COMPOSITIONS AND METHODS FOR CONTROLLING A HONEY BEE PARASITIC MITE INFESTATION

Information

  • Patent Application
  • 20190343126
  • Publication Number
    20190343126
  • Date Filed
    May 14, 2019
    5 years ago
  • Date Published
    November 14, 2019
    4 years ago
Abstract
The present invention relates to a formula or composition for use in reducing a honey bee parasitic mite infestation that may comprise, for example, a liquid, solid, or paste composition, comprising about 5-20% beta acids (about 5-75% by weight), about 5-75% by weight propylene glycol, about 5-75% by weight polysorbate 60, about 0.5- 35% of a thixotropic material, such as fumed silica, and/or about 0.5-5% pf an antioxidant, such as ascorbic acid, the composition is active against parasitic mites for more than about 14 days in the bee hives. Compositions of the present invention provide effective control, treatment, or prevention of honey bee parasitic mite infestation by inclusion of, for example, certain excipients that retard beta acid oxidation, prolong availability of active ingredient for bee uptake, improve convenience for beekeepers, or both retard beta acid oxidation and prolong the availability of active ingredient for bee uptake.
Description
TECHNICAL FIELD

The present invention relates to a formula or composition for use in reducing a honey bee parasitic mite infestation. Compositions of the present invention provide effective control, treatment, or prevention of honey bee parasitic mite infestations by inclusion of, for example, certain excipients that retard beta acid oxidation, prolong availability of active ingredient for bee uptake, improved convenience for beekeepers, and may both retard beta acid oxidation and prolong the availability of active ingredient for bee uptake.


SUMMARY OF THE INVENTION

As described below, the present invention comprises compositions useful for controlling, treating, or preventing honey bee parasitic mite infections and comprising excipients that allow these compositions to stay wet and/or biologically active for at least about 14 or more days.


Exemplary compositions of the present invention may comprise about 5% to about 75% by weight hop beta acids, about 5% to about 75% by weight solvent, about 5% to about 75% by weight emulsifier, and at least one of 0.5% to about 35% by weight fumed silica and 0.5% to about 5% by weight ascorbic acid or another antioxidant. The present invention includes one or more new formulation excipients, such as a thixotropic material and/or an antioxidant material. The present invention also provides formulations suitable for use as part of, or to form all of, new delivery vehicles comprising, for example, patties, pastes, plastic porous strips, other strip materials, pads, powders, etc. Additionally, the present invention provides formulations wherein the proportion of solvent and emulsifier excipients relative to each other and/or relative to the total composition (by weight) are substantially or significantly changed relative to the conventional art.


Hop acid oxidation is caused by oxygen containing species in hops and atmospheric oxygen via auto oxidation or through secondary oxidation, where the oxygen molecule indirectly oxidizes hop acids by first reacting with hop oil compounds creating pro-oxidants and then oxidizing hop acids. Hop acids oxidize and chemically deteriorate at high temperature and in presence of oxygen (Benitez, J. L.; Foster, A.; De Keukeleire, D.; Moir, M.; Sharpe, F. R.; Verhagen, L. C.; Wetwood, K. T. Hops and hop products. In Manual of Good Practice; European Brewery Convention: 1997). Beta acids (lupulone, colupulone, and adlupulone) in hops have isoprenyl chain that is sensitive to autoxidation resulting in oxidation product hulupones (Verzele 1991, Briggs 2004) (FIG. 1). Such oxidation is detrimental to the effectiveness of hop beta acids for controlling, treating, or preventing honey bee parasitic mite infections. Natural antioxidants such as vitamin C (ascorbic acid), vitamin A, tocopherols, carotenoids, lutein, lycopene, polyphenols like flavonoids or synthetic antioxidants such as propyl gallate, tertiary butylhydroquinone, butylated hydroxyanisole, butylated hydroxytoluene could be used to prevent oxidation of hop beta acids.


The rate of oxidative degradation of beta acids increases with the increase in surface area exposed to air oxygen exposition. Krofta found higher rate of beta acid degradation when spread on surface of solid carriers such as cellulose powder or silica sand compared to leaf hops (Krofta, K., Vrabcová, S., Mikyška, A., Jurková, M., Cajka, T., & Hajslová, J. (2013). Stability of hop beta acids and their decomposition products during natural ageing (Vol. 1010) (“Krofta”)). For example, HopGuard® Strips with a thin beta acid layer of formulation allow greater exposure to oxygen in the bee hives. Such greater oxygen exposure can be detrimental to the effectiveness and/or duration of the HopGuard Strips. Here, the present invention solves problems associated with oxidation and moisture retention characteristic of conventional miticide formulations and delivery vehicles.


Thixotropic materials such as fumed silica, microparticles of alumina, aluminum nitride, carbon black, nanocarbons, could be used to form layers of formulation on delivery vehicles such as strip, gel, paste, patty or powder, to protect beta acid from oxidative degradation, prolong availability of beta acid for bee uptake, reduce drip loss and bee agitation due to dripping in hives, mask any bee repellant odor, and improve convenience for bee keepers.


Fumed silica (CAS 112945-52-5) is a low density high surface area powder which when mixed with fluids increases the viscosity and exhibits a thixotropic behavior.


Thixotropy is a time-dependent shear thinning property where the thick gel and colloids convert into fluid when agitated. Thixotropy may also be described as the property of becoming less viscous when subjected to an applied stress, shown for example by some gels that become temporarily fluid when shaken or stirred. This property is utilized in the present invention where bees receive a small dose of beta acid on interacting with the delivery system over a longer period of time instead of getting drenched, as seen with the formulations without fumed silica. In addition, fumed silica containing formulations are not chewed by bees since the cardboard strips are not exposed due to the presence of thick layers of the formulation.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1 is a picture showing the oxidative conversion of hop beta acid, lupulone, to degradation product hulupone in the presence of heat and oxygen.



FIG. 2 provides pictures showing different formulations of HopGuard® III and various delivery methods.



FIG. 3 is a graph showing hop beta acid degradation in HopGuard® II strips under simulated beehive conditions (35° C., 35% RH) over a period of 8 days.



FIG. 4 and FIG. 5. are graphs showing hop beta acid degradation in HopGuard® II and HopGuard® II+5% Ascorbic acid (antioxidant strips) under simulated beehive conditions (35° C., 35% RH) and actual beehives, respectively. For simulated beehive conditions, the strips were collected on day 1, 3 and 7 and for actual beehive, the strips were collected on day 0 and 14.



FIG. 6 is a graph showing weight of strip based products, HopGuard® II and HopGuard® III strips under simulated in-hive conditions (35° C., 35% RH) on day 0 and day 14.



FIG. 7 is a graph showing hop beta acid oxidation of strip based products, HopGuard® II and HopGuard® III under simulated in-hive conditions (35° C., 35% RH) over a period of 30 days.



FIG. 8 are pictures showing chewing bee behavior and strip condition for HopGuard® II and HopGuard® III strips on day 14 in beehives.



FIG. 9 is a graph showing weights of different delivery products under simulated in-hive conditions (35° C., 35% RH) on day 0 and day 14.



FIG. 10 is a graph showing hop beta acid degradation of different delivery products under simulated in-hive conditions (35° C., 35% RH) on day 0 and day 14.





EXAMPLES
Example 1
Development of HopGuard® Formulations and Testing Protocol

Five Hop formulations and one control formulation with zero hop beta acid were developed at Haas Innovations Center, John I Haas, Inc., Yakima, Wash. TABLE. 1 is a table showing the composition of various HopGuard® formulations















TABLE 1







Hop Beta
Propylene
Polysor-
Fumed
Ascorbic


S.

Acid Resins
Glycol
bate 60
Silica
acid


no.
Product
(%)
(%)
(%)
(%)
(%)





















1
HopGuard
33
33
33
0
0



II


2
HopGuard
33
28
33
0
5



II + 5%



Ascorbic



acid


3
HopGuard
33
10
55.25
1.75
0



III/



HopGuard



III Strip


4
HopGuard
33
10
52
5
0



III Paste


5
HopGuard
33
10
42
15
0



III Patty


6
Control
0
50
50
0
0









In one embodiment, natural antioxidant ascorbic acid was used at the rate of 5% in the formulation while reducing the propylene glycol content to develop HopGuard® II+5% ascorbic acid strips. Other natural antioxidants such as, for example, vitamin A, tocopherols, carotenoids, lutein, lycopene, polyphenols like flavonoids or synthetic antioxidants such as propyl gallate, tertiary butylhydroquinone, butylated hydroxyanisole, and butylated hydroxytoluene could be used for the same purpose.


Excipient fumed silica, a thixotropic material, was used to form gel, colloids and paste that convert into fluid when agitated due to bee interaction. The consistency of HopGuard® formulations was found to change with the level of excipient fumed silica added to the formulation, which allowed development of different delivery products such as liquid, paste, gel, patty or powder. Other materials with similar properties such as, for example, microparticles of alumina, aluminum nitride, carbon black, and nanocarbons, etc. could be used to achieve the desired outcome.


Three formulations, HopGuard® II, HopGuard® II+5% Ascorbic acid and HopGuard® III were prepared by soaking corrugated cardboard strips, with mylar backing, 17.5 (L)×1.25 (B) folded in half, with liquid formulation added at the rate of 25 g per strip. Strips were placed in an aluminum foil bag (13×5 inches) and soaked in formulation for 24 hours. HopGuard® III paste formulation was added to a permeable bag at the rate of 25 g per bag (FIG. 2). HopGuard® III patty formulation was developed into a 25 g patty and placed on an impervious cardboard sheet.


In a preferred embodiment, cardboard strip products are intended to be hung between the frames of beehives, whereas, paste and patty formula are intended to be placed on top of the frames or any other area where bees could interact with the product, for example the entrance.


For testing of formulations in the lab, a Thermolyne (oven series 9000) hot air incubator was used to simulate beehive environment with a controlled temperature of 35° C. and relative humidity of 35%. The strips were hung in the incubator, whereas the paste and patty based formulas were placed on a wire rack. Samples were pulled out in triplicate on a given time point, weighed, placed in Ziploc bags, flushed with nitrogen gas, and stored under nitrogen flush at 5° C. until analysis for beta acid using HPLC as μg/inch2 for strips and μg/g for paste and patty products.


For testing of formulations in the beehives, the products were tested in full strength bee colonies at Carl Hayden Bee Research Facility in Tucson, Ariz. For strip based formulas, two strips (25 g liquid formulation per strip) per hive were hung over the center brood frame near the middle of the frame with one half of the strip on each side of the frame. The paste and patty based products were placed on top of the center brood frames at the rate of two permeable bags (25 g each) or two patties (25 g each) per hive. Samples were pulled out in triplicate on a given time point, placed in Ziploc bags, flushed with nitrogen gas and stored under nitrogen flush at 5° C., until analysis for beta acid using HPLC.


Example 2
Inclusion of Antioxidant/s in the HopGuard® Formula Decreases Oxidative Degradation of Hop Beta Acid

In a preliminary experiment, our currently available product, HopGuard® II, was found to have 30% beta acid degradation over a period of 8 days under simulated hive conditions as described above (FIG. 3). When tested in lab, using protocol described in example 1, the HopGuard® II+5% Ascorbic acid strips were found to have no beta acid degradation (p<0.05) over a period of 7 days, where 35% degradation of beta acid was observed in the HopGuard® II product (FIG. 4). When tested in beehives, the HopGuard® II+5% Ascorbic acid strips were found to have relatively lower beta acid degradation (44% degradation) when compared with HopGuard® II product (75% degradation) over a period of 14 days (FIG. 5).


Example 3
Addition of Excipient Fumed Silica Prolongs Availability of Product from HopGuard® Strips and Retards Oxidative Degradation of Beta Acids

Two strip based products, HopGuard® II and HopGuard® III were tested for change in strip weight and beta acid degradation under simulated hive conditions over a period of 14 days using protocol described in Example 1. Strip weight and wetness were used as an indicator of the availability of product for bee uptake. Fumed silica in HopGuard® III strip prevented the reduction of strip weight via evaporative drying or drip loss, while keeping the strip wet on touch (observation), thereby enabling the strip to last longer (FIG. 6). On the other hand, HopGuard® II strips were completely dry (observation) and had a relatively greater change in weight over a period of 14 days. When tested for beta acid content, HopGuard® II strips had higher degradation of beta acid (41%) compared to HopGuard® III strips (30%) after 30 days (FIG. 7).


The strips were tested in bee hives to observe bee response to HopGuard® II and HopGuard® III over a period of 14 days. HopGuard® III strips were found wet on touch (observation) and visibly intact on day 14 whereas HopGuard® II strips were completely dry and partially or completely chewed up by the bees with mylar film exposed (FIG. 8). HopGuard® III strips were found to cause no bee agitation (which is related to the product) in the beehives due to negligible product dripping unlike HopGuard® II strips which dripped on the bees and in and around the beehive causing bee agitation. There was no or negligible bee repellency to either of the products tested.


Example 4
Excipient Fumed Silica Based HopGuard® III Paste and Patty Delivery Prolongs Availability of Product and Prevents Oxidative Degradation of Beta Acids

Two formulations, HopGuard® III paste and patty were tested for change in product weight and beta acid degradation under simulated hive conditions over a period of 14 days as described in Example 1. Strip weight and wetness were used an indicator of the availability of product for bee uptake. Both weight and beta acid content did not change (P<0.05) in the products, instead beta acid content of HopGuard® III paste was found to increase by 38% on day 14, probably due to the concentration of beta acid (FIG. 9, 10). Similar to HopGuard® III strips as discussed in example 3, HopGuard® III paste and patty product performed good and perhaps better in the bee hives.


The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A composition comprising about 5% to about 75% by weight hop beta acids, about 5% to about 75% by weight solvent, about 5% to about 75% by weight emulsifier, and at least one of 0.5% to about 35% by weight fumed silica and 0.5% to about 5% by weight ascorbic acid or another antioxidant.
  • 2. The composition of claim 1, wherein at least one of the hop beta acids are potassium salts of hop beta acids; the solvent is propylene glycol; and the emulsifier is polysorbate 60.
  • 3. The composition of claim 1, further comprising about 30% to about 35% by weight hop beta acids, about 10% to about 35% by weight solvent, about 30% to about 35% by weight emulsifier, and at least one of about 0.5% to about 25% by weight fumed silica and about 5% by weight ascorbic acid.
  • 4. The composition of claim 1, wherein the composition is in the form of a strip, a patty, a paste, a pad, or a powder.
  • 5. The composition of claim 1, further comprising 0.5% to about 35% by weight fumed silica.
  • 6. The composition of claim 5, wherein the fumed silica maintains composition availability for bee uptake or reduces beta acid degradation or reduces bee agitation by minimum dripping on bees in the beehives.
  • 7. The composition of claim 1, further comprising 0.5% to about 5% by weight ascorbic acid.
  • 8. The composition of claim 7, wherein the ascorbic acid reduces beta acid degradation.
  • 9. The composition of claim 1, comprising both fumed silica and ascorbic acid.
  • 10. The composition of claim 1, wherein the composition is active against parasitic mites.
  • 11. A method of preventing or controlling a honey bee parasitic mite infestation in a honey bee population comprising: exposing a honey bee population to a composition comprising about 5% to about 75% by weight hop beta acids, about 5% to about 75% by weight solvent, about 5% to about 75% by weight emulsifier, and at least one of 0.5% to about 35% by weight fumed silica and 0.5% to about 5% by weight ascorbic acid or another antioxidant; andmaintaining the composition in a moist condition for a period of at least about 14 days.
  • 12. The method of claim 11, wherein at least one of the hop beta acids are potassium salts of hop beta acids; the solvent is propylene glycol; and the emulsifier is polysorbate 60.
  • 13. The method of claim 11, further comprising about 20% to about 35% by weight hop beta acids, about 20% to about 35% by weight solvent, about 20% to about 35% by weight emulsifier, and at least one of 15% by weight fumed silica and about 5% by weight ascorbic acid.
  • 14. The method of claim 11, further comprising providing the composition in the form of a strip, a patty, a paste, a pad, or a powder.
  • 15. The method of claim 11, further comprising 0.5% to about 35% by weight fumed silica.
  • 16. The method of claim 15, further comprising providing fumed silica in an amount sufficient to maintain composition moisture or reduce beta acid degradation.
  • 17. The method of claim 11, further comprising 0.5% to about 5% by weight ascorbic acid.
  • 18. The method of claim 11, further comprising providing ascorbic acid in an amount sufficient to reduce beta acid degradation.
  • 19. The method of claim 11, comprising both fumed silica and ascorbic acid.
  • 20. A method of making the composition of claim 1.
Provisional Applications (1)
Number Date Country
62671064 May 2018 US