Compositions and methods for cancer

Information

  • Patent Grant
  • 7820447
  • Patent Number
    7,820,447
  • Date Filed
    Wednesday, December 26, 2001
    22 years ago
  • Date Issued
    Tuesday, October 26, 2010
    13 years ago
Abstract
The present invention relates to novel sequences for use in diagnosis and treatment of carcinomas, especially lymphoma carcinomas. In addition, the present invention describes the use of novel compositions for use in screening methods.
Description

The Sequence Listing (containing SEQ ID NOS:1-1613) is submitted in accordance with 37 CFR §§1.821-1.825 and §§1.52(e) and 1.96(c) on three compact discs labeled “Computer Readable Form (CRF)”, “Copy 1” and “Copy 2”, the contents of which are the same and are expressly incorporated herein by reference. The file names are A71249.ST25, contain 16,870,127 bytes, and were recorded on May 29, 2002.


FIELD OF THE INVENTION

The present invention relates to novel sequences for use in diagnosis and treatment of cancer, especially carcinomas, as well as the use of the novel compositions in screening methods.


BACKGROUND OF THE INVENTION

Oncogenes are genes that can cause cancer. Carcinogenesis can occur by a wide variety of mechanisms, including infection of cells by viruses containing oncogenes, activation of protooncogenes in the host genome, and mutations of protooncogenes and tumor suppressor genes.


There are a number of viruses known to be involved in human cancer as well as in animal cancer. Of particular interest here are viruses that do not contain oncogenes themselves; these are slow-transforming retroviruses. They induce tumors by integrating into the host genome and affecting neighboring protooncogenes in a variety of ways, including promoter insertion, enhancer insertion, and/or truncation of a protooncogene or tumor suppressor gene. The analysis of sequences at or near the insertion sites led to the identification of a number of new protooncogenes.


With respect to lymphoma and leukemia, murine leukemia retrovirus (MuLV), such as SL3-3 or Akv, is a potent inducer of tumors when inoculated into susceptible newborn mice, or when carried in the germline. A number of sequences have been identified as relevant in the induction of lymphoma and leukemia by analyzing the insertion sites; see Sorensen et al., J. of Virology 74:2161 (2000); Hansen et al., Genome Res. 10(2):237-43 (2000); Sorensen et al., J. Virology 70:4063 (1996); Sorensen et al., J. Virology 67:7118 (1993); Joosten et al., Virology 268:308 (2000); and Li et al., Nature Genetics 23:348 (1999); all of which are expressly incorporated by reference herein.


Lymphomas are a collection of cancers involving the lymphatic system and are generally categorized as Hodgkin's disease and Non-Hodgkin lymphoma. Hodgkin's lymphomas are of B lymphocyte origin. Non-Hodgkin lymphomas are a collection of over 30 different types of cancers including T and B lymphomas. Leukemia is a disease of the blood forming tissues and includes B and T cell lymphocytic leukemias. It is characterized by an abnormal and persistent increase in the number of leukocytes and the amount of bone marrow, with enlargement of the spleen and lymph nodes.


Breast cancer is one of the most significant diseases that affects women. At the current rate, American women have a 1 in 8 risk of developing breast cancer by age 95 (American Cancer Society, 1992). Treatment of breast cancer at later stages is often futile and disfiguring, making early detection a high priority in medical management of the disease.


Accordingly, it is an object of the invention to provide sequences involved in cancer and in particular in oncogenesis.


SUMMARY OF THE INVENTION

In accordance with the objects outlined above, the present invention provides methods for screening for compositions which modulate carcinomas, especially lymphoma and leukemia. Also provided herein are methods of inhibiting proliferation of a cell, preferably a lymphoma cell. Methods of treatment of carcinomas, including diagnosis, are also provided herein.


In one aspect, a method of screening drug candidates comprises providing a cell that expresses a carcinoma associated (CA) gene or fragments thereof. Preferred embodiments of CA genes are genes which are differentially expressed in cancer cells, preferably lymphatic, breast, prostate or epithelial cells, compared to other cells. Preferred embodiments of CA genes used in the methods herein include, but are not limited to the nucleic acids selected from Tables 1-112. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the CA gene.


In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate.


Also provided herein is a method of screening for a bioactive agent capable of binding to a CA protein (CAP), the method comprising combining the CAP and a candidate bioactive agent, and determining the binding of the candidate agent to the CAP.


Further provided herein is a method for screening for a bioactive agent capable of modulating the activity of a CAP. In one embodiment, the method comprises combining the CAP and a candidate bioactive agent, and determining the effect of the candidate agent on the bioactivity of the CAP.


Also provided is a method of evaluating the effect of a candidate carcinoma drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile of the patient to an expression profile of a healthy individual.


In a further aspect, a method for inhibiting the activity of an CA protein is provided. In one embodiment, the method comprises administering to a patient an inhibitor of a CA protein preferably selected from the group consisting of the sequences outlined in Tables 1-112 or their complements.


A method of neutralizing the effect of a CA protein, preferably a protein encoded by a nucleic acid selected from the group of sequences outlined in Tables 1-112, is also provided. Preferably, the method comprises contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization.


Moreover, provided herein is a biochip comprising a nucleic acid segment which encodes a CA protein, preferably selected from the sequences outlined in Tables 1-112.


Also provided herein is a method for diagnosing or determining the propensity to carcinomas, especially lymphoma or leukemia by sequencing at least one carcinoma or lymphoma gene of an individual. In yet another aspect of the invention, a method is provided for determining carcinoma including lymphoma and leukemia gene copy number in an individual.


Novel sequences are also provided herein. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.







DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to a number of sequences associated with carcinomas, especially lymphoma, breast cancer or prostate cancer. The relatively tight linkage between clonally-integrated proviruses and protooncogenes forms “provirus tagging”, in which slow-transforming retroviruses that act by an insertion mutation mechanism are used to isolate protooncogenes. In some models, uninfected animals have low cancer rates, and infected animals have high cancer rates. It is known that many of the retroviruses involved do not carry transduced host protooncogenes or pathogenic trans-acting viral genes, and thus the cancer incidence must therefor be a direct consequence of proviral integration effects into host protooncogenes. Since proviral integration is random, rare integrants will “activate” host protooncogenes that provide a selective growth advantage, and these rare events result in new proviruses at clonal stoichiometries in tumors.


The use of oncogenic retroviruses, whose sequences insert into the genome of the host organism resulting in carcinoma, allows the identification of host sequences involved in carcinoma. These sequences may then be used in a number of different ways, including diagnosis, prognosis, screening for modulators (including both agonists and antagonists), antibody generation (for immunotherapy and imaging), etc. However, as will be appreciated by those in the art, oncogenes that are identified in one type of cancer such as lymphoma or leukemia have a strong likelihood of being involved in other types of cancers as well. Thus, while the sequences outlined herein are initially identified as correlated with lymphoma, they can also be found in other types of cancers as well, outlined below.


Accordingly, the present invention provides nucleic acid and protein sequences that are associated with carcinoma, herein termed “carcinoma associated” or “CA” sequences. In a preferred embodiment, the present invention provides nucleic acid and protein sequences that are associated with carcinomas which originate in lymphatic tissue, herein termed “lymphoma associated”, “leukemia associated” or “LA” sequences.


Suitable cancers which can be diagnosed or screened for using the methods of the present invention include cancers classified by site or by histological type. Cancers classified by site include cancer of the oral cavity and pharynx (lip, tongue, salivary gland, floor of mouth, gum and other mouth, nasopharynx, tonsil, oropharynx, hypopharynx, other oral/pharynx); cancers of the digestive system (esophagus; stomach; small intestine; colon and rectum; anus, anal canal, and anorectum; liver; intrahepatic bile duct; gallbladder; other biliary; pancreas; retroperitoneum; peritoneum, omentum, and mesentery; other digestive); cancers of the respiratory system (nasal cavity, middle ear, and sinuses; larynx; lung and bronchus; pleura; trachea, mediastinum, and other respiratory); cancers of the mesothelioma; bones and joints; and soft tissue, including heart; skin cancers, including melanomas and other non-epithelial skin cancers; Kaposi's sarcoma and breast cancer; cancer of the female genital system (cervix uteri; corpus uteri; uterus, nos; ovary; vagina; vulva; and other female genital); cancers of the male genital system (prostate gland; testis; penis; and other male genital); cancers of the urinary system (urinary bladder; kidney and renal pelvis; ureter; and other urinary); cancers of the eye and orbit; cancers of the brain and nervous system (brain; and other nervous system); cancers of the endocrine system (thyroid gland and other endocrine, including thymus); cancers of the lymphomas (hodgkin's disease and non-hodgkin's lymphoma), multiple myeloma, and leukemias (lymphocytic leukemia; myeloid leukemia; monocytic leukemia; and other leukemias).


Other cancers, classified by histological type, that may be associated with the sequences of the invention include, but are not limited to, Neoplasm, malignant; Carcinoma, NOS; Carcinoma, undifferentiated, NOS; Giant and spindle cell carcinoma; Small cell carcinoma, NOS; Papillary carcinoma, NOS; Squamous cell carcinoma, NOS; Lymphoepithelial carcinoma; Basal cell carcinoma, NOS; Pilomatrix carcinoma; Transitional cell carcinoma, NOS; Papillary transitional cell carcinoma; Adenocarcinoma, NOS; Gastrinoma, malignant; Cholangiocarcinoma; Hepatocellular carcinoma, NOS; Combined hepatocellular carcinoma and cholangiocarcinoma; Trabecular adenocarcinoma; Adenoid cystic carcinoma; Adenocarcinoma in adenomatous polyp; Adenocarcinoma, familial polyposis coli; Solid carcinoma, NOS; Carcinoid tumor, malignant; Branchiolo-alveolar adenocarcinoma; Papillary adenocarcinoma, NOS; Chromophobe carcinoma; Acidophil carcinoma; Oxyphilic adenocarcinoma; Basophil carcinoma; Clear cell adenocarcinoma, NOS; Granular cell carcinoma; Follicular adenocarcinoma, NOS; Papillary and follicular adenocarcinoma; Nonencapsulating sclerosing carcinoma; Adrenal cortical carcinoma; Endometroid carcinoma; Skin appendage carcinoma; Apocrine adenocarcinoma; Sebaceous adenocarcinoma; Ceruminous adenocarcinoma; Mucoepidermoid carcinoma; Cystadenocarcinoma, NOS; Papillary cystadenocarcinoma, NOS; Papillary serous cystadenocarcinoma; Mucinous cystadenocarcinoma, NOS; Mucinous adenocarcinoma; Signet ring cell carcinoma; Infiltrating duct carcinoma; Medullary carcinoma, NOS; Lobular carcinoma; Inflammatory carcinoma; Paget's disease, mammary; Acinar cell carcinoma; Adenosquamous carcinoma; Adenocarcinoma w/squamous metaplasia; Thymoma, malignant; Ovarian stromal tumor, malignant; Thecoma, malignant; Granulosa cell tumor, malignant; Androblastoma, malignant; Sertoli cell carcinoma; Leydig cell tumor, malignant; Lipid cell tumor, malignant; Paraganglioma, malignant; Extra-mammary paraganglioma, malignant; Pheochromocytoma; Glomangiosarcoma; Malignant melanoma, NOS; Amelanotic melanoma; Superficial spreading melanoma; Malig melanoma in giant pigmented nevus; Epithelioid cell melanoma; Blue nevus, malignant; Sarcoma, NOS; Fibrosarcoma, NOS; Fibrous histiocytoma, malignant; Myxosarcoma; Liposarcoma, NOS; Leiomyosarcoma, NOS; Rhabdomyosarcoma, NOS; Embryonal rhabdomyosarcoma; Alveolar rhabdomyosarcoma; Stromal sarcoma, NOS; Mixed tumor, malignant, NOS; Mullerian mixed tumor; Nephroblastoma; Hepatoblastoma; Carcinosarcoma, NOS; Mesenchymoma, malignant; Brenner tumor, malignant; Phyllodes tumor, malignant; Synovial sarcoma, NOS; Mesothelioma, malignant; Dysgerminoma; Embryonal carcinoma, NOS; Teratoma, malignant, NOS; Struma ovari, malignant; Choriocarcinoma; Mesonephroma, malignant; Hemangiosarcoma; Hemangioendothelioma, malignant; Kaposi's sarcoma; Hemangiopericytoma, malignant; Lymphangiosarcoma; Osteosarcoma, NOS; Juxtacortical osteosarcoma; Chondrosarcoma, NOS; Chondroblastoma, malignant; Mesenchymal chondrosarcoma; Giant cell tumor of bone; Ewing's sarcoma; Odontogenic tumor, malignant; Ameloblastic odontosarcoma; Ameloblastoma, malignant; Ameloblastic fibrosarcoma; Pinealoma, malignant; Chordoma; Glioma, malignant; Ependymoma, NOS; Astrocytoma, NOS; Protoplasmic astrocytoma; Fibrillary astrocytoma; Astroblastoma; Glioblastoma, NOS; Oligodendroglioma, NOS; Oligodendroblastoma; Primitive neuroectodermal; Cerebellar sarcoma, NOS; Ganglioneuroblastoma; Neuroblastoma, NOS; Retinoblastoma, NOS; Olfactory neurogenic tumor; Meningioma, malignant; Neurofibrosarcoma; Neurilemmoma, malignant; Granular cell tumor, malignant; Malignant lymphoma, NOS; Hodgkin's disease, NOS; Hodgkin's; paragranuloma, NOS; Malignant lymphoma, small lymphocytic; Malignant lymphoma, large cell, diffuse; Malignant lymphoma, follicular, NOS; Mycosis fungoides; Other specified non-Hodgkin's lymphomas; Malignant histiocytosis; Multiple myeloma; Mast cell sarcoma; Immunoproliferative small intestinal disease; Leukemia, NOS; Lymphoid leukemia, NOS; Plasma cell leukemia; Erythroleukemia; Lymphosarcoma cell leukemia; Myeloid leukemia, NOS; Basophilic leukemia; Eosinophilic leukemia; Monocytic leukemia, NOS; Mast cell leukemia; Megakaryoblastic leukemia; Myeloid sarcoma; and Hairy cell leukemia.


In addition, the genes may be involved in other diseases, such as but not limited to diseases associated with aging or neurodegenerative diseases.


Association in this context means that the nucleotide or protein sequences are either differentially expressed, activated, inactivated or altered in carcinomas as compared to normal tissue. As outlined below, CA sequences include those that are up-regulated (i.e. expressed at a higher level), as well as those that are down-regulated (i.e. expressed at a lower level), in carcinomas. CA sequences also include sequences which have been altered (i.e., truncated sequences or sequences with substitutions, deletions or insertions, including point mutations) and show either the same expression profile or an altered profile. In a preferred embodiment, the CA sequences are from humans; however, as will be appreciated by those in the art, CA sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other CA sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc). In some cases, prokaryotic CA sequences may be useful. CA sequences from other organisms may be obtained using the techniques outlined below.


CA sequences can include both nucleic acid and amino acid sequences. In a preferred embodiment, the CA sequences are recombinant nucleic acids. By the term “recombinant nucleic acid” herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid by polymerases and endonucleases, in a form not normally found in nature. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e. using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention.


Similarly, a “recombinant protein” is a protein made using recombinant techniques, i.e. through the expression of a recombinant nucleic acid as depicted above. A recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. A substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of an CA protein from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of an inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions, as discussed below.


In a preferred embodiment, the CA sequences are nucleic acids. As will be appreciated by those in the art and is more fully outlined below, CA sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; for example, biochips comprising nucleic acid probes to the CA sequences can be generated. In the broadest sense, then, by “nucleic acid” or “oligonucleotide” or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below (for example in antisense applications or when a candidate agent is a nucleic acid), nucleic acid analogs may be used that have alternate backbones, comprising, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Pat. No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Pat. Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News Jun. 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done for a variety of reasons, for example to increase the stability and half-life of such molecules in physiological environments for use in anti-sense applications or as probes on a biochip.


As will be appreciated by those in the art, all of these nucleic acid analogs may find use in the present invention. In addition, mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.


The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand “Watson” also defines the sequence of the other strand “Crick”; thus the sequences described herein also includes the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. As used herein, the term “nucleoside” includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, “nucleoside” includes non-naturally occurring analog structures. Thus for example the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.


An CA sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the CA sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.


The CA sequences of the invention were initially identified as described herein; basically, infection of mice with murine leukemia viruses (MLV) resulted in lymphoma, although many of these sequences will also be involved in other cancers as is generally outlined herein.


The CA sequences outlined herein comprise the insertion sites for the virus. In general, the retrovirus can cause carcinomas in three basic ways: first of all, by inserting upstream of a normally silent host gene and activating it (e.g. promoter insertion); secondly, by truncating a host gene that leads to oncogenesis; or by enhancing the transcription of a neighboring gene. For example, retrovirus enhancers, including SL3-3, are known to act on genes up to approximately 200 kilobases of the insertion site.


In a preferred embodiment, CA sequences are those that are up-regulated in carcinomas; that is, the expression of these genes is higher in carcinoma tissue as compared to normal tissue of the same differentiation stage. “Up-regulation” as used herein means at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.


In a preferred embodiment, CA sequences are those that are down-regulated in carcinomas; that is, the expression of these genes is lower in carcinoma tissue as compared to normal I tissue of the same differentiation stage. “Down-regulation” as used herein means at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.


In a preferred embodiment, CA sequences are those that are altered but show either the same expression profile or an altered profile as compared to normal lymphoid tissue of the same differentiation stage. “Altered CA sequences” as used herein refers to sequences which are truncated, contain insertions or contain point mutations.


CA proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins.


In a preferred embodiment the CA protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, for example, signaling pathways); aberrant expression of such proteins results in unregulated or disregulated cellular processes. For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.


An increasingly appreciated concept in characterizing intracellular proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate.


In a preferred embodiment, the CA sequences are transmembrane proteins. Transmembrane proteins are molecules that span the phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.


Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors are classified as “seven transmembrane domain” proteins, as they contain 7 membrane spanning regions. Important transmembrane protein receptors include, but are not limited to insulin receptor, insulin_like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL1 receptor, IL2 receptor, etc.


Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted.


The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. For example, cytokine receptors are characterized by a cluster of cysteines and a WSXWS (W=tryptophan, S=serine, X=any amino acid (SEQ ID NO:1613) motif. Immunoglobulin-like domains are highly conserved. Mucin-like domains may be involved in cell adhesion and leucine-rich repeats participate in protein-protein interactions.


Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell for example via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.


CA proteins that are transmembrane are particularly preferred in the present invention as they are good targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities.


It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, for example through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.


In a preferred embodiment, the CA proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. CA proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, for example for blood tests.


An CA sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology to the CA sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.


As used herein, a nucleic acid is a “CA nucleic acid” if the overall homology of the nucleic acid sequence to one of the nucleic acids of Tables 1-112 is preferably greater than about 75%, more preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. In a preferred embodiment, the sequences which are used to determine sequence identity or similarity are selected from those of the nucleic acids of Tables 1-112. In another embodiment, the sequences are naturally occurring allelic variants of the sequences of the nucleic acids of Tables 1-112. In another embodiment, the sequences are sequence variants as further described herein.


Homology in this context means sequence similarity or identity, with identity being preferred. A preferred comparison for homology purposes is to compare the sequence containing sequencing errors to the correct sequence. This homology will be determined using standard techniques known in the art, including, but not limited to, the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, PNAS USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wis.), the Best Fit sequence program described by Devereux et al., Nucl. Acid Res. 12:387-395 (1984), preferably using the default settings, or by inspection.


One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, J. Mol. Evol. 35:351-360 (1987); the method is similar to that described by Higgins & Sharp CABIOS 5:151-153 (1989). Useful PILEUP parameters including a default gap weight of 3.00, a default gap length weight of 0.10, and weighted end gaps.


Another example of a useful algorithm is the BLAST algorithm, described in Altschul et al., J. Mol. Biol. 215, 403-410, (1990) and Karlin et al., PNAS USA 90:5873-5787 (1993). A particularly useful BLAST program is the WU-BLAST-2 program which was obtained from Altschul et al., Methods in Enzymology, 266: 460-480 (1996); http://blast.wustl]. WU-BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span=1, overlap fraction 0.125, word threshold (T)=11. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase sensitivity. A % amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the “longer” sequence in the aligned region. The “longer” sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-Blast-2 to maximize the alignment score are ignored).


Thus, “percent (%) nucleic acid sequence identity” is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues of the nucleic acids of Tables 1-112. A preferred method utilizes the BLASTN module of WU-BLAST-2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125, respectively.


The alignment may include the introduction of gaps in the sequences to be aligned. In addition, for sequences which contain either more or fewer nucleotides than those of the nucleic acids of Tables 1-112, it is understood that the percentage of homology will be determined based on the number of homologous nucleosides in relation to the total number of nucleosides. Thus, for example, homology of sequences shorter than those of the sequences identified herein and as discussed below, will be determined using the number of nucleosides in the shorter sequence.


In one embodiment, the nucleic acid homology is determined through hybridization studies. Thus, for example, nucleic acids which hybridize under high stringency to the nucleic acids identified in the figures, or their complements, are considered CA sequences. High stringency conditions are known in the art; see for example Maniatis et al., Molecular Cloning: A Laboratory Manual, 2d Edition, 1989, and Short Protocols in Molecular Biology, ed. Ausubel, et al., both of which are hereby incorporated by reference. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes, “Overview of principles of hybridization and the strategy of nucleic acid assays” (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g. 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g. greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.


In another embodiment, less stringent hybridization conditions are used; for example, moderate or low stringency conditions may be used, as are known in the art; see Maniatis and Ausubel, supra, and Tijssen, supra.


In addition, the CA nucleic acid sequences of the invention are fragments of larger genes, i.e. they are nucleic acid segments. Alternatively, the CA nucleic acid sequences can serve as indicators of oncogene position, for example, the CA sequence may be an enhancer that activates a protooncogene. “Genes” in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, additional sequences of the CA genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Maniatis et al., and Ausubel, et al., supra, hereby expressly incorporated by reference. In general, this is done using PCR, for example, kinetic PCR.


Once the CA nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire CA nucleic acid. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant CA nucleic acid can be further used as a probe to identify and isolate other CA nucleic acids, for example additional coding regions. It can also be used as a “precursor” nucleic acid to make modified or variant CA nucleic acids and proteins.


The CA nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the CA nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, for example for gene therapy and/or antisense applications. Alternatively, the CA nucleic acids that include coding regions of CA proteins can be put into expression vectors for the expression of CA proteins, again either for screening purposes or for administration to a patient.


In a preferred embodiment, nucleic acid probes to CA nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the CA nucleic acids, i.e. the target sequence (either the target sequence of the sample or to other probe sequences, for example in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by “substantially complementary” herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.


A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.


In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e. have some sequence in common), or separate.


As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By “immobilized” and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can be covalent or non-covalent. By “non-covalent binding” and grammatical equivalents herein is meant one or more of either electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By “covalent binding” and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.


In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.


The biochip comprises a suitable solid substrate. By “substrate” or “solid support” or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon™, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica_based materials including silicon and modified silicon, carbon, metals, inorganic glasses, etc. In general, the substrates allow optical detection and do not appreciably fluoresce.


In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo- or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross_linkers, pages 155200, incorporated herein by reference). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.


In this embodiment, the oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5′ or 3′ terminus may be attached to the solid support, or attachment may be via an internal nucleoside.


In an additional embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.


Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Pat. Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChip technology.


In addition to the solid-phase technology represented by biochip arrays, gene expression can also be quantified using liquid-phase arrays. One such system is kinetic polymerase chain reaction (PCR). Kinetic PCR allows for the simultaneous amplification and quantification of specific nucleic acid sequences. The specificity is derived from synthetic oligonucleotide primers designed to preferentially adhere to single-stranded nucleic acid sequences bracketing the target site. This pair of oligonucleotide primers form specific, non-covalently bound complexes on each strand of the target sequence. These complexes facilitate in vitro transcription of double-stranded DNA in opposite orientations. Temperature cycling of the reaction mixture creates a continuous cycle of primer binding, transcription, and re-melting of the nucleic acid to individual strands. The result is an exponential increase of the target dsDNA product. This product can be quantified in real time either through the use of an intercalating dye or a sequence specific probe. SYBR® Greene I, is an example of an intercalating dye, that preferentially binds to dsDNA resulting in a concomitant increase in the fluorescent signal. Sequence specific probes, such as used with TaqMan® technology, consist of a fluorochrome and a quenching molecule covalently bound to opposite ends of an oligonucleotide. The probe is designed to selectively bind the target DNA sequence between the two primers. When the DNA strands are synthesized during the PCR reaction, the fluorochrome is cleaved from the probe by the exonuclease activity of the polymerase resulting in signal dequenching. The probe signaling method can be more specific than the intercalating dye method, but in each case, signal strength is proportional to the dsDNA product produced. Each type of quantification method can be used in multi-well liquid phase arrays with each well representing primers and/or probes specific to nucleic acid sequences of interest. When used with messenger RNA preparations of tissues or cell lines, and an array of probe/primer reactions can simultaneously quantify the expression of multiple gene products of interest. See Germer, S., et al., Genome Res. 10:258-266 (2000); Heid, C. A., et al., Genome Res. 6, 986-994 (1996).


In a preferred embodiment, CA nucleic acids encoding CA proteins are used to make a variety of expression vectors to express CA proteins which can then be used in screening assays, as described below. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the CA protein. The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.


Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. The transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the CA protein; for example, transcriptional and translational regulatory nucleic acid sequences from Bacillus are preferably used to express the CA protein in Bacillus. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.


In general, the transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.


Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.


In addition, the expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, for example in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art.


In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.


The CA proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding an CA protein, under the appropriate conditions to induce or cause expression of the CA protein. The conditions appropriate for CA protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.


Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect, plant and animal cells, including mammalian cells. Of particular interest are Drosophila melanogaster cells, Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, THP1 cell line (a macrophage cell line) and human cells and cell lines.


In a preferred embodiment, the CA proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral systems. A preferred expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter. Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3′ to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlytion signals include those derived form SV40.


The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.


In a preferred embodiment, CA proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; for example, the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the CA protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others. The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.


In one embodiment, CA proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.


In a preferred embodiment, CA protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.


The CA protein may also be made as a fusion protein, using techniques well known in the art. Thus, for example, for the creation of monoclonal antibodies. If the desired epitope is small, the CA protein may be fused to a carrier protein to form an immunogen. Alternatively, the CA protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the CA protein is an CA peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.


In one embodiment, the CA nucleic acids, proteins and antibodies of the invention are labeled. By “labeled” herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes. The labels may be incorporated into the CA nucleic acids, proteins and antibodies at any position. For example, the label should be capable of producing, either directly or indirectly, a detectable signal. The detectable moiety may be a radioisotope, such as 3H, 14C, 32P, 35S, or 125I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).


Accordingly, the present invention also provides CA protein sequences. An CA protein of the present invention may be identified in several ways. “Protein” in this sense includes proteins, polypeptides, and peptides. As will be appreciated by those in the art, the nucleic acid sequences of the invention can be used to generate protein sequences. There are a variety of ways to do this, including cloning the entire gene and verifying its frame and amino acid sequence, or by comparing it to known sequences to search for homology to provide a frame, assuming the CA protein has homology to some protein in the database being used. Generally, the nucleic acid sequences are input into a program that will search all three frames for homology. This is done in a preferred embodiment using the following NCBI Advanced BLAST parameters. The program is blastx or blastn. The database is nr. The input data is as “Sequence in FASTA format”. The organism list is “none”. The “expect” is 10; the filter is default. The “descriptions” is 500, the “alignments” is 500, and the “alignment view” is pairwise. The “query Genetic Codes” is standard (1). The matrix is BLOSUM62; gap existence cost is 11, per residue gap cost is 1; and the lambda ratio is 0.85 default. This results in the generation of a putative protein sequence.


Also included within one embodiment of CA proteins are amino acid variants of the naturally occurring sequences, as determined herein. Preferably, the variants are preferably greater than about 75% homologous to the wild-type sequence, more preferably greater than about 80%, even more preferably greater than about 85% and most preferably greater than 90%. In some embodiments the homology will be as high as about 93 to 95 or 98%. As for nucleic acids, homology in this context means sequence similarity or identity, with identity being preferred. This homology will be determined using standard techniques known in the art as are outlined above for the nucleic acid homologies.


CA proteins of the present invention may be shorter or longer than the wild type amino acid sequences. Thus, in a preferred embodiment, included within the definition of CA proteins are portions or fragments of the wild type sequences herein. In addition, as outlined above, the CA nucleic acids of the invention may be used to obtain additional coding regions, and thus additional protein sequence, using techniques known in the art.


In a preferred embodiment, the CA proteins are derivative or variant CA proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative CA peptide will contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the CA peptide.


Also included in an embodiment of CA proteins of the present invention are amino acid sequence variants. These variants fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the CA protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant CA protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the CA protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.


While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed CA variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example, M13 primer mutagenesis and LAR mutagenesis. Screening of the mutants is done using assays of CA protein activities.


Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.


Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the CA protein are desired, substitutions are generally made in accordance with the following chart:










CHART I





Original Residue
Exemplary Substitutions







Ala
Ser


Arg
Lys


Asn
Gln, His


Asp
Glu


Cys
Ser


Gln
Asn


Glu
Asp


Gly
Pro


His
Asn, Gln


Ile
Leu, Val


Leu
Ile, Val


Lys
Arg, Gln, Glu


Met
Leu, Ile


Phe
Met, Leu, Tyr


Ser
Thr


Thr
Ser


Trp
Tyr


Tyr
Trp, Phe


Val
Ile, Leu









Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those shown in Chart I. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.


The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analogue, although variants also are selected to modify the characteristics of the CA proteins as needed. Alternatively, the variant may be designed such that the biological activity of the CA protein is altered. For example, glycosylation sites may be altered or removed, dominant negative mutations created, etc.


Covalent modifications of CA polypeptides are included within the scope of this invention, for example for use in screening. One type of covalent modification includes reacting targeted amino acid residues of an CA polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues of an CA polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking CA polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-CA antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3′-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.


Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains [T. E. Creighton, Proteins: Structure and Molecular Properties, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.


Another type of covalent modification of the CA polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. “Altering the native glycosylation pattern” is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence CA polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence CA polypeptide.


Addition of glycosylation sites to CA polypeptides may be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence CA polypeptide (for O-linked glycosylation sites). The CA amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the CA polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.


Another means of increasing the number of carbohydrate moieties on the CA polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 Sep. 1987, and in Aplin and Wriston, La. Crit. Rev. Biochem., pp. 259-306 (1981).


Removal of carbohydrate moieties present on the CA polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).


Another type of covalent modification of CA comprises linking the CA polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.


CA polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising an CA polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an CA polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl-terminus of the CA polypeptide, although internal fusions may also be tolerated in some instances. The presence of such epitope-tagged forms of an CA polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the CA polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an CA polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.


Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].


Also included with the definition of CA protein in one embodiment are other CA proteins of the CA family, and CA proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related CA proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the CA nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art.


In addition, as is outlined herein, CA proteins can be made that are longer than those encoded by the nucleic acids of the figures, for example, by the elucidation of additional sequences, the addition of epitope or purification tags, the addition of other fusion sequences, etc.


CA proteins may also be identified as being encoded by CA nucleic acids. Thus, CA proteins are encoded by nucleic acids that will hybridize to the sequences of the sequence listings, or their complements, as outlined herein.


In a preferred embodiment, the invention provides CA antibodies. In a preferred embodiment, when the CA protein is to be used to generate antibodies, for example for immunotherapy, the CA protein should share at least one epitope or determinant with the full length protein. By “epitope” or “determinant” herein is meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller CA protein will be able to bind to the full length protein. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.


In one embodiment, the term “antibody” includes antibody fragments, as are known in the art, including Fab, Fab2, single chain antibodies (Fv for example), chimeric antibodies, etc., either produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies.


Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.


The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-112, or fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes (“PBLs”) are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (“HAT medium”), which substances prevent the growth of HGPRT-deficient cells.


In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for a protein encoded by a nucleic acid of Tables 1-112, or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific.


In a preferred embodiment, the antibodies to CA are capable of reducing or eliminating the biological function of CA, as is described below. That is, the addition of anti-CA antibodies (either polyclonal or preferably monoclonal) to CA (or cells containing CA) may reduce or eliminate the CA activity. Generally, at least a 25% decrease in activity is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.


In a preferred embodiment the antibodies to the CA proteins are humanized antibodies. Humanized forms of non_human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen binding subsequences of antibodies) which contain minimal sequence derived from non_human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues form a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non_human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non_human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non_human immunoglobulin and all or substantially all of the framework residues (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522525 (1986); Riechmann et al., Nature, 332:323329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593 596 (1992)].


Methods for humanizing non_human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non_human. These non_human amino acid residues are often referred to as import residues, which are typically taken from an import variable domain. Humanization can be essentially performed following the method of Winter and co_workers [Jones et al., Nature, 321:522525 (1986); Riechmann et al., Nature, 332:323327 (1988); Verhoeyen et al., Science, 239:15341536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Pat. No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non_human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.


Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies [Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):8695 (1991)]. Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Pat. Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779783 (1992); Lonberg et al., Nature 368 856859 (1994); Morrison, Nature 368, 81213 (1994); Fishwild et al., Nature Biotechnology 14, 84551 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 6593 (1995).


By immunotherapy is meant treatment of a carcinoma with an antibody raised against an CA protein. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen.


In a preferred embodiment, oncogenes which encode secreted growth factors may be inhibited by raising antibodies against CA proteins that are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted CA protein.


In another preferred embodiment, the CA protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the CA protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane CA protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the CA protein. The antibody is also an antagonist of the CA protein. Further, the antibody prevents activation of the transmembrane CA protein. In one aspect, when the antibody prevents the binding of other molecules to the CA protein, the antibody prevents growth of the cell. The antibody may also sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity. Thus, carcinomas may be treated by administering to a patient antibodies directed against the transmembrane CA protein.


In another preferred embodiment, the antibody is conjugated to a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the CA protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the CA protein. The therapeutic moiety may inhibit enzymatic activity such as protease or protein kinase activity associated with carcinoma.


In a preferred embodiment, the therapeutic moiety may also be a cytotoxic agent. In this method, targeting the cytotoxic agent to tumor tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with carcinomas, including lymphoma. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against CA proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane CA proteins not only serves to increase the local concentration of therapeutic moiety in the carcinoma of interest, i.e., lymphoma, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.


In another preferred embodiment, the CA protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the CA protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.


The CA antibodies of the invention specifically bind to CA proteins. By “specifically bind” herein is meant that the antibodies bind to the protein with a binding constant in the range of at least 10−4-10−6 M−1, with a preferred range being 10−7-10−9 M−1.


In a preferred embodiment, the CA protein is purified or isolated after expression. CA proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the CA protein may be purified using a standard anti-CA antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, R., Protein Purification, Springer-Verlag, N.Y. (1982). The degree of purification necessary will vary depending on the use of the CA protein. In some instances no purification will be necessary.


Once expressed and purified if necessary, the CA proteins and nucleic acids are useful in a number of applications.


In one aspect, the expression levels of genes are determined for different cellular states in the carcinoma phenotype; that is, the expression levels of genes in normal tissue and in carcinoma tissue (and in some cases, for varying severities of lymphoma that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a “fingerprint” of the state; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be done or confirmed: does tissue from a particular patient have the gene expression profile of normal or carcinoma tissue.


“Differential expression,” or grammatical equivalents as used herein, refers to both qualitative as well as quantitative differences in the genes temporal and/or cellular expression patterns within and among the cells. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, for example, normal versus carcinoma tissue. That is, genes may be turned on or turned off in a particular state, relative to another state. As is apparent to the skilled artisan, any comparison of two or more states can be made. Such a qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques in one such state or cell type, but is not detectable in both. Alternatively, the determination is quantitative in that expression is increased or decreased; that is, the expression of the gene is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip® expression arrays, Lockhart, Nature Biotechnology, 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, Northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e. upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably, at least about 200%, with from 300 to at least 1000% being especially preferred.


As will be appreciated by those in the art, this may be done by evaluation at either the gene transcript, or the protein level; that is, the amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, for example through the use of antibodies to the CA protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Thus, the proteins corresponding to CA genes, i.e. those identified as being important in a particular carcinoma phenotype, i.e., lymphoma, can be evaluated in a diagnostic test specific for that carcinoma.


In a preferred embodiment, gene expression monitoring is done and a number of genes, i.e. an expression profile, is monitored simultaneously, although multiple protein expression monitoring can be done as well. Similarly, these assays may be done on an individual basis as well.


In this embodiment, the CA nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of CA sequences in a particular cell. The assays are done as is known in the art. As will be appreciated by those in the art, any number of different CA sequences may be used as probes, with single sequence assays being used in some cases, and a plurality of the sequences described herein being used in other embodiments. In addition, while solid-phase assays are described, any number of solution based assays may be done as well.


In a preferred embodiment, both solid and solution based assays may be used to detect CA sequences that are up-regulated or down-regulated in carcinomas as compared to normal tissue. In instances where the CA sequence has been altered but shows the same expression profile or an altered expression profile, the protein will be detected as outlined herein.


In a preferred embodiment nucleic acids encoding the CA protein are detected. Although DNA or RNA encoding the CA protein may be detected, of particular interest are methods wherein the mRNA encoding a CA protein is detected. The presence of mRNA in a sample is an indication that the CA gene has been transcribed to form the mRNA, and suggests that the protein is expressed. Probes to detect the mRNA can be any nucleotide/deoxynucleotide probe that is complementary to and base pairs with the mRNA and includes but is not limited to oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a CA protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5_bromo4_chloro3_indoyl phosphate.


In a preferred embodiment, any of the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in diagnostic assays. This can be done on an individual gene or corresponding polypeptide level, or as sets of assays.


As described and defined herein, CA proteins find use as markers of carcinomas, including lymphomas such as, but not limited to, Hodgkin's and non-Hodgkin lymphoma. Detection of these proteins in putative carcinoma tissue or patients allows for a determination or diagnosis of the type of carcinoma. Numerous methods known to those of ordinary skill in the art find use in detecting carcinomas. In one embodiment, antibodies are used to detect CA proteins. A preferred method separates proteins from a sample or patient by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be any other type of gel including isoelectric focusing gels and the like). Following separation of proteins, the CA protein is detected by immunoblotting with antibodies raised against the CA protein. Methods of immunoblotting are well known to those of ordinary skill in the art.


In another preferred method, antibodies to the CA protein find use in in situ imaging techniques. In this method cells are contacted with from one to many antibodies to the CA protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the CA protein(s) contains a detectable label. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of CA proteins. As will be appreciated by one of ordinary skill in the art, numerous other histological imaging techniques are useful in the invention.


In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.


In another preferred embodiment, antibodies find use in diagnosing carcinomas from blood samples. As previously described, certain CA proteins are secreted/circulating molecules. Blood samples, therefore, are useful as samples to be probed or tested for the presence of secreted CA proteins. Antibodies can be used to detect the CA proteins by any of the previously described immunoassay techniques including ELISA, immunoblotting (Western blotting), immunoprecipitation, BIACORE technology and the like, as will be appreciated by one of ordinary skill in the art.


In a preferred embodiment, in situ hybridization of labeled CA nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including CA tissue and/or normal tissue, are made. In situ hybridization as is known in the art can then be done.


It is understood that when comparing the expression fingerprints between an individual and a standard, the skilled artisan can make a diagnosis as well as a prognosis. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis.


In a preferred embodiment, the CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to carcinoma, especially lymphoma, severity, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, the CA probes are attached to biochips for the detection and quantification of CA sequences in a tissue or patient. The assays proceed as outlined for diagnosis.


In a preferred embodiment, any of the CA sequences as described herein are used in drug screening assays. The CA proteins, antibodies, nucleic acids, modified proteins and cells containing CA sequences are used in drug screening assays or by evaluating the effect of drug candidates on a “gene expression profile” or expression profile of polypeptides. In one embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, Zlokarnik, et al., Science 279, 84-8 (1998), Heid, et al., Genome Res., 6:986-994 (1996).


In a preferred embodiment, the CA proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified CA proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the carcinoma phenotype. As above, this can be done by screening for modulators of gene expression or for modulators of protein activity. Similarly, this may be done on an individual gene or protein level or by evaluating the effect of drug candidates on a “gene expression profile”. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, supra.


Having identified the CA genes herein, a variety of assays to evaluate the effects of agents on gene expression may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as aberrantly regulated in carcinoma, candidate bioactive agents may be screened to modulate the genes response. “Modulation” thus includes both an increase and a decrease in gene expression or activity. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tumor tissue, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4 fold increase in tumor compared to normal tissue, a decrease of about four fold is desired; a 10 fold decrease in tumor compared to normal tissue gives a 10 fold increase in expression for a candidate agent is desired, etc. Alternatively, where the CA sequence has been altered but shows the same expression profile or an altered expression profile, the protein will be detected as outlined herein.


As will be appreciated by those in the art, this may be done by evaluation at either the gene or the protein level; that is, the amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the level of the gene product itself can be monitored, for example through the use of antibodies to the CA protein and standard immunoassays. Alternatively, binding and bioactivity assays with the protein may be done as outlined below.


In a preferred embodiment, gene expression monitoring is done and a number of genes, i.e. an expression profile, is monitored simultaneously, although multiple protein expression monitoring can be done as well.


In this embodiment, the CA nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of CA sequences in a particular cell. The assays are further described below.


Generally, in a preferred embodiment, a candidate bioactive agent is added to the cells prior to analysis. Moreover, screens are provided to identify a candidate bioactive agent which modulates a particular type of carcinoma, modulates CA proteins, binds to a CA protein, or interferes between the binding of a CA protein and an antibody.


The term “candidate bioactive agent” or “drug candidate” or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic or inorganic molecule, polysaccharide, polynucleotide, etc., to be tested for bioactive agents that are capable of directly or indirectly altering either the carcinoma phenotype, binding to and/or modulating the bioactivity of an CA protein, or the expression of a CA sequence, including both nucleic acid sequences and protein sequences. In a particularly preferred embodiment, the candidate agent suppresses a CA phenotype, for example to a normal tissue fingerprint. Similarly, the candidate agent preferably suppresses a severe CA phenotype. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.


In one aspect, a candidate agent will neutralize the effect of an CA protein. By “neutralize” is meant that activity of a protein is either inhibited or counter acted against so as to have substantially no effect on a cell.


Candidate agents encompass numerous chemical classes, though typically they are organic or inorganic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.


Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means. Known pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification to produce structural analogs.


In a preferred embodiment, the candidate bioactive agents are proteins. By “protein” herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides. The protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures. Thus “amino acid”, or “peptide residue”, as used herein means both naturally occurring and synthetic amino acids. For example, homo-phenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention. “Amino acid” also includes imino acid residues such as proline and hydroxyproline. The side chains may be in either the (R) or the (S) configuration. In the preferred embodiment, the amino acids are in the (S) or L-configuration. If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradations.


In a preferred embodiment, the candidate bioactive agents are naturally occurring proteins or fragments of naturally occurring proteins. Thus, for example, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of procaryotic and eucaryotic proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred.


In a preferred embodiment, the candidate bioactive agents are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or “biased” random peptides. By “randomized” or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.


In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.


In a preferred embodiment, the candidate bioactive agents are nucleic acids, as defined above.


As described above generally for proteins, nucleic acid candidate bioactive agents may be naturally occurring nucleic acids, random nucleic acids, or “biased” random nucleic acids. For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.


In a preferred embodiment, the candidate bioactive agents are organic chemical moieties, a wide variety of which are available in the literature.


In assays for altering the expression profile of one or more CA genes, after the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing the target sequences to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR occurring as needed, as will be appreciated by those in the art. For example, an in vitro transcription with labels covalently attached to the nucleosides is done. Generally, the nucleic acids are labeled with a label as defined herein, with biotin-FITC or PE, cy3 and cy5 being particularly preferred.


In a preferred embodiment, the target sequence is labeled with, for example, a fluorescent, chemiluminescent, chemical, or radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. As known in the art, unbound labeled streptavidin is removed prior to analysis.


As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise “sandwich assays”, which include the use of multiple probes, as is generally outlined in U.S. Pat. Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.


A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.


These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Pat. No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.


The reactions outlined herein may be accomplished in a variety of ways, as will be appreciated by those in the art. Components of the reaction may be added simultaneously, or sequentially, in any order, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents may be included in the assays. These include reagents like salts, buffers, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used, depending on the sample preparation methods and purity of the target. In addition, either solid phase or solution based (i.e., kinetic PCR) assays may be used.


Once the assay is run, the data is analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.


In a preferred embodiment, as for the diagnosis and prognosis applications, having identified the differentially expressed gene(s) or mutated gene(s) important in any one state, screens can be run to alter the expression of the genes individually. That is, screening for modulation of regulation of expression of a single gene can be done. Thus, for example, particularly in the case of target genes whose presence or absence is unique between two states, screening is done for modulators of the target gene expression.


In addition, screens can be done for novel genes that are induced in response to a candidate agent. After identifying a candidate agent based upon its ability to suppress a CA expression pattern leading to a normal expression pattern, or modulate a single CA gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated CA tissue reveals genes that are not expressed in normal tissue or CA tissue, but are expressed in agent treated tissue. These agent specific sequences can be identified and used by any of the methods described herein for CA genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated CA tissue sample.


Thus, in one embodiment, a candidate agent is administered to a population of CA cells, that thus has an associated CA expression profile. By “administration” or “contacting” herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e. a peptide) may be put into a viral construct such as a retroviral construct and added to the cell, such that expression of the peptide agent is accomplished; see PCT US97/01019, hereby expressly incorporated by reference.


Once the candidate agent has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.


Thus, for example, CA tissue may be screened for agents that reduce or suppress the CA phenotype. A change in at least one gene of the expression profile indicates that the agent has an effect on CA activity. By defining such a signature for the CA phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.


In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as “CA proteins” or an “CAP”. The CAP may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of Tables 1-112. Preferably, the CAP is a fragment. In another embodiment, the sequences are sequence variants as further described herein.


Preferably, the CAP is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the c-terminus of the fragment is kept as a free acid and the n-terminus is a free amine to aid in coupling, i.e., to cysteine.


In one embodiment the CA proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the CA protein is conjugated to BSA.


In a preferred embodiment, screening is done to alter the biological function of the expression product of the CA gene. Again, having identified the importance of a gene in a particular state, screening for agents that bind and/or modulate the biological activity of the gene product can be run as is more fully outlined below.


In a preferred embodiment, screens are designed to first find candidate agents that can bind to CA proteins, and then these agents may be used in assays that evaluate the ability of the candidate agent to modulate the CAP activity and the carcinoma phenotype. Thus, as will be appreciated by those in the art, there are a number of different assays which may be run; binding assays and activity assays.


In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more CA nucleic acids are made. In general, this is done as is known in the art. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the CA proteins can be used in the assays.


Thus, in a preferred embodiment, the methods comprise combining a CA protein and a candidate bioactive agent, and determining the binding of the candidate agent to the CA protein. Preferred embodiments utilize the human or mouse CA protein, although other mammalian proteins may also be used, for example for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative CA proteins may be used.


Generally, in a preferred embodiment of the methods herein, the CA protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microliter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, Teflon™, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to “sticky” or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.


In a preferred embodiment, the CA protein is bound to the support, and a candidate bioactive agent is added to the assay. Alternatively, the candidate agent is bound to the support and the CA protein is added. Novel binding agents include specific antibodies, non_natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.


The determination of the binding of the candidate bioactive agent to the CA protein may be done in a number of ways. In a preferred embodiment, the candidate bioactive agent is labeled, and binding determined directly. For example, this may be done by attaching all or a portion of the CA protein to a solid support, adding a labeled candidate agent (for example a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as is known in the art.


By “labeled” herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, e.g. radioisotope, fluorescers, enzyme, antibodies, particles such as magnetic particles, chemiluminescers, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.


In some embodiments, only one of the components is labeled. For example, the proteins (or proteinaceous candidate agents) may be labeled at tyrosine positions using 125I, or with fluorophores. Alternatively, more than one component may be labeled with different labels; using 125I for the proteins, for example, and a fluorophor for the candidate agents.


In a preferred embodiment, the binding of the candidate bioactive agent is determined through the use of competitive binding assays. In this embodiment, the competitor is a binding moiety known to bind to the target molecule (i.e. CA protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding as between the bioactive agent and the binding moiety, with the binding moiety displacing the bioactive agent.


In one embodiment, the candidate bioactive agent is labeled. Either the candidate bioactive agent, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at any temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high through put screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.


In a preferred embodiment, the competitor is added first, followed by the candidate bioactive agent. Displacement of the competitor is an indication that the candidate bioactive agent is binding to the CA protein and thus is capable of binding to, and potentially modulating, the activity of the CA protein. In this embodiment, either component can be labeled. Thus, for example, if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the candidate bioactive agent is labeled, the presence of the label on the support indicates displacement.


In an alternative embodiment, the candidate bioactive agent is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the bioactive agent is bound to the CA protein with a higher affinity. Thus, if the candidate bioactive agent is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the candidate agent is capable of binding to the CA protein.


In a preferred embodiment, the methods comprise differential screening to identity bioactive agents that are capable of modulating the activity of the CA proteins. In this embodiment, the methods comprise combining a CA protein and a competitor in a first sample. A second sample comprises a candidate bioactive agent, a CA protein and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the CA protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the CA protein.


Alternatively, a preferred embodiment utilizes differential screening to identify drug candidates that bind to the native CA protein, but cannot bind to modified CA proteins. The structure of the CA protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect CA bioactivity are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.


Positive controls and negative controls may be used in the assays. Preferably all control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, all samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.


A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein_protein binding and/or reduce non_specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti_microbial agents, etc., may be used. The mixture of components may be added in any order that provides for the requisite binding.


Screening for agents that modulate the activity of CA proteins may also be done. In a preferred embodiment, methods for screening for a bioactive agent capable of modulating the activity of CA proteins comprise the steps of adding a candidate bioactive agent to a sample of CA proteins, as above, and determining an alteration in the biological activity of CA proteins. “Modulating the activity of an CA protein” includes an increase in activity, a decrease in activity, or a change in the type or kind of activity present. Thus, in this embodiment, the candidate agent should both bind to CA proteins (although this may not be necessary), and alter its biological or biochemical activity as defined herein. The methods include both in vitro screening methods, as are generally outlined above, and in vivo screening of cells for alterations in the presence, distribution, activity or amount of CA proteins.


Thus, in this embodiment, the methods comprise combining a CA sample and a candidate bioactive agent, and evaluating the effect on CA activity. By “CA activity” or grammatical equivalents herein is meant one of the CA protein's biological activities, including, but not limited to, its role in tumorigenesis, including cell division, preferably in lymphatic tissue, cell proliferation, tumor growth and transformation of cells. In one embodiment, CA activity includes activation of or by a protein encoded by a nucleic acid of Tables 1-112. An inhibitor of CA activity is the inhibition of any one or more CA activities.


In a preferred embodiment, the activity of the CA protein is increased; in another preferred embodiment, the activity of the CA protein is decreased. Thus, bioactive agents that are antagonists are preferred in some embodiments, and bioactive agents that are agonists may be preferred in other embodiments.


In a preferred embodiment, the invention provides methods for screening for bioactive agents capable of modulating the activity of a CA protein. The methods comprise adding a candidate bioactive agent, as defined above, to a cell comprising CA proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a CA protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.


In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, for example hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.


In this way, bioactive agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the CA protein.


In one embodiment, a method of inhibiting carcinoma cancer cell division, is provided. The method comprises administration of a carcinoma cancer inhibitor.


In a preferred embodiment, a method of inhibiting lymphoma carcinoma cell division is provided comprising administration of a lymphoma carcinoma inhibitor.


In another embodiment, a method of inhibiting tumor growth is provided. The method comprises administration of a carcinoma cancer inhibitor. In a particularly preferred embodiment, a method of inhibiting tumor growth in lymphatic tissue is provided comprising administration of a lymphoma inhibitor.


In a further embodiment, methods of treating cells or individuals with cancer are provided. The method comprises administration of a carcinoma cancer inhibitor. Preferably, the carcinoma is a lymphoma carcinoma.


In one embodiment, a carcinoma cancer inhibitor is an antibody as discussed above. In another embodiment, the carcinoma cancer inhibitor is an antisense molecule. Antisense molecules as used herein include antisense or sense oligonucleotides comprising a singe-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for carcinoma cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen, Cancer Res. 48:2659, (1988) and van der Krol et al., BioTechniques 6:958, (1988).


Antisense molecules may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.


The compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host, as previously described. The agents may be administered in a variety of ways, orally, parenterally e.g., subcutaneously, intraperitoneally, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1100% wgt/vol. The agents may be administered alone or in combination with other treatments, i.e., radiation.


The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up compositions containing the therapeutically_active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.


Without being bound by theory, it appears that the various CA sequences are important in carcinomas. Accordingly, disorders based on mutant or variant CA genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant CA genes comprising determining all or part of the sequence of at least one endogenous CA genes in a cell. As will be appreciated by those in the art, this may be done using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the CA genotype of an individual comprising determining all or part of the sequence of at least one CA gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced CA gene to a known CA gene, i.e., a wild-type gene. As will be appreciated by those in the art, alterations in the sequence of some oncogenes can be an indication of either the presence of the disease, or propensity to develop the disease, or prognosis evaluations.


The sequence of all or part of the CA gene can then be compared to the sequence of a known CA gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the CA gene of the patient and the known CA gene is indicative of a disease state or a propensity for a disease state, as outlined herein.


In a preferred embodiment, the CA genes are used as probes to determine the number of copies of the CA gene in the genome. For example, some cancers exhibit chromosomal deletions or insertions, resulting in an alteration in the copy number of a gene.


In another preferred embodiment CA genes are used as probes to determine the chromosomal location of the CA genes. Information such as chromosomal location finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in CA gene loci.


Thus, in one embodiment, methods of modulating CA in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-CA antibody that reduces or eliminates the biological activity of an endogenous CA protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a CA protein. As will be appreciated by those in the art, this may be accomplished in any number of ways. In a preferred embodiment, for example when the CA sequence is down-regulated in carcinoma, the activity of the CA gene is increased by increasing the amount of CA in the cell, for example by overexpressing the endogenous CA or by administering a gene encoding the CA sequence, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, for example when the CA sequence is up-regulated in carcinoma, the activity of the endogenous CA gene is decreased, for example by the administration of a CA antisense nucleic acid.


In one embodiment, the CA proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to CA proteins, which are useful as described herein. Similarly, the CA proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify CA antibodies. In a preferred embodiment, the antibodies are generated to epitopes unique to a CA protein; that is, the antibodies show little or no cross-reactivity to other proteins. These antibodies find use in a number of applications. For example, the CA antibodies may be coupled to standard affinity chromatography columns and used to purify CA proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the CA protein.


In one embodiment, a therapeutically effective dose of a CA or modulator thereof is administered to a patient. By “therapeutically effective dose” herein is meant a dose that produces the effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. As is known in the art, adjustments for CA degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.


A “patient” for the purposes of the present invention includes both humans and other animals, particularly mammals, and organisms. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, and in the most preferred embodiment the patient is human.


The administration of the CA proteins and modulators of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, for example, in the treatment of wounds and inflammation, the CA proteins and modulators may be directly applied as a solution or spray.


The pharmaceutical compositions of the present invention comprise a CA protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. “Pharmaceutically acceptable acid addition salt” refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p_toluenesulfonic acid, salicylic acid and the like. “Pharmaceutically acceptable base addition salts” include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non_toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.


The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol. Additives are well known in the art, and are used in a variety of formulations.


In a preferred embodiment, CA proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, CA genes (including both the full-length sequence, partial sequences, or regulatory sequences of the CA coding regions) can be administered in gene therapy applications, as is known in the art. These CA genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.


In a preferred embodiment, CA genes are administered as DNA vaccines, either single genes or combinations of CA genes. Naked DNA vaccines are generally known in the art. Brower, Nature Biotechnology, 16:1304-1305 (1998).


In one embodiment, CA genes of the present invention are used as DNA vaccines. Methods for the use of genes as DNA vaccines are well known to one of ordinary skill in the art, and include placing a CA gene or portion of a CA gene under the control of a promoter for expression in a patient with carcinoma. The CA gene used for DNA vaccines can encode full-length CA proteins, but more preferably encodes portions of the CA proteins including peptides derived from the CA protein. In a preferred embodiment a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a CA gene. Similarly, it is possible to immunize a patient with a plurality of CA genes or portions thereof as defined herein. Without being bound by theory, expression of the polypeptide encoded by the DNA vaccine, cytotoxic T-cells, helper T-cells and antibodies are induced which recognize and destroy or eliminate cells expressing CA proteins.


In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the CA polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are known to those of ordinary skill in the art and find use in the invention.


In another preferred embodiment CA genes find use in generating animal models of carcinomas, particularly lymphoma carcinomas. As is appreciated by one of ordinary skill in the art, when the CA gene identified is repressed or diminished in CA tissue, gene therapy technology wherein antisense RNA directed to the CA gene will also diminish or repress expression of the gene. An animal generated as such serves as an animal model of CA that finds use in screening bioactive drug candidates. Similarly, gene knockout technology, for example as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence of the CA protein. When desired, tissue-specific expression or knockout of the CA protein may be necessary.


It is also possible that the CA protein is overexpressed in carcinoma. As such, transgenic animals can be generated that overexpress the CA protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of CA and are additionally useful in screening for bioactive molecules to treat carcinoma.


The CA nucleic acid sequences of the invention are depicted in Tables 1-112. The sequences in Tables 1 (SEQ ID NOS:1-460) and 2 (SEQ ID NOS:461-952) depict mouse tags, i.e. the genomic insertion sites. The sequences in Tables 3-112 (SEQ ID NOS:953-1612) include genomic sequence, mRNA and coding sequences for both mouse and human. N/A indicates a gene that has been identified, but for which there has not been a name ascribed. The different sequences of Tables 3-112 are assigned the following SEQ ID Nos:









TABLE 3





(mouse gene: Fscn1; human gene SNL)

















Mouse genomic sequence (SEQ ID NO: 953)



Mouse mRNA sequence (SEQ ID NO: 954)



Mouse coding sequence (SEQ ID NO: 955)



Human genomic sequence (SEQ ID NO: 956)



Human mRNA sequence (SEQ ID NO: 957)



Human coding sequence (SEQ ID NO: 958)
















TABLE 4





(mouse gene Map3k6; human gene MAP3K6)

















Mouse genomic sequence (SEQ ID NO: 959)



Mouse mRNA sequence (SEQ ID NO: 960)



Mouse coding sequence (SEQ ID NO: 961)



Human genomic sequece (SEQ ID NO: 962)



Human mRNA sequence (SEQ ID NO: 963)



Human coding sequence (SEQ ID NO: 964)
















TABLE 5





(mouse gene Fosb; human gene FOSB)

















Mouse genomic sequence (SEQ ID NO: 965)



Mouse mRNA sequence (SEQ ID NO: 966)



Mouse coding sequence (SEQ ID NO: 967)



Human genomic sequence (SEQ ID NO: 968)



Human mRNA sequence (SEQ ID NO: 969)



Human coding sequence (SEQ ID NO: 970)
















TABLE 6





(mouse gene cmkbr7; human gene: CCR7)

















Mouse genomic sequence (SEQ ID NO: 971)



Mouse mRNA sequence (SEQ ID NO: 972)



Mouse coding sequence (SEQ ID NO: 973)



Human genomic sequence (SEQ ID NO: 974)



Human mRNA sequence (SEQ ID NO: 975)



Human coding seguence (SEQ ID NO: 976)
















TABLE 7





(mouse gene: Ccnd1; human gene: CCND1)

















Mouse genomic sequence (SEQ ID NO: 977)



Mouse mRNA sequence (SEQ ID NO: 978)



Mouse coding sequence (SEQ ID NO: 979)



Human genomic sequence (SEQ ID NO: 980)



Human mRNA sequence (SEQ ID NO: 981)



Human coding sequence (SEQ ID NO: 982)


















TABLE 8









(mouse gene: Ccnd3; human gene: CCND3)



Mouse genomic sequence (SEQ ID NO: 983)



Mouse mRNA sequence (SEQ ID NO: 984)



Mouse coding sequence (SEQ ID NO: 985)



Human genomic sequence (SEQ ID NO: 986)



Human mRNA sequence (SEQ ID NO: 987)



Human coding sequence (SEQ ID NO: 988)



















TABLE 9









(mouse gene: Wnt3; human gene: WNT3)



Mouse genomic sequence (SEQ ID NO: 989)



Mouse mRNA sequence (SEQ ID NO: 990)



Mouse coding sequence (SEQ ID NO: 991)



Human genomic sequence (SEQ ID NO: 992)



Human mRNA sequence (SEQ ID NO: 993)



Human coding sequence (SEQ ID NO: 994)



















TABLE 10









(mouse gene: Baff; human gene: BATF)



Mouse genomic sequence (SEQ ID NO: 995)



Mouse mRNA sequence (SEQ ID NO: 996)



Mouse coding sequence (SEQ ID NO: 997)



Human genomic sequence (SEQ ID NO: 998)



Human mRNA sequence (SEQ ID NO: 999)



Human coding sequence (SEQ ID NO: 1000)



















TABLE 11









(mouse gene: Irf4; human gene: IRF4)



Mouse genomic sequence (SEQ ID NO: 1001)



Mouse mRNA sequence (SEQ ID NO: 1002)



Mouse coding sequence (SEQ ID NO: 1003)



Human genomic sequence (SEQ ID NO: 1004)



Human mRNA sequence (SEQ ID NO: 1005)



Human coding sequence (SEQ ID NO: 1006)



















TABLE 12









(mouse gene: Notch1; human gene: NOTCH1)



Mouse qenomic sequence (SEQ ID NO: 1007)



Mouse mRNA sequence (SEQ ID NO: 1008)



Mouse coding sequence (SEQ ID NO: 1009)



Human genomic sequence (SEQ ID NO: 1010)



Human mRNA sequence (SEQ ID NO: 1011)



Human coding sequence (SEQ ID NO: 1012)



















TABLE 13









(mouse gene: Myc; human gene MYC)



Mouse genomic sequence (SEQ ID NO: 1013)



Mouse mRNA sequence (SEQ ID NO: 1014)



Mouse coding sequence (SEQ ID NO: 1015)



Human genomic sequence (SEQ ID NO: 1016)



Human mRNA sequence (SEQ ID NO: 1017)



Human codinq sequence (SEQ ID NO: 1018)



















TABLE 14









(mouse gene Bach2; human gene BACH2)



Mouse genomic sequence (SEQ ID NO: 1019)



Mouse mRNA sequence (SEQ ID NO: 1020)



Mouse coding sequence (SEQ ID NO: 1021)



Human genomic sequence (SEQ ID NO: 1022)



Human mRNA sequence (SEQ ID NO: 1023)



Human coding sequence (SEQ ID NO: 1024)



















TABLE 15









(mouse gene Wnt1; human gene WNT1)



Mouse genomic sequence (SEQ ID NO: 1025)



Mouse mRNA sequence (SEQ ID NO: 1026)



Mouse coding sequence (SEQ ID NO: 1027)



Human genomic sequence (SEQ ID NO: 1028)



Human mRNA sequence (SEQ ID NO: 1029)



Human coding sequence (SEQ ID NO: 1030)



















TABLE 16









(mouse gene Rasgrp1: human gene: RASGRP1)



Mouse genomic sequence (SEQ ID NO: 1031)



Mouse mRNA sequence (SEQ ID NO: 1032)



Mouse coding sequence (SEQ ID NO: 1033)



Human genomic sequence (SEQ ID NO: 1034)



Human mRNA sequence (SEQ ID NO: 1035)



Human coding sequence (SEQ ID NO: 1036)



















TABLE 17









(mouse gene: Nmyc1; human gene: MYCN)



Mouse genomic sequence (SEQ ID NO: 1037)



Mouse mRNA sequence (SEQ ID NO: 1038)



Mouse coding sequence (SEQ ID NO: 1039)



Human genomic sequence (SEQ ID NO: 1040)



Human mRNA sequence (SEQ ID NO: 1041)



Human coding sequence (SEQ ID NO: 1042)



















TABLE 18









(mouse gene: Myb; human gene: MYB)



Mouse genomic sequence (SEQ ID NO: 1043)



Mouse mRNA sequence (SEQ ID NO: 1044)



Mouse coding sequence (SEQ ID NO: 1045)



Human genomic sequence (SEQ ID NO: 1046)



Human mRNA sequence (SEQ ID NO: 1047)



Human coding sequence (SEQ ID NO: 1048)



















TABLE 19









(mouse gene: Sox4; human gene: SOX4)



Mouse genomic sequence (SEQ ID NO: 1049)



Mouse mRNA sequence (SEQ ID NO: 1050)



Mouse coding sequence (SEQ ID NO: 1051)



Human genomic sequence (SEQ ID NO: 1052)



Human mRNA sequence (SEQ ID NO: 1053)



Human coding seauence (SEQ ID NO: 1054)



















TABLE 20









(mouse gene: Tcof1; human gene: TCOF1)



Mouse genomic sequence (SEQ ID NO: 1055)



Mouse mRNA sequence (SEQ ID NO: 1056)



Mouse coding sequence (SEQ ID NO: 1057)



Human genomic sequence (SEQ ID NO: 1058)



Human mRNA sequence (SEQ ID NO: 1059)



Human coding sequence (SEQ ID NO: 1060)



















TABLE 21









(mouse gene: Pim1; human gene: PIM1)



Mouse genomic sequence (SEQ ID NO: 1061)



Mouse mRNA sequence (SEQ ID NO: 1062)



Mouse coding sequence (SEQ ID NO: 1063)



Human genomic sequence (SEQ ID NO: 1064)



Human mRNA sequence (SEQ ID NO: 1065)



Human coding sequence (SEQ ID NO: 1066)



















TABLE 22









(mouse gene: Wnt3a; human gene: WNT3A)



Mouse genomic sequence (SEQ ID NO: 1067)



Mouse mRNA sequence (SEQ ID NO: 1068)



Mouse coding sequence (SEQ ID NO: 1069)



Human genomic sequence (SEQ ID NO: 1070)



Human mRNA sequence (SEQ ID NO: 1071)



Human coding sequence (SEQ ID NO: 1072)

















TABLE 23





(mouse gene: Ly6e; human gene LY6E)

















Mouse genomic sequence (SEQ ID NO: 1073)



Mouse mRNA sequence (SEQ ID NO: 1074)



Mouse coding sequence (SEQ ID NO: 1075)



Human genomic sequence (SEQ ID NO: 1076)



Human mRNA sequence (SEQ ID NO: 1077)



Human coding sequence (SEQ ID NO: 1078)

















TABLE 24





(mouse gene: Rasa2; human gene RASA2)

















Mouse genomic sequence (SEQ ID NO: 1079)



Mouse mRNA sequence (SEQ ID NO: 1080)



Mouse coding sequence (SEQ ID NO: 1081)



Human genomic sequence (SEQ ID NO: 1082)



Human mRNA sequence (SEQ ID NO: 1083)



Human coding sequence (SEQ ID NO: 1084)

















TABLE 25





(mouse gene: Gata1: human gene GATA1)

















Mouse genomic sequence (SEQ ID NO: 1085)



Mouse mRNA sequence (SEQ ID NO: 1086)



Mouse coding sequence (SEQ ID NO: 1087)



Human genomic sequence (SEQ ID NO: 1088)



Human mRNA sequence (SEQ ID NO: 1089)



Human coding sequence (SEQ ID NO: 1090)

















TABLE 26





(mouse gene: Fkbp5; human gene FKBP5)

















Mouse genomic sequence (SEQ ID NO: 1091)



Mouse mRNA sequence (SEQ ID NO: 1092)



Mouse coding sequence (SEQ ID NO: 1093)



Human genomic sequence (SEQ ID NO: 1094)



Human mRNA sequence (SEQ ID NO: 1095)



Human coding sequence (SEQ ID NO: 1096)

















TABLE 27





(mouse gene: Rel; human gene REL)

















Mouse genomic sequence (SEQ ID NO: 1097)



Mouse mRNA sequence (SEQ ID NO: 1098)



Mouse coding sequence (SEQ ID NO: 1099)



Human genomic sequence (SEQ ID NO: 1100)



Human mRNA sequence (SEQ ID NO: 1101)



Human coding sequence (SEQ ID NO: 1102)

















TABLE 28





(mouse gene: Icsbp; human gene ICSBP1)

















Mouse genomic sequence (SEQ ID NO: 1103)



Mouse mRNA sequence (SEQ ID NO: 1104)



Mouse coding sequence (SEQ ID NO: 1105)



Human genomic sequence (SEQ ID NO: 1106)



Human mRNA sequence (SEQ ID NO: 1107)



Human coding sequence (SEQ ID NO: 1108)

















TABLE 29





(mouse gene: Bmi1; human gene BMI1)

















Mouse genomic sequence (SEQ ID NO: 1109)



Mouse mRNA sequence (SEQ ID NO: 1110)



Mouse coding sequence (SEQ ID NO: 1111)



Human genomic sequence (SEQ ID NO: 1112)



Human mRNA sequence (SEQ ID NO: 1113)



Human coding sequence (SEQ ID NO: 1114)

















TABLE 30





(mouse gene: Runx1; human gene RUNX1)

















Mouse genomic sequence (SEQ ID NO: 1115)



Mouse mRNA sequence (SEQ ID NO: 1116)



Mouse coding sequence (SEQ ID NO: 1117)



Human genomic sequence (SEQ ID NO: 1118)



Human mRNA sequence (SEQ ID NO: 1119)



Human coding sequence (SEQ ID NO: 1120)

















TABLE 31





(mouse gene: Il2ra; human gene IL2RA)

















Mouse genomic sequence (SEQ ID NO: 1121)



Mouse mRNA sequence (SEQ ID NO: 1122)



Mouse coding sequence (SEQ ID NO: 1123)



Human genomic sequence (SEQ ID NO: 1124)



Human mRNA sequence (SEQ ID NO: 1125)



Human coding sequence (SEQ ID NO: 1126)

















TABLE 32





(mouse gene: Nfkb1; human gene NFKB1)

















Mouse genomic sequence (SEQ ID NO: 1127)



Mouse mRNA sequence (SEQ ID NO: 1128)



Mouse coding sequence (SEQ ID NO: 1129)



Human genomic sequence (SEQ ID NO: 1130)



Human mRNA sequence (SEQ ID NO: 1131)



Human coding sequence (SEQ ID NO: 1132)

















TABLE 33





(mouse gene: Fyn; human gene FYN)

















Mouse genomic sequence (SEQ ID NO: 1133)



Mouse mRNA sequence (SEQ ID NO: 1134)



Mouse coding sequence (SEQ ID NO: 1135)



Human genomic sequence (SEQ ID NO: 1136)



Human mRNA sequence (SEQ ID NO: 1137)



Human coding sequence (SEQ ID NO: 1138)

















TABLE 34





(mouse gene: Nfkbil1; human gene NFKBIL1)

















Mouse genomic sequence (SEQ ID NO: 1139)



Mouse mRNA sequence (SEQ ID NO: 1140)



Mouse coding sequence (SEQ ID NO: 1141)



Human genomic sequence (SEQ ID NO: 1142)



Human mRNA sequence (SEQ ID NO: 1143)



Human coding sequence (SEQ ID NO: 1144)

















TABLE 35





(mouse gene: Flt3; human gene FLT3)

















Mouse genomic sequence (SEQ ID NO: 1145)



Mouse mRNA sequence (SEQ ID NO: 1146)



Mouse coding sequence (SEQ ID NO: 1147)



Human genomic sequence (SEQ ID NO: 1148)



Human mRNA sequence (SEQ ID NO: 1149)



Human coding sequence (SEQ ID NO: 1150)

















TABLE 36





(mouse gene: Dntt; human gene DNTT)

















Mouse genomic sequence (SEQ ID NO: 1151)



Mouse mRNA sequence (SEQ ID NO: 1152)



Mouse coding sequence (SEQ ID NO: 1153)



Human genomic sequence (SEQ ID NO: 1154)



Human mRNA sequence (SEQ ID NO: 1155)



Human coding sequence (SEQ ID NO: 1156)

















TABLE 37





(mouse gene: Znfn1a1; human gene ZNFN1A1)

















Mouse genomic sequence (SEQ ID NO: 1157)



Mouse mRNA sequence (SEQ ID NO: 1158)



Mouse coding sequence (SEQ ID NO: 1159)



Human genomic sequence (SEQ ID NO: 1160)



Human mRNA sequence (SEQ ID NO: 1161)



Human coding sequence (SEQ ID NO: 1162)

















TABLE 38





(mouse gene: Tbx21; human gene TBX21)


















Mouse genomic sequence
(SEQ ID NO: 1163)



Mouse mRNA sequence
(SEQ ID NO: 1164)



Mouse coding sequence
(SEQ ID NO: 1165)



Human genomic sequence
(SEQ ID NO: 1166)



Human mRNA sequence
(SEQ ID NO: 1167)



Human coding sequence
(SEQ ID NO: 1168)

















TABLE 39





(mouse gene: Stat5b; human gene STAT5B)


















Mouse genomic sequence
(SEQ ID NO: 1169)



Mouse mRNA sequence
(SEQ ID NO: 1170)



Mouse coding sequence
(SEQ ID NO: 1171)



Human genomic sequence
(SEQ ID NO: 1172)



Human mRNA sequence
(SEQ ID NO: 1173)



Human coding sequence
(SEQ ID NO: 1174)

















TABLE 40





(mouse gene: Sema4d; human gene SEMA4D)


















Mouse genomic sequence
(SEQ ID NO: 1175)



Mouse mRNA sequence
(SEQ ID NO: 1176)



Mouse coding sequence
(SEQ ID NO 1177)



Human genomic sequence
(SEQ ID NO 1178)



Human mRNA sequence
(SEQ ID NO: 1179)



Human coding sequence
(SEQ ID NO: 1180)

















TABLE 41





(mouse gene: Mdm2; human gene MDM2)


















Mouse genomic sequence
(SEQ ID NO: 1181)



Mouse mRNA sequence
(SEQ ID NO: 1182)



Mouse coding sequence
(SEQ ID NO: 1183)



Human genomic sequence
(SEQ ID NO: 1184)



Human mRNA sequence
(SEQ ID NO: 1185)



Human coding sequence
(SEQ ID NO: 1186)

















TABLE 42





(mouse gene: Prlr; human gene PRLR)


















Mouse genomic sequence
(SEQ ID NO: 1187)



Mouse mRNA sequence
(SEQ ID NO: 1188)



Mouse coding sequence
(SEQ ID NO: 1189)



Human genomic sequence
(SEQ ID NO: 1190)



Human mRNA sequence
(SEQ ID NO: 1191)



Human coding sequence
(SEQ ID NO: 1192)

















TABLE 43





(mouse gene: Top1; human gene TOP1)


















Mouse genomic sequence
(SEQ ID NO: 1193)



Mouse mRNA sequence
(SEQ ID NO: 1194)



Mouse coding sequence
(SEQ ID NO: 1195)



Human genomic sequence
(SEQ ID NO: 1196)



Human mRNA sequence
(SEQ ID NO: 1197)



Human coding sequence
(SEQ ID NO: 1198)

















TABLE 44





(mouse gene: Dusp10; human gene DUSP10)


















Mouse genomic sequence
(SEQ ID NO: 1199)



Mouse mRNA sequence
(SEQ ID NO: 1200)



Mouse coding sequence
(SEQ ID NO: 1201)



Human genomic sequence
(SEQ ID NO: 1202)



Human mRNA sequence
(SEQ ID NO: 1203)



Human coding sequence
(SEQ ID NO: 1204)

















TABLE 45





(mouse gene: Fli1; human gene FLI1)


















Mouse genomic sequence
(SEQ ID NO: 1205)



Mouse mRNA sequence
(SEQ ID NO: 1206)



Mouse coding sequence
(SEQ ID NO: 1207)



Human genomic sequence
(SEQ ID NO: 1208)



Human mRNA sequence
(SEQ ID NO: 1209)



Human coding sequence
(SEQ ID NO: 1210)

















TABLE 46





(mouse gene: Tk2; human gene TK2)


















Mouse genomic sequence
(SEQ ID NO: 1211)



Mouse mRNA sequence
(SEQ ID NO: 1212)



Mouse coding sequence
(SEQ ID NO: 1213)



Human genomic sequence
(SEQ ID NO: 1214)



Human mRNA sequence
(SEQ ID NO: 1215)



Human coding sequence
(SEQ ID NO: 1216)

















TABLE 47





(mouse gene: Nupr1)


















Mouse genomic sequence
(SEQ ID NO: 1217)



Mouse mRNA sequence
(SEQ ID NO: 1218)



Mouse coding sequence
(SEQ ID NO: 1219)



Human genomic sequence
(SEQ ID NO: 1220)



Human mRNA sequence
(SEQ ID NO: 1221)



Human coding sequence
(SEQ ID NO: 1222)

















TABLE 48





(mouse gene: Zfhx1b; human gene ZFHX1B)


















Mouse genomic sequence
(SEQ ID NO: 1223)



Mouse mRNA sequence
(SEQ ID NO: 1224)



Mouse coding sequence
(SEQ ID NO: 1225)



Human genomic sequence
(SEQ ID NO: 1226)



Human mRNA sequence
(SEQ ID NO: 1227)



Human coding sequence
(SEQ ID NO: 1228)

















TABLE 49





(mouse gene: Vdac1; human gene VDAC1)


















Mouse genomic sequence
(SEQ ID NO: 1229)



Mouse mRNA sequence
(SEQ ID NO: 1230)



Mouse coding sequence
(SEQ ID NO: 1231)



Human genomic sequence
(SEQ ID NO: 1232)



Human mRNA sequence
(SEQ ID NO: 1233)



Human coding sequence
(SEQ ID NO: 1234)

















TABLE 50





(mouse gene: Nfatc1; human gene NFATC1)


















Mouse genomic sequence
(SEQ ID NO: 1235)



Mouse mRNA sequence
(SEQ ID NO: 1236)



Mouse coding sequence
(SEQ ID NO: 1237)



Human genomic sequence
(SEQ ID NO: 1238)



Human mRNA sequence
(SEQ ID NO: 1239)



Human coding sequence
(SEQ ID NO: 1240)

















TABLE 51





(mouse gene: Syk; human gene SYK)


















Mouse genomic sequence
(SEQ ID NO: 1241)



Mouse mRNA sequence
(SEQ ID NO: 1242)



Mouse coding sequence
(SEQ ID NO: 1243)



Human genomic sequence
(SEQ ID NO: 1244)



Human mRNA sequence
(SEQ ID NO: 1245)



Human coding sequence
(SEQ ID NO: 1246)

















TABLE 52





(mouse gene: Gnb1; human gene GNB1)


















Mouse genomic sequence
(SEQ ID NO: 1247)



Mouse mRNA sequence
(SEQ ID NO: 1248)



Mouse coding sequence
(SEQ ID NO: 1249)



Human genomic sequence
(SEQ ID NO: 1250)



Human mRNA sequence
(SEQ ID NO: 1251)



Human coding sequence
(SEQ ID NO: 1252).

















TABLE 53





(mouse gene: Ccnd2; human gene CCND2)

















Mouse genomic sequence (SEQ ID NO: 1253)



Mouse mRNA sequence (SEQ ID NO: 1254)



Mouse coding sequence (SEQ ID NO: 1255)



Human genomic sequence (SEQ ID NO: 1256)



Human mRNA sequence (SEQ ID NO: 1257)



Human coding sequence (SEQ ID NO: 1258)

















TABLE 54





(mouse gene Tnfrsf6; human gene TNFRSF6)

















Mouse genomic sequence (SEQ ID NO: 1259)



Mouse mRNA sequence (SEQ ID NO: 1260)



Mouse coding sequence (SEQ ID NO: 1261)



Human genomic sequence (SEQ ID NO: 1262)



Human mRNA sequence (SEQ ID NO: 1263)



Human coding sequence (SEQ ID NO: 1264)

















TABLE 55





(mouse gene Irf2; human gene IRF2)

















Mouse genomic sequence (SEQ ID NO: 1265)



Mouse mRNA sequence (SEQ ID NO: 1266)



Mouse coding sequence (SEQ ID NO: 1267)



Human genomic sequence (SEQ ID NO: 1268)



Human mRNA sequence (SEQ ID NO: 1269)



Human coding sequence (SEQ ID NO: 1270)

















TABLE 56





(mouse gene Morf; human gene: MORF)

















Mouse genomic sequence (SEQ ID NO: 1271)



Mouse mRNA sequence (SEQ ID NO: 1272)



Mouse coding sequence (SEQ ID NO: 1273)



Human genomic sequence (SEQ ID NO: 1274)



Human mRNA sequence (SEQ ID NO: 1275)



Human coding sequence (SEQ ID NO: 1276)

















TABLE 57





(mouse gene: Runx3; human gene: RUNX3)

















Mouse genomic sequence (SEQ ID NO: 1277)



Mouse mRNA sequence (SEQ ID NO: 1278)



Mouse coding sequence (SEQ ID NO: 1279)



Human genomic sequence (SEQ ID NO: 1280)



Human mRNA sequence (SEQ ID NO: 1281)



Human coding sequence (SEQ ID NO: 1282)

















TABLE 58





(mouse gene: Bcl11b; human gene: BCL11B)

















Mouse genomic sequence (SEQ ID NO: 1283)



Mouse mRNA sequence (SEQ ID NO: 1284)



Mouse coding sequence (SEQ ID NO: 1285)



Human genomic sequence (SEQ ID NO: 1286)



Human mRNA sequence (SEQ ID NO: 1287)



Human coding sequence (SEQ ID NO: 1288)

















TABLE 59





(mouse gene: Arhgef1; human gene: ARHGEF1)

















Mouse genomic sequence (SEQ ID NO: 1289)



Mouse mRNA sequence (SEQ ID NO: 1290)



Mouse coding sequence (SEQ ID NO: 1291)



Human genomic sequence (SEQ ID NO: 1292)



Human mRNA sequence (SEQ ID NO: 1293)



Human coding sequence (SEQ ID NO: 1294)

















TABLE 60





(mouse gene: Ptprk; human gene: PTPRK)

















Mouse genomic sequence (SEQ ID NO: 1295)



Mouse mRNA sequence (SEQ ID NO: 1296)



Mouse coding sequence (SEQ ID NO: 1297)



Human genomic sequence (SEQ ID NO: 1298)



Human mRNA sequence (SEQ ID NO: 1299)



Human coding sequence (SEQ ID NO: 1300)

















TABLE 61





(mouse gene: Mcmd5; human gene: MCM5)

















Mouse genomic sequence (SEQ ID NO: 1301)



Mouse mRNA sequence (SEQ ID NO: 1302)



Mouse coding sequence (SEQ ID NO: 1303)



Human genomic sequence (SEQ ID NO: 1304)



Human mRNA sequence (SEQ ID NO: 1305)



Human coding sequence (SEQ ID NO: 1306)

















TABLE 62





(mouse gene: Matn4; human gene: MATN4)

















Mouse genomic sequence (SEQ ID NO: 1307)



Mouse mRNA sequence (SEQ ID NO: 1308)



Mouse coding sequence (SEQ ID NO: 1309)



Human genomic sequence (SEQ ID NO: 1310)



Human mRNA sequence (SEQ ID NO: 1311)



Human coding sequence (SEQ ID NO: 1312)

















TABLE 63





(mouse gene: Tnfsf11; human gene TNFSF11)

















Mouse genomic sequence (SEQ ID NO: 1313)



Mouse mRNA sequence (SEQ ID NO: 1314)



Mouse coding sequence (SEQ ID NO: 1315)



Human genomic sequence (SEQ ID NO: 1316)



Human mRNA sequence (SEQ ID NO: 1317)



Human coding sequence (SEQ ID NO: 1318)

















TABLE 64





(mouse gene: Itk; human gene ITK)

















Mouse genomic sequence (SEQ ID NO: 1319)



Mouse mRNA sequence (SEQ ID NO: 1320)



Mouse coding sequence (SEQ ID NO: 1321)



Human genomic sequence (SEQ ID NO: 1322)



Human mRNA sequence (SEQ ID NO: 1323)



Human coding sequence (SEQ ID NO: 1324)

















TABLE 65





(mouse gene: Fish; human gene: N/A)

















Mouse genomic sequence (SEQ ID NO: 1325)



Mouse mRNA sequence (SEQ ID NO: 1326)



Mouse coding sequence (SEQ ID NO: 1327)



Human genomic sequence (SEQ ID NO: 1328)



Human mRNA sequence (SEQ ID NO: 1329)



Human coding sequence (SEQ ID NO: 1330)

















TABLE 66





(mouse gene: Egr2; human gene EGR2)

















Mouse genomic sequence (SEQ ID NO: 1331)



Mouse mRNA sequence (SEQ ID NO: 1332)



Mouse coding sequence (SEQ ID NO: 1333)



Human genomic sequence (SEQ ID NO: 1334)



Human mRNA sequence (SEQ ID NO: 1335)



Human coding sequence (SEQ ID NO: 1336)

















TABLE 67





(mouse gene: Sos1; human gene SOS1)

















Mouse genomic sequence (SEQ ID NO: 1337)



Mouse mRNA sequence (SEQ ID NO: 1338)



Mouse coding sequence (SEQ ID NO: 1339)



Human genomic sequence (SEQ ID NO: 1340)



Human mRNA sequence (SEQ ID NO: 1341)



Human coding sequence (SEQ ID NO: 1342)

















TABLE 68





(mouse gene: Pou2af1; human gene POU2AF1)


















Mouse genomic sequence
(SEQ ID NO: 1343)



Mouse mRNA sequence
(SEQ ID NO: 1344)



Mouse coding sequence
(SEQ ID NO: 1345)



Human genomic sequence
(SEQ ID NO: 1346)



Human mRNA sequence
(SEQ ID NO: 1347)



Human coding sequence
(SEQ ID NO: 1348)

















TABLE 69





(mouse gene: Mef2c; human gene MEF2C)


















Mouse genomic sequence
(SEQ ID NO: 1349)



Mouse mRNA sequence
(SEQ ID NO: 1350)



Mouse coding sequence
(SEQ ID NO: 1351)



Human genomic sequence
(SEQ ID NO: 1352)



Human mRNA sequence
(SEQ ID NO: 1353)



Human coding sequence
(SEQ ID NO: 1354)

















TABLE 70





(mouse gene: Map3k8; human gene MAP3K8)


















Mouse genomic sequence
(SEQ ID NO: 1355)



Mouse mRNA sequence
(SEQ ID NO: 1356)



Mouse coding sequence
(SEQ ID NO: 1357)



Human genomic sequence
(SEQ ID NO: 1358)



Human mRNA sequence
(SEQ ID NO: 1359)



Human coding sequence
(SEQ ID NO: 1360)

















TABLE 71





(mouse gene: Fgfr3; human gene FGFR3)


















Mouse genomic sequence
(SEQ ID NO: 1361)



Mouse mRNA sequence
(SEQ ID NO: 1362)



Mouse coding sequence
(SEQ ID NO: 1363)



Human genomic sequence
(SEQ ID NO: 1364)



Human mRNA sequence
(SEQ ID NO: 1365)



Human coding sequence
(SEQ ID NO: 1366)

















TABLE 72





(mouse gene: Cbx8; human gene CBX8)


















Mouse genomic sequence
(SEQ ID NO: 1367)



Mouse mRNA sequence
(SEQ ID NO: 1368)



Mouse coding sequence
(SEQ ID NO: 1369)



Human genomic sequence
(SEQ ID NO: 1370)



Human mRNA sequence
(SEQ ID NO: 1371)



Human coding sequence
(SEQ ID NO: 1372)

















TABLE 73





(mouse gene: Lmo2; human gene LMO2)


















Mouse genomic sequence
(SEQ ID NO: 1373)



Mouse mRNA sequence
(SEQ ID NO: 1374)



Mouse coding sequence
(SEQ ID NO: 1375)



Human genomic sequence
(SEQ ID NO: 1376)



Human mRNA sequence
(SEQ ID NO: 1377)



Human coding sequence
(SEQ ID NO: 1378)

















TABLE 74





(mouse gene: Itpr1; human gene ITPR1)


















Mouse genomic sequence
(SEQ ID NO: 1379)



Mouse mRNA sequence
(SEQ ID NO: 1380)



Mouse coding sequence
(SEQ ID NO: 1381)



Human genomic sequence
(SEQ ID NO: 1382)



Human mRNA sequence
(SEQ ID NO: 1383)



Human coding sequence
(SEQ ID NO: 1384)

















TABLE 75





(mouse gene: Sell; human gene SELL)


















Mouse genomic sequence
(SEQ ID NO: 1385)



Mouse mRNA sequence
(SEQ ID NO: 1386)



Mouse coding sequence
(SEQ ID NO: 1387)



Human genomic sequence
(SEQ ID NO: 1388)



Human mRNA sequence
(SEQ ID NO: 1389)



Human coding sequence
(SEQ ID NO: 1390)

















TABLE 76





(mouse gene: Dpt; human gene DPT)


















Mouse genomic sequence
(SEQ ID NO: 1391)



Mouse mRNA sequence
(SEQ ID NO: 1392)



Mouse coding sequence
(SEQ ID NO: 1393)



Human genomic sequence
(SEQ ID NO: 1394)



Human mRNA sequence
(SEQ ID NO: 1395)



Human coding sequence
(SEQ ID NO: 1396)

















TABLE 77





(mouse gene: Pap; human gene PAP)


















Mouse genomic sequence
(SEQ ID NO: 1397)



Mouse mRNA sequence
(SEQ ID NO: 1398)



Mouse coding sequence
(SEQ ID NO: 1399)



Human genomic sequence
(SEQ ID NO: 1400)



Human mRNA sequence
(SEQ ID NO: 1401)



Human coding sequence
(SEQ ID NO: 1402)

















TABLE 78





(mouse gene: Blm; human gene BLM)


















Mouse genomic sequence
(SEQ ID NO: 1403)



Mouse mRNA sequence
(SEQ ID NO: 1404)



Mouse coding sequence
(SEQ ID NO: 1405)



Human genomic sequence
(SEQ ID NO: 1406)



Human mRNA sequence
(SEQ ID NO: 1407)



Human coding sequence
(SEQ ID NO: 1408)

















TABLE 79





(mouse gene: Blr1; human gene BLR1)


















Mouse genomic sequence
(SEQ ID NO: 1409)



Mouse mRNA sequence
(SEQ ID NO: 1410)



Mouse coding sequence
(SEQ ID NO: 1411)



Human genomic sequence
(SEQ ID NO: 1412)



Human mRNA sequence
(SEQ ID NO: 1413)



Human coding sequence
(SEQ ID NO: 1414)

















TABLE 80





(mouse gene: Ptp4a2; human gene PTP4A2)


















Mouse genomic sequence
(SEQ ID NO: 1415)



Mouse mRNA sequence
(SEQ ID NO: 1416)



Mouse coding sequence
(SEQ ID NO: 1417)



Human genomic sequence
(SEQ ID NO: 1418)



Human mRNA sequence
(SEQ ID NO: 1419)



Human coding sequence
(SEQ ID NO: 1420)

















TABLE 81





(mouse gene: Mcm3ap; human gene MCM3AP)


















Mouse genomic sequence
(SEQ ID NO: 1421)



Mouse mRNA sequence
(SEQ ID NO: 1422)



Mouse coding sequence
(SEQ ID NO: 1423)



Human genomic sequence
(SEQ ID NO: 1424)



Human mRNA sequence
(SEQ ID NO: 1425)



Human coding sequence
(SEQ ID NO: 1426)

















TABLE 82





(mouse gene: Jak2; human gene JAK2)


















Mouse genomic sequence
(SEQ ID NO: 1427)



Mouse mRNA sequence
(SEQ ID NO: 1428)



Mouse coding sequence
(SEQ ID NO: 1429)



Human genomic sequence
(SEQ ID NO: 1430)



Human mRNA sequence
(SEQ ID NO: 1431)



Human coding sequence
(SEQ ID NO: 1432)

















TABLE 83





(mouse gene: Fus1; human gene FUS1)

















Mouse genomic sequence (SEQ ID NO: 1433)



Mouse mRNA sequence (SEQ ID NO: 1434)



Mouse coding sequence (SEQ ID NO: 1435)



Human genomic sequence (SEQ ID NO: 1436)



Human mRNA sequence (SEQ ID NO: 1437)



Human coding sequence (SEQ ID NO: 1438)

















TABLE 84





(mouse gene: Rassf1; human gene RASSF1)

















Mouse genomic sequence (SEQ ID NO: 1439)



Mouse mRNA sequence (SEQ ID NO: 1440)



Mouse coding sequence (SEQ ID NO: 1441)



Human genomic sequence (SEQ ID NO: 1442)



Human mRNA sequence (SEQ ID NO: 1443)



Human coding sequence (SEQ ID NO: 1444)

















TABLE 85





(mouse gene: Pik3r1; human gene PIK3R1)

















Mouse genomic sequence (SEQ ID NO: 1445)



Mouse mRNA sequence (SEQ ID NO: 1446)



Mouse coding sequence (SEQ ID NO: 1447)



Human genomic sequence (SEQ ID NO: 1448)



Human mRNA sequence (SEQ ID NO: 1449)



Human coding sequence (SEQ ID NO: 1450)

















TABLE 86





(mouse gene: Braf; human gene BRAF)

















Mouse genomic sequence (SEQ ID NO: 1451)



Mouse mRNA sequence (SEQ ID NO: 1452)



Mouse coding sequence (SEQ ID NO: 1453)



Human genomic sequence (SEQ ID NO: 1454)



Human mRNA sequence (SEQ ID NO: 1455)



Human coding sequence (SEQ ID NO: 1456)

















TABLE 87





(mouse gene: Tle3; human gene: TLE3)

















Mouse genomic sequence (SEQ ID NO: 1457)



Mouse mRNA sequence (SEQ ID NO: 1458)



Mouse coding sequence (SEQ ID NO: 1459)



Human genomic sequence (SEQ ID NO: 1460)



Human mRNA sequence (SEQ ID NO: 1461)



Human coding sequence (SEQ ID NO: 1462)

















TABLE 88





(mouse gene: Nek2; human gene NEK2)

















Mouse genomic sequence (SEQ ID NO: 1463)



Mouse mRNA sequence (SEQ ID NO: 1464)



Mouse coding sequence (SEQ ID NO: 1465)



Human genomic sequence (SEQ ID NO: 1466)



Human mRNA sequence (SEQ ID NO: 1467)



Human coding sequence (SEQ ID NO: 1468)

















TABLE 89





(mouse gene: Nr3c1; human gene NR3C1)

















Mouse genomic sequence (SEQ ID NO: 1469)



Mouse mRNA sequence (SEQ ID NO: 1470)



Mouse coding sequence (SEQ ID NO: 1471)



Human genomic sequence (SEQ ID NO: 1472)



Human mRNA sequence (SEQ ID NO: 1473)



Human coding sequence (SEQ ID NO: 1474)

















TABLE 90





(mouse gene: Dad1; human gene DAD1)

















Mouse genomic sequence (SEQ ID NO: 1475)



Mouse mRNA sequence (SEQ ID NO: 1476)



Mouse coding sequence (SEQ ID NO: 1477)



Human genomic sequence (SEQ ID NO: 1478)



Human mRNA sequence (SEQ ID NO: 1479)



Human coding sequence (SEQ ID NO: 1480)

















TABLE 91





(mouse gene: Lck; human gene LCK)

















Mouse genomic sequence (SEQ ID NO: 1481)



Mouse mRNA sequence (SEQ ID NO: 1482)



Mouse coding sequence (SEQ ID NO: 1483)



Human genomic sequence (SEQ ID NO: 1484)



Human mRNA sequence (SEQ ID NO: 1485)



Human coding sequence (SEQ ID NO: 1486)

















TABLE 92





(mouse gene: Git2; human gene GIT2)

















Mouse genomic sequence (SEQ ID NO: 1487)



Mouse mRNA sequence (SEQ ID NO: 1488)



Mouse coding sequence (SEQ ID NO: 1489)



Human genomic sequence (SEQ ID NO: 1490)



Human mRNA sequence (SEQ ID NO: 1491)



Human coding sequence (SEQ ID NO: 1492).

















TABLE 93





(mouse gene: Anp32; human gene N/A)

















Mouse genomic sequence (SEQ ID NO: 1493)



Mouse mRNA sequence (SEQ ID NO: 1494)



Mouse coding sequence (SEQ ID NO: 1495)



Human genomic sequence (SEQ ID NO: 1496)



Human mRNA sequence (SEQ ID NO: 1497)



Human coding sequence (SEQ ID NO: 1498).

















TABLE 94





(mouse gene: Map2k5; human gene MAP2K5)

















Mouse genomic sequence (SEQ ID NO: 1499)



Mouse mRNA sequence (SEQ ID NO: 1500)



Mouse coding sequence (SEQ ID NO: 1501)



Human genomic sequence (SEQ ID NO: 1502)



Human mRNA sequence (SEQ ID NO: 1503)



Human coding sequence (SEQ ID NO: 1504).

















TABLE 95





(mouse gene: Cd28; human gene CD28)

















Mouse genomic sequence (SEQ ID NO: 1505)



Mouse mRNA sequence (SEQ ID NO: 1506)



Mouse coding sequence (SEQ ID NO: 1507)



Human genomic sequence (SEQ ID NO: 1508)



Human mRNA sequence (SEQ ID NO: 1509)



Human coding sequence (SEQ ID NO: 1510).

















TABLE 96





(mouse gene: Sept9; human gene Msf)

















Mouse genomic sequence (SEQ ID NO: 1511)



Mouse mRNA sequence (SEQ ID NO: 1512)



Mouse coding sequence (SEQ ID NO: 1513)



Human genomic sequence (SEQ ID NO: 1514)



Human mRNA sequence (SEQ ID NO: 1515)



Human coding sequence (SEQ ID NO: 1516).

















TABLE 97





(mouse gene: Fzd10; human gene FZD10)

















Mouse genomic sequence (SEQ ID NO: 1517)



Mouse mRNA sequence (SEQ ID NO: 1518)



Mouse coding sequence (SEQ ID NO: 1519)



Human genomic sequence (SEQ ID NO: 1520)



Human mRNA sequence (SEQ ID NO: 1521)



Human coding sequence (SEQ ID NO: 1522).

















TABLE 98





(mouse gene: Calm2; human gene CALM2)

















Mouse genomic sequence (SEQ ID NO:1523)



Mouse mRNA sequence (SEQ ID NO:1524)



Mouse coding sequence (SEQ ID NO:1525)



Human genomic sequence (SEQ ID NO:1526)



Human mRNA sequence (SEQ ID NO:1527)



Human coding sequence (SEQ ID NO:1528).

















TABLE 99





(mouse gene: Ncf4; human gene NCF4)

















Mouse genomic sequence (SEQ ID NO:1529)



Mouse mRNA sequence (SEQ ID NO:1530)



Mouse coding sequence (SEQ ID NO:1531)



Human genomic sequence (SEQ ID NO:1532)



Human mRNA sequence (SEQ ID NO:1533)



Human coding sequence (SEQ ID NO:1534).

















TABLE 100





(mouse gene: Rac2; human gene RAC2)

















Mouse genomic sequence (SEQ ID NO:1535)



Mouse mRNA sequence (SEQ ID NO:1536)



Mouse coding sequence (SEQ ID NO:1537)



Human genomic sequence (SEQ ID NO:1538)



Human mRNA sequence (SEQ ID NO:1539)



Human coding sequence (SEQ ID NO:1540).

















TABLE 101





(mouse gene: Mbnl; human gene MBNL)

















Mouse genomic sequence (SEQ ID NO:1541)



Mouse mRNA sequence (SEQ ID NO:1542)



Mouse coding sequence (SEQ ID NO:1543)



Human genomic sequence (SEQ ID NO:1544)



Human mRNA sequence (SEQ ID NO:1545)



Human coding sequence (SEQ ID NQ:1546).

















TABLE 102





(mouse gene: mCG10516; human gene N/A)

















Mouse genomic sequence (SEQ ID NO:1547)



Mouse mRNA sequence (SEQ ID NQ:1548)



Mouse coding sequence (SEQ ID NO:1549)



Human genomic sequence (SEQ ID NO:1550)



Human mRNA sequence (SEQ ID NO:1551)



Human coding sequence (SEQ ID NO:1552)

















TABLE 103





(mouse gene: Rorc; human gene RORC)

















Mouse genomic sequence (SEQ ID NO:1553)



Mouse mRNA sequence (SEQ ID NO:1554)



Mouse coding sequence (SEQ ID NO:1555)



Human genomic sequence (SEQ ID NO:1556)



Human mRNA sequence (SEQ ID NO:1557)



Human coding sequence (SEQ ID NO:1558)

















TABLE 104





(mouse gene mCG15938; human gene BAT1)

















Mouse genomic sequence (SEQ ID NO:1559)



Mouse mRNA sequence (SEQ ID NO:1560)



Mouse coding sequence (SEQ ID NO:1561)



Human genomic sequence (SEQ ID NO:1562)



Human mRNA sequence (SEQ ID NO:1563)



Human codina secuence (SEQ ID NO:1564)

















TABLE 105





(mouse gene: Iqgap1; human gene IQGAP1)

















Mouse genomic sequence (SEQ ID NO:1565)



Mouse mRNA sequence (SEQ ID NO:1566)



Mouse coding sequence (SEQ ID NO:1567)



Human genomic sequence (SEQ ID NO:1568)



Human mRNA sequence (SEQ ID NO:1569)



Human coding sequence (SEQ ID NO:1570)

















TABLE 106





(mouse gene Zpf29; human gene: hCG27579)

















Mouse genomic sequence (SEQ ID NO:1571)



Mouse mRNA sequence (SEQ ID NO:1572)



Mouse coding sequence (SEQ ID NO:1573)



Human genomic sequence (SEQ ID NO:1574)



Human mRNA sequence (SEQ ID NO:1575)



Human coding sequence (SEQ ID NO:1576)

















TABLE 107





(mouse gene: Kcnj9; human gene: KCNJ9)

















Mouse genomic sequence (SEQ ID NO:1577)



Mouse mRNA sequence (SEQ ID NO:1578)



Mouse coding sequence (SEQ ID NO:1579)



Human genomic sequence (SEQ ID NO:1580)



Human mRNA sequence (SEQ ID NO:1581)



Human coding sequence (SEQ ID NO:1582)

















TABLE 108





(mouse gene: Ppp3cc; human gene: PPP3CC)

















Mouse genomic sequence (SEQ ID NO:1583)



Mouse mRNA sequence (SEQ ID NO:1584)



Mouse coding sequence (SEQ ID NO:1585)



Human genomic sequence (SEQ ID NO:1586)



Human mRNA sequence (SEQ ID NO:1587)



Human coding sequence (SEQ ID NO:1588)

















TABLE 109





(mouse gene: mCG910; human gene: hCG27579)

















Mouse genomic sequence (SEQ ID NO:1589)



Mouse mRNA sequence (SEQ ID NO:1590)



Mouse coding sequence (SEQ ID NO:1591)



Human genomic sequence (SEQ ID NO:1592)



Human mRNA sequence (SEQ ID NO:1593)



Human coding sequence (SEQ ID NO:1594)

















TABLE 110





(mouse gene: mCG2257; human gene: PRDM11)

















Mouse genomic sequence (SEQ ID NO:1595)



Mouse mRNA sequence (SEQ ID NO:1596)



Mouse coding sequence (SEQ ID NO:1597)



Human genomic sequence (SEQ ID NO:1598)



Human mRNA sequence (SEQ ID NO:1599)



Human coding sequence (SEQ ID NO:1600)

















TABLE 111





(mouse gene: mCG17918; human gene: hCG23764)

















Mouse genomic sequence (SEQ ID NO:1601)



Mouse mRNA sequence (SEQ ID NO:1602)



Mouse coding sequence (SEQ ID NO:1603)



Human genomic sequence (SEQ ID NO:1604)



Human mRNA sequence (SEQ ID NO:1605)



Human coding sequence (SEQ ID NO:1606)

















TABLE 112





(mouse gene: Lfng; human gene: LFNG)

















Mouse genomic sequence (SEQ ID NO:1607)



Mouse mRNA sequence (SEQ ID NO:1608)



Mouse coding sequence (SEQ ID NO:1609)



Human genomic sequence (SEQ ID NO:1610)



Human mRNA sequence (SEQ ID NO:1611)



Human coding sequence (SEQ ID NO:1612).






















TABLE 1





SEQ ID NO:
MUTATION
SEQUENCE
CLONE
CLASS.
GENE




















1
IM000619
GATCAAAGCAATCTCTATGTCTTTCTCTG
p000632
A
Spr




CTGTCCTCCTCAGACATCTCCAGAGAGC




TGGGATATTTTTCTTTCCCATTTGAGATT




ATGAAGTTGTTTCTAGAGTGCATGACGC




AGGTTGAAGGATAAGTACACAGGTCCCA




AGGAACCAAGCGTTTTCACTGACGGTGA




TGAGTCTTGTTCGTGAGATTGTTGTGATT




CTCAGCCTTTCTCTTCCCCTGTGTGTGCT




CTTCATTTTCTGGTTCTGTCTGCCTAGCA




CCTCCTGGGGAAGCTGCTGTGCTTT


2
IM000620
GATCTTTGGAGCCCAGTTGTTAATCATAA
p000633
D





GAGCTGATATTTTGAAAGAGTGTGTCAA




CCTAGATGCACAGGGAAGCCAAAGCATT




CAGCC


3
IM000621
ATATGACCACAAGGAAATAAGATAAAGT
p000634
C





GTTCATACTGAATTTATAATGAAAAGTGA




TC


4
IM000622
GAACAGGCATGGCTTTACTTGTACAATG
p000638
D





AGGAAACCAAGGCAGAGATTGCAAAGCG




GGTCCTACACGTTTGCTCCATGCCCTGC




TTCTCTGACCACAGTGTACTGAGAATATG




CTGAGCCCTAGTTCCTGGGGAGGAGGC




AGAAGAGAGCAGCATCCTGCCCACTTGA




AGGCGTGCACACATAGTTCCTGTCTGAT




C


5
IM000623
GATCAGGAGACCACACCCAGCTAGCCTT
p000639
D





CTCTGACTGGGTATCCTTGGTCAGCCAG




CCTTTCTTCACCTCATGTTCTCATTTGCA




AACTCACATGAACACTATTTGACCTACAC




ACTTCATAAAGCTGTTTTTAGAAAGACGA




GATAATACAGGAGGAACGCTACAATATT




AAATGATATGTATTTATAT


6
IM000624
AGTGTTTAGGTCAGCTGGTGCAGGAGAA
p000640
D





GCTTCTTGAGGAAGACGACCATCTGGCA




AGGCCTGATGGTAGAAAATAATGGACTT




CTCTCCAACTGAGTAGGAACTTGATGAT




C


7
IM000625
ATCAGTAAGTTAATCCTAAGAATTACTAT
p000641
D





GCATTTTTCCCCTCTTTTTTAACAACATTC




CTCCTTAGCTTATATGAGGCTCTAGTGC




CCGGAGACTTTAATACTGCCCTAACATG




ATGGTGGCTCTTTGTCCCTCTTTCTCAGC




CACTGAAATCTGACAGTTTGGGGAAGAA




TAATAAGAATTTAAGAAACTAGATGGTTT




TAAATATAGATATAAAAACAGTTCTTCGA




CTATTCTCAATAAAGAAATTCAGTCAAAA




GAATTTCAGTCCTAACACAATGATC


8
IM000626
GATCATCAGAGTCCTGCATCTTATGTGT
p000642
D





GCAGTGTTTTCAGCAATACAGGCTTACC




TTCTTACCTCTAACAGGCAACCAGATGCT




ACAATAGCTTATATTGTTTTAGAAATCAC




TTGGACTACTCTAAACAACAACTTGAGTG




AAGGCTCTTTGTATCTGATACTGGAGTTT




GTTAGTCTATGACACTTGTGGGGAGACA




TGTCTGCACAAGTAGCATATGTGTGTAC




ATGTATATTGTATACATATATAGTTTTGCT




CTATGTATGTATGTGTATATGTATGTATG




TATATGTATATGTATGTATATATATAG


9
IM000627
AAGGGACCTGATAATCGTGTTGGCAACT
p000643
D





GGGCTACAATTAGTTATCAATTGCTTGCT




TGCCACCTGCCCTGCTCCATAGAGAATC




ATAGTCTGGGGAGTGTGGAGGAATAGC




GGAGTCATCTAAACACATCACTGCTGCC




CCCACCATTTGCCTGCCACCAGGCCCCT




GCCTTTCATTTTGCATCTCCCTCTTAC




AAGCAAATGGCGCTCACTGATC


10
IM000628
GTTTGGGGATTGTACAGAATGCACAGCG
p000644
K
Myc




TAGTATTCAGGAAAAAGGAAACTGGGAA




ATTAATGTATAAATTAAAATCAGCTTTTAA




TTAGCTTAACACACACATACGAAGGCAA




AAATGTAACGTTACTTTGATC


11
IM000629
GATCTCATTACAGATGGTTGTGAGCTAC
p000647
R





CATGTGG


12
IM000630
GATCTCAGGAGGCACCGAGAGACTCAG
p000649
K
Gfi1




CATGGACTCAAATGAGTACCCTGGCAGC




CCGCTACACCAGCTGTGTAACACTACCG




TGAGGGATGTCTTCCCTGCCTCCCTCCA




GCCCCTTCTCAGGCCCTGAGTCCAGTGT




GCAAAGCTCATCATGGTTAGTCCCCTTC




ACCT


13
IM000631
AGAGCACCCGACTGCTCTTCCGAAGGTC
p000650
R





CAGAGTTCAAATCCCAGCAACCACATGG




TGGCTCACAACCATCCGTAACAAGATC


14
IM000632
GATCAAATCCTGTCAGGGAGAGGGGCTC
p000651
D





CTCCCAGTAGTGCCATCCCATAATAATAA




GAAGGACTCCTGGGCCTCAGTGAAGTCA




GGCTGACCACTACTGCAGGTTAGTCATG




ACCAGTAGCCAGAATGGAACGAAGGGT




GACCCAGTGTGAGGACACAGCCCCAGG




CAACTGCTTCTGCTTTGAGCCAAGTTGTT




ACCCCAAAGCTCGTCATTCCGCTTGGTT




TCTCATGTGTGTGAGCTGCACATATGGA




GGTCCCCCTTTGTTCCCTT


15
IM000633
GTGAGGAAGGTCCCTCTGCATTCTAACC
p000652
D





TTCCTCAACTCCACCAGCCTCGGCGTTT




AAGGGAGAAATATTACCGTTCCCTTTGG




GCCAAGTTGGAGCCAGTGAAGTAGTCG




GAAATGTACAGTCACAGGAAATTGCTGC




TACCAAGGCTGGAGGAACAAAGAGAAGA




CTTGTCACAAGAGGCCAGAGAGGAAGTC




ACCCAGTACAAACTGAAGCGCGCGCGC




ACACACACACACACACACACACACACGC




ACACACACACACACACGATC


16
IM000634
TGGCCGCCTAGACAAGCTGACCATCACC
p000654
A





TCCCAGAACCTGCAACTGGAGAGCCTTC




GCATGAAGCTTCCGAAATGTGCGTGCTC




CACCTGTCCCTCACCTCACAGACATCAT




TTCTCCATTTAGCCCCTCCCGATC


17
IM000635
GATCCCCTGGAATTTACAGTCGGTTCCA
p000656
C





ACAATCATGTAGATG


18
IM000636
GATCGGCTATAGCATTTGTCAATGTTTAC
p000659
A
Cr2




CCAGAAGAATAGCACAGATATATTTGCA




CATCAATGCTTATTGCAGTATTATTCACA




GTGGCTATGTAATGGAACCAACCTACAT




GGCCAGCAACTGAATAGATTAAGAAAAT




ATATATACACAATGGTGCTTTTTTCGGCT




ATAAAGAAGAATGAAGTTATGTTGTTTGT




TAGAAGATGGATGAAAGTGGAGATGATA




ATATCAAGTGCACAGTCAACCTCTCTCTC




TCACCTCCCCCGCCCCGCTCTTTCTCTC




TCATATACATTTGAGAGTAGCAGTAAACT




GTCTGAGAACAAAGGGGATTAATGGGAG




GGGAGAAGATTAAGGAGCGGAAGGGTA




GTAGGTAGTAT


19
IM000637
GATCGGCTTCTATGGACTGAGTGTGTAA
p000661
D





GAAAACATT


20
IM000638
TTAGGAGGGTAGAGAACATTCAGGAATC
p000662
D





AAGAACAAGCATTTTAACACCCACTGAG




CTATCCTGTGGATGGTGGTGGTTTTGT




GTTTGTTGGTTTTGTTTTAGGAAGTCAGG




GATGGGGTGGGAATCTCACTCTGTGGCT




TAGACTTGCAACAATCCCAAATTCTGGAA




TGATAAGCAAGAGAGCTGTCTAGTCCCA




GTCTCAGATACATGCTGTTAATTTTCTAC




TACTGCTATAACACATAGGCTCAAATGC




GGTGGCTTACCTAACACACCCTGTGCAG




TTCTGAAAGTCGTAACTCTGGCACGATC


21
IM000639
ATGCTAAGCTGTGACTCCTGTCGATACG
p000663
D





AGACCCTGGCTGCCCTCCTTTCCCGATC


22
IM000640
GATCGTCTGGAAGAGCAGTCAGTATTCT
p000665
R





TAACTGCTGAGCCATCTTTGCAGCCCCC




AGTTCTTTGGGGTTTTTTGTTTGTTTGTTT




GGTTGGTTGGTTGGTTTGGTTTAGTTTG




GTTTGGTTCAAGACAGGGTTTCTCTGTG




TTGCCCTGGATGTCCTGGAACTCTCTTT




GTAGACCAGGGTGGCCTTTAACTCACAG




AAATGCGCCTGCTAGGATTAAAGCTGTG




TCCCACCACTATATATATATGTGTG


23
IM000641
GTCACAGTGTTAGAGCCACAGACGGGG
p000666
D





GAACCTACTGGCTGTCCTGGGTTCCTGT




AAACTAGGGGACAAAGCTGCCACAGCCA




GACTTAGCTGCGATC


24
IM000642
GATCGCTGCTTCTGTAAATCCGCAACGA
p000668
R





CAATTGTTATCTTCTCCTTTTCTTTCTTTT




ATGTTTTATTCTATTTTATTTTTCAGAT




GAACTCTCATGTAGCCCAGGCTGGTCTC




AAACTCCCTCTGTAGCTGACGGCAACCT




TGAAC


25
IM000643
TTCCTACACCATAGCATTTAGTTGTAGGC
p000669
D





AGAAGCGATC


26
IM000644
GATCGGCTCAAGGGCTCTAATTTAGTCT
p000672
D





AGGAAGTCCTTAGGAAACATGAAAATCT




CCGAGATAAGACCCGGGGTAAAAAGCTT




GAGCCACGGAGTTAGACATGCCCAGGG




TGGAGTCATGTTCAGAGGTTCAAGACCC




GAATCAGCTACGTAAATAAAGCATTTGAG




GCCTACCTGGGCTACAAGAGAGTATCTT




TAAATAAATAAGATGATTTAAAAAAAACT




GTTTTCCCCTTAGATGGATTAAAAAAACA




AGACAAAACAAAACAAAACAAAAACCCG




TCTTTCCTTCTTAA


27
IM000645
CTGTCCGTGTGGGAAACGTTTAGCAAGT
p000673
K
Nmyc




CCGAGCGTGTTCGATC


28
IM000646
ATGCGTTCGTATGACAGTTCTCCTAATGA
p000676
C





CTGTCCCAAAGTCCCAGATTCCTGGAAA




CAGTAAAGACTGCCTCAAACTGTAGTCA




CTAGTCTATTATCTTAATCATAGTAACCA




TTTGGGTTTGACTTGAAAACCTGTGACA




GGGAGATAAATTTCTGCCACTGTAGGTG




AAGCTTGGAAGGGCTAACCCAATGAATA




TGCTCAGTCGATC


29
IM000647
AGATGAAGCTATCCCCAGTCCCTAAGCT
p000678
C





GAGTTCTGCCTGAGACTATTTGAAACAG




GGTACCCCTGGGTCCCAGTTCAGTTGAC




AGGTAGTGGACGCATGAGAACGCCATAC




CTGGTGGCCGTGCCCGAGAGTGCTGTC




CCTGACCTGCCACTGTGTTCTCCAGAGC




AGCTCCAATCTGCCTGCTCCTGTCTC




CCCTGCCTGTTGGCACCAGGCAGCCAG




AATTCCATTTGTGTTTGCTTCGCGATA




GGCTCTTGCCATGTAGTCCTTCCTGGCC




TAGAACTTGATATGTAGACTTCCCCCCTT




GGATC


30
IM000648
CCGTGTCCGTGGGCATGTGCGTGTACA
p000679
D





GACAGACATACATGCCCCCGCATGAGTG




TGAACACCAGAGGTCAACCTCAGGTGTC




CTTTTGATGTTATCTACCTTGTTTTTTGAA




GCAAGGTCTAGGATTGACCAATGAGCCC




CAAGTAGGGATC


31
IM000649
GATCCATAGGCAGAGAAGGCAGTAATAG
p000682
D





GACATTGGTCATTGTACCTCATTTGTGAG




GGGTCACCTTGGAAATGTGCTGAGACTA




GGTTCTAGGAGAAGCTCGCCA


32
IM000650
CTGGCACTGTGTGGCAGAAACAGTGAAC
p000684
D





AGTGTAGCGGTGCAGAATGTGTGTGCTG




TGGGTTTTAGCACCAGGGCTGCATGAGA




CTGCAGACATGCTTATGACGCAGGAAGG




CTCAGGACACAGCACACATGTGTGCTAA




CATACATGTTTCACCTCAGACTCAGCTCC




CATTTGACTTTTAATTAATTTTTGGCCATT




CCACAACAGAACCTTTTCTTGCTCCCTTT




TTTCAATCTTATGTATATATCTCCTACATT




TAGTTACAGGACTGTGACCTACAGTTTAA




AACTCGGGGATC


33
IM000651
GATCCCTCCCCTCCCTTCTTTETCCCGC
p000685
K
Myc




CAAGCGTCGGCGAAGCCCTGCCCTTCA




GGAGGCAGGAGGGGAGCTGAGTGAGGC




GAGTCGGACCCAGCAGCTGAGAGCAGC




GCAGCCCAGGGGTCCTCGGCCGCGCAG




ACCCCCGGAATAA


34
IM000652
CTACCACAGCCCCAGTGCTCTGGAGGG
p000686
D





ACTCTAGTAGCCAGGGCTGGCAGCTTGG




TTTGGGCCAGCATCTCACTATGTAGCCT




AGTTGTCCTGGAATTTGCTATGTAAATGT




GGCTACCCTCAAACTCATAGAGAGCCTC




CCACCTCTCCTGAGATTATAGGCACATG




CTACCATGCCCTAAGTGGATC


35
IM000653
GGAGCAGGCCCTTCTGAATCAACTTGGC
p000687
D





AGAGTGAAGGAGGCACTCTCCACACAAA




CAGGAAAAGGGCAGTGGTGACTTTCTAG




GCAGGGAACTGGTTACATTTTGTTTATTT




GAAGGTGAAGAGTCGTGACATTCTGGGA




AATAGGCAAGATGGCCGTTTCCCCTCAG




CTACAACCAGCCATGCAGACCTCCTTGC




AGGGACCTGGCTATCTACACTGGAACCA




GAAAGGCACGCCCTGCTTTAGCCTCAGG




CAGAACGATAATAACAGCGTGCTAGCTC




GTAGTCTGTGTGCTGGAAGGGTTTATG




AGGAGGAAGTCCGCTATTACATATTTCT




GGGCAAACATTAACCAAGATTGAAACCT




AGATTTGAAGAGAAGTAGCAGGCTGGGA




TC


36
IM000654
AGATGAACTTATAAATGCATCTGCAGTCC
p000688
B
Mm.1313




TCTAATAAAGATGAATAGTAACCCAGAG


36




GCGTGGTAGTGCGCTCTTCAAACCCAGT




GCTCAGAAGGTGCAAACAAAAGGACCG




GGAGTCCAAGGCTAGCCTTGACTAGAAG




GGGCCATGTCTCAAAGAACAACAACCAA




GAGCTGCTTATGGAGGTCAGTCTGTGTT




CCCAGGGGGACAGCATCAGTCTAAGTTG




GCGGTTGTTGTTGGCTGAGCATGCACAA




ATCCCTAACAGCACATAAAGCAAGTTGT




GTCACACACTCACAGTGCCCAGATTCAC




TGGATC


37
IM000655
GTCCATTGTGTACTGAGAGAGGAGTTAG
p000689
D





GTTTAGAAAGCCTTCCTCAGATGTCCCT




CAAAGAAGCTGCTACAACTGCCCTCATC




CCACGTTGCCAAGGATC


38
IM000656
AGCTGTAGGGAAGCCCAAAGCACAGAC
p000694
K
Gfi1




GACTGCTGCTGCTGCTGCGGTTCCCACT




CTGGGTTGACCTTAGAAACGGGGGTTCA




TCTCCTCCAGCAGCTCCGGGAAGGAAG




GTGAAGGGGACTAACCATGATGAGCTTT




GCACACTGGACTCAGGGCCTGAGAAGG




GGCTGGAGGGAGGCAGGGAAGACATCC




CTCACGGTAGTGTTACACAGCTGGCGTT




GCGGGCTGCCAGGGTACTCATTTGAGTC




CATGCTGAGTCTCTCGGTGCCTCCTGAG




ATC


39
IM000657
GATCGCCCCAGTTACCTCAAATTGTGTG
p000695
D





AGTGTGTGTGTGTGTGTGTATGCATATAT




GCATACAAGCATATACATGCATGCATATA




TATAATACACATAGACATATATACACACA




TATAGACGCATACATGCATTTGTATGCAT




GCATCTATGTATGTACATATCCACAACCA




AATATACCAAACACGCAGACACAGCACA




CATAGGACAATAGTAATTGTGAATCTAAC




TGGTGGGGTTTATGGGTCAAGAGCCAG




GGTAGAGGAAACTGGCTAAGGCTCTAAC




CATCCTAGAGCAGGCACATCTACCAGGA




AAAGAAACAAGGAAAAGAGCAGAGTTGA




GGGTTACTTAACATG


40
IM000658
ACAGAATCTGTGGGTCATTATTACGTTTA
p000700
D





TAGGAACAGGATTTTCTTTCCTTTCTGAC




TCTACCTTCTAGAAAGGCCGACTTTTAAA




TCCTCATGCTCTTGTCTATTGACAGGAAA




AGATGGGCTTCCACACTGATC


41
IM000659
GATCAGGCTGGCCTTGAACTCACAGAGA
p000702
C





CCCACCTGCCTCTGCCTCCTGCATGGTG




GGATTAAAGGTGTGTGCCACCACTGCCC




AGCTCACAAAGTAGTAGTAGGACTAGTA




CTAGTACTAATTATAACAAACATTACAAC




AATCTTAATTATTTTTGTTTCTACCTAA




AATCTCCCAACTGTCTTTTTATATTGCCT




CAAGTCTTCCCTCAGTCCCTGGCCTTCA




TAGCTTGACTTTTTTGCTAGAGGTTATCA




GTGGCTCATCTCTCTCCTGAGATTGAGC




TGGCTAAGACCACTATTCAGAGGGAGAA




TGTAATGTCTCAGACATCATAGCCAGTC




CTCAGTTCTCCTTTTGCTGACTGACCACT




TTGCCAAACTAGTTTTCCTAAGCCATACC




TTTTCTTTTTAAAAAATAGTCTTTCTTATA




GTGGGTGCTGGCTTTGAACTTCTGTCCT




CTTGCCTCACCTTGCACTGGTAGTAGAG




GCTTGCAATTTCACCG


42
IM000660
GATCAAGAACGAAACCCCTGAAAACATA
p000703
D





AAACAGTAAGATAACAATAGCGTGCCTG




ATTTTGTCCAAACCTTCTTGTCACCTGTC




ACTGAGATTGTCAACTCCTTTTCACCACC




CTACATACGTTAGTTAGCTCAGTTTACGA




GAGTTTGCAAAGGCCCCCACCAGTACCC




TGCAACTTTACCCACCCCTGCATGGGAC




TGTGAGAAAATGGGACTGGAGAGTAACC




CTCTTCAGGCTCACAATCTGAGCTAGTC




AGAGCATCTCACGGGTCCCGGGACTTTC




AGTGTGCTCCTCTTGGGTATTGGACTT




TAAACAATGTGTACCGATATGGGTGAATA




ATACAACATCCATGGAGAAATAAGCCAA




ATCAAGACACTTCTTCAGAGG


43
IM000661
GATCAAAAACATCAACGTAAGGAGCCCT
p000704
D





TAATGACGCTTTGTGACGGTTTAGAATG




GTCTACCCAAACCTAGCCAAGTCTAACT




ATGTTATGGAGGTGGTAAAAGCAGTTAA




CCTAAACATCTGGGACACTCACAGAATG




TAGGTAGGTAGGTAGATAGATAGATAG




ATAGATAGATAGATAGATAGACAGACAG




ACAGACAGATGTTGAATAAAAAGTGACG




TTTACAGTGATGTTAGCTCAAGGCAGGG




CTTTTCAGGCCATTTCCCCTGGTCTCAC




CC


44
IM000662
CTACTAAGTCCAGAGCAGAGAAGGAGGC
p000706
D





GCCGCCTGTGTGCACAGCGGAGTCTGG




GAGAGACCACCGGCCCAAACCAGTAAAC




ACAGGGCACCCACCGTGCTCCGATC


45
IM000663
ACAGTAATCTGATTATCTTGGAGTAGATA
p000708
D





ATTTGTCTACCTGTTAATGACTCTGCTTC




TTGAACTACGTCCCAGTAGATGCCATGC




TCAGCCTGGTAAGTGACACTAATACTA




CCTCCAAACTGTCACTTGGATTGTCAGG




GTTTTGGTGTGGTGATGATACAGGAGAA




ATGTAAAACACGGAGTTGATGATAGAAA




GGAGTCACTAATACATTTTCTTAGGAAAA




GTCAAGTGACACACAGCAGAATCTAGCT




GAAGGAGCTCCGCCAATAGGGCTGGAA




GATAACTCTCGCACTAACCTGCTTTATTA




GGAACTGTAGGAAAGGCAGGTCTGCAG




CACAGTTGAAGTTTAGGTTGCTGAGAAA




GTTTCTGCTCATATTTATTCACCAGTGAT




GATC


46
IM000664
GTTTAGCAAGTCCGAGCGTGTTCGATC
p000709
K
Nmyc


47
IM000665
AGGCAAACCCATGTGAGGCCTTCTCACA
p000710
C





TCTTTCCTTGGATGCCTGCACACACCTG




ACTTGACAGACTTCAAATCAGACTTATCA




ACTCACCTCTTCAGTCCTGGGCCTCTTC




CTGTATTTCAATCTTAGATAGAAAATTGG




TTCCACTGTCTACCAGCCTTGAACCAGG




AATGCAGAGCCAACCACCCCTGGGGTGT




CCCAGGCAGCTGGGCTGGATGCTACCT




GTCATGCTCTTGATC


48
IM000666
ATGTATGAGTGTGGGGCTGGGTTTGAAC
p000711
C





CTGTGTCACCTTAGGACTCTCTGAACCT




CGGTTTCCTATTAGACGGAGGGGCTATT




CGGAGTCCTCATCTAATGGAGACACTTT




GTGGGTATCAGAGGGCAACACTGTGGTA




TTGGGGGTGGGGGGTTGCTGCTTAGAG




CTCAGAGAAGAGGAGTTTGGCTTGCTCT




ACAGAACATGCAGGCTGAGGTGTGGGT




GCAGGGTTTCCCTGAGGCCCCGGCTCT




GACCCTCTCCCCACTCCATTTCCTGCGC




AGGTGAGCGACAAACGTTCCAACAGCTT




CCGCCAGGCCATCCTTCAGGGAAACCG




CAGGCTGAGCAGCAAGGCCCTGCTGGA




GGAGAAGGGGCTGAGCCTCTCTCAGCG




GCTCATCCGCCACGTGGCCTACGAGACT




CTGCCCCGGGAGATTGACCGCAAGTGG




TACTATGACAGCTACACCTGCTGCCTCC




GCCCGGTTCATGATC


49
IM000667
GATCATTTTTCTCTCGAGATGGATTAAAG
p000712
R





CTATGCTGCAGAAGGACCCGTGTGTGTC




CTGTGTGTGTGTGTCCTCGCCGGCGAGA




CTCCTTATCACACATGACAGCTTCAAAGC




CCCCAGATTCAATAGGTTCCAGGAGTTC




ACATTTAACACTCATGGGGTCAAAGTGC




AGGCAGATGGTGGAGCCTGTGGAAGGT




CATCAGACAAACAACCTGGTGGTTGCAG




CAGAAATCACCAGGCAAGTAG


50
IM000668
GATCTGGCTAGCAGGGAGCCATTTACAG
p000713
D





CTCAGACATCTATCATCCTTA


51
IM000669
GATCATTGTACCTCACCTGTCAGTTTGAC
p000714
C





AGGTGGGAGGTGATATCTCTTTTCATTCA




TGTATTCTTTGAAAGTTTGTTCATGCATA




TAATACATTCTGGTTCAATTCACCACTCC




ACCCTTTTGTATCCCCTGCGTACCGAGC




CCCCATTTTCTCACCAAGTCTTACTGTTA




TCTCAGTTTTGGGGCTTAGTTTTTTGTTT




GTCTTGTTTTGTTGTTTTTGAAACAGGGT




CCCGTTATGCAGCCCTGGCCCTGAACTT




GCTAAATAAACCAGGTTGGCTTTGAATTC




AGAGTTCTGCACACCTCTGTTACCCAAG




TGCTCAGATTAAAGGCGTATACTACCAC


52
IM000670
GATCAATTCAATCTATTGCAATAACCTGG
p000715
D





TTTTTTTTTTCCGCAACTCCTAGATGGGG




GGGGGGGGGCCCAGTCAGGAGAGGTTT




CAACACAAACGCACTAGTATTTACACACA




GAATCTCCTCCACTGTTCTTCTTCTTTGC




TTTAAAAGTCTTTGTTCCGGAATCTATAG




ATAGGGAGACAGATGGCTAGCTCCCCAA




GGCTGAGAGCAGAGGAGAGTATAAACA




GGGAAGTCTAGGGGTCTGGGAGGGCTA




GGTAAGGAAGCCACAG


53
IM000671
CAATGCCTTCCCCGCGAGATGGAGTGG
p000716
K
Myc




CTGTTTATCCCTAAGTGGCTCTCCAAGTA




TACGTGGCAGTGAGTTGCCGAGCAATTT




TAATAAAATTCCAGACATCGTTTTTCCTG




CATAGACCTCATCTGCGGTTGATC


54
IM000672
TAGTATTCAGGAAAAAGGAAACTGGGAA
p000718
K
Myc




ATTAATGTATAAATTAAAATCAGCTTTTAA




TTAGCTTAACACACACATACGAAGGCAA




AAATGTAACGTTACTTTGATC


55
IM000673
GATCAGAAAAACAGCCCATTATTCAAGAT
p000719
D





TCAGGT


56
IM000674
TAACTTCAATTTAATAATTATCACATGCTA
p000720
D





GGAACTAAAGAGGTGCACAAAACAAACC




AACAGTGGTTCCTATCCTGTCTAACAGAA




GAAACTACAATTGTGGTTTGGGATGCCA




CATAAATGACAGCAACGGGACCTACAGA




AAATTAAGTCACAGAGAGTATGGACCAT




TTCTGCAGAGACCTGGAAAACAGACAAG




GGAAGAAACATGGTGTGTCTAAGTGATG




GGGCAGGTGGTGCAAACGCTAGAGGCA




AGCAGAGGGGATATGAAACTGTGCTGCA




CAGCTGGACAGAAGGGAGGCTGGAAGG




GAAGAGAGGACCCTCTGTTTTGACTCAA




TGGCTAGATGCCATGTGCCAAATAAGAA




AGCACTTGGGGGGTTCTGTGGGAAATCG




GAACAGAGGGACTGGAATCAAACCTCAA




CGTTCCTTGCATACTCCAGATAAGAACC




AGGCTTTGAGCCAGGGCCTGGGAAGAG




GGCTGGCCTACATATCTCATTTTAGAGAT




GAGCAAACAGGACTGGGAGCTCTAGGT




CTTCAGTGACACGCTTGCTTGGCCCGCA




GGAGACCCTGGGTTTGATC


57
IM000675
GATCATGTCATGGGTCAACAGAAATAATT
p000721
D





CTGAAAGGCTAAGTCATTTCTTCTACCCC




CAAGAAAAATCAAGAACACCCCACATTA




CAAACCTTCCGTAGTAAACTGAGAATGG




AGCCATGGCCAGAGCCCCTCTGCTCTCC




CATCCCCCAACCAAGAACCAAAC


58
IM000676
ATATAACTTCTTTTTTTTTAAAAAAGAATT
p000722
R





ATTTATTTTATGTATATAAGTTCCTTATAG




CTGTATTCAGAGACGCCAGAAGAGAGCA




TCTGATC


59
IM000677
GATCATAGCACACTGGGGTGCCATCTGT
p000724
D





CACCCCTAGACAAACATCTTTAACCNGC




ATCTCTTCCTGAAGCCCACTTGGACCAC




CCTTTGGAAAACCATCACCAAGGCCAGT




AAGGTACCCGTGGTGACTCACCTCAGCC




AGCCCACCATAGACGCTTAGCAGAGCA




GGTGTGTGTTAGTCAGAGCCAGACAATC




AGAACACTCTCCCTGCTCCAAAGTAGCA




ATGTAAAAAATTGAACCCAAAGTTG


60
IM000678
GATCAAAGTAACGTTACATTTTTGCCTTC
p000727
K
Myc




GTATGTGTGTGCTAAGCTAATTAAAAGCT




GATTTTAATTTATACATTAATTTCCCAGTT




TCCTTTTTCCTGAATACTACGCTGTGCAT




TCTGTACAATCCCCAAACGTATACATACA




CACTTTATATATACACGATAATCTAGCTT




ATTAACCAACCAGAAACATGAGTCTTTTG




CTCTGTGCATTGGTTCTAGATTTATTATA




TAATGCATATTCCCTCGGGATGCTTAT




CC


61
IM000679
GATCATTTGATGCTTCAGATAAATATGTA
p000728
B
Mm.1278




AATGGTGAC


81


62
IM000680
GATCAAGATAATCCCCCACAGGCATGCC
p000729
R





CAGAGGCCCATTTCCTAGGTGAGACTAT




AGTCTGTCAAGTTGACAATGCTAACCATT




GCAGTGAGGGAGAGAAAGAAGGCCAGG




ATGGTGCCTCTCTGTTACTCTGCTTACCC




CGGGGTGCAAGGACAGTGGGGGATGG




GCCTGAGCTTCCTCATGAACACACACAT




GAGAGCAGTCAGCACATGGCCTCTTCCT




CTAAGCTTCACAGTGGCAGCCGCACCTC




TGCTGTTAAGACCTAACATGTGGCCGGG




CAGTGGTGGCACACGCCTTTAATCCCAG




CACTCGGGAGGCAGAGGCAGGTGGATT




TCTGAGTTCGAGGCCAGCCTGGTCTCCA




GAGTGAGTTCCAGGACAGCCAGGGCTA




CACAGAGAAACCCTGTCTTGAAAAACCA




AAACCAAAACCAACCAACCAACCAACCA




AACAAACCATCTAACATGTACATCCTATC




CATGTGCACGAATCATAC


63
IM000681
AGACCAGTGCCGGAGCCGTTCCTGGCT
p000730
A
Cmkbr7




GAGGCAGCCCAAGTCCTTGAAGAGCTTG




AAGAGGTCGCTGCGGAACTTGACGCCG




ATGAAGGCATACTAGAAAGGGTTGACGC




AGCAGCGGACGGAGGCCAGGCTGTAGG




TGACGTCATAGGCAATGTTGAGCTGCTT




GCTGGTTTCGCAGCTGCTATTGGTGATG




TTGAAGTTGGCCACCGTCTGAGCCAGGA




CCACCCCATTGTAGGGCAGCTGGAAGAC




TATGAAGACTACCACCACGGCAATGATC


64
IM000682
CCCTCTCAAGCCTTCCTTGTTACTTAGCC
p000731
D





TCTATAGGTCTGTGCATTATACCATCATT




CTTTTAATACAGCTAATATCCATATA




TATGATTATGTACCATATTTGCCTTTTGG




GGTCTGGATTGCCCTACTCAGGATGACC




TTTTCTAGTTTGATC


65
IM000683
GATCATGATGTTTGTTGAAGCAACAGAAA
p000732
D





CTATAAGACAGTGCCCAAGAGCCTCTCT




GGAGATAGCC


66
IM000684
GATCGTGTTAGACACAAGTAAGAAATGA
p000734
D





ATGAGTCTTCCTGATTTTTTAAATTAACTT




CTCCCCATATTGGCTGTCACTACTTTTTA




TCAGAAAGGAGAATCTGGACGGTTCC




AGGCCTGCAGCGCCATGCTTGCAAAAG




GTTTACAGAATCGCTCTGGACAACT


67
IM000685
CTACCACAGCATCTTTTGAGTGTATATAG
p000735
D





TCAGTGTGCTACATGTTATCTATGAACAT




ATGCAAATGAGGTTTGAGAATTAAAGTTG




CTGATAGACTCATGGGTTAGGGGTTTGA




TTGCCTGCTAATGATC


68
IM000686
GATCACGAAACGGTTGACTAAAGCAAGA
p000736
D





CTGAACCACAGGCAGATACCAAACCCAA




AGCTCTATGTCTAGTGTCTAGAATACATA




GGTTTGGGTAGCCATGCCCCTGTGACCC




TGCCACCTGCAGCACACATAAGACAATA




CTATAGACAACCACTTCTGAGTCAGAATT




GCAATGATGTCTTTGGCAAACTACTCTAG




TCTCCTTTGGCCAGGAGCTGCTAAGTGG




TTCAGGCTGAGGTACAATCAACCTAGGT




AGGTGGGACTGTGTGCCCCTGTGCTCCT




GGGTGGCCTTCATGTCTGCTATGCTTGC




CCTTT


69
IM000687
GATCATGTCAACTATACCTGGACACGGA
p000737
C





CCTTCATCCTTGCTGGTTTCACTACCTCT




GGCACCCTGCAAGATCTTGCAGTTTTTG




GAACCCTGTGCATCTATCTCCTCACACT




GGCAGGGAACTTGTTCATCATTGTCTTG




GTCCAGGCAGATTCAGGGCTGTCCACTC




CCATGTACTTCTTTATCAGTGTCCTCTCC




TTCCTGGAACTCTGGTATGTCAGCACCA




CAGTGCCCACCTTGCTGCATACCTTGCT




CCATGGGCCTTCACCCATCCCCTCGTCT




GCATGCTTTGTCCAGCTGTATGTCTTCCA




CTCCTTGGGCATGACCGAGTGCTACCTG




CTAGGTGTCATGGCTCTGGACCGCTACC




TTGCTATCTGTCGTCCACTGCACTACCAT




GCACTCATGAGCAGACAGGTACAGAAAC




AGTTAGTTGGGGTTACATGGTTGGCTGG




TTTTTCAGCTGCCTGGTGCCTGCAGGTC




TCACTGCCTCTTTAGCTTATTGTTTGAAA




GAAGTGGCCCATTACTT


70
IM000688
CTGTCAATTCATCCAGCTCTAGGCCGCT
p000738
D





GTCTGGCTCGATGCTTATTGGTTTAACA




GTGCCGATGCATAGGATTCTACAGTCAG




AGTGGCCTAAGCAACAGCTAAATATTGTT




TTCTTGCTGTTCTGGGAACTAGATGTTCA




AGGTCAAGGCGTCAGTAGCTCTGTTATG




AGACCTCTCTGCTGTCGGGCTGTGTCTT




CAAGTTTTTTCCCCCCTCTGTGCATGTGT




GTTCCTATTTCCTCTGCATGAAAGACCAG




TAGAGCCAAGTGGTGGCACACACCTTTG




ATC


71
IM000689
GATCATGAGAGGCGAGAAACCCAGACAT
p000739
D





CTCTAACTCTTCTTGCCAACTCAGGAGC




CACCTGTGGCCCCAGCTGGCCACCAGC




CGTTCCTCCCTCAGAGGCCTCCATTTCC




ACAAAAGGCCTTCCTGGTTGTTCAGGAC




AGAGCCTGGTTTCCCTGATACCCCTTCT




CTCAGTGGCCACTGAAGTTACAGGGATG




CAGCCAGCCGTGGTTGCCATGTCTGTAT




ATGCTAATCTCCGAATTCCACTTCCTGTT




TAGATTCTCAG


72
IM000690
GTTTGTCCGCATGAGTCCCAGGGACCAC
p000740
D





TCAGAGTGGCTGGCAGGCATTGTGGAGT




GGAATGTGGGAAGACACATTCCCAGCCT




TGTTTGCAGCTTGGGACTGTCTGTGTTTT




GGGATGATC


73
IM000691
GATCACCTGGGAAGGGGGAAAAGGACA
p000741
D





AGTCTGAGCTCCCAGCCCACATTCTCCT




AGGGTAGCAGCTCCCTCACTTAGTGT


74
IM000692
GATCAGTTCTTATTAAACAATACAGACTT
p000744
R





AGGCAAAATGAGTCAGAAATAAGGATAT




CGCATATCCCGAGACCATGAACTCTA




AGAAGTATTTTCTATTATTAAAGTAGTTCA




CCAGGCAGTGGTGGCACACACCTTTAAT




CCCAGCACTCGGGAGGCAGAGGCAGGT




GGATTTCTCAGTTTGAGGCCAGCCTGGT




CTACAGAGTGAGTTCCAGGACAGCCAGG




GCTACACAGAGAAACCCTGTCTGGACAA




ACCAAAAAAAAAAAAAAAAAAAAAG


75
IM000693
GATCATCACAGATGACATAGAACCAAAC
p000745
D





TGTAACTTTCTAGACTACATGTAGCAGAC


76
IM000694
GATCATACATGAATACAAGCAGGCTTCT
p000746
B
AA65702




GGTATACTCTTAAGTTGAATTCTGTTTTC


8




TGTAGTCGTAGTCTTGTCTTTTCCAGTTT




TAAATTCTAGAACAGGTATACTGTAGAGC




ACCCGCCTCCCCTTGCTCTGGAGGTAGG




GTAGAGTGGGAGTTAAGGTCAGTTCC


77
IM000695
ATTTCTCTTGTAAAACTCACTTTCTGTTCA
p000748
D





CCCATTTTGTCTGTGTCCTTACTAAATTA




TTTCTATATAGGAATCTTTGTATCTTCTGA




TATAAGCTAGCGCATGGGTACCACCAGC




ACCCTAGTCATCTGCTGAGGTGCTTCTA




ACCTTGCTTGATTCAGTGTCTTCAACAGA




AGGTGGAGTAAACAGGTCATTTTTTACC




CTAGAGAGTTCAGATC


78
IM000696
GATCTCCGGGTGCCAGACTTGCCCAGCA
p000749
D





AGCACTCTTACCTGCTGAGCCATCCTGA




GGGCCTGGATTTAAAAAAAAAAAATATTG




ACATATTGTTC


79
IM000697
GATCTCCTAAAACTCCCTGTGTCAGGAA
p000752
D





ACTTTCTGTGCTTTTGTATTGCGTTCCTG




TGTTCGTGGAAGGCCCCCACGCCTTCAT




CCTTGCTAATTCTTTTTGGATAGCTTGTT




GCTTTAACTAGATTGGCCCTTTCTTGGCT




GTATTTTCTGCTGTACCTATGAGTGGTG




TGGGAGAACTGTGCAGACTTCCAGGAAG




CGCAGCCATGAAGCTACATGTGCCTATG




TGTAGACACATCATGGATTTTCTTACTAG




TTTACTAGTGGGTGATAATCTGTCCTTTT




GAGCTCTCCAGAACGTTCTAGAAGCTTA




AGGAGAGAAATCACTTAAGAGAG


80
IM000698
ATCTGATAGTAAGTAAAAGGACAGCTAAA
p000753
D





GATGAAGGGAAAGCAGGAGAGTCCTGG




AAGAAGAAACTAGTGTTTCTAAGAGTTCA




TCATTGATAAAATGCAAAAGAAGTCAATT




ACATACATGTTTAGGAAACTGAATCCTCT




TGTTTTGGGGGATGTTTGTTTTGAGGCA




AAGGCTCTCTTACAGAGCCCTGGCTGTT




CTGGAGTTCTGTATATCAGGCTCTGGCC




TCAAACTCAAGAGATC


81
IM000699
ACATCAAGAGGAAGTTGGAAATGTCATC
p000755
D





TTTAGCTATCTTATATCCTGGTAGCTTTA




AGATTTCCTTTGTGTGACTTTATAGTTCT




CAAAATATTTTTAAGGGTCAGGGGAGGA




AGCACTTTCAAGAAATGAGATGGGAGAG




GGAATGTCTTTGTGTTGGCCTGGAGATC


82
IM000700
AGCTATACCTGAAATTTGGCCAAGAACA
p000756
D





GAAGCTCAGSAAATAGTGTGATTTAAAAA




CCAAAACCAATTTACAAAAGGAAGACTGT




GGTGTAGATC


83
IM000701
CCACAACTGAAAGCAACACACACAGTAT
p000757
D





TTTTCTGTGGGTTTTAGGATGTATCCACA




CTCCCGAACTTCCTTTCCCTGAAGCACC




CCTCAGTTTACTCTGAAGCATGGTTTGA




GTCCCAAGGCCAGTGTCAACTTTCTGCC




AAGTCTCAATGGCAAAAGTCTGTTTTAAT




CTGCTCAGGCTAATGTAGATC


84
IM000702
CTTCCAGTCTTTTTAGCTATTTATTGATAT
p000758
D





GAATTCCCTGCCTTATGTATCATCCAAGA




TTCTACCTAAAATACTTCCAATAAGTATC




AAGGACCACTCAAATATTCACTATTGGAC




TTAGAAGCTCCACTCTTAAAAATAGATTC




TATAGAAAGAGCCTGAAATGGGGGCATG




AAATGGGTCCATCTCCACCATCACGCAC




ACATGAACAAAGAAAAGGAGGAAATGGT




GTTAAGAAAACTTACATCATACTATTTAA




AAATAAGGAGGAAGGAGGGAGGGAGAG




AAAGAGAGAAAGCTCAATGCTTAGGCAA




GAGTGCTTAAGAAAATTACAGTTAACAGA




TC


85
IM000703
GATCTCCTAAAACTCCCTGTGTCAGGAA
p000759
D





ACTTTCTGTGCTTTTGTATTGCGTTCCTG




TGTTCGTGGAAGGCCCCCACGCCTTCAT




CCTTGCTAATTCTTTTTGGATAGCTTGTT




GCTTTAACTAGATTGGCCCTTTCTTGGCT




AGTATTTTCTGCTGTACCTATGAGTGGTG




TGGGAGAACTGTGCAGACTTCCAGGAAG




CGCAGCCATGAAGCTACATGTGCCTATG




T


86
IM000704
GATCTGAGTGCTGGGAACCAAACCTGGG
p000760
R





TCCTCTGCAACAGTTTGTGCTCTTAGCTG




CCGAGCTTT


87
IM000705
GTACGGCGATGGGCACAGGCTTCGGGA
p000761
B
Mm.2739




CAGTCCGCGCGACGCTCAGGCGGACAA


3




CGGGAGGCGGGCGGGGAAGGCAGGGG




CTGCAGTGTCAAGTCCCTGACCCGGGA




GGCTCGGAAACTTCACTGCCTCTGCGCA




TCCGGCATGGCCCCTCCCACTCGGACTT




CGTCAAAAAACCGCCACCGTGGAGTGTC




CCAGTATGTGCGGTGTGGGACAAACTAT




CGCACTGTTGCCCTGGCTCTTCTCCTAG




ACCCCCTTTGTGAGCCAAAAGAGAAACG




CTGGGCAGATC


88
IM000706
GATCTCGTTACGGATGGTTGTGAGCCAC
p000762
R





CATGTGGTTGCTGGGATAA


89
IM000707
CTGGGTTGACCTTAGAAACGGGAGTTCA
p000763
K
Gfi1




TCTCCTCCAGCAGCTCCGGGAAGGAAG




GTGAAGGGGACTAACCATGATGAGCTTT




GCACACTGGACTCAGGGCCTGAGAAGG




GGCTGGAGGGAGGCAGGGAAGACATCC




CTCACGGTAGTGTTACACAGCTGGTGTT




GCGGGCTGCCAGGGTACTCATTGAGTC




CATGCTGAGTCTCTCGGTGCCTCCTGAG




ATC


90
IM000708
GATCTCAGGAGGCACCGAGAGACTCAG
p000764
K
Gfi1




CATGGACTCAAATGAGTACCCTGGCAGC




CCGCTACACCAGCTGCGTAACACTACCG




TGAGGGATGTCTTCCCTGCCTCCCTCCA




GCCCCTTCTCAGGCCCTGAGTCCAGTGT




GCAAAGCTCATCATGGTTAGTCCCCTTC




ACCTTCCTTCCCGGAGCTGCTGGAGGAG




ATGAACTGCCGTTTCTAAGGTCAACCCA




GAGTGGGAACCGCAGCAGCAGCAGCAG




TCGTCTGTGCTTTGGGCTTCCCTA


91
IM000709
GGAAGAAGTGTGTGCAGGCCATGGTCAA
p000765
B
Mm.1535




GTCCTGCATGGCTCCCATCTGGGTCCAG


12




CAGCACCCAGCCTCCAGTGCTTGCTCCT




GATGTCCCAGTGAACTCAGGTCCTGAGC




AGCAAATCCCAGGGGCCAGTCCTAGGG




AGAAAAAGAACACACTGCCATCTCAGTG




CCTCAACAGAAGCAAACCTAGGCGTCAG




GTCATGTCCTTGTTACCCACATCACACCT




AGACTTCCCTGGGTATCATGCTCTGTGT




GAGATC


92
IM000710
GATCTAAGGATATATCATTCCTAGGAGAA
p000766
A
Mtm1




AATGAATATATGACCTTGGATGTCA




ATGTTTTTTTAAATATGGCATTAAGCCAC




AGAGATAAAAATAAGAAAATAGATACATC




GAATTTCAGTAAAATGAGGAAGTTCTTGT




GATTCAACAGAAAC


93
IM000711
GAGGTAAGTCTGTTCAGTGTAGCTATCC
p000767
D





TTAGCAGCTAACAGTCCTCAAAACTTTTT




AGAGATC


94
IM000712
CTACAGATGCATTATTAATATTACTTTTTA
p000768
D





AAAAAACCCAGTATACTGCTTGAAAACAG




TGAATGCAATGGGTTCTCATTCACCTTCC




TGCTCTCAATCAATCTCCATCTCTAAAGC




AAGAAGTGGGGGCCCTTCTGGCTGAGC




GAGGGGTGAAGGGAGGGGAAGAGATG


95
IM000713
GATCTGGAGAAGATGTCAAGTTTTAAAAT
p000769
D





GAGGCAG


96
IM000714
GAGTGAAGCAAGAATTTGGAGCCCAGCT
p000770
D





GCCGCAGCCTTTTTCCTTTCAGCAAAGC




TCGGGAGTGATAGATATGCATGAACCAA




AGCAAAGGCTTGAGAGTGCCACTTGGCC




CTGCCTCCTGAGGGTCTCAGGGCATCAG




CTGGAGACCACCCTGTGACCCACACATC




ACCGACTATGAAAACAGCTCATCAGAGT




AATAAAGATC


97
IM000715
CAATGAACAGGACACATGCTTCACACGA
p000771
D





CAGTCCAAAAATGCAAAGTGTGGAAGAA




TTCCACAGCCATAGCCTTCATTACTAGAT




C


98
IM000716
ATGCCTTCCTGGTAGAAGAGGGCCATGC
p000773
D





TGTGGCGGGGAGGGGCCACTCAATTTTT




CCTGCTCCCTTTCCCTGTCCCATATTCTC




AGGAGCTTCTAGAAGCGTAGCCTGCATC




TCATGCCCTGACTTGGCACCAAATGCTT




GCTTTGTATCAACACCGCTTTCTCTTCTG




CTCTTTCCAGCTCGCAGCCATTCAAATAA




TACCACCCGGTACCCGTGGAATCAGGAG




CAGAGATTCCAAATTGAGTCCTAAAATCA




AATCCAAATGGGCCCGTCAGCTAGATC


99
IM000717
AGGCGAGCGGATTACTAAGGACTGAAAG
p000774
D





ACTCCTAAGACTTGTCTCCTGCTCCCTG




GCCAGCGGTGGAGCTCAAGCAGAATTG




CAAGCTCAGCTCAGGTCTCAGTGATGCA




AAGCACCCTCGTTACTCCAATGTGTGTTA




CTCCTACAGGTGGGCTGCCTTCCACTTT




CAAACACCCGCACAAACAGACCTCCCAC




CGTATGCCAGAGCATCTGTTCGATGCTT




TCTGGAAACTATGCAAGCCCAAATTTAAT




ATCCAATCAGATC


100
IM000718
GTGTGTGTGTGTGTGTGTGTGTGTGTGT
p000776
R





GTGTGTTACAAGGTCTCATACAGAATCC




AGGCTGGTCTCAAACTACTGGAGTCAAG




CCATCTTCTCACCTGGCTTAGCTGGGGT




CACAGACTTGTGCCATCATGCCCAATGG




AATGCTGTTCCTTTTGGAAAGCCTGCTAC




TGTCATATACTGTCATAGGAGTTAGCGA




CTGCTGGCTTATTCCTTCGCTTTGCTTGG




AGATC


101
IM0007T9
CCCCCTTCCTGTCACCTCCTGACCCCTT
p000777
D





GCGCAAAGGAGGCTCGTGGCCCGCTGT




CCCACTGGGGGATGGGGCTGGGGTTGA




GAAGGCTAGTGAGCGCCTCTAACGCTCA




GGAAGTGAAGTTTGTGGTTTTGGGGGCT




GAGCTCCGAAGGAGATTAAAAAAAAAAA




AAAAAAGTCAGAGAGACAGATC


102
IM000720
CTTTGTATAAGCAGCAAACAAAAAGCCA
p000778
D





GAGGCAGTCCACAGATC


103
IM000721
ATACAACAGGAGCAAAGCTGGAGGGGA
p000780
A
Rab37




ACAGATATAGAGGACAGTTCAGGGCATC




TGCAGAGGTGCTGTGGAATGGGGAGGG




GACAGTGGATAAGGGGACTTACCCTGAG




CATCTCGGTAATAAGCATGGGTCACACT




GCGGAAGCGCTCCTGTCCTGCAGTGTC




CCAGATC


104
IM000722
GATCTATGTCATCTTCCAGGACTCAGAG
p000781
D





TTAAGAGAGTTACCAAGTGAGAGCTCTC




ATCACCTTCTGAAGCAGTTGAGAATTGG




AACCCAGAAAGATGCACATGCACGGGCA




CACACACACCCACGGGCACACACCCAC




CCACCCATGCAGAGAGAGAGAGAGAGA




GAGAGAGAGAGAGAACTCACACTGGTAC




TGCAGTAAACGGGAGCTTGTTT


105
IM000723
GATCTTCTTTCTCTGCTCAATTAGTTCAC
p000782
D





TTCTGCTTTCATCTCCTTTTCTTTTGATAA




ACCATGAGTTTCATTAGGGCTATTACAAT




CACATGCAGTTTTTCCTTATAGTA


106
IM000724
GAATTAGGCCTAGAAACATTAGAATCCA
p000783
D





GACCACGGAGCTCCCCAGATC


107
IM000725
GATCTTGTTCTAGAACGACCCTGAAGGC
p000784
C





AGCAGAACAGAGCAGGACTGAAGGCCA




CCAAGGGGATTTCAACTCTTCAGAAAAA




ATAAGTGACTCACCTTCTCACAAAGAGC




AAGAATCACAGAGGTCAGATTGTCTCCT




CCTGCCCATCAGGGACAGAGTCCCCCAT




CTTTGCCTTGCTCCATCTGGCAGGTAAG




AGATGGGAAGTCTCCTCCCTCGGTCT




GCAGCATCCCTGGCATCCCTGGGGAGT




GTTGGCACAGAACCCCCCTCCCTTA


108
IM000726
GATCTGTGTGGGCAAAGCCCATGTGCTG
p000785
D





GAGTGTGTCTGGGTAGAAATGAGTTGTG




TGGTGCTGAAATGTAAATGAAGTCCCTG




TGTT


109
IM000727
GATCTCATTACAGATGGATGTGAGCCAC
p000787
R





CATGTGGTTGCTGGGAATTGAACTCAGG




ACCTTTGGAAGAGCAGTCAGTGCCCTTA




ACTGCTGAGCCATCTCTCCAGCCCCCCA




CCTTTTTTTTTAAAAGATTTATTTTATAGT




TTTTGCTTTTTTAACAGTACTGGAACATC




TCAGTAATTGCTAAGTTGTCCTTGCTCCA




GGTGAGCAGTCATATTTTCTCCAATTCTG




GTTTCCTTACTTGTGTCAGAGACCAAAAT




AGCTTGTTTAATCAGTTAGAGCTCTTTAG




TTACCCATATCTGTGTAGTAA


110
IM000728
TAAGAACATAAAAGCAAAATTTGGAGGCT
p000788
D





CAAGATTCAGTTTAGTTGCTAGAGGGCT




CACATAGCATGCCCTCCCCACCCGGGAT




TCCATTCTCATTTATCGAGGCATAAGGCC




AGGTGTGGTGGGATATGTGCTGGGATG




CATAAGATC


111
IM000729
GAAAGGCACACTGGTGAAGGCTGAGGA
p000789
D





CCACCAAAGCTGCATTTCTGCTAGGCTA




GGTAGAACAAGAATGGTGCTCCACTAAG




AACTCAAAAAGCCACAGCCCACCCCTGA




GGCCCTCCATCTGACACATGCCGGTCAC




CTGTCCTCCCACAGCCCAGCACAGAGAA




GCCACCATCCCTCCCCTTCCCACCTCCT




GCAGCTGACAGTGTGCATCTTTCCGCAC




ATTCCTCTCTCCTCAATCAGGTCAGAATG




TATTCCAAAGATC


112
IM000730
CACTGAAAATGGCTAGAATTCTGGTGAT
p000793
D





GGGTGAGCCGATC


113
IM000731
GATCGGAGTCCCTCGTTTCAGAGGCCCC
p000794
D





ACTTCTATGGCTCCTGCCTTCCTTGGCTA




CATCCATTCCTGCTGAGCTCCTGGAAAC




CTGTGTATCAAGTCTTTTCCAGTTAGTGC




GTTCTGAGTGGCTCTAGAAACCGCTTGC




CATTACAGCGAAAGACCCGTATAAACCA




TGTTCTCTTCCTCTGTGACAAGAGACAAC




GACACCGCACAAAGGACTGTCTGGCCT




GGGGGGGGGTCCCTGGTTCACAGCTTC




AGTCCTGA


114
IM000732
GATCGCTCAATATAACAGCAACATGCCA
p000795
D





AGTGCCACTTGTAAAATTTGnGTTGAGC




AGTCTCATTATCAACTGAAGCACAATGTC




AGGCTAGCAAGAGGCAGGTTCAGTTGTT




GATTAGCGATAGCACACACAAGCCAGCA




CATGCTTTTTCTGTGAGTTCTAT


115
IM000733
GATCGCTGAGTTTGTTTACAGAGCAGGG
p000796
A
Cited2




ACGCCTCAGCTCGGATGCCAAAGCTACC




AAGAGCTGCAAACGCAAACTTAGCAGTA




GCACACGTACTCCC


116
IM000734
GATCGCACAGGTAAAATGGGGACTCACT
p000797
D





TTAGCTAAAACAACAACAACAAACAGCCT




GATGAGTCGAAAGTCTCTTTAGGTTGCC




CTCTGTTCTCCAGCCCCACATCCTGAAG




GCTGTGCATTCCTCCCACAGCAGTCTCA




AAATAACCATAGTGCTCAAGTCCCCTGTA




TCAAATGGTGGTATCTGCATCCACCCTA




CAGGTGTTCTTTGATTCTTTCTTTTCTG




TAAGTGTGTCTGGGTGTTTTGCCTGAGC




GTATGTATGCGCCTAGTACCTGCAGAGG




CCAGAATAAGGTGTCAG


117
IM000735
GATCGTGAGAGGCGAGAAACCCAGACAT
p000798
D





CTCTAACCCTTCTTGCCAACTCAGGAGC




CACCTGTGGCCCCAGCTGGCCACCAGC




CGTTCCTCCCTCAGAGGCCTCCATTTCC




ACAAAAGGCCTTCCTGGTTGTTCAGGAC




AGAGCCTGGTTTCCCTGATACCCCTTCT




CTCAGTGGCCACTGAAGTTACAGGGATG




CAGCCAGCCGTGGTTGCCATGTCTGTAT




ATGCTAATCTCCGAATTCCACTTCCTGTT




TAGATTCTCGG


118
IM000736
ACTGTCCGTGTGGGAAACGTTTAGCAAG
p000799
K
Nmyc




TCCGAGCGTGTTCGATC


119
IM000737
ATTTCTTTTTGAGTACTTCATATAAGAGC
p000801
D





TTCGCATGTACACCACTCTTGCTCGCCA




CTCCTCTTTTCTTCTTTCATTAACTACTGT




CCACTCTCCAAACTTCATAATCTCTCTAA




TTACTATTGTTATTTACACACACACACAC




ACACACACACACACACACACACACACGT




ATATGTAACCTACTGAATCTTACTAAATA




GCTTTACTATCTTCCAAGTAACAGGCACT




TGATAAATCTTCTGTCAATCTCCCAGAAC




AGAAGCCTTAAGAGTCATTTAAGTTCT




TATCTCAGGCTGTTCTGTTCTATGCCTTT




TGCTTTTAATCCATCACCGATC


120
IM000738
GAATGTCTAGATGGAGACTGGACAGAGT
p000803
C





TGGATTCCTAGACACCTAACAGAAGCGA




AAGCAGGGGATGGATAAGGTGGGTGCC




TCGTCCTACAGCAGGTTCTGAGTGTCCG




CAGAGACTCCCATGGCTTGGCACCATGG




TTGAAGCTTTCCATCGATC


121
IM000739
CTATTTTCGTTCTCTCCGATC
p000804
D



122
IM000740
GATCCTCATGTCAAGGCAGGGGCAGAC
p000806
D





CAGGGTCAAGGGAAAAACACCTGCTTTC




CTGGGTTGTAAATGCCAGAAAGGGAAGG




CACGGGGTGGGTAGGGTGGAGAACATG




GCCCAGACCCCTGTCTCTTCTCT


123
IM000741
GCACCTGACTTCCTCATATAAGACACAAA
p000808
R





CATCTTGAGTGCTGCGCAGGTGTACCAG




GATACAGGTGAATCCAATCTGGTGGAGA




TTTGCCCCTGCTGCCCTGATTAGCTGAA




GCTGCGTGCCTGGTGAGGTGGCATGGC




CTGCTGTGCGTGGATGGGAACTGAGAGT




ATAAAAGAGCGAGAGGCCCGGGTTAGA




GGAGGATTATTATTCGAGAGAGGATTGT




TATTATTGGGAGATATGAACAAGGGAGA




TATTTAACAGGGGAGATATAAACAAGGGA




GATATATGGAGAAAGAAGAAACAGGACT




GAATAAATGTGTGCAGAAGGATC


124
IM000742
GATCCTTCTCCTGTCTTCTCTTCTGGAAG
p000809
D





GCTGGGCTACATGCCTAACATGTCAGAGT




TTTACCTGGGTTCCTTCCAGAGGTTTGAA




CTCAGGTCCTTGTACTTACACAGCAGCT




ACTTTGCCTATTGAGTCAATATTTTGTGT




GTGTTTGTGTAGGTGTGTTCATGTCTGTA




TACTTG


125
IM000743
GATCGTGCATGCATGGGTGTGTTTTGGG
p000811
D





GAGAGGTTCTGTCCTTGCTAAG


126
IM000744
AGCTCAGCTTGTCAGGCCTGATTGTGAA
p000812
D





CACTTCACCAACCGAGCCATCTCGTCAG




CACAGCCCTGTTTTTTATTCCCATTTTCT




TTTCTGTATTTCTGTTGAATTTCTCACATA




CTCTCCTTTCTCTTCTGCCTTCTTCTGGT




TTCTGCATCATTTCTATATTGACATTTAAA




CAACCCCCAAAATTCAAGATACATCAACA




AAAATTTATTCAACTAGTCTTTCTTACTTC




CATATCAATAATGAAAGAAAATTAAAACC




TTTCAAATTCAACAAATCCCTACACTACA




TATAATCACTTTCCTCTATGCTAAATCCA




ACTTGAAATTATATCCTCAATACCCTGCT




GGTATTTTTACTGTCTACATCACTGCCTA




GTCTTCGATC


127
IM000745
CTGGTATATGAACGAAGTTGGTCTCTAAA
p000815
R





GGCCGTCTAGAACAACGGTTCTCAACCC




GAGGGTCGCACCGGGGTCACCTAAGAC




TACTGGGAAAGCACAAATATTTACATTAC




GACTCATAACAGTAGCAAAATTACAGTTA




TGAACTAGCAACAAAAAATAGTTTTATGG




TTGGGGATTACCACAACATGAGGAACTG




TATTCAAGGGTCGCAGCATTAGGAAGGT




TGAGAACCACCGATC


128
IM000746
TTCTAACCTGCTAGGGTTTTCTCACGTG
p000819
D





GGTTCTTCTTTGAGGGCTCTCTGGCTTC




CCTACTGAGCTGTAGCTGCCAAAGTTGA




AGGGCTGCGTCTCCCTTGCGTCTCCCCA




GTCTTTACAGCTCCTGAAACACACTAAG




GTATTTATTCAAATCCCTGTTTTGTGTGC




GATC


129
IM000747
AGGGCCCTTCCACCTCTTCTAGAATTCG
p000820
C





GTAAGCTAAAAGTACATGTATCCGATTAA




TCTGAAATAATTTTGTAGACAGTTTGGTG




ACGGGTGGAGGGTGTGTGGTTGCGCGA




TC


130
IM000748
GATCGGCGAGACCACGATTCGGATGCAA
p000823
R





CAGCAAAAGGCTTTATTGGATACACGGG




TACCCGGGCGACTCAGTCTATCGGAGGA




CTGGCGCGCCGAGTGTGGGGTTCGGAC




CAA


131
IM000749
TTGGCTGTGGAGATGAACGTGGGAACC
p000824
D





GTGGAAATGACCCTAGAATGGGGCTCAA




ATGTGAAAGGCATGCCAGAGGTTGCTCT




GTTGTTTTAAGTCCCTGGCGAACATTAGA




ATTTAGCCTCAGTTTTAAAAGCTGTTACT




GCCTAGTTGGGTGCTTCTTTCTTAAAAAG




CAACCAAAAAAAAAAAAGCCGTTTTCACT




CTGAAATGTATTAGAAATTTGCATTAGCC




CAATGGCTAATAAGCGATC


132
IM000750
GTTATAAGGATTGCATACAAATGGCATCA
p000825
D





GGACTGGATGTGGTGGCACATGTCTTGT




ATCACAGCACTTGGTGAACAGAGGCAGG




GGAATCTCTTTGAGTTACAGGCTAGCCA




GCATGACACGGTGAGACTCTGTCTTAAA




CAAACAAACAAACAAAAAAACAAACTAAG




GTAGCATAAGAGCGATC


133
IM000751
ACCTGAATCTTGAATAATGGGCTGTTTTT
p000827
D





CCGATC


134
IM000752
ACTAATACCTTTCCTTCCGCTGCGATGT
p000831
D





TTCATGAGACTCTGGGTTAGTGCATGGT




CAGGGGCCCAGGCAAACAGTGGCAGTT




CTGCCCAGGATC


135
IM000753
GTTTAAAGAGCCGGTTCGACCCGCTTTC
p000832
D





CGTTTCGCTCCGGGTCAGCTAGTACTGT




GAACCGCTCGGTCGGGTCCGGCGCTGC




TGCGCACCTACTCGCCGGGACCCTGAA




GCCCCCCAACTACATATAGGGGTCTTCC




CGGAAAGTACGCAGGAAGTCGCGTTCG




GCCCCCTCCCCCCAGCACCACACCCAG




TCCCTTCCACCCCCCGGGATC


136
IM000754
GATCCCAGTAGAGACAGAAACAGTGCCT
p000833
D





TTGGTTAAGAATTCCAGGCAGGATGGTA




CAGGATTGCAATCTCAGCATGGGAGACA




GAGGCAGGATTTCCAGGCCAGCCTGGG




CTACAGTATAAATGGGACCCTGTCTCAA




GTTATTGAAAAAAAAACAGAGAAAGAATT




TGGAGACTGTGACTATAGCTTGGTGATG




GAGTCCGTTTGCCTAGCAGAGTGAAGCA




GCTGTGCTCCTGTGTTCACACCACTAAA




TAA


137
IM000755
GATCCAGTGAATCTGGGCATTGTGAGTG
p000834
B
Mm.1313




TGTGACACAACTTGCTCTATGTGCTGTTA


36




GGGATTTGTGCATGCTCAGCCAACAACA




ACCGCCAACTTAGACTGATGCTGTGCGG




CTGAGAACACAGACTGACAA


138
IM000756
GATCCTCCCTACCGGTCCTCGGGCAGAC
p000835
D





CTCCAGCCCTTCCCCAGACACTGTTGGA




AAGCAGGCACGCCTTCCACAGTATGGTC




TGAGGTTAACCCATGACAGCACTCTGGG




TGCCTGGTGGTGTTCCTGGTGGGGACG




TCAGTAGCTGTAGCTCTGTCATTGGTCC




TTGCAGCGTCTCATTCCAACTATTCTTCC




CATCACTCCTCT


139
IM000757
ATATGTGTTTGTGCGTGTGTGTACATGTG
p000837
D





CATGCATGGCATGTATGTACCCATATAAA




TATGTGTATGTGTGTGAAGTGCTGATGTA




TTTCACACAGCATTTTGGATTTAATGGAG




AAGGTAGCTCAGATGTCAAGTGTGCCCT




CCTGTCAGGAGAGGAAGCCTGATGTGC




CTGCTGTCATAACTCTGGTTTTGATAAAT




ACAGCACGAGTGATTTTTGGCTGTTGGG




TTTGCCGTGTATGGATC


140
IM000758
GTGCTTGCAACATTGTCATAGCTTAGT
p000838
C





GAACAGTATAGCATTGTTCTGGCTCAAG




AAGCCCTGGTTCTTCAAAGCTCCTACTTA




GATGAAATTATTTGCATCACTAACAAAAA




TTGTTTTGCATTTTTTAGATAATGAAGGA




TC


141
IM000759
GATCCTAGGCCAGTCAGGGCTACCAATA
p000839
D





AGAACCTGCCACACACACAAAAGGAAAG




CAAATTTTTGCAAAAACTCTAGTCTCATG




GTGTCACGGTCTAAACATCTTGAGGG




GCTCGAACTGGTGAGGTGGCTCGGAGG




TAAAAGGGCTTTGATGCACAACCTGAGT




TCAACCCCGTGTTTTAAAGACTTTCTGCA




TGATTCTGGTCTGCAGTCCTAGCCCAA




GCACAGTCAAGGAGAGATTGAGGCTGAA




ACGGAAGAATGGAAGTTTGCATAACAGC




TCAGTGGCAGAAATAACAGGAGAGACCT




GACCTTAAAAACAGGGTGTAAGGTGAGA




AATGATGACAAATGACATCCACTTCAACT




GTGCTACGAACAGCTACCTGTTTGCACA




CCCCAAACACACACACACACACA


142
IM000760
GTAAGAGGGAATGTACTCTCTGCCATCG
p000840
D





GGACACCCAGTGGAACTGCTCACCTGGA




GTCTTGCCTCCACGAAGACTAGGATC


143
IM000761
GGGACTTCAGGGCATAGAGCTTAGTTCC
p000842
D





AGACAAAACCAAAGTTAGCAGTCGCCTC




TCTCTTAAAGACGTTCTCTCTAGCCGCA




GATGACCTCAGAAGGGGCTCTGGGAGC




CGACTCCCACCCTTCCTTCTCTGTTTACA




GAATCTGGTTGGGCTGTGAGGAGCGAC




CCACGAGACGGGCTCCCTGTAGTGAGTT




AGGCCAGTGGGAACCAACGAGGATC


144
IM000762
ACACACACTAACACACACTCACTCACAC
p000843
R





ATACTCACACACACTCACACACACTGTCA




CACACACACACACACACACACACACACA




CACACTTTTCCACCAGGATC


145
IM000763
GATCCCTGGATATGGCAGTCTCTACATG
p000844
R





GTCCATCCTTTAGTCTCAGCTCCAAACTT




TGTCTCTGTAACTCCTTCCATGGGTGTTT




TGTTCCCACTTCTAAGGAGGGGCATAGT




GTCCACACTTCAGTCTTCATTTTTCTTGA




GTCATGTGTTTAGCAAATTGTATCTTA




TATCTTGGGTATCCTAGGTTTTGGGCTAA




TATCCACTTATCAGTGAGTACATATTGTG




TGAGTTCCTTTGTTCAAATTTCATTTCTAT




CACCATTGTGTGTATATGTGTGTGTTGTG




TGTGTATGTATATGACGTGTGTATGTTGT




GTGTGTATATATAACGTGTGTATGTTGGG




GGTCTAAGGCATGCTCATGCCACAGTGA




ATGAGTAGACATCAGAGGACAACTTTCA




GGACTCAGTTCTCTTGTTCTACCCTGTG




GTTCCAGGACACTAACCCAGGTCATCAG




GCATGGTGACAAAGGTTTTGACTCAAGG




AGCCATTTTACATGCCTCATAAGAAGGG




CC


146
IM000764
GCACTAGGAAGGAAATTGACCCGTGTTG
p000845
R





TTGGTTTGTGTTCTGGTTTTGTTGGTGGT




GCTTTTTGTTTTTTTTGTTTGTTTGTTTTT




TTGTATCAGGATC


147
IM000765
GATCCTGCTTTCTCTTTTGACACAGAACA
p000847
D





CTTCTCCTGATTGACTCTGGTCCAGACAT




TTCTTTCAAAGGCAGAGGACTCTGGCTT




AGCTGTGGATGACTTCTCAGATGAAGTT




CATTGGTTGCGATTGGAAACGTAATCAG




AGCAGG


148
IM000766
GATCGCATTAGGGTTTTTTTTATGGTTTC
p000852
R





TCATCTTCTCTTCAAATTAGCATAGAAGC




CTCTTCCTAAAGAATGGATACTTAATTCT




TAACTTGAAATATCTTTTCTCTGTGTGTT




TTCCTCTCCATTGACTGTTCGCTCTATCT




ATCTATCTATCTATCCATCTATCTACTGA




AATTAAAAATAAGGGAACGCCTTCTTCTC




TTCATTCTTGTTTGTTGTTTGTTTGTTTGT




TTGTTTTTGAGACAGGGTTTCTCTGTGTA




GCCCTGGCTGTCCTGGAACTCACTTTGT




AGACCAGGCTGGTCTTGAACTCAGAAAT




CTGCCTGCCTCTGCCTCCCAAGTGCTGG




GATTAAAGGCGTGCACCACCACCACCTG




GCTCTCTTCATTCTTTTTAAAACGATTTTT




GAAACCTTTTTAGTGAGGTCAACATTGTG




TACTCCAGTCCCACTCATCTTCCTGTCCC




TTCCCTCTTAGGCCTGCCTGTCTGGTAC




CTCACTCATGTTTGTGTATTCTCTGTGCT




GAGCCTCTTCTGTGCTTTCCCAGCACAT




GGCTGCTGGCTCCAGTCATTCCAGTC




CCTTGTGATGTGAGCCTAGTTCAG


149
IM000767
CTCTCATGGCATGGGTCTCAAGGTCCTG
p000854
R





CCATTTCTGCTCCATCTTTACCCCAGCAC




ATCCTGTAGACAGGACAAATTGTAGGCC




GGAGGTTTTGTGGCTGGGTTAGAGACCC




AGTTTCTCCACTGGAAGCCCTGCCCGGT




TACAGGAGGTGACCAGTTTCTGGCTCCA




TGTCCCCCATTGCTAGGAGTCTTAGCTG




GGGTCATTCTCACAGATTCCTGGGAGAT




TACTCTATTTTATCTCCTTGTTCAAAGTGT




TCCATCAGATATTAATTATTCTCAAGATT




CAATATTCTCAAATATTATTCTCAAGCTAT




GGACCCTTCAAATTACAGATAGATTTTAT




GAATGAAAAGTTGTGTGGTTTGAATATGT




AGTTGAGGGTGACTTTGAACTTCTGGTTT




TCCTGTGTCTACCTTCCAAGTGCTGGGG




TTACAGGTATGAGCCATCACGCCAGTTT




CTGTAGCACTGAGGCTCAAACACAGGGC




TTCTGTCTGCTAGGCAAGCACTCCACCT




ACCAAGCCAAATCCCCGGGCTTTACTGC




ATCTTTGTGTGTATATGTATGGTATGTGC




GTGTGTATGTTAGGATATATGTACCTGTG




T


150
IM000768
GATCAACACCTGAAAAGTCGCGCCGCCT
p000858
D





ATACACATCCCTAATTGAGAAGTATGTGG




AAGATTCCATCCGTGAAATTCAATTATCA




TGCAAGCCAAGTGGAAGCGCTTCCCTGG




GGAAGGAACCCAGCAGCCGCATCAAAA




CGACCCCACCTGTCTATTTTCATGTCAAA




AGAGTGAGAAGTCTGGGTGATGTAATAG




AGAGCATACATCAGCTTAATGAAAATTTC




CAGGGGTCCCTGCCTGTAATGGGAGTC




CCAT


151
IM000769
GATCACCACCAGGGTGTTGAGAAAAAAA
p000860
D





AAAAGCAAGTTAGTAGATGTTAG


152
IM000770
GATCTGACAAAACCTACCTGTTTTTGAAC
p000861
D





ACATGTGGGACAGCAGTCTGAGAGAATC




TATGAATAAAATTCCTTTCTGAGTCTGGC




ACATTGGTACAC


153
IM000771
GATCATTATACCCCAAATGGTACTGTATC
p000863
D





TATATATACCTCAAACATGTCATGTTAAA




GAAAATACTCTGTTGAACTAATTCACTTG




TTT


154
IM000772
GATCACAGGACTGAATCACATTTATGCC
p000864
D





AT


155
IM000773
GATCATTTATTTACTTGTTTTGGTGTTTCA
p000865
D





TGTTTGTGGCTCCTTATGTAGTCTAGATA




TTAACTTGAAGTCTGAAGTGGAACTACCA




AAGATTTTCTTCCATCCTCATCT


156
IM000774
GATCAACCGCAGATGAGGTCTATGCAGG
p000866
K
Myc




AAAAACGATGTCTGGAATTTTATTAAAAT




TGCTCAGC


157
IM000775
GATCATCATGTCAAACCTGACACGTGAC
p000867
D





GAGACAAATCTGTGTGCACAGAGGTGTG




ACATCCTAAAAGTACTAACAATACCGCTG




GGCAGGGACACACGCGGCAATTCCAGT




CCTGGTATCCATGGCTCAAGCTCTGCAC




GGAGAGCCCGGCACACGGCAGGAGGGA




GAGCCACAGGCTAAGGAGAGCTATGCTA




ACTAACATGGCACCCGTGTTAG


158
IM000776
GATCTGGCTTCCAAGGGCCTGTACTCAT
p000868
D





GTCTACAATGCTCCTACACAGATATAT


159
IM000777
GATCAGCCTTCCTCCAAAGCTACGTGCA
p000870
R





TAGAAGAGACCTCTGCTCTCACCTACTC




TCCTCTACAGTTCAGCCCATATGGCTTCA




CCTGCATCCCCTACACACAGACACACAG




ACACACACACACACACACACAAACACGC




ACACAGCACACACAACACACACAACACG




CACACTCACAACACAAACACACACAACA




CACACTCACAACACACTCACACACACAC




ACAACACACACACACAACACACACTCAC




AAACACACTAGTACACAAAGACTCCAAC




ACACACATTCCCATGCACTACTCCCTCA




GTATCCGCCGCATTTGTGTTCACACTCAT




CCACACTCTCACACATGTAGCACACACA




CATCATTCCTACACAGGCATGGACACAC




ACATGCTCCTATACAGGCATGCCCAGTA




CTCTCACATGCATGTTTGCACGTTCCCAA




ACAGGTTCCCACAAGGGTTTGGCAAAGT




ACATGCATCCTCACACGCTAATGCAAGC




CGTCACACCCCATACCACAAGCATGCAC


160
IM000778
GATCAGATGTGGAAATTAGAGAGAAGTT
p000871
R





TTTAACGGCTCATGCACATTTCTGAAAAC




TCTTTGCGAGGTATACTGGTAGATAAATG




AACATTGGTCAGACTCCTCTAGTTTAAAC




CACTCTCTTCCCCGCTATGGGGGGAGG




CGAGAGGCATTTCTAAAGCTTATATGTAG




TTGCAAAGTGTGTGTGGTGTGTGTGCAT




GTATGTGCATGTGGTGTGTGTGTGTGTG




CATGTGGTGTGTGTGCATGTATGTGCAT




GTGGTATGTGTGTGAGTGGTGTGTGTGC




ATGTGTGTGCATGTATGTGCACCGTGTT




GTGTGTGTATGTGTGCATGTGGTGTGTG




TGCATGTATGTGCATGTGGTGT


161
IM000779
CTAACATCTACTAACTTGCTTTTTTTTTTT
p000872
D





TCTCAACACCCTGGTGGTGATC


162
IM000780
GATCATAAGGACTGTTAGCAGGCAAAGG
p000874
D





CGCGTGCCCAATTAAAAGATGGCTTTCG




TTCCAAGAGGAATACTCTGGCAAAGTCC




CAAGCGCTTCGGAAGCCCCTCCCTTCGC




TCTCCCACCCCAGCTGATGCTCTGATT




ATCCTAA


163
IM000781
GATCAGGCTGGCCTTAAACTCAGGGAGA
p000875
B
Mm.8363




TTCATATGGCCCTGCCTTCAGGGTGCTG


5




G


164
IM000782
CTTTCTTTCTTTCTTTCTTTCTTTTTTTTC
p000876
R





TGAGACAGGGTTTCTCTGTATAGCCCTGG




CTGTCCTGGAATTCACTGTAGGCCAGGA




TGGCTCAGTCTGCTTTCTTATAGAACTCA




GGACCACCAGCCCAGAGATAACACCACT




CACAGTGGGCTGGTCCTCCCCACATTGA




TC


165
IM000783
GATCACACACTTCACTGTGGCTTGTCAA
p000877
D





CTGTGATTTGCTGATACAAGGGCTGTTTA




CAAGTCAGCTATAGCTCCGCATTGCAGC




TGCAAC


166
IM000784
GATCACTAATTGAGAAAATGCCCCACAG
p000878
A
CcT5




CTGGATTTCGTGGAGGTACTTCCCCAAC




TGAAGCTCCTCTCTGTGATAATTCCAT




CCTGTGTCAAGTTGACAGAAAACCAGCC




AGTACACAAGTCGACACAAAACTAGCCA




GTACACAAGTCAACACACAACGCGCACA




AGCTGAAGGCAAAGAGAACCAAGCATCT




ACCAGGCCTCAGTTGCTATGTCCACTTC




TGCAGCCACTCCAAAACACCTGTCAGAA




ATTCGGTTTGATAGAGAACTCACCGAGG




GATTTCCCTAACACCAGGTCAACCAGGG




CACCTCAAACCTGGAGGCACGACTGGCA




CAATACAACCTAA


167
IM000785
GATCACTTGATAAAGATGCTCTGAGCAG
p000879
B
Al615991




AGGCTCACAGGAACCCAGCCCTGTGTG




CTCCCCAGGAGCGAGATTCAGCAGTCAA




CAGTGCAGTGTTCACGTGACCGTGCGCA




GGCCATGAGCACTAC


168
IM000786
CTCCTTTTCAGCAAGCTCCTCACATCACA
p000881
B
MMU767




GGCCTTCTCTTGGGATGGCAGCCGCCTT


54




CTATCTGGAAAGTATGTGACAGCTCACA




CAATCCTGTAAGTCTTCCATGTAATCACA




TTCCACTGCCTCTCTCTGAACGTGCTCC




ATGCCAGGGCCATGTGGAGGGAGCAGC




AAGACTTGAGCTCAGCTAGTCTATGAAG




ATGGTGGCAGAACAGGCTCTGCTGCCTT




GATC


169
IM000787
GATCAAGAGTTCAAAGTCATCTTCAGCTA
p000882
B
Mm.1388




CAAATGAAGTTGGAGACCAATCCAGACC


09




CTCTCTCAGAAAAAAAGGAAAAAGGAGA




AAGCAAAAGGAAAGGAGGGGGAGACCG




AGAAAGAGAAGAGGGAAGGAAAGGGAA




GTCAACAGAACTGAAGGTCAGCCTGGGA




GGGTGAATGAGGCATTGTTGTCT


170
IM000788
GATCACCTCCACTTTATGGTGGACAGAG
p000883
R





GATGGCAGTAGTAACTGCCCCAAGGAAA




CAGAAACAACAACTACAACAACAACAAC




ACCTCCAAAAAGACCAAAGCAGTAAGCT




GTAGAACAAATGCAAAGAGCCAAAC


171
IM000789
GTTCCACCTATAAGGTTGCAGACCCCTT
p000884
R





TAGCTCCTTGGGTACTTTCTCTAGCTCCT




CCATTGGGGGCCCTGTGATC


172
IM000790
GATCACATGGACCGATTGCCGCGGGAC
p000885
K
Notch1




ATCGCACAGGAGCGTATGCACCACGATA




TCGTGCGGCTTTTGGATGAGTAGAACCT




GGTGCGCAGCCCACAGCTGCATGGCAC




TGCCCTGGGTGGCACACCCACTCTGTCT




CCCACACTCTGCTCGCCCAATGGCTACC




TGGGCAATCTCTAGTCTGCCACACAGGG




CAAGAAGGCCCGCAAGCCCAGCACCAA




AGGGCTGGCTTGTGGTAGCAAGGAAGC




TAAGGACCTCAAGGCACGGAGGAAGAA




GTCTCAGGATGGCAAGGGCTGCCTGTTG




GACAGCTCGAGCATGCTGTCGCCTGTG




GACTCCCTCGAGTCACCCCATGGCTACT




TGTCAGATGTGGNCTCGCCACCCCTTCT




TCCCTCTTCATTCCAG


173
IM000791
GATCATACGCAATGATTTCTTACCTTATG
p000886
C





TATAATTATGTTTAGAGGGAAAACTTTT




TTTTAAATTGAAGTTCATTTATTGTATGTA




ATTATTTCATAA


174
IM000792
GATCAGCATGGTCTACAGAGTAAGTTAC
p000887
R





AGGACAGCCAGGGCTCCGTGGAGAGAC




CCTTTGTCAGAAAACAAACAAACAAAAAA




TTAGAAAGAGACCCTCTCTCTGATTTGAC




CAATCACCCGTGTCAAATCTTGCCACAA




CCGAATCACCACCAAATTGCCAGACAAG




CGGCTATGCTGGGTTTCTGAGGTTGGAC




TCCTCAGGTAGCCCGTGTCTAGGCAGAA




TGATGCCAGCAGCTACACTTTTGAGAAC




AAGGTCAGGTCAGGACTTGCCGCCAAAC




CTAGGAATGCAGC


175
IM000793
GATCAGTCATGTCCTTTAGACGTTTACTT
p000888
D





TCATCCCAACTTGGAACATTTCAAGC


176
IM000794
TTACAAAGGCAGAAATATCAGAAAGAGC
p000890
D





CTGAAGTAGCAGCTGTTAACCTGTACCA




GGAACTGGCCGAAGTACACACGGGTTAA




CTCAGCCCTAATTATTCTCGGGAGATAC




AGTTGATTATCATACACATGTCAAAATGG




AAAATAAATGGGTAACTAAAAATTGAGGA




AAATAAGATTAACACTTAAACAACCTAGT




TCATTATGCCACGGTGATC


177
IM000795
GATCACAGTGGGACAGATTAAATGTTA
p000891
D



178
IM000796
AAACAAATACAAAGTGATAATTGTGTGAC
p000892
D





ATCTGAACTTGTCAATGAGATAGGTAATT




ATCTCTGGGCAATGGGTAAATGTGCTGG




CCAGCAAACCTCACAGCCAGAGTTCAAT




CTCCAGGAACTTAGGTGGGGAAGGAGAT




AACTGACTTCCAAATGCTCACCCCCAAAT




ATACAATTAAAATAAAAATCTTCCTTTTAT




GAGTAGCAACTGATC


179
IM000797
TACCCCTGGTCCTCCAACACTCCGATC
p000893
D



180
IM000798
GATCATGACATAGACTTGAGTCACTTCTC
p000894
D





TGCAGTTTGTCAATAAAAGCCCCTAAGG




GACAGTGTGGACTTTAGAGATAAC


181
IM000799
AATGCCAGCCATAGTGGCACACACTTTT
p000895
A





AATCCCAACACTCAGGAGAAGTTAAGTTT




CTCTTAGCTCAAGGCCAAGTAGCTTGGT




CTACTCCGTGAATTCCAGCCCAACTACA




TAGTAAAACTAGCCTTAAAAAAAAAGGCA




CAGGCAGAGGGAGATAACAAAAATGCCC




AACTCCTAGCTACAGTAACTGTAGGAATT




AAGATAGAATCTGTAGTTTGTTTATCATT




ATCGTGATGATC


182
IM000800
GATCATGGCTTGATTGTAACATTATCAAA
p000896
D





GCTTCCTTGGCACACTGCAGGGCTGTCT




TCGGGAAACTGCGTATTGTGCTCTTCAG




GTACAAAGCATAGAGCCCTTACATGACA




AACGCTGGGGTTAACTTCTTCTAGTTCC




CTCTGCCCCACTTGTGGCGCTTCCCACT




CATGACTTCTTCAGTGTGTATTCACTT


183
IM000801
GATCATGCTGAACTCTTGAAAGTATTCTA
p000897
D





GCAAAATGTGGCTTAAAAGAAAGAACAA




ACATTAACTAGGTATGCTTTGAAAAATTA




CCTGTGGTAAAATTTCCACAAGCATGAG




AAGTTGTTTCTTTTGTTGAACCTTCAGAC


184
IM000802
GATCATATATCAATTTTATTTTTAACTTTG
p000898
R





TTTGTTTGTTTGTTTGTTTGTTTGTTCGAG




ACAGGGTTTCTCTGTGTAGCCCTGG


185
IM000803
ATTGTGTATCCAGAGTGTGACAAGGTAT
p000899
D





ATATGGTTGTGTGATC


186
IM000804
GATCTTCTGTCTGGAAGAGTGCTTGCTG
p000900
R





GTTCCGACTACTTTTTTTTTTTTTTTTTT




TTTTTTNGCTTGGGTTTCANATTGGCTTC




AGGTTCTGGGCCCTCGTGGGTTGTGCTG




CANAGCCCCANACAATGTCTTGGG


187
IM000805
CAGGAAACCAGGGGAAATGGGACACAG
p000902
C





TGACATCTGAGTCCTTAGAAGAGGTCCC




ACAAAGGTCTATATGACCTAGCAACGTC




ACTTCTGAGTTATTTCTCAGACACAGTGG




ATGTTTGTCACAGCACACTGTAGGACAT




CCCAGAACAGCACCATGGGAGACCATG




GTTGGTGCAACAGAGAACATGCACACTG




AGACAGTACAAGAGTTCCCAAGCAAGCA




GACACAAACAATGGACTCAATACACATA




CAGTGGCAGATC


188
IM000806
GATCTGCTCACCAAAAATCTTGTCCTAG
p000903
D





GGAAGTTGAGTTTGAACTGCGTGCTTAC




GGCAAACACGCGGTGCCCAAATTTAAA


189
IM000807
ACAGTTCCCCCTGGAAATGGTCCCTGTA
p000904
D





CCAGAGGAGCAGATC


190
IM000808
CTGGGGCCCAGACTCCAATCCCGAAATA
p000905
B
Mm.2179




TCATTAGCTGCTGCGCACTTCTCCGAGG


8




AAGTTTACACCAGTACCCTAAGTTCAAGT




CTCAGAAGCCTCCAAATCCTCGTTGCAC




CCCTATATTTCACTTGGTCATCCGACTGT




AACTCACTCACCGACAAGACAAAGAATA




TCTTAGGCTCCGTCGTAAAAGAACGAGC




CCGGTTCACCGCAGCTCCTTTTATAGTC




TCCTTTGTGCGAGATC


191
IM000809
GATCTGAAGATATTTTGACAACAGCTAAA
p000906
D





AAAAAAAAAACCAAAAAAACCCCTTATT




ACTAACCAAGGGAAAATGCAAAAATAATT




AAAAGTTCCTCAATTTTAAGTAAATATCC




AAAAAGATTGGTTGTATAACAAAGTTGAA




GAGTCAAACAGTATGAATAA


192
IM000810
AGCTCATTGCCGTTAATTTTCCTCAGCCT
p000907
C





AATGAGAATCTAAGCCTTGATTTGTATGT




CCATAGCATCTAGATC


193
IM000811
CCTTGAACCTAGTTCAGGGAATAGGCCA
p000909
D





CCTGGGTGGGACTAGTGCTGGTTGGGG




ATGAAAAGACAGTTGGCTCAGGTGAACC




CTGCTCGCACCCTGGTCATCCTCTGAGA




CTGCTTTGATTGCTGACCCCAGTGCTCC




GCAAGAACTTGCGTTCTTGTTCTCTCCA




CTCAAGCCGGAAGAAATCTGAGGAGAG




GGTGTGAATCCTGAGCCAGGATGTCCAA




AACAACGGAGTTGAGCCAGAAGGACGTC




TAGTTGGGCAGAGTTAGCTCAGTCCCCT




GACCCCCAGTCCGTGCAAGCTCGAGGG




GTTATATAGTGATACAGATC


194
IM000812
GATCTCTTCTTATCTCTACCTTTTGGGGC
p000912
R





ACAATCTTATCTGGGGACACCACAGAGC




CCAAGAATTGTCCTGTATCAGAAATTTGG




ACCTTTTCTGTGGCTATCTGTAAACCCCA




CTGACTTAAAGTTTTAAGTAGAAAAGGAT




ATGCCTTATGTAGCATGGTAAGGTCTTTA




TGGCACAGGAGGATGTCATCCATGT


195
IM000813
CTTCCTTTCCTTTTTTGAAACAGGGTC
p000913
R





TCTGTGTAGCCCTGGCTGTCCTGGACCT




CAATCTGTAGACCAGGCTGGCCTCGAAC




TCAGAGATC


196
IM000814
GATCTGCTCCACTTTACACAGCTGACCA
p000914
D





TGAGACCATGTNCACATAG


197
IM000815
ACATGACATATCACCCTCATTCAGAGTTC
p000915
D





AGAGTCTTCAGAAAACTGGGCGCCTGAA




CCTGACCTTTTAAATTTTCGTCCATA




GTTTCTTCTGTTGAATGAATATTCATAA




AAGCTTCATAAATGCCTAGATC


198
IM000816
GATCTTCACAGCGCACCCAGGGATC
p000916
D



199
IM000817
CTTTTTCTTGGTATTTAGGGAGTCAGGAA
p000917
D





AAGAAAAACCATTGGGTTTTTACATTAGC




TTTCAGGTAGGGTTGTGGCTTTTGAGCA




ACAATAACGTATGACCTTGTGGTCGGTT




CTAGATC


200
IM000818
GATCTTCTTATATCTGGTTTCCTGGGCGG
p000919
D





TTCCTGGTAT


201
IM000819
GATCTCTGACAGGGTTTCAAAGAACTGT
p000920
C





TACTGATGTTTAGATTGCCTCTGAAGACA




TCACATATACTGTGCTACTCTGCCTTGTC




AGAGTCCCGGGCCCTGGGCACCCCAGA




CGGCAGCAGAGGAAGAGCGGGGTATCA




CTTTCTATACTTCGGTAAAGTCATTGGGA




TATGTGCCCT


202
IM000820
GATCTCCTCTATCATTTATCTTTCTTCCTT
p000921
D





CCTTCCATCTGTTTGTTT


203
IM000821
GATCTGCTCACCAAAAATCTTGTCCTAG
p000922
D





GGAAGTTGAGTTTGAACTGCGTGCTTAC




TGGCAAACACGCGGTGCCCAAATTTAAG




GAGTGCCTACGACTTCGCGGGCCAGCA




AGGTGAAACCGGAGCGCGCACGAGTGA




GCAGTGGCCAGGAGGCCTGGCCAAGAG




GCCAGGGTCCCTGAGCATGACCGAGAG




CTGGCGTGCTCTCTGTAACCCCCAATCA




GTTCACCTAATCTCGGGTCGAAACCTGA




GCCCTGCAGGAGGCGGGGCTGAGACTG




CATCCCAGCTCCTGGCCCGCTCCAGGG




GCGACCC


204
IM000822
CCAGGCATCTCCATTCTTAATCCAGATC
p000923
D



205
IM000823
CATAGACTCTTTCATTTAGAATAAAGTGT
p000925
D





TCCACCTAACATCCTGTAGGAAGTGATG




AAACTAAAAAGAAAAATAAACGCATTTTC




TCTTTCTCTCGTTACTTTTTCCATTCACTA




AACAAAATTGACTTTTTTTTTCCATGAGA




GTTCACACTGGGTCTGCCTCAGTAAGAG




TCACACTGTTCAGCCCACACACGCTGTG




ATATGTTATTTACTCATTCTCTTCTCAGG




AACCACTCTCACATGTGAACCCTGAATA




CCAGCTCCCTCCCTCTTCAGATC


206
IM000824
ATAGGTTCTGTCTCAAAACAAACAAAAAA
p000926
D





CCAAAACATGTCCACAGGGTCCAACAGA




CACAGTCTCCGCCACTCACAACTAATGG




GTACACTAATACACACCTCAGCCTTACAT




GGTTACAGAGAGAAGCAGGACCACAAG




GTAGGCAGGCACCTAACACTTGCTTCTT




GGAAGTTGGAGCACACACACACACACAG




AAACACACACACACTTTCTCACACTCACA




CACACATTCTCTCTCTCTCACACACACAC




CATGCACACATGGTCTTGTACAAGCTC




CTCCTGGGATGGGCACACACAGGGGTA




AGAGGACTCCAGATC


207
IM000825
GATCGAACACNCTNGGACTTGNTAAACG
p000928
D





NTTCCCACACNGACAGA


208
IM000826
GATCGTCTGGCCCGACCGCGCCTCAGT
p000930
D





AGATGGGTCCTGGTCTGAGCAGCCGG




GCTGGTGCGGGTGTCCTCACTAGGATAA




TGAATACAGCTCCACTACCTATACTACCC




AAGACGACCCCTCACACGCTCTGCGAG




GAAACCGGTCTTCGGAC


209
IM000827
GATCGACCGCAGATGAGGTCTATGCAGG
p000933
K
Myc




AAAAACGATGTCTGGAATTTTATTAAAAT




TGCTCAGC


210
IM000828
AGTAGACTGAGATTTGTGAGCGCTAAGA
p000934
D





TAAAGATGAGCAAAGCTTTGGCAGCTCT




TAGGTATCTGAGGGCCACCGTCCTCTAC




AAAGCAACGAGAGGCACGGCGGATTAG




GATAGACTGGTTGCATCCAAACACTACC




TTGCTGCCTCAAAGGCTTATTGGACACC




ACAGAAAGACCTCTGCTGGAGGCAGAAG




TCACAGGACTCCTCGTCACAGACGATC


211
IM000829
GATCGGCCTCCTCCAAAGCTACCTGCA
p000937
R





TAGAAGAGACCTCTGCTCTCACCTACTC




TCCTCTACAGTTCAGCCCATATGGCTTCA




CCTGCATCCCCTACACACACACACACAG




ACACACACACACACACACAAACACACAC




ACAACACACACAACACACACAACACACA




CTCACAACACAAACACACACAACACACA




CTCACAACACACTCACACACACACACAC




AACACACACACACACAACACACACTCAC




AAACACACTAGTACACAAAGACTCCAAC




ACACACATTCCCATGCACTACTCCCTCA




GTATCCGCCGCATTTGTGCTCACACTCA




TCCACACTCTCACACTTGTAGCACACAC




ACATCATTCCTACACAGGCATGGACACA




CATGCTCCTATACAGGCATGCCCAGTAC




TCTCACATGCATGTTTGCACGTTCCCAAA




CAGGTTCCCACAAGGGTTTGGCAAAGTA




CATGCATCCTCACACGCAAATGCAAGCC




GTCACACCCCATACCACAAGCATGCAC


212
IM000830
ACACCACATGCACATACATGCACACACA
p000938
B
Hs.17043




CCACATGCACACATACACACACAACACA


4




TGCACATACATGCATACACATGCACACA




CACCACTCACACACATACCACATGCACA




TACATGCACACACACCACATGCACACAC




ACACACACCACATGCACATACATGCACA




CACACCACACACACTTTGCAACTACATAT




AAGCTTTAGAAATGCCTCTCGCCTCCCC




CCATAGCGGGGAAGAGAGTGGTTTAAAC




TAGAGGAGTCTGACCAATGTTCATTTATC




TACCAGTATACCTCGCAAAGAGTTTTCAG




AAATGTGCATGAGCTGTTAAAAACTTCTC




TCTAATTTCCACATCCGATC


213
IM000831
GCTGGACCCCGGTGACAGACTGTGCAG
p000939
K
Pim1



ATGGATC


214
IM000832
TTAGCAAGTCCGAGCGTGTTCGATC
p000941
K
Nmyc


215
IM000833
ACTGCACACATTGCCGGTTGTCGATC
p000943
K
Notch1


216
IM000834
CAAGTGTAGACATTGCAGGAAAAAAATAT
p000944
B
AW32146




GGTGACAGTGAACAAAGCCCGTGAAGGT


8




GACAAAAGCCAGTTAAAGTAGGACAAGG




CAGAGCGAGGCCCATGACCGGGACCAG




GCCCAAGAAAATAAACGAAGGCCACGAT




C


217
IM000835
GTCGGAGGAGCTGGCTGGACCGGTACA
p000946
R





TGCCCTGGCCATCCAGGCGAAGACCCC




CGCCCAGTGGAGAGAAAACCCACAGTTG




GACATTAGTCCCCCCTGCCTAGGTGGGA




GCAAGAAAACTCGAGGGACCTCTTAATA




AATACCTGGATTGGGAGAACGATC


218
IM000836
GATCGCGGGGCTATCTATAGAGTCCCCG
p000950
D





GGATGTCTGAGAAATCAGCCCTAGAAAT




GACTAGAAAGAAAATCGAAGTATTCTTG




GCTCCTGGAGACTTCCGCAGCGAGAAGT




CACAGATTCAGGACACAGATTGACAGGA




GCTGCGGGCGCTGGTAG


219
IM000837
GATCCCAGGATTTGGGAGGCAGAGGCA
p000953
R





GTTGGCCCCA


220
IM000838
CAGGCTGGCCTCAAACCTGCAGAGATGC
p000954
K
Lck




TCCTGTCTCTGAGTGTTAGATTTTATAAA




GGGGTTCACGATC


221
IM000839
GTTGCTGGGCCCTAAGCGCCCACATTTC
p000955
D





ACAGCTCCGATGCTCATCAGCATGACTC




TCCTGAGCACATTATCTGGTGGTGGCTG




ACACTCTCTTCAGTACCCCCCCCCCTCC




CAAAAAAGAAAAAAGAAAAAAAGGACTG




GTTGCTAAAAGAAGTAAAAGTCAAGTCAT




CAAAAACAATGTAATATCCTGTGTGAAAG




TCACGAAGCCTTGCGGTGAGTCCCTC




GATC


222
IM000840
GATCGGCCGGCTGTCCAGCGACCGGAG
p000956
D





AAAGGAGAGCACTCGAATCGCAGAAGCT




ATCAGGTGAGTCCGACCTCTCTCTGAAT




GAACGCTTTGGGGAGCCTGCCAACGGT




GACCAAATTTAGCCAGTTAAAAGTACAG




GCTGCCCAGCTGTAAACGTACATCAAAC




AATGTGCGATTTTATTTTTAGTGTGAA


223
IM000841
ATAGTAACACTTGGGAGGAGCCATTCCC
p000957
D





AGTGAGGCTCGTATAGCATAGCCCTGTC




CAATAGAGCCTCTGTTGCACTCTGTGTA




CACTTAGCTCCTTGCTTAGGGATTTTTTT




TACATGGGTGACTACAGCACCCCAATTT




CACATTGGACAGACTCCAGGACACCCCT




CGGTGTCCTGTGACGCATACAACAGCCC




CCCACGGGGCTGCACCGAAAACGCCAC




AGTACTGAGGCTGCACCTCACTCACTCA




CACACACCTCTATGGCTCAACGTCCTGG




AGAAAAGGCTGCGACAGATTCCCACATC




TGGGAATGCAGTGAAAAAGCACTCACAC




TGGGGGTGGGGTGGGGCTGGGGGGGC




ACCCTGTCTTCCCGTCTTCCCATGACCC




TCTTCCCTTCCAGGAGACCATAGCCAGA




GCTGACAGGAGATTCAGTCGCAGCTGCA




CACGCTGCTGCCTTGCCGATC


224
IM000842
GATCGGGCAGGACACACATTGGGGAGG
p000959
D





CCCATCAAGCCCGAGCCTGCCTTGTGAG




CCCCCGGATTGGCAGGGCAGAGAGGAA




AGCTGCTGCGTGCTTTATAGACTTTGGG




GAAGTCACAGGCTCCGCTTGCTTGGGG




GAGGCAGGAAACCCCCTCCACCTAGGC




GTCTGCCAGAGCACCCGCAGGCTTCCTC




TTGTCTCTGTCCCCCTCCCCAGCACCTC




TTCCCCTGAACAGCTTCCCTCTCCTGGC




CCTGCTGTCCCTTTAAAGGAACTTGAATC




AGAGTTGAGAATGATGGTGACTCAGGGT




GGAAGGGGTGGTCACTTG


225
IM000843
CCAGGGCTACACAGAGAAACCCTGTCTC
p000960
R





GAACAAACAAACAAACAAACAAACAAACA




AACAAAGTTAAAAATAAAATTGATATACG




ATC


226
IM000844
GATCCAGGACATGGCAGAATATGGTCAT
p000976
D





CTTCTTTGCTTGCATGTCACACGAATGG




CCTCTGGCTCCACCCCTGATTGCTTGCT




CCCCTTGGAAGCCTCTTGAGCCTAGCTA




ACTTTTCCTGTTCACCTTTGTATTATGTG




CTCCCACCATGGCCCACCAGGCTCTGCT




TGCAGCACTGCAGCCTGCAGCTCCAGC




GGCCTTTACATGGCTCCTGTAAACAAGT




CCCAGAGGCCTCAGTGTCATCATTTCAG




CAACCGCCTCACTTCTTGGTGCCGCCTT




CCTTTATTACTTTCATATTTCTGTGACCG




AAATACCCCCAAAGAAGCTACTCAAGGA




AAGCAGTATGTGTGGGCTCACCATTAGA




GGTCAGTCCCCTGCAGCAGTGGAAGCAT




GTGCTGGTGACGC


227
IM000845
GATCGCTACTTTTTCAGAGACGCCTTCAT
p000983
C





TAAGGGGAGAATGGAAAGATGCTGGTTG




ACTTGAAAGATTTCTCTCTGATTTGTTTTA




CAGGAAGTGCATTCTGTACACATGAGAG




ACTCCGGGTGGAGAGGCATTGTGGCGG




TTGAGATGCACCTGGGAGTGCCAACTGC




CCCCGCTTCTACCACAGCTCTGCATAGC




AGGCTGGAGCAAGCAGCCAGCCAACCA




TTGTGCCCTAGCCTCATCTCCTCCAGAA




GAGGTTATCTGGGCTCTGTGTAACCTCT




GCTCTTTGGCTATGGTATTCCTTCTTGGT




GCTTTCTGTGGTCAACCTCCAGGTACAC




TTAGGGCCTATCCTAGACAGACTGGGAA




GAAAGTATGACATTCCCATTGACCTCTGT




TTTTATTTCCTGGAAATCCAGACCTTGTT




CCAGTTAGTGGAGCATGGGGTTAGACCA




ACCACACTGCTAAGAGTTTTGGCCTGTA




GACATATCTGG


228
IM000846
TAGCAAGGTAAGTACTTGTCTCAATTTCC
p000988
D





AGGTAGTATAGAAGAAACATATATGTTAC




AGCTTTAACACCAGAACTATCACACAGT




GTTGTATTTTAGCTAAAATATGACTCTGT




GGTTTTCAAATGGCATAGTTGTGGACAA




CTTAATTAAGCACGCTCTTATAAGACGTG




ATAGAGTATGTGCCATCCAGATACTAAG




AACTGTGTCCAAAGAGCTTGGGACACAC




ACTAAGGGGCCTGCCTCTTTCATAACGG




GGATGAAAATGACTGAGGCTTCACATTT




GCACAGTACGATC


229
IM000847
AAGCCATCTGGGTCTCAAGTTGCTAAAA
p000991
D





CTTAATAACTCCCTCCCTGTGTTTGTCCT




TTATCTAATGGTAAAATATGACCTAATGA




AATAGGTTCCTAAGGCTTTCATATAAGGC




ATGATGTTGAAGGATGGAGGACAGAGTG




GGATGGAAAATCAGAGCCTGCACAGAAA




ACCACAAGCAGCTAACAAAAGTCCACAA




CCAAAGCCTGTGCCTGAAATGTCACCTA




CAATGCAGTGGACTATTCATATGCCAGC




CTGGTCCTCATGCGATC


230
IM000848
CCAAGAACAGAGCCCCAAACTAATAGG
p000992
R





ATGGTTTGTTGCACGTGTACATGTGTATG




CATGCGTGCATATACGTGTGTGTGTGTG




TCTGTGTGTGTACACCCACACGTGTGCA




TGTGTGTTGTGTGTTTTTTAAGCAAACCT




CAGTGTGTCATACATACTCTCCTATACTT




CCCCTCCCTTGTTCCATATGAGGGTGCC




TTCTTATCTCACAGGGTTGTTTTGTTTTTT




TTCTATAACAGAATGCCGCTGATGCTCTT




TTTTCTATATGAACCCTACATTTAATACTT




ATCCATAAGCAAAGGAACAGTATCTTATC




TTGCGGATC


231
IM000849
CTGGGGGCTCTGCTACGCGTCAAACGC
p000993
A
Saas




CTGGAGAACCCCTCGCCCCAGGCGCCG




GCACGCCGCCTCCTGCCTCCCTGAGCG




GTGCTGCATCCTGCACGCCCTGGAACCC




AGGAGCGCCCCAGCGACCCTGACTCCC




TGCCAGCACGTCCAAGGCTGCTTACCCC




AGCAACCTCCCATCCCCTGAGCCCTCAG




TAAATGCCATCTGTAGCAGCTGTTTGTCT




GAGCGCCCTGTACTAGGGGGCCGGTGG




GCTGGGTGACTATGATAATGGAATAGTG




GCTGTCCTACTGAGGACAGCACAGTACT




GTTTGGGACCTGTACTGGTAAGGAATAC




ATGCCTGCTTCCTCTGGACTTTGCGGGT




CTCACCGGGTGCCTGGGCTACCCTTCTA




GGCTTCACTGAGGCGGGTTCCCTGGGA




GGCTCTGAGGTTACTTTCAGCGTCTGCC




GGGGTCCACAGCACTTAGCCAAGGGG




CTATGGATTCACTCGTGGTCTGCCAGGA




CCAGGCTTGTTGTGAGGGCCCCAGGTG




GATC


232
IM000850
GTGTTTCTTTTCTCTTTTTTCTTTTTTCT
p000994
R





TTCTTTTCTTETCTTTTTTTTTAAATCTAA




GTAAGGTGCAACAATGTAATTCGAAGGG




GCAGTGTCTTCCCTTCCTGTAGTCTCTG




CTTAATTCCTGAAGTTTGCCAAACCAGGA




GTTAGGAAAAGTTGGAAACCTGCAGAGA




GAGCGTTTGAGAGGTTTGAGATGTTATA




CGAGAGGGTTTGGCAATGTGTGGAGTAC




AGGTAACTTGCGGTTATTGTTTTCTTGGC




CCTCTATCTTCATCCTTTGTGCTTGCTAT




TTACCTTGCTGTCGGATC


233
IM000851
GATCCTTGAGTCTGTACTTAGCCTGAGA
p000995
D





GCGCTATAACACTATATACAAAGTACCGA




CTAGAAACTCCACACACATTTGTTGACTG




ACTTAATGTGTAGCCCTGCAATGGTTGA




CAGTTGGGGGTCAGGGGGCTCTTGCAC




GAGGGTAGTGTATAGCCTAAAGAGATA




TCAAGATGATAAGTACATCCACACTAG




GACAGGAGCTTTAACAAGAGCTTTTAGT




GAAGGGAACTTTCTGGGAGCCTCAAGGA




AGGCATAT


234
IM000852
AGCAACACCTCATGTGGGAATTCATACA
p000996
D





TTGTAGGTAATCAGTCTACTAGCTGAACT




ATATCTCCAACCCAGGAGGTCAGGTTTG




TTTGTTTGTTTAACAATCTAGTTTTGAAAC




AGTCATATCCTAGGCTGGCCTCAAGTTA




TGTAGTCAAAGATGGCCTTAAAAGATGA




CTCTTGGTTATTTTCCAAGTGCTGGGATT




ATAGATATGCACACCACCACACCTCATTT




GTCTCGGGGCTGGACTCAAATCCAGAGC




TTCATGCATGTGAGGCAAGCACTGTACC




AACTCGACTTTTGCATACTCCATTGAAAG




TCATTTTTATAACAGGATC


235
IM000853
CTACTTATCTATCATCTATATGTCTATCAT
p000997
R





CTATCTATCTATCTATCTATCTATCTATCT




ATCTATCTATCATCTATCATCTATCATCTA




TCATCAATCATCTATCTAGCATCTATCTT




CCAGAGCTCATGTTGTGGCTTGGGCTTC




TCATTTCACCATCATCGAAGGTAGTTGCA




TTTTTTCTATTGGCTTCTTAGAAGCAGGA




GGCACATGAAACAACTTGCTAACCCTTT




CCTGGTCTTTTGTTGTTGTTGGTGGTGG




TGGTGGTGATGGTGGTGCTGGTGGTGG




TGGTTGATGTGCACAGGAGACCTGTCCG




GTATGGAGATATGGAGAGCGTCTACGTC




CTCATGGGATC


236
IM000854
GTGGGACGCGGAGGGTGGAGATGAATT
p000998
R





GAGAAGCAGTTGTCGATTTCCTCCTTCTT




CCAAACATCAAAGGCAGCGGTGGATGAC




AAACTGAAGGACAGAGGGTTTGATGATG




CAAGAGGAGCCAGCAGCAACCAAGGCC




AGCCTCTTGCGGGTGTGGGCAGGGCCT




TCTTTACAATGAGTTCACACACACACACA




CACACACAGAGAGAGAGAGAGAGAGAG




GAGAGAGAGAGAGAGAGAGAGAGAGA




GAGACTGCTCTTTCAGAACAGCCCTAGG




AGGTTAGCTTCAGACTAAGACAGGAGAC




AGAGAGTCCTTGATTTTGCCAAGGTTGC




ACAGCTGGGGAGAAACCCAGCTATGGCT




TCACCTTGGCCCTTGTTAGGACTCCTTC




CTAGTCCGGTTGCAGTCTCCTGGATC


237
IM000855
GTATTAGAGGCCAGGCCATTCAGAAGAT
p000999
C





GTGGCAAGATTGTCATGTGGAAAATATTT




GAAACCATTGTAACCTAGTCATTCCATCA




TCAATAATAATAATAATAATAATACTACTA




AAATGAAAAAACCTAGATATTTTGAGACT




GTACTGCTGTATTTTAAGAAATACACGGA




AATTTAGCACTGAAATTTAGTGCTAGTTT




TAAGAATACTTTGTACCGTTACTTGGACC




CACAATTGCTTAGAGCAAGGGATC


238
IM000856
GATCCTGAGACAGTACAGGAACTTTAGAA
p001000
D





GCCCTGGGCAATTTGCAGTGTGCACACC




CAGCCTGAATTTGCCTGGTTCTCACCAG




CCTACCAATAGAGCATTGTAGTGGCAGG




GATGTCTGCTGGTGTCTCGCAGACAACT




TTTGAGGTCCTGCTTCTCCAGAAGTGTG




CAGCTGGCAATTAGCAGCCTGGTCTTTT




CCTGTCCCCAAGACCAGTGCTTCCACCA




ACCTGGTCTCTTCCCACAGCCCAGCCCT




TTCTCTTCCTCTTTGACACCCACTTCCTC




TAAATGGTGGTCACATGCTTTGTCTCTTG




AAAAAAAGTTGTATGAGTCAGGGTATTTT




CAACGCCGGGACAGAAAAATTGACTCAA




CCTGGCTTTTTCAATTAACCACTAATGGG




TTTCACTTACAGTCCTGACAAATACCAGG




CACAATTCATCCAGGACAATAGTGAAGA




ATTTCATCTCTTCCCCCCAAGCCAGTCA




GTCTGGTTTTAATATGCACGGTGGATAG




CCCATAGCATGCAATGAACTGTGAGCAC




CCCTCTGGGAGTCAGCAGAGACACACAC




ACAGGCACCCATACCACACACTGTGCTT




TGTATCA


239
IM000857
GATCAAAACAATATTCAAATAATGACATC
p001001
C





AGTCAAAGTATGATTTGATGGCCATCACT




CATGTCAATAGGCAACACATAAGCCTGA




GAGTAAGTTAAGGAGAAATTCAGCAATA




AACTAATTGACATACTATGTCCACTATGA




GTAAAACCTGCCTCTCTTAAAACGTTTTA




CTGTACTCCATGGCTCTCCCCCAATGTG




CGTTCGTGAGAGTCCCCACCCCTGTGAC




TCCATCTGTGTGTGGGTTCAGGAGAGAC




TCCTGTGTGTATTCAAAAGAGCCCCCCA




TGTGTGTACACACAAGAGACCCAGTGTG




TGTACATGAGAGGCCCCACCCCATGTGT




GTTCATGAGAGACCCAACCCCTGTGCGT




GTACATGACTCTCCCCATGTGTGTTCATA




AGAGACTTGTGTGTATGGGAGACTCCAC




CCTGTGTGTGTACATGAGAGACTCCTGC




CTCTCCTGTGTATATGGAATACCTTCAGA




GTATCAAATATTTCACCCACTGAGCCAT




CTTAGAACTTCTCTCCCTT


240
IM000858
ATACATATGTACACACACACTCACAAACA
p001005
C





CACATATATACACATACATACATACTCAC




ACATATATATACACACTAGTACACACATA




CGCAAATACACACATGCATATACACGTA




CTCACACATACATACCCATACTCACACAA




ACACATATATACACACATACTCACATATA




CATTCATACATACACACACATATATACAT




ACACACACTTGCATACACACAGCACACA




CTCACACACAGAGACACACAGACACACA




GACACACACACAGAGGAACCCAAAGGAT




TGGAAGAATAATTTCCTGTGCTCAGTGG




GAAAGTTTACCAGAAAGACAAGTGGTCA




TGTGGGATGATC


241
IM000859
GATCAGGGACCCTGTACCCTCCCCCGTG
p001006
C





CAGCCTGTGATTC


242
IM000860
GGACTGTAACCAACTCGGAGAGGAAAG
p001007
D





GGCTTATTTCATTTTAGTCTTTACAGTCC




ATCATTGACGGAGGTTAAAGCAGGACGC




TGCTTACTGACTTAGCTCCCCGTTGCTTT




ATCAGCTACTTTCTTAATACAACGCCACC




CCCGCGGCCGCCACCTCCCTAGGCAAG




ACCCACAGGTCAATCCAACAGAGAGGAT




TCCTCAAGTGACACTCCTATGTCAACGC




TATCAATGGCAAAGGTATATTGAGCTAAG




AATTGATC


243
IM000861
GATCTCAGGCTGCCCGTGGGCGGGGCT
p001009
B
Mm.7675




GACGGAGGGAAGCAGACTAGGCCTCTA


3




CCATATCCGTGGGAGGGACTTCCAAGGA




CCGAGACTGAAGAAACAGCGCGAAACA




GGAGACACTGGGAGGAGAGGCGGAGAC




CGACACTTAGTAG


244
IM000862
AGAGAAAAAGACTATCTTGACCTTTGGATA
p001011
R





TGCGGGTGCAAAAATGAGAAGACCACAG




TGCAGCTGTGTGCCCTGCACGGGGCAG




CGAGAGGAGAAAGAAGCATTTTACATGA




AGCACAGAACACGCCTGACAGTTCTCAA




CAGCAGCACGTCAGACCACCGCAGCAC




TGCTCGTTTTTCTCAGCAGACCCCCAGG




AAGCACCACCCAGGATGGACATGTAGG




GGTGCATCCGAGAGAATCAAAATCACAC




AGGGGCCATCCTTTTGGTTCGGCATGAA




TGATGGGGGCCGCCTGCACTGGCCTCC




ACCTTCTATGGTTGTTCTTCCTTGTATCA




ATGTTTCAAAAAAAATCCTTGGGCTCACA




ACTGCCTAATGACATCTTCAGGAGTCAA




GTCAAGAAAGAGAAAAGTAGCCGACCTG




GCACGTGGTAGATAAGACTCAAGGGTGC




AATAAGCAGATGAACTGGCTTAGTTGGG




CTTTCTATTGCTGTGATAAAACACCATGA




CCAAAGCAACTGGGGCGGGGGGCGGG




GGGTGTCATCTTACACTTCCATATCACAG




TCTATCACTGAGGAAGTCAGGGCAGGAT




TCAGGCAGGAACC


245
IM000863
GATCGGCCAACACAGGATAGATACCACA
p001013
D





CAGGATAGGAGGTACAGTGTCTGGAAGA




TTATTATCGAGCCCCTGAACGTAGTAGA




AGCTGGCTGTCGTTCCAGTGCAAGCTGA




GCAGATGGTCC


246
IM000864
GATCCACATGAAAGCCAAGCTGCACATT
p001015
R





TGCTTCATATGTATGGAGAGGCCTAGGT




CTAGCCCATGTATGTTCTTTGGTTGGTG




GTTCAGACTCTAAGAGTCCCAAGGGTCC




AGGTTAGTTGACTTTGTTGGTCTTCCTGT




GAAGTTCCTATTCCCTTTGGTGCCGTCA




ATCCTTCCTCCTATTCTTCAATAAGAGCC




CGCAAGCTCCATCCACTGTTTGCTTGTG




GGTATCTGTAA


247
IM000865
GCCTCAGCTACATAGTCAATTGCCATCTA
p001018
D





GCCTGGGTATGCGAGATGGCAGTAAAGA




CACTAGCTGCAAAGCCTTACTGCCTGAG




TTTGATC


248
IM000866
GATCCAGTCACAGGAGAGCAACTGGGG
p001019
D





GAGGGAGCAGGACAGTAGCACACCATA




GCCCTTTCAGGGGGCCGGGGGCGAGG




GGTGGACAAGAGAAGACAGATTATGACT




CACAGGATGAAGAAGCCTCCCACAGCCC




CTCCCTGAACTGGCCATCTGTTCTGGGG




CCCCAGAGCAGGCGAGTACCGTGAAGC




TTGGGGACTAGCAGCCGGACCACTGAA




CAAGGTCAACCAGCCAGTTGTCCCACGA




GGGGAGAAGCTACCATTGAACTGTCACT




TTGGAAAGTAGCCAGAGCCCATCCCTGG




TCACCACCCAAC


249
IM000867
GATCCCTAGAGCTGCTGGTCAGCTGGCC
p001020
R





TGGCTGAAACTACTTCTGTGCAGTGAGA




GACCCTGCCTCAAAACACAGATAATGGA




GACAGATAAATGACATCGTCCGCTGTGT




CTGCGTGTGTATATGTAACACAACACAC




AGTATACACACATACACACCACACTCATA




CCGTCACACATGCACTCTCAGTGCATGT




GCTACACAACACAGTGTACACACATACA




TACACACCACACACATACACATACCACC




ACACACGCGCACACACACACATAA


250
IM000868
GATCCTTGTGCATCACTGAGCCATCTCC
p001021
R





CCAGCCTACAGTGTAAGTATTCTATACAT




ATTAATTTAATCCTGCCGGGTGGTGGTG




GCGCACGCCCTTAATCCCAGCACTCAGG




AGGCAGAGGAAGGTAAATTTCTGAGTTT




GAGGCCAGCCTGGTCTACAGAGTGAGTT




CCAGGACAGCCAGAGCTACACAGAGAAA




CCCTGTCTCAAAAAACCAAAAAAACAAAA




CAAAACAAAACAAAACAAAAATCCTATGG




GTATTCTAAAAGTAAAACCGTATCATTA




GCACTGCCAAATAACAGAAAGGAAGACC




GCAAA


251
IM000869
GATCCTCTGAAAATGGAGTTACAGATGG
p001022
R





TTGTGAGCTGCCATGTGAGTGCTGGGAA




CTGAACTCGGGACCTTTGGAAGAGCTGC




TGGTGCTCTTAACAGCTGAGGTGTCTCT




CCAGCCCCTTTGGGTGTGTTTTGTTTTGT




TTGTTTTGTTTTGCTTTTTCAAGACAGGG




TTTCTCTGTGTAGCCCTGGCTGTCCTGG




AACTCACTCTGTTAGACCAGGCTGGCCT




CGAACTCAGAAATCTGCTTCCCAAGTGC




TGGGATTATAGGCGTGCGCAACCACTGC




C


252
IM000870
GATCCAATATATTCATATGGAGATACATG
p001023
D





TATATACATAA


253
IM000871
GATCCAGGTCCTTTCCCCCTTATGGTCC
p001024
D





TATACACCCCTGGGTACTTAGAGGCTTT




CAGCTCTGACTGGTGGTGTGGGGAGAA




GTGAGGGGTTACACATGTGACACAGGTC




CTAAAAGCTGTCGCCATTGGCACATGAC




CATCCTAAGTCTGTGGCAGAAGGCTGCT




CAGAGCCTCTGTCCAGGAACAACCCAAC




ACATTGCAGAAATAACTGTGCATCTGGG




CAATGGGGCAACTACTACCTGTCCATCC




AGATAGCTCTTCTAGAGGCATTCGAAATA




ACACGTAAAGTGGGGTGGTGATGAACAC




ATATAATCTCAGCCCCTGGGAACCGGAG




ACAGGGGAGTCACAAG


254
IM000872
GTCACAGTACTTGCTCACTTGCCTCTCTC
p001026
D





ATGGTTTACTCGCCCCTCCTTCTCGTAC




CCCCTTTCCTCCTACAATCCTCCTCGTCT




ACTTTCATGCCGTATATGTCAAACACCGT




CATATATAACAATGTATGCATGCAGCATT




TCTTTTTCTTTCCCATCAGCCTCCCTTGC




TCCCCATCCTCCCGCCCTTCCTCCTTCC




TCCCAGGATC


255
IM000873
AGTTATGCTTGCAGACAGGAATGTAGCA
p001027
R





TGGCTATCCTCTGAGAGGTTCCACCCAG




CAGCTGACTCAGACAGATACAGATACCC




ACAAGCAAACAGTGGATGGAGCTTGCGG




GCTCTTATTGAAGAATAGGAGGAAGGAT




TGACGGCACCAAAGGGAATAGGAACTTC




ACAGGAAGACCAACAAAGTCAACTAACC




TGGACCCTTGGGACTCTTAGAGTCTGAA




CCACCAACCAAAGAACATACATGGGCTA




GACCTAGGCCTCTCCATACATATGAAGC




AAATGTGCAGCTTGGTTTTCATGTGGATC


256
IM000874
GATCGTGGTCTCTTCTCTTTTTTCCCTCT
p001028
R





ACTTCTTCTTCTTCTTCTTCTTCTTCTTC




TTCTTCTTCTACTGTCTTCTTCTTCTTCT




TCTTCTTCTTCTTCTTCTTCTCTTCCTCTC




TCTCTCTGTCTTTCTCTGTCTGTCTGTCT




CTGNCTCTCTGTCTCTCTCTATCTCTGTC




TTTCTCTGTCTCTCTGTCTCTGTCTCTCT




TTCTCTGNGNCTCTCCCTGTCTGTCTGT




CTCTCTCTTTCTCTCTCTGTCTCTCTCTC




TCTGNCTCTCTNTCTCTGNCTCTCTCTGN




CNCTCTGNCTCTGTCTCTGTCTNTGTNTN




TCTCTCGCTCTCTNACACACACACAGAT




GTACATGCAC


257
IM000875
GATCGGCGGTATCATATTTTATGTGTTTT
p001029
C





TTTCTGTGTCAGTAAGTTTAAAAGGCCT




CAGATTGGAAGTCTGGTTTGCATGGAAT




GCATATGAGCTTTTTCATCTTATTGCCCA




ACAGATTTAGTCTAAGAACCACCTCTATT




ATATAGGGTATGATAAGTAATATAGGTAA




GGGAATGCATCCCATTTGATAAGTGAAA




GTTGAACACACATAGAGTTGGCTCACCC




CGGGGTCTAGGCTCTAATCCCCTGGGG




ATACCCAGGCCTACTAAACGCTATAGCA




ACAGGCATTGGGGCATGAAGATACTTTT




TGTTGTTTGTCTTGAATTTATATAGGGGC




TTATATCTCATTACAATTAATCATGAGTTG




CAGTCAATAAATCTTCATTGCTCAACATA




TTTGTACCCTCAAATATTTTTTTCTTTTTT




TGTGTGATAT


258
IM000876
CTTGTAAACACGATTATTTTAAAGATATA
p001031
D





AATGGCTCTTTACTCTGTTTAAAAATTGT




TTCTTTACCAGTTCTTCGTGTACATTGGT




CTCCATTTCACATGAAATAAAATATTTTGT




TTAATGTTAGATTTTCAATACCAGCTGAG




TGTTCGATGTGTGCCTTTTGGACATATAT




GTTGTAAAGTGGTCATTTGGGATC


259
IM000877
GATCAGATTCAACTCCCGCATTTCTAGC
p001032
D





CCCAGCATCGTGGAAGGGCTACTGTGTC




TTTTCAAGCACTATGGTGGATACACATAA




TGCCAGCTTCCCTCATTACTGGTGATGT




GAGCTGTTTGCCTAAGGTCCTCTGCC




AGGCTTCTCTGCTGCCAAGGCTCTGAAT




TTCCCTTTGTAGCTAATGCGTAGCCCTAT




TGGCAGACTCTTCCCGTGGCTGACTTCT




GCCTCCCGTCACACAGCAGTACCTTGTT




TGTTCTCACCTTGATGTTTCTTATATGCA




TTGATGATGGTGAACAGCCCAGCAAGTG




CGCCTGTTTCTTCCCTTCCTCCCACTTTT




GTTCTCAGTTGTACATGGCAAGGAAAAC




CAATTCCTTCTCATATTTCTCCCAGAA




AAAAAATCCTCTTTATAAGAGTTCACATC




CTTGAGCACACATGATAGGAGCTGGTAG




CCAG


260
IM000878
GATCATGATATTGTACTGCTGAAGACAAA
p001033
D





CATATTTAAGATATAAGACTTGGAGAAAT




CAAGETGGTATTGACATTGGAGATTAATC




TCTTTTGGCTAGCTTTTGTAGAGCTAGAA




GTTGGTATGTAAGCTATAAGGAAGAGAA




GTATTCATAAGACTTACCCAGTTGTCTCT




CCTGTAAGCTAAGACCAGCCTAAGAAGC




TAAAATTATCTTTAATGTAGAACCACAGA




GAAAGAAATTGTGGTATGAATTTTGCTTG




TTCGTGGACATTAACCATTAACTCAATGA




TAATCAAATGACAATACATAGAGACAAAG




ATATGCATACTAGTAAAATAGTGATAA


261
IM000879
GATCGTGCTAGAGAATGGTACACTTGGG
p001034
R





TTATATTAAGAAATCTTGGTTGAGTGGTG




GTGGCACCCTCCTTTAATTCCAGCACTC




AGGAGTCAAAGGCAGGCAGACATTTGAG




TTTAAGGCCTGCCTGGTCTACAAAGTGA




GTTCCAGGAAAGACAGGGCTATAAAGAG




AAATCTTGTCTTGAAAAAAACAAAAAAAC




AAAAAACGAAACAGTAACTGAAACCGAA




AAAAAAAAGAAAGAAAGAGAGTAAGAAA




GAAAATCTTACAATGTGGGAGCTGGAGA




GCTGGCTCAGTGGTTAAGAGCATTGGCT




GCTCTTCCAGAAGACCCAGGTTCAATTT




CTAGCACCCACATGGTGGGTCACACCTG




CCTGTGGCTTCAGTTCTAGAGTCTGA




CACTCACACACAAACATACATTCAAGT


262
IM000880
GATCETGTATTTCTTCTTGGCTTGTCTCC
p001035
B
Mm.1388




ATAGGAACAGGCAGCACAGCAGAGGTCT


34




GGGAGATGGCTCCGAGGGTAAGGGACC




AAGCAAGGTCACCTGCGCTCACTCCCTG




GAACCCACACAGTGGACAAGAGAGAAAG




ACTCTATGGCCTCCACGTGCGTGCGTGC




GTGCTGTGGTGTGCACGTGCCCCTCCC




CCAAATAAAGAAAACTTAACGAAAAATAA




TTAAAAGTAAAAAAACAGCACTGCAGTAG




CTCCAGGAATCAACTGGTCAATCAGTGT




ATCACATTTGACTATCCGATGATGGTTTT




ATTTTACATGTATGCACGTGTTTGCATGT




ATGTGGGTGCACATGTACAAACACATGT




GCCAAGGCCAAAGGACAACTTTGGGTGT




CCTTTCTCAGGAGTCATCGACCTTATTTT




CTGAGACAGGGCCTCTCACTGGAATCTG




ACTGGCCAGCAGCCTCCCAAGGATGCTC




CCCAACCTCAGAAGGATGCGCCTGTCTC




TGCCTCCCAGCCCCGGGGGTTACACTG




GTGGACCACTGGGCTCTTTTCACCTGGG




TG


263
IM000881
GATCTCTTCTTAAAATTACATTACAGTAG
p001036
D





AAAATGTTTATGAGGCCGTTTTTATCTCT




TATATTAWTATTACCACTCTCCTACCCC




CAGAGTCTTACAGGCATCAGGGAGTGGA




CAAAGGCCGGCGGTACTGAATGGTGAT




GTTATTTTTGAAATAATGAAAAG


264
IM000882
TACCTGTTGCTCCAACATGGTCAGAAAT
p001066
D





CAGTTTGTTTCAATTTTAAGATACAATGA




GAGTAACACCCTAAAGACTTCACATTTTA




TGCATATGCTACTCTGTGAGCACATGA




ACGCTTCTCCTTGGGCACGATC


265
IM000883
GATCGCAGATACTGCAGGTATGTAGTAA
p001067
D





TGAAGTCTGTAAACATACAGAATGGAGA




AGGCCAGAGAGGAAAGTGCAGGCATTG




GGTAGTCAGTAGGTAAAATAT


266
IM000884
GATCGCAGCTCTTCCTTGGTGCTTTTCC
p001069
B
Mm.2811




CCTCAGTTCAAGTGCTGTGGCGGGGAG


2




GACTACAGAGACTGGAGCAAAAACCAGT




ACCATGACTGCAGCGCCCCCGGGCCCC




TGGCCTGCGGGGTGCCCTACACCTGCT




GCATCAGGAACACGGTAACTGCATGGGT




GCTGGATGTGAGGGTCACCCAGTTTGCC




AAACACTGCCCTCACTCTGCCCAAGTGG




AGCAGGCAGTGGGAGTGGGTGGGACGT




GGTGGCCGGGGCTGAGCTTGCCTTAGA




CCAGGGGCCCTAGCAATGGGAGATGAG




TGGGCAGCTTCCTCTGGGAGTGTGTCAG




TGAGCGTGTGCGTGTGTGGGCCTGGCC




CAGGCGCTTTGGTTGTAGTTACTTGGTT




CTTACAACAGCTTTGGAGGGTCTCAATT




GGGGTAGTGTTGCTTTAGCCACTTAGGG




GGACTTGCCCAAGGTTGGCAGGGCTCTT




CCCAGCAACAGAGAGCCAGAGTGCCCG




GCAGGTGCAGCAGGCTCTACCCAGTCA




CTGGAGGCAGAGTACAGTGCAGGTGCT




GTGAGCACTGGCAGCAGAGCCCTGGGC




AGCGGCATGCGGTAATGTAAATG


267
IM000885
CCATGTCAGGTGATTAACCTGTGAGTCT
p001070
D





AACTTCCAGGAATGCAATGCCTCTGGCA




TCTACAGGCATAAACATACTTGTGGCTTA




CACTCAAACTGACACACCAACACATATGT




GCACGCGCACACACACACACACCAAATT




AAAAATAAAATAACCCTTTTTAAAAAAAAT




ATAGAACCTATAGATAATTGCTTTACTGC




ACTCACAAACATTTTAGGATC


268
IM000886
GGGGCACATAGTGAGTTCTAGGATAGCC
p001072
D





AGGGTTATAGAAGCTATAGTGTGAGACC




CTATCTCAAAAAAACAAAACAAAACAAAA




AAACAAAAAAAACCTAAGCCCGTGTGGT




GGTGTGTCTCAGTCTGAGCGCTTGGAAG




ACAGAGGGAGGTGCATCTCTGAGCTTGA




GGCTAGCCTGGTCTACATAGAGAGCTCC




AAACCAGTCAAAGTAACAAAATGAAACTG




TCTCAACAATGACAACAACAAACAAACAA




GCACTAGAATAAAAAGAAGCCAGCATGG




TGTCATGTGCCCGTCATCCTACCACTTG




GAAGGAGAGAAGCCAGTGCAGGAAAATT




AGGGATC


269
IM000887
GATCCCAGGCTTCCTGTAGGCTAGGCAA
p001075
D





GCCCTCTCCCCACCCTGTCCTGGTAGAA




TTCATCCCGAATGTCAGCATTCCTTCAGT




TAAAGGAATGTGCTCCCTCAGGCTCTCT




CCCATGGTGCATTGCTTCAGCACGCAGG




CAGACACTTGTCCAAGCTAGGCTCCCTG




TCTCCCATCTGTAGGAAATGCTTGGTAT




GAAGGCCCTGGTGGACCTGGCTAGATG




GGCAGCGCCCAGTGAAGGGCTGTGTCT




GGAGCCTGGGCTGTAATTAGTGGTGA




ACTGGGTGCTCTGGGGAGAGGCAAGTA




AGAATTTGCTTTCTGTTTTTAGAGCAGGA




GGAGCTGGCGGCTGGCTGTGCCTTAGC




CGGCTCCTCGAAGAGCATGAGGTGTT




CGCCATCTTAATGGGTTAAGACTCTCCT




GTGCTAATCTGGTGGGTTGCTTTTAGGC




ACGGTGGTCCCACTGTGGTTGTGTGAAC




AGTACCTTAATGCCAACACTTTGGAGGC




CTAAGGTATCCCCATCTGCAGGAACTGG




GGTGCACA


270
IM000888
GATCCTCACACAAATTGAGTAGTACTAAC
p001078
B
AA79335




AAGAGTGTGATTCACATAGTCAATAAAG


6




GTATAGGCCATCTGTGCCCTGGCTTGAC




CTCCGCAGACCAGAAGCTAACAAAACCA




AAACAGACTCAGTTTCTGCATGCTAACTT




AACCATGATTTTCCAGACTATTTCTTTTAT




CCTGTGAAAAATATATTAATCTCTATTCT




GCAGAGTATCCCTTCTTTAAGAGAACAT




GATTTCACTGTTTTTGACAATATGCCTAG




ACACAGAAAAAAATCATTTAGTTT


271
IM000889
TTTTGAGTGCTCAGTGAACTACTTAGGG
p001079
A
Edar




CAGCCTAAGGAATACAGTGACCCACCAG




GAAATGCCTTGTGTTTTGGCAGTCTGATA




GGATCACTCACAGCTGTCGGTCGTGACT




TCATTGGATC


272
IM000890
GATCCAGGGACAAAGAGCCCATTCTCCT
p001081
D





GTTCCTTCGTAT


273
IM000891
ACTTTCAGGCTAGCTCTTTGCTCAGTGA
p001082
R





ACCTGCTACCACACACAGACTCCTCCTC




CCTGTTCCCGTCGTTAAAAAAAGTTTTAT




TTGAGGTTTAGAGCAATGGCTCAGTGCT




CAAGACTACTTGCTGTTCTTACAAAGGAC




CTGGGGCTAGTTCCAACACCCACATGAT




GGCTTACAATTCTCCAGTCTCAGGGGTT




CCAGAACTCTTTTTCTGGCATTGAATGCA




CATGATGCATATATAGACAAGCAGGCAC




ACACACACACATAAAATAAAACAAATCTT




TTGAATGTAATTTTAAAAAGATTTATTAAT




TTTAATTTTATGTGTATGAATGTTTTGCCT




GCATGTATGTCTATGCACTGCATGTGTG




CCTGGTGCTCAAGGTGTCTGATAGCCTG




GTGCTGGGCTTGGTTCACTCAACAGCTG




GCCCTATGAAGGCCAGCCGTGAGGACA




CCTATCCATGCTGACAGACACAGATGCT




CAAATGAGACAGCCCCTTCTCTATGAAT




GCCCTCTTGAGAATGAACAACCTCCCTG




CAGCAGACCTCCTTCTGGATACCCTGCC




CTTCCATACTTTCTGGGTGTCTAGTTCTC




TTCC


274
IM000892
GATCACACGCTTCACCTAATTACAAATGA
p001083
D





TTCTTTAGAGGGGTCTGTATATAACAGA




GATGATAAAATTCAACGGCAGCCCTCCA




ACTGCATTGATATACAGGAAGTACTCATG




AAATTGGAGACACTGATTATCTCTTTGTG




TGGTGTCCACATATGTGCCATCATATCAT




ATTATTATTATTACATGGCTAAAAAATGG




GGTCATAGGTTTCATGACCAGAACCAAA




ATATCCCCTGTAATTTACACAGGATTGA




TGGTAAGAAATGAAAACAGTTTACATTTT




TGATAATTACTTACTTGACATAAAATGT




GACTTCATTTCCTTGCATTCCTTTTCAC




AGGTAAGGCTACGACAATAGATTCTCAG




TTCTCCACCTCTCTCTATCTTGTCTACTC




TATCAGCAGCAATAGCAACAGTTTTCCAT




GGTCCTTCCATCTGTAAAAGCAATAAAAA




TAACAAAGTAAACCATACAAACCATTAG




AATATGAGTTGGTATTCACAACTCTCCTC




TCAATACTTCATATTTAAAAATTACTAGA




TATTCATCAATAATATTTCATTTGTTAG




CTCTAGATAATGTTTCCAGG


275
IM000893
GATCATGGTTATTTTTGTAGGGTTTATTT
p001085
R





ATACATGTCTACATGAATTTATGTGCACC




AGATGTGTGCAGGTGCCCATAGAGGCCT




GCGAGGATGCCAGATACAGATAGTTATG




AGCCACCTAATATAGATGTTGGGAATTG




AACCCATGTACTCTGCAAGAGCAGCAAG




TACTCTTAACTACTGAGTCATCTGTTTAG




CCCTCCTGTTGGGATTTAATGGTCAGTG




TGAAATACTATGAAGATAGAAGGGTTTCC




TAGACTCTGGTGTGTAGGGGTGGGGTAT




CTGTGAGATGGGTAAGCTCTGTTGGCTT




TCTAAGAAGGAGAATGAGCAGAAGGCAC




ACATAGACATTCACACTTTCACACACATG




CATGCCAAACACCACACATGCACACCAC




ATACCACACGCGCCCTCCTGTTTCTTACT




ATGTAATAATGTTCTTGTAATAACTTAGTA




CTCTGCTAATGAAAAGGTCACCACTAACT




AGATGCTAGCCTTCAACTTTGGACCAGA




ACTATGAGCCCAAATAAACCTCTTGCATT




TATAATTTAGCCAGCATGTAGAACTGTGT




CAATAACAATGGAATAGTGTTG


276
IM000894
GATCATCTGGCTAAAATTTTATAATATGA
p001086
R





CTCTTTAAATTCCTTAAGAATTCACAAGG




ACCTTTATGTTGAAATTACTCATATGTAA




GCTTACTGGAATGAGATGGCTCCCCAGT




TGAAAACACCATTCTTAAAATACTCAGAA




AATAAGAACGAGGCCAGCCCGGTCTACA




AAGTGAGTTCCAGGACAACCAGAGCTAT




ACAGAGAAACCCTGTCTCAAAACAAAAA




CAAAAACAAAAACCTAAAAAAAAACAAAA




AAGAAAAAACAAAACAAAACAAAAAGAAT




GTAGATATAAAGAAAGAATAGTGTTTGCT




GGAAATAAATAGTAATATAAACTTAACAG




CAGCCTGTCAATTGCAGGGTTTTTGCAC




TTGCAGCTCAGAAAGAAGTGACCCTCCT




CAGGAAGTAG


277
IM000895
GTGGGTTGTGTGACTCAGAGAGCAAGCT
p001087
D





TCTACCTCCACAGGCAAGGATGCCTGTG




CACACAGAAATGAGATGAAGTCATATGT




GGGGACTGGAGTTGCAGTGGCTCCCAG




AAGGAGGTGTGCAGAGTTCAGGCTGGA




GTCCAGATGAGGAACATCAAATAGAGAG




GCCTTTGGAGGGAGTGGGTTCTCTTGAT




AAGTAGGACTGCCACCCATATCAAGTAT




AAGACTGCCAATCATACTGAATCTCAGG




TTATTTCCCATGTAGCATTGGGAACATAT




AGCATTTGTCACACTGCTATAGCAAAGAA




TCTGTGATGAGGTTGGGAGTGGAGGGG




AACGCCTTTGGTCCTAGAAAAAGAACCA




AAGGTAGGCTGATC


278
IM000896
CCTGCCCTTGCCAGACCCGACCGCAGC
p001088
R





TCATCGAGGAGGTACCCTCTAAAGTCGT




CACCTTGAGGAGACAAGCTCTGTCATAG




TGCTCGCAGCCCCGCGGCCCCTGCGCC




AGGTTGCGGACGCCATCTTCCCGCGCC




GTCGCCGCCATCTCCTCCTCCTCCTCCT




CCACCACCTCCCCCTCACCTGCCACTGA




ACCTTTCCCCCAGCTTGGAAGCCACGCC




TTAAGGAAGCAGAGTCGGTCGGACACCC




GCTCCTCCTCAGAGCAGCGGCCACCAG




AGTCAGGAAGGGGGGGTCCAATCACGT




GATC


279
IM000897
GCTCAATTAGTTTATTTAAATTCAAAACA
p001089
D





AAGCTAAAAGCCTGATGTGTCAGTTGCCT




TCAGCAGAGCTGTTTGGGGCCCATTGTT




ATGTTGTGAATTAAGTTCTGATGTAAGT




AACCAAGCCACTCCCCACACTCTTACTT




GCAAGAGTTCCAGGCAGATGTTAAGGTC




AACCCACCTGACTCTGATC


280
IM000898
GATCACAGTGTTTATCTCAGCAACAGAAA
p001091
C





GCAAATGAGGACACACCTGGGTCTCACT




GATATACTTGGTGATATGTGTAGTTATTA




TGTCTCACAGTAATTGGACAAGGAAGAG




AGTTCATTGTTTTAGAATGTTGTTACTGG




CATTGTTCTTCTCTCTCTTGTTTTCATAAA




ATCTCACAATATCTACAGCTGTGAGGTC




CAAGGGGCTCATTGGTGATACCCACTCT




TTCTACTTTGTGTGACCAACCTCTTTTGG




ATGTCAAGGGT


281
IM000899
GATCAGTTGCTATTGCTTGATTGATTGCG
p001092
C





AGACTTTCTTAACAAGAGTCTTTGTCTCC




TCTCACTCCCTAGCTTCATCTTAGAACTT




AAACCCACAGCCCAAATGAGTAGTTGTA




TGTCATATGCCTCGGCCAAAGCACGACT




GAAAGGAAAAGAAAGGCAGACACTGGA




GTGCAGGAAGAAGACACAAGGCAAAGC




CCAGAATTCAAAAGTAGAAGCACAGATT




GTTTTCTTTGTTT


282
IM000900
GTACCCTGCATCCCCGGTGTGGCCTTGG
p001093
D





AGTCTGATGCCAGCACTACAGAGCCAAG




CCATAATACTAACCAAATAGAATTAACAA




GAGCTCCATATGATC


283
IM000901
GATCACCTTCCTAGGATGAACGAAGAAG
p001094
C





GATGGCTGGAGGTTAGGGACCCAAGGG




ACTTCCCCCTAGAGCTGGCTGTGTACCC




TAGGCATGTGTGACTGCAGCTGTACAAG




CAGGGTATTCTGGGATTCACAGTCCTCA




GGATAAGATGACACTACAGATTCTAAGC




TTTATACCCAACATGGTGGAACCCCATG




GTCACACTCTTTCACAGATGGTCACTCC




CATTGCCCGAAGCCCAGCCTTTATCCAA




G


284
IM000902
GATCAATAACAGCAAAAGAAAAAAAGAA
p001095
C





GTACTTTTCATGTAGCAATGTGGATAA




TTCCCATCCAGAGAAACAAAACCAGTTC




CAG


285
IM000903
GATCAGGGAAGATGTCACCTCCAACCCA
p001096
D





GCCTAGACATGGTGCTGTGACCA


286
IM000904
GATCAAGGAGCAACCCAATAGCTTCTAT
p001097
R





TCCCCCCCTACTAAAATATGACCCACTG




ATGGATTCTGGGGATGCACAGATGTTCT




CAGAAGTTACTGATGAACACACCATGCT




CTAACAAATAGTATCAAACCCACAGTCAC




AGATGGCCCTAGTTAAGCACAGTGCATC




ACAAAGCAAAGCAAAGAGCCTTGACTGT




GGGAAAGGTACTTGTGGTGAGGACTAGT




GGGGTATGAAAGAAATTAGAGAGGATGA




AGGTAGTGATATTCAGTGTGTGTGTGTG




TGTGTGTGTGTGTGTGTGTGTGTGTGTG




TGTGTAAGACTATTAAAGAACACCCTTTT




TTAAAGAAAGGCTTTCTTGAGTGTCACC


287
IM000905
GGTTAATAAGCTAGATTATCGTGTATATA
p001098
K
Myc




TAAAGTGTGTATGTATACGTTTGGGGATT




GTACAGAATGCACAGCGTAGTATTCAGG




AAAAAGGAGACTGGGAAATTAATGTATAA




ATTAAAATCAGCTTTTAATTAGCTTAACA




CACACATACGAAGGCAAAAATGTAACGT




TACTTTGATC


288
IM000906
GTGAACGACAGCAGAATCGGGTTGTACC
p001099
D





TCAAAGCACTTACCTTTCCCAATACACCT




GATC


289
IM000907
GATCAGTGACAATGTAGCTTTGCCTGGA
p001100
D





AGGATACTTGAGTC


290
IM000908
GATCAGCAAAATGGGACATCGAAGTTGA
p001101
D





ACCAAAGTCATTATAAAACATCCTGAGGT




ACATAAACACTCTGTAATAGACTAATACA




GTTCCTCCAGGCACCAACAGAAACCTTG




ACTACTTCCCTTGACTACTTCAGTCAAAT




CTTCTGATAAAACCAGACCCAACTTGGA




AACGTCCATGTATACTATG


291
IM000909
GATCATCTGCTTCTACCCCCAATTAAAAG
p001102
D





ACGGACTAAGAACATAAAAAGAATCCAG




GCACCTAGGTTTGCAGAAATCTAAAGGT




TGAGTTCCTTT


292
IM000910
GATCACAAGTTATAGTTGAATAACAAGTC
p001103
D





CTGTGTGTGTCTATGTATCCGTATATCAT




ATTTTCTTTATCTGTTACTCTATTCATGGA




AACTAGGTGGATGTGTTAACTTGGCTATT




ATGAGTTTTGCTGCTAT


293
IM000911
CTACAATGGTTCAGGCTTTGGAATATCAC
p001104
C





TCTATAGGCTGTCTGCCGGCCACCACCC




TTCAGACTGCCACTCACAGGTGCCCGTG




AAGGCTGCCGAGAGGCAGTCCCCATCA




GCCTGTCTCCTACACCCACACACTCTGT




GTGGAGACCACAGGCGCCCAAAGGGTA




TGCTAGTCTCTGCTCTACCGCGTACCCT




CTCCTGAAGGCAGGCATTTCAGAGATTC




CAGTTTCACCAGGAAGCTCAGATC


294
IM000912
GATCTTTTCCCCCTTTGTAGTATCAGAGA
p001105
R





GAAAAGCCATGGCATGCATGGCACATGC




TAGGCAAACACTCAAGCATCCTACTCTG




TGATGCAGTTTGAACAACTTTTTTTTT




CTTTTTCTTTCTTTTTTTCTTTTTTCTT




TTCTTTTTCTTTTTCTTTTCTTTTTTTTT




TTTTTGAGT


295
IM000913
GATCTCTCCCCATCCTCCTGTTGCCTCTT
p001106
A
Gata1




GTCTGTCATACCTCTACTACTCCATCAGT




TTGCTGCCTCTGAGTCCCTCTTCTTCCTC




TCCTATCCCTCCTCCCATCTTCCTCATCT




CCAGGTCTCTCCAGGTCTTCCTTCTTCC




CTCTTTTCTTCCCCTTTTCCTCTTTCCACT




GTCTTGTATTCCCTTCCTTTCTCTGTTGG




TCCCTTCCCTCGCACCTCTTTCCTCCTGT




CCCTCCTTTTCATGTACCATATTTCTCTT




CCTCTTTCTGTGTCTCCTCTTTCCTTCCT




CCTTTACTTTCCTTCTAACCTTCCTCTTTC




TCCTCCTCCGGCAAGCCTTTGCTT


296
IM000914
GGTTGTTCCAGTTAAATTGGCTCTCTACA
p001107
D





GGAACATGGCTTAGTTCTCCCTTAGCCT




TTCATGACCCTACACCTCAGACACTAGT




CAAAGTCTAGCTTAATAAAGTGTTCAGGA




TGTTGGTGGAGGGGGGGAGATTGTTAAT




ACAGATC


297
IM000915
GGACCACTTTAGTATGGGTCATATGTTCT
p001108
D





AACTTTCTTTCATTTTCTAATTCTTTCCAT




CTGCATTGATTGTGCCCAGTTATCATTAG




TGACTTATTTTAGTAACTTAAGGGAAAGT




TGTCTATGCTCTACTTAGTGTCGATTTAA




CTTACTCTCCAGACATGGGAGTGCTTATT




TTTGTTTGCCTTACCTCATCCAGGAGCTT




GTAGATC


298
IM000916
GATCCGATTATGAAACCGGTTTTGAAC
p001109
D



299
IM000917
GATCTGTGGAATGCTATCCAGCTCTTCC
p001110
D





AACAAATAC


300
IM000918
TTAGTATCTGCATCTGACTCTTTCAGCTG
p001111
R





TTCGTTAGGCCTTTCGGAGGGCAGCCAT




GCTAGGCTCCTGTCTGCAAGCACACCAC




AACATCAGTAACAGTCTCAGGGGTCTGA




GCCTCCCCTTGAGCTAGATC


301
IM000919
GATCTGTGGTAATGATTCTGTAAATACAG
p001112
D





ATAAACAACGTACACATGGGAATTGTTCC




CTGTGTGAAAGTGTTCATCATAAGGTGTT




TTTATTTTATCTACAATATCTTTGGGTTTT




TAG


302
IM000920
ACTGCCACATTCCCTAACACCTCATCAAA
p001113
D





GAAAACAACACCACAGGTCTCAGGCTGC




CACTCTAGACCTCCGAGTTGACTCTGGC




TCCTGCTCTCTGCTAGCAAACACGCATC




CCTCAAGTCTTCATGCTGGTTCTCTCAAG




TCTTCATGCTGGCTCTCTGTAGTTCTGTA




AGCTTACCCTTTCAGTGGTGATTTGGGG




AGATC


303
IM000921
GATCTCCTGGCTTTGTAGATAAATGTAGA
p001114
D





GAGTTCGTTACCAACTGAACTAAAGAGC




GGCACAGGAAATTAAAAAAAACAAACAA




ACTGATAGTTAACTCAATTGAGTAAGTAT




GGAGTTTTGGGACCAAGACATATTAGGC




AAACAGACAGTTTAAGGCCTAG


304
IM000922
GTTCCTGTACTTTATCATGTCTTACCCCT
p001117
D





ACCTCCCTCCATTTTAATCATCTTTACTG




GGATGTAATGCATTCCTTTGTCCATTCCA




GGATGCTATAACAAGATACCTTCAGCCT




GTAAGCTATAGAACAGTGTGGTCCTCAA




CCTTCCTAACTGTGACCCTATAATATA




GATC


305
IM000923
CCANCGTGCCANACTCANAANGGAATTT
p001119
D





TATTCATAGATTCTNTCANACTGCTGTCC




CACATGTGTTCAAAANCAGGTAGGTCTT




GTCANAT


306
IM000924
GATCTCATTGCACAGAAGAGTTAGAAGA
p001121
D





AAGAAAGAAAAGCAGACTGGGAAAAATT




TTTGCAGCGAGCATTCAGAGATTGAACA




TCTATCTAACTTATGCAAAATTCCTATCA




AAAGAAAAAAAAAGCTTCAACAGCTGGG




TAAGTTAAAATGTAACTATAAGGCAACAC




AAGGCAAAGTGTTGTTCTTTTTGCTTGTT




TCCGAGATGAGCTCAATTAAAATATCAAT




AGCGACTACAATTCTGAGCTGGACTAAC




GAGTAGTTACAATACTACCCAACGCT




TGTGGTTAGGTAACCTTACACAATATTTT




CCTAATGCTATTCGGCAATAATTGTCAAG




AAAA


307
IM000925
GATCTTTTCCTACAAGACTTCTGGGTGAC
p001122
D





CTTGCCAAGCCCAGCCACTGGCTGTGGT




ACCTCACCAGGACACTCGGTGGACATTA




GGTAGTGCTCCCCAAGTGCTAGGTGACA




GTTTATGCTTCAAAGTGACTCCTGCAC


308
IM000926
GTGCTGACGCGCCCTTGCATTTGGGAGA
p001123
D





GCAGTCAAGCTATCTGTACCTTCACCGT




AAGACTACATTGTCACTGCTGGCTTCCC




TCCTGTGCAAGGGACGCATTTGGGTCAG




ACTATGCATGAAACAGGACAACAAAGGT




AGGGCCATTGGTAGATC


309
IM000927
GATCTCACTGAATATAAAAAGACATCAGT
p001124
D





CCAAGGGTGGAAATTTAACCAAAATAATA




CAATTGTTGTTG


310
IM000928
GATCCTCCAGGAACTAGAGTTACAGACA
p001125
D





ATGCCCGCCTTGTATT


311
IM000929
GTGGCAGTGACTGTCCGTGTGGGAAAC
p001127
K
Nmyc




GTAGCAAGTCCGAGCGTGTTCGATC


312
IM000930
CAGGAGAGTGTCTCAAAAAGCAGCAAAG
p001129
C





CACCCAGCACCTTAGGGTGAAGGACCAC




TTCTGGAATGTATCCTCCCAGTTGCAAAT




GTACACTGTCTCATTCACTCCTGTGACAT




ACTTTGTTTGTGAATGCTAATATCACATA




GTTCGATC


313
IM000931
CCAGCAGAGACCAAGCATCCAAAACATG
p001131
D





AGCCCATTTCAGGCTTCAACCATAGCAG




CTCCCATCTCAATCCTGTTCACCCCCCA




CCCCACCCCCCGCTTCTCTATTTAAATCA




CCACTCTCAGTGACCAAAAAGATGCTCA




TGGCAAATGGACTCTTGGCTCTCTTTTAC




CTAATACTGAAGGTAACAAGATAATCAAC




TGTTTCCTCTCCTTCCCGGGGACCTCAT




CATACAACATTCTCCCACATGAAATTATC




ACCACGTCCTATACCCACATCCTCCCCG




TCCTGTAGAGAAACCACATGCCTAGCAG




CAGTGGTTTCCCACCTCTGTGCTCCCTT




CCACCTCGATC


314
IM000932
GATCGCTGTGGTTGGTGTCTGTGTATAT
p001132
B
Mm.3669




GCACTGTACATACTAACCAGGTACACAC


2




TAAATATTTAATATATAAAAAATAAAGTG




CTTTCTAAGAGGCCCCTAGGCAGGGACG




ATAAAACATTTCACAAAGCAGCAAAAC




TTGATACAATCAAAAAAACAACACT




ATAACCAACATAGGTGAAAACAGCCAAA




CACATAATGTACAATCTGGTGTTGCAGG




ACAAACATCTGTCATATACATGGTATATA




CATACATACTTTTTCACTCAATAA


315
IM000933
GATCGCTAAGTGTGCGCGGCCGCCGTC
p001133
B
Mm.1515




TGCAGAATGAATGGAGGGAATGAATGAG


28




GGTGCGCGCGCCCGAGGCCCGGCTTGC




GTCAGCCATGCGTGCCCGGCATGGACA




CGGCCTGGCCTTCCTGGGAGGATGGGA




CCGGATGCAGTTAGTCCAGGCGTTCAGC




ATCCCAGGGCCCTTCCTCTGTTGCGTGG




TCTGAGTAATCTGTCTCGCAGAAGATAC




CCT


316
IM000934
GGAGGTCTCTGTAGGTGCTTAGACTCAC
p001136
D





GTTACAGTCATTCCAGAGGAGGGAGCTG




CAGCTGCTAGTTTCTGTGCACACCGATC


317
IM000935
GATCGGCTGTCAAGACTGGGGAAGGGT
p001138
D





CCTCCTAG


318
IM000936
AAGCAAGAGGTAATAAAATACATGTGGA
p001139
D





TGGATGACTCAGGGGTTCAGAGCATACA




CCGATC


319
IM000937
GATCGGGGACCTTGCATAAAGGGGTCCA
p001140
B
AA70964




GGGCTCTCAGTCCTTGGGAAGG


7


320
IM000938
GATCGTGATGACTTCATAACCATCACGT
p001141
C





GTGAAAAGACTTAATGGCGCTGAATTCA




CATGACACTTAAAATGCACAAAGTAACAA




ATTTTATGTCACATGTATTAAACTACAGC




TAAGTACATGGGGAAAAAGTTAGACTTA




GAATAACTCATCCAGAGTCATATGGTAG


321
IM000939
GATCGAGGAGTAACCCAATAGCTCCTAT
p001144
R





CCCCCCTTACTAAAATATGACCCACTGA




TGGATTCTGGGGATGCACAGATGTTCTC




GAAGTTACTGATGAACACACCATGCTC




TAACAAACAGTATCAAACCCACAGTCACA




GATGGCCCTAGTTAAGCACAGTGCATCA




CAAAGCAAAGCAAAGAGCCTTGACTGTG




GGAAAGGTACTTGTGGTGAGGACTAGTG




GGGTATGAAAGAAATTAGAGAGGATGAA




GGTAGTGATATTCAGTGTGTGTGTGTGT




GTGTGTGTGTGTGTGTGTGTGTGTGTGT




GTGTGTAAGACTATTAAAGAACACCCTTT




TTTAAAGATAGGCTTTCTTGAGTGTCACC


322
IM000940
GATCGGGCCACATCTCAGACACTCCTAT
p001149
R





AGCTACAGAGAGATACCGTTTCCTGTTAT




CTGCAGACAACTTTATCTGTTACTCAG




AGAAAACCTCCAGGTGCCCCTAAAGAAA




CTGGGCCCTACATCACATACCCATACCA




CACACATGCAACATGCAAAACATACACA




CATACATAGACACACACACCACACGCAC




ACAGACACATACAGACACACACACATAC




TATACATACAGACACATATGCTACACACA




TACAGACACACACAAGCACACATACTTC




ACACACAGAGACACACACACCACACACA




CACAC


323
IM000941
GCCTGCCTCTGCCTCTCGAGTGCTGGGA
p001151
R





ATAAAGGCGTGCTAGAGCCTTCACTTGG




CTCTCTCTCTCTCTCTCTCTCTTTTAACC




TCCTTTTTCCTTTAATGAGTTATTTATTTT




TATTTTATGTGCATTTGTGTTTTGCCTGT




TCCGATC


324
IM000942
GCTTCAATATTCGAAAAGTATTAGTAAGA
p001152
D





AAGGCTGTTCGATC


325
IM000943
CTACCAGGAAGTCAGGGGTTTCCAGGAA
p001154
D





CCCACACTTGGCTTCCTCTGCACAGAGG




GACCTCATACCAGTGAGATGGTGATATG




CTCCCTTGTTCCTGAGCCTCAGTGGAAG




CGACTTTCTATGGATACTCCCTCCCTCGT




GCCTCTCCTTCTTTCCCTCTCTGCTCTCC




CCCCCCCCCCTCGCCCTCACGATC


326
IM000944
ATACACACCATCAGATATACCTCATTCTG
p001155
D





TATACCTACAGGTACACCAATCACACAC




ACACATTTACTCACATGTACATGCACACA




CCACATCGGTTAGAACCAAAGACCTCAC




ACACACCCCTCACACATGTTTCATCTCCA




TTATCAGTGCCGATC


327
IM000945
GATCGTCAGGTTATGAATGCCAT
p001156
C



328
IM000946
GTTCTCAGAACCAGCTACTGTTTACACA
p001157
C





GGGCCTCATGCAGCCTTGCTGTCCTCCA




TTCTGCAAGCACAGGATACACACCCCTG




AAGGCCAGATTGTCAGGTCAGCCCGATC


329
IM000947
CTTCAAACCGGTCCTGCGAGGAGTCCAC
p001158
D





AACCTCTGCCTGCCGATC


330
IM000948
GATCGAGGCCAGCCTGGTCTACAAAGTG
p001159
B
Mm.8136




AGTCCCAGGACAGCCAGGGCGATACAG


6




AGAAACCCTGTCTCAAAACAAACAAACAA




ACAAGATTCCATTGAGGAACACCCAGAT




GGAGACATGGGTGTTCTCCATAGAAGGG




TTAGGGGCTTCCACACCGTTGACAC


331
IM000949
GATCGGTGTGCTTTCTGCAGTTTCAGCG
p001160
B
AA40894




AGGACTCTGGGCCCAAAATGTTTTAAAG


5




CAGAAAATTGGTAACACTAGAGATATTGT




CAAAATACGATTTCCTCTGGTTCAGAAAT




GGCGAGAGGGAGGGCTGGAAGGGTGG




AGTGGGAAGGAATTGTCATCAAAGCATT




GTTGATAC


332
IM000950
CTGTCTCAGGCATGAAAACACTAAAAGA
p001161
D





TGACCAATTTCAATAAAGATGACCTGAAT




GTCTACTCAATTCCCACCATTAGGTCTAC




AAGATGTAAATGGGCCGATC


333
IM000951
GATCGTGGAAACAGAGCCTTGAATATAA
p001162
D





TGAAGAAACAGAGGGCAGGCAGCAGCC




GCAGCACAGCAGGGGCACTGTGAGCAG




GCAGCAACAGGGGG


334
IM000952
CTCCCTACTACCTTCCCTTCCTGGACNT
p001163
C





CCACTGAGATGAGGCAGGATAAAGGGTC




AAAAGAGACCTGACCTTCTCTGCCAAAG




CCAGGGATTTCTGGAAGAATAGAAATGG




TTCTGGAATTCACAGATGCAGTGGTCTA




GGATC


335
IM000953
GATCCATAGGTCTCTGCTTTCCCCATTCA
p001164
D





GGGCTGGAGTTATAGATATCTGTCTATC




ACCCAGCTTTTATGTAGGTTCCAGG


336
IM000954
TATGTATCTACAAGCCAGAAGAGGGCAT
p001166
D





TGGATC


337
IM000955
GATCCGAGTTCTCTCCGGCCACGTACCT
p001167
D





TCACATCCCATGCACCCTGGTATGTAAG




AAGAGCCCAGCTCAC


338
IM000956
TCCCATAATATTTCCTCAGAAGGATC
p001168
D



339
IM000957
TATAGTTCTGCCTGTGGAGTGTGAGCAG
p001169
D





AAATGTGTATCGTTTCTGGGTCAGAGCTT




TCAGGAACTGAGCATGACTGCTCTACAG




TGTCTTTCTCCTTCTGGCTGCTGTAGCC




CTAGGGGACAATAGAACCACAGGATGAA




AGGACTCGGGATC


340
IM000958
GATCCAATGGCAGCTAGCAGAGTCAGAG
p001171
R





AGCCCTCACTCCAGTTAACTAGGGGACC




CACATGAAGTTCAAGCTACATATCTGCTA




CAAATGTTTGAGGGACCTCCTAGCTCCA




CGCCACATGCTCTTTGGTTGGTGGTTCA




GTCTCTGTGAGCCCCACTGGGCTCAGGT




TAGTTGACCTACAGTCTTCTTGTGGTATC




CTTGACCCCTCTGACCCCAGAGTTTAAC




AATAGGCCTTCTGACTCTAGAAATCTACC




TACATTTTTTCCACTTTAAATTCCTCGGC




TCACATAATACCAATGAACT


341
IM000959
GATCCATCTGCACAGTCTGTCACCGGGG
p001172
K
Pim1




TCCAGCAAGTAGCAGCCTTTCTGCTGCT




GTCTGTCAGACCCTCCAGGGAGGGAGA




GCTTGTCTTCTGGCCTCCCAACAGGACC




CTGCGTGACGATGCAGGGACAGCAATG




ACAACTCATTCCAGACTCCAGGTCCCTG




GAGGAGCCTCCCACAAGGGAAAGAGAC




TACTTCACTGGTCCTGGGCCCCTCTTTG




CGCGCCCCGCCCCCAGACTCAGCGTCT




AGTGTTGCTGGGCTCCCCT


342
IM000960
GGGTAACAGGCTTAGTTTGGGGCCTTT
p001173
D





CTGTTACAGGAAAACCATGAAATGTCCT




GAAGTGCTCAACAAACAGGGAATATAGA




TCATAATGGTTCCTCCCTAGCACAAG




GAAGCATGTTTAAAAATTGCAGCAAAATA




AAAAAGAACAGATTCTTAAGATTGAGGG




ATTTTACGGGGTGGTACTTTTTCTTTCTC




TTATAAACATTTATTTACTTTTGTTATTCA




AGACAGGATC


343
IM000961
GATCCAGCTGTTTGCTAACATACGTAAA
p001174
C





GGTATGGATGCTGAGAGAGTATCTATCG




AAAGCGAAGGCACCCTCCCCAAATTCAA




GAAAGCAGCTGTTTCTAGAACCAJAGAC




ACCACCGCCGCCGCCGCCACCACCACC




CGCGAGGGCCCGGACCCTGTTAGAGAG




TGTC


344
IM000962
GATCCTGAAATTATCACATTTGAATCAAA
p001175
D





TCATGCCCTGCCGAGGATAAATAACCCA




AACGACCGAGAAAACCGAGAAAAAGAAC




ATTTACTGACCATCCTTC


345
IM000963
GATCCAGTCCAGAGCAATGTTCACGTCT
p001176
D





GTGATGGTAT


346
IM000964
AAAGGTGCTCTCAATACTTAACAATCCAT
p001177
C





AAGCTTGTGCTCTCTTAGTCGTAAAGGT




GGGGTCCATCAAAATCCCATGACACCAC




AGCGAGACCAAACTCCTTTTCTCTTACTC




CGAATCACCCATCCCATGTGGGAGACGA




ATAAGAACACAAACTACATCTTCAGTGAC




ATAGAGTAGCATCTGCAACAGAGGAAGT




GGATGGAGACCTTGTCTCTGGTCATiAGA




CAAAGCATGTGACAGCTGAGCCTGGCAC




TTCCTACTTGGGTCACAGCTCAAACCCA




CCTGAACCAACAGCAGAGCCCCACAGG




GATGGGACTCACATGTTTCCCTCTTGCC




CTGGAGCTTCGTGCATGTTGTTAGAAGC




TAACTGGCTAACACGCACGGGAACAGGC




AATGTAGTTGGAGTATGAATCGAAGTCA




CTGGGCATGGTCCTCAGTCAGCCAGGAT




C


347
IM000965
CTAGACTAGTATGGCAGAACCTATCTTCT
p001178
C





TCTAATCATTTAGATGAATACTCCACATG




AGAGAGCCCTGAGAATATCTGTAAAAAG




TAATCCAGGTTCTGTTACTTCTAGCTAAT




CTTATCTAGGTAATAATAGATAAGGAATC




GGGATTCACGAACACAAATACCTGTACA




AAGCATGTTGTCTCACACGGGACGAACA




CTGTTTCTGCTGTGCTTTATAACGCTGG




GACATACAAAACTAGACTCTGCCTAAGA




AGTGTTTGGAAACATGGGTTAAATTAT




AGTCAGATAAAACAACAACCATGAGTAAA




TCGAAGAATATAAAACTAGGGATC


348
IM000966
TTTCCTGGACAATAATGTTTTCTTCATTAA
p001179
D





ATTTACACTTAGAGCATTGTCTTAATCCA




TGAATAATTCCCAGCTCCTAGCTCATTAC




CTGTGACACAGCAGGGATTCATACATTT




ATTGAATGAATGGATGAGTGAATGAATAA




AAGAATGAGCATATCAAGAGGATC


349
IM000967
GATCCCTTCTGTCTTTGGTTATCTC
p001181
D



350
IM000968
GATCCACCACTGAGCCACTTCTTCAGCC
p001182
C





TGTGACTGTCATTCTTAATCATCCACACA




GACTTCTCCTTGGCAGATTTTGCCCACC




TCTTAAGACTTTCACAAAGGTTTTTTTCTT




CTGCAGGGCACATGAGAAAACAACTCTG




TCATAAAGAAACCCAGGAAGAAAACCAG




CAGAGGCAGGTGAGTTAAGCCTGTGGT




GGACATTCCTTCTGGGGATGACCAGATG




GGAACAGTAATTCACAGAGGCAGAGGG




GTCTGCAGTCACTCTGCATGCCACATGT




GTAACCCTTAAGAAGTGAGGAATGCTCT




CAACAGGAAAAACACAGCAGCAAATGCT




ATGATACCAAAGCCACAACTCCATGGGT




CCCTGGAGCCTCTCGAACTAAGCTGCCA




GCTAGGGAGCTAACACTAGCTTTGGATG




AAACACAGCTCTGGTAGAGTT


351
IM000969
GCTGGGATTTGAACTCAGGGCCTTCAGA
p001183
R





AGAGCAGTCTGCTCTTACCCGCTGAACC




ATCTCACCAGCCCCCTTCCGTTCTTCCTT




TCTTCCTTCCTTTTTTTTTTCCACATTGTT




TTCAGACTGCACCTTGTTTAGTAGTCTAG




GCTGGCTTCCAATTCCCCAATGATTGAG




CTATGGGTATACTCTCTTCACCTACTTTG




ATTTTTTGTTTGTTTATTTGTTTTTTTGTTT




TTTTGAGACAGGGTTTCTCTGTATAGCCC




TGGCTGTTCTGGAACTCACTTTGTAGAC




CAGGCTGGCCTTGAACTCAGAAATCTGC




CTGCCTCTGCCTTCAAAGTGCTGGGATC


352
IM000970
GCTTCATTTAATATACATCATTTACCAGA
p001184
D





AACCACAGACATCTTTGTACCAACATATA




GTAATATTAATCACAATAGCCATCACTCT




TATGTAAGGATGAGAAGACTCCCAGCTA




ATATGCTAATGTGTAGAAGATGCCAGAT




GGATC


353
IM000971
GATCCCTGCTTCTGTAAATCCGCAACGA
p001185
C





CAATTGTTATCTTCTCCTTTTCTTTCTTTT




ATTTGTTTTATTCTATTTTATTTTTCAGAT




GAAAA


354
IM000972
GATCCTCCTGCCTCTGCCTCCTTCAGCA
p001186
R





AATCCTACCGGCGTGCGCCACCACTACC




GGCGAAAAA


355
IM000973
GATCCCCCTTTCTCTCTGTCTACGGGCT
p001187
D





CTGTCCTGTGTTAGCTGTAGGCCTACTC




TGTATGAACAGACCTCAGCGGAGGGGTT




TGGACTTGGGCTTGTGTTTCTTAAGAGA




ATGGGGCTTCCATGACTGTCCCTCTGTC




CCTTTCATCCTAACCCTGCCTCCCGCTA




ACAGGCAGCCTGTATGTTTCTTGCACTG




TTCCTTCCTCCTGACGGTCTGAGTCGTTT




CCCTCAGAGACTGTTGCTGCTGCTTCAG




CTTTCTCTCAGCTTCTCTCAGGGCTTCC




GCTCTGGAGTTTCTCCTGCTTCTCTGTTT




ACTTTTCAAAGCTCAGCCTCCATCTTCTG




CACCTGCGGAGTCATCACTGATTCCCAG




CTGTGGCCTGTCACCCTTCCCTTTGTTTC




TTCCTCCTGTGCCACCACCATGCACCCT




CCCCTTCTGTCTGTTGTGTTGTCCTAACC




TTTCTTCTCCCCATGCACCCTCCCCTTCT




GTCTGTTGTGTTGTCCTAACCTTTCTTCT




CCTCTCTGTGCTCTGCAGGTTTTAGGGT




CTCTGTATGATTTGTACCTGCATTTATTT




GAACCTCCACTCTTCTCTTTCCCTCTCTT




ATC


356
IM000974
GATCCTGCAATACCTCTCCTGGGCATAT
p001188
R





ATCTAGAAGATGTTTCAACTGGTAATAAG




AACACATGCTCTACTATGTTCATAGCAGC




CTTATTTATAATAGCCAGAAGCTGGAAAG




AATCCAGATGTCCCTCAACAGAGGAATG




GGTACAGAAAATGTGATACATTTACAA


357
IM000975
ATCTAAACTATAATAGTTGCAGGGCTAGT
p001190
D





TCATTGTCAGGTGCGTGGCGAAAGAGTG




CAAATCCCGGGGGTTCTTTCTTCAGAAT




CAACGAGGCAATACACTTGAACATGTAT




GTTTTTGTAATCTGCGGGGCATCACCCG




TCCTCCAGGATC


358
IM000976
GATCCCCCAGAAGTGATAGTTTAACAGT
p001192
K
lrf4




GAGGTGAATGCAAGCAATAAGCTACCTA




TATCATTAAAACTTCCTATTTTATTAGCAT




CTATTAGTTGCACACAGCAGTGATGGGT




TTCATT


359
IM000977
GGACCTCTGTACAAATGTCGGGAGATAA
p001194
D





GGGAAGAAAAAGACGACAGAGATAGCA




GTCAGGATGTAATGTGTACTAGATGAGT




GGTTCAAGCAATAGGATGGAAAGGGCTT




AGCAGGAGAGATTTTTAAGGATGGAGGC




AGTAGATTACATCTGGGAAATGTCACTG




GAACTGGATC


360
IM000978
GATCACCAGGCTGGGCAGGCCACCTAA
p001196
D





GGAAGTGGCACGGGCACGGGCACTTCC




CCAGAGCACCCTCTGGGCACTCTGAGA




GGGGCACAGATGTACTGCACTAGGCTG




GGCCCGGAGGAG


361
IM000979
TATAAAATATCGAACGTCCTCTGGCTTG
p001197
D





TAAATATCATGTTAACCTTCAAAGCGTTC




GAAAGCGCAGGAAATCTGAGTCAACAGA




ATAGTATGTAAGTATTTTTATAGAACCT




GCCTGAACTGCAAGGGAGGGGCGGGGC




GTGGACCCAGGCCTGCCTGCCAATCTG




CGCTGCCAGTGAACTAAGCCTGATC


362
IM000980
GATCAAGTCCTGGTCAGTACCAAGTTAA
p001200
D





AAAAAAAACTATATAAAAGCTATATTAGG




GGACAGCTGTGGCTTTTGTAGAAAAGAA




GGTCCTGGTGCTATGACCTGCAGATGCC




CATGTGGAAGTCTTCAGATGAAGACTTT




CTCATGGAGTAAACATACTCTGTTGTTTG




ACCATGTGGACTTGGTTCAAAATGCCCA




TGGATGCTCCTTTGGGTACCAGGCTTCA




GTGGGAGTCCCAAGCCCATGTCTTTATT




TGAGCATGAGCAGTACTGATGCTTACCT




GTCTTATTCTTTCCTTGCCCCCTGCCTG




GACCGTCTCTGGTTACAAGGATGCTGCA




GTGGGAAGCGGTATGACCGTTACCTTTA




TGGGACTGAGACCAACTAAGGGGAGGC




TGAGGAGGCTGCAGTGAAGTTATTGTTG




GGACTGTGGGCTAAGATGGAAGATAACA




TGTTAACAAACTCAAGTGCGGAGGTCTC




AGAAGTAAAATTGCCTGGTTAGTA


363
IM000981
GATCAATTGGTAACCAAGCCTTGAACTG
p001201
D





AAGAGTCGTGAGGTGGGGGACTTTATAT


364
IM000982
GTATCTCCCACCTGGCTCAATATAGGCT
p001202
D





CTTTTCAAAGGCTAAATTAAGACCAAGGA




CACAGAAGGGTAGCTCGCTGGGCAAAC




GTGATCCCTGCTGATAGTGTAG


365
IM000983
CTCTCGTGTGGAGATATTAAAGGTGTGA
p001203
A
Scp2




ACCACTAAGCCCTGATC


366
IM000984
GATCAAGCAGAGGGGTAAAATAAGGGCA
p001205
D





AGCTCAGTGTTAGACAAGCTCATAAGCC




AAAGCTGTGAACTCTCCAACGCCT


367
IM000985
GATCACTTCAACATGAAGAAGTTACCCA
p001207
D





GCCCCGGGAAGAAGTACATTTCCAGGAA




GCAGTGTTTTCATTTTTTGAGTCTGCTCC




CATCCCGTTTCTCTGCAGCTGGGTAAAC




TTGAAGCTGGGCTAGCCTCTGGGTAGAA




GGCAGCTAATGACAACTACCTTGCCTGT




CCCACGGAGCCCGGACAGAACCTGAGA




TAACACACCTAGCTTGCTGAGTAAAGGC




AGGTTACTGTGTGAATGACTCTGAGCTG




TTCCAGCTCTGCAGAGCAGGAAGTCTGA




CTGTGGAGATAAGAGATAT


368
IM000986
GTCATGATTTGTAATTCCCTGTCCAACTC
p001209
D





TCATTGCTTAGGTCAAAATGGCTTAACTC




CTAGCCTACTTCAGTGTAAAAGTCATGC




GTAATGATC


369
IM000987
GATCAGGCTGGCCTCAAACTCAGAAATC
p001210
A
Hsc70t




CACCTGCCTCTGCCTCCTGAGTGCCGG




GATTAAAGGCGTGCGCCACCACTGCCTG




GCTGCTTTCTTTTTTTTCTTTTTCTTTGTG




TGTGTGGGGTAGTGGTGGTGGTGGTGG




TGTTCGAACC


370
IM000988
ATGTGTGTGTGTGGCATGTGTGTGCCAT
p001212
R





TGTGTGTGTGTGAGTGAGTGTGTGTGTG




TGTCTGTGTATGTTGTGGAACAGATTCCT




GTGTATGTTTCCTTCTTCACACATGTTTT




CAGAAGTGAAACCAGGCTATGAAGACCG




CCAGGCAGCTCTGCAAAGCAGTACTGAG




AAGGTGGGACACTGCGGGGGTGAGAAC




AGTATGCATGATC


371
IM000989
GATCACACTCCATGAAGCTTCTCTTCTGC
p001213
D





AACAGGAAACAAATAGCAAGCAAAACCA




CTGGTAATCATTATGTGGTGTCTAACAGA




GAGCGGTGACAGGGGTGGAAAACTGAA




TGACATTTAAAAGGAGCTGGAGATGTTG




GTTTAAGGCGTGTGGGGGCAGCCTACA




GCATGGAATTGGTCCATAA


372
IM000990
AACCATCATGGTAGCTTCTGCTTCTCTCC
p001214
D





ACGAAGATGGTTGTCCACAGTTGCCC




TCTCTACAGAGTGGTCCTGTATTAAGTCA




CAGGTGCCATCCTGGTGATC


373
IM000991
GATCTTACCACCCGTTTCCTGCCCGGTC
p001215
A
Farp




TTAGATAGACCTCTTGGCCCCCACGCAC




CTAGACAATGGAGTAGACAAGACTTCGA




GGGGAAAGAGGCTTCCCAAGATGACCC




AGCTCATTGGCTTGACTCCCTACGCCAC




CCACTTACACAGTGAGTATCTCTGGTCTT




TGCTGT


374
IM000992
GATCTATGTCATCTTCCAGGACTCAGAG
p001216
D





TTAAGAGAGTTACCAAGTGAGAGCTCTC




ATCACCTTCTGAAGCAGTTGAGAATTGG




AACCCAGAAAGATGCACATGCACGGGCA




CACACACACCCACGGGCACACACCCAC




CCACCCATGCAGAGAGAGAGAGAGAG


375
IM000993
TAGGTTGTGCCTGGCCTGTGCAGGACAT
p001217
A
Snn




GCCTATGGGGTCTTCATCCCTCTCACTT




ACTCTAATGTTCACTACTGACAAGCACTA




GTAAGAAAGTAGGTGCCTGTAAGAGACT




GGAGCAGCCTGCTGCTGACTTCAGCACC




TGGGAGGCCTCAGTAGCAAAGCTTAGG




GTTAGCTATCCTTGGGGCTGTGGCTGGC




TGAGCTCTGGGGTACCGTTTAAGAGGAA




AGCTGGAGTCCAGGTTCTCCAGGCCCTG




GGTGCATCCCACAACCTCTCTCTCTCTC




CTTTACCACTCGCAGCCTTGGCTAAGGA




TGAGGACCGGGACCTGGAGTTATCTGAG




ATC


376
IM000994
GATCTCTCCCCATCCTCCTGTTGCCTCTT
p001218
A
Gata1




GTCTGTCATACCTCTACTACTCCATCAGT




TTGCTGCCTCTGAGTCCCTCTTCTTCCTC




TCCTATCCCTCCTCCCATCTTCCTCATCT




CCAGGTCTCTCCAGGTCTTCCTTCTTCC




CTCTTTTCTTCCCCTTTTCCTCTTTCCACT




GTCTTGTATTCCCTTCCTTTCTCTGTTGG




TCCCTTCCCTCGCACCTCTTTCCTCCTGT




CCCTCCTTTTCATGTACCATATTTCTCTT




CCTCTTTCTGTGTCTC


377
IM000995
GATCTTAGATGGCCAAATGTTGTGAACG
p001219
D





TTTCCTAGATGTGTCGTGAGCACTCAGG




GTTGAGAGCCCTGGTTATTTAGCAAGTG




AAGTGGATGTATACACAAGCAGAAGGCT




GAAACTAGACCCCGGTCTCTAATCCTAT




ATAAAAACCAACTCCAAATGGACAATAGA




AATAAGTGCAAGACTAACTCCAGGGTCA




CTGGAGGGATACAAAGGGAGATGC


378
IM000996
GAATGAATATATATATGGGACTAAATGCC
p001220
D





ATGCCATAACCAAGAGAACTTAAAGAAG




AAAGTGTTTAGTTATGCTTACTCTTTCAA




AGAGTCCAGCTGCCAAAGGGATGCTGTC




AGGAGTAGCTGAGAGCATACATCTGGAC




CCATTAACAAAGAAGGGATGCTTCCCCA




GCAAGATC


379
IM000997
GGAGGAGGGGCACCTTCTCAGAGATC
p001221
D



380
IM000998
GATCTTAAAGCTAATAGGTGTGTGTGTGT
p001222
R





GTGTGTGTGTGTGTGTGTGTGTGTGGTC




AGTGGTAAAATTGTCTACCAAGCTCTAG




GTTCACCCCTCACAGAGCCGGAGAGAAA




AGGAGAAATCAACTCAAGTCAACCCAAA




CAAAACAAAGGACTCAACA


381
IM000999
GATCTGTTCCCAAATCCTCAGTTACTCTC
p001223
D





TGGGAAATGGCTTCTGTATGTACACATG




TTCTCTAGCTATGTAATAAAAGACCTCTC




TTCCTTGGCAAAACTTAACTCTACCTTAG




AAAACTCTGATGAGTACTAGAAAGATGA




CATGTTCCACAAACGTCTTAAGTGATTCA




GGGTTCACAACAAAGAAGGAGATGCTAT




ATTGTCTTTCATGACATAGCGTCTAAGTC




CCATAGCATAACTTCTATAACACACAAGT




GGGT


382
IM001000
ACACTAGCTTCGAAACTTCTTAGTTGTCT
p001224
D





GTCCCTGAGCCCTTTGTGGTACTTCCTC




CTCAGAGCCCAGCTCCAGCAGTCCCCTT




AGCGGCTGTTTTTAGCAACCACACCCTC




TGACTGTGGGTTTGCTCTGCAGTGGCTT




TAAGGTTTGAATACGAAATGCCTTCCACA




AACAGACACTACAGAATCTTAGGTGTCG




AGACAATGGGCATTTGAGAAGGAATTGG




AACCTTCAGATC


383
IM001001
GATCTTAAGGGAAACCCTTGTCTTTTTGA
p001225
D





ATCTGAGCCAGCACAATATTGTATTTCCT




TCAATACGTGGTGAATGTTGTATTAGCAA




CAATAAATGGAAGCAGGGAATCTCTCAT




CTCATGAGTGATATTTACAATGTCTGTCT




GGAAACAAACGGCTAATCAAGTTAGTCA




CTTACTGTTCTTTAGAAAACACAGTACTT




TGAAATGCATACCTAGCAGAGAATATAAA




GTATTTACTGTTGGACTAGACTGGGCCC




CCGGGTGTGAGGG


384
IM001002
GATCTATCTCATCCTGTTATAGCCGGAAA
p001226
C





CATGATAGCAGGATTGGGCAACTCTCCA




GTCCCTTTCTCTTGGGTAAAGTCTGAAA




GCAAATCGCCCGGACCCATCTCCTGTCT




CTGCAGCCTGTCCCAGTTGCCTCTGCCA




CTCACTAACTTCACTCCTTAATTTAAAAA




GCCAGCACATTTATTGACCGTCT


385
IM001003
GCATGTCTCCAGACTCTCAGCTGCTTCC
p001227
D





TGTCTGCTCCTGCTGGATGCTTCATGAA




GATGGAGTGAAGCAGTGGTCAGCTTGTC




TGTCTCAGCTGTTCTATGTGCATGTGTG




CACTTGCTGGAGCTTATGTGCACCACAA




GCACGCAGGTGCACACAGAAGCCAGAG




ATC


386
IM001004
GATCGAACACGCTCGGACTTGCTAAACG
p001229
K
Nmyc




TTTCCCACACGGACAGTCACTGCCAA


387
IM001005
GATCGTGAGTTCAAGACCAGCCTAAAAT
p001230
D





ACACAGTGAGCCTCTGTCTTTAAGAAAC




AAACAAACAACAACAGCAAAAACAAAAAT




ATTGCTCAAGACCCAATGTTCCTCGGAC




TATTTATAGGAATCAGAGTTGCTGTTCTT




CTCAGGGCATGCCAGTTAATTTGAAAGA




CAAGGTGTAGAGGCAAAGGAAAAGTGAT




TTTACTTGGATAACCACCTCATGGAGCA




GTCAGGGGAACTCTAGCCTCAAAGCTCT




TGCAGAAGTTATAT


388
IM001006
GTAGAAGCTTTTTAGAAATACGTTTCTTA
p001233
R





TCTATCTATCCATCTATCCACCCATTATC




ATCTATTATCTATATTTAACATCTATCTAA




GTATCTGTTTATCTATCTACCTGTCTATA




CCTACCTATCTACCTACCTACCTATAGCG




ATC


389
IM001007
GATCGTGCATGCATGGGTGTGTTTTGGG
p001235
D





GAGAGGTTCTGT


390
IM001008
GTTACTATTCATCTGAGGTTCTCTTTTGT
p001239
D





TGTATTTGAACAGGAGGAAGGAACCAGG




AGCTCAAGGATGTAGCTGGAAATGCTAT




AAAACTGGGATGCCCTAGAGAATCACAC




GGACAATCCTGCTAACCCATGGATTGTA




CACTCCAATATACAAGATAACATGTTTGT




GCAGGGATGCCACCATGATGTTCGATG


391
IM001009
GATCGACCGCAGATGAGGTCTATGCAGG
p001240
K
Myc




AAAAACGATGTCTGGAATTTTATTAAAAT




TGCTCAGCTACTCACTGCCACGTATACT




TGGAGAGCCACTTAGGGAT


392
IM001010
CCAAGTATACGTGGCAGTGAGTTGCTGA
p001242
K
Myc




GCAATTTTAATTAAATTCCAGACATCGTT




TTTCCTGCATAGACCTCATCTGCGGTCG




ATC


393
IM001011
GATCGTAGAGAGATGGACCCAAATATCA
p001244
D





GCCAGAGAATTAGACCAGAAAATGGAAC




CAAAGTACCTGTCAGTCCAAGGATGTAG




TGGCACTAC


394
IM001012
GTCCCCAAATGTAAACAAAACTATCAAAA
p001246
D





GAAATTGGGCATGCCAGAATTTTGTTCTT




CACATTAAGGGAATTCTGAAATTGAAATC




TTGCTAAGGGAAGGGTGGCTTGAGAATA




TTTACAGAATCCTAGGTTGAAGGAGCAG




GAATAGAGGATC


395
IM001013
CAGCTAGCCCATGGAGCTGCTGGGACA
p001247
D





CGAGGCCGCAGGCTGAGCATAATGGGG




AAGAGATGGCAGATTCATTCACCCACTT




GAGGAGACCACAATTAGTCAGAGGCATG




CTGGGCCTGGTCAGAGTGCTCAAATAAA




CATTCACAGGACCAAAGTAATAAGCATT




GGTGTTACAGAGATAAATCCTTTAGCAG




GGACACGGGACCCCAGAAAACCGGAAG




GACATCGTTCCCATCATGAGAACAAGGA




CAGCAAACAGTCACTGAGGGTATACTAC




TGACCAGTTCCAACAGGGATGGTCAGAA




GTTGAACGCTGGATATATCATGAGCTCT




GACCTAAATATTCTGAGTATTCCCCATGT




TTGAATGGACTGAATACTCACATTTTCTA




TGCTGAATACTGAATTTTCATAGCTAC




CATCATAAGGCATGGTGGCAGAATAATA




TCTCTCACTCAGAAAGCAAACTATTCTAA




GTTGGGGATC


396
IM001014
GATCCCGTGGGGACTGAGCCTGCAGCT
p001248
D





CAGTGGTAAAGCAGATGTCTAACGTGGT




CAGGGTCCCAGATGAGATGACACAAGT




ACCTGTCAGTACTCCGGGAACACTGGGT




GGGACTTTTATATGTTTATTTGTATTCTTA


397
IM001015
AGTCCATTGTGTACTGAGAGAGGAGTTA
p001249
D





GGTTTAGAAAGCCTTCCTCAGATGTCCC




TCAAAGAAGCTGCTACAACTGCCCTCAT




CCCAAGTTGCCAAGGATC


398
IM001016
AGATTGCGTGAGTTCTGATGCATGCTGG
p001250
D





CCATGATGTGAGGCAGGGGCAGTGGTT




GGATTCGGAGTCAGAAAACTTTCCCGTC




TACTGCCGTAATTCCCAGCTAAATTCCTA




TCCTCGTTGTAGCTGTTGGTGAGGATC


399
IM001017
GATCCTTCCGAATCTGCCATTTATTGAAT
p001253
D





ATTTAAAACACACCTCACTGCAGACTAAA




CACATTGCAAGCACTGGGAGCAGAGGT




GGCTAGTGAGCACCACTCTAGATGGTCC




TTC


400
IM001018
GATCCTCCTGCGTCTACCTTCGGGTGGG
p001254
R





ATTGCAGGCATGCACCACCATGCTTGGC




TTTGTGTGGTACTGGACATTGAACCCAG




AACTCTTTGAGCACTAGGCAAGCACATC




CTGAACACCAGTAAAACATTTTCAAAGAG




AAAAGAAAATTTTAAACATACACCTATCT




ACATCCATTTCCACCATGTTAGTAAACCA




GGGACATTTTGAAGTGTGGTCTTTATAAA




AACACCCGGGTGCTTATCTCCCACGCTCT


401
IM001019
CCAGCGGTGCTCACTACTGCATGTAACC
p001255
D





AGCTCCAGGATC


402
IM001020
GTCTCAAAGAACAAAAATAAAAGAGGAA
p001257
C





ATTAGTAACGAGTCCTGAGAGATAGAAG




AGTATTCAGCCTGGGACCAGAGCTCTGT




CTTACAGTCTTGCCATTCTGTGGGGCCT




GGGACACAGCATCCTTGGTCTTTAGAAT




GCCATAGGCCTCCTGAGGGAGCCTTTTC




TGTAGGCACTTCTCCCACATTCTTGGAT




GGATGCGATTTATTCTGTGTCAGGGGAC




TAGGGTGCTGGATGTGTGGGTCGAATGA




CTGTTGTTCTGTCACTTGGGAATTTGGG




ATAGGAGTTATTCTGAGTGCAAGGCTAGT




CTGCACTTGAACGTACATATCGGGTTTTA




AGCCAGCCTCTGAGCTACCACAGTGAGA




CTCTCTCTTAACTAAAATCAACATAAATA




GTCTTAGTATGGAGAGGTTAGGGGATC


403
IM001021
CGTTTTCCTCGGAAAATGTGAAAAGAAG
p001260
C





AAGCACGAGACGAAACCCCCTCGAGAAT




GAGAAAATTAAATCTAGAACCCAAATGG




CGTCCAACAAGAACATTAGCTCTTGAAAA




TGAATATTGCGCCTGCGCAGCCACCGCC




CGGCCAGCTGCTCAACTGCAGCTAGAG




CCCGACCCCAAGCGATC


404
IM001022
GTGTCACATGTATGAACAGCATCACATG
p001262
D





GTATGAATGGTATCATATGGTATGACGT




GAATGTGTGCACCGGCACTGATC


405
IM001023
TACCACCCACTCCCTTAAGAAATGATC
p001263
D



406
IM001024
GACTGATATTAGTAGGTTGTTCTCTAAGG
p001264
D





GCCGTGAAATTTTTAGCTAGAAGTTCTTG




CTTTCATTAACAGTGCCAAGTATGAGTTC




CATCTCATGGGGTGGGTCTTGAATACAA




TCAGAAGGTGGTGAGTTATCGCCATAAC




ATCTGTGCCGCTATTGTACCAGTGGACA




TAGTTGCCAGGCAGGCCATTACTGTAGC




TCTTAGGTCATTCCTGAAGCTCTCTGGG




GTCTGTTAGGTGAGACTGATGATAACTC




TTCTCTTCCGTTAGTGTACACAGCACCTT




TTAGCACTATGAAAGCGAGGCAGTATTG




ATC


407
IM001025
GTTCCGATGTTTGTATCTCGTTTGAATTA
p001265
A
Rad52




TCCATCAGTTGATTAAGTTGATGGTCATC




TAGGCTGATTCCCCTACATGGCCATCTC




AATATTGCTTCTTTAATAAGACCTGGACA




ATTAACAGCACCAGTTGACATGCCAACTT




GGATTGGGGGAGGGGTCTTAAAGGGCC




CCGCCCTTAGATGAAGAGCTATACGCAA




TTAATGACTGTCAGAAAGGGAGAATGGC




TTTCCCAGAGATGAACCCCCTAATGGAT




TACCCAGTACCAAGTGATC


408
IM001026
ATTCAACCTATGGGGCCGTTAGACCCCT
p001266
C





GGTCTTGGGTGGGGTGGATATGTTATTC




TTTTTTGCTGTGGTGGCAGCAATTTTGTT




TGCTTTCTTGTTTTTTGATACAGTTTCTC




GTCATGTAnCCTGGTTGCCTGGAATTCA




CTTCTATAGACCAGAATGGCCTCAAATTT




ACAGTGAACCCCCTGCCTCTGGCTTCAG




ATTACTGGAATTACAGGTTTGTGCTATCT




CACTAGTTGGTGTGTGATC


409
IM001027
GATCAAGTCCCCAGTTAAATGCTTTCTTT
p001267
C





GATAGGTTGCCTTGGTGATGTCTCTTCAT




AGTAATAGAAAAGCAACCTAAGACAAGA




GGAGAGAGTGGGTTTAAGAACGAGGAG




AGAGAGGAACTCAGAGGGTCCTGGAGG




TCCCGGGAA


410
IM001028
CTCACACATACATTCATACATACACACAC
p001270
C





ATATATACATACACACACTTGCATACACA




CAGCACACACTCACACACAGAGACACAC




AGACACACAGACACACACACAGAGGAAC




CCAAAGGATTGGAAGAATAATTTCCCGT




GCTCAGCGGGAAAGTTTACCAGAAAGAC




AAGTGGTCATGTGGGATGATC


411
IM001029
GATCATCACCAGTGTAGTGTTGGCTTTAA
p001271
C





CGGTGCACGCCTTTAATCCTAGCACTTG




GGAGGTGGAAACAGGTAGGTGTGCTTAC




TTCAGTGAGTGAATTCCAGGCCAGGCAG




GGATACAGAGTGAGAACCTGTTATCTAA




ATAAATAAATAAA


412
IM001030
CACCCACGGCTTGCTTCTTTTCTCTATGT
p001272
D





GTAATTGAAGCACATACCCGGTGGGAGC




CATGTTAAGCCTGTGTCCATGATC


413
IM001031
GATCATGTGTTAATGAAACTGTCAGGGG
p001274
R





TTGGGTAAGATGGCTCAGTAGGTAAAGG




CACTTGCCTCCTAGCCTGGAGACCTGAG




GTTCCTCCTGGGGCCCACAGGGAAAAG




GAGATAACCAGCTCTCTGTCCTCTGACC




TCCTGGGCCCCTCCCTCACAAACAAACA




AACAAACACACACACAAACGACCAGACC




ATTTCCCACAGTAGCTGTGGTGCGTTAC




ACTGTAACGGGCACCATGTGAGGGTTTG




GGCTTTATCACATCTCCGCTAGTCATACT




TGGTGTTTCCTGCGTCTTGCTTACAGTTG




TTCTAATGGGTGGGCGGTGATATCGAAT




TGTGGTTTTAGCATGTATTTCCTGTGCTC




TGCTAAGACCACTTACAATTACAG


414
IM001032
CCTTAACGCTCCCTTGATGTCCACTCCC
p001277
D





GTTTTCTCTGCAGCGATTTATTGCTTAGT




CTATCTATAAGGTGTATGCAAGCTGCAAA




GTCAAGTATTTCCTTTGTACTTGAGCAAG




TCTCCTAAGTATTATGCTTCATAACGTTG




TGATATGCTTGAGCAAATTTGAGTCTATT




TCATAATTAAGCCACTGTTCTGATAAAAG




ACCCTAGAGTGCTATATCTGATC


415
IM001033
AAAAGAGTGTCAGATGTCAGAACTGACT
p001279
D





AGCTGGGCTGACACTGAGGAATGAAGGT




TGGGGATATATGCACCTCCTGAAAACAG




GAAGCCTTTTGTTGGTTGATC


416
IM001034
GATCAACCTTAGTACACAGCAGAGTGTT
p001281
D





TTCTGGGAAGCTCATGGAGACCCACTTT




TGTCATCCCATAGAGGTTACTACAAATCT




GAGCATGAGAATAACTACTTGCTGTTTAA




TACAAAGAACCATTAGCAGTCAATGCCC




CAAGTTCTAAGGGCACAGACTTCATACG




AGAAAAAAAAACAAAGCAAAACAAAAACT




ATCACATGCTACTATCTGTACTGGGGAAT




GCATACAATTTTGTAGGTAT


417
IM001035
GATCAGTAGAGAGCAGAGGGGTCTATGA
p001282
C





GGGAGGTAGAGCAGCCTGGGAGGCCTG




AGGAAGGAGGGACAAGGGCAGAGTCTT




GGTCACTCTTTGGTCTAATTGCCTTCAGA




AGGCTTGCAGACTCTGGTTTGGAGTTCC




AGGTGGGTGGCTG


418
IM001036
CAAGTAGGGTTTGTGTGTGTGTGTGTGT
p001285
R





GTGTAGCCAGTGTCTTTCTCAATCACTCT




CCACCTTAATATnTTTTTTGAGACAGAA




TCTCTCACTGAACCTGTATGCTGTCAATT




TGTCATGGCTGACTGGCCAAGGAGCCC




GAAGAATTTATCTCTATGCTCAATCCAAC




CCCCAGATC


419
IM001037
GATCAGATGGACCGATTGCCGCGGGAC
p001289
K
Notch1




ATCGCACAGGAGCGTATGCACCACGATA




TCGTGCGGCTTTTGGATGAGTACAACCT




GGTGCGCAGCCCACAGCTGCATGGCAC




TGCCCTGGGTGGCACACCCACTCTGTCT




CCCACACTCTGCTCGCCCAATGGCTACC




TGGGCAATCTCAAGTCCGCCACACAGGG




CAAGAAGGCCCGCAAGCCCAGCACCAA




AGGGCTGGCTTGTGGTAGCAAGGAAGC




TAAGGACCTCAAGGCACGGAGGAAGAA




GTCCCAGGATGGCAAGGGCTGCCTGTT




GGACAGCTCGAGCATGCTGTCGCCTGT




GGACTCCCTCGAGTCACCCCATGGCTAC




TTGTCAGATGTGGCCTCGCCACCCCTCC




TCCCCTCCCCATTCCAGCAGTCTCCATC




CATGCCTCTCAGCCACCTGCCTGGTATG




CCTGACACTCACCTGGGCATCAGCCACT




TGAATGTGGCAGCCAAGCCTGAGATGGC




AGCACTGGCTGGAGGTAGCCGGTTGGC




CTTTGAGCCACCCCCGCCACGCCTCTCC




CACCTGCCTGTAGCCTCCAGTGCCAGCA




CAGTGCTGAGTACCAATGGC


420
IM001038
GATCTAACTCAGGCTGTTCAGCTTGGCC
p001292
D





AACAAGCTCAAATATCCATTCCGCTGTCA




CATCGGGCCCCATGTGATGCTTTATATA




CTAAATAGAACAAGCAAATTGATACTAGA




TGGGACAGTCTGCTTACCCAGTTTGGTG




TTTGGTGGGGGAGGTGAGACATATCCCA




CAGTCCCAGAGCAACTGTCACTGCAGGG




TCCCAGGGGAGGAGCCAGGTGTGAAGC




TGGCAGTGTGTGAGGTACCCTGGGGAA




AATGAATGGTTACT


421
IM001039
AGGCCTGGTAGTGACCAGCAAGTACTGA
p001293
D





ACGCTCGCTCTATGCCAGACACAGACCC




TCTTCTTCCTTCGTCTTATCCTATTATCCA




TACTGAACAGACAAGGAAATGAAGGCTT




AGATGAGTCACCCGACTTGCTGAGATC


422
IM001040
GTGGGGCCTGAAAATCACATCTGGGCA
p001297
K
Notch1




CCCTGAGGCCTGCCAAGTCCTCATCA




GAGGGATGCCCTCTTCATCCCAGGTGCT




TTCTGACTATAAAATAAGGTGAATACTAC




CTCCCCTGAGGTTACACCTCCAGGGTTA




AGCTGGTTAGAGAACCCAGGGACACACT




GGGAAACAGCCCACAACAGCAGGAGCT




GGAGCACTCACCCACGGATGTCCATGG




GGTCCAGCTCCCTGCGCTGGCGCCCAC




CACTGGTACCAGGAAGCAGTGAAGAGGT




GGCCCAACCCACTGTAGAGCGCTTGATT




GGGTGCTTGCGCAGCTCTTCCTCGTGGC




CATAGTACGGGAAGATC


423
IM001041
AGTGGAACCAGATTCCTCCTACGCTTTG
p001298
B
Al604147




CACTCCACTTTCGTTTTCTCTTCTGTACC




ATTCTAATGGAGGCCAGAGTAGCAACTG




TATAGACAAATCAAATCGTTTACTCTTCC




AGTCTTGCCCCTTAACAGTCTTTCCTTTG




TTCTTCCTCTTAGCCTCATTTTCTCCTTTC




TCAGATC


424
IM001042
GATCTTCTGCTTCATCTGAGTAGGCTTAG
p001300
R





ACTGGTTTGTATTATTATTATTATTACTTG




TTGTTGTTGTTATTTTGGTGGGAGTAGTA




GTAGCAGTAGGTGTGTGTGTGTGTGTGT




GTGTGTGTGTGTGTGTAGATGTCACAGC




ATGTATATGGAGGCCAGAGAACAGCTTC




TAGCGGTTGCTTCTCTCCTTCCTTCCACT




GTGGTCCAGGGAATAGAACTCAGGTCAT




CAGGCTGGGCAGCTGTCACCTTTAATGC




TCTGAGTTATCTCACCAACGTTAATAAAA




GGCTTTTCAAACAGCAGTTTGGGCTGGG




CCTGGTTGTGCAGACCTGGAATTGCAGC




TTCTTAGGATGCTGAGGCAGGAGGACTG




GAAGCTCAAGTTGTGTCGGGGAAACTTA




GTAAGTCCCTATTCTCGTCCCGCACGCC




CCCAAAAAGCCAAGACCAAGACCAAGCA




GTTTGGTACAGCAGAAAAAGCACGAGAG




TCTCCTCCTCCTCCTGCTCCTCTTTAATG




TGCAGAACCC


425
IM001043
GATCTGTGCATTATTCTGTTGGAAATGTG
p001303
D





ACAAGATTCTGTTGAGAATCTCATACTCT




ATGAAGTCTTAAAAAAAAAAGGTTTCTGC




TGTTTTGAGACAAAATTACTTATAAAGGT




TTATGATGTAGTTAAGGCCCTGAATGTCC




CCCAAAGACATGTGTGTTGAGGGTTTGG




TCTCCACTCCGTGGTCTTTTGGGAGGTG




TTTTATGTTAGCTGGTGAGGCATAGTGG




CAGGGGAGGAGAGTTGGGTCATAGTCC




TTTTGAAGAGGCTATTCAGGCTCTGGTG




CCTAA


426
IM001044
GATCTGACTGTGATAGGAGGGTCCTGGG
p001305
D





GCCACCCTGACATAGGCCTGGTCTATGA




ATGCTCTCATGGACTGGGCCTGTTTGTC




A


427
IM001045
CTGCCTCTCTCCCTGGTCCCTCTCTGAG
p001306
C





GTTCTGGACCCTCAAAAGGCCCTTTCCC




ACCCCAGCCTTCAGGCCTGTAACCCAGC




CTCGGTTTCTCTCCCATTGCCAAAGCAC




AATGGCTGTTATAATTAACGGATTATCTC




AGCGCGACAGCTGCGCCCCTTTGAAAAT




TAGGTTGAATAACAAGATC


428
IM001046
GATCTTGGACCACCACGTCAAGCCTCTT
p001307
D





GTACATTTCTTTGAAAAACAAAGCTTGGT




TCCCCCTAGTCACCACGGTGAAAAAAAC




CCAGGACAGTAAAGGTCCCAA


429
IM001047
TTAGTACCTCTGGTGGAATCACCATGCC
p001308
R





TGACCTAAAGCTTTACTACAGAGCAATTG




GATAAAAACTGCATGGTACTGGTATAGT




GACAGACAAGTAGACCAATGGAATAGAA




TTGAAGACCCAGAAATGAACCCACATAC




CTATGGTCATCGATC


430
IM001048
GATCGCACCGATTGCCAGTATAGTACCT
p001311
D





AGAGTGTCAAGTTGGCCTCTCAGGGAAG




AGAGAACATGTATTAGGGTAAGACGCAA




GCCCCAGTAAAAACATGTGAG


431
IM001049
GATCGCTTCACCAAGTGTGAACTGTTGG
p001313
D





TAGGGACAGAGCAGACCACAAGCCCCT




CTTTGCATTTACATGGGGGCGTCCTAGT




GTAGGTGGCTAGGGATGGTGGACAGGA




GAGGAGGGAAGACAGTATCACATAAGAA




CAATAGTGGAGGGCAGGGGAGGAAGCC




TTCTCATGGCTGGGGTGAAGTCACTTCC




GTAGCCAGAGCTGACTGAGAATATCACT




GCTTTCCTAGTAAGGAAACACCGGAAGT




CGGAAGATGATAAACGCGAAACTCACTA




CATCATAGACACCATTCTGTCTTCATCAA




CAGAGAAATTTATTA


432
IM001050
GATCGTCCACTTCTGTGTTTGCTAGGCC
p001316
R





CCGGCATAGTCTCACAGGAGAGAGCTAT




TCTGGGTCCTTTCAGCAAAATCTTGCTA




GTGTATGCAATGGTG


433
IM001051
AGGGTACAGCGAAGCTTGAAAAAAGCAA
p001317
D





GGAGTGCTCTGGGACCGGGAGTGATGG




AGAAAGTCTGAAGCCCCTTTGCACACCC




CTACAATGGGTTTGCGCCAAGAGAGGCG




CCGGCAACTCTACGCGGCGTGGGGCTC




TCCCCAGCGCTCTAGGTTCTACTGTGCT




GAGCCACACTAGTTTCTCTCCCTAGACC




TGAAGAGACCCCAGAAGTCTGAGAGTCC




CTTTGGTTCTCCATCTCTCACCACCCCC




CACTCTCGTGCTTTAACTCTGAGGAGGG




CCACTCAAGTTCATTCATAAGAACAAGG




GCTTTGCTCTTAAAGGAGCCGCATACCG




AAAGCGTTTGTGTGACTGAGGGTTCACA




TGCACAGAGCTCCGCGTGTCTCGACATC




CTCTCTCTCCGATC


434
IM001052
ATCTCAGGAAACTCCTAGCAGCTTTAGTA
p001318
D





CGCATCGTGCTGTTTCCAGCTGTCGGTA




TTTTACACAGGTTTTGAGCGATC


435
IM001053
CCTTCAGGATTACTTTGGATGATTCATTA
p001319
D





GAGAATCTTGTCTTTAGACTATAAAGCAC




TTGTTGAACAAGGTTACAATGTAGCAAG




CAACCTTGTTTTGGAATGTATTTTGCTAC




ATTGTGCTCTTCCCTGGTCTGGTGCTTTC




ATTTCACATATTTTGCTCTTAATAGAAGTA




GGGTTCAGTGCTGGGGATTTCATTTGCT




GTTTTCTCCATTGACCTCTTGAGCTGAAG




TTATTCTTATTAGAAAGTCAGGGTAGGCG




ATC


436
IM001054
CCAGCAGGCAGCGAGACGCATTTTCGC
p001321
B
Mm.1045




GTGGCGGTGGTGAGCTCTCGTTTCGAG


31




GGGATGAGCCCCTTGCAACGGCACCGG




TTGGTCCACGAGGCACTGTCGGAGGAG




CTGGCTGGACCGGTACATGCCCTGGCC




ATCCAGGCGAAGACCCCCGCCCAGTGG




AGAGAAAACCCACAGTTGGACATTAGTC




CCCCCTGCCTAGGTGGGAGCAAGAAAA




CTCGAGGGACCTCTTAATAAATACCTGG




ATTGGGAGAACGATC


437
IM001055
GTTTTTCCTGCATAGACCTCATCTGCGGT
p001322
K
Myc




CGATC


438
IM001056
AAACTAGGAAAGGGTATAGCATTTGAAAT
p001324
R





GTAAATAAAGAAAATATCTAATTTAAAAA




CAAAAAAGAAAGACAAAGGAAAATTAAAA




AAAAAAAAAAAAGWCTTiTGCCACTG




CAGGACTGCCCAACAGTCTACTGAAAAC




TGTGAGCCTTATTCCTAGATGAGCCTCT




GATGCCTCCACTTACAAGCTACCTTCACT




CCTCCATCTATCTCCTTTTGTTATGTCCC




GCGATC


439
IM001057
GATCGGACTCGAAGAGCAGAAGAAACAA
p001325
D





AACTCAAAGCAGGGATTAGGTCAAAATT




AAAAAGGGTTTGCACACAAAAGGAAACC




ATCCSAAGAGACAACCTACAAAGTGAGA




GAAACTTGTTTTGAAC


440
IM001058
GTCTGAGAAATTGTCTTTAATGTAGTGAC
p001326
D





TGTGGAGCCTTGCAGGGATACCCACGAT




GGGGGTGTCATTCATATGTCACTGCACC




TGGAAGACCGATC


441
IM001059
GATCGCACAGCCTGCTTTCTCAACAGTA
p001327
K
Pvt1




GGTAGGACCAACAGCCTAGGTGGCACC




ACCCACAGTGAGCTGGGCCTTCCACATC




AATCATCAATCAAGAAAAATAGCACAAAA




CCCTTTCCCGAAGGCCAATCTGCTGGAG




GCATTTTCTCAGTTGAGATTCCCTCTTCC




CAAATGACTGCATAATiACTTGTGTCATGT




TGACATGAAACTAGCCAGCACAGGGTGT


442
IM001060
GATCGGGTAATTTAGTAATAGTTCATGAT
p001328
D





ATTCATTACTCGGCGTAAATCAGGAAAAA




CATTTCTAGATGAATGTGGTATTCTCAGT




GCACAGTTTGTTTAGTTTAGAAAACAAAT


443
IM001061
GATCGAGGAGGGGAAGTCCTTCCTTCCT
p001329
R





TCCTTCCTTCCTTC


444
IM001062
GATCGGGGGTTCAAGGTCCTCCTCGGG
p001330
R





GTACCTATTAGGAGGGCAGCCCAGGCTA




CGTGAGACTCTGTCTCAATAAAAATATAA




ATAAAAAGCTGGGTGGTGGTGGCGCAC




GC


445
IM001063
GATCGACCTGCCTCTGTCTTAAGCAAGA
p001331
D





AGGGAGATAGATATGCATAGTATTTAGT




GTAATGAAAGTTACGTTGTATTACGCTGA




GGTTTATCACA


446
IM001064
ATCTAAGTAGTATAATGTTTAAGACGATC
p001332
D



447
IM001065
GATCGTCGTCTAACTTAGCTGGCTTTATA
p001333
D





GTGATATAACAAAATATTAGAGGATGCTT




TGGTTGAAAAAGAAGTTTATTTGCATCAC




AGTTC


448
IM001066
GATCGAACACGCTCGGACTTGCTAAACG
p001334
K
Nmyc




TTTCC


449
IM001067
GATCGTCATCATTTTTATTACAGTAGTGA
p001338
D





GGAGATGTCCCCTGGGGCCGCCCTGGC




TCTGGAGAGGGAAGCCACATGCTCCAAG




GGGCTATGGTGAGGACCACAGCCTTTAC




ATTTGGCTT


450
IM001068
GATCATGCACTGTCTGGGATAGTGATGG
p001339
D





GCTGTGTCCTTTGTTGGCCAAGAGGAAG




TGGCAAAAGGCAAAGTTGCTGTTGGCTC




CAGGAGTCAGTCTGGGGACGGGGCTGA




GATGCTGTGGGACAGACTCTGGAAAGG




GCAG


451
IM001069
GATCGTGGCCACTGAGAGACCTTCTTCT
p001341
D





GGCCACCAGATGCACACAGCTGCATGAA




CATCTGCATACACATTTAACACATACAAA




GTTGAAGAGAAGCACGTGTGTCTTGTGG




TCTGACCACTTCCTGGGCACCACCAAGC




TGCTCTGACAACGGATTCCCACTGGGTT




CGGCCATCTTGCTTCCTCCCCTCAGAGT




TTGCCCATGTCCTCTGTCTTTTCATAGCC




ACAGCCTTGCCCAAGATAAGATACATCC




AACTGTACAGTGCTCCAT


452
IM001070
GATCGTACCAGGAGCTCCAAGCGTACCC
p001342
C





CTGATGCTACAACCTCATTCCTGAGCCTT




GATTCTGTGGACTCTAG


453
IM001071
GAACAAGGAAGGAAATAAAGAATAAAGG
p001344
D





ACATCTGACACTACCAAAGTTAGGTCAG




GATGTGTCTTACAGATGGCCACTCAAGA




GCCTATAGAAAGCACCGCACAGACCAGC




ACGGTCTTTTTCTCCCAGGTGTCTCTGA




GGTACTGCTTTCTTTCCAGGGATC


454
IM001072
GATCCCGAGTCCTTTCATCCTGTGGTTC
p001345
D





TATTGTCCCCTAGGGCTTCAGCAGGCAG




GGAGAAAGACACTGTAGAGCAGCCCC




CTAA


455
IM001073
GATCCTGGGATTTTCTGGGCAATTGGAG
p001346
R





GCCACAATTTAGATAGTTTCCGGAATCG




ATGTCCCTTAAAGACCAGCGCCTGGACT




CTACTGAGTAAACTCCCATTTCAACTTCC




TCCTCTTCCTCTATTTGAACAACGTGTAT




CATTAAATTATAAAATTGTTGTTGTTGTTG




TTGTTGTTTCAAAAATTAACTTTATTGGG




GGAGGGGCAGTTGCCCGAGGACTTACTT




GTGAGAACCAGGTTTTGCCTTCCACACT




TAGGGGTCCCTGGAATGGAACTTATGT


456
IM001074
AGAGGAGAAATGGGGGTGCGAGAGGAC
p001348
D





AAAGTCTGTGCCCCACAGCGCTGGGGC




CAGAGCCCAGGAGGGCCTCATGGGAGA




GGTTGCCTGAAGGCAGTAAGAGAGGCA




GAGGATGCTTGGGCCAGAGAGGTTCCC




CACAATTGCTTGGATC


457
IM001075
GATCCCAAACAACTGGAACAGGGGTTAT
p001349
D





CCCAAAAGCTGTTGCCTG


458
IM001076
GATCCAACTCCTCTTCACAAAGAGACTAT
p001350
B
Mm.1238




GTGCAGGATGGAGAAGAAGATGTATCCA


02




AGCATATCCTGTGAAATTTATGTCAATGC




TGTGAAATTTGTCCCAGCACTCACAATCC




AGATCTGCTTTTTAGGTGGCTTTTTCT




ATTTCATTTCTTCTGGCTTCATAGAAGTT




TGAGGTGACATTTTTAAGACCTGTGCCA




CTAAAATTTCAGACCCTATTTG


459
IM001077
GATCGGTTAGTTTGACCAGCCATACTATA
p001351
D





ACTTTAGTGCAACCCTTTACTTGGTGGGT




GGTACTAGGAATTAATCCCAGGACCTTC




ACATATACTACTATCATTGAGTTACATTT




CTAGCCCTTTTAACCAATTTCCCTTTAAC




CCTTTTTATCCTTTG


460
IM001078
CTCAAGATTCTGTTGTCTGAGAATCTCTC
p001352
D





CCTCTGCTTGGGGACCCATTTATAATGA




GGTGATACTTCATCTGAAGTAATGGCCA




GGCCACGGTGTGAGACTCTTGAATGTCA




CATGCTGGATC




















TABLE 2





SAGRES #
SEQUENCE
SEQ ID #
CLASS.
GENE



















IM000127
CATGTGAGACTTGTTAATTTAGATTT
461
D




ATTCTGTAGTGTTTTTGATATGAGTAT



AAATAAGACAATTAAATTCTATATTAG



AAAGTGGCTTTTTACATTGAATATGC



TTTCAGGATATGCGTGAGAATTTGGC



GATGTGTAATC


IM000128
CCTTACTGCAGAGATGACTCGGCCA
462
D




ACGGCTNCGAGCTCCTGACCACTTC



CTCAGGTTTGGTTTTGTTAGTTTTTTC



TCACAGCAATGGGAAGCATAATCAAT



ACAACTTCCCAGAATGCGACCTGTG



ACAAGACCAATGAGCAGACTCAAGG



CTGGGCACATAAAAGCACCAAAAAA



AAAAAAAAATTCCCTTGCAATTATTGT



TCATG


IM000129
GCTGCTCATCACCAAAGGAAGTCAG
463
R



GACTGGAACTCAAGCAGGTCAGGAA



GCAGGAGTTGATGCAGAGGCCATG


IM000130
CATGGCAAGATGGAGACTTTGTCTA
464
K
Fgf3/Fg



CCAGGGCCACTCCAAGCACCCAGCT


f4



G


IM000131
GTGAAAGGGCAGAAATAATTCCTGA
465
C




AGGTTGTCCTCTGCCTTCTACATG


IM000132
CATGACTATGTTTCTTTTAGGTATATC
466
D




TGAATAGTATGGATCTAAATGATGAA



GTTACACCATTTTCTACAAATGGGCA



CAGAACACAGGGCATAGATACAAAT



GGCAAGGTGAACCCAGATCTCTGTG



CTTATCTGCAATATAACAACACTAAG



AAATATTAGGTCTCTCTGTGGTTTTC



CTTAAATCTA


IM000133
GTATTTCCTGTCAGAGGAAAAGAGTT
467
D




TTCAAAAAACTTTTAAAATTTTTATTT



GTTAGCCTGGACCAGTTTCATAGCAA



CCTGTCATCCATATCCTCAGATTCAC



TTATGAGTTTGTCTGCCCATTAAGAT



CTTTAAAATGGTTCTAACAGCTTACT



TCATTGTTCATTAGTAAAGGGTTTAT



ATCTACACTTTGATATTTGCTTACTCC



ATACATG


IM000134
CATGAGATGAAAAAGAACCTTTTGGA
468
D




CTTGAATTTTGTTGCTTCAAATGCGT



ACTGCAGTTGATGGAAATT


IM000135
AGGGTCCCTTCAACTTCCTCAGAGC
469
D




CAAGGCTGACTTACTACCGTTCCCC



AAGATCTCATG


IM000136
CATGCCTCTGGAAAGTACCTTAAACA
470
K
AAyb



TAGAATCCCCTCCCTAGTG


IM000137
CCAGATCCCATTAACAGATGGTTGTG
471
K
Wnt1



AGTCACCATG


IM000138
CATGACTTCTTTCATTTCTTCTGTGT
472
K
Braf



GTCTGTCTTCCTGTGTTTGCCTGCCC



CTCTCTTTCTCTTCTAACAGCCCCCT



TGAACCAACTGATGCGCTGTCTTCG



GAAATACCAATCCCGGACTCCCAGC



CCCCTCCTCCATTCTGTCCCCAGT


IM000139
CATGGGAATGTAATGTATTAATGAAT
473
D




ATTATATAAAAGAGGCTAAATAGCTT



GGCTTTAATTTCTCACTTTGCCTACT



CAATTGAGAAGTTTATGGATCACCAA



AAGT


IM000140
CATGTCCTTATTCTAGGAAGCCCCCT
474
D




TTTTTACCCCTGCCTCTGAGAGAAAC



AG


IM000141
CATGAACACCCAAATCCATATGAATA
475
D




CACACATAAAATATTTTATTTTCTCTA



TAATTTATGCCCACC


IM000142
GAAAGCATTGAAATATACTGGCCTTA
476
D




TTAATGGCACATG


IM000143
CATGTGCACACACCCCACAAATGAC
477
D




CTCAGATGTCAGTGGTACTGAAACT



GAGAAACTGATGATAGAGCCAGTAA



AAATACTGAAAGTGCCTGTTTTGAGA



GTTTATATTTTACAATACTTTAATATC



TAACTACACACACATACACCTGAAAA



GGGCTCAGAATACACAGGCCTGAGA



TGGCTCTCAAGAACCAGCCTC


IM000144
GGCCTTCCACTGCTCAAAGCTCAGA
478
K
Wnt1



CTGCAGAAAAGGTTGATAGCCTCCC



AGGGGCAATGACACCCTTTCTGCTT



GAGCTTCCCCCCCCCCCCTCTCAGG



ATGTAGTCATG


IM000145
CATGCCAGTCCACATCTGCTTCTATG
479
D



ACAPATGCCACATCCCAACGACAAA



CTCACTCATTCTTCCTGTATCAATTTA



CGCATACACATAATACTTTTGCTCAA



GGTACATTCATATTTCCGGCAAACAG



ACAGCTATAG


IM000146
CATGTCACTCACTTGGAGAAAGAGTT
480
B
AATTT.605



CTAATTATTTATCACGGCATTTTTCAC


52



AACTATAGAAATAAAGTTAATTTCTTT



GGAAATAAAGTTGAAGTTGTAATTTC



CAGATGGGCTCAGGTTGCTGTT


IM000147
CTCCTCCTAAAAGAAAAAAGGAAAAG
481
D




AAAAGTTAAACCTGCAACAGCATCAG



CAGAGCTCACCCCTCCTCACCTGCA



GCCCTGGTTGCCTCTCTTCCTTTCAT



G


IM000148
GAAAACACTGTTCTGGGTTCAGGGG
482
D




TTACTTAGCCTTGGAATCAGAGTCTA



CCCAGAGTCTACCTGCTTCTACCCAA



AGCAGGTGGAAGAAGCTGCCCAGGA



CGGGGCTCAGAGTCTACATTTGAAC



TCCCTGTGCCAAGAAGTCTGGATAG



AGTATAGTGTCTGTATATTCTAAACTT



TCTGGAACAACCCCTGCTTACAATAC



TCTTTCCAACTCTCAGGCCATG


IM000149
ACCTCTGTGCCAGCTTCTCGGACATT
483
K
Fgf3/Fg



TAACAACTCTGGATCATG


f4


IM000150
CTGGCAGTAACACACTTAAACTGCTA
484
D




GCACCTGGGAAGTGGAAATAAGATC



AGGAGCTCAATCAAGGTCATCCTCA



GCTAAACAAGACCCCCCCCAAAAAA



AAAGAAGAAGATGGCCTAGAAAGAG



AACTCAGCAGCTGCTGATCTTACAGA



TGACTAGAGTTTGGTTACCAGCACC



CACATG


IM000151
CATGCCTGGTCCCTGCTGAGTGCAG
485
C




AAGAGGGTGTCAGATTCCTTGGAAC



TGGAGTTATATACAGTCGTGTGTCAC



TGTGGGTGCTGGGAACTGAACCTGT



GTCCTCTGCAAAAACAAGAGGTCTT



GGTTGTTGTTGTTTTGTTTGAAACAG



GGTTTCTCTATGTGGCCCTG


IM000152
GCAGGAGCCCTTGTGCAGGCCACAA
486
K
Fgf3/Fg



CCTGCACAGCTGTACAAGGCCTGCC


f4



TGACTGCCTGAACAGATGTGTGGGA



TCTTGCCCCCCTTGTGCAGGCGTAC



AGATGCAGACTGCTCAGAGACACAC



ATG


IM000153
CATGGGCTAGACCTACACTGAGTTG
487
D




TGCTAAAGAAGTGAC


IM000154
CATGTCCTCCACAGCTGAGCACCCT
488
K
Fgf3/Fg



CAACTGTCTCCCAGGGCCTCTGTTC


f4



TATCCAGGGTCTGCAGGGTCTCTGC



CCCACGCCTAGCCCCTGAGAAATCT



TAAGCAGTCTGAAAACTACGCCACT



GAACTGCTAAAACCCTGGAGTCACT



GATGGAA


IM000155
TAGTGCTAGACTCTGCCTTTTCACCT
489
D




GGCATAGATTCACCTTTTTCCAGATA



TCCAGGGCACTTGCAAAGAAGCCAG



GCATCATCAGGGGTTTGGACTTCCA



GCCAGAGTCTGAGTTGTCACTTGAAT



GTGCTGCATTTTGTTGGATTCAGCCC



CAGTCTCCCGACTCTTTGTGAGTTTA



GGATAATAATCACAACAGCACCCCTT



CTTATTTGATGGCTAATAAGCTCTAG



GCCAGTGTCTTAGCTCCATTCATG


IM000156
CATGTATTCTGAGAGTAGAATTTATA
490
D




CCCAGAGAATACCTAAGAAGTGAAC



TGACGCCGGGCGTGGTGCCGCACG



CCTTTAATCCCAGCAGTTGGGAGGC



AGAGGCAGGTGAATTTCTGAGTTTG



AGGCCAGCCTGGTCTACAAAGTGAG



TTCCAGGACAGCCAGG


IM000157
GCCTGGTGTGGTAGCTCACACCTTT
491
K
Fgf3/Fg



AATCCCAGCACTCATCTCTGTGATTT


f4



GCTAGGCCAGCCTGGTATACACAGT



GAGTTACACATCAGCCATG


IM000158
CGACATCCAACTTCTGGAAGGAGAG
492
K
Wnt3



ATGGGAAGGGGCATTTGGGGTGCTA



GGAAGGGATGGGAGGTGTCCCTAGA



GCAGTGCTCATG


IM000159
CATGAAATAATGCCTTCAGAACTGCA
493
D




TTAGAAATCACAAATAGCCCTGAATG



CCCTCTAGATGCTTTTCTTGAGAACA



ATTATGTGTTAAAGTCCTAAGGCCCT



TGTCAGCCCACCATATGGAAAGGGA



GAACTAACTGAAATGGGAGTT


IM000160
ACTGACAAGAATAGAGAGAAGTTCA
494
D




GTCATG


IM000161
GTGTCCTGCTCCTGTCTGGGTCAAG
495
D




GTCATAAAAGATGAGCCAAGGCTGA



CTTCAGTGCCCACCTGGGGAGACTG



ATGTCTTCACAGGAATGCTCACCTG



GAAGGTGTCCTCTGGGTGCATCTGT



GTCACATTCGGTATAGAAGGAAGAAT



GCCAACAATACTCTAAAAATATTAGA



GGCCTTGAGAGTCCTCAGTGGTATT



CCACCAACATCAAAGCTGCATCGTAA



TATGCCAGCCTGGTCCTCACCTTTCC



TGCCCTTCCCAGGAAAACATCAGCC



TTTAACCTCAGCCCATAGGGGACAT



G


IM000162
AGGATCTTATAAAAATAACAGTGACC
496
K
Wnt1



CAAAACATAATTTTTGCCATCAAGAA



TCTCAAAATCAAGTCTCATCCAAGTC



TACTCTTCTTTATTGTATCTTAAACAC



ACACACACGCACACATCACACAAGC



ACACACACAAGAATTCACACACATAC



ATG


IM000163
CATGGTATTCTGATGATAGTACCAAC
497
D



ATACTGCTGCAGCTAGCTGTATCTG



GAAATCCCAACCTCAGCCAAGTATTT



GTGGTTGAAATAACCTATACTTCTCA



CATCAAACAC


IM000164
ACTGTGACCTGAGCACTTCTTGTCTT
498
K
Fgf3/Fg



ATCAATAGCTCACGTGCCCAGGCCG


f4



GGTGACCAGTCTCTAGGATGTTCTC



CATG


IM000165
CATGCACACAAACTGGCCCTGAACT
499
K
Fgf3/Fg



TTTGACTTCCAGGCCTCTGCCTCTCT


f4



GCGCGCACACACACACTCGCACTCC



TGTATATGAAGCGTATATGTGTTTCT



CTGGGAACTGTTTTTATCAGGTGAAG



CACTTCCTTTGTTCTTGCTACCCACC



TCCAGGGCTCCAGGATCTCCAGACA



GCCAACCCTAAGACAGGCCCAGCTT



CCTCTGTATCTCTGTGATGAGAACCT



TGGCATAGAGCTGCCCTCACCCTCG



GGATAGGGCTTATGTTCCCCGGAAC



GAGCCAGGCACCTCAACAGCTCCTG



GGGAGGAATAGGGGACT


IM000166
CATGGCACTATGAAGGAAATGAAGA
500
D




TACAAAAGATTTCCCATACAAAGGGT



CAACTGTTCAATTTGGCATTTATT


IM000167
CATGATAGAAGACCACGTCTGGGAT
501
D




GGGGTAAGGGTTTCTCAGAGTACCT



TGCCCTGGGGCCACATCCTAAATCT



ACAACAAAGCT


IM000168
CATGCAAAAGAATTCCAAATGATTTT
502
C




ACAGATCTTAGCCCTCTAAGAGATAG



ATATAGCACAAGTCCTGACTCCTGAG



GTAGGTACACACTGACTTCCTTCCAC



AAGCACTGCCTCAGCCCGGAGATGA



AGGTCACATCAATAGAGACAAGTCA



GGTTAACCGTGAGCAACCTCAAGAC



AAGGAGGAGCACAGCATAGGTCGGT



GGAAGTGTTTGCATAAGCCTAAGGC



CTGGGCCCAGTCACCAGCATTGCAG



AGGAAAAGGAAAAACAGATAGTAGG



TGCCTTGGTGTGT


IM000169
CATGCAGTTTACCAATCTTTTTCCAC
503
D




TCTTTAAAAAGACAAAAAATATTAGAA



TACTGGGCTGAGGAATGGCTCATCA



GTTAAGAGCGCTGCTCTTTTGAAGG



ACTCCCGTTCTGTTCCAAATGCCCAC



CTGGAGGCTATCCTGTAGCTAGAGG



T


IM000170
AGGAAGTGCTGAATAGAGAGGTTTG
504
K
S100a4



GGGAGAGCCCAACAATCTGACCTAT



TTATACCCTGCCAGGCCCTGCCCAT



G


IM000171
CATGGTGCTGGAGGATCATCCATCC
505
R




TGACATTCTGGGA


IM000172
CTTTAACCCATTTATGGTGTGACCAG
506
D




AAACCACAGATCTTACCTAGGCTTCA



GACACATCACCCGAGGAAAGCTCCA



TTAAAATCCTCATTCATG


IM000173
CATGTATTCATAAGTGGATATTAGCA
507
D




AGAAAGTACAGGCTAAT


IM000174
CCTCTGGAAGTCAAGTGCAGCTTTG
508
D




CTTATTTGTTTAAGCCATCCACCATC



CAGTTATTAGATCTGAATTCATCTTTT



AGGGTCAGCTTTGTTGTAGATTTAGG



ATGTGGCCCCAGGGCAAGGTACTCT



GAGAAACCCTTACCCCATCCCAGAC



GTGGTCTTCTATCATG


IM000175
GTTTTCTTTCTTTTTTTTTTAAAAGAA
509
D




ACAGTCTCAAGTAGCCCAGGCAGTC



CCTAAACTTATTATATAGCCCAGGAC



AGTCTTGAATTCCTGAACCTCCCTCC



TCTACCTCGTAGTCCTGAGACCGATT



GCATG


IM000176
AGAGACCCAGAAATACCAAGGTGAT
510
D




TTCCAACTGCCTGACCTGGGAGGCA



AGCATG


IM000177
CATGTAAGATCTTCACTTTTCCAGTG
511
D




TCTGTTTGTGCTGCCTTCAAACTGTT



GACCTGATGTAAAAATGTTTGCATCA



GCTCAGGTGTATAGAATTGGACTGAT



TCCAGGAGAGTCAAATATACAGAATA



TCTAGTGTCCAAGAT


IM000178
CATGCTAATGGAGTTTATTCTTAGGA
512
D




CTGCCTCCTGCATCCATTGATTGACT



TAAATATGTGCACACT


IM000179
ACTAGGTGACTGTCTCAGGGTCTCA
513
R




CTGTGTAGTCCTGGCCTAGAACTCT



CTATGGAGACCAGCCAGACCTCACA



CTCAGATCCAGATGCCTCAGCCTCC



TAAGTGCTGGGATTAAAGGCCAGTC



CCACCATACCCTGCCCCTGTTTCTGA



CATTTGAACCCCTCCTTTAGACAGTA



GGGAAACTGAGGCCCTGAGATATGA



CACTTTTAGGGGCATG


IM000180
AAACTTTCAGAAAGCGGGGGCTACCA
514
D




AGGAGACTCAATTAAGATCTCTCCTC



GATCTTGAAACCATCCCCAGCCCTTC



GCAAAGCACATTTGACGGACAGGGT



TCTCTTGTCTTGGGCAACACATCCCG



GCTACGCTCTGCAGGGTGAAGCTGT



TAAGAACGTTCCATG


IM000181
GATAAGCCTCTACAAAGCTGGAGAG
515
D




GGCAGTCCAAAGAAACTTGAAAAGA



TTAAAAGACAGTGCCTAAGGACACAA



ACGTTTTTCCATAAAGAGCCTATGAC



ATATTTTACTGCTGCTAATGAAACTG



ACCTTGAAGGAACAAGTGTTTAGGG



TTAGCCTAAACTTTGGAATTGGTGAA



GGCAATGTGTCAGCTAGACAAATTA



GAGAAAGAACTCAACAGATGAGTCA



ATGAATTGTTCTAAACTAGCTTGACT



TAGGATTTTCAGCACAGGAACAAAAG



CACATACTGTCCCTCTGGTTGGCAT



G


IM000182
CATGGAAAATGATAAAAACCACACTC
516
R




TAGAACATATTAGAGGAGTGAGTTAC



CCTGAAGAACACATTCGTTGGAAAC



GGATATTGTGTAA


IM000183
CATGCCCGGCTCTATTACTATTTCTT
517
D




TCTTTCTTTTTTGTTTCAGGATCCAGT



TTCCTTGATAAATTTTTCTTGAATGTT



GTTGTTGTTTTTTCTTTTGCTGAGTTT



TTCTTCAATACTGCTGCTTTTTCTCTC



CAGGTTCAGGATGAGA


IM000184
CATGCTGTCACTAAGCTGTGCTCTTC
518
D




CAAGGAGATGAAGAGACTAGCTGGT



ACCCTTGCTATGCCAGGCTTTCTTCT



TGTTTATACACACCTAATG


IM000185
CATGATCTAATCTGAACTTGTATCCC
519
D




AACCCTTTATAAACAAGTGAATGTGT



AATCTAAACTAGTATAAGCTCTTGAA



TAATAGCTGAGTGAATTGCCTTTGAT



ACACGTTTCCAAATTAGTAGCC


IM000186
GTCAACCACAGCAGTACTGTTACTTT
520
D




CTGTGGGGGAGACGTCTCCCCTCCT



CATG


IM000187
GGCAGTGAGCTTGCCCACTCTGCTAC
521
D




AGGACCTCGGTGACCCACTATATACAG



CCCTCTTCACTACGGCTCACAATCGG



AGTTTTGACCCAGTGAAGTAAACCCAG



CAGGACCCTTTACAAAGCCAGGACATG


IM000188
CTTGTCCAAACCAGCTTAGTCAACAG
522
D




CCTCCTATCTGGGCTCCATCTTACCC



TCCTCATCTAGCTGATGAATGTACCT



GCCTTCTGTTCCCTTCCTCCTGGTCT



GAGCTGAGCCTTCTTGGGACTGAGA



GCCTTCATCCACCACAGGCAGACTA



TCTTTAGATCATCATAGCCCCAGGTC



TTCATTGCAGTGCAAAAGTGCAGAC



CTTACATTTCCATTTTTATGCTCCCTT



TGTAACGGCTCCTTACCGGACTGCA



GCATAAGTGGCTGAGTATCCAATCA



CAATAGAACACTTAGTTGTTTGCTTG



TCTAACTCTCTCAGTTACACCATTGA



GTATGTTACACAGGGCTGCTTTGTAG



CTGTCACTGAGGCCACAAGGCAAGG



GGACTAAGGCAGGACTCAGATGAGC



CTGTTTTTACTTCCCGTTGTCCCTTT



CACTTTGGGTTGAGCATG


IM000189
ATATAGACTCAATCAAGGTATTATTC
523
D




TGGAACAAACAACTAGTAACAAAAAT



AGTGCAATTGCAAGTATGATAACACA



AGGCAGCCTTTACCAGCTTTGTCGG



AAGGAAATTGTTCTTTGAAATCTGAA



TTCCAGAGAAAAAGTCAAATGTAAAC



TAGAAGTGTTTGCATG


IM000190
CATGTATGTGCGTGTGTGAGTGCAT
524
B
BF1638



CAACACAAGTGCATAGATGCGTGTG


10



TGTTTGTGTGTCTGACTGTTTAAGTA



GGTGGCATCTGTCCTAGTCCTGACT



TTTGATAAGTCTACACGTTTGATAAG



AGGATCTCTCTCACCACTCAGGTTCC



TCCCCCCACCTCCACCCCAGTACAC



AGCCATAACTATAAACTCCCCACGCA



GATGAAGCCCCTCTGATCCCATTTTA



GGGACATAACACCCCCCTCCCAGAC



TGAGCTAATGCCTTGGACCCTCCAA



AACTGATCTGAACCCTCTCTGACCCT



GCCCTCCTCCCAGCACAGGGCAA


IM000191
CATGATTTTCAGTTTTCTTGCCATATT
525
R




CCACGTCCTACAGTGGACATTTCTAA



ATTTTCCACCTTTTTCAGTTTTCGTCG



CCATATTTCACGTCCTAAAGTG


IM000192
AAGTATGTCTGCTATGAGTCAAAAGT
526
D




CTTATTTTTGCATCACATG


IM000193
CATGCCGCAGTGGCCAGCAGCCCTG
527
K
Fgf3/Fg



GTTCCAGCATTCTCAGAGATAACAAG


f4



GAGCCAGTGACCCTTTCTTCAAGCA



CCAAAGAAAAGCTAACCGACCCCAC



AAAGACCTGAGTATGAATGGTTTCTG



CAGCTAAGGCACTTCCTTTGAGGTC



AGCGCAGTTCGGGGCTGAGAAAAGA



GCTTGCCCTGGCTTAGAGCCTTTCT



CTGGCTCACTGTCCCAGCCAGGACC



CATCCATCAGCCCACAGTGGGGTGG



CATAGTGCAATCCTAGAGAGATGTTC



AAAGGGACATATC


IM000194
ATTCTCTGGGTTTTCCTGTGGTGCTC
528
R




TGGACCCCTCTCGCTCCTACAATCCT



TCCTCCCCATCTTCCACTGCTCTGCC



TAGTATTTGGCTGTGAGTCTCTGCAT



CTGTTTCCATG


IM000195
CATGCCCCTCTCGACCCTGGGAGCA
529
D




TTCACCATCTTTATAAACTGATTCTTT



CTGGGAAGATGATG


IM000196
CATGAAACACACTTTTAACTTTCCAC
530
D




ATACTTTTTAAAAGTGTACCTTCCCAT



TTTTTCGCCCCTAGACCCAAATTGGA



TGTTTCTGGCTCCCTCTCGTTCGTAG



CTTTCCTGTGATGTAGAAACCTCTTA



GAAACCACACC


IM000197
GTTTCCCACGGTGGAAGAGGCAAAC
531
D




AAGATCCCTTGGGCCTGCCTTCTTGT



GGCACTAATCTTACTCATG


IM000198
ATGTGGTGTTTAAATGAGAATGTGGC
532
D




CCATAGGCTCATATGTTGAATACNTA



TTTTCCAGTACTTGGAAGTATTTGGG



GAGGACTAGAGGTGTGACTTTTTGA



AGGGGGTGTATTATGTGGATGTACT



AAGAACCTTTAAATCCCTCTGACCAT



G


IM000199
GCATCATAGTTGTACCATG
533
D




CATGGGTTAACAGTGGGCCCTAAAC


IM000200
TTGAACTAGAAAACTTAAAGATG
534
K
Wnt1



CAAGTCTGTCTGTCTCCTTACTAGCC


IM000201
TTTTGCTGTTCTGACTCTCAAATGGT
535
K
Fgf3/Fg



TCCTTAATTGGCCATTTGTCCCCTAA


f4



ATTAGGGGCGATTAGGATCAACACT



CAAGCAATGTTCCAGATGGGGTCTG



ACGTTCCTCACTGGGGTCCCAGGGC



TCCTCTGACTTGGTCACAGAAAGGT



CAGCCCTCTGACCTGGCATAGATGT



CTGGATGACCTCTGACCTCAGCTCA



TAAACCTGACTGTGGAGATTGAGACT



GGAGGGACTCAGGGCAGTGGCTCA



CTGGACAGTGCCAGGGTGTGCAGTG



GTAGGCAGACTTCTATGTCAGGTCC



TCCTGTGCCTCCATG


IM000202
GCACATATCTGAGCATCTCAAGAAG
536
R




CTGAAGCAGCAGAATCATCCGCTCG



AAGCAAGTGTAAGCCAATAAGAAGA



CTCTGTCTCAGAAGAAACTGAAACGA



AGAGAGACAAAAACAACTTCTGGGG



CTGAAGAGATGGCTCAGCAATTAAAA



GCCCATTCTGCTCACTCAGAGGCCC



TCTGTGAGCTGTCTCCAGATGTTTAA



CAAGCACAGCTAACATTTGGCATG


IM000203
CACATTCATTAAAGAGACTTTATTAAA
537
R




GCTCAAAGCACATATTGCACCTCACA



CAATAATTGTGGGAGACTTCAACACA



CCACTTTCATCAATGGACAGATCATG


IM000204
GGGGAGAGGCTTCAATGAGCCCCCT
538
D




CACATTTGCATTTAAATAGCAGCATC



AAGCGCTTCGCGTGCCACACACCAG



TGGGCTCCCAGATGTCAAGCCGGAG



TCAGTCAGATGGCCAGTGCCCAGCT



GTCCTCCCTATGTCGTGCCGGAGCA



GGCAGTGACCTTAAAGAGACAGCGC



TCACCGCTCCTGGAGCCCGACTCTG



GGTCCCTCATG


IM000205
CTTGTCCGCCACCCCGCCTGCCTCA
539
K
Braf



TTACCTGGCTCACTCACTAACGTGAA



AGCCTTACAGAAATCTCCAGGTCCTC



AGCGGGAAAGGAAGTCATCTTCTTC



CTCATCCTCGGAGGACAGAAGTCGG



ATGGTAAGCATCTGTGCTGTGCTCCT



CTAACTGTGACGCCGGGTTCCCATC



ACATG


IM000206
ATATAGTATGACTGCCTCAAAACAAA
540
C




ACAACAACAACAAAACCCCAAGATAT



CTAAAGGAGGAACATTCCAAAAGAC



AGAAATGTCCATAGACCTTGACAAAG



GAACATG


IM000207
GTCAAGTGGATGTTTCTCATTTTCAA
541
R




TGATTTTCAGTTTTCTTGACATATTTC



ACGTCCTACAGTGGACATTTCTAAAT



ATTCCACATTTTTCAGTTTTCCTCGC



CATATTTCACGTCCTAAAGTGTGTAT



TTCTCATTTTCCGTGATTTTCAGTTTT



CTCGCCATATTCCAGGTCCTTTAGTG



TGCATTTCGCATTTTTCACGTTTTTTA



GTGATTTTGTCATTTTTCAAGTTGTCA



AGTGGATGTTTCTCATTTTCCATG


IM000208
CATGAAGTTAGAATAATTGGGATAAA
542
R




GCTTTTATCATTATCAATTGGTTTTGA



AATTATTGTATTGATATCTTGTAAACT



GAATATTTATTGGTACATAAGTCTGG



TTATGGTTGACTACTTTAAGTTTTAAG



AGTTTTGATTCTTCCAGGTAAATGGG



TGTTGTAATG


IM000209
CATGCAGCCGGGGTGGGATTTGAAG
543
D




ATTATGCCTAGTGAATATTTAATATTA



AACACGGTGTGATCGAATTGATAGCT



GTTGAAAACTAGAGCGAAACC


IM000210
GGACAGGGTCTCTCTCTCTTGTTGTT
544
D




CATTGTTTCATATATCATCGTCGGCC



TGCTTACAGACTGCATTGTGTTCCCC



TGTCTCTGCCTCCCATCTCACTGTAG



AAGTAATGGGATTACAGATAGATGCT



ACTGTGTCTGAAAGTTAAATTCCTAG



GCCCCATG


IM000211
AGTGGGAGGGAGCGCCACTCTTGGA
545
K
Fgf3/Fg



GCTAGGCAGGAACTGTTGTTACTTCA


f4



AAAACTAACAAGACAATCTCACATTC



CTGAGCTGAAGACCAGATGCAGCCA



GGGACAGGGTTCTGCCCTGGCCACT



AGATGGGCTCTCTGGCCCTGCTAAA



GCACTGCACAAAACTGGACGAGGTG



CACCAAGAGTCCCGTGTTTGGCCCT



CAGGGCAGACTAGAGAGCAGGACTT



TCTCCTGGGAGCAGAAACTGAGCCT



GGGGTCTTCATG


IM000212
CATGCTCATAATTCTGCAGTGCCTTC
546
D




TCATAACACAGGATAAAACACTCTAA



CCTTTAACATTATACTTGAAAACTTAT



GTGGTTTTTTCCTACCAGAGTCATAT



CAAACCAGTCTCCCTCTCCACTCACA



AGGATCCAGTCACAATGGCCTTTTA


IM000213
CTGTAGGACCTGGAATATGGTGAGA
547
R




AAACTGAAAATCACGGAAAATGAGAA



ATACACACTTTAGGACGTGAAATATG



GCGAGGAAAACTGAAAAAAGTGGAA



AATATAGAAATGTTCACTGTAGGACA



TG


IM000214
CATGGCGAGATTCTGTGTCCAAGCT
548
K
Wnt3



GCCTCTACTCGTGACATTCCAAGATG



CCTCTGAGGTGGGAACTGTGAAATA



GGACAGAGCCCCACAGTCCCCTCTT


IM000215
CATGGGGGGGGGTACCAAGAAGGG
549
D




ACTGCTGTGATTGGGATGTAAATAAA



TAAATAAATAGAATAAACAAAACCCA



AAAACAAACAGAAACCTAAACTCAAT



AACTGCAGAAATGACTCTTGCTCTTT



TCTGGTAAGGTTAGAAGCAGGTTAC



AAATCTATATTAGAGATGGAGGCATT



TCACACCAGCATAGGTATAGGAAGT



AGATGAAATGAGGACTACACTAGAG



TCTGTTTGTCACAACCAATTCTGAGT



GATTTCACTGAGATAT


IM000216
CTCTGAGAAACCTACCCCATTCTCCC
550
D




TCCTTTCTCCCATAAGCAACCACCTC



CACAGCATTATCAAAAGACTGCTGAC



AGATTGGTGGCTCAGCAGGGAGAGT



CAGAGCTGTTTCTTAGGTCTAAGTTG



TAGCTCCACAGTAGTATGTTCTCCAT



G


IM000217
CATGGAACACTCAAAGCTGGCCAGG
551
D




GCCCATTTACCAGGTATCCTTTGCCT



TCTCAGCTGATGGGCATCAACACATT



AATTCACATATGACTCGTTTGTGTCA



TATCAATAGTAT


IM000218
GTGGTTTTTGTGGTAGAGAGACACA
552
D




GAAGAAACTGAAGTCCTTGGAACATA



ATTATCACTGTGGTTGAATGTTTGTG



TTCCTATAACATCCTATGTAGGAACT



GAACCTATAAAAGTAGTGGCTCCGA



AGGTGGTGTCCTTAAATGTGAACTG



GGCTACAAGATTTTGCCCTTGTGAAT



GGCTTTATGGAAGAGGCTGTCACTTT



TCTGTCTCTTCCTCCATTATCTTGGA



AGACACAACAGTTCAAGGTCTCATCT



GGGAAACAGAGACCTTTACCAGACC



CTAAATCTGCCAGTGGTGTCTTGATC



CTGGTCTTTCTGTCCTTAGGAGCTAT



AATGCATG


IM000219
GGCCACAGCCAGTCCACCTGTATGC
553
K
Fgf3/Fg



AGCTGGGTGCTTGGAGTGGCCCTGG


f4



TAGACAAAGTCTCCATCTTGCCATG


IM000220
CCTTAGGGCCCAAAATCCTTCCTCC
554
R




CATTCTTCCATAAGAGTCCCCAATCT



CCATCCACTGTTCACCTGTGGGTGT



GTGTATCTGTCTAAGTCAGCTGCTAG



GTGGAGATGCTCAAAGGACAACATG


IM000221
GACAGTAAAGAAGACAAAGAAGTGA
555
D




GTAGAGCTGGATGAAAACTAGGAAG



TTCAGACAAAGACTGCGGGAATGAN



GTGTAGAGTCTAGAGCCCAAACAGT



TAAACATG


IM000222
CTGCTACATTCTTAGCTCTAGCTAAC
556
R




TAGCATCAATTGTCCCAACCCCTTCT



ATGTATGACTCCAAAGCCAGTGTCAC



ATG


IM000223
CATGGTCTCTAGAGCTAAGAGATAC
557
D




CAATGCTGCGGCAGGCAGTTTTTATT



ACAATCATTACAGTTTTGACAGTGTC



TGGCCGTGTGCCAAGGCTGGCCTTC



ATCCCTGAGCTCGGTGATGCTTCTG



TCCTGGTCTTCTGGCTCGTCACAGC



TTAAGAAAGTAGCTGCTTCTC


IM000224
CATGGAAAATGATAAAAACCACACTG
558
R




TAGAACATATTAGATGAGTGAGTTAC



ACTGAAAAACACATTCGTTGGAAACG



GGATTTGTGTATATCAATGAGTAGTT



A


IM000225
CATGGAAAGATAATGTGTAAATTTGG
559
R




GTTTGCCGTGGAAAACTTTGGTTTCT



CCATCAATGGTAATTGAGAGTTTGGC



TGGGTATAGTAGCCTGGGCTGGCAT



TTTTGTTCTCTTAAGGTCTGTATGAA



GTCTGTCCAGGATCTTCTGACTCTCA



TAATGTCTGGTGTAAAGTCTGGTGTA



ATTCTGACAGGCCTGCCTTTATATGT



TACTTGACCTTTTTCCCTTACTGCTTT



TAATATTCTA


IM000226
GGTAAGAGTGGGAGAAAATGGGGGT
560
D




GGGGGGTGGGGACACTGCAGAAAC



CTGGGAGAAAAAAAATCCAACTAAAA



TCAGGAAACACATG


IM000227
CACCCCCATCCCGCAGTTCCCAGAG
561
D




GGAACAGTCCCAGCAAAAATACATG


IM000228
CATGGAGATGCAATGAAAGCACACA
562
R




ATATTGCTGAACCAAACAGAAAGCTC



AAAACTAGGCACAGAAAAGAGATAC



AAACACAAATCTGAACAAATTGACCT



TCTCCCTATAGCATAACTAATATCTC



AGAGATAAAAGTGGTCTTTATATACC



AGGGCGAAAGAGGTCTAAAAAGAGA



GGAATAAAAAATATGGCATATTTCCT



GTCATATGCAGAACCTATATGAGTCT



TTTTGTTTGTTTCTTTCAATACAGCCT



ATGTAGCTCTAGCTGTCCTAGAACTT



ACTTTGTAGACCAGGCT


IM000229
CTGTTCTACAATGCCGGTTTCCAACG
563
R




TATGTGTTTTTCAGTGTAACTCACTC



ATCTAATATGTTCTACAGTGTGGTTT



TTATCATTTTCCATG


IM000230
GACAGGCTCCAATCAGATATACCAA
564
R




GGGCAGGAAGCACGTGACAAAATCA



GATGCCTGGAGACAAGTGTAATAAA



AGAAGCAACAGAAAACAAGGTTACTT



GGCATTGTCACAACCCAACTCTCCC



ACCATAGCAAGTGATGGATACACCAT



CACACCAGAAAAGCAAGATATGGAT



CTAAAGTCACTTCTCATG


IM000231
CATGGGTCCCTGAAGGGTCTCTCCT
565
D




TTAGCAAACCCCTGTACAGTTGAAGT



GANTTTTCAGGTACCCATTGGTCTTA



GC


IM000232
CCCCACTCCTCACAGGGCTCCCCAC
566
K
Fgf3/Fg



ATCTGCCCTGGGACACCCCACTCCT


f4



CACAGGGCTCCCCACATCTGCCCTG



GCACCCCTCCATTTTTCAGGCACCT



GAAGTCCCTACTTTCTAAAGGCCATT



CTTCTACCTCAGGTCTTGCTCTAGGA



CTGTCAACATG


IM000233
CAGGACAGCCAGGGCTACACAGAGA
567
R




AACCCTGTCTCAAAAAACAAACAAAC



AAAAAAAAGACCATTATGCATTCCTG



CGGCTCTGACATG


IM000234
CATGGGCAGCACCTCGTGGAACACT
568
D




ATTATAAGTGTCCTCCAGTCAGGTCA



ACAGCGTAAGAT


IM000235
CCTGTACATTCTGTGTTAAGGACAGA
569
K
Fgf3/Fg



GGGCCTCCTGCATG


f4


IM000236
CATGGAGGCGCAGGAGTTATTGTCT
570
D




AAAGTTGTGAAGATGAAGCCTAGATT



GTATTGGAGATCCGGGTAT


IM000237
GCAGATATTTCCACCTCTGCCTTCCA
571
C




CAGTCCTTCCTCCCATG


IM000238
CATACGCTTACAATGTGTTGTTATTT
572
D




CTGGTTCTCGTCTGCCTTCTTTATAA



AAACAAATCCACTAAGGTGGAGTAG



CCAGCCTTTACTCAGGGACTGTCAC



CATG


IM000239
TTCTGTATATATTGTGTGGTCAGAAA
573
D




ACCGTGGTTTTCCTGGTGTCAAGAG



TTAACACTTTCAGTAATCACTCATTCT



AAACCAGACAAACCTTTAATCTTTCA



TCTGGAAAGGTACTCATTCAAACCAA



TGCTCTCTTAAAACCAGAGTATTTAA



ACAGCCAACTGCATCTTCAGGGTTTC



ATAGAAAATCAGCTTGATCTAAAATA



GTCACTGAATTCTGATATCATAGACA



TG


IM000240
TCCACCCACCCACCCACCTGCCCAC
574
D




CCAGACAAATGTTCACTGAGCATTCA



TATACTCCATTCACTTCTAAGTACAG



AGCCTAAGAATATGAGAAAATCCTCA



TAGCAAAGAAATGCCTCTTGCAACTC



GAGTAAAAACTCGAGTATGGGATGG



AAGAGTTGAGAAAACAGATGATAGTA



TGAGAGCCTATG


IM000241
AGGAGCCTAGCAGAATTGCCCTCTG
575
R




AGAAGCTCCACCCAGCAGAAACAAA



TGCAGAGACCCATCGATAAACACTG



GACAGAGCACAGAGTCTTGTGGAAG



AGTTGGGGGAAGAATTGAGGAACCC



AAATGGGATAGGGACTCCACAAGAA



GAAAAAGAGAGTCAACTAACATG


IM000242
CATGTCCTACAGTGGATATTTCTAAA
576
R




TTTTCCTCCTTTTTCAGTTTTCCTCGC



CATATTTGAAGTCCNAAAGTGTGTAT



TTCTCATATTCTGTGATTTTCAGTTTT



CTCGCCATATTCCAGGTCCTACAGT



GTGC


IM000243
CATGTGGAGGCCAGAAGTCAACATA
557
D




TAGTCTCCTTCCCAATTACTTGTCAC



TGGAGAGC


IM000244
GTTCAGTAGCCAGCAGGGGGGATAG
558
D




GACCAGCCCAAATTCTCCCTTTGCTT



GGCCTTGACTACTAGTCTGGGAAGG



GATAAGTGGGCTAACCAGAAGTCTT



CCACATCTCTAAGTGATTAAAAATGG



AAGACGTGATCTCTGGTCATTCATAA



ACAGGCATTTCTCAAAGTTGGTCTGT



GCAGTTTGTGGGAAAAAATGAAATGT



ACTCATG


IM000245
CTACAGAGTGAGGTCAAGCTCGAGG
579
D




ATAGCCAGGCAGGGATGCACAGGGA



AACCCTGTCTCAAAAATCAAAACCAA



CCCAACAAACAAAAACAAAAATGGAA



GGATAGAAGAGAGATAATCCATG


IM000246
CATGTACTGAATCCCTGAAGTTGATG
580
D




CTGAGCACCATCTTGTGCTGTTCTAC



CGCATTTACTGGGG


IM000247
CATGTGTCACTCAAAGGCTGCTGAG
581
D




AATCAGGCTGTACCTGTATTCCTAAG



CCATCCACAGCCATCCTGACCCACA



GCAAATGCTGGCAGTCGCCCCACAG



CTGGACTCCGTTCCTCCCTCCACTC



CTATAGCCGAGGCTATCCACACAGG



CTATTTCAGTGCCCTAAGCCTTGCTA



CCCTTATGTATACATTGAGGACAATG



AT


IM000248
AGAAACCACTGCCAAATCAATACATT
582
C




TTAATTGGAAGTGTTTATGAAGCCCA



GGAGAGATCCCTAAATGTATTAATTG



CTTCCTGAGGAAATATAAAACTCACA



GTTACTAAAGCCATG


IM000249
ATCTTCTACACAGATGAAACTGACAA
583
K
Fgf3/Fg



AGTACAAATAAAGATTATATACCAAA


f4



ATGAAAAAAAGTAAACAGCACACATT



TATAGATGCATCTAGCATCCCCCAAA



GCTCAACACCATCCATACTTGAAGAC



TGCAGTGGTCCCTCTAGACAGTATG



CTCCAGGTCAGCCCTCAGCACTTGA



GAATAAACAGCTTCATTTACTCAGCC



TGTTGTCAGGATCCATG


IM000250
ACTGCCTCAAAACAAAACAACAACAA
584
C




CAAAACCCCAAGATATCTAAAGGAG



GAACATTCCAAAAGACAGAAATGTCC



ATG


IM000251
CATGAGCTGTCGATAGTGACCTGCAGT
585
C




CAAGGAAATCTGAGGGCTTCCTAATTA



ACAGAGGAGCTCTAAATGAGAGTAACG



CGCTCCACAAACCCCCTCACACTCGGT



AAGTGTCACGGTGCAGATAAT


IM000252
GCCGCGTATGTGTTTCTTTTTCATAGA
586
D




AGAATTAGCACATAATGGAATGTGCGT



ATCTGAAGTGCACTTCTGAGGAGTATT



TATTATTACATACCTTTACAAGATATC



TTTTCTCAGGGAGCAACCTGAAAACAT



AAGGAGAAAAACATAAGAACTGCCACT



CTAAGGGTTGGTGAAATGGCACAGCCT



GGCGGTAGGACACACACATG


IM000253
CATGGAGAAACCTGGGCTTATTCAAGC
587
D




AGTTTCCTTTGTTTACCCTGCCCAGGG



TTGCCAGTGAAGGGGCTCCTCCATCAC



TAACTAAAGGTCTTATCCTATGCTGGT



TCCTCTCCACCCCACCAT


IM000254
TATAGGAATAGAAATTCAGAACTTAT
588
C




CAGTTTGTTTTGCTTCAAATGTCAAC



ACATAATAAATTTACAAACCCCTTGC



ACATTTGCATG


IM000255
GAAGACAAAAGATGTGTCAAATACCTG
589
K
Wnt1



GGCAAAAGGGGGTGGTGGTGCTCTCTTT



CCAACTCCTGAAAGACACCTCTGCTCA



GCACACTAGTTTCCAGGTTCCTGGGTT



AGGATTTGGGTGAGATTGGTCGGCGAT



GGTTTGGTTCCTCCATTCTGCTGCTTC



TCCCTGATACATTGAGTTACAGCAGCC



CACGCGTACACACTCTCGCACATG


IM000256
GAAGAGGAAATAAGGCAATAGCTAGAC
590
D




TGGAAAAACGAGCCAGCCTAAGAAGCT



GCAGAGTAGTCTGTGGGGTTCTGCTTT



GGTTAGCTGCCTTTAGTGCTCATG


IM000257
CATGGATAGAGGATGGAAGTTGAAA
591
D




ACCTGCTATTAAGAACATAGCCCTGT



CCATTAGTGAGAGTG


IM000258
CATGTGGCCCAGGGGCACTTGGAGCC
592
K
Fgf3/Fg



TTAGATAGCTGCCTTTATGGCTCCTG


f4



GTGGCCTTGGATGTGGGTGGGTGACA



GGAAAGAGGAAGAGCTGGATAGTGGG



GGGTCCCCAGGAGGAGCTAGCTGTGC



TCTCTATCACTTTTGCTCTCCTGGGG



CTACCCCCGTCTCAGGGGAAGGCCTG



TGACTGGCTAAGCTACAAGTGTGGGC



TGAGACCTTTCTCTGTGACACTCTGG



TGCTACTCTGGCCATAGCACAGATCT



CTAGGAACGCACTCT


IM000259
TATATGGATATGTTTATGTGAGGGTA
593
D




GGCACTCCTGGAGGGTGGAGGCATTA



ATTAGATCCTCTGCAGGTGAGCCACC



TGACATG


IM000260
ATATGTGGACTGTAGTCATCTTGAAC
594
D




ATCTGTAACAAAATATATAGATTAGG



AGGTTTAGACAGCAGACATG


IM000261
GTGCCTCTTGTCTGCCTAGCTGGTAT
595
D




TGTAGCATG


IM000262
ATTTGTGACATCTTAGGAGCTTAGGT
596
K
Fgf3/Fg



TGGTCTTCGAGACACAGGGCTGTCCC


f4



CTGTAAAGCAGGTTCCATCAGTGACT



CCAGGGTTTTAGCAGTTCAGTGGCGT



AGTTTTCAGACTGCTTAAGATTTCTC



AGGGGCTAGGCGTGGGGCAGAGACCC



TGCAGACCCTGGCTAGAACAGAGGCC



CTGGGAGACAGTTGAGGGTGCTCAGC



TGTGGAGGACATG


IM000263
CATGACGACTTGAAAAATGACGAAAT
597
R




CACTAAT


IM000264
CCTAAGTCTGACCGTGCCACTTCCCA
598
B
AATTT. 102



GTCTTCCCTACAGTTCAATGCTTTTA


899



GGCACAACAAATTTGTACCCCTCATG


IM000265
CCCCCCAGCCTGCTCCCTCCCCGGAG
599
D




GGAGTCCCCAGTGTGACATG


IM000266
GTTTAGGTGATAGGGTACTTGCCCAG
600
D




CAGTAGGTGGTGCCCAGGATTCTATC



CTCAAAATTGCACAAACAGAACATG


IM000267
CATGTTGTGTAGATACCTACATAATT
601
D




ATAATTCATAACTGTAATTTGCTAC


IM000268
CATGGGTTTGAGCCTTGTCCTGAGCT
602
D




GGAGGAAGAGAGTGACCCAAAGGGAC



CTTGGTAGCAGCCAGGGATGTGTTGG



GGAGCAGAGAAACTTTTATGAACTTC



AGTTTCAGTACTGAAACTTCCCTTTC



CCTAGACTTCCTTTG


IM000269
CATGGGACAACTCCTTTTTCCTTCTG
603
D




GGTCAGGGGAGAGAGACCTCCTATCT



AAACTGTATAGGCCATTGCTGTAGCC



CTTAGCTCACTTCCGGGGCGGGGAGG



AGGAGGTTAAGACCCTAT


IM000270
CATGAAATGAAAGAACAGAGTAGCAA
604
D




TTTGGGGAGAAAAGCCTGCCGAGCGG



ACTTAATCTTTCCCAAGTGCTATCAGT


IM000271
ATGCTTGTCTTTCCCGCCCATTACCT
605
D




GCTTTTGTTTGAGATAATAGTTTTGT



TACTTTATCAACTAGTAGCGACTAGT



TTACATTTGGTTTCATAAATAAGATC



CATTTTAATCTGAGTTTTCCATCCTT



GATTTATTTTGATTCATATTTTAATT



GTCTAGTTCCCATCCCTGGGCAGGAC



TTTTTGGGAAAGTCTTGCAGGTGACT



ATGTTGAGAATGATTTATGTTGTATT



AGCACAGGTACATTCGACAGTGCTGG



TTCCTTCTGGAGCGCCTCGGGTGTGG



GTCCTTTTCCTCAGC


IM000272
CATGAGTTTGATTATTTCCTGAATTC
606
R




TACCTCTCTTGGGTCTATTTTCTTCT



TTTTGTTCTAGAG


IM000273
GGGATAAGACTGGATAGTAAGCCGGG
607
D




CGTGGTGGTGCATG


IM000274
CAGAAGGTAGTGTTTCACAACAGTCC
608
D




TCCCGATGATCAATTGTTTTACACTA



AACCATATAGGAATTCACCCTGAGAG



GAGTTCGAAAGCCTTTCAAAACCTGT



ACTGATATAAAGCAAATCTCTTTTGG



ATTCCCAATCAAAATGATTTGGCAGA



ACTTTAAGGCCACAAAAATTGTGTCT



GAACAACCCCTCTGAGCCCAGTTTTG



TTAGCTTAAATTAAGGGCCATG


IM000275
CCTCAAACTAAGAAGCATCCATTTCG
609
D




AAGCTGCTGGGATTAAGGGAGTATGC



CACCACCACCAGCTATGGCATTTTTT



TTCTTTAATTTTACTATTTTTTTGCT



TGTATATTATGGTTTCCAGTTTTGTG



GGTTTTATAAGCTTTGAGTGTGTTTC


IM000276
GTCCACTTTAGGACGTGGAATATGGT
610
R




AAGAAAACTGAAAATCATG


IM000277
CATGGTCAGCTCTCACTGCCCCATCC
611
D




CCTGTCTCCAGTTCACGCACTGTATC



CTGTGTCTTTCTCTGTGGCTAGACTC



TTCTCTTGGGGGAGGGGAGTCTTGTA



TATCGATGTGTGCTCACGCACATAGA



GGCTAAAGATTAATCTAGGTGTATTC



ATTCATCGTCTCATTGC


IM000278
CATGTGTCCTGATTTTAGTTGGATTT
612
D




TTTTTCTCCCAGGTTTCTGCAGTGTC



CCCACCCCCCAC


IM000279
ATGGTGTCTGTTCATAGCAGTAAAAC
613
R




CTTAACTAAGACACTGATATAACTCA



CCTTTCCCAGCCTCAAAGTCTCTACC



ATGTCAGGATCCACTCACTCATTCAC



CAAACTTCATCAAATGCCCACTGTGC



TATCATCAGTACAGAATAAATCATG


IM000280
CATGAGACTGTCACAAGCTCCTGGGA
614
K
Fgf3/Fg



TGGGGACCTTACCAGAAAGCCACCAA


f4



ATCAGAGGCATCCCTGTTTGGTGAGG



GTACATTTGTTTTTCCCCAGGCCCTG



AGTGCCAGGCAGGAGCAGGCAAAGTT



CACCTGGGAGGATGCCCTGGAT


IM000281
GTTTTGGTTCTTTTCAAAGAAAAACA
615
D




AAGGTCATTGCAGCTTTTTGTACCAT



TGAGGTGATGGTAGGTTGAGATATAT



AATCTACTTGAAGATATATATTATGG



CATG


IM000282
CCGCTGCTCTCTCACCAACCCAGTGT
616
K
Wnt1



GTCTGCTTTTAGCCCAGACGGGGGAG



GGGGTAAGGGGGTGGTCTGTCTCATG


IM000283
GTGTCCCTCCTGTCGTTAGGCAGTAC
617
C




TTCCAAATCAAACCATG


IM000284
AGCTGGTACAATGCTTAGAGCAGAGC
618
D




TGCAGAAGCAATACAAGAGATCCTGG



CTCAGCTAGGTGCAAGCTGGAATAGA



CTCCTGACAGTTGTCCTATGAACTCC



ATACACAGGCATG


IM000285
ATGGATCCCTGGGGGGCAGTCTCTGG
619
R




ATGGTCCTTCCTTCTGTCTCAGCACC



AAACATTGTCTCTGTAACTCCTTCCA



TG


IM000286
CATGATGCACTTAGCAATTCCTCTAT
620
K
Fgf3/Fg



TGAGACTCAAGTGAGCCTAGGCTGTG


f4



ACAAAATGACTGTTAAAACT


IM000287
CATGTAAAGCTAGTTCAAAACATACT
621
C




AAATAATTCAGTTGTAGAAGAGGTGA



GGTTATCTCACTGCCAGGATAAGCTA



TTGAACAAGCAAGGGTTCTCACTTAC



TGTTTAAGTGGAAGTGTTTTCTTACT



TCAAAAAGTCATTAATGAATTTTAAG



CTGCATAAATATTTAGTTATT


IM000288
TAAGCTTTTCTCTTACACAATCCCCC
622
D




GGAAACCCACAGTAGGTCACAAAGAC



CCAGGCACCTATTCCTAGGCCTGGTA



AGTGGGCACCCACCATTTACAAAGAG



CTCAGCATTTGGCTCACACATG


IM000289
CATGAAGATGAACCGGGCTTGTTTCT
623
K
Wnt1



CTGGCAACTAGGCTCAGAAAGGATAG



GACCACCAGCCGAGTAGCTGTCAGAT



GGAGCTGAAGACCTGAGGGAAAGAAT



GCTTGTGGGAAGAAGCTGGCTCCTTT



TGGTTTTGTTGTTGCTGGTTTTGTGA



CCGGATCTTGCTGTGTGACCCTACCT



AACAT


IM000290
CATGGACTTAATTTTACTGCATTTGA
624
D




ATTATGGAAAATATATATGAAAAGTC



TTTAGAAAAAGGCAGAGGACGAAATT



AACCAAAGAACTTTAATTATCTGAGA



CCAAGAPAACTCTTTAAGAAAAAGCA



GTAGATTTAAACTACGTGTTGTTAAA



ATAGTCCTGTATAGATATAAAGTCCC



TCAGAGGGAAGAGATTTGTTGAATAA



ATTCAGACACTCPAGAGAA


IM000291
ATTAAACAGCCCAGTGCACTCAGAAG
625
K
Fgf3/Fg



TGAATGTTGAGAAGTGGGTTATCTGG


f4



GGACAAACAGAGGGAAGAATAGTGCC



CTTGGCACGTGCAAAGGAGTTTGGGA



ACAAACATG


IM000292
CATGTATGACAGTGAGGTCAGGAGTG
626
D




CCCAGGGAGCTTGCATTGGCAGAACA



GCCTTTCCTGGCCAAGCCTAGTGTCA



TCAAGTATATATTGGACCAGACCTTA



TAAAACTTGGGTTCCACTCTGGCTGG



ACCAGCCTCAAGGCGTCGCCTCTCCA



GGCCTACCTCCCAGACGCAGAGGCAG



CATTTGGAGGATTGAA


IM000293
CATGGGAACTTGTTCCAAGCAAGGGA
627
D




CTCTGCTACACCTTCAAGGGACGCTG



CTAATACTGGGTTCAACCTTGGGCAG



CGTGCACAGCAGGAGTGGGAGGGCTC



TGATGAGGAGAGCCACCCACACTGTG



AGATCTAGGAGATAAGGTCACATCCAC


IM000294
CCCTCCAGCAAATTGAAATACGAAAG
628
D




ACTCAAACACATTAGAACCATTCCAA



TAAAAACTTGCATTGCCCCAGGCCCC



TCCCACCACCATG


IM000295
CAAGAGTATATATCCAAGAAAAATAC
629
D




AGCTGAGTTGACTGTTAGTTCTGTTT



TGGCCTTCATG


IM000296
GGTAAAAACTCTACCAGTTAAACTAC
630
R




ATTCCCAGCCTGCCTCCAATGAATTT



AATTTGTGTTTTTAGGGTTTCTGTTAT



TGTTGTTTTTGAGACAGGGATTCACA



AAGATCTGCCTGCCTCTGCTTCCTGA



GTGCTAAAATTAAAGGTATGCATG


IM000297
GTTTAGTTACTGTTTTCTGTATTACT
631
D




TTTGTTGAAAATTAGATTGTTCCTGG



TGACTTTGTGTGCTATATTCTCTGCATG


IM000298
CATGTTTCTGCTTCTACTTTATCCAC
632
D




CCTGCACACACTGACTGCTATGTTCC



TGTACCTTTTCCATCTCTCCATTGAA



TATTCACTCCTACAGTGGCATTGGAA



ATTGCAGTGGAGATACC


IM000299
ACGATGGTCTTGCCCTTTCTCACACC
633
D




ATCAATAGTCACTCAGAGCTGTGGTT



GTTATCTGAAGTGTGTTGCAGTCCAA



CTTTGCCCGATG


IM000300
GGAGTGTAAGCGTCGGTGTGTCACCC
634
K
Wnt1



GTGAGATTAAGTCAAAGTGTACATG


IM000301
TAGACCCAGTCTTGCACTGGCCTGG
635
D




GACTCGCTTATTAGGTTTGACTGTTA



TCTGGCCAACAAACACCAGGAAATG



GGGTGACAGGTGGTTGTGAGCCCTC



TGAAATGGGCATTGGGACCTGAACC



TGGGTCCTCTGTAAGAGACATG


IM000302
TCACCCCAGCTGGGGCTGTGCTGAAGA
636
K
Fgf3/Fg



CTCTGAAGGGGAAGATAGGCCTATGG


f4



TNACATG


IM000303
GTTGGGCTGAGCCACTAGTACACCTC
637
K
Fgf3/Fg



CACTCACTGAGCCATCTAGCAGGTCC


f4



CAAACAAGGTGACTTTTGTCATCCAG



CAAGACATAGCCATCTATGCCAGTCA



TCCTTGTCATG


IM000304
TAACATATTTGCTTGTTATGAAGGAA
638
C




AATGTTGGATGTGTGTGCCTGTGGTT



GAGTACTGCAAGTAGTGTCAGGGAAG



AGAAACCTAGCTTGAACAGTCCCCTC



ATCTCCTTCATATCCTCACTCCTTGT



CAGGCCCTGTATTAGGTAGTGCTTCC



CTACCTCCCTAATGCTGTGACCCTTT



CTTTAATAGAGTTCCTCATG


IM000305
CATGTGAGCACAGGTACCTATGGAA
639
D




ACCAAAAGTGTAGGATCCCTTAGAAC



TGGAATTATAGGCAGCTGTACGCTAT



TGATGTGGGTGCTGGAAACTGAACT



CCAGGCTTCTTGAAGAGCATCAACT



GCTCTTAGCTGG


IM000306
CATGTAGAGACTGCCATATCCAGGGA
640
R




TCCACCCCATAATCAGCATCCAAACG



CTGACACCATTGCATACACTAGCAAG



ATTTTATTGAAAGGACCCAGATGTAG



CTGTCTCTTGTGAGACTATGCCGGGG



CCTAGCAAACACAGAAGTGGATGCTC



ACAGTCAGCAAATGGATGGATCATAG



GGCTCCCAATGGAGGAGCTAGAGAAA



GTAGCCAAGGAGCTAAAGGGATCTGC



AACCCTATAGGTGAAACAA


IM000307
CATGTCCTAGAGTTGTTCCAGCACAG
641
D




AAGCTTTTGGGAGAGACCACCATTAC



TGAAACGCAGCAGATGCTGCAGCT


IM000308
CTGCTTGTTGTGGGGACCAGCCAGAC
642
K
Fgf3/Fg



ACCCTCCACAGGTGCAGTGGTGCAAC


f4



ATG


IM000309
CATGATGTTTGTGCAGGAATAGAAAC
643
R




CCTGACTAAGACAGAGGATATTCAAG



ATCCAAACTAGCAGGTTAGCTGTGGT



TCC


IM000310
CATGAAGCACACATTACCCTGTGACT
644
D




TGCTTTTTTATTAAT


IM000311
CATGTGTCCTCTTGTCTTGTAGTCTC
645
D




TATTCTTTGTGATTCCGCAGCTCTCC



ATAGAGTGCAGTTCTATGTCCTGCCT



GCAAGGTCCATTGGCTTACTAGGGTC



TGCCCCTCCCAGAAGAGTAGCTCATT



TAGAATGCATTACTGGTGTGCTGTCT



TGCATCTTTTTTACCCAT


IM000312
ATCTATGTATGCACTACTAATTACTG
646
D




TTTAGTTTATATATGCCCTAATAATT



ACCCCATTGAAAACTTAAATTTTGTT



TCAAAAGTGTGGTCTCATTGGAGGTG



TTAATGTACPATGTCTTTCTCATG


IM000313
CATGGCCAGCTGAGCGGGCTGGAACC
647
D




TGCCCTTCTGCTTCCTGTCCCTGCAC



CTCAGCACCGCTGTGCACTTGGTACT



AGACCTCAATCACCGCAG


IM000314
CATGTGCGTCCCCCCCAAACACGCAA
648
D




GCGCACACCCACAAAGAGAAGAGACA



GGG


IM000315
CATGGCCACTTGGAGAGAAGGGGGAA
649
C




GGGAATGCGGAGAGAGCGGGAGCAAG



AG


IM000316
CTTAAGCACTGATCAATGGCCAAGGT
650
K
Fgf3/Fg



TTGCCGACTTGGGATCTGGGGTATAG


f4



ACATCCACCCACTGAGACCCTCTAAC



AAAACCAGATGTGGAGGTACGAAGCC



TGGCTCAGGGGCCTGTCCTTTGTCAT



CAGAATTCACCAGCTGCAGCTCCTGG



GTCAGCTTTGTTTGGCATG


IM000317
GTGTATTGATATGCAAATGTGTTAAA
651
D




ATATGATTTAAANTTCCCCATG


IM000318
GCAAAGTGTCCACACTTTGGTCTTCG
652
R




TTCTTCTTGAGTTTCATG


IM000319
ATAGCAGGTCCTGGATACCCCAACAT
653
C




ACCAGAAAAGCAAGATTCAGATCTAA



AATCACTTCTCATG


IM000320
CATGTCCTGGCTTTGTAAAGGGTCCT
654
D




GCTGGGTTTACTTCACTGGGTCTTAA



ACTCCGATTGTGAGCCGTAGTGAAGA



GGGCTGTATATAGTGGGTCACCGAGG



TCCTGTAGCAGAGTGGGCAAGCTCAC



TGCCTGCTACCAGCAGTTCACTATGT



TTTATGGTCTGCTGCCTGCTGGTGGT



TTATAGATGCTGTGTCGTAAGAGAAA



AGTTGAGGGTAGCCTGGAGTGAATGG



AGTTGGGGTATCAGGGAGGTCTTTGT



ACACTGGGGTGAGCTAGGCCTCTGGA



AAGCTTCTGGGGGTTCCCC


IM000321
CATGCTCCCAGGCACCAGGCTTGCTT
655
D




TGCATAGGTGGGACAGGGTCCCAATA



CTCAGCCTGGGGTGCCAATGAGGCTC



AGGCCACACACCCTCTTGGTAGGAGT



CACTGTAGTGGGGTCTGTGAGAGCCA



GTAACTTGTGAGGGTGTGAACTTAGC



TCAGGACAGAGGCCAGCAGGAAGCTT



TCCCTACAGAGAGTGTTTTCGTCTTT



TCCTTTTTCTGGTTTGTTTCTTGGGA



AGGGAACAATTTTCGCTTTTAGTTGG



CTTGTATTATTCGCTACTGAAACCTT



AAG


IM000322
CATGTATTAAGTCCCTCGTGAGGAA
656
D




GGGT


IM000323
CATGAGTCAGAGGCTTCTACTCCAGT
657
D




TAAAACTGATCTGGGTATAGAATTGT



GTTCTCAAGAAATAGTAAGTTATAAT



CAACTAAGTCATCTCCTGTCTCATTT



TTTTCTTCCAAATCGGGTCCTCGAAT



TGTTATPAGAAGATTCAATCAATCAA



CAGTATCCCTTTCCCAATTTGTGTGC



TAAGTGGAAACAGGTCTTAGCACATC



AATCACATAAAGTTCAATTAAGAAGG



AATTTAAAGATCAG


IM000324
GCTATGAGTCTCCACTTGTAAACAAT
658
C




TATACTCAAACATATTCAGGACACAC



TTGGGCTTCCTCCATCAAGCCAGGC



AGGTTTGTTTTCTTGTTTGTTTTGAG



ATAGATGGATGGGCCAGCTTCATG


IM000325
CCCACCCCTAGCAACCAGTTCCTCCT
659
D




CTGAATGGAAGACATCTGATACCAAC



TGAGCTTTCACATG


IM000326
ATCNNCGAATCATTCTAGGCTTGTGG
660
D




GACCATG


IM000327
ACTATTCTCAACAATAAATGAACTTC
661
R




TGGGGGAATCACCAATCCTGATTTCA



AACGGTACTGTAGAGCAATCATG


IM000328
CCTAGGCACCCACCACAATAGTTAAT
662
D




CCATCTTTGAATTTTTGACCCAGTGT



TGCCTAGTATTCATTGCAACAGCTTT



TCAAATGTTTTATTCTTTCCCAAATA



AATTCCATG


IM000329
AGAGGCTACCCCTTCAAGTGGCTTGC
663
D




CTAGTATAGCTATTACAGACAGAGAA



CTTCCAGTAATTTCCTCAAGCCACATG


IM000330
ACTCTGAACTTTGCTTTGCCTGGTAT
664
D




TTTTGCCTCTCTTATCCCATTGACCC



TGTACAGAAAAGCTGAGGAAGCAGGT



GCAACCAGGCATCTCAGGCACCCAGT



TAAGAAGTAGATGAAATACTGTAATG



TACATG


IM000331
CATGATTTTCAGTTTTCTTGCCATAT
665
R




TCCACGTCCTACAGTGGACATTTCTA



AATTTTCCACCTTTTTCAGTTTTCCT



CGCCATATTTCACGTCCTAAAGTGTGT


IM000332
CATGAGACAGTCCCAGATCCCTCACC
666
D




ATAAAGAGCTACCATATAC


IM000333
CATGCGACCATCCATCAGGAGTTGGA
667
K
Fgf3/Fg



GGTGCCATCGGCTCTGCCTTACAGAA


f4



AAGGAATCTGAGATTTAGAAACCCCA



GGTGACCCACTCAGGGCCACCGGGGC



AGTAAAAAGAATCTAAGATCTAAAGT



CAGTGGAAACTCCTCCCAACCAGCAG



AGACTCCTCCCAGCCAGCTCTTGAT


IM000334
GGGAAGCAAGAGGCAGTAAGAAAGGG
668
D




GAAACTGGGGAGGTAACCAAAGTCAC



ATG


IM000335
CATGCTAACAAAGAATGGGGAAAGCT
669
D




CTCTAGGCTTCCACCTTAAACPATGA



GGAAGGGAAGAAGGAAAG


IM000336
CATGTTGGTGGGACTTTATGGGTATT
670
R




GCTTCTGATATTACTAGGAGGCACAA



TCTCACAGAAAACTCCCTGATCTTAC



AATCCTTCTGCCCCCTCTTTTGCAAT



GTTCCCTGAGCCTCAAGTATGGAGTT



ATTTTATAGCTGTATTCATTGAGACC



AGAATCCACAGGTATGC


IM000337
CTCACACAGATATGCATG
671
D



IM000338
AGAAGTGATCTTTCTTCTGTGTGTCC
672
D




CTGTCACCCTGGGAGGCAATCAGACG



GTCCCTCATG


IM000339
CTTTCCTTTTGTTTTGGACGAATATT
673
D




ATTGAAATATGTAGTGTGCATG


IM000340
CATGAGATATGATTTTAGATCTGAAT
674
B
AT5970



CTTGCTTTTCAGGTGTCTTGGCATAT


62



TCAGAACTCGCTGTGGTGGGTGAACT



GGGTTCTGATGATGCCCATTGGTGCT



GGTTTC


IM000341
CATGGAAAGGTATTTGGAAATAGGCT
675
D




GTTTTGTGTGTAACTC


IM000342
CCCTAGGACTCACCTGGTAGGAAAGA
676
D




AGTAATTCTTCCAAGTTGTCCCCTGA



CATCCACAAGCACATAGTGTCAGGCA



TG


IM000343
CATGCCATTCATACATACTGGCAATG
677
D




GATATATAGAAAATGAGACTCCTTCT



AATATTGTGTGATGACAGAT


IM000344
AGAAACCATTTACACTGCCAGGTTTG
678
D




GGGCCTGCCTATGCATG


IM000345
GATCCCTTTAACTTCTTGGATAGTTT
679
R




CTCTAGCTCCTCCATTGGGGGCCCTG



TGATCCATCCAATAGCTGACTGTGAG



CATCCACTTATGTGTTTGCTAGGCCC



TGGCATAGTCTCATAAGAGACAGCTA



TATCAGGGTCCTTTCAGCAAACTCTT



GCTAGTGAATGCAATGGTGTCATCAT



TTGGAGGCTGATTATGGGATGGATCC



CTGGATATGGCAGTCTCTAGATGGTC



CATCCTTTTGTCTCAGCTCCAAACTT



TGTCTCTGTAACTCCTTCCATG


IM000346
AGGGTGGTCTCTGCAACCCAGGCTGG
680
K
Wnt1



AACCCAGCACAATAAATAGTTTTATA



CATAACCGAACGCGTGGCTCTGCGGC



CACATTTCGGTGCAAATTATTTACAC



AGTGATGAGGAGGCAGGACAGGAAGG



GGTGGGAGGAGGCTGAGGGAGGCATG


IM000347
CATGTGTGTTCTTTTGTGATTGGGTT
681
R




ACCTCACTCAGGATGATATTTTCT


IM000348
CATGAGGCCAAGGGAGAGGCAAATTC
682
D




CTGTGTGAATCAATTATCATCTCACA



GAGAACATACC


IM000349
AGTAGTATGCCACAGGGAGAAAGGGT
683
R




ATTTATCAAAGGGACAGGAGCTAGTT



GTGGTGACCTTACCTATCTGCTTGCC



TCTGCCTCCACGGTGCTGGGATTGAA



GGTGTGCACCACCACACCCAGCTTCA



GATTGTTTTTATTTATTGNGTATTCC



TGTTTCACCTGCATG


IM000350
CATGCATATACAGGATATAACCTTTG
684
D




TAAGTAAGAATAAAGCACATAAAAAA



TACTTTCAGTAATATTGTCCAAACCA



CTT


IM000351
CATGTGTGTGTTTGTGTTTGCGGAGT
685
K




GTGGGGGCGGCAGGGAAAGGTGGCCA



GGCTGTCACTCAGAGATCAGGATGAC



AGGCGCTCCCTCATCTAGGCGCGGGA



GCTCTGATTGCAGATTCGAGGAAACA



AAATAGCAATTG


IM000352
CATGAAGATGAACCGGGCTTGTTTCT
686
K
Wnt1



CTGGCAACTAGGCTCAGAAAGGATAG



GTCCACCAGCCGAGTAGCTGTCAGAT



GGAGCTGAAGACCTGAGGGAAAGTAT



GCTTGTGGGAAGA


IM000353
TCAGTTCCAAGAGATGACACAGCCG
687
R




CAGTCATG


IM000354
CAGAGACTGAAGGAAAGACCATCCAG
688
R




TGACTGGCCCAACTTGGGATCCATCC



CATTTGAAAGCATCAAATCCAGACAC



TATTACTGATACCATG


IM000355
CCCTACAGTGACACTTACTCCAATAA
689
R




GGCCACACATCCTAGTAGTGCCAGTC



CCCATG


IM000356
GGCCTCTATTCTCGGTTCAGATTAAG
690
D




TACCTGGCTTCACTGAGAGCGGCTCT



ATCATTCCTAAAATGGTTCTCATG


IM000357
AGTAGATGGCAGAGAATAATCAAACT
691
R




CAGGGCTGAAATTAACCATG


IM000358
CCAACCCAACAGCTGGGAAGGGTTGG
692
C




AAGTAGCCCCGAGGCTGGTTAGTCCC



CTTCCAGATGGGGAGGTTAGACTGGG



GCTAGCCAGGCTGCTCCACATAGACT



TCCGATTCGCNTTAGAAATGAAAAGA



GGAGAGGAAAGGGAAAAGGAAGAAAG



GCTACAAGCATG


IM000359
CATGGGGTCTGGAGCGAGCTATCAAA
693
R




CCCAGGATTGTCTTAACTGTGGTGGC



TTGGATGAGAATGGCCGCCATAGGGG



CATAGATTTGAATTCTTGGTCCCTAG



TT


IM000360
ACGGTGGGCTGATATTTTCTAGATCT
694
C




CCTAGTGCCTATCCCCTATTATCATG


IM000361
CATGAATTTTGAGATATTCTCTGAAC
695
D




CAAACAATATT


IM000362
GGAGAAATTATGCCTTAAATTAAAAA
696
D




GCAAATATTGAAAAATTAAATATAAT



TTCCATTAAATCATAATGGACCAACA



ACAGAACACATCTATCTATGTATCTA



TCTATGTATCTATGTATATCTACCTA



TCTATCTGTAAAGCAAAAACTACATG


IM000363
GCAAGGACAACTGAGAGTTTGAAGCA
697
D




ACTATTTTCATCTTGACTCTCACTCG



GCTTTTAACGTCCATTCAGGAAACAG



GCATG


IM000364
CATGAGAAGTCACAATTCCACCACTT
698
D




AAAATCAGTGCTTGGAAGGATACTGT



AGGCCAAGAGGTAAGTAGAGGGGAC



AGCAGTGCACGTTTTTCAAAGTGTG



GGTGTGTGTTTGTGGGTGTGTGTCT



GTCTGCCTGTGCGTGTATGTGGGTC



AGTACAGGAAAAGC


IM000365
CAAGATAAACTCTTAATGGGATTCTA
699
D




GGGAGTCATTCTGTAGAGAGCACTTG



ACTAGAAGGTTAAGTCTTAGATCCAG



ATCCCAGCACAAACATAATACATCCT



ATACTCACACACACACAGACACACAC



ACACACGCAGTCCTCATG


IM000366
CATGTCTCAAAAAAAAAAAAGAATCA
700
D




CTTGGATTGTACATAGTAGTTAATAA



TATGTAATTAGTCTAACTGTGAAGGG



GCACTTATTAGTTTCTACTATGTAGT



GTAAATGAACTATGTTGCTATTAGAA



ATTC


IM000367
GAAGGTTGAAATCTGTAATCTATCTT
701
D




CTATGGCATCATTCACCTCTCTAATA



CAGCTGTAGAGAAAAATGTCTGAAGA



TTCGGTTCTACTCTCGTTCTTTGAGG



TCTCCCAACCCATG


IM000368
CATGGCTGGACTATAGAGCTCTAGCT
702
D




TCAGTTGCTGGGATGTTCAGTGCATC



ACCACAGAGAGGGTTCTTAAGTGGTG



ATGGTGGTAGTGGAAAGGTGGACCCT



CCAGACAAAGGAAGCACTCACCACGA



CCCTGCTCACCTGTGAACCTCCTTTC



AGACTGATTCCTGAGATCAGCCAGGC



AGGGCTACCAACCAGGGACTCGTAAT



GAAAATTTAGGCATATGG


IM000369
CATGGTCTGGTGAGTATGGCACCAGA
703
D




TAGGATGTTATGCCCGTTTCTTATCT



CAAGAAACAAGGAATCTTGTTTCTTA



TCATTAATAGGAAGAATAGAGCAGTC



CTGGCTAAATGAAAGGTGGNAAAGTT



GGTTTGAGTATCTCTTTCC


IM000370
AAAATCCAATACACATTCATG
704
D



IM000371
CCCTTTGTTGTGCATTTCAGCTAATC
705
R




TCATCCCTGTTTGGGTCCTGGAACCC



TCTTGCTTCCCTGGCATCTAGGACTT



GCTAGTGGCTACCCCCAGCTCCCCAT



TCCCCATTGCTACACACCTCTGTTCA



AATTCCTGACCCTCTGTATATCATCC



CAGTCTCTTCTAATACCTGACCTGAA



CCCCCTTTTTCCCCTCCCTCTATTCT



CTTCCTTGCAAGTCCCTCCCACCTTC



TACCTTCCATG


IM000372
CATGGGTCNTTTCTGATCTTTACCAA
706
D




GCAACAGTGATGAATCTATAAATAGA



ACCATCAGTTCAAGAAACACAACTTT



AGATTCCTTTCCATACCTTGCTTTTG



TTTCTTACATCTTCCCCCTGCCCTGT



GGTTTTTCTTTTAATCTTGTTTTTAC



AATCCAAATTGTATCCCCTTCTCTGTC


IM000373
TTGGGCCTTTGCATACCCTGTTCTGG
707
D




CTAAGACAATTGTCACCTGACTGGGC



ATG


TAA000374
AAGTGGATGTTTCTCATTTTCCATG
708
R



IM000375
TATAAGCAATCCCAAAAATTCTACCT
709
R




GGGAACTCCTAGAGCTGATAACACCT



TCAGTGAGCCAAGTATCTGGGTATAG



GATTAATTTTAAAAAAATAGAAAATC



AGTATCTCTCTTACATACAAATAACA



AAAGGGCTGAAAAAGAAATTAAGGAA



ATAAAACCCTTCACAATAGCCATAAA



TAATATAAACTATCTTGGGATAACTC



TAACCAGGCAAGCAAAAGACCTGTAT



GATCAAATCTTTGAAGAAGAAAATTG



AAAAAGGTATCAGAGGAGGTAAAGAT



CTCCCATG


IM000376
CATGGGCTCTGCTTAAGAAACCCCGG
710
C




AG


IM000377
CATGCTTTTAGGCCTTTTCACGATCT
711
A
TTTDal1



TANNGGGGACCGNGAGAGNTNGCTGC



TGGATGATCTCTGAGAGAGCTTATCG



TCCTCAAACTGCTGATATTCAAGCTG



TTTCGCAGCTGCAGCAGCAAAGTCCC



GGTCTTTGTCACCGATCTGTGAACAG



CAACAATGAGCACCTTTCATAACAGA



CAGGAAATGGATGCT


IM000378
GGCGTACCTGTGTATATGCATGCATG
712
D



IM000379
GTGCTAGGCTCACTCAAGATAAAATT
713
D




TGCTATTTCAGCTCCCTGGATAATAA



AATCTATCCTCTCACAGCTGTGACTC



TCACAGGGGTGCAGGCAGGACGAC



ATCAAGAGAGTGATGGCCTCTAACA



AGTGTTCTGCCCACTTCCTCTTCCGG



GTCAAAGACTAGATCTAGACTGGTG



GGGCTGTTGATTCACTATGAATGTGC



CTGACACCATCCCACACTTAGCATCA



TAGACACTTGGGGGACTGGTGATAC



ACTATGATGCCTGACACCATCCCACA



CTTAACATCATG


IM000380
CTATCCCGAGGGTGAGGGCAGTTCT
714
K
Fgf3/Fg



ATGCCAAGGTTCTCATCACAGAGATA


f4



CAGAGGAAGCTGGGCCTGTCTTAGG



GTTGGCTGTCTGGAGATCCTGGAGC



CCTGGAGGTGGGTAGCAAGAACAAA



GGAAGTACTTCACCTGATAAAAACAG



TTCCCAGAGAAACACATATACGCTTC



ATATACAGGAGTGCGAGTGTGTGTG



TGCGCGCAGAGAGGCAGAGGCCTG



GAAGTCAAAAGTTCAGGGCCAGTTT



GTGTGCATG


IM000381
GGGGTTGACTAGAAGAAGGAGGCGAT
715
D




TAGGGTGTATCATATGAGAGAAGAAT



AAATAAAGGAAAAAATAAAAAACAAG



GATTAAAAAGTAATTACATACATACA



TACATACATACATOCATACATACATA



CATACTAGTTAAACTGTTATGGTAGC



ATG


IM000382
AGGATGATATTTTCTAGTTCCATCCA
716
R




TTTGCCTAAGAATTTCTTGAATTCAT



TGCTTTTAATAGCTGAGTAGTACTCC



ATTTTGTTAGTATACCATATTGTCTG



TATCCATTCCTCTGTTGAAGGACATC



TGGGTTCTTTCCAGCTTCTGGCTATT



ATAAATGAAGTTGCTATGAACATAGT



GAAGCATG


IM000383
CATGCCTGCAGGTCACAGCCTTGCGC
717
D




GCCTCCAGTGCCCAGCGTTCAAAGTG



ACACAGACTCTGTCAGGATGGTTCAA



ATGCAAATCTCTGCAACTGCGTTAGC



CGCTTCTAACCAAGACAGAAAGCTGC



CGTCCTGTCCTTCGTGTCTGTCCCCA



TACCCCATATCGGGTAGCTTTTCTTT



CAGCATTGTCCAGACACCATCATATG



CCTACATCGCACAAGTTCTCTGAGGC



CAGATAATTGGCAGCACTCCTGTTGT



GTGCCGAGAGTGCAGAAAAGGGCTAT



CCCGAAAAGGTGTGATCTGGAAAGAA



GGAAAAAAC


IM000384
ATCTTTTGGCCAGAGCAAGCAGGGAC
718
C




TGAGTGAGCAGAGGTGACAGGAGCGA



GCAAGGCTGACAAAGTCTTCCATATT



CCTACTAGGATGACCCATTAAGCCCC



ATAAAGCATTCCATTGCTTTCCAAAT



ACAAAGTCCCAAAATCCACATTCTTT



CAAATAAAAGCATG


IM000385
TTAACATATGGTTTTTAAAAATCCAT
719
D




AATGAGCATATGATAGAGAAGTCATC



AGAGCTCTTCAGCTCCACATCATCTG



TCCCCAGAAGTATTACTACTCCTAAC



TTGCTGAGCCAAGGCACAGATATTCT



TTGTGTAAGCATCTCTTCTATCCTGT



GTTGCCACGCAGGAGCACGCACACTG



CTTCCTGTCTGAGGTTGTTCCATATC



AGCATG


IM000386
CATGCCAGGGCTTGAATTAACACAAG
720
D




TGCCCCAGAT


IM000387
CCTGTCTGTATATGCACATG
721
D



IM000388
CATGGAAAATGAGAAACATCCACTTG
722
R




ACGACTTGAAGAATGACGTAATCACT



GGAAATCGTGAAAAATGAGAAATGCA



CACTGTAGGACCTGGAATATGGCGAG



AAAACTGAAAATCACGGAAAATGAGA



AATACACACTAGTACGTGAAATATGG



CGAGGAAAACTGAAAAAGGTGG


IM000389
CATGAAGGTAAATTATGACCATCAGG
723
R




GTTCAGACCTCAGCTCGACCGGAGAC



CAGCCTGCAANTCCCCACAGCCCTCC



CTTAAGTGGGTTAAAAGACAGAAAAG



AATTAAATATCTGA


IM000390
CATGCACTAGCAAGATTTTGCTGAAA
724
R




GGACCCAGAT


IM000391
GACACATACACACACATG
725
D



IM000392
GTAAATGTATTAGGTTCAGAACTGGC
726
D




ACTGCTCACTTATGTTCACAGTTGTT



TGGGTAAAACTAGAACCAAACACAAA



AGCAAAAGAGCCAAGCAGCAGAGCAG



GGAGCAAGGGGCTTGGGGAAAACACT



CACCTCTGTTGTGTCTTCTTCTAGCT



GTCAGGGCATTGAGTGGCAAGGAGTG



GAAAGGAACTTTGGGCATTCCGAGTC



AGGAAAAGTGTACCAAAATAACACTA



TGGAGGTTAGCAAGTGTTCTAGAGGG



CAGAATAAATACATG


IM000393
GTTTAGGTCATTGGTGGTACACTCTC
727
C




CAAGGACAGTATAAATTGATTTTTTT



CTGTATCCTTCTTTGTTCTTGGCCAT



AAGGCACTTGGAGTGCATTAATATGT



ACTTATTATTACTATGTCTTTTCTTG



TCTTTGGCTTAAAAGAAACAGGGTCA



AGTGACCATG


IM000394
AGTTTTCTTTTAAAAAAATAAAGTAG
728
D




GAATGAAACTGGAACAAAAATGCAAT



AAATTTTAAACCATCACCGCTAAAAC



ATG


IM000395
CATGATTTTCAGTTTTCTTGCCATAT
729
R




TCCAC


IM000396
GAGAGGAGCCTGGGGAAATGAAGGT
730
R




CCAGCAACAGGCCCAAAGTGGGATC



CAGCTTAAGGGGAGGCCCCAAGGC



CTGACACTATTACTGAGGCTATGGA



GCACTCATAAAAATGGACCCAGCATG


IM000397
CATGGCAGCCTTGGAGTATCAGGCT
731
D




GCTGTTCCCAATGTGGGATGCAGAG



GGCACTGCCAGCCTGGTTATCACGC



ACCACTGTCACACAGGGAAGCGCCC



CCTTCCC


IM000398
GGAGTTCTTCTCTTCAATAACAGAGT
732
D




AAATTCTCCCTCAGCAGTTCTCCCAG



GAAACCCATAACCTAGCCATG


IM000399
CCTTAGATGTTTGTCTAATCGACAAA
733
D




ATACTTTATATGTGAAAAGGAAAGCATG


IM000400
AATAATCAGATTTCCAGAGCTCCCAG
734
R




GAACTAAACCAACAACCAACGAATAC



ACATG


IM000401
ATCCAGTAATCATTCATCTTATTGTT
735
D




TCCACACAGGAAAACCTGTAATAGAT



GGTTCATCAGCTTTATTTATAACTTT



CTATCTTGAAAGCAACTGGAATGCCC



TTCAGTAGGTAAGCAGATACACTAGG



CTCACCTCAACTATAGGCACAATGAA



AGGAATGAAATGTCAACTCACGAAAG



GTAAGTACACATG


IM000402
CCTCGCCATATTTCACGTGCTAAAGT
736
R




GTGTATTACTCATTTTCCGTGATTTT



CAGTTTTCTCGCCATATTCCAGGTCC



TTCAGTGTTCATTTCTCATTTTTCAA



GTTTTTTAGTGATTTCGTCGTTTTTC



AAGTCGTCAAGTGGATGTTTCTCATT



TTCCATG


IM000403
CATGCAAGAACAGGACTAATGTCTGT
737
K
Fgf3/Fg



GAAGAAAATGAGTGAGCGTGAACAGG


f4



AGGTCAAGGATCCGGTCCCAGGCAGC



TCTCAGTCTGGGCAAGCATTTCTAAA



CTTTGCCTTCCTTCCTGTTGGGGGTG



AAGGTCTG


IM000404
AATAGGAGTAGATGAGAATGAAGATT
738
R




TTTCAATTTAAAGGACCAGCAAATAG



CTTCAGCAAAATTATAGAAGAAAACT



TCCCATACCTAAAGAAAGATGCCCATG


IM000405
CATGCAGCCCCATTAGTGATTGATCC
739
D




TGTTCCATATAA


IM000406
CATGGGCTCTCTGCTGATAATGCTG
740
R




AGGCTGTTTGTGCTGTAGTCTGCGC



TTTTTGCCCCCTCTCAGAAAAACTGT



ATGTCATAGGAGTTGCTGGCTATTG



GGTACATAAGCAAAGCCACCCTATT



GTGCCAGTGCCTTAGACAGTGAGAC



AAGAAAGGCCCCTGGTTAGAAATCTT



ATCAGGACTGGGAATGTAACTCAGTT



GATAAGAGTGCTTGCTTAGCGTGCA



CACAGCCCTGGGTTCAACCGCCTAG



TACTACAGAAACTGAGTGTGGCTTCA



CACACCTGTAATCCCAGCACTTGGA



GAGATAGATGCAGGAGGATTAGAAG



TTCAAGGTTATCTTTAGTCACATAGT



ATTGGTAGCCAGCCAGCCTGGAATA



CTTGAGATACTTACAGGAAGGAAGG



AAGGAAGGAAAGAAGGAGGGAGAG



AGGACAGGAGGAAGGAGATAGATAT



ACACAGAAAGAGACAGAGAAACAGA



GATTCAGGAGACACAAAGACATACG



GAGACACAGTGAGA


IM000407
CATGTGGTTGCTGGGGATTGAACTC
741
R




AGGACCTCTGGAAGAGCAGTCAATG



CTCTTAACCGCTGAGCCATCTCTCC



AGCTCCCTTTTAGACTTCTTAGTAG



CAGCATTAATTCTTGCTTGGTTTCA



GTTCTGACAACCACAGCAGTCAGGA



GTTTGAGTAAGAGG


IM000408
CCTCATAATGTTTGTTTGAGCATTTTT
742
D




TTAAAACCTAACTTTGTCTTTTGCTTA



TCTATTGTGGTTTTTTAGTGTGTGTGT



GTGTGTGTGTGTATGCGCGCGTGTG



CTCTGGTCTTCGTGCACATG


IM000409
ATTTGTGACATCTTAGGAGCTTAGGTT
743
K
Fgf3/Fg



GGTCTTCGAGACACAGGGCTGTCCCTG


f4



TAAAGCAGGTTCCATCAGTGACTCCAG



GGTTTTAGCAGTTCAGTGGCGTAGTTT



TCAGACTGCTTAAGATTTCTCAAGGGC



TAGGCGTGGGGCAGAGACCCTGCAGAC



CCTGGCTAGAACAGANGCCCTGGGAGA



CAGTTGAGGGTGCTCAACTGTGGAGGA



CATG


IM000410
CATGTATGCACAACCAAAACTTATAA
744
D




ATATGAGAATTCACTTATAGTCCTAG



TCCTTTAATACAGAATTTAGCATTCC



GATATAAAACAACAGATTAAACCCCA



ACAGTTAGAATAGAGCAG


IM000411
AATAGGAGTAGATGAGAATGAAGATT
745
R




TTCAACTTAAAGGGCCAGCAAATATC



TTCAACAAAATAATAGAAGAAAACTT



CCCCAACCTAAAGAAAGAGATGCCCA



TG


IM000412
CATGCACACCCTACTCCTGGGTGATC
746
K
Wnt1



GTACCAGCTCCAGCCTCTGTTCTGCA



CGCTGTGCCTTCAACCTGGCAACCTCC


IM000413
CATGAAAACCTGTCTCAGAAAACAAA
747
D




AAACACGTTGAGAGCCAGCATAGAAG



CCATAGGAGGTAATGTGTGTGTGTCT



GTATATATGACAAGAGCAGACCTGTG



CTGAACCAGTTAACTACTTTTG


IM000414
CATGCTACTAACCAGTTGAGGCAGTA
748
R




CCAGTTGTTGAAGATGCTGTCTTTTA



TCCAATGGATGGTTTTAGCTCCTTTG



TCTAAGATCAGGTGATCATAGGGTGT



GAGTTTATTTCTGGGTCTTCAGTTAT



ATTCCATTGATCTACTGGCCTGTAAT



TGTACCAATAC


IM000415
GGTTAGGAATTCTGGACAGTTGGTAC
749
C




TTGGTTTGAATATAGTAGGTGACAAG



CTGTGCCTTGTAGTGGGGTGGCAAGC



AGGGTTCTCTGCAGCAGGATGCAGTG



TACATG


IM000416
CATGAAAATGTTAAGTCCTGACAGAC
750
D




AGGGTGCCATCTGCCAAGAATTTGAG



TAATCTAGAAACAGAAAT


IM000417
CATGGGGTTTTGTGGATCTG
751
D



IM000418
CAGAACAAATAAGCTGGAAAGGATGA
752
D




AGCAGCCACAACATAACTGCTGTTGG



CTTCTATGTGTACATTTTAAACCTTC



CTCTGAAAGAGTGACCAATGCTTTTA



ACTGCTGAGTTATCTCACCCGACTTA



CTTTCTCTCTCTCTCTCTCTTTTCCT



TCTTCCTAAAATTAATTGTGTGTGTA



TGTGTGTGTGTGTGTATGATTCAGAA



ACCTTTTATGTGGTGGTAGAAGACCA



TCTGCAGGATTCATG


IM000419
CATGGTCCCACAAGCCTAGAATGATT
753
D




CGTGGAT


IM000420
GGGGTCCAGGAGAGAAACTTGAGTC
754
D




ATG


IM000421
GGAAAGAGATACTCAAGACCAACTTT
755
D




ACCACCTTTCATTTAGCCAGGACTGC



TCTATTCTTCCTATTACTGCTAAGAA



ACAAGATTCCTTGTTTCTTGAGATAA



GAAACGGGCATAACATCCTATCTGGT



GCCATACTCACCAGACCATG


IM000422
GTCCTTCCCAAAGAATAGTGTTAACT
756
D




GAGCTCTTTGGGTGGCAATAAATGAA



TTGCTCTGGTGGGACAGGCAGTGCAC



ATATGGGGAGGGGGAGACACATG


IM000423
CATGTTCTTACTTCTTGTTG
757
D



IM000424
GGGTATATGAATTATATATATATGTG
758
D




TGTATATATGTATACAGGCATG


IM000425
CATGCGCCCTAAGACTCATCTCCACG
759
R




AATGACGTGACGACCTAATTGCATTC



CTTCTAACCCACTGATTAGGCAAACC



ACCCTCCAAAGGGCTCGCTGAGTTCC



TCTTCGGGAAGAGGTGTGTTGAGTAC



GCTGGAATGGATATTCGAGGGCTGAGG


IM000426
CATCTCTCGAGCCCTTGCCCAGCCTT
760
D




TTTTCTTAAAATTGTATTTTTAAAAT



TTATTTTCTGTACACAGGTGTGTGAG



TGTGAACATG


IM000427
CATGTGGACCTGGGGGCTAAGTCAGG
761
K
Fgf3/Fg



GTGAAGCTTCCACAGCTAAGTGGCTG


f4



GAGGCTGCCCTAAAAGCTCAGGAGGC



ACCGCAAGCAAGCCTTGAAAAACCTT



ACCCACCAGCTTGACCTTAGACTTCT



GGCCTTCAGGCTGTGACAATACATTC



CTGCTGTTTAAAGAACCATATGGTTG



GTGATGTTTTGTTTGTTTCTGGTTCT



TTTGTGTTGGTGTTTTTTGTTTGCGG



GGTGTGTGTGTGTGTGTGTGTGTGTG



TGTGTGTGTGTGTGTTGCAGTGCTAG



AGATAAGATCTGA


IM000428
GTCTAAAGTTTTCAAATGATGGATAA
762
C




GTTGTTAAACCTCCTTTAAGATCTCA



AGCACAAAAAGAAAGACATCAAATAC



GAATAGTAGAAAGGAAAGGAGATTTG



GAACTAGAGGCCCCAAGAGTCATAAA



GAGAAGAATTTAAACAACTGTACCCA



CAAATTCATTAGCATAGATCAAGTAG



TCCATTTCTTCATG


IM000429
CATGTATGTTCTCGATGCCTTGGCCT
763
D




G


IM000430
AAAGACATTAACTCTTGAGAACCAAG
764
D




GGGTAGGACAGTATAGACTGAATTTT



GCCTCCCCTCTTCATAAGTTGTCACT



GCTAACCTCATTTCAGAACTTAAGCA



TATAACCTTCATG


IM000431
CATGGAGAACTAGCAAGAGCAGGATG
765
D




GCGTTTCTCTAGAATGCCGTATAG


IM000432
CATGGTGACTTTCCATCTTTAGAACC
766
D




ATAATCANGTTTAAT


IM000433
CATGCTTATATCCCTCAAAAATTTTA
767
D




CAGTTAAACTGAAAATGCTTACTTAC



TTTTTTTCTTACTTATATCTAGTATC



GATAAGAACTGTCCCAAAGGACAC


IM000434
CTGGGTCTTAGTCCTCTGAGGTCCCT
768
K
Fgf3/Fg



AGCACATCAGAGGTTCATCAGTTCCA


f4



AGAGATGACACAGCCGCAGTCATG


IM000435
CATGGAGAATGCACAGTCAAAACGCT
769
D




TGCATCCT


IM000436
CACCCCCTCCCGCCTTACATCAATC
770
K
Fgf3/Fg



CTGGGTGCACAATGGGACTGTGGAT


f4



GACTGATGTCTGCGCAAACAACTTG



CGGGGAAGTCTAGCTGACAAACGCT



CATG


IM000437
ATGTATCCAATGGCAAAGCACGGGG
771
D




GAGGCTTCATCTTGAAGAGAAGAGT



GCTCTTGGTAGGCTATCCTTTTTTT



GAGACAACTAGAAATAGGAGCATTT



CAACAATCTGGACATATGTCCTCCC



ACAAGAACTTGTTGAGAATGGGTCT



GAATTAACTGGAAATAAAAGTGAAC



ACATTCTCCTATACACATG


IM000438
TCACTCCATTTTAGTTCAAATGCTAC
772
C




AACTCCTTTGAGCACCACTGTCATTT



CAAGACCTTATTCTGTGAATACCATG


IM000439
CATGCTTAGCCCAGGGAATGACACTA
773
R




TTCGAGGTGTGGCCTTATTGGAGCAG



GTGTGGCCTTGTTGGAAGAAGTGTGT



CACTCACTGTTGGGGTGGGATTTGAG



AGCTTCCTCCTAGCTGCTTGAGGATG



CCGGTCTT


IM000440
CATGAGCTGGGTGAACGACAGCAAAG
774
B
AATTT.202



GTTTGTTTCTCTTTTAAGGAAGACAA


45



TGGTGTGAAATTGGTTGATCCTTTGG



GGGAAATGTTGGCCCCTT


IM000441
CATGATCTCACTGTGAGGGCTGGCTA
775
D




CCTTGGAGCTCACTGTACTGAATATT



CTGGCCGATTGCCTCTTCGCTGGGTT



TATGGGCACACACAGTACTTGTCTAT



GAGTCTTTGTTAGGCTGAGCCTAGTG



GTGCAGGCCTGTCATCTCCCCTACTT



TACTTTAGGCTCTGAGGCAGGAGGAT


IM000442
TCTGGTAACTTGGGGGTCTGATAAAA
776
D




CAGTTGGGGGATTTCTTTTCTTTTCG



CGTCTGAAGCCAATGTTATTACAGGT



GTGTGCTTGTCTCTCCCACACCCTGC



CCCTGTTGCCTAACACACGCGGCACA



CACATG


IM000443
CATGACTCTTCCTCCAGAGTTAGAGG
777
D




TGGAGCCAGGACAAACTCTAAAGAAA



AGAAACCCCAATCAAAAAGGGAAGCT



GGTATCATCCAACCTTTAAATTACTC



CACATCCCTCCAGAG


IM000444
CATGTCTGTCCCAAAAGGAAGTTCCT
778
D




TCCTCTGTCCTCCACATCTGACCAGC



ACCATCATTCAATCTGCAACCCAAAC



CAGACATTTACATCATCTATGCCTCC



TTTCCTGCTTGTCTCCCCTCAACCAG



CACCCAGCAAGCTTTCAGGTATCCCC



TTAGTGTTGTCAGGATCTCTCCAGTT



CTCCAGACCCCAATTCTGTTCTCACT



CTACACTGCTAGC


IM000445
AAAGCTAACTTCTCATCACCTACCTA
779
C




ATAGCCTGAGAGCCCTGTGTAGAAAA



ATTAAGGAGTTTAGTTCCTTCATG


IM000446
CATGCAGACAAAGTAAATAAGAAAAC
780
D




AAATTAAATGTAGGCTGGACGGATAG



ATGGT


IM000447
CTCAGCTCCTAGGCAACACTTGTAGA
781
K
Wnt1



CCCACAGCCCCTTCACACACACACAC



ACACACACACACACACACACACACAC



GGCTGGGGATCCAACCCATCTCGTCC



TTACACGTGCTCTACCATCACACCAC



ACATTTCCAGCACTTTTATCTGAAGT



GTTTCCTTTTATTTGTGCATG


IM000448
CATAACCACTATAACCAGCCTGCTTA
782
C




CTTGGCTTTGTTTCGAGGGCTTTTGT



TTTAGAGCTCTTTGTTTTTACCCTTC



TCCGTGTGTGTGTGTGTGTGTGTGTG



TGTGTGTGTGTGTGTGTCTGTCTGTC



TGTCTGTCTGTCTGTCTTAGTGTTTG



TACATG


IM000449
CATGTGGTCCACGGTTTTACTTTACT
783
C




AGGGAGCTACCTGTACCACAGGGAGA



GAGGCCTAAGGACAGGAAAGGAGCTG



ACCCAGAACTGAAAAGGCACACACCA



TTCTGCCAGCACTTCCC


IM000450
CATGTCCTACAGTGGACATTTCTAAA
784
R




TTTCCCTTCTTTTTCAGTTTTCCTCG



CCATATTTCACGTCCTAAAGTGTGTA



TCTCTCATTTTCCGTTATTTTCAGGT



ATCTCGCCATATTCCAGTTCCTACAG



TGTGCATTTCTCATTCTTCACGTTTT



TCAGTGATTTCGTCATTTATCAAGTC



GTCAAGTGAATTTTTTCATTTTCTCT



GATTTTCAGTTTTCTCGCC


IM000451
CATGTTGCCTCAAGACAGATCTCCAC
785
R




TAAAGACATACCTAAAGGCCTGGAAG



CTTAGTCAATTAAGCTTTCCTGCCCA



GACACTCCTCCCTGAAAAAGGTATTT



AACCTCAGGCCCACCCTGAGAAGTGG



GGTATGATTTTACTCATCCACTTTC


IM000452
CATGGTTTCTATTACTGTGTTGAAGC
786
R




ACCCTGACCAAAGCCAATTGGGGGAC



GAAAGGGTATTTGGCTTAAACTTCCA



AATCAGTGTTTATCATTAAAGGAAGT



CAGGGTAG


IM000453
GCAAGTGTCAGACGGCTCTCAGGGAG
787
D




ATACACATAGCTTTATTGGATAACTG



CAGCTTGAAGACATG


IM000454
CATGTACCTATGTGTGTGTAACATTT
788
D




GCCTATTTTCACACAGTTAAGAAAGC



ATCGTTATGAAAATCATTACAACTTT



CCAGATAAACAGATCCACTCAGCCAC



AGAT


IM000455
GCCCTTCTCTCTGAACTTTTCAGTTC
789
D




CTGGATAAAGTCAGTGTTCCACCTCT



ATACCTGACTAGTTTTCCTAAATTCT



GAGTCAAGCATATTTCATG


IM000456
GACCTCGTGGGCGGGCCTGAGGAGAC
790
D




AGTGCAGATGAGGTGTCAGTAAGGAG



GATGCAAGCAAGAAAGATGCAGGAGA



TGATGGAGAAGCTGAAGAAGGCACTG



AAGAAGGCACAGGGAAGAAGAGTGCA



TG


IM000457
CTTGCCGTTGAGAGCGTCCAGATCCC
791
C




CTGACTTGAGTGGGTCCACCTTGTTT



GGTTTGGTTCGCAGTGTCGGCTGTGG



AGCCCCAGGCCTTGCATG


IM000458
TTCTTATCCACTGAGCCACACTGCTA
792
D




ATACTGTGATGTCTTTTTTAAGACTC



ACCATG


IM000459
GGGTTCAACACATTTTTGGAGATTGA
793
D




TCAAAATTAAAACATG


IM000460
CATGAAGGAGAGTCTGAGGCTACATC
794
C




CACCAGGCTCTATGATCTCCCTCTGC



TGCATCCAGGACATTCTCCTTCTGGA



TGAAGATGATGCTGGCGCTGGCGCTG



GCGCTGACGCTGATGCTGCTCGCTTC



TGCGTCCT


IM000461
CCTTGTCCTCAAATTACAAAACTCCC
795
B
AT4269



TAGGGTCTTTTCTCTGGGCTACAAAA


08



TTCTGCAAATGGACTCAGGAGGAAT



CAATGTGGAAATTTCACTTTGCCTTC



CCAATCAGCAAAATAATGTTTGCCAA



AATCGTTAGATTTCTTTCCCCTAAGT



AGGCTACTGCCGACTTGAAAGCAGT



GGTTCCAGAACCCGAGCCCAGGGG



CTGCCACTTCCTATGCATG


IM000462
CCCTTGTCCTCAAATTACAAACTTCC
796
D




TTAGGGTTTTTTTTTTGGCTNCAAAAT



TTTNCAAAGGGCTTCAGGAGGAATA



ATGGTGGGAAATTTACTTTTGCTTTC



CAATCAACAAAAAAATGGTTGGCCAA



ATCGGTAGAATTCTTTCCCTAAATAA



GCTACTGCCGACTTGAAAGCAGTGG



GTTCAGAACCCGACCCAAGGGCTGC



CCTTTCTATGCATG


IM000463
CATGTATCTTAAGAACAGAGCCAGTG
797
D




CTCTCCCTCTCCCACTTGAT


IM000464
CATGCAGANTAAAGTACATATATGTA
798
D




AAAAATTAAAATAAATCTTT


IM000465
GTGCTCTCCCTTGCCTCTCCTCTCCT
799
K
Fgf3/Fg



GAGTTTCTCTGTAGGTGTAAGGGCT


f4



GGAGGTGGGCCCAAGAACCAGAGAT



CAGAGGAGGGAACTTCCGGAGCAGA



GGCCCTGGGAGCAGTGTTAAGCAGG



CTTTGGCCAGGTCTGGAGGTGTCCA



GGCAGGGAGGTGGAGCTGGAAGAG



ACCAATTAGTCAAACGGCTGCAATTG



GCCATTTGGAAGCAATTAACAGGGT



CTCCATTACCATATTATGCCCCTCCA



CCCCCTCCACACTCTACTAGGCTCT



GCTCTGTATGGAAGGGGGAAGGTGG



AGGCTCANCTCAAGCCAGGGAGACT



ACAATGGAGGCCCAGTGCTCGCCAG



GATGCACACACTCAGGCACCCTCCG



TGTGAGGAGGGGAGGGCAGGGCAG



CATCTGAAGCAACCTGTCATTCACAG



CCTGANAGANGGTGGGAACAANGGC



TTNCAAAGCCAAGAANGCANGTGGN



TAGAAATGCANGAAAACCTCTCTGGT



AAGAAAGGCTGAANGAAGCAGCTAG



GGTTGTAAAACAAGANCAT


IM000466
CTCCCTCTCCCTCTAGCTGGCCTAGC
800
B
Al5500



AGGGGCCAATACAACTGCAGGGAATC



AAGGAAGAGCCTTTTCCTGAACTGTC



CTGGATGCCCCAGTCCAACAGCAACT



CCCACTTGCCCTGGCTTGGTTTGCTC



CACTGTCCTGAAGGCACAGTGTGATA



TCCCAGACCTCCAGCGAGACAGCCCA



ACCTGCAAGCCCTGATGGGAGGGGTG



GCCTGAGACAACAGTACCTACATG


IM000467
CATGGACTCCAGGGTCAGGGTGTAAG
801
K
Fgf3/Fg



AAAAAGGTGGAGCCTGCTAGGTGTGG


f4



TGACACACACCTTTAACCCCAGAACT



CAGAAAGCTGAGGCAGGTGACTAGCC



AGGAGTTCAAGGTCATCTAGTTCATC



AGATCTATAGAGTGAAACAGCCAGGC



TACATTTGAGATC


IM000468
GCTCAACACTTAAAAGCGCCTGCAGA
802
D




GGGGTGGGGGTTTAATTCCCAGCACA



CACATAGTGGCTCAGGGAATCTGAAG



CCCTCTTCTGGCCACTGCGTGAACTG



CATG


IM000469
GTGGGAAGCTATACGAAAGTAAAACA
803
D




CACTCTAAGAAAGAGAACAGGCTGCC



TGGGAGAGGGAGGTGCCAGGGGCTTA



GACAGGAAGGTAGTTTTCAAAAACTG



AAAACTTAAGCTATCTGAATGAATGA



TACAAAATAAAAGAAGACACAAGAAT



TTCCAGTCACCTGAGATATCTCACAC



TCCTGTTCTTTCAACCTTCTAGCTGA



AAGGAGAAAGAGCCATG


IM000470
CATGGAAGGAGTTACAGAGACAATGT
804
R




TTGGAGCTGAGACGAAAGGATGGACC



ATCTAGAGACTGCCATATCCAGGGAT



CCATCTTATAATCAGCCTCCAAACCC



TGACACCATTGCATACACCAGCAAGA



TTTTGCTGAAAGGACCCTGATATAGC



TGTCTCTTGTGAGGCTATGCTGGGGC



CTAGCATACACAGT


IM000471
CATGCTTAGATTGACCGCAATATGTG
805
D




TGGTACTCTTCAGACTTTTAAAGATT



TGCTGAATATCCTATTCCCCTTAAAT



TGTGATCACCCTAGCTAGATCTAATC



TTAGATCTCGAAAGTTCTACAATTTG



CCTCAATTTGATTACTGTTTTCCTCC



TTGAAGAC


IM000472
CTTGCCTTGGGAAGTGAGGGGTTCTA
806
K
Fgf3/Fg



ATGAAGGTTGCAAGCCTGTCCACCCA


f4



GGGCCCTGCTAAAGAAGGAATGGTCC



CCAGCCTGTTTTGTCCCCTCTGTGGC



TTCTTAGTTCTGGACACTGAGCCAGT



CTGGGCAGCAGGCAATTCACACTGTG



AATTTCTGTGGAAAGCATTTTGGGGG



TTCTGAAAGCCCTGTACATTCTGTGT



TAAGGACAGAGGGCCTCCTGCATG


IM000473
CATGGGGGCTATGTCCTAGGGTAGAC
807
K
Fgf3/Fg



ACCCCCTTTATCCCTCAGCTCCTTCC


f4



CTGTCTTAGCAGTGGTGTCCCCCACT



GTGACTCTACTGCATCTGGGAGCTGT



CTCCCGGGGGACTTCCTCCTGCTGGA



GTGAGTAGGTGGCTAGGGCGAAGCCT



GTGTTAGAGGCAGGAGGTGTTTTGCA



CAACTCCAAAGGGTGCAGATCCTGCT



GGCTCCAGCTTCCCAGGGCCAGACCC



CGAAATACCCTTCACCCAGC


IM000474
GTGTATGTTCTCTGGTGAAAGTGTTA
808
D




ACCAGCTCACTCCGTGAAGAGCACGC



TGCTTTCAGATCAGTGTTCAGAGTCT



TGAATAATTGGTTTTTAGAATCATAA



AATTGCAGTCCTTTACAAAGGACTGG



AAGTGACTCATG


IM000475
CATGTGAATTCTCTATTTGCAATGTG
809
D




CTTGGTTCATACTTCCATACTCTACC



CAGAGCCTGTTAGAAAAATCACTCTT



CCCCACCCTATTCTTCACCAGTCAAT



ATGTATCTAGTATTCTAAACTTCCTC



CCTCCTAAGGCAGTGGGGAAG


IM000476
CATGTGTACTCTCACCATCAGAATTA
810
C




TGAGCAACCCACAATTTCTTCACATT



TATAACTGACCCAGTCTGAGGTATTG



TGCCTTTAGCAACAGAAACTGAACTC



AAAACAATCGGCACAC


IM000477
CCATATCAGACCAACCTTCCCACACA
811
D




ACAGTAGGCCACCAGGTGGGGGCAAA



GTCCTGGGTAAGGTTCTTGGCACTGT



AATTTTGAATCCCAATAATAATGACT



GTGTTATTTGCTCATG


IM000478
TAAAACCTTTAGGGAGCTGATAAAAA
812
C




TCTATCAAAACAACACTCTGTCTCTC



GTATCCAGCCATCCATG


IM000479
TCTGCCCAGCCTTTGCTTCCTCCCTG
813
B
AAT1177



GTAACAGGATGCTAATTAGAATTCATG


84


IM000480
CATGTAAAAAAAAACTTCATTAACAA
814
D




CTACAACAAAGCAGAGACCTTGGCC



CTTGGATTGGGGCCCCTCTGAGAGC



TATAGGCTGGGATACTGG


IM000481
GTGCGTGATAACCAGGCTGGCAGTGC
815
D




CCTCTGCATCCCACATTGGGAACAGC



AGCCTGATACTCCAAGGCTGCCATG


IM000482
ATGTCAACATTGAGTCCAGTAAGGAC
816
K
Wnt1



ATCGTATATGCTGGTCATTATTATAG



CTCTTTAGGGTTCATACATGAGACAG



ACCACCCCCTTACCCCCTCCCCCGTC



TGGGCTAAAAGCAGACACACTGGGTT



GGTGAGAGAGCAGCAG


IM000483
CATGAGACAGACCACCCCCTTACCCC
817
K
Wnt1



CTCCCCCGTCTGGGCTAAAAGCAGAC



ACACTGGGTTGGTGAGAGAGCAGCAG


IM000484
CATGAGAAAAATTTGTCTCTAATTCT
818
R




CTTTGTTGAATTTTTGTGTGGTTTTG



ATATCAGGTGATTGTGGCCTCATACA



ATGAATGTGG


IM000485
CCAGTGAAGTAAACCCAGCAGGAGCC
819
D




TTTACAAAGCCAGGACATG


IM000486
TCGGGGGAAAGTTATTTTTATACCTT
820
D




CCCGCTCTGGATTAAGGGAGGGTAGG



AAAGGATTGGATGAAGCTAGAGACAG



AGTGGCAGGAAGGTGGTAGACCTGAA



ATTGTCAGACAACCACTTATCGTTGG



GAAGGGTATAAGGTGACCACAGCACT



AGCAGACTGTTCTGGACGTAGTAAGG



AGTTCCTGCAGGGGAGGAGTGGGTCA



GCCETTGAATCCCATATGGTGGTTCA



CAAGTCAGCCTACATG


IM000487
CATGTGTTTTTAGCAACTGTGCTCAT
821
D




TTTCTGCTGCTGCTAGGAATAAAATC



AAATCTAGTANAATTGCTTTAATACA



AAGTTATTGTCATCCATCTCTGAAGA



TCTGAAGTATTGCTGGGGGGTCTCCA



ACTCACCCACC


IM000488
CAAGGGCCTCTCCTCCCACTGATGGT
822
R




CGACCAGGCCATCCTCTGCTACATAT



GCAGCTAGAGACACAGCTCTGGGGGG



GGGGTACTGGTTAGTTCATATTGTTG



TCCCTCCTATAGGGTTGCAGACCACT



AGGTCCCTGGGTACTTTCTCTAGCTC



CTTCNTTAGGGGCCCTGTGTTCCATC



CTATAGATGACTGTGAGCTTCTTATA



AGCATAAACTTTCACTTACCACATG


IM000489
CATGGTGTTAGCCTCCAGGCAGGAAG
823
D




CATACCAGAGGAGAACTCCACAGGGA



AGCCTTTGTTTTCTGCTGTTAAAAAC



AAAGTATGATGGGGCTTAGAAGAGGC



TTTAAGAGGTCCTCTGGAGAAAAGAA



TCTATTTTCCATT


IM000490
CATGAGAGGTTTTTAAGTCCTGAAAG
824
D




ACCATCATACCTAGAGTCTATACAAC



AAATAAACTTGGTATACAGTGAAGCT



AGTAAAAATAACTTCCTGAGCTTATGG


IM000491
CACAGTCAGGAAGCAGTTGATGAACG
825
K
Fgf3/Fg



TTGACTCTCAGCTCTCCTTCTCCCTT


f4



TAGTTCTATGGAGGTCTCCAGCCCATG


IM000492
CATGATAAAAGTCTTGGAAAGATCAA
826
R




GAATTCAAGGCCCATAAATAAACATA



GTACAAGCAATATACAGCAAACACAG



TAGCCAACATCAAACTAAATAGAGAG



AAACTTGAAACAATCCCACTAAAATC



AGGGACTAGACAAAGTTGCCCACTCT



CTCTTTAACTGTTCAATAGAGTACTC



AAAATCCTAGC


IM000493
CATGGTAGCTTTCTAGTGAGGTCTCT
827
D




TCC


IM000494
AGTACCCTTAGCCTATAAACCATCCC
828
K
Fgf3/Fg



TCTAGTCCCTGTTTGTTTTGTTTTTT


f4



TTTTAAAGACAGGGTCTCACCATG


IM000495
CATGAGCTAGGCCATCTGCAAGCTGG
829
D




TCTCGTCTTGACCAGGAGTACACAGA



AGCCTGGCTCAGGACTTGGTAAC


IM000496
GTTGTTTATGCAGATCTCTCAGCGTT
830
D




AGCATTCTATGGGATTCTTTGGAAAG



ACCTTTTCAGTTATCTTCCATTTCTG



AGGCTGTTTCTAGGCAACGGAGTGGT



ACCTTCCTTTAATCTTCCCCTGACCT



TTTCTGCCTATGAAGATGTTGACTAG



TGAGCCCGTGGGGATGTGTATTATCT



GTTACATTTATTTATGGCTTGGTAGC



GACTCCTTGGTTGTTGTTCAGCTTTT



CATG


IM000497
CATGCCTCCCTCAGCCTCCTCCCAC
831
K
Wnt1



CCCTTCCTGTCCTGCCTCCTCATCAC



TGTGTAAATAATTTGCACCGAAATGT



GGCCGCAGAGCCACGCGTTCGGTTA



TGTAAATAAAACTATTTATTGTGCTG



GGTTC


IM000498
TCTAAGTCCAGTCTTTCACACACACT
832
D




GACTTTGGTCATCTGTAATCACAACA



TG


IM000499
CATGCACACAAACTGGCCCTGAACTT
833
K
Fgf3/Fg



TTGACTTCCAGGCCTCTGCCTCTCTG


f4



CGCGCACACACACACTCGCACTCCTG



TATATGAAGCGTATATGTGTTTCTCT



GGGAACTGTTTTTATCAGGTGAAG


IM000500
GGGCTGAAGGAAAATGTTGTGTCAT
834
D




CTTTTGTGGCATG


IM000501
CATGTACCACTTTTGCTAATCCCCTA
835
D




ACCGCCCCTTGGTAAGCATCTAAAG



TGATATATCTCTTGGTCTACTGAAGT



TCTGCCCTGTCTCCATCGGGGATTC



TCGGGAGGCTAAAATTATAGACTATT



TGTGAAAG


IM000502
CATGTCCTTATGATATGGAAAAA
836
D



IM000503
CATGTGCCAAGAGCCATTACAGGCT
837
D




CAGACTAACATCTGCCTGTAAACAAC



GGTTGCTAAGTTTCCAGGGAAGCGT



AAG


IM000504
CCAGATGACCTTGAACTCAGAGATCT
838
R




CCTTGCCTTAGCCTCCTGGGATTCAT



AGCCGCTATGCCTCAAGATCTCCATG


IM000505
CATGTAGTTTGCAAACAAGACATCCC
839
D




TGGTATATCCAGAACCTGAGCTATGC


IM000506
GGATATAGTGTCAAACAGTCTGATGT
840
D




ATTCATAGGTTTGTATCCATAGTTAT



CAAATCTCTCATG


IM000507
CATGTACCACACACAGACTTGGTAAT
841
D




AAGTTAGATGATAATTACAAAAGCAA



CAAATAAAACCAACAAAACAAAACAA



AGCTTGGTAATA


IM000508
GTTAGGAGCACGAACTGCTGTTTCAG
842
R




AGGACCTGGGTTTAATTCCCAACACT



CACATG


IM000509
CATGGTCAATGATAAACATTCCAAAA
843
D




CACCAAAACCATCCTCTCTGTACAGG



CTATGATGATTCAACTGCTGCCCTTC



CTCATTTCTTGTTCCCAACTCCTACT



GAATATTTCCTGCAT


IM000510
CATGATAGAAGACCACGTCTGGGATG
844
D




GGGTAAGGGTTTCTCAGAGTACCTTG



CCCTGGGGCCACATCCTAAATCTACA



ACAAAGCTGACCCTA


IM000511
CAAGTTTTTGTAAGGGAGCTAAGAAA
845
D




GGCATTGTTGGTTAGGTTGGAAAGAG



GGGGCAGGACCTGGCTCTCGCTTCAG



CCCACTCCCCTCTGCCCCCCAGCCTC



AAACACTTTTACCCTAGCATAGCAGA



AACATG


IM000512
CATGAACTCAGTGGGCAGATGAAGAG
846
K
Fgf3/Fg



TTTTTGTGTGAACTGGGGCTTTGCCC


f4



TTATCATCCTGTGTGTTCTCCTGGTG



ACCCTCAAGCTTGGCTGCAATGATCC



CCACTTACAGAT


IM000513
GTTTATTACTCCAATGATTCGCACAG
847
R




CCGGGTTGCAAGTCTAAGGCAGGCTG



TCTGCCTTCCTGGAGGTACTTACCCC



ACCTCCCCCTCTGGGGGAGCTCCACT



TGGCCATG


IM000514
CATGATTTTCAGTTTTCTTGCCATAT
848
R




TCCACGTTCTACAGTAGACATTTCTA



AATTTTCCAACTTTTTCAGTTTTCCT



CGCCATATTTCACGTCCTAAAGTGTG



AATTTCTCATTTTCCGTGATTTTCAG



TTTTCTCGCCATATTCCAGGTC


IM000515
GTAACCACTCATTTACCTGCCCCAAT
849
D




GATGTCTGGGCCAAGGCACTTTTAAA



TTCATATCTACTGTGACTATAGGTGC



CCATG


IM000516
CATGACACTGCTCACTGTTGCTCTCT
850
D




AACCTTGGTCCAG


IM000517
GNGCTTGGCAGAGTAGAGAAACTCTT
851
C




TGGGAAACTTGGTTCAGATCCAGACA



TG


IM000518
CACCTCTGCCTCAGTTTCCCTGATTA
852
D




TCAACAAGTGCTCATG


IM000519
CATGTAACTCAAGAAAGTCTAGTAGG
853
R




CGTAGTGGTAAATGCCTGATCCCAGC



ACTTGGGAGGTAGAGGCAGGTGGGAT



CTCTACAAATTCAAGACTGGTCTGGT



CTATATAGTGAGTTCCAGGCCAAGCT



TCACATTGAAATTCATCTCAAAACAA



TAAAAATAGAGGAAGATATAGTCAGG



CAC


IM000520
GAAGACATTCATTTTTTTCTTGGGAG
854
D




GGGATAGAATCCAAGGCTCCAAAGCA



GAGTTCATG


IM000521
GACCACGCTGGCCTCGAACTCAGAAA
855
R




TCTGCCTGCCTCTGCCTCCCAAGTGC



TGGGATTAAAGGCTGTGCCACCACTG



TGCTTACTGATCTCTTTGATGTCCCA



GTTATAGCTCTTGGGTTCCCCACCCA



TTTGTAGGGGGACCCAGGACACCTCA



GAGCTCTCCCAAGTCTAAAAAGGGCA



GGGTTCCTGGCTCCCTTAATGCCTTA



TCAAGCACAACAGAACTCAGGGGCAG



AAAATGTTCCCAGGAAGAACTTAGCT



GTGGGGAGAGTCATG


IM000522
CATTTTTCTTTATAGCTGAGTGTTAT
856
D




TCCACTGCAAAAATTTGAATATTCCA



CTATTCTGTTGATGAATGTCTAGGCT



GGTCACGTTCTCTTGCCTTTGTGAAT



GGAGCAGCAATAAACATAAGTGGGCA



TG


IM000523
CTCCATTGGGCCGAGTGAAGCTGTGG
857
D




TTCAGAGAAACTCTATGGACAAGCTT



GACTTCCAGAACATTGACCTGGTCTC



TGAGATCAACAAGCGTAGGAAAGCCA



TG


IM000524
CATGGGAAAGTAATCCGTGGCTAACA
858
D




CAAAGGGGAAATAAAGTAATATT


IM000525
CATGTAGGACCCTGAATGCCAGCAAT
859
D




GAACAATACCAGCTTGGTTTTCCGAC



TCTTGCTTTCTCCTCCCTCCACTACT



AACTAGCCTCACCGTTGCATCTTGTG



ACTCAGAGGTCTTGTTTCCAGGGCTT



CCTTCCTTCCAGTGTTCTTCTAATGC



ATCTAAAGTGAAGGGGTGG


IM000526
CATGCAAAGCCTCTGCAGGGCCGACA
860
D




GCAAGGAAGGCCCTTCTAGATCTCCA



GCACTCTGTCAAAAGCCATCACTCGG



CAGGCAGGCAACCACAATGTAGGGAA



GACCTGTAAAGCCTTCAGAGAGGAAC



AGCTGGCAGCCCCTGGGTCACTCAGA



GTGGCCAACAGCTACTCTTGTGGAGA



CAGCAGGAGGAGGCCTAGACTATAGA



AGGATGGAGGAC


IM000527
CATGCACACAAACTGGCCCTGAACTT
861
K
Fgf3/Fg



TTGACTTCCAGGCCTCTGCCTCTCTG


f4



CGCTCACACACACACTCGCACTCCTG



TATATGAAGCGTATATGTGTTTCTCT



GGG


IM000528
CATGAAACATTATTTNTTTTGGAAGT
862
R




CTGCAGGTAAACTTAAATAGGTTAA


IM000529
AGCAAGAACAAAGGAAGTACTTCAGC
863
K
Fgf3/Fg



TGATAAAAACAGTTCCCAGAGAAACA


f4



CATATACGCTTCATATACAGGAGTGC



GAGTGTGTGTGTGAGCGCAGAGAGGC



AGAGGCCTGGAAGTCAAAAGTTCAGG



GCCAGTTTGTGTGCATG


IM000530
GATTTTTATTTCCTTAGCATCCTGAT
864
K
Fgf3/Fg



TGGAGATGGCTGGGTGCACATG


f4


IM000531
CATGTAGAGACTGCCATATCCAGGGA
865
R




TCCACCCCATAATCAGCATCCAAACA



CTGACACGATTGCATACACTAGCAAG



ATTTTATTGAAAGGACGCAGATGTAG


IM000532
GACCTGTACCCTACCCTCTGATGGAG
866
D




GCCATCTATTTGCCTGTCCCCAGGAG



TCCCCAAACTGCTCAAAGAACAGACT



GTGGGCTCTGGAAAGCTAGCAGGTGA



CCCCGGGGGATGTTCTGAGCAGTGCC



TTACTGAAGTTTATCCAGGCCCTAGG



GTCCCCTCAACTGCTCACACAGCCTA



GGGTGGGTCTCTTGAGGAGTCACTTG



TCACTTCTGTTGCTTCCCAAGAGACC



CAGGGAAAAAAGGAAGGAAGGCCATG


IM000533
ATCTCACTCGTAAAATGAACAAAGGG
867
K
Fgf3/Fg



ACTGCAGAGATGGCTCTGAGCTTTTA


f4



AGACCATAGCCTGCTTTTCCAGAGAG



CCCAGGCTTCATTTCCCAGCCCACAT



ATGGCAGTTCACAACCATCTACAACT



CTAGTTCCTGGGGATCTCACACTTTT



GTCTTCTGTGGGCACTGCGCAAATGT



GCACAGAAATACACGCAAGGAAAACA



CCCATG


IM000534
AAGAAACACTCTTAGCTGGGCCTGGA
868
D




AGTGCACATG


IM000535
CTAAAGCAGATTATTATACTTATTCT
869
D




ACTGACCATAATGCAACCACTATTAT



ATAAACAGAACATACTATAAAGTGAA



TAACATTAGGATACAAAATGTATAAA



AGGGGAGAGAGGATAACCATTGTGAA



GTATGTTTAAATAAAATGTTTGGGAT



TTGAGGAAATTAATAAATTAGTTACC



CTTTTTGCTTTGGGGAAAGAAAGGCA



GCATG


IM000536
CAGCCCCAAACCCATCAGCCTGAGAC
870
D




TGATGCACAGGAGGCAGGCCAGTTAG



TTATTCTCTGGGCCCCTCTATTTTGC



CTTCTGTAGGTTAATCCCACCGCTCC



CAGTGCTGGAAAGTGCAAGCATTGTG



GGAAGTTAAAAACGTGCCACCATG


IM000537
CATGGACAATGCACCCCTCAAGCAGT
871
K
Fgf3/Fg



GTCTTCCATACAGACAAGCATATTTA


f4



TTTTCTATACAGACAGCAACTTTGCT



GAGGTGTAAGG


IM000538
GGATGAAGAAGCCCAAGGTATTAGGT
872
D




CAGTCTTGCTCTGACTTCTCACAGTA



AAAATACAACTCCCAGGGACTAAAAT



GACACAGAACAGCTTAGCCTCTGGAC



ATTGCTTTTGGATTGCAAAGTGATAA



GTGAAAAAGTAATAAGTCTATCTACA



TTGGAAAACATTTGGTAACTTCATTT



AAACACACTTCCCCATG


IM000539
CATGTCCTACATTGGACATTTCTAAA
873
R




TTTTCCATCTTTTTCAGTTTTCCTCAC



CATATTTCACGTCCTAAAGTGTGTAT



TTCTCACGTGTATTCGTTGGTTGTTG



GTTTAGTTCCTGGGAGCTCTGGAAAT



CTGATTATT


IM000540
TGGAAAATGAGAAACATCCACTTGAC
874
R




GACTTGAAAAATGACGAAATCACTAA



AAAACGTGAAAAATGAGAAATGCACA



CTGAGGGACCTGGAATATGGCGAGAA



AACTGAAAATCACGGAAAATGAGAAA



TACACACTTTAGGACGTGTAATATGT



CGAGGAAAACTGAAAAGGGTGGAGAA



TAGAAATGTCCACTGTAGGACGTGGA



ATATGGCAAGAAAACTGAAAATCATG


IM000541
TGACATACAGAAAGAACACAAATACC
875
C




TGTAGCTGCTGTGACAGGACCAACCA



TTCTAAATATCAAAGCAGCTGTTGAC



ACCTAAGGACTGGTCTGACTGCTAGA



TCTAGGAGTTTCTTACTTGCAAAAGC



TGGCTTGATGCTCATG


IM000542
TTATATATATATATCGTTTTCTCTTA
876
D




CTCCTGAATCAGTGACATG


IM000543
CATGTCAGCCCTCAGCTTTACACAGG
877
D




TGTCAAAAAAAAAAAAAAACACTGAC



TGAGATCTTCCGTCTGCCATTAGCTG



TTATTGTGTACATTAAGTAGAATCCA



CTGCTTAACCCAGGCTACTGGGCTCA



CCCCAGTATTCAAGGAGGTGCCACAG



GAACTCAAAGGATACAGAAGTTACAT



ATTAAAACCCAATCTCGTAGAGGATTC



AGAGGAACTAAGTTTGGTAGGGGCAC



AGATTGTAGTACCATTAAGCCCCTCT



GTTCCTCGTGGAGAACCACTACTGTC



CAGCTAGGCGGGAAGGACCCAAATCA



AGCAAATGAGACTTGTTCTGG


IM000544
CATGATANATCCCTTTTTGTGAGCAT
878
D




TCCATAGCCTCAGTAATAGTGTCTGA



CCTTGGGACCACGCTGTATCCCACT



NTGGGACCTTCTTTTCNTCAGGCTAC



TCTCCATTTCCATTNCTGTAATTCTTT



CAACAGAAACATTTATGGGTCANAG



GTGTGACTGTGGGAGGACAACCCCA



TCCCTCACTTGATGTCCTGTCTTCCT



GCTGGAGGTGGGCTTTATAAGTTCC



CTNCCCCTACTGNCCAGCATTTCATC



AAAGATCCCTCCCTAGGAATCCTGG



GAACCTCTC


IM000545
GATAAGCTTATCTTGAACTTGAATGT
879
D




ATATGGAGAAGCAGAAACCTTGAAAC



AGCCCACAGAAACTGAAGAAGGATGA



AGGTGGAACTCTCAGCTGGAATATTC



ATG


IM000546
CATGTTCCCAGCTGGGCAAGGCCTCG
880
B
Al4132



GGTTCCTCGGTGAAGAGTGTGGACCA


88



GCCGATGAGCCCTCCGACGTGTGGAT



GAAACGGGTGGCTTTTGTTTAGTTTT



GTTTTAACCTCCCCAACGAGACTTTG



ATCAGCTCCACCTCGAAAATGTTCGC



GAAAGATGCGGAGAGCCTGAGGGACT



GCGGGGCAGCAACGGGCTCCGGCCTA



GCCCGGCCCGCCGGCCCCCAGA


IM000547
ACCAAGTGTTAATAATGTACTGATGG
881
C




CTTCTGCCTGTGGCAGTACACTTGTC



CTCTACACATG


IM000548
CCTTACTGCAGAGATGACTCGGCCAA
882
D




CGGCTTCGAGCCCCTGACCACTTCCT



CAGGTTTGGTTTTGTTAGTTTTTTCT



CACAGCAATGGGAAGCATTTATCAAT



ACAACTTCCCAGAATGCGACCTGTGA



CAAGGCCAATGAGCAGACTCAAGGCT



GGGCACATAAAAGCACCAAAAAAAAA



AACTCCCTTGCAGTTATTGTTCATG


IM000549
GACTGAGCCTGCCTGGGGCCGTAG
883
K
Wnt1



GGAAGGGGGGGTTGGACCCTCTGG



TATTTGCAGTTACCACTGACAGGGTT



TTTCCGAGATGCCAGTGTCAGGGTG



TTCGGTGCTGACCCCCCAGGGACCG



TGCAGCCCCGATGGCTGTCTCGGTC



CTCTCANCTTTTCCGCCACCCCTGG



GATATTTCAGGACTCANTCCCCGCAA



CAGCTCTGACTGAGGTCAGCTCTGT



GACCAGGGNCCCTGTCCCCGGTGT



GNNGTGTATTTGCATG


IM000550
CATGTAGAAGGCAGAGGACAACCTTC
884
C




AGGGATTATTTCTGCCCTTTCAC


IM000551
GTTCCTCCATTCTGCTGCTTCTCCCT
885
K
Wnt1



GATACATTGAGTTACAGCAGCCCACG



CGTACACACTCTCGCACATG


IM000552
CATGCCACCAACAAATAAGTAAGTAA
886
D




AAAAGAAGGAAGGAAGGAAGGAAGGA



AAGAAAGAAAACATTTTAAATCTGTA



AT


IM000553
CGGAGCTTAGGTCTATCATTTAAAGA
887
R




TACAACCAAATAGGCAGAATCATTTC



CTGAGGAGCCCATTTTCTTTATCTCA



GGTCCTGCAGATTTCTCCCTGGTATT



ATCAGGGAGGAGCAGCAGCTGAGCTA



TCCTATCTCCTTTACTAATAGAAAAA



ACGCCTTTAGGGCTTGAGCACAGGAC



CTGTATTTCAGGGGAATGTTGACAAT



CCATAACTCCAGGGTGGACTACTAAG



CCCTGCAAGGTGAGTGAACCCCGGCC



GAGAATAAGGGCCATG


IM000554
CATGGCCTGAGAGTTGGAAAGAGTAT
888
D




TGTAAGCAGGGGTTGTTCCAGAAAGT



TTAGAATATAGAGACACTATACTCTA



TCCAGACTTCTTGGCAGAGGGAGTTC



AAATGTAGACTCTGAGCCCCGTCCTG



GGGCAGCTTCTTCCACCTGCTTTGGG



TAGAAGCAGGCAGACTCTGGGTAGAC



TCTGATTCCAAGGCTAAGTAACCCCT



GAACCCAGAACAGTGTTTTC


IM000555
CCAGATATCATACTGAGTTCGTAGGT
889
D




GGTTTTAATTAATCACGGGCCCCTGG



GATG


IM000556
TTGGTGATCCAAACCCAAAGAGACAA
890
D




ATGCTGAATGTTCACTCTCATTTTCT



GTTCTTAGCTCCAAATCTTCAGATAT



GAGTAAGCAACACATAAATTATGAAG



GGACCATACTGGGATGTAGGGGGCTT



GCATG


IM000557
CATGAGCACTGCTCTAGGGACACCT
891
K
Wnt-3



CCCATCCCTTCCTAGCACCCCAAAT



GCCCCTTCCCATCTCTCCTTCCAGAA



GTTGGA


IM000558
ATATAGCTGTCTCCTGAGGGCCTATG
892
R




CCAGTGCCTGGCAAATACAGAAGTGG



ATGCTCACAATCATCCATTGGACAGA



GCACAGAGTCCCCAATGAAGGAGCTA



GAGAAAGTACCCAAGGAGCTGAAGGG



GTCTGAAGCCCCATAGGAGGAACATC



AATATGAACTAACCAGTGCCCCCAGA



GTTCCTTAGAACTAAACCACCAATCA



AAGAAAACACATG


IM000559
CATGATAAGGTTAGAGTTTTGTGAGC
893
D




CTCCTTAACCTTGCTCAGCAAGCGTT



GGGCTCTTGGCAGCCGAGCTGCCATC



TTTCTCATCCCCGATAGAGCCAGCCG



CCCTTGTCGTGTCTTGAATAAGTTAG



AGGAGGCATTATAGAGCGGACCTAAA



CATTTGCCTTGGAGCCTGAGGGATGG



GGATTGGCTGAATGTGAAT


IM000560
CAGAACTGTGCTCTTTAGGAAGCCAG
894
D




ACGCTATGCCTTAGGCCCTGTTCCCT



CCAGACCTTGCTCTGTGCTACAGTGT



AAAAGCGAAGATCATG


IM000561
GAGAATTAGTAAAGAGATAACAAAGG
895
D




CGAGAAAGAGAGGCGTGTGAGAGCATG


IM000562
GTTTCCAGATTGTCCTAGTAGCTGGG
896
C




CTGCAGGAACAGCCAGCATG


IM000563
GGGGGTGGGGGTGGTAAGAGAAGATT
897
D




AATTAGCCTAGCATATATAAGGTTTT



GGATTCAATCTTCAACTCCACCCCTT



AAAGAATAAATAAACAAGTAGATAGA



TTATAGACAGACAGCTAGATGGATAG



ACAGATAGCTACATAGATACATAGAT



AGATGATAGATAATAGACAGACAGAC



AGATAAATGATAGATAGATGATAGGA



AGTCCCAGTTAACAAATGGAAATAAA



AAGACAAAAGTCCCCTTTGTCCATG


IM000564
GTATATGGAATATGGCAAGAAAACTG
898
R




AAAATCATG


IM000565
CATGGTAAAGGTCAGGAGTACACCTG
899
B
AA1113



TGCTTCTGTGTTCTTCTGTGTTGGCT


54



GACAGCTGGGCAGAAGTGAGTTCAGG



AGGNCAACCCATACGATGAGACAAGC



CGGGGCAAAGTGGGATATGTGGACCG



CAGCACATCAGAAGGGTGTGCCCGAC



ATAAAC


IM000566
CATGAAGTATATTATTAGAGGGGAAC
900
R




TAGTCTTACTGCTGAGCAGCGTGTTG



TCTTCTACAGAGGATGTTTGTGTTCT



GGAATTTAAAATTACTTAAAGTAATA



GTGTCAATGAAACGTTGTCCGGTGAC



TTGCTTCTTTTAAATGATCACTGTTA



GACAGGGA


IM000567
AATAATCAGATTTCCAGAGCTCCCAG
901
R




GAACTAAACCAACAACCAACGAATAC



ACATG


IM000568
CATGATTTGATAGGGTTATGGTTCTC
902
R




TGGAATCTAACTTCTTGAGTTCTTTG



TGTATATTGGATATTAGCCCTCT


IM000569
GCAAATAGTCCTTTGTACCGAACTTC
903
R




CACACACTAATGTAGTGAATTATTTA



AAATTTATTCCTTAATCTTTTTTTAA



AGTCCAGACTCTATCCCCCTCCTTGT



CCACCCTCTGATTGTTCCACATCCCA



TACCTCCTTGCCTCATG


IM000570
TTCCATCTCTTGTATTCTGTTGCTGA
904
C




TGCTCACATCTATGTTTCCAGATTTC



TTTCCTAGTGTTTCTATCTCCACTGT



TGCCTCACTGGGTTTTCTTTATTGTG



TCCACTTTCCTTTTTAGGTCTTGGAT



GGTTTTATTGAATTCCATCACCTGTT



TGGTTGTGTTTTCCTGCAATTCTTTA



AGGGATTTTTGTGTTTCCTCTTTAAT



GTCTTCTACCTGTTTGGTTATGTTTT



CCTGTAATTCTTTAAGGGATTTTTGT



GTTTCCTCTTTAATGTCTTCTACTTG



TTTAGCAGTGTTCTCCTGCATTTCTT



TAAGTGAGTTATTTAAGTCCTTCTTG



ATGTCCTCTACCATCATCATG


IM000571
GATGAGTTTTCTACTTTTTTATAAAA
905
D




TTATATAAAGTCATTTAGTAGAACCT



AGCTTTATTTAATTTTACCAATTAAT



ATAAGGCCACTGATATTATTGACTTT



TGTCACTACAAAATACAGCAATGAAA



TAATCTTTCTTCTAGGCTCCTTCCTC



ATCAAACTAGTTCTTCAGCTCACATT



AATACTTTTTTCAAGTTGTAAGGGAC



CTCAGGGACAGGGGGC


IM000572
CATGAGCTTATAGTTTCAGTAAGAGA
906
D




GCATAGATAGAATATAGGTGCCTGTG



CGCTGGCTCTTTTGGTTGTATTTAAA



TCCTTTATCTCTGAGAAGTCGGAACT



GTTGGCAACAGACAATATGGTAGCC


IM000573
CTGACACAGGTATGCCCAGTCCATAG
907
D




TGTGCAGAGCACAGATGGCCAAGGAT



AACTAGGAATGAGACCTACTTAACCC



AAACTCCAAACATTATGAAACTTTAA



AAAAATGACTTCAGTTGAACTTTGCA



GGTAACCACATCATG


IM000574
ATTGTGTCCTTTTAACATTCTTGCTT
908
R




TAGTAGAACATCCTCTGACCCGTATC



TGATTCAGTGAAAAATTCCTTCACGA



GTCTGCCTTAGCAAAACATCCTTTCA



CCTGTGTCTGCTTCAGGAAAACACCC



CTTCACATG


IM000575
CATGTTGGTAACAGATACAACAAGCA
909
D




GACTTAAACTAATAAGAAAACAGCTA



TGATTAATATGTTTATAACTTAGCTG



AAGAGAATGTATGGAGCTTTGAAGTT



AATCTTTTCATATACACAGGAATGCC



TTCAAAAAGCATTGCAGCAGATTTCA



AAGGATTAAACTCAT


IM000576
CATGTGGCGAACCAGCATCACTTTTG
910
D




CTCTTTCCTTACTAACCCAGGACATC



CATCATTATTTTTATAGCATCCACCC



TAGTAGATATAAGGTGATACCTTATT



GTGATTTCATTTGCCTTTCTCTGAAG



ATCACTAACAATCAAAATCTGGTTCA



TTTTATTTATGAATTCTCATTTGTCT



TTTGCTAAATATATGTTCACAATTCT



TTTCAATTTAAAAGCAAATTGTTTTG



TTAATAATGAGCTAACTTTTCATACA



TTGAAG


IM000577
TTGCTGTGGGCCTAATTCAAGGCTG
911
B
Al6639



ATAGATCACCACAGAAGGACACTGTT


69



TTCCTCCGGGCAGCAGGAAGTACAG



GGTAGGGACTCTAGAATCACTGCCC



TAGGGCATG


IM000578
GTACTTGAAGTTTTAGCTAGAGCAAA
912
R




AAGACAATGGAAGGAGATCAAGGGAA



TACAAAGTGGGAAAGAAGTCAGAGTA



TCATTATGTCCAGGTGATATGATAGT



ATACATAAATGACCCTATAGATTACA



CCTAAGACCTCTACAGTGGATAAATA



CTAAAATATTTACTACACAGAAATCA



CCCCATG


IM000579
CATGCAAGGTATGAACTCACTAATAA
913
D




GGGGATA


IM000580
CATGGTTCACACTCCATAATATCTTG
914
D




TTCTCACTAATTCCTCTAATCCCATA



ATATACACCAATAATTTAACAAGGGA



ATTTCTACATTGATTTGTAATAAGGG



AGATACTGTGTGAACTTACCCAACAA



AAGTCTCCAATAGAAGTGTGGATACC



ACAGGAAGTGTTGTGACAACCATTAA



AATTTGGGTCTGATAAGAAGATAACC



CTTTAAATATATAGATTTATGTAAAG


IM000581
CATGGGCTGGGGAAAGGCAGAGAGAA
915
D




GAACATCTGGATTGTTCGTAACTTTG



GCTTTAAAATGAGACTTCAATAATAC



TTAGACGTACCAGCTTCTCACAGTCA



GTTAAAATGTGACACACACACCTCTC



AGCAGACTGAATGGGTGAG


IM000582
AGAGATGGTTGGGATTTAAGTTACCA
916
D




GGGTAGGGTCACCACAATCAACCCT



TGATGCCTTTATAGGAAGAAACATG


IM000583
CATGGAAGTCTAAAAGACATTAGGTT
917
C




CTGGATGGAAGAAGAGAAAATTATCT



TTAAGTTTTAGAAAAGGGATGATAAA



ACAAGTCTTAAATCTTCTCAATTTTG



CCATAATTCATTTGAATTAATATTGG



TAAATGCTTTGTGTGGTCCCATAAAG



TTCAATGTGTTATATCACTAAGTAGT



TATGTAAAATTATAAATAGCCTCTAT


IM000584
CTTGTGAATTGTTTAACTGTTTTGAA
918
D




AAAGTAGATGTTTTCTCTATTTATTT



TTGGGACAATTATCAGAATTTGAAAC



AAACTGTGTATCTCTTATTTACTTTC



TGCTTAACCCCCATG


IM000585
CATGGTTGCTATATTCATTAACACAA
919
D




ATCATTTAAAATCCTTAATGTAAAAT



GGGCACATTTTCAAAATTAAAATATA



TGAAAACCAATAAAGATAGAAAATTT



AGGAAAAAAAATAATCCAAGCAAGAT



GTTAACATCCAACCACAGCAGCATAT



TAGCAGCAGGACAAAAATAAGGACAA



CAACCAAGAAAGGGATTGTGGTTAAT



GTATGCCTCATTGGAAGGGATAATAG



GATGTAAAAGTGTGACAATAAAGAGA



AAAAAATCTCTTTTTTAAATGTAAGT



TAAAATAATAAAAATAATTTAAAAAT



TGGTGTTCTCAGGGCTGGATAATATT



ACTAACAAAACCAGGGAATTATTAAT



AAAAAATCTCTTATCAGTTAT


IM000586
AACAAGTTTTAAATGGGGCATAGTGG
920
D




ATCACATTTGTGATCCCAGCACTTGG



AAGGTAGAAATAGGTAAATTAAGAGT



TCAAGGTCATTTCTCAGTTATGTAGT



TGTACATTTCTAGCGATGTAGTTGAG



TTCAAGGCCATG


IM000587
GTCCTCCAATGTGCATTTCTCATTTT
921
R




TCACGTTTTTCAGGGTTTCTCGCCAT



ATTCCATG


IM000588
AATTGCATTGAATCTGTGGATTTCTA
922
R




TTAACAAGATGGCCATTTTTTTCCTA



TGTTAATCGTACTGATCCATCAGGAT



GGCAGTCTTTCCATCTTCTGATATCG



GCCTCAATTTCTTTCTTCAGGGGCTT



GAAGTTATCGCCATG


IM000589
GGCTAGGTACTCCTAAACCTTCCTCT
923
D




GCTATCCTAGGCCCAATAGAAAAAAA



GTGGCCCATG


IM000590
AATAATACTCACTGTACTTTAAAATA
924
D




TTATCTCCTATCTCACTCTAATACTT



CTGTGAAAGAAGCAATATCGTCTCTT



TGTAGATAAAAATGGCTGAGAAGGGC



ACCTTCAAGACACTAAGTGACTAACT



CAGACTCAGAAGTTCAGAGACCATG


IM000591
CATGCTCTACTATGTTCACAGCAGTC
925
R




TTATTTATAACTTCCAGATACTGGAA



GCAACTCAGATGTTCCTCAATGTAAG



AATGGATACAGAAAAAATATGGTACA



TTTACACAATGGGGTACAACTCAGCT



ATTAAGAACAATGAC


IM000592
AAAACCCAAGAACAATTAAGCTGTAG
926
C




TTCCCAAGTGTAATTATATTATGGTT



GTTTCTGCTTGCTTTATATCCCTATAT



ACAATTTATGATTCAAGTATTAGTGG



GAATAGACTAATGGCATG


IM000593
CATGCCAAGCCTTCTGGTATCACCCT
927
C




AAAGGC


IM000594
CATGCTCTTCTCTGCTGTTCTTACTG
928
D




AATTTTTAATAAGAACTATTCCACAC



AGCTCGAAAGCACTGCTCAATTAAGA



GATATTCCTACCAGGCATCTTTGGAA



TCCTGCAAGCACCTCTTCTCTGTTTC



CTGATGACCCTCAATTTGGTTGTGTC



CAGAGGTTGGTGGGGAGGAGGGGAGG



GGAAACGAAGCTTATTTTTTTTTAAT



TGCAAGTTCAATTTTACAATGTTCTC



GAT


IM000595
CATGCTAGGCAAATGCTCCACTGAAT
929
D




GAATTACATTTCCAATCCTTTAGATG



CATTTTAAAGAGAAAAGATTGAGTAC



TGAAGTTTTGAATAGAATACAGGAAT



AAGGGACTAAACATATATATAGCCTT



ATATAGAGAAATATTAAGTAAGTAGT



AACTTTGCTTGTGTGTGTGTGTGTGT



TGCACAC


IM000596
CATGCCATTAGTCTATTCCCACTAAT
930
C




ACTTGAATCATAAATTGTATATAGGG



ATATAAAGCTAAGCAGAAACAACCAT



AATATAATTACACTTGGGAACTACAG



CTTAATTGTTCTTGGGTTTT


IM000597
CATGCACAGCTGGTGAGTGAGTTGTC
931
D




TTCTGGTACAAAAATCTCCTCACAGG



CACATTTACAAGTGCCTATATCTTTG



CTAGCTTCAAGAACACAAAGAAGGGA



CACACAAAAGCTCTTCTGAGTCTCCT



TCTCCTGCTGTTATTTTG


IM000598
ATCGTCAAAGTTAGCAAAATTATAAA
932
D




TGTGAAAGTCATG


IM000599
CATGAATTATGTTTGTTTTATTTCTTT
933
D




TGTACATCATTCAATGCAGTAATCTA



AAGTTTGGGGTCTTGGTCTTATATCT



TGGAACTTCAGTGACTTATTGGTTCT



AACG


IM000600
AGAGACAGTCACAAAAGGGGCCCATT
934
K
Fgf3/Fg



CTTGTTAAGAATGGGCCAGTGGAGAA


f4



GTTCGGGTTAGTGGAGTAGCCTGCCT



CAGTTTCCTCCTGTCTTCTGTAGTTA



AATGTGTTAATGGTTAACATG


IM000601
CATGTAGCATATCTTAGCCAGCAC
935
D



IM000602
CATGTACAGACTATGAACAGGAAATG
936
D




TTTTTGCAATTACTCTGTGCATTAGA



ATTTTCTTCAGAAATATAACCATTTT



GACAGTTGTAGGTTACACTTTTAAAA



TTACAAAATCAATAAAATTGATCTAC



AAACCGAGGCCTACAAAACCCTTGCT



GGATATTGAAGACGGCATAATATTAAG


IM000603
AATTCCCACCACCCACAGGGTGGCTC
937
K
Fgf3/Fg



CATAACCATCTGTTTACTCCAGTCTG


f4



AGGGACTCCAAGGCCCTCTTTTGGCT



TGCAAGGGCTTGCACACACACAGCGC



ACACATG


IM000604
CATGGTGAATGATTGTTTTGATGTGT
938
R




TCTTGGATTTGGTCGAGAATTTTATT



GACTATTTTGGCATTAATACTCATAA



GGGAAATTGGTCTGAAGTTCTTTCCT



TGTTGAGTCTTTATGAGGGTATCAAT



ATAATTGTGGATTCATAGAGCAAGTT



AGATTGTGTTCCTTCTGTTTATATTT



TGTGGAATATTTTGAAGAGTATTGGT



ATTAGATGTTCCTTGAAGGTATGATA



GAATTCTGAACTAAACCCATATGGTT



CTGGATTTTTTTTGGTTGGAAGACCT



ATGACTGCTTCTATTTCTTTAGGTGT



TATGGGACTGTATAGATGGTTTATCT



GAACCAGATTTAACTTTGGTATTTGT



TATCTGTTTAGAAAATTGCCCATTTC



ATCCATATTTCCCAGTTGTGTTGAGT



ATAGGCTTTTGTAGTAGGATATAATG



ATTTTTGAATTTCCTCAGTATGTTTT



CTTATATCTCCCTTTCCATTTCTGAT



TTTGTTAATGTGGATACTATCTCTGT



GTCCTCTGTTTAGTCTGGCTAAGGGT



TTTTCTATCTTGTTGATTTTCTG


IM000605
CATGGGTTAACAGTGGGCCCTAAACT
939
K
Wnt1



TGAACTAGAAAACTTAAAGATGCTCA



TAGGGAAGAAGAAAAGAGCAGAAAGC



TTAGCTTCTAGACAGGGGTAAGGCTT



AGAGCTCAATAAAAAAGGAACCCC


IM000606
CATGGCCTGTCTCAGTTTACTTCACA
940
K
Wnt1



GCTGAACAAGAGGCAGAGAGTGACAG



GTAG


IM000607
CATGCTCGCCAGTCCCAGAACCTGG
941
D




AAGGCTGAGGCAGGAGGATTAAAAA



GCCTTGGGGACACCAGGCTTGGTGG



CACCGGTCGTAAATCCAGCACTGGG



GAGTTAAGAAGCAAGTGAGTCACAT



CTGTGAGTCTGAGGCTATCTTGGTCT



ACGTAACCAGCTCTAGTATAGCCAG



CCTGGGATACATAGTAACCAGTTCTA



GTATAGCCAGCCTGGGATACACAGT



AACCAGTTCTAGTATAGCCAGCCTG



GGATACACC


IM000608
CATATGCGTATTCACATTTGTGTGGG
942
R




AACGTCCTTGGAGAAAGCAGGAGCAG



GAGTTACAGACAGTTATAAGCTGCCT



GACCTGGGTGCTGGGAAACACCTCAG



GTCCTCTGGAAGAGCAGTAAGTCCCC



TTAACCAATGAACCATCTATCCGTCC



AGCCTACATTTAATTTGTTTTCTTAT



TTACTTTGTCTGCATG


IM000609
CACACACACACACACACGGCTGGGGA
943
K
Wnt1



TCCAACCCATCTCGTCCTTACACGTG



CTCTACCATCACGCCACACATTTCCA



GCACNTTTATCTGAAGTGTTTCCTTT



TATTTGTGCATG


IM000610
CATGCCTGGTGCCTGCAGAGGTCAGA
944
K
Notch1



AAGTGTTGGATGCCCTGGAATTAGAG



TAACACATAGTTATAAGATGCTGCGT



GGGTGCTGGGATTTGAACCCTTGTCC



TCTGCAAGAGCAGCCAGTGCTCTTTA



CCACCGAGCCATCCCTCCAGCCCCTG



ATTACTCACTCTTCACGGCCTCAATC



TTGTAAGGAATATTGAGGCTGCCAAG



TGACGCAAGAGCACCTAGGAAGGCAG



CCACATCGGTGGCACTCTGGTAGCAC



TGCGAGGATGACTGCACACATTGCCG



GTTGTC


IM000611
CATGCTGGCCATTTATTTTGATTTAA
945
D




GTTATACTCTAGACCTTTGTAAATAT



TAGCCATTGCATATTACAGAAATTTC



TTAGCAGAGATAGTCTCTCACTCTTA



GTGATGAGCAAGCTGGAGCTCAGCAT



TATTCTCCCAGCTAAGATACAGAATT



ACAGACGTTTATGACGGACACATCTT



GGATGTAGTTACTTAGTCCAC


IM000612
CCCCCCCCGCCCCTGCCAGACCGCAG
946
D




CCCCAAGCACAGCATG


IM000613
CATGCCTCCCTCAGCCTCCTCCACCC
947
K
Fgf3/Fg



CTTCCTGTCCTGCCTCCTCATCACTG


f4



TGTAAATAATTTGCACCGAAATGTGG



CCGCAGAGCCACGCGTTCGGTTATGT



AAATAAAACTATTTATTGTGCTGGGT



TCCAGCCTGGGTTGCAGAGACCACCCT


IM000614
CATGAATTCAATGGTGTGCTTGCTAT
948
D




AAATGCAAATAAACCATATATATCAT



ATTACACTCAATTTTAAATATTTTTC



CTAATATTAATAAAGGTGATGGGGAA



CTT


IM000615
CATGTCTACTTTATTGCATATTAGGA
949
D




TGTCAGGTCCTGCTCGTTTCCTGGG



ACCATTTGCCTGGAAGACATTTTTCC



ATTCTT1TACTCTGAGATAGTTCCTG



TCTTTGTTGTTGAGGTGTGTTTCnG



TATTCAGCAAAATGCTGGATCTTGTT



TGCGAATCCAGTCTGTTAGCTTATGT



CTTTTTACAGGTGAATTGAGTCCATT



AATATTGAGAGATATTAAAGAGAAAT



GACTTTTGGTTCCTGATATATTTGTTT



TTTCTAGTTAGTTTTGTGTGCTTGGGA



CTCTCTCCCTTTGACTGTGTTGTGAG



ATGCTTAATATCTTGTCCTATCTTTG



GTGCAGGTGTCTTCCTTGTGTTAGA



GTTTTCATTCCAGGTTTCTCTGTAGT



GTTATGTTAGAAGACATATACTGCTT



GAATTTAGTTTTGCCTGGAATATTTT



GTTTTCTCCATCTATGTTGATTGAGA



GTTTTTCTGGGTAAAATAGCCTANCC



TGGCATTTGTGTTCTCTTAAAAGTCT



GTATGACCTCTGACTANGCTTTTCTG



GCC


IM000616
CATGGTGAATGATTGTTTTGATGTGT
950
R




TCTTGGATTTTGGTTTCGAGAATTTTA



TTGACTATTTTGGCATTAATACTCATA



AGGGAAATTGGTCTGAAGTTCTTTCC



TTGTTGAGTCTTTATGAGGGTATCAA



TATAATTGTGGATTCATAGAGCAAGT



TGGATTGTGTTCCTTCTGTTTATATTT



TGTGGAATATTTTGAAGAGTATTGGT



ATTAGATTTTCTTTGAAGGTATGATA



GAATTCTGAACTAAACCCATATGGTT



CTGGATTTTTTTTGGTTGGAAGACCA



ATGACTGCTTCTATTTCTTTAGGTGT



TATGGGACTGTATAGATGGTTTATCT



GAACCAGATTTAACTTTGGTATTTGT



TATCTGTTTAGAAAATTGCCCATTTC



ATCCATATTTCCCAGTTGTGTTGAGT



ATAGGCTTTTGTAGTAGGATATAATG



ATTTTTTGAATTTCCTCAGTATGTTTT



CTTATATCTCCCTTTCCATTTCTGATT



TTGTTAATGTGGATACTATCTCCGTG



TCCCC


IM000617
CCATGTCAGGTGGTTAACCTGTGAGT
951
D




CTAACTTCCAGGAATGCAATGCCTCT



GGCATCTACAGGCATAAACATACTTG



TGGCTTACACTCAAACTGACACACCA



ACACATATGTGCACGCGCACACACAC



ACACACCAAATTAAAAATAAAATAAC



CCTTTTTAAAAAAATATAGAATCTAT



AGATAATTGCTTTACTGCACTCACAA



ACATTTTAGGATC


IM000618
ACACTAACACAAAGAAGGGGATC
952
D



















Lengthy table referenced here




US07820447-20101026-T00001


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00002


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00003


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00004


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00005


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00006


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00007


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00008


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00009


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00010


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00011


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00012


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00013


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00014


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00015


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00016


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00017


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00018


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00019


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00020


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00021


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00022


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00023


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00024


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00025


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00026


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00027


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00028


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00029


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00030


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00031


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00032


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00033


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00034


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00035


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00036


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00037


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00038


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00039


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00040


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00041


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00042


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00043


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00044


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00045


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00046


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00047


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00048


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00049


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00050


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00051


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00052


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00053


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00054


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00055


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00056


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00057


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00058


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00059


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00060


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00061


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00062


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00063


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00064


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00065


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00066


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00067


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00068


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00069


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00070


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00071


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00072


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00073


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00074


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00075


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00076


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00077


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00078


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00079


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00080


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00081


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00082


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00083


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00084


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00085


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00086


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00087


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00088


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00089


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00090


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00091


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00092


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00093


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00094


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00095


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00096


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00097


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00098


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00099


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00100


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00101


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00102


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00103


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00104


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00105


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00106


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00107


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00108


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00109


Please refer to the end of the specification for access instructions.













Lengthy table referenced here




US07820447-20101026-T00110


Please refer to the end of the specification for access instructions.













LENGTHY TABLES




The patent contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A method for diagnosing colon cancer comprising comparing levels of PPP3CC protein in a patient colon sample to that of a non-cancerous colon control sample, wherein the PPP3CC protein is encoded by a nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 1587, wherein an increase in the level of PPP3CC protein in the patient colon sample of at least 50% relative to said non-cancerous colon control is indicative of colon cancer.
  • 2. A method for diagnosing colon cancer comprising comparing levels of a polypeptide encoded for by a nucleic acid comprising a nucleotide sequence at least 98% identical to SEQ ID NO:1587 in a patient colon sample to a non-cancerous colon control sample, wherein an increase in the level of the polypeptide in the patient colon sample of at least 50% relative to said non-cancerous colon control is indicative of colon cancer, said polypeptide having protein phosphatase activity.
Parent Case Info

The present application is a continuing application of U.S. Ser. Nos. 09/747,377, filed Dec. 22, 2000 and 09/798,586, filed Mar. 2, 2001, and applications entitled Novel Compositions and Methods for Cancer filed Oct. 23, 2001, Nov. 8, 2001, Nov. 30, 2001, and Dec. 20, 2001, all of which are expressly incorporated herein by reference.

US Referenced Citations (43)
Number Name Date Kind
4179337 Davis et al. Dec 1979 A
4301144 Iwashita et al. Nov 1981 A
4469863 Ts'o et al. Sep 1984 A
4496689 Mitra Jan 1985 A
4640835 Shimizu et al. Feb 1987 A
4670417 Iwasaki et al. Jun 1987 A
4791192 Nakagawa et al. Dec 1988 A
4816567 Cabilly et al. Mar 1989 A
5034506 Summerton et al. Jul 1991 A
5124246 Urdea et al. Jun 1992 A
5216141 Benner Jun 1993 A
5235033 Summerton et al. Aug 1993 A
5359100 Urdea et al. Oct 1994 A
5386023 Sanghvi et al. Jan 1995 A
5445934 Fodor et al. Aug 1995 A
5545730 Urdea et al. Aug 1996 A
5545806 Lonberg et al. Aug 1996 A
5545807 Surani et al. Aug 1996 A
5569825 Lonberg et al. Oct 1996 A
5571670 Urdea et al. Nov 1996 A
5580731 Chang et al. Dec 1996 A
5591584 Chang et al. Jan 1997 A
5594117 Urdea et al. Jan 1997 A
5594118 Urdea et al. Jan 1997 A
5597909 Urdea et al. Jan 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5624802 Urdea et al. Apr 1997 A
5625126 Lonberg et al. Apr 1997 A
5633425 Lonberg et al. May 1997 A
5635352 Urdea et al. Jun 1997 A
5637684 Cook et al. Jun 1997 A
5644048 Yau Jul 1997 A
5661016 Lonberg et al. Aug 1997 A
5681697 Urdea et al. Oct 1997 A
5681702 Collins et al. Oct 1997 A
5700637 Southern Dec 1997 A
5759776 Smith et al. Jun 1998 A
5776683 Smith et al. Jul 1998 A
5928870 Lapidus et al. Jul 1999 A
6074825 Rundell et al. Jun 2000 A
6153441 Appelbaum et al. Nov 2000 A
6812339 Venter et al. Nov 2004 B1
20030143539 Bertucci et al. Jul 2003 A1
Foreign Referenced Citations (12)
Number Date Country
WO 8705330 Sep 1987 WO
WO 9010448 Sep 1990 WO
WO 9104753 Apr 1991 WO
WO 9525116 Sep 1995 WO
WO 9535505 Dec 1995 WO
WO 9727212 Jul 1997 WO
WO 9727213 Jul 1997 WO
WO 0194629 Dec 2001 WO
WO 0222660 Mar 2002 WO
WO 0246467 Jun 2002 WO
WO 03008583 Jan 2003 WO
WO 03053224 Jul 2003 WO
Related Publications (1)
Number Date Country
20070037145 A1 Feb 2007 US
Continuation in Parts (6)
Number Date Country
Parent 10034650 Dec 2001 US
Child 10035832 US
Parent 09997722 Nov 2001 US
Child 10034650 US
Parent 10052482 Nov 2001 US
Child 09997722 US
Parent 10004113 Oct 2001 US
Child 10052482 US
Parent 09798586 Mar 2001 US
Child 10004113 US
Parent 09747377 Dec 2000 US
Child 09798586 US