFCRYMDFFQSSYPCPEEGWFSKDQKRWLEVIYSGKAPRG





WTTKRSLFWRSIFYAYG





Pseudogymnoascus destructans partitivirus-pa


(SEQ ID NO: 2)



MEVSPFDPTPLDNVIEGSPLVDDSLLVPSSRTRGSSYDVIPEHFNSPGLTEIARYGGYPVY






SGGSNTDAWVRTSLKEFDRTMYENIYGYTRKPEGPQGMYKSLLKFSEDKSTFHSLNRV





QRRAMIGAIKKARTAFKLPWKREPLDWHEVGQFLRRDTAAGATFMGKKKGDVMEEIY





HEARWLGHRMKQDGREKFNPKKMRFPPCLAGQRGHMSERDTPKTRLVWVYPAEMLC





VEGFYAPQMYRDFMNDRHTPMLNGKSSQRLYTEWCVGLREGEKLYGLDFSSFDSKVP





SWLIRVAFDILRQNIEWSTFRGEKVSKREAQKWRNVWDAMVYYFINTPMLMPDGRMF





RKRRGVPSGSWWTQMIDSVVNYILVDYLTQCQTCQIRGLRVLGDDSAFRSCHDFSLDQ





ASADAAAVLMILNPDKCEVTLDPTKFKLLGTTYEDGHPHRETIDWFKFALYPESSVSSID





VSLTRLVGLWLGGGMWDLHFCKFMDYFQTCFPCPLEGWFSKDQRRWLEVIFSGKAPR





GWTTKKSLFWHSIFYTYC





Penicillium stoloniferum virus F


(SEQ ID NO: 105)



METTTPDLPFDLHTREAYDYATFHRTLLHKPGLSRIKEDRWVYKYNVEQTRMNTDPFV






RKSMKLWDEHAYHDMYGFTKKARLSNGLDAFQGFAKPQKQRSSMSPEMASCYEKAL





EEARHVFTPHERLTRLSVPNVCDSTNLDSAAGFSFPGKKKSEVVEEAFDVASYIAHFVA





SDRKVFIPPAKLALRGHLSEIDELKTRAVWVFPFEISILEGKWALPYYKFLEQNVPEVHF





GEGAMQRLAKTLMTDVASHSECTEVTLDWSGFDTSVSNWLIDDAFDIMFDSFDETQVE





HDGNFVLGGDHMAKKNEKVKKFLKTYFKKTKIMLPDGSLYKKFHGIPSGSFFTQIIGSI





VNYLAVKTLDNYFSWNARRFRVLGDDSSFLIPFGRSKVDGVEISEKAWETFGFTLKLKK





LRIANKQQDRKFLGYQCNAFRYERSTTEWLSMVLYPERDVEFLEQSASRVFAFYLLGG





CNDVTYCEFFHDYLGRYPYIYGKELPLTRGLKRLFKFVFRLTIDKLAFPDLSRFDPLKVP





FSLSLGDKPFW





Ustilaginoidea virens partitivirus


(SEQ ID NO: 106)



MEDFTQDPTHHYVLGKGSRLIDALHLRPAKEGQANSEEIVPSNFKSDTLREIAKYGGYS






TYSSNSNTDPHVREALKLFSRDIYEDIRGFTRRPQGTPGMYGALAKFSGERNAFSDLSAS





QQASMRRAFSKAKRAFKLPYKREPLDWHEVGQFLRRDTSAGVTFMGAKKGDVMEEIY





HEARWLGHRMKQDGRDSFDPTRIRFPPCLAGQRGGMSEIDDPKTRLVWIYPAEMLVVE





GFYAPLMYRDFMSDPNSPMLNGKSAQRLYTEWCCNLREGETLYGLDFSAFDTKVPAW





LIRVAFDILRQNIEFSTFQGKPVNKEDAQKWRNVWDAMVWYFINTPILMPDGRMFRKF





RGVPSGSWWIQMIDSVVNHILIDYLADCQDVEIRNLRVLGDDSAFRSSNQFDLEVAKQD





CVPTGMVIKPEKCERSEDPSDFKLLGTKYRGGHVFRPTEEWFKLVLYPESSVLSLDMSF





TRLIGLWIGGAMWDRKFCEFMDFYQSAYPVPEEGWFSKDQKRWLEVVFSGRAPRGWT





TKKSLFWRSIFYAFG





Verticillium albo-atrum partitivirus-1


(SEQ ID NO: 107)



MSDDIEIFDLLASPGEQPGSDETFASYGTPSSRTARRHVQAGEYFIGTGLEEIARYGGYSS






HRASGNTDPWVRETLKLYDPERYESIYGFTRTGEGLLGAYKSLFKFDGPVARGTRLSTR





QRSAMKKAIADARTAFKLPVKHEPLDWHEVGQFVNQSTSAGVSFPGKKKSEVMEEIYT





AARWLGHRMKEGGKESFNPTKVRFPPALAGTRGHMSPKDDPKTRLVWVYPAEMLVV





EGLWAPVMYRQYQSLSDGPLLLGKSAQRIYTEWCVNKKQGEVLHGLDFSGFDNGVPP





WIIHVAFDILHANVDWLNWRGKPTSKRSRQKWRNVWDGMKWYFINTPILMPDGRMF





RKHRGVPSGSWFTQLVDSVVNYILVKYAFNCQELKIHGLKVLGDDSAARSPLKLDLVQ





AAVDFRPVQMRLNLDKCEITEDATEFKLLGTRYQDGHSTRPDEDWFKMALYPENPPPD





IAVSMTRLVGLWLGGAMWSADFCKFFEYFQSSYPCPSEGHFSKDQRRWLEIVFGGSAP





RGWTYKESLFWRSIFYVF





Verticillium dahliae partitivirus 1


(SEQ ID NO: 108)



MEDFTQDPTTHNIVAEGSHLIDALHLRPPKLRSTTSEDVVPSKFRSPNPIDHDAMRGYST






YSSNSNTDPYVRETLKLFSRDTYEDIRGFTRRPQGTPGMYTALKKFSGERNTFGDLSPSQ





QSSMRRAIGKAKKAFKLPYKREPLDWHEVGQFLRRDTAAGATFMGQKKGDVMEEIYH





EARWLGHRMKQDGRAGFDPTQMRFPPCLAGQRGGMSEIDDPKTRLVWIYPAEMLVVE





GFYAPLMYRDFMSDPNSPMLNGKSAQRLYTEWCCKLRDGETLYGIDFSAFDTKVPAW





LIRVAFDILRQNVNFETFGGKPVEKRDAQKWRNVWDAMVWYFINTPILMPDGRMFRK





FRGVPSGSWWTQMIDSVVNHILIDYLADCQRVEIRNLRVLGDDSAFCSGGQFDLELAK





GDCENTGMVIKPEKCERTKDPGEFKLLGTTYRGGHVFRDTEEWFKLALYPESSVLTLDI





SFTRLIGLWLGGAMWDKKFCEYMDFFQSSYPCPEEGWFSKDQKRWLEIIYSGKAARG





WTSKKSLFWRSIFYAYG







The Following Representative Amino Acid Sequences are from RdRps from Group V Partitiviruses (Unclassified Members of the family Partitiviridae)









Fusarium poae partitivirus 2


(SEQ ID NO: 109)


MHSLFTIVNLLLLARFQLRRKRKETTKTLIYPIRNILFEWELRRSTPR





EPGIPLRYFDYSKSLLSYIDLQTCHKINIHLDDHTDALMERYASRDEP





FAVYQHISDEDLPPERTPAPGIRHAQCRYHEIPSGTLNLDEKQHVLTD





DPDFIETPEFRSGILYDETIDLSGSPPIPEIAQIIHDWFPHFEPFLAE





YCRPPSFGPQAFRDFNRPTPHPPPPPHERHEAIMDIVRAKFNLKPYRP





MHYVDALAAETPLNTSASYYSKFNPTSRVFARYSAPSRYKDKPTSKGY





NFNVVMNEFRTEYHHIKYDGVPFPADLHDPEANASILNTWFAKHPSQL





FIRTQISKRDPNDPKKIRPVYSVDDRFLHIEKTLVVPALAQLRNPQCC





VAHGLETFRGSMSLLDRTALVYTSYISLDWSQFDQRLPYYVIIAFFLD





FLPSLLIISHGYFPSRGYESTPQDIHAFASKIFNVVLFLTTWYLNMTF





VSFDGFAYIREHGGVPSGLLNTQFLDSFGNMYIIVDCLLEFGFTPAEC





LDMLYCVLGDDNLIFARQNFDRICDFMIFLTKYADTRHGMVVSILKSV





YTKLRSKISFLSYENTYGMPTRPIGLKVAQLSMPERPIPDNRKWIHAA





RALGLAYANCGQDAHFHLLCHMVYEKFRPDTPVPSLHIEKVFKKWKYQ





LPEFDIESVTYTFPDFPTLFSIRQLVSDYHGFFSETDKWNTDMFEAPP





SDNLHDYVTLKEYMNSNVHMSHTVNEFMHGKRSFL





Heterobasidion partitivirus 2


(SEQ ID NO: 110)


MSTNPPEVLLPLPEVDPNANNVRYAKLLDQYRANPSNSNQKLLLEYAE





QHGFNYFIPTDVPLPDDRKSAPGILSLDGFRFHTVAAFHRYQKMSRYG





YNALGFIFKLILTLFNPFLWILTDYCRPSGSADAVFENFNQEVSPVEH





VNPSRLAQIMPLIHHFFAIKPFCPIAFPDLRFYKWSLVTSADYHAHHS





KDQQDESAHYWKHLKDSDLLQDRFDYSDRPRSKGYFFNTVLLSTRTIV





HNIKYHCLPFQRHKRDTDSSVLQKLSFWFMKYPTVMYVRSQISKLSKL





KVRPVYNAPFLFILIEAMLTLALMAQCRLPDSCLMWGFETVRGGMQEL





NRISYNYDTFIMIDWSRYDQLLPFAIIYHFWCTFLPQLIRVDLGYMPT





EQYTATQHKHAFTEKHNDQKESNPEYATFASRLKTHAPHIVMFSFIIF





NLLAFIWLWYVKMVFVTPDGFGYVRLLAGVPSGIFMTQICDSFCNAFL





LIDAMLEFGFTPDDIKLIRMFIQGDDNVIFYLGDFTRIFAFYEWLPEY





CQQRWHMTISVDKSSITRLRNKIEVLGYTNLNGMPHRDCAKLIATLAY





PERYVQDKTKYIVFMSRAIGIAYANAGHDRQVHDLCQRAYLQARKDSG





LSYDELKNIKIEYQKLGFYEIFSVNIEELREHLIQDVSEFPNFHDIRD





NLRHWHGPHTVYPMWPRHFDDDLSSIKSPHSLTTLYDVMQSGGLTFDY





NF





Ustilaginoidea virens partitivirus 2


(SEQ ID NO: 111)


MNSFENFGSFKLSADELAATAVPPTPWNNVFRYITDAKRFPGYKRGIL





RQTQLYDPYVNAALKSFSPELHDSIKGYTRAPGDEWDVYERLTRYDKS





PLAPVDNPRFKACYDAALSDVMKEFKLRDPVVPHWILDVDLVKNTSSG





FPHFTRKGDILDQIRQEGRSHFHLLKRLPLWRVPLLPCTPATRGGLAD





ITEPKTRLVWMYPAAMTAVEAVFAQPLIDGLFSEKSEYLITGVDTKHR





IQRYLSLLSEDTGRLGVGLDFKSFDTLRCNWLIRDAFDVLKQNVYFSG





YYDDTNGLQTFGPGKTERLEHAWSNIVEYFIHTPILLPNGRCVNKHTG





VPSGSHFTNLIDSIICRILIKTFSLYCSIPISNLRTNGDDSAFHVYED





YASDIILRAAGFFKEFFGMTINTDKSCVAGSPSEMHVSGTRWTGLRPT





RSTQEWMMLAAYGETYSRIPFDSFQRLLGLGLSGGFGDSTFTRFFDYF





QTGYDCRHGPNLLNWKKLRFLQQIFSIEELPLVYKQGAKTTLRLRLLV





T






The following Examples are intended to illustrate but not limit embodiments of this disclosure.


EXAMPLE 1

The RdRp of PCV1, and all known encapsidated dsRNA viruses, is found in the virus particle so the analysis described in these Examples began by evaluating enzymatic activity using purified virus. This Example provides a description of preparing isolated virus.


The procedure was standard for plant viruses. The virus was purified from 50 g of plant tissue by homogenization of plant leaves in a blender with 50 ml of 0.1 M sodium phosphate buffer pH 7.4 containing 0.2 M KCl and 0.5% 2-mercaptoethanol, and 50 ml of chloroform. The resulting slurry was clarified by low speed centrifugation for 15 min. The aqueous portion was filtered through miracloth, and subjected to ultracentrifugation through a 10% sucrose cushion. The pellets were resuspended in sodium phosphate buffer and stirred overnight. The solution was clarified by low speed centrifugation, followed by a second ultracentrifugation as above. The final pellets were resuspended in sodium phosphate buffer and allowed to incubate at 4° C. overnight. The purified viral preparation was analyzed by 1% agarose gel in Tris-Glycine buffer (FIG. 1A). Short term storage of the purified virus was at 4° C.; for long term storage sterile glycerol was added to a final concentration of 50%, and the preparation was stored at −80° C.


EXAMPLE 2

This example provides a description of the RT activity of PCV1. Generating cDNA from dsRNA is not a straightforward reaction, because all known RT enzymes are only active on single-stranded RNA (ssRNA). Various strategies have been devised to use a dsRNA template, all of which require denaturing the dsRNA completely and adding chemicals, heat, and/or large amounts of oligonucleotides to maintain the template as ssRNA. Reactions are carried out at 42-55° C., temperatures that are well known in the art to be not optimal for RT enzymes. In particular, higher temperatures reduce the fidelity of the RT reaction (i.e. more errors are introduced in the cDNA sequence). In contrast, the present disclosure permits, as described above, cDNA generation at lower temperatures than have been previously possible, and without the use of denaturing chemicals.


To test the RT activity of PCV1, we replaced the MMuLV RT enzyme (commercially purchased from New England Biolabs) with the stored preparation of PCV1 in a cDNA reaction using the dsRNA of Zea mays chrysovirus 1 (ZMCV1) as a template. The reactions were adapted from standard protocols: dsRNA was mixed with a specific primer and boiled for 2 minutes, followed by rapid cooling on ice, addition of the enzyme, buffer, and dNTPs, and incubation on ice for 15 minutes. The MMuLV reaction was transferred to 42° C. for two hours, while the PCV1 reaction was held at room temperature for the same amount of time. At this temperature a “normal” RT enzyme would be unable to use dsRNA as a template because the RNA would have renatured. In a negative control, added water was used as the template along with PCV1 as RT enzyme.


Following the cDNA reaction, the samples were treated with 1 μl (10 mg/ml) of boiled ribonuclease A (Sigma, USA), and incubated at room temperature for 15 min, to destroy remaining RNA. The samples were heated to 85° C. for 2 min, and the primers removed using a cycle pure kit (Omega, Bio-Tek, USA) according to the manufacturer's instructions. The samples were eluted in 30 μl water. A 1.5 μl aliquot of the cDNA was amplified by PCR in a standard reaction with the same primer used in the cDNA reaction, and forward primer specific for another region of the cDNA. The amplified cDNAs were separated on a 1.2% agarose gel, stained and visualized (FIG. 1B).


A second reaction was carried with another dsRNA virus, Curvularia protuberata thermal tolerance virus. In this reaction we added an additional sample, where the starting dsRNA and primer were not boiled. We obtained the same product with and without boiling the dsRNA, further substantiating that the PCV1 enzyme is indeed able to use dsRNA as a template.


Following our initial success we prepared a much larger virus isolation, using about 1 kg of plant tissue. This is not a rapid process, because it takes some time to grow the plants, and this needs to be performed in a growth chamber to prevent the risk of exposure to environmental pathogens that would complicate the results. We also performed a virus purification procedure on an isogenic line of Jalapeno that is virus free to provide a control to ensure that the activity was completely attributable to the virus. Because of the large volume we concentrated the plant extract using polyethylene glycol, a standard procedure in plant virus purification. However, this prep had no RT activity, and an EM showed particles that were highly aggregated (FIG. 2A). A third prep with another kg of plant tissue was accomplished, and in this case we restored activity and the virus particles look normal by EM, as shown in FIG. 2B.


EXAMPLE 3

This Example demonstrates recombinant production of an enzyme derived from PCV1 RdRp that exhibits RT activity. In particular, in order to avoid having to prepare virus from plants, the DNA sequence encoding the PCV1 RdRp was optimized for expression in E. coli and was cloned into a commercially available vector sold under the tradename pSUMO Vector. The sequence adds a 6× His Tag to the protein to facilitate purification, and small ubiquitin-like modifier (SUMO) that can be removed by protease digestion of the recombinant protein. The E. coli expression optimized DNA sequence is:









(SEQ ID NO: 112)


GGTCTCAAGGTATGGTTCGTGGCACCCTGGTTGGCTATGATTACACCC





AATTTCAAGGCGATCTGGTTAAAAGCACCCACCGTCACCCGCATGTTG





TTCACCGTGAGATCGCGACCACCTACGTGGACCAGTACGCGTATGAGC





ACATCGAAACCTTCAGCAGCCTGTATCCGGAGCTGATTCTGAAGGGTT





GGAGCCGTAGCTACTATCTGCCGGAAAAACACCTGGCGGCGGTGCTGA





ACTACAGCATGCCGAACGTTCCGGCGAGCCAGCTGAGCCAAAGCCTGT





ATCGTCAGGCGATCGAGAGCGCGAAGAACGGCTTCATTAGCCTGCCGC





GTGTGAAAGCGTTTGACGTTCTGACCGAAATGGATCAAGTTCCGTTTA





AGAGCAGCAGCAGCGCGGGTTACAACTATACCGGTCGTAAAGGCCTGA





TCGGTGATGAAAACCAACAGCCGTGCGATCAGCATTGCGAAGGCGGTG





CTGTGGAGCGCGATTAAAGACGATGGCGAGGGCATCGAACACGTTATT





CGTACCAGCGTGCCGGACGTTGGCTACACCCGTACCCAGCTGACCGAT





CTGCTGGAGAAGACCAAAGTGCGTCAAGTTTGGGGCCGTGCGTTCCAC





TACATCCTGCTGGAAGGTCTGGTGGCGTATCCGTTCATTCAGACCGTT





ATGAGCCACAAGACCTTTATCCACGCGGGTCAAGACCCGCTGATTAGC





GTGCCGCGTCTGCTGAGCGATGTTGCGCTGAACTGCAAATGGATCTAC





AGCCTGGACTGGAGCCAGTTCGATGCGACCGTGAGCCGTTTCGAGATT





CACGCGGCGTTTGACATCATTAAGAGCTACGTTGATTTTCCGAACTAC





GAAACCGAACAGGCGTTCGAGATCACCCGTCAACTGTTTATTCACAAG





AAAGTGGCGGTTCCGGACGGCTACATCTATGAAAGCCACAAAGGCATT





CCGAGCGGTAGCTACTATACCAGCCTGGTGGGCAGCATCATTAACTAC





CTGCGTATCAACTATCTGTGGCGTCTGCTGACCGGTCACCCGCCGCAG





CAATGCCACACCCTGGGTGACGATAGCCTGGTGGGTGACAACAGCTAC





GTTAACCCGCAGGCGATCGAGGAAGCGGCGAACAAGCTGGGCTGGCAC





TTCAACCCGGATAAAACCCAATACAGCACCGTGCCGGAGGAAATCACC





TTTCTGGGTCGTACCTATGTTGGTGGCCTGAACAAGCGTGATCTGACC





AAATGCATTCGTCTGCTGGTGTACCCGGAGTATCCGGTTGAAAGCGGT





CGTATCAGCGCGTACCGTGCGAAGAGCATTGCGCAAGACGCGGGTGGC





CTGAGCGAAGTTCTGAACCGTATCGCGGATAAACTGCGTCGTATTTAT





GGCACCGCGAGCGAAGAAGAAGTTCCGATTTATTTCAAGCGTTATGTT





TTTGGCGTGTAA






The optimized sequence comprises modifications to remove tandem rare codons that can reduce the efficiency of translation or disengage ribosomes from the RNA, by changing


GC content to prolong mRNA half-life, to disrupt some predicted stem-loop structures, and to remove negative cis-acting sites.


High levels of expression of the protein in E. coli were induced and this expression was confirmed, as evidenced by FIG. 3. It is expected that improvements is solubilization of the protein can be achieved using a variety of known approaches in view of the present disclosure, including but not necessarily by moving the position of the histidine tag, and/or by expression in a different vector, such as pET26-Ub-CHIS which also utilizes a ubiquitin tag and has been used successfully for the expression of poliovirus RdRp as well as other viral polymerases.


EXAMPLE 4

This Example is illustrated by the results presented in FIG. 4. To obtain these results, RT-PCR products were produced using Zea mays chrysovirus 1 as a template, and primers for the RdRp gene. The following were used as reverse transcriptase: M, marker lane. 1, PCV1 virions; 2, PdPV-pa virions; 3, MMuLV RT (New England Biolabs). Expected size band is ˜500 nt (upper band in gel).


EXAMPLE 5

This Example is illustrated by the results presented in FIG. 4, lane 2. In this example we used virus particles from PdPV-pa, purified according to our published methods, in place of PCV1 virions in the above example with the Zea mays chrysovirus 1 template and primers. This reaction was carried out at room temperature, but the fungal host of PdPV-pa has a temperature optimum of 10° C. RT reactions at this temperature would like have extremely high fidelity. The amino acid sequence of PdPV-pa RdRp is provided as SEQ ID NO:2.


EXAMPLE 6

This Example is illustrated by the results presented in FIG. 5. To obtain these results, RT-PCR product from in vitro translated PCV1 RdRp was generated. This was performed using PCV1 dsRNA as template and primers for the RdRp gene. FIG. 5 has the following features: M, marker; 1, 1 μl of in vitro translation product; 2, 2 μl of in vitro translation product; 3, MMuLV RT (New England Biolabs).


While the disclosure has been particularly shown and described with reference to specific embodiments, it should be understood by those having skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present disclosure as disclosed herein.

Claims
  • 1. A purified or recombinant RNA dependent RNA polymerase (RdRp) that has reverse-transcriptase (RT) activity for use in producing cDNA from RNA, wherein the RdRp optionally comprises a purification tag.
  • 2. The purified or recombinant RdRp of claim 1, wherein the RdRp is present in or provided with one or more buffers comprising deoxyribonucleotide triphosphates (dNTPs), and wherein the dNTPs optionally comprise all of deoxyadenosine triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine triphosphate (dGTP), and deoxythymidine triphosphate (dTTP), and wherein the one or more buffers are free of added Uridine-5′-triphosphate (UTP).
  • 3. The purified or recombinant RdRp of claim 1, wherein the RdRp comprises the purification tag.
  • 4. The purified or recombinant RdRp of claim 1, wherein the RdRp is present in a buffer that comprises dATP, dCTP, dGTP, and dTTP,
  • 5. The purified or recombinant RdRp of claim 4, wherein the RdRp is in a complex with a double-stranded RNA or single-stranded template.
  • 6. The purified or recombinant RdRp of claim 5, wherein the complex of the RdRp and the dsRNA template further comprises a segment of a cDNA that is complementary to one strand of the dsRNA template.
  • 7. An expression vector encoding an RdRp of claim 1.
  • 8. A cell comprising an expression vector of claim 7.
  • 9. An in vitro method for producing a cDNA comprising contacting an RNA template with an RdRp of claim 1 such that the cDNA is produced.
  • 10. The method of claim 9, wherein the contacting the RNA template with the RdRp is performed in a reaction buffer comprising dATP, dCTP, dGTP, and dTTP.
  • 11. The method of claim 10, wherein the contacting the RNA template with the RdRp is performed at a temperature of 10-25° C.
  • 12. The method of claim 10, further comprising separating the cDNA from the reaction buffer, and optionally determining the sequence of the cDNA.
  • 13. The method of claim 10, wherein the cDNA is generated in a one-step RT polymerase chain (PCR) reaction.
  • 14. The method of claim 10, wherein the cDNA is generated in a two-step RT PCR reaction.
  • 15. The method of claim 10, wherein the RNA is separated from a biological sample prior to producing the cDNA.
  • 16. The method of any one of claims 915claim 9, wherein the RNA is double stranded RNA.
  • 17. A method comprising: a) contacting a plurality of distinct test agents divided into separate reactions chambers with an isolated or recombinant RT of claim 1, a dsRNA template, and a reverse transcriptase reaction buffer, b) allowing the test agents to be in contact with the RT, and subsequently, c) measuring of cDNA produced, wherein determining less cDNA relative to a control indicates the test agent is a candidate for use in inhibiting reverse transcriptase activity of the RT.
  • 18. A kit comprising an RdRp of claim 1, wherein the kit further comprises one or more buffers that comprise dATP, dCTP, dGTP, and dTTP.
  • 19. A recombinant or purified RdRp optionally comprising an expression tag, wherein the RdRp has an amino acid sequence that is at least 90% identical to a contiguous segment of the amino acid sequence of a Partitiviridae virus RdRp, wherein the contiguous segment comprises a reverse transcriptase domain.
  • 20. The recombinant or purified RdRp of claim 19, wherein the contiguous segment spans at least 50 amino acids of the Partitiviridae virus RdRp.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application No. 62/483,651, filed Apr. 10, 2017, the disclosure of which is incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under Hatch Act Project No. PEN04480, awarded by the United States Department of Agriculture/NIFA. The Government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/026913 4/10/2018 WO 00
Provisional Applications (1)
Number Date Country
62483651 Apr 2017 US