COMPOSITIONS AND METHODS FOR CONTROLLING CARBON DIOXIDE- (CO2-) REGULATED STOMATAL APERTURES, WATER TRANSPIRATION AND WATER USE EFFICIENCY IN PLANTS

Abstract
In alternative embodiments, the invention provides compositions and methods for manipulating the exchange of water and/or carbon dioxide (CO2) through plant stomata by combining the control of expression of CO2 sensor genes with the control of expression of OST1 protein kinase and the related protein kinases SnRK2.2 and SnRK2.3, and their genes. In alternative embodiments, the invention provides plants having increased water use efficiency, and drought-resistant plants; and methods for engineering of water transpiration and water use efficiency in plants, and engineering plants with increased water use efficiency and drought-resistant plants.
Description
TECHNICAL FIELD

This invention generally relates to plant molecular and cellular biology. In alternative embodiments, the invention provides compositions and methods for manipulating the exchange of water and/or carbon dioxide (CO2) through plant stomata by combining the control of expression of CO2 sensor genes with the control of expression of OST1 (Open Stomata 1) protein kinase and related protein kinases SnRK2.2 and SnRK2.3, and their genes. In alternative embodiments, the invention provides plants, plant tissues and cells, having increased water use efficiency, and drought-resistant plants, plant tissues and cells; and methods for engineering of water transpiration and water use efficiency in plants, and engineering plants with increased water use efficiency and drought-resistant plants, plant tissues and cells.


BACKGROUND

Stomatal pores in the epidermis of plant leaves enable the control of plant water loss and the influx of CO2 into plants from the atmosphere. Carbon dioxide is taken up for photosynthetic carbon fixation and water is lost through the process of transpiration through the stomatal pores. Each stomate is made up of a specialized pair of cells named guard cells, which can modify the size of the stomatal pore by controlling guard cell turgor status.


An important trait in agriculture, in biotechnological applications and the production of biofuels is the water use efficiency of plants. The water use efficiency defines how well a plant can balance the loss of water through stomata with the net CO2 uptake into leaves for photosynthesis and hence its biomass accumulation. Several biotic and abiotic factors influence the state of stomatal opening thereby optimizing the water use efficiency of a plant in a given condition.


The concentration of CO2 regulates stomatal movements, where high levels of CO2 will lead to stomatal closing and low levels of CO2 will induce stomatal opening. Thus CO2 regulates CO2 influx into plants and plant water loss on a global scale.


SUMMARY

In alternative embodiments, the invention provides methods for increasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; or increasing the rate of growth or biomass production in a plant, plant leaf, plant organ or plant part (e.g., under conditions of drought or increased atmospheric carbon dioxide); or enhancing the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; or down-regulating or decreasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part; comprising:


(a) in a cell of the plant, plant leaf, plant organ or plant part, or in a plant guard cell, increasing the expression and/or activity of:

    • (1) an OST1 (Open Stomata 1, also known as SnRK2.6) protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity; or
    • (2) a protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2- or SnRK2.3 protein kinase activity (SnRK2 genes are SNF1 Related Protein Kinase Subfamily 2 genes) (SNF1 is “Sucrose non-fermenting 1”);


(b) the method of (a), wherein the increasing of expression and/or activity of the OST1, SnRK2.2- or SnRK2.3 protein kinase is by: (1) providing a heterologous OST1-, SnRK2.2- or SnRK2.3-expressing nucleic acid (e.g., a gene or message) and expressing the gene, message and/or protein in the guard cell, plant, plant leaf, plant organ or plant part; (2) increasing of expression and/or activity of a homologous OST1 -, SnRK2.2- or SnRK2.3-expressing nucleic acid (e.g., a gene or message); or, (3) a combination of (1) and (2);


(b) the method of (a), further comprising in the cell of the plant, plant leaf, plant organ or plant part, or in the plant guard cell, increasing the expression and/or activity of a CO2 a sensor protein or a carbonic anhydrase by: (1) providing a heterologous CO2 sensor protein-expressing nucleic acid (e.g., a gene or message), or a carbonic anhydrase-expressing nucleic acid (e.g., a gene or message) and expressing the gene, message and/or protein in the guard cell, plant, plant leaf, plant organ or plant part; (2) increasing of expression and/or activity of a homologous CO2 sensor protein-expressing nucleic acid (e.g., a gene or message), or a homologous CO2 sensor protein-expressing nucleic acid (e.g., a gene or message), or a homologous OST1 carbonic anhydrase-expressing nucleic acid (e.g., a gene or message); or, (3) a combination of (1) and (2); or


(c) the method of (b), wherein the carbonic anhydrase is a β-carbonic anhydrase;


thereby increasing the water use efficiency of the guard cell, plant, plant leaf, plant organ or plant part; or increasing the rate of growth or biomass production in the plant, plant leaf, plant organ or plant part; or enhancing the carbon dioxide (CO2) sensitivity of the plant, plant leaf, plant organ or plant part; or down-regulating or decreasing carbon dioxide (CO2) and/or water exchange in the guard cell of the plant, plant leaf, plant organ or plant part.


In alternative embodiments, the invention provides methods for up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell, a plant, plant leaf, plant organ or plant part; decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; or decreasing (desensitizing) the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; or upregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part; comprising:


(a) in a cell of the plant, plant leaf, plant organ or plant part, or in a plant guard cell, decreasing the expression and/or activity of:

    • (1) an OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity; or
    • (2) a protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2- or SnRK2.3 protein kinase activity;


(b) the method of (a), wherein the decreasing of expression and/or activity of the OST1, SnRK2.2 or SnRK2.3 protein kinase is by: (1) providing a heterologous antisense or iRNA OST1, SnRK2.2 or SnRK2.3 protein kinase nucleic acid (e.g., to decrease the expression or activity of a gene or message), or any nucleic acid inhibitory to the expression or the OST1, SnRK2.6 or SnRK2.6 protein kinase; and, expressing the inhibitory nucleic acid, the antisense or the iRNA in the guard cell, plant, plant leaf, plant organ or plant part; (2) decreasing of expression and/or activity of a homologous OST1 , SnRK2.2- or SnRK2.3 kinase-expressing nucleic acid (e.g., a gene or message); or, (3) a combination of (1) and (2);


(b) the method of (a), further comprising in the cell of the plant, plant leaf, plant organ or plant part, or in the plant guard cell, decreasing the expression and/or activity of a CO2 a sensor protein or a carbonic anhydrase by: (1) providing a heterologous antisense or iRNA to a CO2 sensor protein- or a carbonic anhydrase-expressing nucleic acid (e.g., a gene or message), or any nucleic acid inhibitory to the expression of the CO2 sensor protein or the carbonic anhydrase, and expressing the inhibitory nucleic acid, the antisense or the iRNA in the guard cell, plant, plant leaf, plant organ or plant part; (2) decreasing of expression and/or activity of a homologous CO2 sensor protein-expressing nucleic acid (e.g., a gene or message) or a homologous carbonic anhydrase-expressing nucleic acid (e.g., a gene or message); or, (3) a combination of (1) and (2); or


(c) the method of (b), wherein the carbonic anhydrase is a β-carbonic anhydrase;


thereby up-regulating or increasing carbon dioxide (CO2) and/or water exchange in the guard cell, plant, plant leaf, plant organ or plant part; decreasing the water use efficiency of the guar cell, plant, plant leaf, plant organ or plant part; or increasing the rate of growth or biomass production in the plant, plant leaf, plant organ or plant part; or decreasing (desensitizing) the carbon dioxide (CO2) sensitivity of the plant, plant leaf, plant organ or plant part; or up-regulating or increasing carbon dioxide (CO2) and/or water exchange in the guard cell of the plant, plant leaf, plant organ or plant part.


In alternative embodiments of the methods, the polypeptide having carbonic anhydrase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with an amino acid sequence of (comprising) SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46.


In alternative embodiments of the methods, the polypeptide having carbonic anhydrase activity is encoded by a nucleotide sequence of (comprising) SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45. In alternative embodiments of the methods, the polypeptide having OST1 protein kinase activity comprises an amino acid sequence having between 75% to 100% sequence identity with an amino acid sequence of (comprising) SEQ ID NO:12 or SEQ ID NO:14; or the polypeptide having OST1 protein kinase activity is encoded by a nucleotide sequence of (comprising) SEQ ID NO:11 or SEQ ID NO:13.


In alternative embodiments of the methods, the plant is characterized by controlled CO2 exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2, or the plant is characterized by controlled water exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2.


In alternative embodiments of the methods, the CO2 sensor protein-expressing nucleic acid or gene, carbonic anhydrase-expressing nucleic acid, message or gene, and/or the protein kinase-expressing nucleic acid, message or gene, is oeprably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter.


In alternative embodiments of the methods, the up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant cell, plant leaf, plant organ or plant part; decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; or decreasing (desensitizing) the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; or upregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell or a plant, plant leaf, plant organ or plant part; comprises:


(a) providing (i) a nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid or a CO2 sensor gene or transcript (mRNA), each encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity; and/or (ii) a nucleic acid inhibitory (e.g., antisense, iRNA) to the expression an and OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid or an OST1 , SnRK2.2- or SnRK2.3 protein kinase gene or transcript;


(b) expressing the nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing nucleic acid, gene or transcript (e.g., expressing an antisense, iRNA or inhibitory nucleic acid) in a guard cell; and/or, expressing a nucleic acid inhibitory to the expression of the protein kinase-expressing nucleic acid, gene or transcript,


thereby up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell; decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; or decreasing (desensitizing) the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; or upregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell or a plant, plant leaf, plant organ or plant part.


In alternative embodiments of the methods, the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises:


(a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having carbonic anhydrase activity,


the polypeptide optionally comprising an amino acid sequence having between about 75% and 100% sequence identity with an amino acid sequence of: SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46, or


(b) a partial or complete complementary sequence of the nucleotide sequence (a).


In alternative embodiments of the methods, the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises:


(a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45; or


(b) a partial or complete complementary sequence of the nucleotide sequence (a).


In alternative embodiments of the methods, the nucleic acid inhibitory to the expression of the polypeptide having OST1 protein kinase activity comprises:


(a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding an amino acid sequence having between 75% and 100% sequence identity with amino acid sequence of SEQ ID NO:12 or SEQ ID NO: 14; or


(b) a partial or complete complementary sequence of the nucleotide sequence (a).


In alternative embodiments of the methods, the nucleic acid inhibitory to the expression of the polypeptide having OST1 protein kinase activity comprises:


(a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence of SEQ ID No.11 or SEQ ID NO:13; or


(b) a partial or complete complementary sequence of the nucleotide sequence (a).


In alternative embodiments of the methods, the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18 or 19 or more nucleotides and a complementary sequence to the nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides.


In alternative embodiments of the methods, the nucleotide sequence comprising the at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides is a nucleotide sequence comprising at least 50 or 100 or 300 nucleotides having between 75 to 100% sequence identity to the nucleotide sequence encoding a polypeptide having carbonic anhydrase activity and/or nucleotide sequence encoding a polypeptide having OST1 protein kinase activity.


In alternative embodiments of the methods, the plant is characterized by controlled CO2 exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2, or the plant is characterized by controlled water exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2.


In alternative embodiments of the methods, the CO2 sensor protein-inhibitory nucleic acid an/or the OST1 protein kinase-inhibitory nucleic acid is operably linked to a plant expressible promoter an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter.


In alternative embodiments, the invention provides methods for regulating water exchange in a cell of a plant, plant leaf, plant organ or plant part comprising:


(a) expressing or increasing the expression of a CO2 sensor protein-encoding or a carbonic anhydrase-encoding gene or transcript, and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript, by providing a CO2 sensor protein expressing and an OST1, SnRK2.2- or SnRK2.3 protein kinase nucleic acid, gene or transcript, as set forth in a composition or method of this invention, in the plant, guard cell, plant cell, plant leaf, plant organ or plant part; or


(b) decreasing the expression of a CO2 sensor protein encoding gene or transcript or a carbonic anhydrase gene or transcript and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript in the plant, guard cell, plant cell, plant leaf, plant organ or plant part, by expressing a nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing or carbonic anhydrase-expressing nucleic acid, gene or transcript and the OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid, gene or transcript, as set forth in a method of the invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part;


thereby regulating water exchange, wherein down-regulating or decreasing water exchange is achieved by expression or increased expression of the carbonic anhydrase or CO2 sensor protein and the protein kinase and wherein up-regulating or increasing water exchange is achieved by reduction of expression of the carbonic anhydrase or CO2 sensor protein and the protein kinase in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part.


In alternative embodiments of the methods, the increasing or decreasing of the expression is in the plant guard cell.


In alternative embodiments, the invention provides methods for regulating water uptake or water loss in a plant, plant cell, plant leaf, plant organ or plant part comprising:

    • (a) expressing or increasing the expression of a CO2 sensor protein-encoding or a carbonic anhydrase-encoding gene or transcript, and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript, by providing a CO2 sensor protein expressing and a OST1, SnRK2.2- or SnRK2.3 protein kinase nucleic acid, gene or transcript, as set forth in a composition or method of this invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part; or


(b) decreasing the expression of a CO2 sensor protein encoding gene or transcript or a carbonic anhydrase gene or transcript and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part, by expressing a nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing or carbonic anhydrase-expressing nucleic acid, gene or transcript and the OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid, gene or transcript, as set forth in a method of this invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part;


thereby regulating water uptake or water loss, wherein down-regulating water uptake or causing water conservation is achieved by expression or increased expression of the carbonic anhydrase or CO2 sensor protein and the OST1, SnRK2.2- or SnRK2.3 protein kinase and wherein up-regulating water exchange or increasing water loss is achieved by reduction of expression of the carbonic anhydrase or CO2 sensor protein and the OST1, SnRK2.2- or SnRK2.3 protein kinase in the plant, plant cell, plant leaf, plant organ, or plant part. The increasing or decreasing of the expression can occur in the plant guard cell.


In alternative embodiments, the invention provides methods for making a plant with enhanced water use efficiency (WUE), or drought-resistant plant, plant cell, plant leaf, plant organ or plant part, comprising:


expressing or increasing the expression of a CO2 sensor protein-encoding or a carbonic anhydrase-encoding gene or transcript, and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript, by providing a CO2 sensor protein expressing and an OST1, SnRK2.2- or SnRK2.3 protein kinase nucleic acid, gene or transcript, as set forth in a composition or method of this invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part


thereby regulating water uptake or water loss and increasing the WUE in the plant, plant cell, plant leaf, plant organ, or plant part.


The increasing of the expression can occur in the plant guard cell.


In alternative embodiments, the invention provides methods for making a heat-resistant plant, guard cell, plant cell, plant leaf, plant organ, or plant part, comprising:


decreasing the expression of a CO2 sensor protein encoding gene or transcript or a carbonic anhydrase gene or transcript and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part, by expressing a nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing or carbonic anhydrase-expressing nucleic acid, gene or transcript and the OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid, gene or transcript, as set forth in a method of the invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part,


thereby making a heat-resistant plant, guard cell, plant cell, plant leaf, plant organ, or plant part.


The decreasing of the expression can occur in the plant guard cell.


In alternative embodiments, the invention provides methods for opening a stomatal pore in a guard cell, plant, plant part, a plant organ, a plant leaf, or a plant cell, comprising:


decreasing the expression of a CO2 sensor protein encoding gene or transcript or a carbonic anhydrase gene or transcript and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part, by expressing a nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing or carbonic anhydrase-expressing nucleic acid, gene or transcript and the OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid, gene or transcript, as set forth in a method of the invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part,


thereby opening a stomatal pore in the guard cell, plant, plant part, plant organ, plant leaf, or plant cell.


The decreasing of the expression can occur in the plant guard cell.


In alternative embodiments, the invention provides methods for closing a stomatal pore on a guard cell in the epidermis or a plant, a plant leaf, plant organ or a plant cell, comprising:


expressing or increasing the expression of a CO2 sensor protein-encoding or a carbonic anhydrase-encoding gene or transcript, and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript, by providing a CO2 sensor protein expressing and an OST1, SnRK2.2- or SnRK2.3 protein kinase nucleic acid, gene or transcript, as set forth in a composition or method of this invention, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part


thereby closing a stomatal pore on the guard cell in the epidermis of the plant, plant leaf, plant organ or plant cell.


The expression or increase in expression can occur in the plant guard cell.


In alternative embodiments, the invention provides methods for enhancing or optimizing biomass accumulation in a plant, a plant leaf, a plant organ, a plant part, a plant cell, or seed by balancing the loss of water through stomata with the net CO2 uptake for photosynthesis, and hence enhancing or optimizing biomass accumulation in the plant, plant leaf, plant part, plant organ, plant cell, or seed, comprising opening or closing stomatal pores using a method of the invention.


In alternative embodiments, the invention provides methods for reducing leaf temperature and enhancing transpiration in a plant, a plant leave, or a plant cell, comprising opening a stomatal pore a cell or cells of the plant using a method of the invention.


In alternative embodiments, the plant is, or the guard cell, plant cell, plant part or plant organ, is isolated and/or derived from: (i) a dicotyledonous or monocotyledonous plant; (ii) wheat, oat, rye, barley, rice sorghum, maize (corn), tobacco, a legume, a lupins, potato, sugar beet, pea, bean, soybean (soy), a cruciferous plant, a cauliflower, rape (or rapa or canola), cane (sugarcane), flax, cotton, palm, sugar beet, peanut, a tree, a poplar, a lupin, a silk cotton tree, desert willow, creosote bush, winterfat, balsa, ramie, kenaf, hemp, roselle, jute, or sisal abaca; or, (c) a species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Curcurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Hellanthus, Heterocallis, Hordeum, Hyascyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Man[iota]hot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, or Zea.


In alternative embodiments, the invention provides transgenic guard cells, plants, plant cells, plant tissues, plant seeds or fruits, plant parts or plant organs, comprising:


(a) (1) a heterologus OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity; or


(2) a heterologous protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.2 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2- or SnRK2.2 protein kinase activity; or


(b) the transgenic plant cell, plant, plant part or plant organ of (a), further comprising a heterologous nucleic acid, gene or transcript encoding a protein having a carbonic anhydrase (CA) activity of a β-carbonic anhydrase activity, or encoding a CO2 sensor protein,


wherein optionally the nucleic acid, gene or transcript is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter;


and optionally the nucleic acid, gene or transcript is stably integrated into the genome of the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ, or is contained in an episomal vector in the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ.


In alternative embodiments, the invention provides transgenic guard cells, plants, plant cells, plat tissues, plant seeds or fruits, plant parts or plant organs, comprising:


(a)(1) a heterologus nucleic acid that is inhibitory to an OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity, or is inhibitory to the activity or the kinase; or


(2) a heterologus nucleic acid that is inhibitory to a protein kinase SnRK2.2 - or SnRK2.3-expressing nucleic acid or an SnKR2.2- or SnRK2.3 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2 - or SnRK2.3 protein kinase activity, or is inhibitory to the activity or the kinase; or


(b) the transgenic plant cell, plant, plant part or plant organ of (a), further comprising a heterologous nucleic acid that is inhibitory to a gene or transcript encoding a protein having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity, or is inhibitory to a gene or transcript encoding a CO2 sensor protein,


wherein optionally the inhibitory nucleic acid is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter;


and optionally the inhibitory nucleic acid is stably integrated into the genome of the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ, or is contained in an episomal vector in the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ,


and optionally the inhibitory nucleic acid comprises an antisense RNA or an iRNA.


In alternative embodiments, the invention provides transgenic guard cells, plants, plant cells, plant tissues, plant seeds or fruits, plant parts or plant organs, comprising:


(a) a first and second recombinant gene, wherein the first recombinant gene comprises an expression-increasing recombinant first gene or an expression-inhibiting first recombinant gene, and wherein the second recombinant gene comprises an expression-increasing second recombinant gene or an expression-inhibiting second recombinant gene;


wherein the expression increasing first recombinant gene comprises:

  • i. a plant, plant cell or guard cell expressible promoter; and
  • ii. a heterologus nucleic acid encoding; a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity, or, a CO2 sensor protein; and


optionally further comprising a transcription termination and polyadenylation signal;


wherein the expression-inhibiting first recombinant gene comprises the following operably linked DNA fragments:

  • i. a plant, plant cell or guard cell expressible promoter; and
  • ii. a heterologus nucleic acid, which when transcribed produces a nucleic acid (e.g., a ribonucleic acid) inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid or a CO2 sensor gene or transcript (mRNA), each optionally encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity,


optionally further comprising a transcription termination and polyadenylation signal;


wherein the expression-increasing second recombinant gene comprises:

  • i. a plant, plant cell or guard cell expressible promoter; and
  • ii. a heterologus nucleic acid encoding a polypeptide with OST1, SnRK2.2- or SnRK2.3 protein kinase activity;


optionally further comprising a transcription termination and polyadenylation signal;


wherein the expression inhibiting second recombinant gene:

  • i. a plant, plant cell or guard cell expressible promoter; and
  • ii. a heterologus nucleic acid, which when transcribed produces a nucleic acid (e.g., a ribonucleic acid) inhibitory to the expression of OST1, SnRK2.2- or SnRK2.3 protein kinase encoding gene;


optionally further comprising a transcription termination and polyadenylation signal.


In alternative embodiments, the nucleic acid (e.g., a DNA fragment) encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity encodes a polypeptide comprising an amino acid sequence having between 75% and 100% sequence identity with an amino acid sequence of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46. In alternative embodiments, the polypeptide having carbonic anhydrase activity is encoded by a nucleotide sequence of (comprising) SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45. In alternative embodiments, nucleic acid (e.g., DNA fragment) encoding the polypeptide with OST1, SnRK2.2- or SnRK2.3 protein kinase activity encodes a polypeptide comprising an amino acid sequence having between 75% and 100% sequence identity with an amino acid sequence of (comprising) SEQ ID NO:12 or SEQ ID NO:14. In alternative embodiments, the polypeptide having OST1 protein kinase activity is encoded by a nucleotide sequence selected from the nucleotide sequence of (comprising) SEQ ID NO:11 or SEQ ID NO:13.


In alternative embodiments, the nucleic acid (e.g., DNA fragment), which when transcribed yield an inhibitory nucleic acid (e.g., an inhibitory ribonucleic acid) to the expression of a CO2 sensor protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucelotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having carbonic anhydrase activity comprising an amino acid sequence having between 75% and 100% sequence identity with an amino acid sequence selected from the amino acid sequence of (comprising) SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46, or a complete or partial complement thereof.


In alternative embodiments, the nucleic acid (e.g., DNA fragment), which when transcribed yield a ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 94% sequence identity with a nucleotide sequence selected from the nucleotide sequence of (comprising) SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45, or a complete or partial complement thereof.


In alternative embodiments, the ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucelotides and a complementary sequence to the nucleotide sequence at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucelotides.


In alternative embodiments, the nucleic acid (e.g., DNA fragment), which when transcribed yield a ribonucleic acid inhibitory to the expression of a OST1 kinase protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having OST1 protein kinase activity comprising an amino acid sequence having between 75% and 100% sequence identity with an amino acid sequence selected from the amino acid sequence of (comprising) SEQ ID NO:12 or SEQ ID NO:14, or a complete or partial complement thereof.


In alternative embodiments, the nucleic acid (e.g., DNA fragment), which when transcribed yield a ribonucleic acid inhibitory to the expression of a OST1 protein kinase encoding nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence selected from the nucleotide sequence of (comprising) SEQ ID NO:11 or SEQ ID NO:13, or a complete or partial complement thereof.


In alternative embodiments, the ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence of at least 19 nucleotides and a complementary sequence to the nucleotide sequence of at least 19 nucleotides.


In alternative embodiments, the first recombinant gene is an expression increasing first recombinant gene, and the second recombinant gene is an expression increasing second recombinant gene. The first recombinant gene can be an expression inhibiting first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene. The first recombinant gene can be an expression increasing first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene. The first recombinant gene can be an expression inhibiting first recombinant gene, and the second recombinant gene is an expression increasing second recombinant gene.


In alternative embodiments, the plant is or the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ is isolated and/or derived from: (i) a dicotyledonous or monocotyledonous plant; (ii) wheat, oat, rye, barley, rice, sorghum, maize (corn), tobacco, a legume, a lupins, potato, sugar beet, pea, bean, soybean (soy), a cruciferous plant, a cauliflower, rape (or rapa or canola), cane (sugarcane), flax, cotton, palm, sugar beet, peanut, a tree, a poplar, a lupin, a silk cotton tree, desert willow, creosote bush, winterfat, balsa, ramie, kenaf, hemp, roselle, jute, or sisal abaca; or, (c) a species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Curcurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Hellanthus, Heterocallis, Hordeum, Hyascyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Man[iota]hot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, or Zea.


In alternative embodiments, the invention provides methods for altering the opening or closing of stomatal cells in a plant, plant part or plant organ, comprising providing cells of a guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ with a first and second recombinant gene, wherein the first recombinant gene is selected from an expression increasing recombinant first gene or an expression inhibiting first recombinant gene, and wherein the second recombinant gene is selected from an expression increasing second recombinant gene or an expression inhibiting second recombinant gene as set forth in a composition or method of this invention, for

    • a. regulating carbon dioxide and water exchange in a plant;
    • b. regulating water uptake or water loss in a plant;
    • c. regulating water use efficiency or drought tolerance in a plant;
    • d. regulating biomass accumulation in a plant; or
    • e. regulating leaf temperature and transpiration in a plant.


In alternative embodiments, the first recombinant gene is an expression increasing first recombinant gene, and the second recombinant gene is an expression increasing second recombinant gene. The first recombinant gene can be an expression inhibiting first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene. The first recombinant gene can be an expression increasing first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene.


In alternative embodiments, the invention provides kits comprising a compound or compounds used to practice the methods of the invention, and optionally instructions to practice a method invention.


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.


All publications, patents, patent applications cited herein are hereby expressly incorporated by reference for all purposes.





DESCRIPTION OF DRAWINGS

The drawings set forth herein are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.


Figures are described in detail herein.


Like reference symbols in the various drawings indicate like elements.



FIG. 1 illustrates data showing that high intracellular [CO2] and [HCO3—] activate S-type anion channel currents in Arabidopsis ca1:ca4 double mutant guard cells but do not activate S-type anion currents in slac1 mutant guard cells with 2 μM [Ca2+]i. FIG. 1(A) Whole-cell currents without HCO3—/CO2 and FIG. 1(B) with 11.5 mM free [HCO3—]i/2 mM free CO2 in the pipette solution (pH 7.1) in ca1;ca4 double mutant guard cells. FIG. 1(C) Steady-state current-voltage relationships of the whole-cell currents recorded in ca1;ca4 mutant guard cells as in FIG. 1(A) (open circles, n=4 guard cells) and FIG. 1(B) (filled circles, n=9 guard cells). FIG. 1(D) Steady-state current-voltage relationships of whole-cell currents recorded in slac1-1 mutant guard cells (open circles: 0 mM added [HCO3—]i, n=6; filled circles; 11.5 mM free [HCO3—]i and 2 mM free [CO2], n=6) and FIG. 1(E) in slac1-3 mutant guard cells (open circles; 0 mM added [HCO3—]i, n=4; filled circles: 11.5 mM free [HCO3—]i and 2 mM free [CO2], n=8). Liquid junction potential was +1 mV. Data are mean±s.e.



FIG. 2 illustrates data showing that elevate [H+] (pH 6.1) together with 2 mM intracellular free [CO2] did not activate S-type anion channel currents in wild type Col-0 guard cells when bicarbonate levels are lower. FIG. 2(A) Steady-state current-voltage relationships or whole-cell currents recorded in guard cells at 2 μM [Ca2+]i without bicarbonate in the pipette solution at pH 7.1 (open circles, n=6) and pH 6.1 (filled circles, n=5). FIG. 2(B) Steady-state current-voltage relationships of whole-cell currents at pH 6.1 without bicarbonate (open circles, n=5) and with 2 mM intracellular free [CO2] and 1.1 mM free [HCO3—]i (filled circles, n=7) in the pipette solution. Liquid junction potential was +1 mV. FIG. 2(C) illustrates an example image of ratiometric pH sensitive Pt-GFP expressed guard cells. FIG. 2(D) Fluorescence ratio time series of guard cells expressing pH sensitive reporter Pt-GFP during extracellular perfusion with buffers of different pH as indicated by the top bar (n=6), FIG. 2(E) with MES buffer (10 mM MES, 10 mM KCl, 50 μM CaCl2, pH 5.6) and supplemented with sodium butyrate at mM-concentrations as indicated by the top bar of the graph and FIG. 2(F) with extracellular buffers bubbled with 0 ppm CO2 and 800 ppm CO2. GC denotes ratiometric fluorescence of guard cells and the ratio of non-guard cell background fluorescence (bg) is shown for the same experiments in (D, E, and F). Data are mean±s.e.



FIG. 3 illustrates data showing that high intracellular [HCO3—] at low [H+] and low free [CO2] activate S-type anion channel currents in wild type Col-0 guard cells with 2 μM [Ca2+]i. FIG. 3(A) Typical recording of whole-cell currents in guard cell protoplasts without bicarbonate and FIG. 3(B) with 13.5 mM total bicarbonate (equivalent to 13.04 mM free [HCO3—]i/0.46 mM free [CO2]) added to the pipette solution at pH 7.8. FIG. 3(C) Average steady-state current-voltage relationships of whole-cell currents recorded as in FIG. 3(A) (open circles, n=3) and FIG. 3(B) (filled circles, n=5). Liquid junction potential was +1 mV. Data are mean±s.e.



FIG. 4 illustrates data showing the requirement of both [Ca2+]i and elevated bicarbonate for activation of S-type anion channel currents in wild type (Col-0) guard cells. FIG. 4(A) Whole-cell currents in guard cell protoplasts at 2 μM [Ca2+]i without bicarbonate, FIG. 4(B) with 5.75 mM intracellular free [HCO3—]i/1 mM free [CO2] (6.75 mM total bicarbonate added) and FIG. 4(C) with 11.5 mM intracellular free [HCO3—]i/2 mM free [CO2] (13.5 mM total bicarbonate added) in the pipette solution at pH 7.1. FIG. 4(D) Whole-cell currents in guard cell protoplasts wit 0.15 μM [Ca2+]i without bicarbonate and FIG. 4(E) with 11.5 mM free [HCO3—]i/2 mM free [CO2] (13.5 mM total bicarbonate in the pipette solution at pH 7.1. FIG. 4(F) Whole-cell currents in guard cell protoplasts with 0.6 μm [Ca2+]i and 11.5 mM intracellular free [HCO3—]i/2 mM free [CO2] in the pipette solution at pH 7.1. FIG. 4(G) Steady-state current-voltage relationships of whole-cell currents as recorded in FIG. 4(A) (open triangles, n=6), FIG. 4(B) (open square, n=7), FIG. 4(C) (filled triangles, n=10), FIG. 4(D) (open circles, n=5). FIG. 4(E) (filled circles, n=7), and FIG. 4(F) (filled squares, n=7). Average data shown by dashed lines in FIG. 4(G) with or without of 5.75 mM and 11.5 mM free [HCO3—]i at 2 μM [Ca2+]i correspond to data reported in Hu et al (2010) and are included for comparison to 0.15 μM and 0.6 μM [Ca2+]i data. Liquid junction potential was +1 mV. Data are mean±s.e.



FIG. 5 illustrates data showing that enhanced bicarbonate sensitivity of S-type anion channel activation in ht1-2 mutant guard cells only at elevated [Ca2+]i. FIG. 5(A) Whole-cell currents in wild type Col-0 guard cells at 2 μM [Ca2+]i without bicarbonate and FIG. 5(B) with 6.75 mM total bicarbonate (equivalent to 5.75 mM free [HCO3—]i/1 mM free [Ca2]) added to the pipette solution. FIG. 5(C) Whole-cell currents in ht1-2 mutant guard cells at 2 μM [Ca2+]i without bicarbonate and FIG. 5(D) with 6.75 mM bicarbonate (equivalent to 5.75 mM free [HCO3—]i/1 mM free [CO2]) in the pipette solution. FIG. 5(E) Average steady-state current-voltage relationships of whole-cell currents as recorded in FIG. 5(A) (open triangles, n=6), FIG. 5(B) (filled triangles, n=7), FIG. 5(C) (open circles, n=5) and FIG. 5(D) (filled circles, n=9). Average data for wild type Col-0 controls (WT) shown by dashed lines in FIG. 5(E) with 0 and 6.75 mM total bicarbonate (5.75 mM free [HCO3—]) with 2 μM [Ca2+]i correspond to data reported in Hu et al (2010) and are included for comparison to ht1-2 mutant data. FIG. 5(F) Whole-cell currents in ht1-2 mutant guard cell protoplasts at low 0.15 μM [Ca2+]i without bicarbonate and FIG. 5(G) with 6.75 mM bicarbonate (equivalent to 5.75 mM free [HCO3—]i/1 mM free [CO2]) added to the pipette solution. FIG. 5(H) Average steady-state current-voltage relationships of whole-cell currents as recorded in FIG. 5(F) (open circles, n=5) and FIG. 5(G) (filled circles, n=5). Liquid junction potential was +1 mV. Data are mean±s.e.



FIG. 6 illustrates data showing that HCO3—/CO2 activation S-type anion channel currents is disrupted to ost1-2 and ost1-3 mutant guard cells with 2 μM [Ca2+]i. FIG. 6(A) Whole-cell recording without bicarbonate and FIG. 6(B) with 13.5 mM total bicarbonate (11.5 mM free [HCO3—]i+2 mM free [CO2])added to the pipette solution in ost1-2 mutant guard cells. FIG. 6(C) Whole-cell recording with 13.5 mM total bicarbonate in the pipette solution in ost1-3 mutant guard cells. FIG. 6(D) Whole-cell currents with 13.5 mM total bicarbonate and FIG. 6(E) without bicarbonate added to the pipette solution in wild type Ler guard cell protoplasts. FIG. 6(F) Steady-state current-voltage relationships of recordings as in FIG. 6(A) (open squares: ost1-2, —[HCO3—]i, n=5), FIG. 6(B) (filled squares: ost1-2, +[HCO3—]i, n=6), FIG. 6(C) (filled triangles; ost1-3, +[HCO3—]i, n=6), FIG. 6(D) (filled circles: wild type Ler, +[HCO3—]i, n=7) and FIG. 6(E) (open circles: wild type Ler, −[HCO3—]i, n=5). The pipette solution was adjusted to pH 7.1 in all the recordings. Liquid junction potential was +1 mV. Data are mean±s.e.



FIG. 7 illustrates data showing that CO2-induced stomatal closure is strongly impaired in ost1 mutants. FIG. 7(A) Stomatal closure is impaired in ost1-3 mutant leaves in response to elevated [CO2], *P<0.05, student's test. FIG. 7(B) Time-resolved relative stomatal conductance responses to [CO2] in ost1-3 mutant and wild type Col-0 intact leaves (n=4 for each genotype). FIG. 7(C) Patterns of relative stomatal conductance in responses to changes in [CO2] in intact ost1-3 and wild type Col plants (n=8 for ost1-3, n=6 for Col) and FIG. 7(D) in intact ost1-1, ost1-2 and wild type Ler plants (n=4 for each genotype). Data shown in (B, C, and D) were normalized in FIGS. 13A, B, and C (or Supplementary FIGS. 4A, B and C), respectively. Imposed CO2 concentrations are shown at the bottom. Data are mean±s.e.



FIG. 8 illustrates data showing that [CO2]-induced stomatal closure is not strongly affected in ABA receptor pyr1;pyl1; pyl2;pyl4 quadruple mutant and PP2C abi1-1 and abi2-1 mutant plants. FIG. 8(A) ABA receptor pyr1;pyl1; pyl2;pyl4 quadruple mutant does not abrogate CO2-regulation of stomatal conductance in intact leaves (n=4 for each genotype). Data shown were normalized in FIG. 13D (or Supplementary FIG. 4D). FIG. 8(B) Time-resolved stomatal conductance responses to [CO2] in abi1-1, abi2-1 mutants and wild type Col-0 leaves (n=4 for wild type, n=6 for abi1-1 and abi2-1 mutants). FIG. 8(C,D) Normalized data of FIG. 8(B). Data are mean±s.e.



FIG. 9 illustrates a model for mechanisms of alternative embodiments of the invention showing the sequence of events that mediate CO2 regulation of S-type anion channels and stomatal closing. [Ca2+]i sensitivity priming and [Ca2+]i-independent mechanisms are proposed to regulate SLAC1-dependent S-type anion currents in parallel via an “AND”-like gate.



FIG. 10 (or Supplementary FIG. 1, or FIG. S1) illustrates data showing that no large S-type anion currents were activated by extracellular application of with bicarbonate. FIG. 10(A) Whole-cell currents recording in Col-0 wild type guard cells (n=6). The bath solution contained 30 mM CsCl, 2 mM MgCl2, 1 mM CaCl2 and 10 mM Mes/Tris, pH 5.6. The pipette solution contained 150 mM CsCl, 2 mM MgCl2, 6.7 mM EGTA, 6.03 mM CaCl2 (2 μM[Ca2+]i), 5 mM Mg-ATP, 5 mM Tris-GTP, 1 mM HEPES/Tris, pH 7.1. Liquid junction potential was −1 mV. FIG. 10(B) Whole-cell recording of guard cells perfused with total 13.5 mM bicarbonate-containing solution (11.5 mM free HCO3 and 2 mM CO2) at pH 7.1. The other components of the bath were 30 mM CsCl, 2 mM MgCl2, 1 mM CaCl2 and 10 mM HEPES/Tris, pH 7.1. Bath volume was 200 μl and perfused for 2 min at 1 ml/min, n=6. Liquid junction potential was −2 mV. FIG. 10(C) Steady-state current-voltage relationships of whole-cell currents as shown in FIG. 10(A) and FIG. 10(B). At a voltage of −144 mV, the control (background) current was −13±5 pA (n=6), and the current was −17±5 pA in a bicarbonate-containing solution (n=6), P>0.05.



FIG. 11 (or Supplementary FIG. 2, or FIG. S2) illustrates data showing that reversal potential of S-type anion currents activated by 50 mM total bicarbonate added to the pipette solution. FIG. 11(A) Typical recording of S-type anion currents activated by intracellular 50 mM total bicarbonate, 50 mM total bicarbonate at pH 7.1 equivalent to 43.4 mM free [HCO3], and 6.6 mM [CO2] was calculated using the Henderson-Hasselbalch equation as described in the Methods. FIG. 11(B) Steady-state current-voltage relationship showed reversal potential of S-type anion currents at +26.0±0.9 mV (n=4). Data are mean±s.e. Liquid junction potential was +3 mV.



FIG. 12 (or Supplementary FIG. 3, or FIG. S3) illustrates data showing that extracellular pH shifts cause measurable intracellular pH changes in guard cells. Fluorescence ratio time series of guard cells from another transformed line expressing pH sensitive reporter Pt-GFP during extracellular perfusion with buffers of different pH as indicated by the top bar (See also FIG. 2D). GC denotes ratiometric fluorescence in guard cells and the ratio of non-guard cell background fluorescence (bg) is shown for the same experiments.



FIG. 13 (or Supplementary FIG. 4, FIG. S4) illustrates data shown CO2-induced stomatal closure in ost1 and pyr1;pyl1; pyl2;pyl4 quadruple mutant mutants. FIG. 13(A) Stomatal conductance responses to [CO2] in ost1-3 mutant and Col-0 wild type intact leaves (n=4 for each genotype). FIG. 13(B) Stomatal conductance in responses to [CO2] changes in intact ost1-3 and Col-0 wild type plants (n=8 for ost1-3, n=6 for WT). FIG. 13(C) Stomatal conductance in responses to [CO2] changes in intact ost1-1, ost1-2 and Ler wild type plants (n=4 for each genotype). Data shown in FIGS. 7B, C and D were normalized in (A), (B) and (C), respectively. FIG. 13(D) Stomatal conductance in responses to [CO2] changes in pyr1;pyl1; pyl2;pyl4 quadruple mutant and Col-0 wild type intact leaves (n=4 for each genotype). Data shown in FIG. 8A were normalized in FIG. 13(D). Imposed CO2 concentrations are shown at the bottom. Data are mean±s.e.





DETAILED DESCRIPTION

In alternative embodiments, the invention provides compositions and methods for manipulating the exchange of water and carbon dioxide (CO2) through plant stomata by controlling both CO2 sensor genes, which can be designated “CO2 Sen genes” and OST1 (Open Stomata 1, also known as SnRK2.6), SnRK2.2 or SnRK2.3 protein kinase genes (SnRK2 genes are SNF1 Related Protein Kinase Subfamily 2 genes) SNF1 is “Sucrose non-fermenting 1”). The invention provides compositions and methods for over or under-expressing CO2 sensor nucleic acids and CO2 sensor polypeptides and OST1, SnRK2.2 or SnRK2.3 protein kinase genes. The invention provides compositions and methods for over-expressing CO2 sensor nucleic acids and CO2 sensor polypeptides and OST1, SnRK2.2 or SnRK2.3 protein kinase genes, to engineer and improved CO2 response in a plant, plant part, plant organ, a leaf, and the like.


While the invention is not based on any particular mechanism of action, embodiments of the invention are based on the elucidation of the mechanism for CO2 control of gas exchange in plants. The inventors demonstrated that bicarbonate, but not elevated CO2, acts as intracellular signaling molecule to activate SLAC1-mediated anion channels. Elevated bicarbonate enhances (primes) the [Ca2+]i sensitivity of SLAC1 channel activation. The ht1-2 kinase mutant is found to enhance the HCO3 sensitivity of anion channel activation but also requires cytosolic Ca2+ for S-type anion channel activation, further defining the placement of HT1 effects on the CO2 signaling cascade.


The inventors' analysis of OST1 on CO2 regulation of stomatal movements and anion channels demonstrate that the OST1 protein kinase is a major regulator of CO2-induced stomatal closing and CO2 activation of anion channels in guard cells, leading to a new model for CO2 control of gas exchange in plants and further possibilities to modulate the exchange of water and/or carbon dioxide (CO2) through plant stomata.


Over-expression of one or several CO2 sensor genes, including the CO2 sensor nucleic acids (e.g., as genes or messages or transcripts), or CO2 sensor polypeptides, and overexpression of OST1 protein kinase encoding nucleic acids (such as genes, messages or transcripts) evokes an improved CO2 response. Thus, overexpression of both CO2 sensor proteins and OST1, SnRK2.2 or SnRK2.3 protein kinase enhances WUE and produces a more efficient and drought resistant plant, particularly in light of the continuously rising atmospheric CO2 concentrations.


In alternative embodiments, the invention provides transgenic plants (including crop plants, such as a field row plants), cells, plant tissues, seeds and organs, and the like, (which in alternative embodiments express one or more recombinant nucleic acids encoding all or one of the CO2Sen proteins, and all or one of the OST1, SnRK2.2- or SnRK2.3 protein kinases) which can close their stomata to a greater extent that wild-type plants, thereby preserving their water usage. Because water use efficiency defines how well a plant can balance the loss of water through stomata with the net CO2 uptake for photosynthesis, and hence its biomass accumulation, the compositions and methods of the invention can also be used to increase a plant's biomass, and thus the compositions and methods of the invention have applications in the biofuels/alternative energy area.


In alternative embodiments, the invention also provides compositions and methods for inhibiting the expression of CO2Sens genes, transcripts and CO2Sensor proteins and of OST1, SnRK2.2- or SnRK2.3 protein kinase genes, transcripts and CO2Sensor proteins using e.g. inhibitory RNA mediated repression (including antisense RNA, co-suppression RNA, siRNA, microRNA, double-stranded RNA, hairpin RNA and/or RNAi) of the expression of CO2 sensors and OST1, SnRK2.2- or SnRK2.3 protein kinase in cells, such as guard cells, in any plant including agricultural crops.


In alternative embodiments, the invention provides transgenic plants which have a lower expression of CO2sens proteins and OST1, SnRK2.2- or SnRK2.3 protein kinases (CO2sensor and OST1, SnRK2.2- or SnRK2.3-under-expressing plants) and can open their stomata to a greater extent than wild-type plants.


In alternative embodiments, the invention provides plants, plant cells, plant organs and the like, e.g., agriculture crops, that can withstand increased temperatures—thus preventing a “breakdown” of metabolism, photosynthesis and growth. Thus, compositions and methods of this invention, by inhibiting both the expression of CO2Sensor nucleic acids and/or CO2Sens proteins as well as expression of OST1, SnRK2.2- or SnRK2.3 protein kinase, help crops that otherwise would be sensitive to elevated temperatures to cope with the increased atmospheric CO2 concentrations, also reducing or ameliorating an accelerated increase in leaf temperatures.


In alternative embodiments, the invention provides compositions and methods comprising inhibitory RNA (including antisense and RNAi) for repression of CO2 sensors and OST1, SnRK2.2- or SnRK2.3 protein kinase expression in guard cells to reduce leaf temperature though enhancing transpiration in these crops and also to maximize crop yields.


In alternative embodiments, the invention provides compositions and methods for down-regulating/decreasing or alternatively increasing carbon dioxide (CO2) and/or water exchange in a plant, e.g., through the guard cell of a plant, plant cell, plant leaf, plant organ or plant part comprising inter alia use of a polypeptide having carbonic anhydrase, and an OST1, SnRK2.2- or SnRK2.3 protein kinase.


While the invention is not based on any particular mechanism of action, embodiments of compositions and methods of the invention are based on regulation of the opening or closing of stomata, including regulation of the efficiency of the exchange of water and CO2 through stomata can further be modulate or balanced in a more controlled way by controlling CO2 sensor and OST1, SnRK2.2- or SnRK2.3 protein kinase genes and/or transcripts thereby expressing or increasing the expression of CO2 sensor genes and/or transcripts and simultaneously decreasing the expression of OST1, SnRK2.2- or SnRK2.3 protein kinase genes and/or transcripts or inversely by decreasing the expression of CO2 sensor genes and/or transcripts and simultaneously expressing or increasing the expression of OST1, SnRK2.2- or SnRK2.3 protein kinase genes and/or transcripts.


In alternative embodiments, the invention provides methods for down-regulating or decreasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant cell, plant leaf, plant organ or plant part comprising expressing in a cell a polypeptide having a carbonic anhydrase (carbonate dehydratase) activity, or a β-carbonic anhydrase activity in combination with a polypeptide having OST1, SnRK2.2- or SnRK2.3 protein kinase activity.


In alternative embodiments, any carbonic anhydrase (carbonate dehydratase) can be used, e.g., including plant or bacterial carbonic anhydrase (carbonate dehydratase) enzymes. Exemplary carbonic anhydrase (carbonate dehydratase) enzymes that can be used to practice this invention include carbonic anhydrase (carbonate dehydratase) enzymes isolated or derived from:














Rice (Oryza sativa)


NM_001072713 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Osl2g0153500 (Osl2g0153500) mRNA, complete



cds


gi|115487387|ref|NM_001072713.1|[115487387]


NM_001072308 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os1lgO153200 (Os1lgO153200) mRNA,



complete cds


gi|115484228|ref|NM_001072308.1|[115484228]


NM_001069944 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os09g0464000 (Os09g0464000) mRNA, complete



cds


gi|115479630|ref|NM_001069944.1|[115479630]


NM_001069887 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os09g0454000 (Os09g0454500) mRNA, complete



cds


gi|115479516|ref|NM_001069887.1|[115479516]


NM_001068550 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os08g0470200 (Os08g0470200) mRNA, complete



cds


gi|115476837|ref|NM_001068550.1|[115476837]


NM_001068366 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os08g0423500 (Os08g0423500) mRNA, complete



cds


gi|115476469|ref|NM_001068366.1|[115476469]


NM_001064586 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os06g0610100 (Os06g0610100) mRNA, complete



cds


gi|115468903|ref|NM_001064586.1|[115468903]


NM_001053565 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os02g0533300 (Os02g0533300) mRNA, complete



cds


gi|115446500|ref|NM_001053565.1|[115446500]


NM00_1050212 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os01g0640000 (Os01g0640000) mRNA, complete



cds


gi|115438794|ref|NM_001050212.1|[115438794]


NM_001050211 (= Genbank accession number)



Oryza sativa (japonica cultivar-group) Os01g0639900 (OsO1g0639900) mRNA, partial



cds


gi|115438792|ref|NM_001050211.11[115438792]


EF576561



Oryza sativa (indica cultivar-group) clone OSS-385-480-G10 carbonic anhydrase mRNA,



partial cds


gi|149392692|gb|EF576561.1|[149392692]


AF182806



Oryza sativa carbonic anhydrase 3 mRNA, complete cds



gi|5917782|gb|AF182806.1|AF182806[5917782]


U08404



Oryza sativa chloroplast carbonic anhydrase mRNA, complete cds



gi|606816|gb|U08404.1|OSU08404[606816]


Corn: (Zea mays)


NM_001111889



Zea mays carbonic anhydrase (LOC542302), mRNA



gi|162459146|ref|NM_001111889.1|[162459146]


U08403



Zea mays Golden Bantam carbonic anhydrase mRNA, complete cds



gi|606814|gb|U08403.1|ZMU08403 [606814]


U08401



Zea mays carbonic anhydrase mRNA, complete cds



gi|606810|gb|U08401.1|ZMU08401[606810]


M95073



Zea mays putative carbonic anhydrase homolog mRNA, partial cds gi|168561|



gb|M95073.1|MZEORFN[168561


Soybean: (Glycine max)


J239132



Glycine max mRNA for carbonic anhydrase



gi|4902524|emb|AJ239132.1|[4902524]


Tomato (Lycopersicon)


AJ849376



Lycopersicon esculentum mRNA for chloroplast carbonic anhydrase (ca2 gene)



gi|56562176]emb|AJ849376.1|[56562176]


AJ849375



Lycopersicon esculentum mRNA for carbonic anhydrase (ca1 gene)



gi|56562174|emb|AJ849375.1|[56562174]


Tobacco (Nicotiana)


AF492468



Nicotiana langsdorffu × Nicotiana sanderae neclarin III (NEC3) mRNA,



complete cds


gi|29468279|gb|AF492468.1|[29468279]


AF4554759



Nicotiana tabacum beta-carbonic anhydrase (CA) mRNA, complete cds; nuclear gene for



chloroplast product


gi|22550385|gb|AF454759.2|[22550385]


AB009887



Nicotiana tabacum mRNA for carbonic anhydrase, partial cds



gi|8096276|dbj|AB009887.1|[8096276]


AB012863



Nicotiana paniculata mRNA for NPCA1, complete cds



gi|3061270|dbj|AB012863.1|[3061270]


L19255



Nicotiana tabacum chloroplastic carbonic anhydrase mRNA, 3′ end



gi|310920|gb|L19255.1|TOBCARANHY[310920]


M94135



Nicotiana tabacum chloroplast carbonic anhydrase gene, complete cds



gi|170218|gb|M94135.1|TOBCLCAA[170218]


AY974608



Nicotiana benthamiana clone 30F62 chloroplast carbonic anhydrase mRNA, partial cds;



nuclear gene for chloroplast product


gi|62865756|gb|AY974608.1|[62865756]


AY974607



Nicotiana benthamiana clone 30C84 chloroplast carbonic anhydrase mRNA, partial cds;



nuclear gene for chloroplast product


gi|62865754|gb|AY974607.1|[62865754]


AY974606



Nicotiana benthamiana clone 3 OB 10 chloroplast carbonic anhydrase mRNA, partial cds;



nuclear gene for chloroplast product


gi|62865752|gb|AY974606.1|[62865752]


Barley (Hordeum)


L36959



Hordeum vulgare carbonic anhydrase mRNA, complete cds



gi|558498|gb|L36959.1|BLYCA[558498]


Cotton (Gossypium)


AF132855



Gossypium hirsutum carbonic anhydrase isoform 2 (CA2)



mRNA, partial cds; nuclear gene for plastid product


gi|4754914|gb|AF132855.1|AF132855[4754914]


AF132854



Gossypium hirsutum carbonic anhydrase isoform 1 (CA1) mRNA, partial cds; nuclear



gene for plastid product


gi|4754912|gb|AF132854.1|AF132854[4754912]


Poplar (Populus)


U55837



Populus tremula × Populus tremuloides carbonic anhydrase (CA1a) mRNA, nuclear gene



encoding chloroplast protein, complete cds


gi|1354514|gb|U55837.1|PTU55837[1354514]


U55838



Populus tremula × Populus tremuloides carbonic anhydrase (CA1b) mRNA, nuclear gene



encoding chloroplast protein, complete cds


gi|354516|gb|U55838.1|PTU55838[1354516]



Cucumis



DQ641132



Cucumis sativus clone CU8F3 carbonic anhydrase mRNA, partial cds



gi|117663159|gb|DQ641132.1|[117663159]



Medicago



X93312



M. sativa mRNA for carbonic anhydrase



gi|1938226|emb|X93312.1|[1938226]



Phaseolus



AJ547634



Phaseolus vulgaris partial mRNA for carbonic anhydrase (ca gene)



gi|28556429|emb|AJ547634.1|[28556429]



Pisum



X52558


Pea cap mRNA for carbonic anhydrase (EC 4.2.1.1)


gi|20672|emb|X52558.11[20672]


M63627



P. sativum carbonic anhydrase mRNA, complete cds



gi|169056|gb|M63627.1|PEACAMRA[169056]



Pyrus



AF195204



Pyrus pyrifolia strain Whangkeumbae carbonic anhydrase isoform 1 (Cal1)



mRNA, complete cds


gi|8698882|gb|AF195204.1|AF195204[8698882]



Prunus



EF640698



Prunus dulcis clone Pdbes-E45 putative carbonic anhydrase mRNA, partial cds



gi|148807206|gb|EF640698.1|[148807206]



Vigna



AF139464



Vigna radiata carbonic anhydrase (CipCal) mRNA, complete cds; nuclear gene for



chloroplast product


gi|8954288|gb|AF139464.2|AF139464[8954288]









In alternative embodiments, carbonic anhydrase encoding nucleic acids from any carbonic anhydrase gene, e.g., including plant and bacterial genes, can be used to practice this invention; for example, a nucleic acid from any carbonic anhydrase gene of any plant can be used, including any carbonic anhydrase-encoding nucleic acid sequence from any gene family of Arabidopsis, e.g., any carbonic anhydrase-encoding nucleic acid sequence from an Arabidopsis family, e.g., from Arabidopsis thaliana, can be used to practice the compositions and methods of this invention, such as the nucleic acid sequences encoding a polypeptide having the amino acid sequence of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46. Such nucleotide sequences include the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45.


In alternative embodiments, carbonic anhydrases encoding nucleic acids may be used having between 75% and 100% sequence identity to any of the nucleotide sequences above, which include those having at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78% or 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88% or 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100 % sequence identity to a nucleotide sequence encoding an amino acid sequence of any of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46, such as a nucleotide sequence having 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78% or 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88% or 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to any nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, or SEQ ID NO:45.


In alternative embodiments, OST1, SnRK2.2- or SnRK2.3 protein kinase encoding genes include genes encoding a polypeptide with OST1 protein kinase activity having between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 12 or SEQ ID 14 including those having 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the amino acid sequence of SEQ ID NO:12 or SEQ ID NO:14. such nucleotide sequences may have 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to the nucleotide sequence of SEQ ID 11 or 13.


In alternative embodiments, compositions and methods of the invention comprise combinations, wherein the carbonic anhydrase can be either a β carbonic anhydrase 4 or a β carbonic anhydrase 1. In alternative embodiments, alternative (exemplary) combinations are:


i) Expressing, increasing the expression, upregulating a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 8 (CA1) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 12 (OST1.1)


ii) Expressing, increasing the expression, upregulating a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 8 (CA1) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 14 (OST1.2)


iii) Expressing, increasing the expression, upregulating a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 3 (CA4) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 12 (OST1.1)


iv) Expressing, increasing the expression, upregulating a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 3 (CA4) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 14 (OST1.1)


v) Expressing, increasing the expression, upregulating the expression of CA1 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 7 (CA1) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


vi) Expressing, increasing the expression, upregulating the expression of CA1 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 7 (CA1) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


vii) Expressing, increasing the expression, upregulating the expression of CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 1 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


viii) Expressing, increasing the expression, upregulating the expression of CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 1 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


ix) Expressing, increasing the expression, upregulating the expression of CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 2 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


x) Expressing, increasing the expression, upregulating the expression of CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 2 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


xi) Reducing or downregulating the expression of a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 8 (CA1) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 12 (OST1.1)


xii) Reducing or downregulating the expression of a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 8 (CA1) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 14 (OST1.2)


xiii) Reducing or downregulating the expression of a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 3 (CA4) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 12 (OST1.1)


xiv) Reducing or downregulating the expression of a polypeptide with β carbonic anhydrase activity having an amino acid sequence sharing between 75% and 100% sequence identity to an amino acid of SEQ ID 3 (CA4) and expressing, increasing the expression or upregulating a polypeptide with OST1 protein kinase activity sharing between 75% and 100% sequence identity to the amino acid sequence of SEQ ID 14 (OST1.2)


xv) Reducing or downregulating the expression of a CA1 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 7 (CA1) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


xvi) Reducing or downregulating the expression of a CA1 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 7 (CA1) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


xvii) Reducing or downregulating the expression of a CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 1 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


xviii) Reducing or downregulating the expression of a CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 1 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


xix) Reducing or downregulating the expression of a CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 2 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 11 (OST1.1)


xx) Reducing or downregulating the expression of a CA4 nucleotide sequence having between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 2 (CA4) and expressing, increasing the expression or upregulating the expression of OST1 protein kinase nucleotide sequence sharing between 75% and 100% sequence identity to an nucleotide sequence of SEQ ID 13 (OST1.2)


In alternative embodiments, the invention provides combinations between upregulating one protein and downregulating the expression of another protein, e.g., as set forth in the above paragraphs i) to xx), which can be made as described herein.


In alternative embodiments, expression or upregulating of the expression of a protein can be achieved by introduction (e.g., through transformation or crossing with a transgenic plant) or a recombinant gene comprising one, several or all of the following operably linked fragments

    • i. a plant expressible promoter;
    • ii. an, optionally heterologus, DNA fragment encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity and
    • iii. optionally, a transcription termination and polyadenylation signal; or
    • i. a plant expressible promoter;
    • ii. an, optionally heterologus, DNA fragment encoding a polypeptide with OST1 protein kinase activity;
    • iii. optionally, a transcription termination and polyadenylation signal.


Plant (Expressible) Promoters

In alternative embodiments, nucleic acids, protein coding sequences or genes used to practice the invention is oeprably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter. Promoters used to practice the invention include a strong promoter, particularly in plant guard cells, and in some embodiments is guard cell specific, e.g., the promoters described in WO2008/134571.


In alternative embodiments, nucleic acids, protein coding sequences or genes also can be operatively linked to any constitutive and/or plant specific, or plant cell specific promoter, e.g., a cauliflower mosaic virus (CaMV) 35S promoter, a mannopine synthase (MAS) promoter a 1′ or 2′ promoter derived from T-DNA of Agrobacterium tumefaciens, a figwort mosaic virus 34S promoter, an actin promoter, a rice actin promoter, a ubiquitin promoter, e.g., a maize ubiquitin-1 promoter, and the like.


Examples of constitutive plant promoters which can be useful for expressing the sequences in accordance with the invention include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odell et al. (1985) Nature 313:810-812); the nopaline synthase promoter (An et al. (1988) Plant Physiol. 88: 547-552); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1:977-984).


A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like.


Numerous known promoters have been characterized and can be employed to promote expression of a polynucleotide used to practice the invention, e.g., in a trangenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in U.S. Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (U.S. Pat. No. 5,783,393), or the 2A1 1 promoter (e.g., see U.S. Pat. No. 4,943,674) and the tomato polygalacturonase promoter (e.g., see Bird et al (1988) Plant Mol. Biol. 11:651-662), root-specific promoters, such as those disclosed in U.S. Pat. Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (e.g., see U.S. Pat. No. 5,792,929), promoters active in vascular tissue (e.g., see Ringli and Keller (1998) Plant Mol. Biol. 37:977-988), flower-specific (e.g., see Kaiser et al. (1995) Plant Mol. Biol. 28:231-243), pollen (e.g., see Baerson et al. (1994) Plant Mol. Biol. 26:1947-1959), carpels (e.g., see Ohl et al. (1990) Plant Cell 2:, pollen and ovules (e.g., see Baerson et al. (1993) Plant Mol. Biol. 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol. Biol. 39: 979-990 or Baumann et al., (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (e.g., see Guevara-Garcia (1998) Plant Mol. Biol. 38:743-753), promoters responsive to gibberellin (e.g., see Shi et al. (1998) Plant Mol. Biol. 38:1053-1060, Willmott et al. (1998) Plant Molec. Biol. 38:817-825) and the like.


Additional promoters that can be used to practice this invention are those that elicit expression in response to heat (e.g., see Ainley et al. (1993) Plant Mol. Biol. 22:13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471-478, and the maize rbcS promoter, Schaffher and Sheen (1991) Plant Cell 3:997-1012); wounding (e.g., wunl, Siebertz (1989) Plant Cell 1:961-968); pathogens (such as the PR-I promoter described in Buchel et al. (1999) Plant Mol. Biol. 40: 387-396, and the PDF 1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38: 1071-1080), and chemicals such as methyl jasmonate or salicylic acid (e.g., see Gatz (1997) Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (e.g., see Gan and Amasino (1995) Science 270: 1986-1988); or late seed development (e.g., see Odell et al. (1994) Plant Physiol. 106: 447-458).


In alternative embodiments, tissue-specific and/or developmental stage-specific promoters are used, e.g., promoter that can promote transcription only within a certain time frame of developmental stage within that tissue. See, e.g., Blazquez (1998) Plant Cell 10:791-800, characterizing the Arabidopsis LEAFY gene promoter. See also Cardon (1997) Plant J 12:367-77, describing the transcription factor SPL3, which recognizes a conserved sequence motif in the promoter region of the A. thaliana floral meristem identity gene AP1; and Mandel (1995) Plant Molecular Biology, Vol. 29, pp 995-1004, describing the meristem promoter elF4. Tissue specific promoters which are active throughout the life cycle of a particular tissue can be used. In one aspect, the nucleic acids of the invention are operably linked to a promoter active primarily only in cotton fiber cells, in one aspect, the nucleic acids of the invention are operably linked to a promoter active primarily during the stages of cotton fiber cell elongation, e.g., as described by Rinehart (1996) supra. The nucleic acids can be operably linked to the Fb12A gene promoter to be preferentially expressed in cotton fiber cells (Ibid). See also, John (1997) Proc. Natl. Acad. Sci. USA 89:5769-5775; John, et al., U.S. Pat. Nos. 5,608,148 and 5,602,321, describing cotton fiber-specific promoters and methods for the construction of transgenic cotton plants. Root-specific promoters may also be used to express the nucleic acids of the invention. Examples of root-specific promoters include the promoter from the alcohol dehydrogenase gene (DeLisle (1990) Int. Rev. Cytol. 123:39-60). Other promoters that can be used to express the nucleic acids of the invention include, e.g., ovule-specific, embryo-specific, endosperm-specific, integument-specific, seed coat-specific promoters, or some combination thereof; a leaf-specific promoter (see, e.g., Busk (1997) Plant J. 11:1285 1295, describing a leaf-specific promoter in maize); the ORF 13 promoter from Agrobacterium rhizogenes (which exhibits high activity in roots, see. e.g., Hansen (1997) supra); a maize pollen specific promoter (see, e.g., Guerrero (1990) Mol. Gen. Genet. 224:161 168); a tomato promoter active during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers can be used (see, e.g., Blume (1997) Plant J. 12:731 746); a pistil-specific promoter from the potato SK2 gene (see, e.g., Ficker (1997) Plant Mol. Biol. 35:425 431); the Blec4 gene from pea, which is active in epidermal tissue of vegetative and floral shoot apices of transgenic alfalfa making it a useful tool to target the expression of foreign genes to the epidermal layer of actively growing shoots or fibers; the ovule-specific BEL1 gene (see, e.g., Reiser (1995) Cell 83:735-742, GenBank No. U39944); and/or, the promoter in Klee, U.S. Pat. No. 5,589,583, describing a plant promoter region is capable of conferring high levels of transcription in meristematic tissue and/or rapidly dividing cells.


In alternative embodiments, plant promoters which are inducible upon exposure to plant hormones, such as auxims, are used to express the nucleic acids used to practice the invention. For example, the invention can use the auxin-response elements E1 promoter fragment (AuxREs) in the soybean (Glycine max L.) (Liu (1997) Plant Physiol. 115:397-407); the auxim-responsive Arabidopsis GST6 promoter (also responsive to salicylic acid and hydrogen peroxide) (Chen (1996) Plant J. 10: 955-966); the auxin-inducible parC promoter from tobacco (Sakai (1996) 37:906-913); a plant biotin response element (Streit (1997) Mol. Plant Microbe Interact. 10:933-937); and, the promoter responsive to the stress hormone abscisic acid (Sheen (1996) Science 274: 1900-1902).


In alternative embodiments, nucleic acids used to practice the invention can also be operably linked to plant promoters which are inducible upon exposure to chemicals reagents which can be applied to the plant, such as herbicides or antibiotics. For example, the maize In2-2 promoter, activated by benzenesulfonamide herbicide safeners, can be used (De Veylder (1997) Plant Cell Physiol. 38:568-577); application of different herbicide safeners induces distinct gene expression patterns, including expression in the root, hydathodes, and the shoot apical meristem. Coding sequence can be under the control of, e.g., a tetracycline-inducible promoter, e.g., as described with transgenic tobacco plants containing the Avena sativa L. (oat) arginine decarboxylase gene (Masgrau (1997) Plant J. 11:465-473); or, a salicylic acid-responsive element (Stange (1997) Plant J. 11:1315-1324). Using chemically- (e.g., hormone- or pesticide-) induced promoters, i.e., promoter responsive to a chemical which can be applied to the transgenic plant in the field, expression of a polypeptide of the invention can be induced at a particular stage of development of the plant.


In alternative embodiments, the invention also provides for transgenic plants containing an inducible gene encoding for polypeptides used to practice the invention whose host range is limited to target plant species, such as corn, rice, barley, wheat, potato or other crops, inducible at any stage of development of the crop.


In alternative embodiments, a tissue-specific plant promoter may drive expression of operably linked sequences in tissues other than the target tissue. In alternative embodiments, a tissue-specific promoter that drives expression preferentially in the target tissue or cell type, but may also lead to some expression in other tissues as well, is used.


In alternative embodiments, proper polypeptide expression may require polyadenylation region at the 3′-end of the coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant (or animal or other) genes, or from genes in the Agrobacterial T-DNA.


Antisense Inhibitory Molecules

In alternative embodiments, downregulation of CO2sensor genes or OST1, SnRK2.2 or SnRK2.3 genes or transcripts can be achieved by introduction of a recombinant gene expressing inhibitory RNA targeted towards CO2sensor genes or OST1, either separately or together.


In alternative embodiments, the invention provides an antisense inhibitory molecules comprising a sequence used to practice this invention (which include both sense and antisense strands), e.g., which target CO2sensor genes or OST1, SnRK2.2 or SnRK2.3 genes or transcripts. Naturally occurring or synthetic nucleic acids can be used as antisense oligonucleotides. The antisense oligonucleotides can be of any length; for example, in alternative aspects, the antisense oligonucleotides are between about 5 to 100, about 10 to 80, about 15 to 60, about 18 to 40. The optimal length can be determined by routine screening. The antisense oligonucleotides can be present at any concentration. The optimal concentration can be determined by routine screening. A wide variety of synthetic, non-naturally occurring nucleotide and nucleic acid analogues are known which can address this potential problem. For example, peptide nucleic acids (PNAs) containing non-ionic backbones, such as N-(2-aminoethyl)glycine units can be used. Antisense oligonucleotides having phosphorothioate linkages can also be used, as described in WO 97/03211; WO 96/39154; Mata (1997) Toxicol Appl Pharmacol 144:189-197; Antisense Therapeutics, ed. Agrawal (Humana Press, Totowa, N.J. 1996). Antisense oligonucleotides having synthetic DNA backbone analogues provided by the invention can also include phosphoro-dithioate, methylphosphonate, phosphoramidate, alkyl phosphotriester, sulfamate, 3′-thioacetal, methylene(methylimino), 3′-N-carbamate, and morpholino carbamate nucleic acids, as described above.


RNA Interference (RNAi)

In one aspect, the invention provides an RNA inhibitory molecule, a so-called “RNAi” molecule, comprising a sequence used to practice this invention. In alternative embodiments, the RNAi molecule comprises a double-stranded RNA (dsRNA) molecule. The RNAi molecule can comprise a double-stranded RNA (dsRNA) molecule, e.g., siRNA, miRNA (microRNA) and/or short hairpin RNA (shRNA)molecules. The RNAi molecule, e.g., siRNA (small inhibitory RNA) can inhibit expression of a CO2Sen genes or OST1 genes, and/or miRNA (micro RNA) to inhibit translation of a CO2Sen genes or OST1 genes.


In alternative aspects, the RNAi is about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more duplex nucleotides in length. While the invention is not limited by any particular mechanism of action, the RNAi can enter a cell and cause the degradation of a single-stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs. When a cell is exposed to double-stranded RNA (dsRNA), mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi). A possible basic mechanism behind RNAi, e.g., siRNA for inhibiting transcription and/or miRNA to inhibit translation, is the breaking of a double-stranded RNA (dsRNA) matching a specific gene sequence into short pieces called short interfering RNA, which trigger the degradation of mRNA that matches its sequence. In one aspect, the RNAi's of the invention are used in gene-silencing therapeutics, see, e.g., Shuey (2002) Drug Discov. Today 7:1040-1046. In one aspect, the invention provides methods to selectively degrade RNA using the RNAi's of the invention. The process may be practiced in vitro, ex vivo or in vivo. In one aspect, the RNAi molecules of the invention can be used to generate a loss-of-function mutation in a cell, an plant tissue or organ or seed, or a plant.


In alternative embodiments, intracellular introduction of the RNAi (e.g., miRNA or siRNA) is by internalization of a target cell specific ligand bonded to an RNA binding protein comprising and RNAi (e.g., microRNA) is adsorbed. The ligand is specific to a unique target cell surface antigen. The ligand can be spontaneously internalized after binding to the cell surface antigen. If the unique cell surface antigen is not naturally internalized after binding to its ligand, internalization can be promoted by the incorporation of an arginine-rich peptide, or other membrane permeable peptide, into the structure of the ligand or RNA binding protein or attachment of such a peptide to the ligand or RNA binding protein. See, e.g., U.S. Patent App. Pub. Nos. 20060030003; 20060025361; 20060019286; 20060019258. In one aspect, the invention provides lipid-based formulations for delivering, e.g., introducing nucleic acids of the invention as nucleic acid-lipid particles comprising and RNAi molecule to a cell, see e.g., U.S. Patent App. Pub. No. 20060008910.


In alternative embodiments, methods for making and using RNAi molecules, e.g., siRNA and/or miRNA, for selectively degrade RNA include, e.g., U.S. Pat. No. 6,506,559; 6,511,824; 6,515,109; 6,489,127.


In alternative embodiments, known and routine methods for making expression constructs, e.g., vectors or plasmids, from which an inhibitory polynucleotide (e.g., a duplex siRNA of the invention) is transcribed are used. A regulatory region (e.g., promoter, enhancer, silencer, splice donor, acceptor, etc.) can be used to transcribe an RNA strand or RNA strands of an inhibitory polynucleotide from an expression construct. When making a duplex siRNA (e.g., to a CO2Sen gene, or OST1, SnRK2.2 or SnRK2.3 gene) inhibitory molecule, the sense and antisense strands of the targeted portion of the targeted IRES can be transcribed as two separate RNA strands that will anneal together, or as a single RNA strand that will form a hairpin loop and anneal with itself.


For example, in alternative embodiments, a construct targeting a portion of a CO2Sen gene or OST1, SnRK2.2 or SnRK2.3 gene is inserted between two promoters (e.g., two plant, viral, bacteriophage T7 or other promoters) such that transcription occurs bidirectionally and will result in complementary RNA strands that may subsequently anneal to form an inhibitory siRNA of the invention. Alternatively, a targeted portion of a CO2Sen gene or OST1, SnRK2.2 or SnRK2.3 can be designed as a first and second coding region together on a single expression vector, wherein the first coding region of the targeted gene is in sense orientation relative to its controlling promoter, and wherein the second coding region of the gene is in antisense orientation relative to its controlling promoter. If transcription of the sense and antisense coding regions of the targeted portion of the targeted gene occurs from two separate promoters, the result may be two separate RNA strands that may subsequently anneal to form a gene or inhibitory siRNA, e.g., a CO2Sen gene-or OST1, SnRK2.2 or SnRK2.3 gene inhibitory siRNA used to practice the invention.


In alternative embodiments, transcription of the sense and antisense targeted portion of the targeted nucleic acid, e.g., a CO2Sen gene, or OST1, SnRK2.2 or SnRK2.3 gene, is controlled by a single promoter, and the resulting transcript will be a single hairpin RNA strand that is self-complementary, e.g., forms a duplex by folding back on itself to create a (e.g., CO2Sen gene, or OST1, SnRK2.2 or SnRK2.3 gene)-inhibitory siRNA molecule. In this configuration, a spacer, e.g., of nucleotides, between the sense and antisense coding regions of the targeted portion of the targeted (e.g., CO2Sen gene-or OST1, SnRK2.2 or SnRK2.3) gene can improve the ability of the single strand RNA to form a hairpin loop, wherein the hairpin loop comprises the spacer. In one embodiment, the spacer comprises a length of nucleotides of between about 5 to 50 nucleotides. In one aspect, the sense and antisense coding regions of the siRNA can each be on a separate expression vector and under the control of its own promoter.


Inhibitory Ribozymes

In alternative embodiments, the invention provides ribozymes capable of binding CO2 sensor and/or OST1, SnRK2.2 or SnRK2.3 coding sequence, gene or message. These ribozymes can inhibit gene activity by e.g., targeting mRNA.


Strategies for designing ribozymes and selecting the gene specific antisense sequence for targeting are well described in the scientific and patent literature, and the skilled artisan can design such ribozymes using the reagents and sequences used to practice this invention.


Ribozymes act by binding to a target RNA through the target RNA binding portion of a ribozyme which is held in close proximity to an enzymatic portion of the RNA that cleaves the target RNA. Thus, the ribozyme recognizes and binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cleave and inactivate the target RNA. Cleavage of a target RNA in such a manner will destroy its ability to direct synthesis of an encoded protein if the cleavage occurs in the coding sequence. After a ribozyme has bound and cleaved its RNA target, it can be released from that RNA to bind and cleave new targets repeatedly


Plants Comprising Nucleic Acids of This Invention

In alternative embodiments, the invention provides transgenic plants, plant parts, plant organs or tissue, and seeds comprising nucleic acids, polypeptides, expression cassettes or vectors or a transfected or transformed cell of the invention. The invention also provides plant products, e.g., seeds, leaves, extracts and the like, comprising a nucleic acid and/or a polypeptide according to the invention. In alternative embodiments, the transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot). The invention also provides methods of making and using these transgenic plants and seeds. The transgenic plant or plant cell expressing a polypeptide of the present invention may be constructed in accordance with any method known in the art. See, for example, U.S. Pat. No. 6,309,872.


Nucleic acids and expression constructs used to practice the invention can be introduced into a plant cell by any means. For example, nucleic acids or expression constructs can be introduced into the genome of a desired plant host, or, the nucleic acids or expression constructs can be episomes. Introduction into the genome of a desired plant can be such that the host's CO2Sen protein production is regulated by endogenous transcriptional or translational control elements, or by a heterologous promoter, e.g., a promoter of this invention. The invention also provides “knockout plants” where insertion of gene sequence by, e.g., homologous recombination, has disrupted the expression of the endogenous gene. Means to generate “knockout” plants are well-known in the art.


The nucleic acids and polypeptides used to practice the invention can be expressed in or inserted in any plant, plant part, plant cell or seed. Transgenic plants of the invention, or a plant or plant cell comprising a nucleic acid used to practice this invention (e.g., a transfected, infected or transformed cell) can be dicotyledonous or monocotyledonous. Examples of monocots comprising a nucleic acid of this invention, e.g., as monocot transgenic plants of the invention, are grasses, such as meadow grass (blue grass, Poa), forage grass such as festuca, lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn). Examples of dicots comprising a nucleic acid of this invention, e.g., as dicot transgenic plants of the invention, are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana. Thus, plant or plant cell comprising a nucleic acid of this invention, including the transgenic plants and seeds of the invention, include a broad range of plants, including but not limited to, species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Cojfea, Cucumis, Curcurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Hellanthus, Heterocallis, Hordeum, Hyascyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solanum, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna, or Zea.


The nucleic acids and polypeptides used to practice this invention can be expressed in or inserted in any plant cell, organ, seed or tissue, including differentiated and undifferentiated tissues or plants, including but not limited to roots, stems, shoots, cotyledons, epicotyl, hypocotyl, leaves, pollen, seeds, tumor tissue and various forms of cells in culture such as single cells, protoplast, embryos, and callus tissue. The plant tissue may be in plants or in organ, tissue or cell culture.


Transgenic Plants

In alternative embodiments, the invention provides transgenic plants, plant cells, organs, seeds or tissues, comprising and expressing the nucleic acids used to practice this invention, e.g., CO2Sen gene and proteins and OST1, SnRK2.2 or SnRK2.3 genes; for example, the invention provides plants, e.g., transgenic plants, plant cells, organs, seeds or tissues that show improved growth under limiting water conditions; thus, the invention provides drought-tolerant plants, plant cells, organs, seeds or tissues (e.g., crops).


A transgenic plant of this invention can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example, by altering the phosphorylation state of the polypeptide to maintain it in an activated state.


Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well-established techniques as described above.


Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homolog, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. In one aspect the plant cell, explant or tissue can be regenerated to produce a transgenic plant.


The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledonous plants. Suitable protocols are available for Leguminosae (alfalfa, soybean, clover, etc.), Umbelliferae (carrot, celery, parsnip), Cruciferae (cabbage, radish, rapeseed, broccoli, etc.), curcurbitaceae (melons and cucumber), Gramineae (wheat, corn, rice, barley, millet, etc.), Solanaceae (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al., eds., (1984) Handbook of Plant Cell Culture—Crop Species, Macmillan Publ. Co., New York, N.Y.; Shimamoto et al. (1989) Nature 338: 274-276; Fromm et al. (1990) Bio/Technol. 8:833-839; and Vasil et al. (1990) Bio/Technol. 8: 429-434.


Transformation and regeneration of both monocotyledonous and dictoyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and


In alternative embodiments, the invention uses Agrobacterium tumefaciens mediated transformation. Transformation means introducing nucleotide sequence into a plant in a manner to cause stable or transient expression of the sequence.


Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and include for example: U.S. Pat. Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589615; 5,750871; 5,268,526; 5,780,708, 5,538,880; 5,773,269; 5,736,369 and 5,619,042.


In alternative embodiments, following transformation, plants are selected using a dominant selectable marker incorporated into the transformation vector. Such a marker can confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.


In alternative embodiments, after transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can by any of those traits described above. In alternative embodiments, to confirm that the modified trait is due to changes in expression levels or activity of the transgenic polypeptide or polynucleotide can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.


Nucleic acids and expression constructs of the invention can be introduced into a plant cell by any means. For example, nucleic acids or expression constructs can be introduced into the genome of a desired plant host, or, the nucleic acids or expression constructs can be episomes. Introduction into the genome of a desired plant can be such that the host's CO2 sensor production is regulated by endogenous transcriptional or translational control elements.


In alternative embodiments, the invention also provides “knockout plants” where insertion of gene sequence by, e.g., homologous recombination, has disrupted the expression of the endogenous gene. Means to generate “knockout” plants are well-known in the art, see, e.g., Strepp (1998) Proc Natl. Acad. Sci. USA 95:4368-4373; Miao (1995) Plant J 7:359-365. See discussion on transgenic plants below.


In alternative embodiments, making transgenic plants or seeds comprises incorporating sequences used to practice the invention and, in one aspect (optionally), marker genes into a target expression construct (e.g., a plasmid), along with positioning of the promoter and the terminator sequences. This can involve transferring the modified gene into the plant through a suitable method. For example, a construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. For example, e.g., Christou (1997) Plant Mol. biol. 35:197-203; Pawlowski (1996) Mol. Biotechnol. 6:17-30; Klein (1987) Nature 327:70-73; Takumi (1997) Genes Genet. Syst. 72:63-69, discussing use of particle bombardment to introduce transgenes into wheat; and Adam (1997) supra, for use of particle bombardment to introduce YACs into plant cells. For example, Rinehart (1997) supra, used particle bombardment to generate transgenic cotton plants. Apparatus for accelerating particles is described U.S. Pat. No. 5,015,580; and, the commercially available BioRad (Biolistics) PDS-2000 particle acceleration instrument; see also, John, U.S. Pat. No. 5,608,148; and Ellis, U.S. Pat. No. 5,681,730, describing particle-mediated transformation of gymnosperms.


In alternative embodiments, protoplasts can be immobilized and injected with a nucleic acids, e.g., an expression construct. Although plant regeneration from protoplasts is not easy with cereals, plant regeneration is possible in legumes using somatic embryogenesis from protoplast derived callus. Organized tissues can be transformed with naked DNA using gene gun technique, where DNA is coated on tungsten microprojectiles, shot 1/100th the size of cells, which carry the DNA deep into cells and organelles. Transformed tissue is then induced to regenerate, usually by somatic embryogenesis. This technique has been successful in several cereal species including maize and rice.


In alternative embodiments, a third step can involve selection and regeneration of whole plants capable of transmitting the incorporated target gene to the next generation. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker that has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee (1987) Ann. Rev. of Plant Phys. 38:467-486. To obtain whole plants from transgenic tissues such as immature embryos, they can be grown under controlled environmental conditions in a series of media containing nutrients and hormones, a process known as tissue culture. Once whole plants are generated and produce seed, evaluation of the progeny begins.


In alternative embodiments, after the expression cassette is stably incorporated in transgenic plants, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed. Since transgenic expression of the nucleic acids of the invention leads to phenotypic changes, plants comprising the recombinant nucleic acids of the invention can be sexually crossed with a second plant to obtain a final product. Thus, the seed of the invention can be derived from a cross between two transgenic plants of the invention, or a cross between a plant of the invention and another plant. The desired effects (e.g., expression of the polypeptides of the invention to produce a plant in which flowering behavior is altered) can be enhanced when both parental plants express the polypeptides, e.g., a CO2 sensor and OST1, SnRK2.2 or SnRK2.3 gene of the invention. The desired effects can be passed to future plant generations by standard propagation means.


The invention will be further described with reference to the examples described herein; however, it is to be understood that the invention is not limited to such examples.


EXAMPLES
Example 1

The following non-limiting Example demonstrates that genes and proteins of a CO2 signaling pathway and the use of CO2 sensor genes and OST1, SnRK2.2 or SnRK2.3 protein kinase genes can modulate stomatal movement.


Unless stated otherwise in the Examples, all recombinant DNA techniques are carried out according to standard protocols as described in Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, NY and in Volumes 1 and 2 of Ausubel et al. (1994) Current Protocols in Molecular Biology, Current Protocols, USA. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfax (1993) by R. D. D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications, UK. Other references for standard molecular biology techniques include Sambrook and Russell (2001) Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, NY, Volumes I and II of Brown (1998) Molecular Biology LabFax, Second Edition, Academic Press (UK). Standard materials and methods for polymerase chain reactions can be found in Dieffenbach and Dveksler (1995) PCR Primer: A laboratory Manual, Cold Spring Harbor Laboratory Press, and in McPherson et al. (2000) PCR—Basics: From Background to Bench, First Edition, Spring Verlag, Germany.


Throughout the description and Examples, reference is made to the following sequences:


SEQ ID NO:1: nucleotide sequence of β carbonic anhydrase 4 (CA4) from Arabidopsis thaliana (At1g70410)


SEQ ID NO:2: nucleotide sequence of β carbonic anhydrase 4 (CA4) from Arabidopsis thaliana—coding sequence.


SEQ ID NO:3: nucleotide sequence of β carbonic anhydrase 4 (CA4) from Arabidopsis thaliana.


SEQ ID NO:4: nucleotide sequence of β carbonic anhydrase 6 (CA6) from Arabidopsis thaliana (At1g58180)


SEQ ID NO:5: nucleotide sequence of β carbonic anhydrase 6 (CA6) from Arabidopsis thaliana—coding sequence.


SEQ ID NO:6: nucleotide sequence of β carbonic anhydrase 6 (CA6) from Arabidopsis thaliana.


SEQ ID NO:7: nucleotide sequence of β carbonic anhydrase 1 (CA1) from Arabidopsis thaliana—variant 1


SEQ ID NO:8: nucleotide sequence of β carbonic anhydrase 1 (CA1) from Arabidopsis thaliana—variant 1


SEQ ID NO:9: nucleotide sequence of β carbonic anhydrase 1 (CA1) from Arabidopsis thaliana—variant 2


SEQ ID NO:10: nucleotide sequence of β carbonic anhydrase 1 (CA1) from Arabidopsis thaliana—variant 2


SEQ ID NO:11: nucleotide sequence of OST1 protein kinase cDNA from Arabidopsis thaliana —variant 1


SEQ ID NO:12: amino acid sequence of OST1 protein kinase cDNA from Arabidopsis thaliana —variant 1


SEQ ID NO:13: nucleotide sequence of OST1 protein kinase cDNA from Arabidopsis thaliana —variant 2


SEQ ID NO:14: amino acid sequence of OST1 protein kinase cDNA from Arabidopsis thaliana —variant 2


SEQ ID NO:15: nucleotide sequence of A. thaliana β carbonic anhydrase 2 (CA2) cDNA (At5g14740)


SEQ ID NO:16: amino acid sequence of A. thaliana β carbonic anhydrase 2 (CA2) cDNA (At5g14740)


SEQ ID NO:17: nucleotide sequence of A. thaliana α carbonic anhydrase 1 (CA1) cDNA (At3g52720)


SEQ ID NO:18: nucleotide sequence of A. thaliana α carbonic anhydrase 1 (CA1) cDNA (At3g52720)


SEQ ID NO:19: nucleotide sequence of A. thaliana α carbonic anhydrase 2 (CA2) cDNA (At2g28210)


SEQ ID NO:20: amino acid sequence of A. thaliana α carbonic anhydrase 1 (CA1) cDNA (At3g52720)


SEQ ID NO:21: nucleotide sequence of A. thaliana α carbonic anhydrase 3 (CA3) cDNA (At5g04180)


SEQ ID NO:22: amino acid sequence of A. thaliana α carbonic anhydrase 3 (CA3) cDNA (At5g04180)


SEQ ID NO:23: nucleotide sequence of A. thaliana α carbonic anhydrase 4 (CA4) cDNA (At4g20990)


SEQ ID NO:24: amino acid sequence of A. thaliana α carbonic anhydrase 2 (CA4) cDNA (At4g20990)


SEQ ID NO:25: nucleotide sequence of A. thaliana α carbonic anhydrase 5 (CA5) cDNA (At1g08065)


SEQ ID NO:26: amino acid sequence of A. thaliana α carbonic anhydrase 5 (CA5) cDNA (At1g08065)


SEQ ID NO:27: nucleotide sequence of A. thaliana α carbonic anhydrase 6 (CA6) cDNA (At4g21000)


SEQ ID NO:28: amino acid sequence of A. thaliana α carbonic anhydrase 6 (CA6) cDNA (At4g21000)


SEQ ID NO:29: nucleotide sequence of A. thaliana α carbonic anhydrase 7 (CA7) cDNA (At1g08080)


SEQ ID NO:30: amino acid sequence of A. thaliana α carbonic anhydrase 7 (CA7) cDNA (At1g08080)


SEQ ID NO:31: nucleotide sequence of A. thaliana α carbonic anhydrase 8 (CA8) cDNA (At5g56330)


SEQ ID NO:32: amino acid sequence of A. thaliana α carbonic anhydrase 8 (CA8) cDNA (At5g56330)


SEQ ID NO:33: nucleotide sequence of A. thaliana β carbonic anhydrase 3 (CA3) cDNA (At1g23730)


SEQ ID NO:34: amino acid sequence of A. thaliana β carbonic anhydrase 3 (CA3) cDNA (At1g23730)


SEQ ID NO:35: nucleotide sequence of A. thaliana β carbonic anhydrase 5 (CA5) cDNA (At4g33580)


SEQ ID NO:36: amino acid sequence of A. thaliana β carbonic anhydrase 5 (CA5) cDNA (At4g33580)


SEQ ID NO:37: nucleotide sequence of A. thaliana γ carbonic anhydrase 1 (CA1) cDNA (At1g19580)


SEQ ID NO:38: amino acid sequence of A. thaliana γ carbonic anhydrase 1 (CA1) cDNA (At1g19580)


SEQ ID NO:39: nucleotide sequence of A. thaliana γ carbonic anhydrase 2 (CA2) cDNA (At1g47260)


SEQ ID NO:40: amino acid sequence of A. thaliana γ carbonic anhydrase 2 (CA2) cDNA (At1g47260)


SEQ ID NO:41: nucleotide sequence of A. thaliana γ carbonic anhydrase 3 (CA3) cDNA (At5g66510)


SEQ ID NO:42: amino acid sequence of A. thaliana γ carbonic anhydrase 3 (CA3) cDNA (At5g66510)


SEQ ID NO:43: nucleotide sequence of A. thaliana γ carbonic anhydrase like 1 (CAL1) cDNA (At5g63510)


SEQ ID NO:44: amino acid sequence of A. thaliana γ carbonic anhydrase like 1 (CAL1) cDNA (At5g63510)


SEQ ID NO:45: nucleotide sequence of A. thaliana γ carbonic anhydrase2 (CAL2) cDNA (At3g48680)


SEQ ID NO:46: amino acid sequence of A. thaliana γ carbonic anhydrase 2 (CAL2) (At3g48680)


Materials and Methods
Plant Growth

The Arabidopsis mutant lines analyzed in this study were ca1;ca4 (Hu et al, 2010), Slac1-1, slac1-3 (Vahisalu et al, 2008), ht1-2 (Hashimoto et al, 2006), ost1-1, ost1-2 (Mustilli et al, 2002), ost1-3 (Yoshida et al, 2002), abi1-1, abi2-1 and pyr1;pyl1; pyl2;pyl4 in the backcrossed Columbia background (Nishimura et al, 2010), Plants were grown in a plant growth chamber at 21° C. temperature, 65%-85% humidity, except that abi1-1 and abi2-1 were grown constantly at 75-85% humidity and a 16-h-light/8-h-dark photoperiod regime at ˜75 μmol m−2s−1.


Electrophysiology


Arabidopsis guard cell protoplasts were isolated as described previously (Siegel et al, 2009). Whole-cell patch-clamp experiments were performed as described previously (Pei et al, 1997). During recordings of S-type anion currents, the membrane voltage was stepped to potentials starting at±35 mV to −145 mV for 7 s with −30 mV decrements and the holding potential was +30 mV. The interpulse period was 5 s. Liquid junction potentials (LJP) were determined using Clampex 10.0. No leak subtraction was applied for all current-voltage curves. Steady-state currents were the average currents during the last 500 ms of pulses. Detail contents of solutions are discussed, below (see “supplementary data”). Bicarbonate (CsHCO3) was freshly dissolved in the pipette solution before patch clamp experiments and pH was adjusted to the indicated values. The pipette solution was stored using air-tight precision glass syringes during patch clamp experiments to slow CO2 equilibration with the surrounding air and was not stored overnight. The concentrations of free CO2 and bicarbonate in solutions were calculated using the Henderson-Hasselbalch equation (pH=pK1+log [HCO3]/[CO2]) (Hauser et al, 1995). [HCO3] represents the free bicarbonate concentration; [CO2] represents the free CO2 concentration. A value, pK1=6.352, was used for calculations (Speight, 2005). To independently measure CO2 concentrations in the solutions at different pH values, an InPro 5000 CO2 sensor (Mettler Tolego 400, Mettler-Toledo Inc, USA) was used for dissolved CO2. The InPro 5000 sensor employs a gas permeable silicone membrane. The significance of differences between data sets was assessed by noncoupled double-tailed Student's t-test analysis. Values of P<0.05 were considered statistically significant.


Expression of pH Sensor Pt-GFP in Arabidopsis Guard Cells

The Pt-GFP cDNA was amplified with the primers PGF (5′-AACCATGGCGCAGACCTTCCTCTAT-3′, with NcoI site) and PGR (5′-AACTGCAGAGGCGTCTCGCATATCTC-′, with PstI site) from the construct pART7-PrGFP (Schulte et al, 2006), kindly provided by Dr. Christoph Plieth. The sequenced PCR product was digested with NcoI and PstI and then subcloned into the binary expression vector pGreenII 0179-pGCP(D1)-terminator under the control of guard cell specific promoter pGC1 (Yang et al, 2008). The construct pGC1::PtGFP was transformed to the Agrobacterium strain GV3101 containing helper plasmid pSOUP and then was introduced into Arabidopsis (Col-0) by the floral dip method (Clough & Bent, 1998).


Fluorescence Imaging of Guard Cells Expressing Pt-GFP

Fluorescence imaging was performed with a TE300 inverted microscope using a TE-FM Epi-Fluorescence attachment (Nikon) as previously described (Allen et al, 2000). Fluorescence images at excitation wavelengths of 470 nm and 440 nm were taken every 2 s using light from a 75-Watt xenon short arc lamp (Osram, Germany). 32° neutral density filters were used to reduce bleaching of fluorescent reporter. Metafluor software (MDS, Inc.) was used to control filter wheels, shutter and COOLSNAP™ (CoolSNAP) CCD camera from Photomerics when recording and also processing raw data. The fluorescence ratio F470/F440 of Pt-GFP was analyzed as a detection of pH shifts (Schulte et al, 2006). Intact epidermes from pGC1::PtGFP expressing leaves were prepared and affixed to glass coverslips using medical adhesive (Hollister Incorporated Libertyville, Ill. USA) and then adhered to a glass slide with a hole in the middle generating a well, as described (Hu et al, 2010; Siegel et al, 2009; Young et al, 2006).


For recording intracellular Pt-GFP fluorescence in response to changes in extracellular pH incubation buffers, the pH of incubation buffers containing 10 mM MES, 10 mM KCl and 50 μM CaCl2 at 5.0 and 7.5 was adjusted by adding Tris-HCl. The well was perfused with incubation buffer at pH 5.0 for 15 min to obtain a background value and subsequently perfused with buffer at pH 7.5 for 15 min and returned to pH 5.0 again. For recording intracellular Pt-GFP fluorescence in response to constant extracellular pH and added weak acid, the perfusion buffers contained 10 mM MES, 10 mM KCl and 50 μM CaCl2, pH 5.6 supplemented with the indicated concentrations of sodium butyrate. For recording the Pt-GFP fluorescence of guard cells in response to CO2 changes, the incubation buffer (10 mM MES, 10 mM KCl and 50μM CaCl2, pH 6.15) was continually bubbled with 800 ppm CO2 or bubbled with air through soda lime, which was considered as nominal 0 ppm CO2 inside the buffer. Note that the final CO2 concentrations to which leaf epidermes were exposed were as reported previously using the same experimental set up and conditions (Young et al, 2006). The well was perfused with buffers shifting from 800 ppm to 0 ppm CO2 via a peristaltic pump and teflon tubing. Background fluorescence intensities at 470 nm were measured in regions lacking guard cells and are also shown for the corresponding experiments.


Bicarbonate Activates S-Type Anion Currents in ca1;ca4 Double Mutant Guard Cell Protoplasts


The βCA1 and βCA4 carbonic anhydrases act as upstream regulators in CO2-induced stomatal movements in guard cells (Hu et al, 2010). Elevated CO2 together with bicarbonate concentrations activate S-type anion channel currents in wild type Arabidopsis guard cells. Previous studies of CO2 regulation of anion channels have only analyzed wild type guard cells (Brearley et al, 1997; Hu et al, 2010; Raschke et al, 2003). Therefore, we investigated whether elevated bicarbonate and intracellular CO2 can by-pass the ca1;ca4 mutant and activate S-type anion currents in ca1;ca4 mutant guard cells. The addition of 13.5 mM total bicarbonate to the pipette solution (equivalent to 11.5 mM free bicarbonate ([HCO3]i)/2 mM free [CO2] at pH 7.1) activated anion currents in patch clamped ca1;ca4 guard cell (FIGS. 1B and C), compared to control currents in the absence of added intracellular bicarbonate (FIG. 1A). Free [HCO3−], and [CO2] were calculated using the Henderson-Hasselbalch equation as described in Methods. These findings are consistent with carbonic anhydrases acting as upstream regulators of CO2 signaling and show that elevated bicarbonate and CO2 together can activate S-type anion channel in ca1;ca4 double mutant guard cells.


Bicarbonate Activated S-Type Anion Currents are Greatly Impaired in slac1 Mutant Guard Cell Protoplasts


The reversal potential of CO2+HCO3 activated whole-cell currents was +24.0±3.6 mV (n=8), which was close to the imposed chloride equilibrium potential of +31.1 mV, supports the hypothesis that CO2+HCO3 activate guard cell anion channels. The bicarbonate and CO2 concentrations used for anion current activation were very high (FIGS. 1B and C) (Hu et al, 2010), giving rise to the question whether these anion currents correspond to physiological guard cell anion channel currents, SLAC1 is required for Arabidopsis ABA- and CA2+-activation of guard cell S-type anion channel function (Negi et al, 2008; Vahisalu et al, 2008). To investigate whether high bicarbonate- and CO2-activated anion currents are mediated by SLAC1, the recessive slac1-1 and slac1-3 mutants were analyzed. slac-1-1 mutant guard cell protoplasts displayed only small anion currents in the presence of 11.5 mM free [HCO3]i and 2 mM [CO2] in the pipette solution, similar to control currents in the absence of added bicarbonate (FIG. 1D, P>0.05). Similar results were observed in slac1-3 mutant guard cells (FIG. 1E, P>0.05). These data suggest that the high intracellular [HCO3]+[CO2]-mediated anion currents are mediated by the physiologically relevant SLAC1 anion channel (FIG. 1).


Next, we analyzed whether these anion currents show a clear HCO3 permeability in wild type guard cells. The total bicarbonate was elevated to 50 mM in the pipette solution at pH 7.1 (corresponds to 43.4 mM free [HCO3]i and 6.6 mM free [CO2]). Under this high [HCO3] condition, the reversal potential of whole-cell currents was +26.0±0.9 mV (FIG. 10, or Supplementary FIG. 2, n=4). A relative permeability ratio of PHCO3/PCi=0.06±0.01 was estimated using the Goldman equation. This CT over HCO3 selectivity of whole-cell anion currents is consistent with the anion selectivity of SLAC1 channels found in heterologous expression experiments in Xenopus laevis oocytes (Geiger et al, 2009).


High [CO2] and Protons Do Not Activate S-Type Anion Currents in the Absence of High Bicarbonate Levels in Guard Cells

Carbonic anhydrases reversibly catalyze the conversion of CO2 into bicarbonate ions and free protons (Chandrashekar et al, 2009; Supuran, 2008). Whether high [CO2], [HCO3], [H+] or a combination of these mediates activation of S-type anion channels in Arabidopsis guard cells remains to be investigated (Hu et al, 2010). We investigated whether intracellular acidification is capable of activating S-type anion currents in wild type guard cell protoplasts. Intracellular acidification at pH 6.1 alone did not significantly activate S-type anion channel currents compared with control recordings at pH 7.1 (FIG. 2A, P>0.05, Student's t-test). Interestingly, when the intracellular free [CO2] was at a high concentration of 2 mM in the pipette solution (1.1 mM free [HCO3]i) at pH 6.1, S-type anion channel currents were not activated in wild type guard cell protoplasts, despite the high [CO2] and high ([H+] applied (FIG. 2B, P>0.05, Student's t-test).


Previous research has shown no intracellular pH shift in Vicia faba guard cells in response to [CO2] shifts (Brearly et al, 1997). To further investigate whether cytosolic pH is affected in Arabidopsis guard cells in response to [CO2] shifts, a ratiometric pH indicator Pt-GFP (Schulte et al, 2006) under the control of a strong guard cell preferential promoter pGC1 (Yang et al, 2008) was transformed into Arabidopsis guard cells (FIG. 2C). In control experiments, in vivo recordings of pH in fluorescent pGC1::PtGFP transgenic guard cells showed clear reversible shifts in ratiometric intracellular pH fluorescence when the extracellular pH was repeatedly changed form pH 5.0 to pH 7.5 and back, see FIG. 2D and FIG. 12 (or Supplementary FIG. 3). Weak acids can control intracellular pH while maintaining a constant extracellular pH (Blatt & Armstrong, 1993; Grabov & Blatt, 1977). Therefore, the weak acid sodium butyrate was used to analyze whether Pt-GFP can report intracellular pH. Ratiometric fluorescence recordings of Pt-GFP-expressing guard cells showed clear shifts, when intact plant epidermes were perfused with defined concentrations of sodium butyrate-containing MES buffers (FIG. 2E), indicating intracellular pH changes were easily detected in guard cells (FIGS. 2D and E). However, no clear shifts in guard cell intracellular pH fluorescence were observed when the concentration of CO2 bubbled in the extracellular perfusion buffers was repeatedly shifted from 0 ppm to 800 ppm (FIG. 2F), consistent with findings in Vicia faba guard cells using a pH sensitive dye (Brearley et al, 1997). In conclusion, protons alone or in combination with elevated CO2 could not activate S-type anion channels (FIGS. 2A and B) and [CO2] changes did not cause measurable changes in intracellular pH of Arabidopsis guard cells (FIG. 2F) (Brearley et al, 1997).


Bicarbonate Activates S-Type Anion Currents at Low Free CO2 in Guard Cells

To see whether elevated intracellular [HCO3] is sufficient to activate anion currents at low [H] and low [CO2], 13.5 mM total CsHCO3 was added to the pipette solution and the free [HCO3] was calculated as 13.04 mM with 0.46 mM free [CO2] at pH 7.8. These analyses clearly showed that compared with the control recordings (FIG. 3A), S-type anion currents were activated by the presence of high free HCO3 in the pipette solution (FIGS. 3B and C, P<0.05 at voltages from −146 mV to −26 mV, Student's t-test). Together the above analyses show that elevated intracellular HCO3 is the main molecule that mediates activation of S-type anion currents in guard cells.


Extracellular bicarbonate was next tested on activation of S-type anion currents in wild type guard cells. After obtaining whole-cell recordings in wild type guard cells, the bath solution (200 μl) was perfused for 2 min at 1 ml min−1 with a solution that contained 11.5 mM free [HCO3]i and 2 mM [CO2] at pH 7.1; see FIG. 7.1; see FIG. 10A (or Supplementary FIG. 1A). No large S-type anion currents were activated; see FIGS. 10B and C (or Supplementary FIGS. 1B and C). A small increase in average anion current magnitude was not statistically significant and was not comparable to the clear activation of S-type anion currents by the same concentration of applied intracellular HCO3 (FIGS. 10B and C, or Supplementary FIGS. 1B and C).


Elevated Intracellular [Ca2+] is Required for Bicarbonate Activation of S-Type Anion Channel Currents in Guard Cells

The above analyses of activation of S-type anion currents were all conducted at 2 μM cytosolic free Ca2+ ([Ca2+]i) (FIGS. 1-3). We investigated whether the elevated [Ca2+]i (2 μM) was necessary for bicarbonate activation of S-type anion channel currents in Arabidopsis guard cells. At 2 μM [Ca2+]i, anion currents were not strongly activated in the absence of added [HCO3]i (FIGS. 4A and G), consistent with previous studies (Allen et al, 2002; Siegel et al, 2009). In contrast, 11.5 mM free [HCO3]i activated strong S-type anion channels (FIGS. 4C and G, P<0.001), while an intermediate free [HCO3]i of 5.75 mM did not activate significant S-type anion currents (FIGS. 4B and G, P>0.05, Student's t-test). When [Ca2+]i was buffered to a baseline level of 0.15 μM even with high 11.5 mM free [HCO3]i and 2 mM free [CO2] in the pipette solution (pH 7.1), S-type anion currents were not activate (FIGS. 4E and G). There was no significant difference between the average amplitudes of current recordings at 0.15 μM free [Ca+]i with or without added 11.5 mM free [HCO3]i (FIG. 4G, P>0.05, at voltages from −146 mV to +34 mV). In addition, an elevated cytosolic free [Ca2+]i of 0.6 μM together with high 11.5 mM free [HCO3]i and 2 mM free [CO2] in the pipette solution (pH 7.1) activated anion currents of intermediate average amplitudes (FIGS. 4F and G).


A summary of cytosolic free Ca2+ and HCO3 activation of S-type anion channels are shown in Table I. These data demonstrate a requirement for an elevated [Ca2+]i in HCO-mediated activation of guard cell anion channels and provide direct and mechanistic evidence for the model that CO2-induced stomatal closing enhances the ability of [Ca2+]i to activate stomatal closing mechanisms (Young et al, 2006).









TABLE I







Cytosolic free [Ca2+]i and free [HCO3]i activation


of anion currents at a voltage of −146 mV.











[Ca2+]i
[HCO3]i
I (pA)




(μM)
(mM)
at −146 mV
P value
Cell number















0.15
0
−16.4 ± 2.0a


5


2
0
−15.6 ± 4.0b
0.76
(b vs. a)
6


0.15
11.5
−22.3 ± 2.3c
0.071
(c vs. a)
7


2
5.75
−21.8 ± 3.2d
0.054
(d vs. b)
7


2
11.5
−58.7 ± 5.9e
<0.001*
(e vs. b)
10


0.6
11.5
−27.3 ± 4.5f
0.056
(f vs. a)
7





0.35
(f vs. c)






a-f Current values from FIG. 4G for comparision. Data are mean ± s.e.



*Stands for significant difference using Student's t-test.







Lower [Bicarbonate] is Sufficient for Activation of S-Type Anion Channel Currents in ht1-2 Guard Cells


The Arabidopsis HT1 protein kinase functions as a negative regulator of CO2-induced stomatal closing (Hashimoto et al, 2006). To test whether HT1 functions in the CO2/HCO3 SLAC1 signaling pathway (FIGS. 1-3), the effects of bicarbonate on S-type anion currents in recessive ht1-2 mutant guard cells were analyzed. Whole-cell currents were recorded in guard cell protoplasts at lower intracellular [HCO3]i, 5.75 mM free [HCO3]i and 1 mM free [CO2] at pH 7.1, compared to the above experiments (FIGS. 5A and B). In wild type control guard cells these intermediate [HCO3]i+[CO2] together with 2 μM free [Ca2+]i showed small whole-cell current amplitudes that were slightly larger than wild type guard cells in the absence of added HCO3 (FIGS. 5A, B and E, P>0.05, Student's t-test) (Hu et al, 2010). However, significant activation of S-type anion currents by intracellular addition of 5.75 mM free [HCO3]i and 1 mM free [CO2] (pH 7.1) was observed in ht1-2 guard cells (FIGS. 5D and E) compared to the control currents (FIGS. 5A-C and E, P<0.01 at voltages from −146 mV to −26 mV, Student's t-test). Note that 2 μM [Ca2+]i alone in ht1-2 guard cells was not sufficient to activate S-type anion currents (FIGS. 5C and E). While cytosolic [Ca2+]i was buffered to a typical resting level of 0.15 μM in ht1-2 guard cells, no significant S-type anion current activation was observed in the presence of 5.75 mM free [HCO3]i (FIG. 5F-H, P<0.05 at voltages from −146 mV to −26 mV, Student's t-test). Thus ht1-2 guard cells shown an enhanced sensitivity to intracellular HCO3, but this enhanced activation cannot by-pass the requirement for [Ca2+]i in HCO3 activation of S-type anion currents.


The OST1 Kinase Functions in Bicarbonate Activation of S-Type Anion Currents in Guard Cell Protoplasts and Strongly Impairs CO2-Induced Stomatal Closure

The OST1 protein kinase was previously demonstrated to mediate ABA-induced stomatal closing. Recessive ost1 mutants disrupt ABA-induced stomatal closure as well as ABA inhibition of light-induced stomatal opening, but low CO2 induction of stomatal opening remained unaffected in the ost1-2 mutant, indicating that OST1 doesn't participate in CO2 signaling (Mustilli et al, 23002; Yushida et al, 2002). Here, the effect of OST1 on bicarbonate activation of S-type anion channels was investigated. Using the same recording solutions in FIG. 1B, high [HCO3]i (11.5 mM) and [CO2] (2 mM) activated only small S-type anion currents in Landsberg erecta (Ler) ost1-2 mutant guard cells (FIGS. 6A, B and F). Similar to Co1 wild-type guard cells (FIGS. 1, 3 and 4), high HCO3 activated S-type anion channel currents in Ler wild type guard cells (FIGS. 6D, E and F). While HCO3 activated S-type anion currents in Ler wild type guard cells were larger (I=−51±4.3 pA at a voltage of −146 mV, n=7) than that in ost1-2 mutant guard cells (I=−25.2±1.9 pA at a voltage of −146 mV, n=6) (FIG. 6F, P<0.001, Student's t-test). Moreover, bicarbonate activation of S-type anion channels was also strongly impaired in Co1 ost1-3 T-DNA insertion allele guard cells (FIGS. 6C and F) compared to Co1-0 wild type (FIGS. 4C and G). At a voltage of −146 mV, the current amplitude activated by bicarbonate in ost1-3 mutant guard cells was −24±1.9 pA (FIG. 6F, n=6), and in Co1-0 wild type, it was −59±5.9 pA (FIG. 4E, n=10, P<0.001, Student's t-test).


Elevated CO2-induced stomatal closure was also impaired in ost1-3 mutant leaf epidermes compared to wild type controls in genotype-blind assays (FIG. 7A, P<0.05 at 800 ppm CO2, Student's t-test). Stomatal conductance changes in intact ost1-3 mutant leaves were subsequently analyzed in response to [CO2] shifts. Interestingly, stomatal conductance in ost1-3 mutant leaves showed a very strong CO2 insensitivity when the [CO2] was shifted to high concentrations; see FIG. 7B and FIG. 13A (or Supplementary FIG. 4A). To further investigate the unexpected strong CO2 insensitivity of ost1, whole intact plant gas exchange experiments were pursued and the strong CO2 insensitivity was observed in ost 1-1, ost1-2 and ost1-3 mutants, see FIG. 7C, D and FIGS. 13B and C (or Supplementary FIGS. 4B and C).


ABA Receptor pyr1;pyl1;pyl2;pyl4 Quadruple Mutant and Type 2C Protein Phosphatases abi1-1 and abi2-1 Mutants Maintain Functional CO2 Response


The PYR/RCAR ABA receptor family was recently identified in Arabidopsis as major ABA receptors (Ma et al, 2009; Park et al, 2009). Since these ABA receptors tightly regulate and form complexes with SnRK2 kinases including OST1 (Fujii et al, 2009; Ma et al, 2009; Nishimura et al, 2010; Park et al, 2009), CO2 regulation of gas exchange in intact pyr1;pyl1;pyl2;pyl4 leaves was analyzed to see the requirement of ABA receptors for this CO2 response. Intact leaves of the pyr1;pyl1;pyl2;pyl4 quadruple mutant showed clear CO2 responses upon [CO2] changes; see FIG. 8A and FIG. 13D (or supplementary FIG. 4D) and showed an average slight showing of the CO2 response, observed in independent experimental sets but was not statistically significant (P=0.1, Student's t-test) at 18 min after 365 to 800 ppm CO2 transition. Upon shifting [CO2] from 365 to 800 ppm for 30 min, the initial rates of stomatal conductance changes were −0.038±0.014 mmol H2O m−2 s−1 min−1 for wild type plants and −0.035±0.008 mmol H2O m−2 s−1 min−1 for pyr1;pyl1;pyl2;pyl4 mutant plants (P=0.24, Student's t-test). During the first 30 min upon shifting [CO2] from 800 to 100 ppm, the initial rates were 0.042±0.013 mmol H2O m−2 s−1 min−1 for wild type plants and 0.022±0.002 mmol H2O m−2 s−1 min−1 for pyr1;pyl1;pyl2;pyl4 mutant plants (P=0.06, Student's t-test).


ABI1 and ABI2 encode type 2C protein phosphatases (PP2Cs) (Leung et al, 1994; Leung et al, 1997, Meyer et al, 194; Rodriguez et al, 1998). The dominant mutants abi1-1 and abi2-1 exhibit ABA insensitivity in seed germination, root growth responses and guard cells signaling (Koornneef et al, 1984; Pei et al, 1997). ABI1, PYR1 and OST1 interact with each other in ABA signaling (Nishimura et all, 2010; Park et al, 2009), thereafter CO2 regulation of gas exchange in abi1-1 and abi2-1 intact leaves were analyzed as well. Note that abi1-1 and abi2-1 leaves can wilt easily and therefore all gas exchange experiments were conducted on well-watered plants at ˜75-85% humidity, abi1-1 and abi2-1 mutants showed slightly impaired responses to changes of [CO2] compared with wild type Co1-0 plants (FIGS. 8B, C and D). Average stomatal conductances of abi1-1 and abi2-1 were larger than that of wild type leaves (FIG. 8B). The initial rates of stomatal conductance changes were −0.041±0.01 mmol H2O m−2 s−1 min−1 for wild type plants, −0.035±0.007 mmol H2O m−2 s−2 for abi1-1 and −0.037±0.007 mmol H2O m−2 s−2 for abi2-1 mutant plants upon shifting [CO2] from 400 to 800 ppm for 30 min. These data correlate with stomatal response assays in leaf epidermes suggesting that abi1-1 and abi2-1 may show a mild conditional effect on CO2 responses (Leymarie et al, 1998a; Leymarie et al, 1998b; Webb & Hetherington, 1997).


Discussion

Elevated [CO2] in leaf intercellular spaces (Ci) and elevated atmosphere [CO2] cause closing of stomatal pores (Medlyn et al, 2001). Carbonic anhydrases have been identified that function early in CO2 signal transduction (Hu et al, 2010). However, major questions in CO2 signal transduction have arisen. Whether CO2 or bicarbonate ion or a combination of these function in CO2 signal transduction in guard cells remained unclear. The presented findings demonstrate that bicarbonate acts as an intracellular signaling molecule in CO2 signal transduction, by activating SLAC1-mediated S-type anion channels in guard cells. We further found a synergistic action of intracellular HCO3 with cytosolic Ca2+, that requires both of these small molecules of CO2 signaling to proceed. We also report the characterization of the cellular functions and relative positions within the CO2 signal transduction cascade of mutants that strongly affect CO2 control of stomatal movements, including ca1;ca4, slac1 and ht1, ht1-2 mutant guard cells show hypersensitivity to intracellularly applied HCO3, but continue to require cytosolic CA2+ for activation of SLAC1-dependent anion currents. In addition, we have unexpectedly found that loss-of-function mutations in the OST1 protein kinase cause a strong CO2 insensitivity of stomatal regulation by analyses of S-type anion channel regulation, stomatal movements and gas exchange in intact leaves and in whole plants, which leads to a new model for early CO2 signal transduction in guard cells.


Control Function of the OST1 Protein Kinase in CO2 Signal Transduction

Previous stomatal movement assays indicated that the OST1 protein kinase may not function in CO2 inhibition of stomatal opening (Mustilli et al, 2002). Unexpectedly, we have found here in ost1 mutant guard cells in both Columbia and Landsberg accessions show a dramatic impairment in CO2 regulation of stomatal conductance in intact leaves. Recent studies have shown that the OST1 kinase activates SLAC1 channels via phosphorylation (Geiger et al, 2009; Lee et al 2009; Vahisalu et al, 2010). Together our findings of impairment in bicarbonate activation of S-type anion currents in ost1-2 and ost1-3 mutant guard cells (FIGS. 6A, B and D) and the strong impairment in CO2-induced stomatal closing and stomatal conductance changes in intact leaves and in intact plants (FIG. 7B-D) show that the OST1 protein kinase is a central transducer of CO2 signal transduction in guard cells.


The PYR/RCAR abscisic acid receptors form a linear signal transduction module together with type 2C protein phosphatases and the OST1 protein kinase (Fujii et al, 2009; Ma et al, 2009; Nishimura et al, 2010; Park et al, 2009; Santiago et al, 2009; Umezawa et al, 2009). A quadruple mutant in four highly-expressed guard cell ABA receptors pyr1;pyl1;pyl2;pyl4 shows a strong impairment in ABA-induced stomatal closing (Nishimura et al, 2010). In contrast CO2 regulation remained functional in intact leaves (FIG. 8). These data lead to an updated model for early CO2 signal transduction in which the convergence point of CO2 and ABA signal transduction occurs earlier than previously thought at the level of the OST1 protein kinase (FIG. 9). The CO2 response of pyr1;pyl1;pyl2;pyl4 quadruple mutant plants exhibited an average slight showing compared to wild type plants (FIG. 8). This may be attributable to the convergence of CO2 and ABA signaling at the level of the OST1 protein kinase as revealed here. Thus a degree of cross-talk between ABA and CO2 signaling can be expected. Classical studies have shown that very low subthreshold concentrations of ABA do not cause an ABA response, but amplify CO2-induced stomatal closing (Raschke, 1975). Our findings provide a mechanistic basis for this classical observation, with both CO2 and ABA signal transduction occurring via the OST1 protein kinase (FIG. 9), as ost1 mutant alleles show both strong CO2 (FIG. 7) and ABA insensitivities (Mustilli et al., 2002; Yoshida et al., 2002).


The dominant protein phosphatase 2C (PP2C) mutants, abi1-1 and abi2-1, have been reported to conditionally affect CO2 signaling in guard cells (Leymarie et al 1998a; Leymarie et al, 1998b; Webb & Hetherington, 1997). ABI1 interacts with the OST1 protein kinase (Belin et al, 2006; Nishimura et al 2010; Umezawa et al. 2009; Vlad et al, 2009; Yoshida et al, 2006). The present study on CO2 signaling and research indicating ABA-independent activation of the OST1 protein kinase (Yoshida et al, 2006; Zheng et al, 2010) indicates that the early ABA signaling module consisting of ABA receptors, PP2Cs and OST1/SnRK2 kinases (Ma et al, 2009; Park et al, 2009) may be more complex than present models (Fujii et al, 2009).


Bicarbonate Activates S-Type Anion Channels

Elevated bicarbonate activation of S-type anion currents in ca1;ca4 double mutant guard cells (FIG. 1) is consistent with the model that βCA1 and βCA4 act very early in the guard cell CO2 signal transduction pathway (FIG. 9). S-type anion channel activation by bicarbonate reported here (FIG. 3) shows similar properties to SLC26A9 channels in mammalian epithelial cells. SLC26A9, encoding a CT channel, is modulated by HCO3 (Loriol et al, 2008). Expression of SLC26A9 in Xenopus laevis oocytes, produced CT currents that increased in magnitude in the presence of 24 mM HCO3 compared to 2.4 mM HCO3. Furthermore, the SLC26A9 channel has no HCO3 permeability and is not regulated by intracellular pH (Loriol et al, 2008). In Arabidopsis hypocotyl cells, bicarbonate is permeable through voltage-dependent anion channels (R-type anion channels) with a relative permeability ratio PHCO3PCO of 0.8 (Frachisse et al, 1999). Different from that, the SLAC1 channel is impermeable to HCO3 (Geiger et al, 2009), and our analyses of S-type anion currents also support this; see FIG. 11 (or Supplementary FIG. 2). SLAC1 channels were not activated by bicarbonate when SLAC1 was heterologously expressed alone in Xenopus laevis oocytes (Geiger et al, 2009). This can be explained by our findings that bicarbonate activation of S-type anion channel in planta requires other essential components, in particular the OST1 protein kinase and elevated [Ca2+]i, with the HT1 protein kinase functioning as a negative regulator within this module of the CO2 signal transduction cascade (FIGS. 4-6, and 9). Further research will be needed to identify the bicarbonate-binding proteins that mediate this response.


The intra cellular concentrations of bicarbonate and CO2 used in patch clamp experiments in the present study for S-type anion channel activation were higher than physiological concentrations in planta. Note that patch clamping of guard cells includes dialysis of the cytoplasm (Hamill et al, 1981) and it is possible that additional diluted small molecules or proteins are required for full sensitivity of this HCO3 response. Furthermore, typically high CO2 and HCO3 concentrations are used in electrophysiological studies, up to 72 mM HCO3 (Chandrashekar et al, 2009; Hu et al, 2010: Loriol et al, 2008; Yarmolinsky et al, 2009), although these experiments were conducted in different systems. The close correlation of high HCO3 regulation of S-type anion channels in the present study and the impaired CO2 response phenotypes in intact leaves of the Arabidopsis cal1;cal4, slac1, ht1-2 and ost1 mutants (FIGS. 6 and 7) and the [Ca2+]i sensitivity of this response (FIG. 4) suggest that the analyzed intracellular HCO3 regulation responses are physiologically relevant (Hashimoto et al, 2006; Hu et al, 2010; Negi et al, 2008; Schwartz, 1985; Vahisalu et al, 2008; Webb et al, 1996; Young et al, 2006).


Intracellular acidification activates slow anion channel currents in the plasma membrane of Arabidopsis hypocotyl cells (Colcombet et al, 2005). However, intracellular acidification did not activate S-type anion currents in Arabidopsis guard cells, even in the presence of elevated 2 μM free [Ca2+]i (FIG. 2A). In animal chemosensitive neurons, intracellular pH was lowered in response to increasing CO2 levels from 10% up to 50% [CO2] (Putnam et al, 2004). Using the pH sensitive dye BCECP (2′,7′-bis-(2-carboxyethyl)-5,6-carboxyflourescein) and fluorescence microphotometry to measure cytosolic pH in Vicia faba guard cells, no significant pH change was observed during transition from 0 to 1000 ppm CO2 (Brearley et al, 1997). Our findings correlate with the previous study as no detectable pH changes were observed in guard cells expressing the ratiometric pH sensor Pt-GFP when intact leaf epidermes were perfused with buffers bubbled with 0 ppm and 800 ppm CO2 (FIG. 2F). These data are also compatible with models proposing a high pH buffering capacity of Vicia faba guard cells (Grabov & Blatt, 1997; Raschke et al, 1988).


CO2 Enhances the [Ca2+]i Sensitivity of S-type Anion Channel Activation

Calcium is a second messenger that transduces diverse stimuli in plants (Blatt, 2000; Hetherington & Brownlee, 2004; Kim et al, 2010; Kudla et al, 2010; Sanders et al, 1999). Elevated CO2 caused an increase in [Ca2+]i in Commelina Communis guard cells (Webb et al, 1996). Furthermore, elevated CO2 caused a dampening of spontaneous repetitive [Ca2+]i, transients whereas low CO2 caused rapid [Ca2+]i transients in Arabidopsis guard cells (Young et al, 2006), which can be attributed to CO2-induced depolarization of guard cells (Grabov & Blatt, 1998; Klusener et al, 2002; Staxen et al, 1999). In both plant species abolishment of [Ca2+]i elevations abolished CO2-induced stomatal closing (Schwartz, 1985; Webb et al, 1996; Young et al. 2006). Time-resolved [Ca2+]i, imaging experiments led to the Ca2+ sensitivity priming hypothesis, in which CO2 was hypothesized to enhance (prime) the Ca2+ sensitivity of signaling mechanisms that relay CO2-induced stomatal closure (Young et al, 2006). However, additional and direct evidence for this CO2 signaling hypothesis has been lacking. Recent studies showed that ABA enhances (primes) the [Ca2+]i, sensitivity of S-type anion channel and Kin+ channel regulation, strongly supporting the hypothesis that ABA primes [Ca2+]i signal transduction (Siegel et al, 2009).


ABA increases cytosolic Ca2+ concentration by activating plasma membrane Ca2+ channels in Vicia faba and Arabidopsis guard cells (Grabov & Blatt, 1998; Hamilton et al, 2000; Murata et al, 2001; Pei et al., 2000; Schroeder & Hagiwara, 1990). Cytosolic [Ca2+]i interacts with other signaling molecules including nitric oxide (NO) (Garcia-Mata et al, 2003) and cytosolic pHi (Grabov & Blatt, 1997) in ion channels regulation in guard cells. Recently, Chen et al (2010) showed that cytosolic free [Ca2+]i interacts with protein phosphorylation events during slow anion currents activation.


The present study shows that elevated bicarbonate enhances the [Ca2+]i sensitivity in S-type anion channels activation (FIG. 4). ABA- and Ca2+-activation of S-type anion channels and stomatal closing are mediated by Ca2+-dependent protein kinases (CDPKs) (Geiger et al, 2010; Mori et al, 2006; Zhu et al, 2007). Heterologous reconstitution analysis has proposed that ABA activates anion channels by the OST1 protein kinase, in parallel through a Ca2+-dependent CDPK pathway (Geiger et al, 2010). Together with previous studies (Allen et al, 2002; Hu et al, 2010; Israelsson et al, 2006; Siegel et al, 2009; Young et al, 2006), the present findings provide strong evidence that Ca2+ sensitivity priming is a mechanism that controls both CO2 and ABA regulation on S-type anion channels (FIG. 9). Interestingly, here patch clamped guard cell protoplasts were exposed to elevated HCO3/CO2 in the pipette solution for only ˜3 to 5 min prior to analyzing [Ca2+] activation of S-type anion currents (FIGS. 4C and G), whereas ABA signaling studies tested 30 min ABA pre-incubation (Siegel et al, 2009). This rapid 3 to 5 min HCO3/CO2—[Ca2+]i response provides first evidence that Ca2+ sensitivity priming is a rapid modification and that transcriptional and translational mechanisms do not mediate Ca2+ sensitivity priming.


Ht1 Kinase Mutant Enhances Bicarbonate Sensitivity but Requires [Ca2+]i

The HT1 protein kinase functions as a negative regulator of CO2 signaling (Hashimoto et al, 2006) and our recent study showed that HT1 is epistatic to βCA1 and βCA4 in CO2 responses pathway (Hu et al, 2010). However, the role of HT1 within the guard cell signaling network had not been further analyzed. The ht1-2 mutant exhibits a hypersensitive response in bicarbonate activation of S-type anion currents, demonstrating that the HT1 kinase functions as a negative regulator and affects CO2 signaling downstream of HCO3 production and upstream of anion channel activation (FIG. 9). Cytosolic Ca2+ elevation is still required for S-type anion channel activation in ht1-2 mutant guard cells, showing that HT1 kinase-mediated CO2 signaling does not by-pass Ca2+ sensitivity priming (FIGS. 5 and 9).


In conclusion, the present study identifies the OST1 protein kinase and the synergistic roles of the intercellular small molecules HCO3 and Ca2+ in guard cell CO2 signal transduction and anion channel regulation. Furthermore, characterization of the positions and roles of OST1, the HT1 protein kinase, the βCA1 and βCA4 carbonic anhydrases, PYR/RCAR ABA receptors, ABI1 and ABI2 PP2Cs and SLAC1 in CO2 regulation of S-type anion channels, leads to a revised model for CO2 signal transduction (FIG. 9). During CO2-induced stomatal closing, CO2 is first catalyzed by CAs into bicarbonate. Elevated bicarbonate, but no protons or CO2 activate S-type anion channels via an “AND”-like gate (FIG. 9). In the “AND”-like gate, one “input” occurs via the OST1 pathway, and the other “input” is mediated by the Ca2+ sensitivity priming pathway. The HT1 kinase acts as a negative regulator in the CO2 signaling pathway downstream of HCO3 production and upstream of S-type anion channel activation, which continues to require [Ca2+]i, PYR/RCAR ABA receptors do not directly mediate guard cell CO2 signaling and function upstream of the convergence point of CO2 and ABA signaling (FIG. 8), whereas the OST1 protein kinase is an essential mediator of guard cell CO2 signal transduction, providing evidence that mechanisms in addition to abscisic acid can activate OST1-dependent signaling (FIGS. 6 and 7).


Supplementary Methods
Solutions for Patch Clamp Experiments

For analyses of S-type anion currents, the pipette solution contained 150 mM CsCl, 2 mM MgCl2, 6.7 mM EGTA, 2.61 mM CaCl2 (150 mM [Ca2+]i), 4.84 mM CaCl2 (0.6 μM [Ca2+]i), or 6.03 mM CaCl2 (2 μM [Ca2+]i), 5 mM Mg-ATP, 5 mM Tris-GTP, 1 mM HEPES/Tris, pH 7.1. For experiments analyzing effects of protons on S-type anion currents, the pipette solution contained 150 mM CsCl, 2 mM MgCl2, 6.7 mM EGTA, 0.6 mM CaCl2 (2 μM [Ca2+]i), 5 mM Mg-ATP, 5 mM Tris-GTP, 1 mM Mes/Tris, pH 6.1. For experiments with pipette solution at pH 7.8, the pipette medium contained 150 mM CsCl, 2 mM MgCl2, 2 μM free [Ca2+]i, 5 mM Mg-ATP, 5 mM Tris-GTP, 1 mM HEPES/Tris. Calcium affinities of EGTA and free Ca2+ concentrations were calculated using the WEBMAXC tool (http://www.stanford.edu/-epatton/webmaxc/webmaxcE.htm), which considers pH, [ATP] and ionic conditions. The bath solution contained 30 mM CsCl, 2 mM MgCl2, 5 mM CaCl2 and 10 mM Mes/Tris, pH 5.6. Osmolalities of all solutions were adjusted to 485 mmol1·kg−1 for bath solutions and 500 mmol·kg−1 for pipette solutions by addition of D-sorbitol.


Stomatal Conductance Measurements

Stomatal conductance measurements of 5-week-old plants in response to the imposed [CO2] at a light (PAR) fluence rate of 150 μmol m−2s−1 were conducted with a Li-6400 gas exchange analyzer with a fluorometer chamber (Li-Cor Inc.) as described-previously (Hu at al, 2010). To reduce the wilting of abi1-1 and abi1-2 mutant leaves, all plants ware analyzed with a humidifier that humidified the air surrounding plants to ˜75-85%. Relative stomatal conductance values of intact leaves were calculated by normalization relative to 365 or 400 ppm just before transition to 800 ppm [CO2]. Data shown are mean±s.e. of at least 3 leaves per genotype in the same experimental set.


For whole-plant gas-exchange experiments, 24 to 26-day-old plants were used. Plants were grown in pots as described previously (Kollist et al, 2007). For monitoring CO2-induced changes in whole-plant stomatal conductance, a custom made device for Arabidopsis whole-plant gas-exchange measurements was used (Kollist et al, 2007). Before application of different CO2 treatments, plants were acclimated in the measuring cuvettes for at least 1 h (Vahisalu et al, 2008). Experiments were performed at photosynthetic photon flux density of 150±3 μmol m−2s−1, relative humidity of 60-70% (vapor pressure deficit=0.9-1.2 kPa) and air temperature of 24-25° C. Photographs of plants were taken before the experiment and rosette leaf area was calculated using ImageJ 1.37v (National Institutes of Health, USA). Stomatal conductance for water vapor was calculated us described previously (Kollist et al, 2007; Vahisalu et al. 2008). Data were normalized relative to the stomatal conductance at 400 ppm [CO2] just before the transition to 100 ppm [CO2].


Stomatal Aperture Measurements

Three to 4-week-old plants grown in a plant-growth chamber were used for analyses of stomatal movements in response to ambient and elevated [CO2]. Intact leaf epidermal layers with no mesophyll cells in the vicinity and ambient or high [CO2] (800 ppm) incubation buffers were prepared as described (Hu et al., 2010; Young et al, 2006). Leaf epidermal layers were pre-incubated for 1.5 h in a buffer containing 10 mM MES, 10 mM KCl, 50 μM CaCl2 at pH 6.15 and then perfused with incubation buffers continually bubbled with ambient air or 800 ppm CO2 for 30 min. Stomatal apertures were measured using ImageJ software and analyzed. Data shown are from genotype blind analyses (n=3 experiments, 40 stomata per experiment and condition).


REFERENCES



  • Allen G J, Chu S P, Schumacher K, Shimazaki C T, Vefeados D, Kemper A, Hawke S D, Tallman G, Tsien R Y, Harper J F, Chory J, Schroeder J I (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det 3 mutant. Science 289: 2338-2342

  • Allen G J, Murata Y, Chu SP, Nafisi M, Schroeder J I (2002) Hypersensitivity of abscisic acid-induced cytosolic calcium increases i the Arabidopsis farnesyltransferase mutant era1-2, Plant cell 14: 1649-1662

  • Belin C, de Franco P O, Bourbousse C, Chaignepain S, Schmittier J M, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells, Plant physiol 141: 1316-1327

  • Blatt M R (2000) Cellular signaling and volume control in stomatal movements in plants, Annu Rev Cell Dev Biol 16:221-241

  • Blatt M R, Armstrong F (1993) K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191: 330-341

  • Brearley J, Venis M A, Blatt M R (1997) The effect of elevated CO2 concentrations in K+ and anion channels of Vicia faba L. guard cells. Planta 203: 145-154

  • Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba N J, Zuker C S (2009) The taste of carbonation. Science 326: 443-445

  • Chen Z H, Hills A, Lim C K, Blatt M R (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61: 816-825

  • Clough S J, Bent A F (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

  • Colcombet J, Lelievre F, Thomine S, Barbier-Brygoo H, Frachisse J M (2005) Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot 56: 1897-1903

  • Evans N H, Hetherington A M (2001) Plant physiology: the ups and downs of guard cell signalling. Curr Biol 11: R92-94

  • Frachisse J M, Thomine S, Colcombet J, Guern J, Barbier-Brygoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant physiol 121: 253-262

  • Frommer W B (2010) CO2mmon sense. Science 327: 275-276

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660-664

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt M R (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100: 11116-11121

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid K A S, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107: 8023-8028

  • Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid K A, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106: 21425-21430

  • Grabov A, Blatt M R (1997) Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta 201: 84-95

  • Grabov A, Blatt M R (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95: 4778-4783

  • Grabov A, Blatt M R (1999) A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. Plant physiol 119: 277-288

  • Grabov A, Leung J, Giraudata J, Blatt M R (1997) Alternation of anion channel kinetics in wild type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. Plant J 12: 203-213

  • Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85-100

  • Hamilton D W, Hills A, Kohler B, Blatt M R (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97: 4967-4972

  • Hanstein S M, Felle H H (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant physiol 130: 940-950

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder J I, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8: 391-397

  • Hauser M, Eichelmann H, Heber U, Laisk A (1995) Chloroplast pH values and buffer capacities in darkened leaves as revealed by CO2 solubilization in-vivo. Planta 196: 199-204

  • Hetherintgon A M, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55: 401-427

  • Hetherington A M, Woodward F I (2003) The role of stomata in sensing and driving environmental change. Nature 424: 901-908

  • Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue s, Ries A, Godoski J, Kuhn J M, Schroeder J I (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12: 87-93

  • Hubbard K E, Nishimura N, Hitomi K. Getzoff E D, Schroeder J I (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24: 1695-1708

  • Israelsson M, Siegel R S, Young J, Hashimoto M, Iba K, Schroeder J I (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9: 654-663

  • Kelly W B, Esser J E, Schroeder J I (1995) Effects of cytosolic calcium and limited, possible dual, effects of G protein modulators on guard cell inward potassium channels. Plant J 8: 479-489

  • Kim T H, Bohmer M, Hu H, Nishimura N, Schroeder J I (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2 and Ca2+ signaling. Annu Rev Plant Biol 61: 561-591

  • Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of Fava Bean. Plant cell 7: 1333-1342

  • Klusener B, Young J J, Murata Y, Allen G J, Mori I C, Hugouvieux V, Schroeder J I (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant physiol 130: 2152-2163

  • Koomneef M, Reulling G, Karssen C (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 74: 377-383

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant cell 22: 541-563

  • Lee S C, Lan W, Buchanan B B, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106: 21419-21424

  • Leonhardt N, Kwak J M, Robert N, Waner D, Leonhardt G, Schroeder J I (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant cell 16: 595-615

  • Leung J, Bouvier-Durand M, Morris P C Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264: 1448-1452

  • Leung J, Merlot S, Giraudata J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant cell 9: 759-771

  • Leymarie J, Lasceve G, Vavassuer A (1998a) Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana. Aust J Plant Physiol 25: 785-791

  • Leymarie J, Vavassuer A, Lasceve G (1998b) CO2 sensing in stomata abi1-1 and abi2-1 mutants of Arabidopsis thaliana. Plant Physiol Biochem 36: 539-543

  • Loriol C, Dulong S, Avella M, Gabillat N, Boulukos K, Borgese F, Ehrenfeld J (2008) Characterization of SLC26A9, facilitation of CT transport by bicarbonate. Cell Physiol Biochem 22: 15-30

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064-1068

  • MacRobbie E A (1998) signal transduction and ion channels in guard cells. Philosophical transactions of the Royal Society of London 353: 1475-1488.

  • Medlyn B E, Barton C V M, Broadmeadow M S J, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson S B, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson B D, Strassemeyer J, Wang K, Curtis P S, Jarvis P O (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesiss. New Phytol 149: 247-264

  • Meyer K, Leube M P, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264: 1452-1455

  • Mori I C, Murata Y, Yang Y, Munemasa S, Wang Y F, Andreoli S, Tiriac H, Alonso J M, Harper J F, Ecker J R, Kwak J M, Schroeder J I (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4: 1749-1762.

  • Murata Y, Pei Z M, Mori I C, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. The Plant cell 13: 2513-2523.

  • Mustilli A C, Merlot S, Vavassuer A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant cell 14: 3089-3099.

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483-486.

  • Nishimura N, Sarkeshik A, Nito K, Park S Y, Wang A, Carvalho P C, Lee S, Caddell D F, Cutler S R, Chory J, Yates J R, Schroeder J I (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting in Arabidopsis. Plant J 61: 290-299

  • Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T F, Alfred S E, Bonetta D, Finkelstein R, Provart N J, Desveaux D, Rodriguez P L, McCourt P, Zhu J K, Schroeder J I, Volkman B F, Cutler S R (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068-1071

  • Pei Z M, Kuchitsu K, Ward J M, Schwarz M, Schroeder J I (1997) differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild type and abi1 and abi2 mutants, Plant cell 9: 409-423

  • Pei Z M, Murata Y, Benning G, Thomine S, Klusener B, Allen G J, Grill E, Schroeder J I (2000) Calcium channels activated by hydrogen peroxide mediate absicisic acid signalling in guard cells. Nature 406: 731-734

  • Putnam R W, Filosa J A, Ritucci N A (2004) Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287: C1493-1526

  • Raschke K (1975) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 125: 243-259

  • Raschke K, Hedrich R, Reckmann U, Schroeder J I (1988) Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movements. Bot Acta 101: 283-294

  • Raschke K, Shabahang M, Wolf R (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217: 639-650

  • Rodriguez P L, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421: 185-190

  • Roelfsema M R, Hanstein S, Felle H H, Hedrich R (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J 32: 65-75

  • Roelfsema M R, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578-588

  • Sanders D, Brownlee C, Harper J F (1999) Communicating with calcium. Plant cell 11: 691-706

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S Y, Marquez J A, Cutler S R, Rodriguez P L (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60: 575-588

  • Schmidt C, Schelle I, Liao Y J, Schroeder J I (1995) Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA 92: 9535-9539

  • Schmidt C, Schroeder J I (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability). Plant physiol 106: 383-391

  • Schroeder J I, Allen G J, Hugouvieux V, Kwak J M, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol and Plant Mol Biol 52: 627-658

  • Schroeder J I, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427-430

  • Schroeder J I, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA 87: 9305-9309

  • Schroeder J I, Raschke K, Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proc Natl Acad Sci USA 84: 4108-4112

  • Schulte A, Lorenzen I, Bottcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants PI Methods 2:7

  • Schwartz A (1985) Role of Ca2+ and EGTA on stomatal movements in Commelina Communis L. Plant Physiol 79: 1003-1005

  • Siegel R S, Xue S, Murata Y, Yang Y, Nishimura N, Wang A, Schroeder J I (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K+ channels in Arabidopsis guard cells. Plant J 59:207-220

  • Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J (2009) The guard cells as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot 60: 1439-1463

  • Speight J G (2005) Lange's Handbook of Chemistry (16th Edition): McGraw-Hill Press, New York USA.

  • Staxen I, Pical C, Montgomery L T, Gray J E, Hetherington A M, McAinsh M R (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96: 1779-1784

  • Supuran C T (2008) Carbonic anhydrases—an overview. Curr Pharm Des 14: 603-614

  • Tester M, Blatt M R (1989) Direct measurement of k channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant physiol 91: 249-252

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106: 17588-17593

  • Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder J I, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452: 487-491

  • Vahisalu T, Puzorjova I, Brosche M, Valk E, Lepiku M, Moldau H, Pechter P, Wang Y S, Lindgren O, Salojarvi J, Loog M, Kangasjarvi J, Kollist H (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62: 442-453

  • Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez P L, Lauriere C, Merlot S (2009) Protein phosphatases 2C regulate the activation the Snf1-related Kinase OST1 by abscisic acid in Arabidopsis. Plant cell 21: 3170-3184

  • Webb A A, Hetherington A M (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant physiol 114: 1557-1560

  • Webb A A R, McAinsh M R, Mansfield T A, Hetherington A M (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9: 297-304

  • Yang Y, Costa A, Leonhardt N, Siegel R S, Schroeder J I (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4: 1-15

  • Yarmolinsky D A, Zuker C S, Ryba N J (2009) Common sense about taste: from mammals to insects. Cell 139: 234-244

  • Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K (2002) ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43: 1743-1483

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol Chem 281: 5310-5318

  • Young J J, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder J I (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103: 7506-7511

  • Zheng Z, Xu X, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant physiol 153: 99-113

  • Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant cell 19: 3019-3036



SUPPLEMENTARY REFERENCES



  • Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn J M, Schroeder J I (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12: 87-93

  • Kollist T, Moldau H, Rasulov B, Oja V, Ramma H, Huve K, Jaspers P, Kangasjarvi J, Kollist H (2007) A novel device detects a rapid ozone-induced transient stomatal closure in intact Arabidopsis and its absence in abi2 mutant. Physiol Plantarium 129: 796-803

  • Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder J I, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452: 487-491

  • Young J J, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder J I (2006) CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. Proc Natl Acad Sci USA 103: 7506-7511.











SEQ ID NO: 1










cgaacggtcg tcataattcc ttgaaacctc gaaaatccaa aaacccatat ccaatcttct
60






tcccatataa attaagattt ttatttattt atttgtttac ttatttcaat tcccaaaatc
120





ctctgcctca tcatcttcaa actgttacca cgtccatagg gttgtcgaag agctaggaag
180





agccttacca agagcttctt cttcccctaa catttaggtt ggtaggagaa gcaaaggaag
240





agatcattta taatggctcc tgcattcgga aaatgtttca tgttctgctg cgctaaaacc
300





tccccggaaa aagacgaaat ggcaacggaa tcgtacgaag ccgccattaa aggactcaat
360





gatcttctca gtacgaaagc ggatctcgga aacgtcgccg ccgcgaagat caaagcgttg
420





acggcggagc taaaggagct tgactcaagc aattcagacg caattgaacg aatcaagacc
480





ggttttactc aattcaaaac cgagaaatat ttgaagaata gtactttgtt caatcatctt
540





gccaagactc agaccccaaa gtttctggtg tttgcttgct ctgattctcg agtttgtcca
600





tctcacatct tgaatttcca acctggtgag gcttttgttg tcagaaacat agccaatatg
660





gttccacctt ttgaccagaa gagacactct ggagttggcg ccgccgttga atacgcagtt
720





gtacatctca aggtggagaa cattttggtg ataggccata gctgctgtgg tggtattaag
780





ggactcatgt ccattgaaga tgatgctgcc ccaactcaaa gtgacttcat tgaaaattgg
840





gtgaagatag gcgcatcagc gaggaacaag atcaaggagg aacataaaga cttgagctac
900





gatgatcaat gcaacaagtg tgagaaggaa gctgtgaacg tatcgcttgg aaacttgctt
960





tcgtacccat tcgtgagagc tgaggtggtg aagaacacac ttgcaataag aggaggtcac
1020





tacaatttcg tcaaaggaac gtttgatctc tgggagctcg atttcaagac cactcctgct
1080





tttgccttct cttaagaaag aaagctaccg gaacatataa aactcttttg agataaaaaa
1140





agacactttg actcatcttt cttcattctc tcatgttgat gattcctctc caacttcttt
1200





gatttctttt tgttaattca aaacttcaac tttgctgctt ctatttcaaa agctcaaaca
1260





ataaagctgt aaccaacgtt tgaaacttct atatttgtct aattgatgtt tgaacgaaga
1320





tttgaacttt ccttct
1336











SEQ ID NO: 2/SEQ ID NO: 3










atg gct cct gca ttc gga aaa tgt ttc atg ttc tgc tgc gct aaa acc
48



Met Ala Pro Ala Phe Gly Lys Cys Phe Met Phe Cys Cys Ala Lys Thr


1         5           10          15





tcc ccg gaa aaa gac gaa atg gca acg gaa tcg tac gaa gcc gcc att
96


Ser Pro Glu Lys Asp Glu Met Ala Thr Glu Ser Tyr Glu Ala Ala Ile


        20          25           30





aaa gga ctc aat gat ctt ctc agt acg aaa gcg gat ctc gga aac gtc
144


Lys Gly Leu Asn Asp Leu Leu Ser Thr Lys Ala Asp Leu Gly Asn Val


    35          40           45





gcc gcc gcg aag atc aaa gcg ttg acg gcg gag cta aag gag ctt gac
192


Ala Ala Ala Lys Ile Lys Ala Leu Thr Ala Glu Leu Lys Glu Leu Asp


  50            55             60





tca agc aat tca gac gca att gaa cga atc aag acc ggt ttt act caa
240


Ser Ser Asn Ser Asp Ala Ile Glu Arg Ile Lys Thr Gly Phe Thr Gln


65           70            75           80





ttc aaa acc gag aaa tat ttg aag aat agt act ttg ttc aat cat ctt
288


Phe Lys Thr Glu Lys Tyr Leu Lys Asn Ser Thr Leu Phe Asn His Leu


         85           90          95





gcc aag act cag acc cca aag ttt ctg gtg ttt gct tgc tct gat tct
336


Ala Lys Thr Gln Thr Pro Lys Phe Leu Val Phe Ala Cys Ser Asp Ser


       100          105          110





cga gtt tgt cca tct cac atc ttg aat ttc caa cct ggt gag gct ttt
384


Arg Val Cys Pro Ser His Ile Leu Asn Phe Gln Pro Gly Glu Ala Phe


    115           120           125





gtt gtc aga aac ata gcc aat atg gtt cca cct ttt gac cag aag aga
432


Val Val Arg Asn Ile Ala Asn Met Val Pro Pro Phe Asp Gln Lys Arg


  130          135           140





cac tct gga gtt ggc gcc gcc gtt gaa tac gca gtt gta cat ctc aag
480


His Ser Gly Val Gly Ala Ala Val Glu Tyr Ala Val Val His Leu Lys


145           150          155          160





gtg gag aac att ttg gtg ata ggc cat agc tgc tgt ggt ggt att aag
528


Val Glu Asn Ile Leu Val Ile Gly His Ser Cys Cys Gly Gly Ile Lys


         165            170          175





gga ctc atg tcc att gaa gat gat gct gcc cca act caa agt gac ttc
576


Gly Leu Met Ser Ile Glu Asp Asp Ala Ala Pro Thr Gln Ser Asp Phe


      180            185         190





att gaa aat tgg gtg aag ata ggc gca tca gcg agg aac aag atc aag
624


Ile Glu Asn Trp Val Lys Ile Gly Ala Ser Ala Arg Asn Lys Ile Lys


      195          200           205





gag gaa cat aaa gac ttg agc tac gat gat caa tgc aac aag tgt gag
672


Glu Glu His Lys Asp Leu Ser Tyr Asp Asp Gln Cys Asn Lys Cys Glu


  210           215          220





aag gaa gct gtg aac gta tcg ctt gga aac ttg ctt tcg tac cca ttc
720


Lys Glu Ala Val Asn Val Ser Leu Gly Asn Leu Leu Ser Tyr Pro Phe


225           230          235          240





gtg aga gct gag gtg gtg aag aac aca ctt gca ata aga gga ggt cac
768


Val Arg Ala Glu Val Val Lys Asn Thr Leu Ala Ile Arg Gly Gly His


         245          250          255





tac aat ttc gtc aaa gga acg ttt gat ctc tgg gag ctc gat ttc aag
816


Tyr Asn Phe Val Lys Gly Thr Phe Asp Leu Trp Glu Leu Asp Phe Lys


      260           265          270





acc act cct gct ttt gcc ttc tct taa (SEQ ID NO: 2)
843


Thr Thr Pro Ala Phe Ala Phe Ser (SEQ ID NO: 3)


    275           280











SEQ ID NO: 3










Met Ala Pro Ala Phe Gly Lys Cys Phe Met Phe Cys Cys Ala Lys Thr




1         5           10           15





Ser Pro Glu Lys Asp Glu Met Ala Thr Glu Ser Tyr Glu Ala Ala Ile


       20          25           30





Lys Gly Leu Asn Asp Leu Leu Ser Thr Lys Ala Asp Leu Gly Asn Val


    35          40           45





Ala Ala Ala Lys Ile Lys Ala Leu Thr Ala Glu Leu Lys Glu Leu Asp


  50           55           60





Ser Ser Asn Ser Asp Ala Ile Glu Arg Ile Lys Thr Gly Phe Thr Gln


65           70            75           80





Phe Lys Thr Glu Lys Tyr Leu Lys Asn Ser Thr Leu Phe Asn His Leu


         85           90          95





Ala Lys Thr Gln Thr Pro Lys Phe Leu Val Phe Ala Cys Ser Asp Ser


       100          105          110





Arg Val Cys Pro Ser His Ile Leu Asn Phe Gln Pro Gly Glu Ala Phe


    115           120           125





Val Val Arg Asn Ile Ala Asn Met Val Pro Pro Phe Asp Gln Lys Arg


  130           135          140





His Ser Gly Val Gly Ala Ala Val Glu Tyr Ala Val Val His Leu Lys


145          150           155          160





Val Glu Asn Ile Leu Val Ile Gly His Ser Cys Cys Gly Gly Ile Lys


        165            170           175





Gly Leu Met Ser Ile Glu Asp Asp Ala Ala Pro Thr Gln Ser Asp Phe


      180           185          190





Ile Glu Asn Trp Val Lys Ile Gly Ala Ser Ala Arg Asn Lys Ile Lys


    195          200           205





Glu Glu His Lys Asp Leu Ser Tyr Asp Asp Gln Cys Asn Lys Cys Glu


  210           215         220





Lys Glu Ala Val Asn Val Ser Leu Gly Asn Leu Leu Ser Tyr Pro Phe


225          230           235          240





Val Arg Ala Glu Val Val Lys Asn Thr Leu Ala Ile Arg Gly Gly His


         245          250          255





Tyr Asn Phe Val Lys Gly Thr Phe Asp Leu Trp Glu Leu Asp Phe Lys


       260          265          270





Thr Thr Pro Ala Phe Ala Phe Ser


    275           280











SEQ ID NO: 4










caaaattcat gtgttagttc ttcttcttta caaaattgag tttaaactgt tttattacta
60






atccaaatga ggaatcactt tgcactatta atagaaaata atacacaacc aaacatctaa
120





aagatactat aatagtagag atcaaagacc tgagcaaaaa ctgaaagaaa aaaaaaaaaa
180





aaaaaaaaga cttctcctca aaaatggcgt ttacactagg tggaagagct cgtcgtctag
240





tctctgcaac atcagttcat caaaatggtt gcttacacaa actgcaacaa attggatcgg
300





atcggtttca gcttggtgaa gcaaaagcaa taagattact acccaggaga acaaacatgg
360





ttcaagaatt aggaatcagg gaagaattta tggatctaaa cagagaaaca gagacaagtt
420





atgattttct ggatgaaatg agacacagat ttctgaaatt caagagacaa aagtatctac
480





cggagataga aaagtttaaa gctttggcca tagctcaatc accaaaggta atggtgatag
540





gatgtgcaga ttcaagggta tgtccatctt atgtactagg atttcaacct ggtgaagctt
600





ttactatccg aaatgtcgcc aatctcgtta ccccggttca gaatggacca acagaaacca
660





actcggctct tgagtttgcg gtcaccactc ttcaggttga gaacattata gttatgggtc
720





atagcaattg tggaggaatt gcagcactta tgagtcatca aaaccaccaa gggcaacact
780





ctagtttagt agaaaggtgg gttatgaatg ggaaagccgc taagttaaga acacaattag
840





cttcatcaca tttatccttt gatgaacaat gcagaaactg tgagaaggaa tctataaagg
900





attctgtgat gaatttgata acttattcat ggataagaga tagagtaaag agaggtgaag
960





tcaagattca tggatgttat tacaatttgt cagattgtag tcttgagaag tggagattaa
1020





gttcagacaa gactaactat ggattctata tttcagacag agagatatgg agttgagtaa
1080





atattgaaca atcctcagtt ctaatattca gatgtatctt tgtacatacg aaatgatatt
1140





tacacaattg g
1151











SEQ ID NO: 5/SEQ ID NO: 6










atg gcg ttt aca cta ggt gga aga gct cgt cgt cta gtc tct gca aca
48



Met Ala Phe Thr Leu Gly Gly Arg Ala Arg Arg Leu Val Ser Ala Thr


1         5           10          15





tca gtt cat caa aat ggt tgc tta cac aaa ctg caa caa att gga tcg
96


Ser Val His Gln Asn Gly Cys Leu His Lys Leu Gln Gln Ile Gly Ser


        20          25           30





gat cgg ttt cag ctt ggt gaa gca aaa gca ata aga tta cta ccc agg
144


Asp Arg Phe Gln Leu Gly Glu Ala Lys Ala Ile Arg Leu Leu Pro Arg


    35           40          45





aga aca aac atg gtt caa gaa tta gga atc agg gaa gaa ttt atg gat
192


Arg Thr Asn Met Val Gln Glu Leu Gly Ile Arg Glu Glu Phe Met Asp


  50          55           60





cta aac aga gaa aca gag aca agt tat gat ttt ctg gat gaa atg aga
240


Leu Asn Arg Glu Thr Glu Thr Ser Tyr Asp Phe Leu Asp Glu Met Arg


65          70           75           80





cac aga ttt ctg aaa ttc aag aga caa aag tat cta ccg gag ata gaa
288


His Arg Phe Leu Lys Phe Lys Arg Gln Lys Tyr Leu Pro Glu Ile Glu


         85           90          95





aag ttt aaa gct ttg gcc ata gct caa tca cca aag gta atg gtg ata
336


Lys Phe Lys Ala Leu Ala Ile Ala Gln Ser Pro Lys Val Met Val Ile


       100          105            110





gga tgt gca gat tca agg gta tgt cca tct tat gta cta gga ttt caa
384


Gly Cys Ala Asp Ser Arg Val Cys Pro Ser Tyr Val Leu Gly Phe Gln


    115           120           125





cct ggt gaa gct ttt act atc cga aat gtc gcc aat ctc gtt acc ccg
432


Pro Gly Glu Ala Phe Thr Ile Arg Asn Val Ala Asn Leu Val Thr Pro


  130           135           140





gtt cag aat gga cca aca gaa acc aac tcg gct ctt gag ttt gcg gtc
480


Val Gln Asn Gly Pro Thr Glu Thr Asn Ser Ala Leu Glu Phe Ala Val


145         150           155          160





acc act ctt cag gtt gag aac att ata gtt atg ggt cat agc aat tgt
528


Thr Thr Leu Gln Val Glu Asn Ile Ile Val Met Gly His Ser Asn Cys


         165           170            175





gga gga att gca gca ctt atg agt cat caa aac cac caa ggg caa cac
576


Gly Gly Ile Ala Ala Leu Met Ser His Gln Asn His Gln Gly Gln His


       180           185           190





tct agt tta gta gaa agg tgg gtt atg aat ggg aaa gcc gct aag tta
624


Ser Ser Leu Val Glu Arg Trp Val Met Asn Gly Lys Ala Ala Lys Leu


     195          200          205





aga aca caa tta gct tca tca cat tta tcc ttt gat gaa caa tgc aga
672


Arg Thr Gln Leu Ala Ser Ser His Leu Ser Phe Asp Glu Gln Cys Arg


  210           215          220





aac tgt gag aag gaa tct ata aag gat tct gtg atg aat ttg ata act
720


Asn Cys Glu Lys Glu Ser Ile Lys Asp Ser Val Met Asn Leu Ile Thr


225          230           235           240





tat tca tgg ata aga gat aga gta aag aga ggt gaa gtc aag att cat
768


Tyr Ser Trp Ile Arg Asp Arg Val Lys Arg Gly Glu Val Lys Ile His


          245          250           255





gga tgt tat tac aat ttg tca gat tgt agt ctt gag aag tgg aga tta
816


Gly Cys Tyr Tyr Asn Leu Ser Asp Cys Ser Leu Glu Lys Trp Arg Leu


      260           265          270





agt tca gac aag act aac tat gga ttc tat att tca gac aga gag ata
864


Ser Ser Asp Lys Thr Asn Tyr Gly Phe Tyr Ile Ser Asp Arg Glu Ile


     275          280           285





tgg agt tga (SEQ ID NO: 5)
873





Trp Ser (SEQ ID NO: 6)
290











SEQ ID NO: 6










Met Ala Phe Thr Leu Gly Gly Arg Ala Arg Arg Leu Val Ser Ala Thr




1        5          10           15





Ser Val His Gln Asn Gly Cys Leu His Lys Leu Gln Gln Ile Gly Ser


        20          25          30





Asp Arg Phe Gln Leu Gly Glu Ala Lys Ala Ile Arg Leu Leu Pro Arg


    35           40          45





Arg Thr Asn Met Val Gln Glu Leu Gly Ile Arg Glu Glu Phe Met Asp


  50          55           60





Leu Asn Arg Glu Thr Glu Thr Ser Tyr Asp Phe Leu Asp Glu Met Arg


65          70           75           80





His Arg Phe Leu Lys Phe Lys Arg Gln Lys Tyr Leu Pro Glu Ile Glu


         85           90          95





Lys Phe Lys Ala Leu Ala Ile Ala Gln Ser Pro Lys Val Met Val Ile


       100          105            110





Gly Cys Ala Asp Ser Arg Val Cys Pro Ser Tyr Val Leu Gly Phe Gln


    115           120           125





Pro Gly Glu Ala Phe Thr Ile Arg Asn Val Ala Asn Leu Val Thr Pro


  130          135           140





Val Gln Asn Gly Pro Thr Glu Thr Asn Ser Ala Leu Glu Phe Ala Val


145          150           155            160





Thr Thr Leu Gl Val Glu Asn Ile Ile Val Met Gly His Ser Asn Cys


         165          170            175





Gly Gly Ile Ala Ala Leu Met Ser His Gln Asn His Gln Gly Gln His


       180           185          190





Ser Ser Leu Val Glu Arg Trp Val Met Asn Gly Lys Ala Ala Lys Leu


     195          200          205





Arg Thr Gln Leu Ala Ser Ser His Leu Ser Phe Asp Glu Gln Cys Arg


  210          215           220





Asn Cys Glu Lys Glu Ser Ile Lys Asp Ser Val Met Asn Leu Ile Thr


225         230            235           240





Tyr Ser Trp Ile Arg Asp Arg Val Lys Arg Gly Glu Val Lys Ile His


          245           250           255





Gly Cys Tyr Tyr Asn Leu Ser Asp Cys Ser Leu Glu Lys Trp Arg Leu


       260          265          270





Ser Ser Asp Lys Thr Asn Tyr Gly Phe Tyr Ile Ser Asp Arg Glu Ile


     275          280           285





Trp Ser


  290











SEQ ID NO: 7










atgagactcc gttcttttaa actcccaaat ctttcaacca atcccattat tcacttaagt
60






atatagtagc ttccataaga gtcttagttc taactataaa tacacatatc tcactctctc
120





tgatctccgc ttctcttcgc caacaaatgt cgaccgctcc tctctccggc ttctttctca
180





cttcactttc tccttctcaa tcttctctcc agaaactctc tcttcgtact tcttccaccg
240





tcgcttgcct cccacccgcc tcttcttctt cctcatcttc ctcctcctcg tcttcccgtt
300





ccgttccaac gcttatccgt aacgagccag tttttgccgc tcctgctcct atcattgccc
360





cttattggag tgaagagatg ggaaccgaag catacgacga ggctattgaa gctctcaaga
420





agcttctcat cgagaaggaa gagctaaaga cggttgcagc ggcaaaggtg gagcagatca
480





cagcggctct tcagacaggt acttcatccg acaagaaagc tttcgacccc gtcgaaacca
540





ttaagcaggg cttcatcaaa ttcaagaagg agaaatacga aaccaaccct gctttgtacg
600





gtgagctcgc aaagggtcaa agtcctaagt acatggtgtt tgcttgttca gactcacgtg
660





tgtgtccatc acacgttctg gactttcagc caggagatgc cttcgtggtc cgtaacatag
720





ccaacatggt tcctcctttc gacaaggtca aatacggtgg cgttggagca gccattgaat
780





acgcggtctt acaccttaag gtggagaaca ttgtggtgat aggacacagt gcatgtggtg
840





ggatcaaagg gcttatgtct ttccccttag atggaaacaa ctccactgac ttcatagagg
900





actgggtcaa aatctgttta ccagccaagt caaaggttat atcagaactt ggagattcag
960





cctttgaaga tcaatgtggc cgatgtgaaa gggaggcggt gaatgtttca ctagcaaacc
1020





tattgacata tccatttgtg agagaaggac ttgtgaaggg aacacttgct ttgaagggag
1080





gctactatga cttcgtcaag ggtgcttttg agctttgggg acttgaattt ggcctctccg
1140





aaactagctc tgttaaagat gtggctacca tactacattg gaagctgtag gaaactcttt
1200





gaagccttac ccgatttcac attgtcaatt caataacacc aagttgttgt ttacatgcag
1260





atcttgatga aactggtttt tgattttaca gaattaaaat cttgggggac agaaatttg
1319











SEQ ID NO: 8










Met Ser Thr Ala Pro Leu Ser Gly Phe Phe Leu Thr Ser Leu Ser Pro




1         5           10           15





Ser Gln Ser Ser Leu Gln Lys Leu Ser Leu Arg Thr Ser Ser Thr Val


       20           25           30





Ala Cys Leu Pro Pro Ala Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser


     35           40           45





Ser Ser Arg Ser Val Pro Thr Leu Ile Arg Asn Glu Pro Val Phe Ala


  50            55            60





Ala Pro Ala Pro Ile Ile Ala Pro Tyr Trp Ser Glu Glu Met Gly Thr


65           70           75            80





Glu Ala Tyr Asp Glu Ala Ile Glu Ala Leu Lys Lys Leu Leu Ile Glu


         85           90            95





Lys Glu Glu Leu Lys Thr Val Ala Ala Ala Lys Val Glu Gln Ile Thr


       100          105           110





Ala Ala Leu Gln Thr Gly Thr Ser Ser Asp Lys Lys Ala Phe Asp Pro


    115          120           125





Val Glu Thr Ile Lys Gln Gly Phe Ile Lys Phe Lys Lys Glu Lys Tyr


  130            135          140





Glu Thr Asn Pro Ala Leu Tyr Gly Glu Leu Ala Lys Gly Gln Ser Pro


145          150           155          160





Lys Tyr Met Val Phe Ala Cys Ser Asp Ser Arg Val Cys Pro Ser His


         165          170          175





Val Leu Asp Phe Gln Pro Gly Asp Ala Phe Val Val Arg Asn Ile Ala


       80          185          190





Asn Met Val Pro Pro Phe Asp Lys Val Lys Tyr Gly Gly Val Gly Ala


    195           200          205





Ala Ile Glu Tyr Ala Val Leu His Leu Lys Val Glu Asn Ile Val Val


  210            215           220





Ile Gly His Ser Ala Cys Gly Gly Ile Lys Gly Leu Met Ser Phe Pro


225           230           235           240





Leu Asp Gly Asn Asn Ser Thr Asp Phe Ile Glu Asp Trp Val Lys Ile


        245          250           255





Cys Leu Pro Ala Lys Ser Lys Val Ile Ser Glu Leu Gly Asp Ser Ala


      260           265            270





Phe Glu Asp Gln Cys Gly Arg Cys Glu Arg Glu Ala Val Asn Val Ser


    275          280          285





Leu Ala Asn Leu Leu Thr Tyr Pro Phe Val Arg Glu Gly Leu Val Lys


  290          295          300





Gly Thr Leu Ala Leu Lys Gly Gly Tyr Tyr Asp Phe Val Lys Gly Ala


305          310          315           320





Phe Glu Leu Trp Gly Leu Glu Phe Gly Leu Ser Glu Thr Ser Ser Val


         325          330          335





Lys Asp Val Ala Thr Ile Leu His Trp Lys Leu


       340           345











SEQ ID NO: 9










atgagactcc gttcttttaa actcccaaat ctttcaacca atcccattat tcacttaagt
60






atatagtagc ttccataaga gtcttagttc taactataaa tacacatatc tcactctctc
120





tgatctccgc ttctcttcgc caacaaatgt cgaccgctcc tctctccggc ttctttctca
180





cttcactttc tccttctcaa tcttctctcc agaaactctc tcttcgtact tcttccaccg
240





tcgcttgcct cccacccgcc tcttcttctt cctcatcttc ctcctcctcg tcttcccgtt
300





ccgttccaac gcttatccgt aacgagccag tttttgccgc tcctgctcct atcattgccc
360





cttattggag tgaagagatg ggaaccgaag catacgacga ggctattgaa gctctcaaga
420





agcttctcat cgagaaggaa gagctaaaga cggttgcagc ggcaaaggtg gagcagatca
480





cagcggctct tcagacaggt acttcatccg acaagaaagc tttcgacccc gtcgaaacca
540





ttaagcaggg cttcatcaaa ttcaagaagg agaaatacga aaccaaccct gctttgtacg
600





gtgagctcgc aaagggtcaa agtcctaagt acatggtgtt tgcttgttca gactcacgtg
660





tgtgtccatc acacgttctg gactttcagc caggagatgc cttcgtggtc cgtaacatag
720





ccaacatggt tcctcctttc gacaaggtca aatacggtgg cgttggagca gccattgaat
780





acgcggtctt acaccttaag gtggagaaca ttgtggtgat aggacacagt gcatgtggtg
840





ggatcaaagg gcttatgtct ttccccttag atggaaacaa ctccactgac ttcatagagg
900





actgggtcaa aatctgttta ccagccaagt caaaggttat atcagaactt ggagattcag
960





cctttgaaga tcaatgtggc cgatgtgaaa gggaggcggt gaatgtttca ctagcaaacc
1020





tattgacata tccatttgtg agagaaggac ttgtgaaggg aacacttgct ttgaagggag
1080





gctactatga cttcgtcaag ggtgcttttg agctttgggg acttgaattt ggcctctccg
1140





aaactagctc tgtatgaacc aatccatcat catcatcatc atcatgacca tccatcatca
1200





tcatcattat tatcatcgta tataatatat atctacccca tatgtaattt gtaatgtgcc
1260





tttgactgtg atgagttatc tctccctctc taccaacttt cttcatatat ataaaacaaa
1320





aaggaaaagc agatgatata gatctttcgt ggtttaatta tgaacaattg tctttattat
1380





ttgtgtatca aatcggttgt atttatggtt tgattttatt ttctatgttg tttggtaggt
1440





taaa
1444











SEQ ID NO: 10










Met Ser Thr Ala Pro Leu Ser Gly Phe Phe Leu Thr Ser Leu Ser Pro




1        5            10           15





Ser Gln Ser Ser Leu Gln Lys Leu Ser Leu Arg Thr Ser Ser Thr Val


       20           25           30





Ala Cys Leu Pro Pro Ala Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser


    35           40           45





Ser Ser Arg Ser Val Pro Thr Leu Ile Arg Asn Glu Pro Val Phe Ala


  50            55            60





Ala Pro Ala Pro Ile Ile Ala Pro Tyr Trp Ser Glu Glu Met Gly Thr


65           70             75           80





Glu Ala Tyr Asp Glu Ala Ile Glu Ala Leu Lys Lys Leu Leu Ile Glu


         85           90            95





Lys Glu Glu Leu Lys Thr Val Ala Ala Ala Lys Val Glu Gln Ile Thr


       100          105           110





Ala Ala Leu Gln Thr Gly Thr Ser Ser Asp Lys Lys Ala Phe Asp Pro


    115          120           125





Val Glu Thr Ile Lys Gln Gly Phe Ile Lys Phe Lys Lys Glu Lys Tyr


  130            135          140





Glu Thr Asn Pro Ala Leu Tyr Gly Glu Leu Ala Lys Gly Gln Ser Pro


145          150           155          160





Lys Tyr Met Val Phe Ala Cys Ser Asp Ser Arg Val Cys Pro Ser His


         165           170          175





Val Leu Asp Phe Gln Pro Gly Asp Ala Phe Val Val Arg Asn Ile Ala


      180          185          190





Asn Met Val Pro Pro Phe Asp Lys Val Lys Tyr Gly Gly Val Gly Ala


    195           200          205





Ala Ile Glu Tyr Ala Val Leu His Leu Lys Val Glu Asn Ile Val Val


  210           215           220





Ile Gly His Ser Ala Cys Gly Gly Ile Lys Gly Leu Met Ser Phe Pro


225           230           235           240





Leu Asp Gly Asn Asn Ser Thr Asp Phe Ile Glu Asp Trp Val Lys Ile


         245          250          255





Cys Leu Pro Ala Lys Ser Lys Val Ile Ser Glu Leu Gly Asp Ser Ala


     260           265            270





Phe Glu Asp Gln Cys Gly Arg Cys Glu Arg Glu Ala Val Asn Val Ser


    275          280          285





Leu Ala Asn Leu Leu Thr Tyr Pro Phe Val Arg Glu Gly Leu Val Lys


  290          295           300





Gly Thr Leu Ala Leu Lys Gly Gly Tyr Tyr Asp Phe Val Lys Gly Ala


305          310          315           320





Phe Glu Leu Trp Gly Leu Glu Phe Gly Leu Ser Glu Thr Ser Ser Val


         325          330          335











SEQ ID NO: 11/SEQ ID NO: 12










ttgttcattt cctctgatgt cttggtgtcg ttagatattg tctcccaaaa aagaaatctt
60






cttgacacag agattgaagt cgcaaagaga cagaggaaag agggggagaa a atg gat
117


                                  Met Asp


                                  1





cga cca gca gtg agt ggt cca atg gat ttg ccg att atg cac gat agt
165


Arg Pro Ala Val Ser Gly Pro Met Asp Leu Pro Ile Met His Asp Ser


     5             10             15





gat agg tat gaa ctc gtc aag gat att ggc tcc ggt aat ttt gga gtt
213


Asp Arg Tyr Glu Leu Val Lys Asp Ile Gly Ser Gly Asn Phe Gly Val


  20          25            30





gcg aga ttg atg aga gac aag caa agt aat gag ctt gtt gct gtt aaa
261


Ala Arg Leu Met Arg Asp Lys Gln Ser Asn Glu Leu Val Ala Val Lys


35          40           45          50





tat atc gag aga ggt gag aag ata gat gaa aat gta aaa agg gag ata
309


Tyr Ile Glu Arg Gly Glu Lys Ile Asp Glu Asn Val Lys Arg Glu Ile


          55          60            65





atc aac cac agg tcc tta aga cat ccc aat atc gtt aga ttc aaa gag
357


Ile Asn His Arg Ser Leu Arg His Pro Asn Ile Val Arg Phe Lys Glu


        70           75          80





gtt ata tta aca cca acc cat tta gcc att gtt atg gaa tat gca tct
405


Val Ile Leu Thr Pro Thr His Leu Ala Ile Val Met Glu Tyr Ala Ser


     85           90           95





gga gga gaa ctt ttc gag cga ata tgc aat gca ggc cgc ttc agc gaa
453


Gly Gly Glu Leu Phe Glu Arg Ile Cys Asn Ala Gly Arg Phe Ser Glu


  100          105          110





gac gag gcg agg ttt ttc ttc cag caa ctc att tca gga gtt agt tac
501


Asp Glu Ala Arg Phe Phe Phe Gln Gln Leu Ile Ser Gly Val Ser Tyr


115          120          125          130





tgt cat gct atg caa gta tgt cac cga gac tta aag ctc gag aat acg
549


Cys His Ala Met Gln Val Cys His Arg Asp Leu Lys Leu Glu Asn Thr


         135          140          145





tta tta gat ggt agc ccg gcc cct cgt cta aag ata tgt gat ttc gga
597


Leu Leu Asp Gly Ser Pro Ala Pro Arg Leu Lys Ile Cys Asp Phe Gly


      150           155           160





tat tct aag tca tca gtg tta cat tcg caa cca aaa tca act gtt gga
645


Tyr Ser Lys Ser Ser Val Leu His Ser Gln Pro Lys Ser Thr Val Gly


     165           170           175





act cct gct tac atc gct cct gag gtt tta cta aag aaa gaa tat gat
693


Thr Pro Ala Tyr Ile Ala Pro Glu Val Leu Leu Lys Lys Glu Tyr Asp


  180            185           190





gga aag gtt gca gat gtt tgg tct tgt ggg gtt act ctg tat gtc atg
741


Gly Lys Val Ala Asp Val Trp Ser Cys Gly Val Thr Leu Tyr Val Met


195          200           205          210





ctg gtt gga gca tat cct ttc gaa gat ccc gag gaa cca aag aat ttc
789


Leu Val Gly Ala Tyr Pro Phe Glu Asp Pro Glu Glu Pro Lys Asn Phe


         215           220          225





agg aaa act ata cat aga atc ctg aat gtt cag tat gct att ccg gat
837


Arg Lys Thr Ile His Arg Ile Leu Asn Val Gln Tyr Ala Ile Pro Asp


      230            235           240





tat gtt cac ata tct cct gaa tgt cgc cat ttg atc tcc aga ata ttt
885


Tyr Val His Ile Ser Pro Glu Cys Arg His Leu Ile Ser Arg Ile Phe


     245            250             255





gtt gct gac cct gca aag agg ata tca att cct gaa ata agg aac cat
933


Val Ala Asp Pro Ala Lys Arg Ile Ser Ile Pro Glu Ile Arg Asn His


  260           265           270





gaa tgg ttt cta aag aat cta ccg gca gat cta atg aac gat aac acg
981


Glu Trp Phe Leu Lys Asn Leu Pro Ala Asp Leu Met Asn Asp Asn Thr


275          280          285          290





atg acc act cag ttt gat gaa tcg gat caa ccg ggc caa agc ata gaa
1029


Met Thr Thr Gln Phe Asp Glu Ser Asp Gln Pro Gly Gln Ser Ile Glu


         295          300          305





gaa att atg cag atc att gca gaa gca act gtt cct cct gca ggc act
1077


Glu Ile Met Gln Ile Ile Ala Glu Ala Thr Val Pro Pro Ala Gly Thr


        310           315           320





cag aat ctg aac cat tac ctc aca gga agc ttg gac ata gat gac gat
1125


Gln Asn Leu Asn His Tyr Leu Thr Gly Ser Leu Asp Ile Asp Asp Asp


    325          330          335





atg gag gaa gac tta gag agc gac ctt gat gat ctt gac atc gac agt
1173


Met Glu Glu Asp Leu Glu Ser Asp Leu Asp Asp Leu Asp Ile Asp Ser


 340           345          350





agc gga gag att gtg tac gca atg tga tactatatat ctatttgcat
1220


Ser Gly Glu Ile Val Tyr Ala Met (SEQ ID NO: 12)


355           360





ggtttctgct acaaaaatgt caaacaaaaa atgttgaaga ataagattaa gatgttttgc
1280





ttgctattga gttggcccaa ctttgtctca atgagtacac tttgaatctt tgatatgcaa
1340





aagactaaat ttc (SEQ ID NO: 11)
1353











SEQ ID NO: 12










Met Asp Arg Pro Ala Val Ser Gly Pro Met Asp Leu Pro Ile Met His




1        5            10           15





Asp Ser Asp Arg Tyr Glu Leu Val Lys Asp Ile Gly Ser Gly Asn Phe


      20            25          30





Gly Val Ala Arg Leu Met Arg Asp Lys Gln Ser Asn Glu Leu Val Ala


    35           40           45





Val Lys Tyr Ile Glu Arg Gly Glu Lys Ile Asp Glu Asn Val Lys Arg


  50            55           60





Glu Ile Ile Asn His Arg Ser Leu Arg His Pro Asn Ile Val Arg Phe


65            70            75          80





Lys Glu Val Ile Leu Thr Pro Thr His Leu Ala Ile Val Met Glu Tyr


         85            90           95





Ala Ser Gly Gly Glu Leu Phe Glu Arg Ile Cys Asn Ala Gly Arg Phe


       100          105          110





Ser Glu Asp Glu Ala Arg Phe Phe Phe Gln Gln Leu Ile Ser Gly Val


    115           120          125





Ser Tyr Cys His Ala Met Gln Val Cys His Arg Asp Leu Lys Leu Glu


  130           135          140





Asn Thr Leu Leu Asp Gly Ser Pro Ala Pro Arg Leu Lys Ile Cys Asp


145         150          155           160





Phe Gly Tyr Ser Lys Ser Ser Val Leu His Ser Gln Pro Lys Ser Thr


         165           170           175





Val Gly Thr Pro Ala Tyr Ile Ala Pro Glu Val Leu Leu Lys Lys Glu


       180           185          190





Tyr Asp Gly Lys Val Ala Asp Val Trp Ser Cys Gly Val Thr Leu Tyr


     195          200           205





Val Met Leu Val Gly Ala Tyr Pro Phe Glu Asp Pro Glu Glu Pro Lys


  210           215          220





Asn Phe Arg Lys Thr Ile His Arg Ile Leu Asn Val Gln Tyr Ala Ile


225          230           235           240





Pro Asp Tyr Val His Ile Ser Pro Glu Cys Arg His Leu Ile Ser Arg


         245            250           255





Ile Phe Val Ala Asp Pro Ala Lys Arg Ile Ser Ile Pro Glu Ile Arg


        260          265           270





Asn His Glu Trp Phe Leu Lys Asn Leu Pro Ala Asp Leu Met Asn Asp


    275           280         285





Asn Thr Met Thr Thr Gln Phe Asp Glu Ser Asp Gln Pro Gly Gln Ser


 290           295          300





Ile Glu Glu Ile Met Gln Ile Ile Ala Glu Ala Thr Val Pro Pro Ala


305            310            315           320





Gly Thr Gln Asn Leu Asn His Tyr Leu Thr Gly Ser Leu Asp Ile Asp


         325          330          335





Asp Asp Met Glu Glu Asp Leu Glu Ser Asp Leu Asp Asp Leu Asp Ile


      340          345          350





Asp Ser Ser Gly Glu Ile Val Tyr Ala Met


    355           360











SEQ ID NO: 13/SEQ ID NO: 14










agagaaagct gtttcctttt tatattgaca gagaaaagga aagctgatag agagagagac
60






agagagagag aaacagagtt caagatcacg agccttcctt cttcttcttc ttcttcatcg
120





agagcgatca aaggaacaaa aaggatctca agaaacccac ttgtgttgtt ggttagatac
180





ttcacgggtc tctgaaaacg tctctttctc acaaccataa cttgatcacc caatactcct
240





tttctcatct taaaggctca aattcatcca cgtcacaccg ttgttcattt cctctgatgt
300





cttggtgtcg ttagatattg tctcccaaaa aagaaatctt cttgacacag agattgaagt
360





cgcaaagaga cagaggaaag agggggagaa aatggatcga ccagcagtga gtggtccaat
420





ggatttgccg attatgcacg atagtgatag gtatgaactc gtcaaggata ttggctccgg
480





taattttgga gttgcgagat tgatgagaga caagcaaagt aatgagcttg ttgctgttaa
540





atatatcgag agagtgttgt tttaaaggct ctaggtgttt cttttgttat ggaacgtggt
600





atta atg gtg gga ctt ttt gta ttt gta cag ata gat gaa aat gta aaa
649





   Met Val Gly Leu Phe Val Phe Val Gln Ile Asp Glu Asn Val Lys


   1         5          10            15





agg gag ata atc aac cac agg tcc tta aga cat ccc aat atc gtt aga
697


Arg Glu Ile Ile Asn His Arg Ser Leu Arg His Pro Asn Ile Val Arg


         20             25           30





ttc aaa gag gtt ata tta aca cca acc cat tta gcc att gtt atg gaa
745


Phe Lys Glu Val Ile Leu Thr Pro Thr His Leu Ala Ile Val Met Glu


       35             40          45





tat gca tct gga gga gaa ctt ttc gag cga atc tgc aat gca ggc cgc
793


Tyr Ala Ser Gly Gly Glu Leu Phe Glu Arg Ile Cys Asn Ala Gly Arg


     50           55          60





ttc agc gaa gac gag gcg agg ttt ttc ttc cag caa ctc att tca gga
841


Phe Ser Glu Asp Glu Ala Arg Phe Phe Phe Gln Gln Leu Ile Ser Gly


  65           70           75





gtt agt tac tgt cat gct atg caa gta tgt cac cga gac tta aag ctc
889


Val Ser Tyr Cys His Ala Met Gln Val Cys His Arg Asp Leu Lys Leu


80           85           90          95





gag aat acg tta tta gat ggt agc ccg gcc cct cgt cta aag ata tgt
937


Glu Asn Thr Leu Leu Asp Gly Ser Pro Ala Pro Arg Leu Lys Ile Cys


         100          105           110





gat ttc gga tat tct aag tca tca gtg tta cat tcg caa cca aaa tca
985


Asp Phe Gly Tyr Ser Lys Ser Ser Val Leu His Ser Gln Pro Lys Ser


      115           120           125





act gtt gga act cct gct tac atc gct cct gag gtt tta cta aag aaa
1033


Thr Val Gly Thr Pro Ala Tyr Ile Ala Pro Glu Val Leu Leu Lys Lys


    130           135            140





gaa tat gat gga aag gtt gca gat gtt tgg tct tgt ggg gtt act ctg
1081


Glu Tyr Asp Gly Lys Val Ala Asp Val Trp Ser Cys Gly Val Thr Leu


  145           150          155





tat gtc atg ctg gtt gga gca tat cct ttc gaa gat ccc gag gaa cca
1129


Tyr Val Met Leu Val Gly Ala Tyr Pro Phe Glu Asp Pro Glu Glu Pro


160          165           170          175





aag aat ttc agg aaa act ata cat aga atc ctg aat gtt cag tat gct
1177


Lys Asn Phe Arg Lys Thr Ile His Arg Ile Leu Asn Val Gln Tyr Ala


         180          185             190





att ccg gat tat gtt cac ata tct cct gaa tgt cgc cat ttg atc tcc
1225


Ile Pro Asp Tyr Val His Ile Ser Pro Glu Cys Arg His Leu Ile Ser


        195           200           205





aga ata ttt gtt gct gac cct gca aag agg ata tca att cct gaa ata
1273


Arg Ile Phe Val Ala Asp Pro Ala Lys Arg Ile Ser Ile Pro Glu Ile


     210           215          220





agg aac cat gaa tgg ttt cta aag aat cta ccg gca gat cta atg aac
1321


Arg Asn His Glu Trp Phe Leu Lys Asn Leu Pro Ala Asp Leu Met Asn


  225          230          235





gat aac acg atg acc act cag ttt gat gaa tcg gat caa ccg ggc caa
1369


Asp Asn Thr Met Thr Thr Gln Phe Asp Glu Ser Asp Gln Pro Gly Gln


240         245           250          255





agc ata gaa gaa att atg cag atc att gca gaa gca act gtt cct cct
1417


Ser Ile Glu Glu Ile Met Gln Ile Ile Ala Glu Ala Thr Val Pro Pro


          260           265             270





gca ggc act cag aat ctg aac cat tac ctc aca gga agc ttg gac ata
1465


Ala Gly Thr Gln Asn Leu Asn His Tyr Leu Thr Gly Ser Leu Asp Ile


       275          280         285





gat gac gat atg gag gaa gac tta gag agc gac ctt gat gat ctt gac
1513


Asp Asp Asp Met Glu Glu Asp Leu Glu Ser Asp Leu Asp Asp Leu Asp


    290         295          300





atc gac agt agc gga gag att gtg tac gca atg tga tactatatat
1559


Ile Asp Ser Ser Gly Glu Ile Val Tyr Ala Met (SEQ ID NO: 14)


   305          310





ctatttgcat ggtttctgct acaaaaatgt caaacaaaaa atgttgaaga ataagattaa
1619





gatgttttgc ttgctattga gttggcccaa ctttgtctca atgagtacac tttgaatctt
1679





tgatatgcaa aagactaaat ttc (SEQ ID NO: 13)
1702











SEQ ID NO: 14










Met Val Gly Leu Phe Val Phe Val Gln Ile Asp Glu Asn Val Lys Arg




1         5          10            15





Glu Ile Ile Asn His Arg Ser Leu Arg His Pro Asn Ile Val Arg Phe


        20           25           30





Lys Glu Val Ile Leu Thr Pro Thr His Leu Ala Ile Val Met Glu Tyr


    35            40            45





Ala Ser Gly Gly Gln Leu Phe Glu Arg Ile Cys Asn Ala Gly Arg Phe


  50           55           60





Ser Glu Asp Glu Ala Arg Phe Phe Phe Gln Gln Leu Ile Ser Gly Val


65           70          75           80





Ser Tyr Cys His Ala Met Glu Val Cys His Arg Asp Leu Lys Leu Glu


         85           90            95





Asn Thr Leu Leu Asp Gly Ser Pro Ala Pro Arg Leu Lys Ile Cys Asp


       100          105           110





Phe Gly Tyr Ser Lys Ser Ser Val Leu His Ser Gln Pro Lys Ser Thr


    115           120           125





Val Gly Thr Pro Ala Tyr Ile Ala Pro Gln Val Leu Leu Lys Lys Glu


  130           135            140





Tyr Asp Gly Lys Val Ala Asp Val Trp Ser Cys Gly Val Thr Leu Tyr


145          150           155           160





Val Met Leu Val Gly Ala Tyr Pro Phe Glu Asp Pro Glu Glu Pro Lys


         165           170          175





Asn Phe Arg Lys Thr Ile His Arg Ile Leu Asn Val Gln Tyr Ala Ile


      180           185            190





Pro Asp Tyr Val His Ile Ser Pro Glu Cys Arg His Leu Ile Ser Arg


     195           200           205





Ile Phe Val Ala Asp Pro Ala Lys Arg Ile Ser Ile Pro Gln Ile Arg


   210           215          220





Asn His Glu Trp Phe Leu Lys Asn Leu Pro Ala Asp Leu Met Asn Asp


225          230          235           240





Asn Thr Met Thr Thr Gln Phe Asp Glu Ser Asp Gln Pro Gly Gln Ser


         245          250          255





Ile Glu Glu Ile Met Gln Ile Ile Ala Glu Ala Thr Val Pro Pro Ala


        260          265             270





Gly Thr Gln Asn Leu Asn His Tyr Leu Thr Gly Ser Leu Asp Ile Asp


    275          280           285





Asp Asp Met Glu Glu Asp Leu Glu Ser Asp Leu Asp Asp Leu Asp Ile


  290          295          300





Asp Ser Ser Gly Glu Ile Val Tyr Ala Met


305          310











SEQ ID NO: 15/SEQ ID NO: 16










aaatagagaa gctcttcaag tatccgatgt ttttgtttaa tcaacaagag gcggagatac
60






gggagaaatt gcatgtgtaa tcataaaatg tagatgttag cttcgtcgtt tttactatag
120





tttagttctc ttcttcttct tttttcgtca ttacaatctc tttcttaatt tacttcttct
180





tgatagtata attaagttgt ttgtaataat ctgtacaaag atgttgtgtt ctcataaaaa
240





attcaatttt gtaaagaagc tctacatgtt ccttgctctg taaac atg gtc ccc ttt
297


                                 Met Val Pro Phe


                                 1





tgg act aca gtt tct cga aat ggc tca tca gac tca gag acg act ctc
345


Trp Thr Thr Val Ser Arg Asn Gly Ser Ser Asp Ser Glu Thr Thr Leu


5           10            15            20





caa tct gct tca aaa gcc aca aaa cag tat aaa tat cct tct ctt cgt
393


Gln Ser Ala Ser Lys Ala Thr Lys Gln Tyr Lys Tyr Pro Ser Leu Arg


         25            30           35





ccc tct cat cgc ctg tct ctc ctc ttc ctc ttc ccg ttc cat tta tcc
441


Pro Ser His Arg Leu Ser Leu Leu Phe Leu Phe Pro Phe His Leu Ser


       40           45           50





gca aac gga gct tgt ttt cgg tgc acc tgc ttc agc cac ttc aaa ctt
489


Ala Asn Gly Ala Cys Phe Arg Cys Thr Cys Phe Ser His Phe Lys Leu


     55          60          65





gaa ctg aga agg atg gga aac gaa tca tat gaa gac gcc atc gaa gct
537


Glu Leu Arg Arg Met Gly Asn Glu Ser Tyr Glu Asp Ala Ile Glu Ala


  70          75          80





ctc aag aag ctt ctc att gag aag gat gat ctg aag gat gta gct gcg
585


Leu Lys Lys Leu Leu Ile Glu Lys Asp Asp Leu Lys Asp Val Ala Ala


85           90           95          100





gcc aag gtg aag aag atc acg gcg gag ctt cag gca gcc tcg tca tcg
633


Ala Lys Val Lys Lys Ile Thr Ala Glu Leu Gln Ala Ala Ser Ser Ser


         105            110          115





gac agc aaa tct ttt gat ccc gtc gaa cga att aag gaa ggc ttc gtc
681


Asp Ser Lys Ser Phe Asp Pro Val Glu Arg Ile Lys Glu Gly Phe Val


       120          125           130





acc ttc aag aag gag aaa tac gag acc aat cct gct ttg tat ggt gag
729


Thr Phe Lys Lys Glu Lys Tyr Glu Thr Asn Pro Ala Leu Tyr Gly Glu


     135          140          145





ctc gcc aaa ggt caa agc cca aag tac atg gtg ttt gct tgt tcg gac
777


Leu Ala Lys Gly Gln Ser Pro Lys Tyr Met Val Phe Ala Cys Ser Asp


  150           155          160





tca cga gtg tgc cca tca cac gta cta gac ttc cat cct gga gat gcc
825


Ser Arg Val Cys Pro Ser His Val Leu Asp Phe His Pro Gly Asp Ala


165          170            175          180





ttc gtg gtt cgt aat atc gcc aat atg gtt cct cct ttt gac aag gtc
873


Phe Val Val Arg Asn Ile Ala Asn Met Val Pro Pro Phe Asp Lys Val


         185            190          195





aaa tat gca gga gtt gga gcc gcc att gaa tac gct gtc ttg cac ctt
921


Lys Tyr Ala Gly Val Gly Ala Ala Ile Glu Tyr Ala Val Leu His Leu


       200           205            210





aag gtg gaa aac att gtg gtg ata ggg cac agt gca tgt ggt ggc atc
969


Lys Val Glu Asn Ile Val Val Ile Gly His Ser Ala Cys Gly Gly Ile


     215           220           225





aag ggg ctt atg tca ttt cct ctt gac gga aac aac tct act gac ttc
1017


Lys Gly Leu Met Ser Phe Pro Leu Asp Gly Asn Asn Ser Thr Asp Phe


  230          235           240





ata gag gat tgg gtc aaa atc tgt tta cca gca aag tca aaa gtt ttg
1065


Ile Glu Asp Trp Val Lys Ile Cys Leu Pro Ala Lys Ser Lys Val Leu


245           250           255           260





gca gaa agt gaa agt tca gca ttt gaa gac caa tgt ggc cga tgc gaa
1113


Ala Glu Ser Glu Ser Ser Ala Phe Glu Asp Gln Cys Gly Arg Cys Glu


         265            270          275





agg gag gca gtg aat gtg tca cta gca aac cta ttg aca tat cca ttt
1161


Arg Glu Ala Val Asn Val Ser Leu Ala Asn Leu Leu Thr Tyr Pro Phe


      280           285           290





gtg aga gaa gga gtt gtg aaa gga aca ctt gct ttg aag gga ggc tac
1209


Val Arg Glu Gly Val Val Lys Gly Thr Leu Ala Leu Lys Gly Gly Tyr


     295          300            305





tat gac ttt gtt aat ggc tcc ttt gag ctt tgg gag ctc cag ttt gga
1257


Tyr Asp Phe Val Asn Gly Ser Phe Glu Leu Trp Glu Leu Glu Phe Gly


  310           315          320





att tcc ccc gtt cat tct ata tga actaacacat caccatcacc atcgctacca
1311


Ile Ser Pro Val His Ser Ile (SEQ ID NO: 16)


325            330





ccaccatcac aaacatcatc atcgtcgtca tcatcatgat cagcatcttc atatataaat
1371





gttttactct tatttaattg ctacttgtaa tggtatacat ttacttgcga tgagcttctt
1431





ttccttcatt atccagttat aaaataaata aataaatcat gtttactttc acagatatcg
1491





ttttgctgaa gttgctttga ttt (SEQ ID NO: 15)
1514











SEQ ID NO: 16










Met Val Pro Phe Trp Thr Thr Val Ser Arg Asn Gly Ser Ser Asp Ser




1         5           10            15





Glu Thr Thr Leu Gln Ser Ala Ser Lys Ala Thr Lys Gln Tyr Lys Tyr


       20           25           30





Pro Ser Leu Arg Pro Ser His Arg Leu Ser Leu Leu Phe Leu Phe Pro


     35           40           45





Phe His Leu Ser Ala Asn Gly Ala Cys Phe Arg Cys Thr Cys Phe Ser


  50           55           60





His Phe Lys Leu Glu Leu Arg Arg Met Gly Asn Glu Ser Tyr Glu Asp


65           70          75          80





Ala Ile Glu Ala Leu Lys Lys Leu Leu Ile Glu Lys Asp Asp Leu Lys


          85           90          95





Asp Val Ala Ala Ala Lys Val Lys Lys Ile Thr Ala Glu Leu Gln Ala


       100           105          110





Ala Ser Ser Ser Asp Ser Lys Ser Phe Asp Pro Val Glu Arg Ile Lys


     115           120           125





Glu Gly Phe Val Thr Phe Lys Lys Glu Lys Tyr Glu Thr Asn Pro Ala


  130           135          140





Leu Tyr Gly Glu Leu Ala Lys Gly Gln Ser Pro Lys Tyr Met Val Phe


145          150          155           160





Ala Cys Ser Asp Ser Arg Val Cys Pro Ser His Val Leu Asp Phe His


         165           170           175





Pro Gly Asp Ala Phe Val Val Arg Asn Ile Ala Asn Met Val Pro Pro


       180          185           190





Phe Asp Lys Val Lys Tyr Ala Gly Val Gly Ala Ala Ile Glu Tyr Ala


    195           200           205





Val Leu His Leu Lys Val Glu Asn Ile Val Val Ile Gly His Ser Ala


  210           215          220





Cys Gly Gly Ile Lys Gly Leu Met Ser Phe Pro Leu Asp Gly Asn Asn


225          230           235          240





Ser Thr Asp Phe Ile Glu Asp Trp Val Lys Ile Cys Leu Pro Ala Lys


         245            250          255





Ser Lys Val Leu Ala Glu Ser Glu Ser Ser Ala Phe Glu Asp Gln Cys


       260           265          270





Gly Arg Cys Glu Arg Glu Ala Val Asn Val Ser Leu Ala Asn Leu Leu


     275         280           285





Thr Tyr Pro Phe Val Arg Glu Gly Val Val Lys Gly Thr Leu Ala Leu


  290           295          300





Lys Gly Gly Tyr Tyr Asp Phe Val Asn Gly Ser Phe Glu Leu Trp Glu


305         310             315         320





Leu Gln Phe Gly Ile Ser Pro Val His Ser Ile


         325            330











SEQ ID NO: 17/SEQ ID NO: 18










atgcagtaat ctgataaaac cctccacaga gatttccaac aaaacaggaa ctaaaacaca
60






ag atg aag att atg atg atg att aag ctc tgc ttc ttc tcc atg tcc
107


Met Lys Ile Met Met Met Ile Lys Leu Cys Phe Phe Ser Met Ser


1        5          10            15





ctc atc tgc att gca cct gca gat gct cag aca gaa gga gta gtg ttt
155


Leu Ile Cys Ile Ala Pro Ala Asp Ala Gln Thr Glu Gly Val Val Phe


         20             25          30





gga tat aaa ggc aaa aat gga cca aac caa tgg gga cac tta aac cct
203


Gly Tyr Lys Gly Lys Asn Gly Pro Asn Gln Trp Gly His Leu Asn Pro


       35           40          45





cac ttc acc aca tgc gcg gtc ggt aaa ttg caa tct cca att gat att
251


His Phe Thr Thr Cys Ala Val Gly Lys Leu Gln Ser Pro Ile Asp Ile


     50          55            60





caa agg agg caa ata ttt tac aac cac aaa ttg aat tca ata cac cgt
299


Gln Arg Arg Gln Ile Phe Tyr Asn His Lys Leu Asn Ser Ile His Arg


  65           70           75





gaa tac tac ttc aca aac gca aca cta gtg aac cac gtc tgt aat gtt
347


Glu Tyr Tyr Phe Thr Asn Ala Thr Leu Val Asn His Val Cys Asn Val


80           85          90            95





gcc atg ttc ttc ggg gag gga gca gga gat gtg ata ata gaa aac aag
395


Ala Met Phe Phe Gly Glu Gly Ala Gly Asp Val Ile Ile Glu Asn Lys


         100          105           110





aac tat acc tta ctg caa atg cat tgg cac act cct tct gaa cat cac
443


Asn Tyr Thr Leu Leu Gln Met His Trp His Thr Pro Ser Glu His His


       115          120          125





ctc cat gga gtc caa tat gca gct gag ctg cac atg gta cac caa gca
491


Leu His Gly Val Gln Tyr Ala Ala Glu Leu His Met Val His Gln Ala


   130           135           140





aaa gat gga agc ttt gct gtg gtg gca agt ctc ttc aaa atc ggc act
539


Lys Asp Gly Ser Phe Ala Val Val Ala Ser Leu Phe Lys Ile Gly Thr


  145          150          155





gaa gag cct ttc ctc tct cag atg aag gag aaa ttg gtg aag cta aag
587


Glu Glu Pro Phe Leu Ser Gln Met Lys Glu Lys Leu Val Lys Leu Lys


160          165         170          175





gaa gag aga ctc aaa ggg aac cac aca gca caa gtg gaa gta gga aga
635


Glu Glu Arg Leu Lys Gly Asn His Thr Ala Gln Val Glu Val Gly Arg


         180          185           190





atc gac aca aga cac att gaa cgt aag act cga aag tac tac aga tac
683


Ile Asp Thr Arg His Ile Glu Arg Lys Thr Arg Lys Tyr Tyr Arg Tyr


        195           200           205





att ggt tca ctc act act cct cct tgc tcc gag aac gtt tct tgg acc
731


Ile Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Asn Val Ser Trp Thr


     210         215           220





atc ctt ggc aag gtg agg tca atg tcaaaggaac aagtagaact actcagatct
785


Ile Leu Gly Lys Val Arg Ser Met (SEQ ID NO: 18)


   225          230





ccattggaca cttctttcaa gaacaattca agaccgtgtc aacccctcaa cggccggaga
845





gttgagatgt tccacgacca cgagcgtgtc gataaaaaag aaaccggtaa caaaaagaaa
905





aaacccaatt aaaatagttt tacattgtct attggtttgt ttagaaccct aattagcttt
965





gtaaaactaa taatctctta tgtagtactg tgttgttgtt tacgacttga tatacgattt
1025





ccaaat (SEQ ID NO: 17)
1031











SEQ ID NO: 18










Met Lys Ile Met Met Met Ile Lys Leu Cys Phe Phe Ser Met Ser Leu




1         5          10            15





Ile Cys Ile Ala Pro Ala Asp Ala Gln Thr Glu Gly Val Val Phe Gly


       20            25            30





Tyr Lys Gly Lys Asn Gly Pro Asn Gln Trp Gly His Leu Asn Pro His


     35          40           45





Phe Thr Thr Cys Ala Val Gly Lys Leu Gln Ser Pro Ile Asp Ile Gln


  50           55           60





Arg Arg Gln Ile Phe Tyr Asn His Lys Leu Asn Ser Ile His Arg Glu


65           70           75           80





Tyr Tyr Phe Thr Asn Ala Thr Leu Val Asn His Val Cys Asn Val Ala


         85           90           95





Met Phe Phe Gly Glu Gly Ala Gly Asp Val Ile Ile Glu Asn Lys Asn


      100          105          110





Tyr Thr Leu Leu Gln Met His Trp His Thr Pro Ser Glu His His Leu


    115          120            125





His Gly Val Gln Tyr Ala Ala Glu Leu His Met Val His Gln Ala Lys


  130           135           140





Asp Gly Ser Phe Ala Val Val Ala Ser Leu Phe Lys Ile Gly Thr Glu


145          150            155          160





Glu Pro Phe Leu Ser Gln Met Lys Glu Lys Leu Val Lys Leu Lys Glu


         165          170          175





Glu Arg Leu Lys Gly Asn His Thr Ala Gln Val Glu Val Gly Arg Ile


       180          185          190





Asp Thr Arg His Ile Glu Arg Lys Thr Arg Lys Tyr Tyr Arg Tyr Ile


    195            200          205





Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Asn Val Ser Trp Thr Ile


  210           215          220





Leu Gly Lys Val Arg Ser Met


225          230











SEQ ID NO: 19/SEQ ID NO: 20










atg gat gaa tat gta gag gat gaa cac gaa ttc agc tac gaa tgg aac
48



Met Asp Glu Tyr Val Glu Asp Glu His Glu Phe Ser Tyr Glu Trp Asn


1        5            10          15





caa gag aac ggg cca gcg aaa tgg gga aag cta aga ccg gaa tgg aaa
96


Gln Glu Asn Gly Pro Ala Lys Trp Gly Lys Leu Arg Pro Glu Trp Lys


       20           25         30





atg tgc gga aaa gga gaa atg caa tcg cct att gat ctt atg aac aaa
144


Met Cys Gly Lys Gly Glu Met Gln Ser Pro Ile Asp Leu Met Asn Lys


    35          40          45





aga gtt aga ctt gtt act cat ctt aaa aag ctt act aga cac tac aaa
192


Arg Val Arg Leu Val Thr His Leu Lys Lys Leu Thr Arg His Tyr Lys


   50           55             60





cct tgt aac gcc act ctc aaa aat aga ggc cat gat atg atg ctg aaa
240


Pro Cys Asn Ala Thr Leu Lys Asn Arg Gly His Asp Met Met Leu Lys


65          70           75          80





ttt gga gaa gaa ggg tca ggg agt att acg gtc aat gga act gag tat
288


Phe Gly Glu Glu Gly Ser Gly Ser Ile Thr Val Asn Gly Thr Glu Tyr


         85          90             95





aaa ctc tta cag ctt cat tgg cat tct ccc tct gaa cat act atg aat
336


Lys Leu Leu Gln Leu His Trp His Ser Pro Ser Glu His Thr Met Asn


       100         105          110





gga aga agg ttt gct ctc gag cta cac atg gtt cac gaa aac att aac
384


Gly Arg Arg Phe Ala Leu Glu Leu His Met Val His Glu Asn Ile Asn


   115          120           125





gga agt ttg gct gta gtc aca gtc ctc tac aaa atc gga agg cca gat
432


Gly Ser Leu Ala Val Val Thr Val Leu Tyr Lys Ile Gly Arg Pro Asp


  130           135         140





tct ttt ctc gga ttg ctg gaa aat aaa ttg tcg gca att aca gat caa
480


Ser Phe Leu Gly Leu Leu Glu Asn Lys Leu Ser Ala Ile Thr Asp Gln


145          150         155          160





aat gag gcg gag aaa tat gta gat gtg att gac cca agg gat att aag
528


Asn Glu Ala Glu Lys Tyr Val Asp Val Ile Asp Pro Arg Asp Ile Lys


         165          170            175





att ggg agc aga aaa ttt tat aga tac att gga tca ctt act act cct
576


Ile Gly Ser Arg Lys Phe Tyr Arg Tyr Ile Gly Ser Leu Thr Thr Pro


        180          185           190





cct tgt acg caa aat gtt att tgg acc gtc gtt aaa aag gta aat act
624


Pro Cys Thr Gln Asn Val Ile Trp Thr Val Val Lys Lys Val Asn Thr


    195          200            205





cat cgt tat ttt ctt ctc ttt ttt act taa tcaaacatag cattaataga
674


His Arg Tyr Phe Leu Leu Phe Phe Thr (SEQ ID NO: 20)


  210           215





tcattacaag gtactaatag tgtgaatatc catatccaaa aggtttatcc atctacatgt
734


ta (SEQ ID NO: 19)
736











SEQ ID NO: 20










Met Asp Glu Tyr Val Glu Asp Glu His Glu Phe Ser Tyr Glu Trp Asn




1        5            10          15





Gln Glu Asn Gly Pro Ala Lys Trp Gly Lys Leu Arg Pro Glu Trp Lys


      20            25          30





Met Cys Gly Lys Gly Glu Met Gln Ser Pro Ile Asp Leu Met Asn Lys


    35         40         45





Arg Val Arg Leu Val Thr His Leu Lys Lys Leu Thr Arg His Tyr Lys


  50           55           60





Pro Cys Asn Ala Thr Leu Lys Asn Arg Gly His Asp Met Met Leu Lys


65          70           75          80





Phe Gly Glu Glu Gly Ser Gly Ser Ile Thr Val Asn Gly Thr Glu Tyr


         85          90             95





Lys Leu Leu Gln Leu His Trp His Ser Pro Ser Glu His Thr Met Asn


       100          105           110





Gly Arg Arg Phe Ala Leu Glu Leu His Met Val His Glu Asn Ile Asn


    115          120          125





Gly Ser Leu Ala Val Val Thr Val Leu Tyr Lys Ile Gly Arg Pro Asp


  130           135           140





Ser Phe Leu Gly Leu Leu Glu Asn Lys Leu Ser Ala Ile Thr Asp Gln


145          150          155          160





Asn Glu Ala Glu Lys Tyr Val Asp Val Ile Asp Pro Arg Asp Ile Lys


        165           170           175





Ile Gly Ser Arg Lys Phe Tyr Arg Tyr Ile Gly Ser Leu Thr Thr Pro


        180          185           190





Pro Cys Thr Gln Asn Val Ile Trp Thr Val Val Lys Lys Val Asn Thr


    195          200            205





His Arg Tyr Phe Leu Leu Phe Phe Thr


  210           215











SEQ ID NO: 21/SEQ ID NO: 22










aaaacacatt ctgagaagaa gaagaagaaa ataagaaaaa acaaaag atg aaa acc
56



                                          Met Lys Thr


                                          1





att atc ctt ttt gta aca ttt ctt gct ctt tct tct tca tct cta gcc
104


Ile Ile Leu Phe Val Thr Phe Leu Ala Leu Ser Ser Ser Ser Leu Ala


   5            10           15





gat gag aca gag act gaa ttt cat tac aaa ccc ggt gag ata gcc gat
152


Asp Glu Thr Glu Thr Glu Phe His Tyr Lys Pro Gly Glu Ile Ala Asp


20          25           30           35





ccc tcg aaa tgg agc agt atc aag gct gaa tgg aaa att tgc ggg aca
200


Pro Ser Lys Trp Ser Ser Ile Lys Ala Glu Trp Lys Ile Cys Gly Thr


         40            45            50





ggg aag agg caa tcg cca atc aat ctt act cca aaa ata gct cgc att
248


Gly Lys Arg Gln Ser Pro Ile Asn Leu Thr Pro Lys Ile Ala Arg Ile


      55            60           65





gtt cac aat tct aca gag att ctt cag aca tat tac aaa cct gta gag
296


Val His Asn Ser Thr Glu Ile Leu Gln Thr Tyr Tyr Lys Pro Val Glu


    70           75             80





gct att ctt aag aac cgt gga ttc gac atg aag gtt aag tgg gaa gac
344


Ala Ile Leu Lys Asn Arg Gly Phe Asp Met Lys Val Lys Trp Glu Asp


  85            90          95





gat gca ggg aag atc gtg atc aat gat acc gac tat aaa ttg gtt caa
392


Asp Ala Gly Lys Ile Val Ile Asn Asp Thr Asp Tyr Lys Leu Val Gln


100          105            110          115





agc cac tgg cac gca cct tca gag cat ttt ctc gat gga cag agg ttg
440


Ser His Trp His Ala Pro Ser Glu His Phe Leu Asp Gly Gln Arg Leu


          120           125          130





gca atg gaa ctt cac atg gta cac aaa agt gta gaa ggg cac ttg gca
488


Ala Met Glu Leu His Met Val His Lys Ser Val Glu Gly His Leu Ala


      135           140          145





gtg att gga gtt ctc ttc aga gaa gga gaa cca aat gct ttc att tcg
536


Val Ile Gly Val Leu Phe Arg Glu Gly Glu Pro Asn Ala Phe Ile Ser


     150           155          160





cgg atc atg gac aag atc cat aag atc gca gac gta caa gat gga gag
584


Arg Ile Met Asp Lys Ile His Lys Ile Ala Asp Val Gln Asp Gly Glu


  165           170           175





gtc agc atc gga aag ata gat cca aga gaa ttt gga tgg gat ctt aca
632


Val Ser Ile Gly Lys Ile Asp Pro Arg Glu Phe Gly Trp Asp Leu Thr


180           185           190           195





aag ttt tat gaa tac aga ggt tct ctc acg act cct cct tgc acg gaa
680


Lys Phe Tyr Glu Tyr Arg Gly Ser Leu Thr Thr Pro Pro Cys Thr Glu


         200           205          210





gat gtc atg tgg acc atc atc aac aag gtg ggg act gtt tca cgt gag
728


Asp Val Met Trp Thr Ile Ile Asn Lys Val Gly Thr Val Ser Arg Glu


      215           220            225





caa att gat gta ttg aca gat gct cgt cgc ggt ggt tat gag aag aac
776


Gln Ile Asp Val Leu Thr Asp Ala Arg Arg Gly Gly Tyr Glu Lys Asn


    230           235           240





gcg aga cca gct caa cct ctg aac gga cgt ctg gtt tat tta aac gag
824


Ala Arg Pro Ala Gln Pro Leu Asn Gly Arg Leu Val Tyr Leu Asn Glu


  245           250          255





cag tcc agt cca agt cca act cca cgg cta aga ata cca cga gtt ggt
872


Gln Ser Ser Pro Ser Pro Thr Pro Arg Leu Arg Ile Pro Arg Val Gly


260           265           270          275





ccg gtc taa gacagtctta taggacaagg caactccgag ccctaatttc
921


Pro Val (SEQ ID NO: 22)





catacaaaga aaattcggaa aagaattttg aagatgtatg aaaattggga gccataacta
981





ttttttttta actattcttt tgattaaaag ataaaactac gcaatattat atgcataaag
1041





tttttctttt atacatgtat tccaataaac aagatgtaat aatatccaac cataatgagt
1101





tgtttgatta ttttataaca caagatctct cac (SEQ ID NO: 21)
1134











SEQ ID NO: 22










Met Lys Thr Ile Ile Leu Phe Val Thr Phe Leu Ala Leu Ser Ser Ser




1        5              10          15





Ser Leu Ala Asp Glu Thr Glu Thr Glu Phe His Tyr Lys Pro Gly Glu


       20           25          30





Ile Ala Asp Pro Ser Lys Trp Ser Ser Ile Lys Ala Glu Trp Lys Ile


     35            40           45





Cys Gly Thr Gly Lys Arg Gln Ser Pro Ile Asn Leu Thr Pro Lys Ile


  50           55          60





Ala Arg Ile Val His Asn Ser Thr Glu Ile Leu Gln Thr Tyr Tyr Lys


65           70            75           80





Pro Val Glu Ala Ile Leu Lys Asn Arg Gly Phe Asp Met Lys Val Lys


         85            90           95





Trp Glu Asp Asp Ala Gly Lys Ile Val Ile Asn Asp Thr Asp Tyr Lys


       100          105           110





Leu Val Gln Ser His Trp His Ala Pro Ser Glu His Phe Leu Asp Gly


    115           120           125





Gln Arg Leu Ala Met Glu Leu His Met Val His Lys Ser Val Glu Gly


  130           135         140





His Leu Ala Val Ile Gly Val Leu Phe Arg Glu Gly Glu Pro Asn Ala


145          150            155          160





Phe Ile Ser Arg Ile Met Asp Lys Ile His Lys Ile Ala Asp Val Gln


          165           170           175





Asp Gly Glu Val Ser Ile Gly Lys Ile Asp Pro Arg Glu Phe Gly Trp


       180           185             190





Asp Leu Thr Lys Phe Tyr Glu Tyr Arg Gly Ser Leu Thr Thr Pro Pro


    195          200            205





Cys Thr Glu Asp Val Met Trp Thr Ile Ile Asn Lys Val Gly Thr Val


  210          215          220





Ser Arg Glu Gln Ile Asp Val Leu Thr Asp Ala Arg Arg Gly Gly Tyr


225          230            235         240





Glu Lys Asn Ala Arg Pro Ala Gln Pro Leu Asn Gly Arg Leu Val Tyr


         245           250          255





Leu Asn Glu Gln Ser Ser Pro Ser Pro Thr Pro Arg Leu Arg Ile Pro


      260            265          270





Arg Val Gly Pro Val


    275











SEQ ID NO: 23/SEQ ID NO: 24










atg gat acc aac gca aaa aca att ttc ttc atg gct atg tgt ttc atc
48



Met Asp Thr Asn Ala Lys Thr Ile Phe Phe Met Ala Met Cys Phe Ile


1        5           10             15





tat cta tct ttc cct aat att tca cac gct cat tct gaa gtc gac gac
96


Tyr Leu Ser Phe Pro Asn Ile Ser His Ala His Ser Glu Val Asp Asp


       20           25           30





gaa act cca ttt act tac gaa caa aaa acg gaa aag gga cca gag gga
144


Glu Thr Pro Phe Thr Tyr Glu Gln Lys Thr Glu Lys Gly Pro Glu Gly


    35           40           45





tgg ggc aaa ata aat ccg cac tgg aaa gtt tgt aac acc gga aga tat
192


Trp Gly Lys Ile Asn Pro His Trp Lys Val Cys Asn Thr Gly Arg Tyr


  50            55          60





caa tcc ccg atc gat ctt act aac gaa aga gtc agt ctt att cat gat
240


Gln Ser Pro Ile Asp Leu Thr Asn Glu Arg Val Ser Leu Ile His Asp


65           70           75           80





caa gca tgg aca aga caa tat aaa cca gct ccg gct gta att aca aac
288


Gln Ala Trp Thr Arg Gln Tyr Lys Pro Ala Pro Ala Val Ile Thr Asn


         85           90            95





aga ggc cat gac att atg gta tca tgg aaa gga gat gct ggg aag atg
336


Arg Gly His Asp Ile Met Val Ser Trp Lys Gly Asp Ala Gly Lys Met


       100          105            110





aca ata cgg aaa acg gat ttt aat ttg gtg caa tgc cat tgg cat tca
384


Thr Ile Arg Lys Thr Asp Phe Asn Leu Val Gln Cys His Trp His Ser


    115            120          125





cct tct gag cat acc gtt aac gga act agg tac gac cta gag ctt cac
432


Pro Ser Glu His Thr Val Asn Gly Thr Arg Tyr Asp Leu Glu Leu His


  130           135          140





atg gtt cac acg agt gca cga ggc aga act gcg gtt atc gga gtt ctt
480


Met Val His Thr Ser Ala Arg Gly Arg Thr Ala Val Ile Gly Val Leu


145          150           155          160





tac aaa tta ggc gaa cct aat gaa ttc ctc acc aag cta cta aat gga
528


Tyr Lys Leu Gly Glu Pro Asn Glu Phe Leu Thr Lys Leu Leu Asn Gly


         165           170          175





ata aaa gca gtg gga aat aaa gag ata aat cta ggg atg att gat cca
576


Ile Lys Ala Val Gly Asn Lys Glu Ile Asn Leu Gly Met Ile Asp Pro


        180           185           190





cga gag att agg ttt caa aca aga aaa ttc tat aga tac att ggc tct
624


Arg Glu Ile Arg Phe Gln Thr Arg Lys Phe Tyr Arg Tyr Ile Gly Ser


    195           200          205





ctc act gtt cct cct tgc act gaa ggc gtc att tgg act gtc gtc aaa
672


Leu Thr Val Pro Pro Cys Thr Glu Gly Val Ile Trp Thr Val Val Lys


  210           215          220





agg gtg aac aca ata tca atg gag caa att aca gct ctt agg caa gcc
720


Arg Val Asn Thr Ile Ser Met Glu Gln Ile Thr Ala Leu Arg Gln Ala


225          230           235          240





gtt gac gat gga ttt gag aca aat tca aga ccg gtt caa gac tca aag
768


Val Asp Asp Gly Phe Glu Thr Asn Ser Arg Pro Val Gln Asp Ser Lys


         245          250          255





gga aga tca gtt tgg ttc tat gat cca aat gtt tga (SEQ ID NO: 23)
804


Gly Arg Ser Val Trp Phe Tyr Asp Pro Asn Val (SEQ ID NO: 24)


       260           265











SEQ ID NO: 24










Met Asp Thr Asn Ala Lys Thr Ile Phe Phe Met Ala Met Cys Phe Ile




1        5           10             15





Tyr Leu Ser Phe Pro Asn Ile Ser His Ala His Ser Glu Val Asp Asp


       20           25            30





Glu Thr Pro Phe Thr Tyr Glu Gln Lys Thr Glu Lys Gly Pro Glu Gly


    35           40          45





Trp Gly Lys Ile Asn Pro His Trp Lys Val Cys Asn Thr Gly Arg Tyr


  50            55           60





Gln Ser Pro Ile Asp Leu Thr Asn Glu Arg Val Ser Leu Ile His Asp


65            70          75           80





Gln Ala Trp Thr Arg Gln Tyr Lys Pro Ala Pro Ala Val Ile Thr Asn


           85          90            95





Arg Gly His Asp Ile Met Val Ser Trp Lys Gly Asp Ala Gly Lys Met


       100           105           110





Thr Ile Arg Lys Thr Asp Phe Asn Leu Val Gln Cys His Trp His Ser


      115          120         125





Pro Ser Glu His Thr Val Asn Gly Thr Arg Tyr Asp Leu Glu Leu His


   130          135           140





Met Val His Thr Ser Ala Arg Gly Arg Thr Ala Val Ile Gly Val Leu


145           150           155          160





Tyr Lys Leu Gly Glu Pro Asn Glu Phe Leu Thr Lys Leu Leu Asn Gly


         165          170          175





Ile Lys Ala Val Gly Asn Lys Glu Ile Asn Leu Gly Met Ile Asp Pro


        180           185           190





Arg Glu Ile Arg Phe Gln Thr Arg Lys Phe Tyr Arg Tyr Ile Gly Ser


    195           200           205





Leu Thr Val Pro Pro Cys Thr Glu Gly Val Ile Trp Thr Val Val Lys


  210           215          220





Arg Val Asn Thr Ile Ser Met Glu Gln Ile Thr Ala Leu Arg Gln Ala


225         230           235           240





Val Asp Asp Gly Phe Glu Thr Asn Ser Arg Pro Val Gln Asp Ser Lys


         245          250           255 (SEQ ID NO: 23)





Gly Arg Ser Val Trp Phe Tyr Asp Pro Asn Val (SEQ ID NO: 24)


       260           265











SEQ ID NO: 25 /SEQ ID NO: 26










gatcaacatc tccttgaagt tgtttcataa gaataagagc tataaaagag gataaaacca
60



aaatttgaat ttttttcttc tatctctctc cccaagatat atagcacaag aaa atg
116


                                         Met


                                         1





aag ata cca tca att ggc tat gtc ttt ttc ctt atc ttc atc tct att
164


Lys Ile Pro Ser Ile Gly Tyr Val Phe Phe Leu Ile Phe Ile Ser Ile


      5             10           15





aca att gtt tcg agt tca cca gat cat gga gaa gtt gag gac gaa acg
212


Thr Ile Val Ser Ser Ser Pro Asp His Gly Glu Val Glu Asp Glu Thr


     20             25           30





cag ttt aac tac gag aag aaa gga gag aag ggg cca gag aac tgg gga
260


Gln Phe Asn Tyr Glu Lys Lys Gly Glu Lys Gly Pro Glu Asn Trp Gly


  35           40           45





aga cta aag cca gag tgg gca atg tgt gga aaa ggc aac atg cag tct
308


Arg Leu Lys Pro Glu Trp Ala Met Cys Gly Lys Gly Asn Met Gln Ser


50           55          60           65





ccg att gat ctt acg gac aaa aga gtc ttg att gat cat aat ctt gga
356


Pro Ile Asp Leu Thr Asp Lys Arg Val Leu Ile Asp His Asn Leu Gly


          70           75            80





tac ctt cgt agc cag tat tta cct tca aat gcc acc att aag aac aga
404


Tyr Len Arg Ser Gln Tyr Len Pro Ser Asn Ala Thr Ile Lys Asn Arg


       85           90           95





ggc cat gat atc atg atg aaa ttt gaa gga gga aat gca ggt tta ggt
452


Gly His Asp Ile Met Met Lys Phe Glu Gly Gly Asn Ala Gly Leu Gly


     100          105           110





atc act att aat ggt act gaa tat aaa ctt caa cag att cat tgg cac
500


Ile Thr Ile Asn Gly Thr Glu Tyr Lys Leu Gln Gln Ile His Trp His


   115           120           125





tct cct tcc gaa cac aca ctc aat ggc aaa agg ttt gtt ctt gag gaa
548


Ser Pro Ser Glu His Thr Leu Asn Gly Lys Arg Phe Val Leu Glu Gln


130           135           140          145





cac atg gtt cat cag agc aaa gat gga cgc aac gct gtt gtc gct ttc
596


His Met Val His Gln Ser Lys Asp Gly Arg Asn Ala Val Val Ala Phe


         150            155         160





ttt tac aaa ttg gga aaa cct gac tat ttt ctc ctc acg ttg gaa aga
644


Phe Tyr Lys Leu Gly Lys Pro Asp Tyr Phe Leu Leu Thr Leu Glu Arg


       165          170           175





tac ttg aag agg ata act gat aca cac gaa tcc cag gaa ttt gtc gag
692


Tyr Leu Lys Arg Ile Thr Asp Thr His Glu Ser Gln Glu Phe Val Glu


     180           185          190





atg gtt cat cct aga aca ttc ggt ttt gaa tca aaa cac tat tat aga
740


Met Val His Pro Arg Thr Phe Gly Phe Glu Ser Lys His Tyr Tyr Arg


  195           200          205





ttt atc gga tca ctt aca act cca ccg tgt tct gaa aat gtg att tgg
788


Phe Ile Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Asn Val Ile Trp


210           215           220          225





acg att tcc aaa gag atg agg act gtg aca tta aaa caa ttg atc atg
836


Thr Ile Ser Lys Glu Met Arg Thr Val Thr Leu Lys Gln Leu Ile Met


          230           235          240





ctt cga gtg act gta cac gat caa tct aac tca aat gct aga ccg ctt
884


Leu Arg Val Thr Val His Asp Gln Ser Asn Ser Asn Ala Arg Pro Leu


       245         250          255





cag cgt aaa aat gag cgt ccg gtg gca ctt tac ata cca aca tgg cat
932


Gln Arg Lys Asn Glu Arg Pro Val Ala Leu Tyr Ile Pro Thr Trp His


    260           265           270





agt aaa cta tat taa atatttaagt ttggtttata ttctttctag taatctttga
987


Ser Lys Leu Tyr (SEQ ID NO: 26)


   275





aatattgtaa gagataatgc ttctaataaa taacattgga tttattggaa ttaatgtatt
1047





gaaaaaacta tgcaaatact acagtgtatt ttggaacgac c (SEQ ID NO: 25)











SEQ ID NO: 26










Met Lys Ile Pro Ser Ile Gly Tyr Val Phe Phe Leu Ile Phe Ile Ser




1         5             10             15





Ile Thr Ile Val Ser Ser Ser Pro Asp His Gly Glu Val Glu Asp Glu


        20            25           30





Thr Gln Phe Asn Tyr Glu Lys Lys Gly Glu Lys Gly Pro Glu Asn Trp


    35           40           45





Gly Arg Leu Lys Pro Glu Trp Ala Met Cys Gly Lys Gly Asn Met Gln


  50           55           60





Ser Pro Ile Asp Leu Thr Asp Lys Arg Val Leu Ile Asp His Asn Leu


65            70          75           80





Gly Tyr Leu Arg Ser Gln Tyr Leu Pro Ser Asn Ala Thr Ile Lys Asn


         85           90           95





Arg Gly His Asp Ile Met Met Lys Phe Glu Gly Gly Asn Ala Gly Leu


       100            105          110





Gly Ile Thr Ile Asn Gly Thr Glu Tyr Lys Leu Gln Gln Ile His Trp


     115            120          125





His Ser Pro Ser Glu His Thr Leu Asn Gly Lys Arg Phe Val Leu Glu


  130           135           140





Glu His Met Val His Gln Ser Lys Asp Gly Arg Asn Ala Val Val Ala


145          150           155         160





Phe Phe Tyr Lys Leu Gly Lys Pro Asp Tyr Phe Leu Leu Thr Leu Glu


         165         170          175





Arg Tyr Leu Lys Arg Ile Thr Asp Thr His Glu Ser Gln Glu Phe Val


       180          185          190





Glu Met Val His Pro Arg Thr Phe Gly Phe Glu Ser Lys His Tyr Tyr


    195           200           205





Arg Phe Ile Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Asn Val Ile


  210           215           220





Trp Thr Ile Ser Lys Glu Met Arg Thr Val Thr Leu Lys Gln Leu Ile


225           230          235          240





Met Leu Arg Val Thr Val His Asp Gln Ser Asn Ser Asn Ala Arg Pro


        245            250          255





Leu Gln Arg Lys Asn Glu Arg Pro Val Ala Leu Tyr Ile Pro Thr Trp


      260           265          270





His Ser Lys Len Tyr


     275











SEQ ID NO: 27/SEQ ID NO: 28










atg gat gcc aac aca aaa aca att tta ttt ttt gta gtg ttc ttc atc
48



Met Asp Ala Asn Thr Lys Thr Ile Leu Phe Phe Val Val Phe Phe Ile


1        5           10            15





gat tta ttt tcc cct aat att tta ttc gtt tat gct cgt gaa atc ggc
96


Asp Leu Phe Ser Pro Asn Ile Leu Phe Val Tyr Ala Arg Glu Ile Gly


      20            25            30





aac aaa ccg cta ttt aca tac aaa caa aaa aca gag aaa gga cca gcg
144


Asn Lys Pro Leu Phe Thr Tyr Lys Gln Lys Thr Glu Lys Gly Pro Ala


    35           40           45





gaa tgg ggc aaa tta gac cct caa tgg aaa gtt tgt agc acc gga aaa
192


Glu Trp Gly Lys Leu Asp Pro Gln Trp Lys Val Cys Ser Thr Gly Lys


  50           55           60





att caa tct ccg att gat ctc act gac gaa aga gtc agt ctt att cat
240


Ile Gln Ser Pro Ile Asp Leu Thr Asp Glu Arg Val Ser Leu Ile His


65            70           75            80





gat caa gcc ttg agt aaa cat tac aaa cca gct tcg gct gta att caa
288


Asp Gln Ala Leu Ser Lys His Tyr Lys Pro Ala Ser Ala Val Ile Gln


         85           90           95





agt aga gga cat gac gtt atg gta tcg tgg aaa gga gat ggt ggg aaa
336


Ser Arg Gly His Asp Val Met Val Ser Trp Lys Gly Asp Gly Gly Lys


        100         105          110





ata aca ata cat caa acg gat tat aaa ttg gtg cag tgc cat tgg cat
384


Ile Thr Ile His Gln Thr Asp Tyr Lys Leu Val Gln Cys His Trp His


      115          120           125





tca ccg tct gag cat acc att aac gga act agc tat gac cta gag ctt
432


Ser Pro Ser Glu His Thr Ile Asn Gly Thr Ser Tyr Asp Leu Glu Leu


   130          135           140





cac atg gtt cac acg agt gct agt ggc aaa acc act gtg gtt gga gtt
480


His Met Val His Thr Ser Ala Ser Gly Lys Thr Thr Val Val Gly Val


145          150            155          160





ctt tat aaa tta ggt gaa cct gat gaa ttc ctc aca aag ata cta aat
528


Leu Tyr Lys Leu Gly Glu Pro Asp Glu Phe Leu Thr Lys Ile Leu Asn


        165          170          175





gga ata aaa gga gta ggg aaa aaa gag ata gat cta gga atc gtg gat
576


Gly Ile Lys Gly Val Gly Lys Lys Glu Ile Asp Leu Gly Ile Val Asp


        180          185          190





cct cga gat att aga ttt gaa acc aac aat ttc tat aga tac att ggc
624


Pro Arg Asp Ile Arg Phe Glu Thr Asn Asn Phe Tyr Arg Tyr Ile Gly


     195          200          205





tct ctc act att cct cca tgc acc gaa ggc gtt att tgg acc gtc cag
672


Ser Leu Thr Ile Pro Pro Cys Thr Glu Gly Val Ile Trp Thr Val Gln


   210           215          220





aaa agg gta tta tat ttt ttt tgt ttc tgt tat aga tta att atc ttc
720


Lys Arg Val Leu Tyr Phe Phe Cys Phe Cys Tyr Arg Leu Ile Ile Phe


225          230           235          240





gtt aca cct tac ata aac att ttt tgg att ttt gtt ttt gta ttt tgg
768


Val Thr Pro Tyr Ile Asn Ile Phe Trp Ile Phe Val Phe Val Phe Trp


          245           250            255





tgt atg cta atg taa (SEQ ID NO: 27)
783


Cys Met Leu Met (SEQ ID NO: 28)


      260











SEQ ID NO: 28










Met Asp Ala Asn Thr Lys Thr Ile Leu Phe Phe Val Val Phe Phe Ile




1        5           10             15





Asp Leu Phe Ser Pro Asn Ile Leu Phe Val Tyr Ala Arg Glu Ile Gly


      20            25            30





Asn Lys Pro Leu Phe Thr Tyr Lys Gln Lys Thr Glu Lys Gly Pro Ala


    35           40           45





Glu Trp Gly Lys Leu Asp Pro Gln Trp Lys Val Cys Ser Thr Gly Lys


  50            55           60





Ile Gln Ser Pro Ile Asp Leu Thr Asp Glu Arg Val Ser Leu Ile His


65            70           75           80





Asp Gln Ala Len Ser Lys His Tyr Lys Pro Ala Ser Ala Val Ile Gln


         85           90           95





Ser Arg Gly His Asp Val Met Val Ser Trp Lys Gly Asp Gly Gly Lys


       100          105           110





Ile Thr Ile His Gln Thr Asp Tyr Lys Leu Val Gln Cys His Trp His


     115           120          125





Ser Pro Ser Glu His Thr Ile Asn Gly Thr Ser Tyr Asp Leu Glu Leu


  130           135            140





His Met Val His Thr Ser Ala Ser Gly Lys Thr Thr Val Val Gly Val


145          150           155          160





Leu Tyr Lys Leu Gly Glu Pro Asp Glu Phe Leu Thr Lys Ile Leu Asn


         165          170          175





Gly Ile Lys Gly Val Gly Lys Lys Glu Ile Asp Leu Gly Ile Val Asp


        180          185          190





Pro Arg Asp Ile Arg Phe Glu Thr Asn Asn Phe Tyr Arg Tyr Ile Gly


     195           200          205





Ser Leu Thr Ile Pro Pro Cys Thr Glu Gly Val Ile Trp Thr Val Gln


  210            215          220





Lys Arg Val Leu Tyr Phe Phe Cys Phe Cys Tyr Arg Leu Ile Ile Phe


225           230          235          240





Val Thr Pro Tyr Ile Asn Ile Phe Trp Ile Phe Val Phe Val Phe Trp


          245           250            255





Cys Met Leu Met


      260











SEQ ID NO: 29/SEQ ID NO: 30










atg gtg aac tac tca tca atc agt tgc atc ttc ttt gtg gct ctg ttt
48



Met Val Asn Tyr Ser Ser Ile Ser Cys Ile Phe Phe Val Ala Leu Phe


1         5            10           15





agt att ttc aca att gtt tcg att tcg agt gct gct tca agt cac gga
96


Ser Ile Phe Thr Ile Val Ser Ile Ser Ser Ala Ala Ser Ser His Gly


        20            25            30





gaa gtt gag gac gaa cgc gag ttt aac tac aag aag aac gat gag aag
144


Glu Val Glu Asp Glu Arg Glu Phe Asn Tyr Lys Lys Asn Asp Glu Lys


    35          40           45





ggg cca gag aga tgg gga gaa ctt aaa ccg gaa tgg gaa atg tgt gga
192


Gly Pro Glu Arg Trp Gly Glu Leu Lys Pro Glu Trp Glu Met Cys Gly


  50           55           60





aaa gga gag atg caa tct ccc ata gat ctt atg aac gag aga gtt aac
240


Lys Gly Glu Met Gln Ser Pro Ile Asp Leu Met Asn Glu Arg Val Asn


65           70            75           80





att gtt tct cat ctt gga agg ctt aat aga gac tat aat cct tca aat
288


Ile Val Ser His Leu Gly Arg Leu Asn Arg Asp Tyr Asn Pro Ser Asn


           85           90           95





gca act ctt aag aac aga ggc cat gac atc atg tta aaa ttt gaa gat
336


Ala Thr Leu Lys Asn Arg Gly His Asp Ile Met Leu Lys Phe Glu Asp


       100          105           110





gga gca gga act att aag atc aat ggt ttt gaa tat gaa ctt caa cag
384


Gly Ala Gly Thr Ile Lys Ile Asn Gly Phe Glu Tyr Glu Leu Gln Gln


    115            120           125





ctt cac tgg cac tct ccg tct gaa cat act att aat gga aga agg ttt
432


Leu His Trp His Ser Pro Ser Glu His Thr Ile Asn Gly Arg Arg Phe


  130           135           140





gca ctt gag ctg cat atg gtt cac gaa ggc agg aat aga aga atg gct
480


Ala Leu Glu Leu His Met Val His Glu Gly Arg Asn Arg Arg Met Ala


145          150          155           160





gtt gtg act gtg ttg tac aag atc gga aga gca gat act ttt atc aga
528


Val Val Thr Val Leu Tyr Lys Ile Gly Arg Ala Asp Thr Phe Ile Arg


          165           170           175





tcg ttg gag aaa gaa tta gag ggc att gct gaa atg gag gag gct gag
576


Ser Leu Glu Lys Glu Leu Glu Gly Ile Ala Glu Met Glu Glu Ala Glu


       180          185           190





aaa aat gta gga atg att gat ccc acc aaa att aag atc gga agc aga
624


Lys Asn Val Gly Met Ile Asp Pro Thr Lys Ile Lys Ile Gly Ser Arg


    195          200          205





aaa tat tac aga tac act ggt tca ctt acc act cct cct tgc act caa
672


Lys Tyr Tyr Arg Tyr Thr Gly Ser Leu Thr Thr Pro Pro Cys Thr Gln


  210           215           220





aac gtt act tgg agc gtc gtt aga aag gtt agg acc gtg aca aga aaa
720


Asn Val Thr Trp Ser Val Val Arg Lys Val Arg Thr Val Thr Arg Lys


225          230           235           240





caa gtg aag ctc ctc cgc gtg gca gtg cac gat gat gct aat tcg aat
768


Gln Val Lys Leu Leu Arg Val Ala Val His Asp Asp Ala Asn Ser Asn


         245          250            255





gcg agg ccg gtt caa cca acc aac aag cgc ata gtg cac tta tac aga
816


Ala Arg Pro Val Gln Pro Thr Asn Lys Arg Ile Val His Len Tyr Arg


       260           265          270





cca ata gtt taa tatatgaaga tactgaaagc ttttactaat c (SEQ ID NO: 29)
859


Pro Ile Val (SEQ ID NO: 30)


     275











SEQ ID NO: 30










Met Val Asn Tyr Ser Ser Ile Ser Cys Ile Phe Phe Val Ala Leu Phe




1        5            10            15





Ser Ile Phe Thr Ile Val Ser Ile Ser Ser Ala Ala Ser Ser His Gly


        20            25             30





Glu Val Glu Asp Glu Arg Glu Phe Asn Tyr Lys Lys Asn Asp Glu Lys


    35           40           45





Gly Pro Glu Arg Trp Gly Glu Leu Lys Pro Glu Trp Glu Met Cys Gly


  50           55           60





Lys Gly Glu Met Gln Ser Pro Ile Asp Leu Met Asn Glu Arg Val Asn


65          70           75           80





Ile Val Ser His Leu Gly Arg Leu Asn Arg Asp Tyr Asn Pro Ser Asn


           85           90          95





Ala Thr Leu Lys Asn Arg Gly His Asp Ile Met Leu Lys Phe Glu Asp


       100          105          110





Gly Ala Gly Thr Ile Lys Ile Asn Gly Phe Glu Tyr Glu Leu Gln Gln


     115           120           125





Leu His Trp His Ser Pro Ser Glu His Thr Ile Asn Gly Arg Arg Phe


  130           135           140





Ala Leu Glu Leu His Met Val His Glu Gly Arg Asn Arg Arg Met Ala


145          150          155           160





Val Val Thr Val Leu Tyr Lys Ile Gly Arg Ala Asp Thr Phe Ile Arg


          165           170           175





Ser Leu Glu Lys Glu Len Glu Gly Ile Ala Glu Met Glu Glu Ala Glu


       180          185           190





Lys Asn Val Gly Met Ile Asp Pro Thr Lys Ile Lys Ile Gly Ser Arg


     195          200           205





Lys Tyr Tyr Arg Tyr Thr Gly Ser Leu Thr Thr Pro Pro Cys Thr Gln


  210           215           220





Asn Val Thr Trp Ser Val Val Arg Lys Val Arg Thr Val Thr Arg Lys


225           230           235          240





Gln Val Lys Leu Leu Arg Val Ala Val His Asp Asp Ala Asn Ser Asn


         245          250           255





Ala Arg Pro Val Gln Pro Thr Asn Lys Arg Ile Val His Leu Tyr Arg


       260           265          270





Pro Ile Val


     275











SEQ ID NO: 31/SEQ ID NO: 32










atg aag ata tca tca cta gga tgg gtc tta gtc ctt atc ttc atc tct
48



Met Lys Ile Ser Ser Leu Gly Trp Val Len Val Len Ile Phe Ile Ser


1         5           10           15





att acc att gtt tcg agt gca cca gca cct aaa cct cct aaa cct aag
96


Ile Thr Ile Val Ser Ser Ala Pro Ala Pro Lys Pro Pro Lys Pro Lys


        20            25            30





cct gca cca gca cct aca cct cct aaa cct aag ccc aca cca gca cct
144


Pro Ala Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Thr Pro Ala Pro


     35           40            45





aca cct cct aaa cct aag ccc aaa cca gca cct aca cct cct aaa cct
192


Thr Pro Pro Lys Pro Lys Pro Lys Pro Ala Pro Thr Pro Pro Lys Pro


  50           55           60





aag cct gca cca gca cct aca cct cct aaa cct aag ccc gca cca gca
240


Lys Pro Ala Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Ala Pro Ala


65           70           75            80





cct aca cct cct aaa cct aag ccc aaa cca gca cct aca cct cct aat
288


Pro Thr Pro Pro Lys Pro Lys Pro Lys Pro Ala Pro Thr Pro Pro Asn


          85           90           95





cct aag ccc aca cca gca cct aca cct cct aaa cct aag cct gca cca
336


Pro Lys Pro Thr Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Ala Pro


       100           105           110





gca cca gca cca aca cca gca ccg aaa cct aaa cct gca cct aaa cca
384


Ala Pro Ala Pro Thr Pro Ala Pro Lys Pro Lys Pro Ala Pro Lys Pro


     115           120          125





gca cca ggt gga gaa gtt gag gac gaa acc gag ttt agc tac gag acg
432


Ala Pro Gly Gly Glu Val Glu Asp Glu Thr Glu Phe Ser Tyr Glu Thr


  130           135          140





aaa gga aac aag ggg cca gcg aaa tgg gga aca cta gat gca gag tgg
480


Lys Gly Asn Lys Gly Pro Ala Lys Trp Gly Thr Leu Asp Ala Glu Trp


145          150           155          160





aaa atg tgt gga ata ggc aaa atg caa tct cct att gat ctt cgg gac
528


Lys Met Cys Gly Ile Gly Lys Met Gln Ser Pro Ile Asp Leu Arg Asp


         165           170          175





aaa aat gtg gta gtt agt aat aaa ttt gga ttg ctt cgt agc cag tat
576


Lys Asn Val Val Val Ser Asn Lys Phe Gly Leu Leu Arg Ser Gln Tyr


       180           185           190





ctg cct tct aat acc acc att aag aac aga ggt cat gat atc atg ttg
624


Leu Pro Ser Asn Thr Thr Ile Lys Asn Arg Gly His Asp Ile Met Leu


     195          200           205





aaa ttc aaa gga gga aat aaa ggt att ggt gtc act atc cgt ggt act
672


Lys Phe Lys Gly Gly Asn Lys Gly Ile Gly Val Thr Ile Arg Gly Thr


  210           215         220





aga tat caa ctt caa caa ctt cat tgg cac tct cct tcc gaa cat aca
720


Arg Tyr Gln Leu Gln Gln Leu His Trp His Ser Pro Ser Glu His Thr


225          230          235           240





atc aat ggc aaa agg ttt gcg cta gag gaa cac ttg gtt cat gag agc
768


Ile Asn Gly Lys Arg Phe Ala Leu Glu Glu His Leu Val His Glu Ser


          245          250          255





aaa gat aaa cgc tac gct gtt gtc gca ttc tta tac aat ctc gga gca
816


Lys Asp Lys Arg Tyr Ala Val Val Ala Phe Leu Tyr Asn Leu Gly Ala


       260           265          270





tct gac cct ttt ctc ttt tcg ttg gaa aaa caa ttg aag aag ata act
864


Ser Asp Pro Phe Leu Phe Ser Leu Glu Lys Gln Leu Lys Lys Ile Thr


     275          280          285





gat aca cat gcg tcc gag gaa cat att cgc act gtg tca agt aaa caa
912


Asp Thr His Ala Ser Glu Glu His Ile Arg Thr Val Ser Ser Lys Gln


  290           295          300





gtg aag ctt ctc cgt gtg gct gta cac gat gct tca gat tca aat gcc
960


Val Lys Leu Leu Arg Val Ala Val His Asp Ala Ser Asp Ser Asn Ala


305          310           315           320





agg ccg ctt caa gca gtc aat aag cgc aag gta tat tta tac aaa cca
1008


Arg Pro Leu Gln Ala Val Asn Lys Arg Lys Val Tyr Leu Tyr Lys Pro


         325           330          335





aag gtt aag tta atg aag aaa tac tgt aat ata agt tct tac tag (SEQ ID NO: 31)
1053


Lys Val Lys Leu Met Lys Lys Tyr Cys Asn Ile Ser Ser Tyr (SEQ ID NO: 32)


       340          345          350











SEQ ID NO: 32










Met Lys Ile Ser Ser Leu Gly Trp Val Leu Val Leu Ile Phe Ile Ser




1         5            10           15





Ile Thr Ile Val Ser Ser Ala Pro Ala Pro Lys Pro Pro Lys Pro Lys


        20             25           30





Pro Ala Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Thr Pro Ala Pro


     35           40           45





Thr Pro Pro Lys Pro Lys Pro Lys Pro Ala Pro Thr Pro Pro Lys Pro


  50            55           60





Lys Pro Ala Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Ala Pro Ala


65           70           75            80





Pro Thr Pro Pro Lys Pro Lys Pro Lys Pro Ala Pro Thr Pro Pro Asn


          85          90           95





Pro Lys Pro Thr Pro Ala Pro Thr Pro Pro Lys Pro Lys Pro Ala Pro


       100           105          110





Ala Pro Ala Pro Thr Pro Ala Pro Lys Pro Lys Pro Ala Pro Lys Pro


     115           120          125





Ala Pro Gly Gly Glu Val Glu Asp Glu Thr Glu Phe Ser Tyr Glu Thr


  130           135          140





Lys Gly Asn Lys Gly Pro Ala Lys Trp Gly Thr Leu Asp Ala Glu Trp


145          150           155          160





Lys Met Cys Gly Ile Gly Lys Met Gln Ser Pro Ile Asp Leu Arg Asp


         165           170          175





Lys Asn Val Val Val Ser Asn Lys Phe Gly Leu Leu Arg Ser Gln Tyr


       180           185          190





Leu Pro Ser Asn Thr Thr Ile Lys Asn Arg Gly His Asp Ile Met Leu


     195         200           205





Lys Phe Lys Gly Gly Asn Lys Gly Ile Gly Val Thr Ile Arg Gly Thr


  210          215          220





Arg Tyr Gln Leu Gln Gln Leu His Trp His Ser Pro Ser Glu His Thr


225          230          235           240





Ile Asn Gly Lys Arg Phe Ala Leu Glu Glu His Leu Val His Glu Ser


          245          250          255





Lys Asp Lys Arg Tyr Ala Val Val Ala Phe Leu Tyr Asn Leu Gly Ala


       260          265            270





Ser Asp Pro Phe Leu Phe Ser Leu Glu Lys Gln Leu Lys Lys Ile Thr


     275          280          285





Asp Thr His Ala Ser Glu Glu His Ile Arg Thr Val Ser Ser Lys Gln


  290           295          300





Val Lys Leu Leu Arg Val Ala Val His Asp Ala Ser Asp Ser Asn Ala


305          310           315           320





Arg Pro Leu Gln Ala Val Asn Lys Arg Lys Val Tyr Leu Tyr Lys Pro


         325          330          335





Lys Val Lys Leu Met Lys Lys Tyr Cys Asn Ile Ser Ser Tyr


       340          345          350











SEQ ID NO: 33/SEQ ID NO: 34










ctagagagca tcttcttata tcaactaaac tttgtattca tttccaagta tcactctaaa
60






tcatcttttt cgaattcgcc tcccaagat atg tcg aca gag tcg tac gaa gac
113


Met Ser Thr Glu Ser Tyr Glu Asp


1          5





gcc att aaa aga ctc gga gag ctt ctc agt aag aaa tcg gat ctc ggg
161


Ala Ile Lys Arg Leu Gly Glu Leu Leu Ser Lys Lys Ser Asp Leu Gly


  10           15          20





aac gtg gca gcc gca aag atc aag aag tta acg gat gag tta gag gaa
209


Asn Val Ala Ala Ala Lys Ile Lys Lys Leu Thr Asp Glu Leu Glu Glu


25           30            35          40





ctt gat tcc aac aag tta gat gcc gta gaa cga atc aaa tcc gga ttt
257


Leu Asp Ser Asn Lys Leu Asp Ala Val Glu Arg Ile Lys Ser Gly Phe


         45          50           55





ctc cat ttc aag act aat aat tat gag aag aat cct act ttg tac aat
305


Leu His Phe Lys Thr Asn Asn Tyr Glu Lys Asn Pro Thr Leu Tyr Asn


      60          65          70





tca ctt gcc aag agc cag acc ccc aag ttt ttg gtg ttt gct tgt gcg
353


Ser Leu Ala Lys Ser Gln Thr Pro Lys Phe Leu Val Phe Ala Cys Ala


     75           80           85





gat tca cga gtt agt cca tct cac atc ttg aat ttc caa ctt ggg gaa
401


Asp Ser Arg Val Ser Pro Ser His Ile Leu Asn Phe Gln Leu Gly Glu


  90           95          100





gcc ttc atc gtt aga aac att gca aac atg gtg cca cct tat gac aag
449


Ala Phe Ile Val Arg Asn Ile Ala Asn Met Val Pro Pro Tyr Asp Lys


105           110          115         120





aca aag cac tct aat gtt ggt gcg gcc ctt gaa tat cca att aca gtc
497


Thr Lys His Ser Asn Val Gly Ala Ala Leu Glu Tyr Pro Ile Thr Val


         125           130          135





ctc aac gtg gag aac att ctt gtt att gga cac agc tgt tgt ggt gga
545


Leu Asn Val Glu Asn Ile Leu Val Ile Gly His Ser Cys Cys Gly Gly


      140          145           150





ata aag gga ctc atg gcc att gaa gat aat aca gct ccc act aag acc
593


Ile Lys Gly Leu Met Ala Ile Glu Asp Asn Thr Ala Pro Thr Lys Thr


     155          160           165





gag ttc ata gaa aac tgg atc cag atc tgt gca ccg gcc aag aac agg
641


Glu Phe Ile Glu Asn Trp Ile Gln Ile Cys Ala Pro Ala Lys Asn Arg


  170           175           180





atc aag cag gat tgt aaa gac cta agc ttt gaa gat cag tgc acc aac
689


Ile Lys Gln Asp Cys Lys Asp Leu Ser Phe Glu Asp Gln Cys Thr Asn


185           190          195          200





tgt gag aag gaa gcc gtg aac gtg tcc ttg ggg aat ctt ttg tct tac
737


Cys Glu Lys Glu Ala Val Asn Val Ser Leu Gly Asn Leu Leu Ser Tyr


         205          210          215





cca ttc gtg aga gaa aga gtg gtg aag aac aag ctt gcc ata aga gga
785


Pro Phe Val Arg Glu Arg Val Val Lys Asn Lys Leu Ala Ile Arg Gly


      220          225          230





gct cac tat gat ttc gta aaa gga acg ttt gat ctt tgg gaa ctt gac
833


Ala His Tyr Asp Phe Val Lys Gly Thr Phe Asp Leu Trp Glu Leu Asp


    235           240           245





ttc aag act acc cct gcc ttt gcc ttg tct taa aagattcctc ctactcaaat
886


Phe Lys Thr Thr Pro Ala Phe Ala Leu Ser (SEQ ID NO: 34)


  250          255





attttctcta tgttgtttct aattatgttc ttataatctt cttctgttgc ttctgtaatg
946





tcatctttgc tacttctatt ccaatagaaa tgaataaagc tttaaagagc (SEQ ID NO: 33)
996











SEQ ID NO: 34










Met Ser Thr Glu Ser Tyr Glu Asp Ala Ile Lys Arg Leu Gly Glu Leu




1         5           10          15





Leu Ser Lys Lys Ser Asp Leu Gly Asn Val Ala Ala Ala Lys Ile Lys


       20           25          30





Lys Leu Thr Asp Glu Leu Glu Glu Leu Asp Ser Asn Lys Leu Asp Ala


    35           40          45





Val Glu Arg Ile Lys Ser Gly Phe Leu His Phe Lys Thr Asn Asn Tyr


  50            55           60





Glu Lys Asn Pro Thr Leu Tyr Asn Ser Leu Ala Lys Ser Gln Thr Pro


65           70          75           80





Lys Phe Leu Val Phe Ala Cys Ala Asp Ser Arg Val Ser Pro Ser His


         85           90          95





Ile Leu Asn Phe Gln Leu Gly Glu Ala Phe Ile Val Arg Asn Ile Ala


       100         105          110





Asn Met Val Pro Pro Tyr Asp Lys Thr Lys His Ser Asn Val Gly Ala


    115          120           125





Ala Leu Glu Tyr Pro Ile Thr Val Leu Asn Val Glu Asn Ile Leu Val


  130          135           140





Ile Gly His Ser Cys Cys Gly Gly Ile Lys Gly Leu Met Ala Ile Glu


145           150         155           160





Asp Asn Thr Ala Pro Thr Lys Thr Glu Phe Ile Glu Asn Trp Ile Gln


        165           170          175





Ile Cys Ala Pro Ala Lys Asn Arg Ile Lys Gln Asp Cys Lys Asp Leu


       180          185            190





Ser Phe Glu Asp Gln Cys Thr Asn Cys Glu Lys Glu Ala Val Asn Val


    195           200         205





Ser Leu Gly Asn Leu Leu Ser Tyr Pro Phe Val Arg Glu Arg Val Val


  210          215          220





Lys Asn Lys Leu Ala Ile Arg Gly Ala His Tyr Asp Phe Val Lys Gly


225         230            235          240





Thr Phe Asp Leu Trp Glu Leu Asp Phe Lys Thr Thr Pro Ala Phe Ala


         245          250         255





Leu Ser











SEQ ID NO: 35/SEQ ID NO: 36










attgttgtgt aaaactcttg ttcctcttcc tcttcaacgt gaacacttct atttctcaga
60






gaacattcac ctatatgtct ttcttcaagg agaagtcttc ctctttccag atttagatga
120





acactcttca gatgccttgt gccttattga tccagattcg aagtacccaa ctttactctc
180





tagacctttt tc atg gca gcc act ccc aca cac ttc tct gtc tec cat gat
231


Met Ala Ala Thr Pro Thr His Phe Ser Val Ser His Asp


1          5            10





cct ttt tct tcc acg tct ctc ctt aat ctc caa act caa gcg atc ttt
279


Pro Phe Ser Ser Thr Ser Leu Leu Asn Leu Gln Thr Gln Ala Ile Phe


  15            20          25





ggt ccc aat cac agt tta aag aca acc cag ttg aga att cca gct tct
327


Gly Pro Asn His Ser Leu Lys Thr Thr Gln Leu Arg Ile Pro Ala Ser


30          35           40            45





ttc aga aga aaa gct aca aac ttg caa gtg atg gct tca gga aag aca
375


Phe Arg Arg Lys Ala Thr Asn Leu Gln Val Met Ala Ser Gly Lys Thr


         50           55         60





cct gga ctg act cag gaa gct aat ggg gtt gca att gat aga caa aac
423


Pro Gly Leu Thr Gln Glu Ala Asn Gly Val Ala Ile Asp Arg Gln Asn


       65          70          75





aac act gat gta ttt gac gac atg aaa cag cgg ttc ctg gcc ttc aag
471


Asn Thr Asp Val Phe Asp Asp Met Lys Gln Arg Phe Leu Ala Phe Lys


    80           85          90





aag ctt aag tac atc agg gat gac ttt gaa cac tac aaa aat ctg gca
519


Lys Leu Lys Tyr Ile Arg Asp Asp Phe Glu His Tyr Lys Asn Leu Ala


  95          100          105





gat gct caa gct cca aag ttt ctg gtg att gct tgt gca gac tct aga
567


Asp Ala Gln Ala Pro Lys Phe Leu Val Ile Ala Cys Ala Asp Ser Arg


110          115          120           125





gtt tgt cct tct gct gtc ctg gga ttc caa ccg ggt gac gca ttc act
615


Val Cys Pro Ser Ala Val Leu Gly Phe Gln Pro Gly Asp Ala Phe Thr


         130            135         140





gtt cgt aac att gca aat tta gta cct cca tat gag tct gga cct act
663


Val Arg Asn Ile Ala Asn Leu Val Pro Pro Tyr Glu Ser Gly Pro Thr


       145           150          155





gaa acc aaa gct gct cta gag ttc tct gtg aat act ctt aat gtg gaa
711


Glu Thr Lys Ala Ala Leu Glu Phe Ser Val Asn Thr Leu Asn Val Glu


    160           165          170





aac atc tta gtc att ggt cat agc cgg tgt gga gga att caa gct tta
759


Asn Ile Leu Val Ile Gly His Ser Arg Cys Gly Gly Ile Gln Ala Leu


  175            180           185





atg aaa atg gaa gac gaa gga gat tcc aga agt ttc ata cac aac tgg
807


Met Lys Met Glu Asp Glu Gly Asp Ser Arg Ser Phe Ile His Asn Trp


190         195          200         205





gta gtt gtg gga aag aag gca aag gaa agc aca aaa gct gtt gct tca
855


Val Val Val Gly Lys Lys Ala Lys Glu Ser Thr Lys Ala Val Ala Ser


         210            215          220





aac ctc cat ttt gat cat cag tgc caa cat tgt gaa aag gca tcg ata
903


Asn Leu His Phe Asp His Gln Cys Gln His Cys Glu Lys Ala Ser Ile


      225           230         235





aat cat tca tta gaa agg ctg ctt ggg tac ccg tgg ata gaa gag aaa
951


Asn His Ser Leu Glu Arg Leu Leu Gly Tyr Pro Trp Ile Glu Glu Lys


    240         245         250





gtg cgg caa ggt tca ctg tct ctc cat ggt gga tac tat aat ttt gtt
999


Val Arg Gln Gly Ser Leu Ser Leu His Gly Gly Tyr Tyr Asn Phe Val


   255          260          265





gat tgt acg ttc gag aaa tgg aca gtg gat tat gca gca agc aga ggt
1047


Asp Cys Thr Phe Glu Lys Trp Thr Val Asp Tyr Ala Ala Ser Arg Gly


270          275          280           285





aag aag aag gaa ggc agt gga atc gct gtt aaa gac cgg tca gtt tgg
1095


Lys Lys Lys Glu Gly Ser Gly Ile Ala Val Lys Asp Arg Ser Val Trp


         290          295           300





tct tgacttacga ctatctcaat cttcatagag ttttttttca taatttatag
1148


Ser (SEQ ID NO: 36)





agaaacatca aacccctttt ggttgggatt atcatgtgtt tgttccactt gtgtgttgaa
1208





gtcattttcc ttcttctgtc ttattgaggc agggactaat gtttgtttta tctttcagtt
1268





gtttcgttta aattccacat ttgtgcaatg aactggttgg tgtttcttta agatataatc
1328





attttgccac tgtagtgaga tcggaggcat gcat (SEQ ID NO: 35)
1362











SEQ ID NO: 36










Met Ala Ala Thr Pro Thr His Phe Ser Val Ser His Asp Pro Phe Ser




1        5            10          15





Ser Thr Ser Leu Leu Asn Leu Gln Thr Gln Ala Ile Phe Gly Pro Asn


       20           25          30





His Ser Leu Lys Thr Thr Gln Leu Arg Ile Pro Ala Ser Phe Arg Arg


    35          40           45





Lys Ala Thr Asn Leu Gln Val Met Ala Ser Gly Lys Thr Pro Gly Leu


  50           55           60





Thr Gln Glu Ala Asn Gly Val Ala Ile Asp Arg Gln Asn Asn Thr Asp


65           70          75           80





Val Phe Asp Asp Met Lys Gln Arg Phe Leu Ala Phe Lys Lys Leu Lys


         85          90           95





Tyr Ile Arg Asp Asp Phe Glu His Tyr Lys Asn Leu Ala Asp Ala Gln


        100          105          110





Ala Pro Lys Phe Leu Val Ile Ala Cys Ala Asp Ser Arg Val Cys Pro


    115          120            125





Ser Ala Val Leu Gly Phe Gln Pro Gly Asp Ala Phe Thr Val Arg Asn


  130           135           140





Ile Ala Asn Leu Val Pro Pro Tyr Glu Ser Gly Pro Thr Glu Thr Lys


145           150           155           160





Ala Ala Leu Glu Phe Ser Val Asn Thr Leu Asn Val Glu Asn Ile Leu


         165          170           175





Val Ile Gly His Ser Arg Cys Gly Gly Ile Gln Ala Leu Met Lys Met


        180           185          190





Glu Asp Glu Gly Asp Ser Arg Ser Phe Ile His Asn Trp Val Val Val


    195          200           205





Gly Lys Lys Ala Lys Glu Ser Thr Lys Ala Val Ala Ser Asn Leu His


  210           215          220





Phe Asp His Gln Cys Gln His Cys Glu Lys Ala Ser Ile Asn His Ser


225          230          235           240





Leu Glu Arg Leu Leu Gly Tyr Pro Trp Ile Glu Glu Lys Val Arg Gln


         245         250           255





Gly Ser Leu Ser Leu His Gly Gly Tyr Tyr Asn Phe Val Asp Cys Thr


       260          265           270





Phe Glu Lys Trp Thr Val Asp Tyr Ala Ala Ser Arg Gly Lys Lys Lys


    275           280          285





Glu Gly Ser Gly Ile Ala Val Lys Asp Arg Ser Val Trp Ser


  290           295            300











SEQ ID NO: 37/SEQ ID NO: 38










atattaaacc actgtaactg taatttattg tttcgccgtc ccggaatgtt cctgttgaaa
60






tccattttcg ctgatttttt ttcttccgtc tcttcttcag cttcgaccat tttcgtcttc
120





ttcattcagt gttgagtcct cgtttacctg tgagctcgaa gaaagtgacg atca atg
177


                                      Met


                                      1





gga acc cta ggc aga gca ttt tac tcg gtc ggt ttt tgg atc cgt gag
225


Gly Thr Leu Gly Arg Ala Phe Tyr Ser Val Gly Phe Trp Ile Arg Glu


       5          10             15





act ggt caa gct ctt gat cgc ctc ggt tgt cgc ctt caa ggc aaa aat
273


Thr Gly Gln Ala Leu Asp Arg Leu Gly Cys Arg Leu Gln Gly Lys Asn


    20           25           30





tac ttc cga gaa caa ctg tca agg cat cgg aca ctg atg aat gta ttt
321


Tyr Phe Arg Glu Gln Leu Ser Arg His Arg Thr Leu Met Asn Val Phe


  35           40           45





gat aag gct ccg att gtg gac aag gaa gct ttt gtg gca cca agc gcc
369


Asp Lys Ala Pro Ile Val Asp Lys Glu Ala Phe Val Ala Pro Ser Ala


50           55            60           65





tca gtt att ggg gac gtt cac att gga aga gga tcg tcc att tgg tat
417


Ser Val Ile Gly Asp Val His Ile Gly Arg Gly Ser Ser Ile Trp Tyr


           70           75           80





gga tgc gta tta cga ggc gat gtg aac acc gta agt gtt ggg tca gga
465


Gly Cys Val Leu Arg Gly Asp Val Asn Thr Val Ser Val Gly Ser Gly


      85           90           95





act aat att cag gac aac tca ctt gtg cat gtg gca aaa tca aac tta
513


Thr Asn Ile Gln Asp Asn Ser Leu Val His Val Ala Lys Ser Asn Leu


    100           105           110





agc ggg aag gtg cac cca acc ata att gga gac aat gta acc att ggt
561


Ser Gly Lys Val His Pro Thr Ile Ile Gly Asp Asn Val Thr Ile Gly


  115           120            125





cat agt gct gtt tta cat gga tgt act gtt gag gat gag acc ttt att
609


His Ser Ala Val Leu His Gly Cys Thr Val Glu Asp Glu Thr Phe Ile


130           135          140          145





ggg atg ggt gcg aca ctt ctt gat ggg gtc gtt gtt gaa aag cat ggg
657


Gly Met Gly Ala Thr Leu Leu Asp Gly Val Val Val Glu Lys His Gly


        150           155          160





atg gtt gct gct ggt gca ctt gta cga caa aac acc aga att cct tct
705


Met Val Ala Ala Gly Ala Leu Val Arg Gln Asn Thr Arg Ile Pro Ser


      165           170           175





gga gag gta tgg gga gga aac cca gca agg ttc ctc agg aag ctc act
753


Gly Glu Val Trp Gly Gly Asn Pro Ala Arg Phe Leu Arg Lys Leu Thr


    180           185         190





gat gag gaa att gct ttt atc tct cag tca gca aca aac tac tca aac
801


Asp Glu Glu Ile Ala Phe Ile Ser Gln Ser Ala Thr Asn Tyr Ser Asn


  195           200            205





ctc gca cag gct cac gct gca gag aat gca aag cca tta aat gtg att
849


Leu Ala Gln Ala His Ala Ala Glu Asn Ala Lys Pro Leu Asn Val Ile


210          215           220          225





gag ttc gag aag gtt cta cgc aag aag cat gct cta aag gac gag gag
897


Glu Phe Glu Lys Val Leu Arg Lys Lys His Ala Leu Lys Asp Glu Glu


         230          235           240





tat gac tca atg ctc gga ata gtg aga gaa act cca cca gag ctt aac
945


Tyr Asp Ser Met Leu Gly Ile Val Arg Glu Thr Pro Pro Gln Leu Asn


       245          250            255





ctc cct aac aac ata ctg cct gat aaa gaa acc aag cgt cct tct aat
993


Leu Pro Asn Asn Ile Leu Pro Asp Lys Glu Thr Lys Arg Pro Ser Asn


    260          265          270





gtg aac tga tttttcaggg gtatgttttc tggccgaagc cctacagggt
1042


Val Asn (SEQ ID NO: 38)


  275





gagatactca aggggattat gtttcggtct ctggtttgaa tatggcaggt agagtacatt
1102





agggtagacg gatttacagc ttttgaagaa gctatgttca acattttttc atggtttctt
1162





agggagtatt attgtctaat caaactttgt atgttatcac ttcggtcttt tgaacgtaag
1222





aatcaagttc atgaaacatg agtgaatatt agtctgatgc atgtgcgtat gcaaaaatcc
1282





atgtgcgcct atgttgctag gcaagcatga agaataaaga tccaaactgg atatatcata
1342





tatttatctt tttataatta ctgc (SEQ ID NO: 37)
1366











SEQ ID NO: 38










Met Gly Thr Leu Gly Arg Ala Phe Tyr Ser Val Gly Phe Trp Ile Arg




1        5           10           15





Glu Thr Gly Gln Ala Leu Asp Arg Leu Gly Cys Arg Leu Gln Gly Lys


       20           25          30





Asn Tyr Phe Arg Glu Gln Leu Ser Arg His Arg Thr Leu Met Asn Val


    35          40          45





Phe Asp Lys Ala Pro Ile Val Asp Lys Glu Ala Phe Val Ala Pro Ser


  50           55            60





Ala Ser Val Ile Gly Asp Val His Ile Gly Arg Gly Ser Ser Ile Trp


65            70           75             80





Tyr Gly Cys Val Leu Arg Gly Asp Val Asn Thr Val Ser Val Gly Ser


         85           90          95





Gly Thr Asn Ile Gln Asp Asn Ser Leu Val His Val Ala Lys Ser Asn


       100           105          110





Leu Ser Gly Lys Val His Pro Thr Ile Ile Gly Asp Asn Val Thr Ile


    115          120           125





Gly His Ser Ala Val Leu His Gly Cys Thr Val Glu Asp Glu Thr Phe


  130           135           140





Ile Gly Met Gly Ala Thr Leu Leu Asp Gly Val Val Val Glu Lys His


145           150          155          160





Gly Met Val Ala Ala Gly Ala Leu Val Arg Gln Asn Thr Arg Ile Pro


         165           170          175





Ser Gly Glu Val Trp Gly Gly Asn Pro Ala Arg Phe Leu Arg Lys Leu


       180           185          190





Thr Asp Glu Glu Ile Ala Phe Ile Ser Gln Ser Ala Thr Asn Tyr Ser


     195          200           205





Asn Leu Ala Gln Ala His Ala Ala Glu Asn Ala Lys Pro Leu Asn Val


  210          215           220





Ile Glu Phe Glu Lys Val Leu Arg Lys Lys His Ala Leu Lys Asp Glu


225           230           235          240





Glu Tyr Asp Ser Met Leu Gly Ile Val Arg Glu Thr Pro Pro Glu Leu


         245         250            255





Asn Leu Pro Asn Asn Ile Leu Pro Asp Lys Glu Thr Lys Arg Pro Ser


      260           265           270





Asn Val Asn


    275











SEQ ID NO: 39/SEQ ID NO: 40










cgaactcact cgagttaaaa aaaaaaatcc tcccatcaat acgcctccat aaacctctct
60






ctatctggtg gagcgacacc aaaaacaaca aagccttctc attttcacac tttgggtaat
120





cggagaatca caaaaaa atg gga acc cta gga cga gca att tac act gtg
170





           Met Gly Thr Leu Gly Arg Ala Ile Tyr Thr Val


           1        5           10





ggt aac tgg att cgt gga act ggt caa gct ctt gat cgc gtt ggt tct
218


Gly Asn Trp Ile Arg Gly Thr Gly Gln Ala Leu Asp Arg Val Gly Ser


      15           20           25





ctt ctt caa gga agt cac cgt atc gag gaa cat ctg tcg agg cat cgg
266


Leu Leu Gln Gly Ser His Arg Ile Glu Glu His Leu Ser Arg His Arg


    30           35            40





acg ttg atg aat gtg ttt gat aaa tca cca ttg gtg gat aaa gat gtg
314


Thr Leu Met Asn Val Phe Asp Lys Ser Pro Leu Val Asp Lys Asp Val


  45          50           55





ttt gtg gct ccg agt gct tct gtt att ggt gat gtt cag atc gga aaa
362


Phe Val Ala Pro Ser Ala Ser Val Ile Gly Asp Val Gln Ile Gly Lys


60           65            70            75





ggc tcg tcg att tgg tat ggc tgt gtt ctt cga ggt gat gtg aat aac
410


Gly Ser Ser Ile Trp Tyr Gly Cys Val Leu Arg Gly Asp Val Asn Asn


         80           85           90





atc agt gtt gga tct ggg acg aat atc caa gat aat acg ctt gta cat
458


Ile Ser Val Gly Ser Gly Thr Asn Ile Gln Asp Asn Thr Leu Val His


        95           100            105





gtt gca aag acc aac ata agt ggc aag gtt cta cct act ctg att ggg
506


Val Ala Lys Thr Asn Ile Ser Gly Lys Val Leu Pro Thr Leu Ile Gly


     110          115           120





gac aat gta aca gta ggt cac agt gct gtc att cat ggg tgt act gtt
554


Asp Asn Val Thr Val Gly His Ser Ala Val Ile His Gly Cys Thr Val


  125          130           135





gag gat gat gct ttt gtt ggt atg gga gca aca cta ctt gat ggt gtg
602


Glu Asp Asp Ala Phe Val Gly Met Gly Ala Thr Leu Leu Asp Gly Val


140          145          150           155





gtg gtt gag aaa cat gcc atg gtt gct gct ggt tct ctt gtg aaa cag
650


Val Val Glu Lys His Ala Met Val Ala Ala Gly Ser Leu Val Lys Gln


         160           165           170





aac acg cga atc cct tct gga gag gtg tgg gga gga aat cca gca aag
698


Asn Thr Arg Ile Pro Ser Gly Glu Val Trp Gly Gly Asn Pro Ala Lys


      175           180           185





ttc atg aga aag tta aca gat gaa gag ata gta tac atc tca cag tca
746


Phe Met Arg Lys Leu Thr Asp Glu Glu Ile Val Tyr Ile Ser Gln Ser


    190          195          200





gca aag aat tac atc aat ctc gca cag att cac gcc tca gag aat tca
794


Ala Lys Asn Tyr Ile Asn Leu Ala Gln Ile His Ala Ser Glu Asn Ser


  205          210          215





aag tca ttt gag cag atc gag gtt gag aga gcg ctt agg aag aag tat
842


Lys Ser Phe Glu Gln Ile Glu Val Glu Arg Ala Leu Arg Lys Lys Tyr


220          225           230           235





gca cgc aag gac gag gat tac gat tca atg ctt ggg att acc cgt gaa
890


Ala Arg Lys Asp Glu Asp Tyr Asp Ser Met Leu Gly Ile Thr Arg Glu


         240          245           250





act cca ccg gag ttg att ctt ccc gac aat gtc tta cca ggt ggt aaa
938


Thr Pro Pro Glu Leu Ile Leu Pro Asp Asn Val Leu Pro Gly Gly Lys


       255           260           265





ccc gtc gcc aag gtt ccg tct act cag tac ttc taa ttccaatctc
984


Pro Val Ala Lys Val Pro Ser Thr Gln Tyr Phe (SEQ ID NO: 40)


    270          275





aggttgtttt tgtgtgttga aatcatttca agacaggatt gattctctgg aaggtcaaga
1044





gagatattat tttggtttta acttttcttc cgagcaagca ggagatttat catccttgct
1104





caataatgta tggttgcatt atgaagtcat ttcttcgagg aacaatttgc agaaagagaa
1164





acaaagttgg attaatcttt c (SEQ ID NO: 39)
1185











SEQ ID NO: 40










Met Gly Thr Leu Gly Arg Ala Ile Tyr Thr Val Gly Asn Trp Ile Arg




1        5           10            15





Gly Thr Gly Gln Ala Leu Asp Arg Val Gly Ser Leu Leu Gln Gly Ser


      20          25          30





His Arg Ile Glu Glu His Leu Ser Arg His Arg Thr Leu Met Asn Val


     35           40           45





Phe Asp Lys Ser Pro Leu Val Asp Lys Asp Val Phe Val Ala Pro Ser


  50           55           60





Ala Ser Val Ile Gly Asp Val Gln Ile Gly Lys Gly Ser Ser Ile Trp


65           70           75            80





Tyr Gly Cys Val Leu Arg Gly Asp Val Asn Asn Ile Ser Val Gly Ser


         85           90          95





Gly Thr Asn Ile Gln Asp Asn Thr Leu Val His Val Ala Lys Thr Asn


       100           105          110





Ile Ser Gly Lys Val Leu Pro Thr Leu Ile Gly Asp Asn Val Thr Val


     115          120           125





Gly His Ser Ala Val Ile His Gly Cys Thr Val Glu Asp Asp Ala Phe


  130           135            140





Val Gly Met Gly Ala Thr Leu Leu Asp Gly Val Val Val Glu Lys His


145          150          155          160





Ala Met Val Ala Ala Gly Ser Leu Val Lys Gln Asn Thr Arg Ile Pro


         165            170           175





Ser Gly Glu Val Trp Gly Gly Asn Pro Ala Lys Phe Met Arg Lys Leu


       180          185          190





Thr Asp Glu Glu Ile Val Tyr Ile Ser Gln Ser Ala Lys Asn Tyr Ile


    195            200           205





Asn Leu Ala Gln Ile His Ala Ser Glu Asn Ser Lys Ser Phe Glu Gln


  210          215           220





Ile Glu Val Glu Arg Ala Leu Arg Lys Lys Tyr Ala Arg Lys Asp Glu


225           230           235          240





Asp Tyr Asp Ser Met Leu Gly Ile Thr Arg Glu Thr Pro Pro Glu Leu


        245         250           255





Ile Leu Pro Asp Asn Val Leu Pro Gly Gly Lys Pro Val Ala Lys Val


        260         265          270





Pro Ser Thr Gln Tyr Phe


    275











SEQ ID NO: 41/SEQ ID NO: 42










caaagactgc actctctcct cttcctctgg ctccggcgaa aaaccccttt tcgatttcat
60






tgataaaacg caaatcgatc tctcgtgtgg aagaagaaga agaacacg atg gga aca
117


                                 Met Gly Thr


                                 1





atg ggt aaa gca ttc tac agc gta gga ttc tgg atc cgt gaa act ggt
165


Met Gly Lys Ala Phe Tyr Ser Val Gly Phe Trp Ile Arg Glu Thr Gly


 5            10            15





caa gca ctt gat cgg ctc ggt tgt cgc ctc caa ggg aaa aat cat ttc
213


Gln Ala Leu Asp Arg Leu Gly Cys Arg Leu Gln Gly Lys Asn His Phe


20           25          30          35





cga gaa cag cta tca agg cac cgc aca ctc atg aat gtt ttt gac aaa
261


Arg Glu Gln Leu Ser Arg His Arg Thr Leu Met Asn Val Phe Asp Lys


         40          45          50





acc cct aat gtg gat aag ggg gct ttt gtg gct cct aac gct tct ctc
309


Thr Pro Asn Val Asp Lys Gly Ala Phe Val Ala Pro Asn Ala Ser Leu


       55           60           65





tct ggt gat gtc cat gtg gga aga ggt tct tcc att tgg tat gga tgt
357


Ser Gly Asp Val His Val Gly Arg Gly Ser Ser Ile Trp Tyr Gly Cys


     70           75           80





gtc ttg aga gac ata ccc ttt gat tta atg acc gac tct gca gga gat
405


Val Leu Arg Asp Ile Pro Phe Asp Leu Met Thr Asp Ser Ala Gly Asp


  85           90            95





gct aac agc att agt gtt gga gct ggg acc aat att cag gac aac gct
453


Ala Asn Ser Ile Ser Val Gly Ala Gly Thr Asn Ile Gln Asp Asn Ala


100           105           110          115





ctt gtc cac gtt gct aag acc aac tta agt ggg aag gtc tta cct act
501


Leu Val His Val Ala Lys Thr Asn Leu Ser Gly Lys Val Leu Pro Thr


         120           125         130





gtc att gga gac aat gtc acc att ggt cat agt gct gtt tta cat ggc
549


Val Ile Gly Asp Asn Val Thr Ile Gly His Ser Ala Val Leu His Gly


        135          140            145





tgc act gtc gag gat gag gcc tat att ggt aca agt gca act gtc ttg
597


Cys Thr Val Glu Asp Glu Ala Tyr Ile Gly Thr Ser Ala Thr Val Leu


    150           155            160





gat gga gct cat gtt gaa aaa cat gcc atg gtt gct tca gga gct ctt
645


Asp Gly Ala His Val Glu Lys His Ala Met Val Ala Ser Gly Ala Leu


  165          170           175





gtt agg cag aac act aga att ccc tct ggc gag gtt tgg gga ggc aac
693


Val Arg Gln Asn Thr Arg Ile Pro Ser Gly Glu Val Trp Gly Gly Asn


180          185            190          195





cca gct aaa ttt ctg agg aag gtg aca gaa gaa gaa aga gtc ttc ttc
741


Pro Ala Lys Phe Leu Arg Lys Val Thr Glu Glu Glu Arg Val Phe Phe


         200          205          210





tcc agt tcg gct gtg gag tac tcc aac tta gct caa gct cac gcc aca
789


Ser Ser Ser Ala Val Glu Tyr Ser Asn Leu Ala Gln Ala His Ala Thr


       215          220            225





gag aac gca aag aac ttg gac gag gct gag ttc aag aag ctt cta aac
837


Glu Asn Ala Lys Asn Leu Asp Glu Ala Glu Phe Lys Lys Leu Leu Asn


    230          235          240





aag aag aac gct cgc gat aca gaa tat gat tca gta ctc gat gat ctc
885


Lys Lys Asn Ala Arg Asp Thr Glu Tyr Asp Ser Val Leu Asp Asp Leu


  245           250         255





acg ctc cct gag aat gta cca aaa gca gct tga ggcgtttaac ctgtgccgcc
938


Thr Leu Pro Glu Asn Val Pro Lys Ala Ala (SEQ ID NO: 42)


260          265





ttgcgaatct tgatttgttt ggatttgaaa agtaaaaaca aagaacttga tttcctgctt
998





ctccaataaa gttttcttgg gcgtaaaatc cattggccag tgctcactgg gaaagttttc
1058





ggcttaaagg cattcatttc tctgttaaag attgtgaggg gttttgttct cttgtaactt
1118





gagaaagaaa agttgtaacc ttttcttcct ttttatgtcg tctaataaat tgttgatcag
1178





acagacattt aggttgacct ttgcccataa aaagatagct ctgcttcaat aa (SEQ ID NO: 41)
1230











SEQ ID NO: 42










Met Gly Thr Met Gly Lys Ala Phe Tyr Ser Val Gly Phe Trp Ile Arg




1        5           10           15





Glu Thr Gly Gln Ala Leu Asp Arg Leu Gly Cys Arg Leu Gln Gly Lys


       20           25          30





Asn His Phe Arg Glu Gln Leu Ser Arg His Arg Thr Leu Met Asn Val


    35           40         45





Phe Asp Lys Thr Pro Asn Val Asp Lys Gly Ala Phe Val Ala Pro Asn


  50          55           60





Ala Ser Leu Ser Gly Asp Val His Val Gly Arg Gly Ser Ser Ile Trp


65           70          75            80





Tyr Gly Cys Val Leu Arg Asp Ile Pro Phe Asp Leu Met Thr Asp Ser


         85           90            95





Ala Gly Asp Ala Asn Ser Ile Ser Val Gly Ala Gly Thr Asn Ile Gln


       100          105            110





Asp Asn Ala Leu Val His Val Ala Lys Thr Asn Leu Ser Gly Lys Val


    115          120            125





Leu Pro Thr Val Ile Gly Asp Asn Val Thr Ile Gly His Ser Ala Val


  130           135          140





Leu His Gly Cys Thr Val Glu Asp Glu Ala Tyr Ile Gly Thr Ser Ala


145          150          155          160





Thr Val Leu Asp Gly Ala His Val Glu Lys His Ala Met Val Ala Ser


         165         170         175





Gly Ala Leu Val Arg Gln Asn Thr Arg Ile Pro Ser Gly Glu Val Trp


       180          185          190





Gly Gly Asn Pro Ala Lys Phe Leu Arg Lys Val Thr Glu Glu Glu Arg


    195          200          205





Val Phe Phe Ser Ser Ser Ala Val Glu Tyr Ser Asn Leu Ala Gln Ala


  210           215           220





His Ala Thr Glu Asn Ala Lys Asn Leu Asp Glu Ala Glu Phe Lys Lys


225          230         235          240





Leu Leu Asn Lys Lys Asn Ala Arg Asp Thr Glu Tyr Asp Ser Val Leu


        245          250          255





Asp Asp Leu Thr Leu Pro Glu Asn Val Pro Lys Ala Ala


      260          265











SEQ ID NO: 43/SEQ ID NO: 44










actctctctc ttttcctctt tgcaaatcct tgaagaaatc caaaatccat agca atg
57



                             Met


                             1





gcg act tcg ata gct cga ttg tct cgg aga gga gtc act tct aac ctg
105


Ala Thr Ser Ile Ala Arg Leu Ser Arg Arg Gly Val Thr Ser Asn Leu


       5             10          15





atc cgt cgt tgc ttc gct gcg gaa gcg gcg ttg gcg agg aag aca gag
153


Ile Arg Arg Cys Phe Ala Ala Glu Ala Ala Leu Ala Arg Lys Thr Glu


    20           25           30





tta cct aaa ccg caa ttc acg gtg tcg ccg tcg acg gat cgt gtg aaa
201


Leu Pro Lys Pro Gln Phe Thr Val Ser Pro Ser Thr Asp Arg Val Lys


  35           40           45





tgg gac tac aga ggc caa cga cag atc att cct ttg gga cag tgg ctt
249


Trp Asp Tyr Arg Gly Gln Arg Gln Ile Ile Pro Leu Gly Gln Trp Leu


50             55          60             65





ccg aag gta gcc gtt gat gct tac gtg gca ccc aac gtt gtg ctg gct
297


Pro Lys Val Ala Val Asp Ala Tyr Val Ala Pro Asn Val Val Leu Ala


         70            75           80





ggt cag gtc aca gtc tgg gac ggc tcg tct gtt tgg aac ggt gcc gtt
345


Gly Gln Val Thr Val Trp Asp Gly Ser Ser Val Trp Asn Gly Ala Val


      85           90           95





ttg cgc ggc gat ctc aac aaa atc act gtt gga ttc tgc tcg aat gta
393


Leu Arg Gly Asp Leu Asn Lys Ile Thr Val Gly Phe Cys Ser Asn Val


    100          105           110





cag gaa cgg tgt gtt gtt cat gcc gcc tgg tct tcc cca aca gga tta
441


Gln Glu Arg Cys Val Val His Ala Ala Trp Ser Ser Pro Thr Gly Leu


  115          120           125





cca gca gcg aca ata atc gac agg tat gtg aca gta ggt gcc tac agt
489


Pro Ala Ala Thr Ile Ile Asp Arg Tyr Val Thr Val Gly Ala Tyr Scr


130           135             140           145





ctt ctg aga tca tgt acc atc gaa cca gag tgc atc atc ggt caa cac
537


Leu Leu Arg Ser Cys Thr Ile Glu Pro Glu Cys Ile Ile Gly Gln His


         150          155            160





tca ata cta atg gaa ggc tca ctg gtt gag acc cgg tca atc ttg gaa
585


Ser Ile Leu Met Glu Gly Ser Leu Val Glu Thr Arg Ser Ile Leu Glu


        165          170          175





gcg ggt tca gtt gtg ccg cca gga aga agg atc cca tca ggt gaa cta
633


Ala Gly Ser Val Val Pro Pro Gly Arg Arg Ile Pro Ser Gly Glu Leu


    180           185         190





tgg gga ggc aat cca gca aga ttc att aga acc cta acc aac gaa gaa
681


Trp Gly Gly Asn Pro Ala Arg Phe Ile Arg Thr Leu Thr Asn Glu Glu


  195          200          205





acc cta gag atc cca aaa ctc gct gta gcc atc aac cac tta agc gga
729


Thr Leu Glu Ile Pro Lys Leu Ala Val Ala Ile Asn His Leu Ser Gly


210           215          220           225





gat tac ttc tct gag ttc cta cct tac tca act gtc tac tta gag gta
777


Asp Tyr Phe Ser Glu Phe Leu Pro Tyr Ser Thr Val Tyr Leu Glu Val


         230          235           240





gag aag ttc aag aag tcc ctt ggg atc gcc gtt tag aag cttcatctt
826


Glu Lys Phe Lys Lys Ser Leu Gly Ile Ala Val Lys (SEQ ID NO : 44)


      245           250





ttcgtgattc actttcatgt gtttatctat catatgaggt ctttctctct gcatattgca
886





ataagtagct gatgaacatc aaaacaagtc cggctctctt ttttggttct aaaacgtttg
946





tcatttcgtt ttttgggttc tttgtaaaat tccatttaaa actgattttg gctgaatatt
1006





gtctgaatga taatggcgac gacttctggt tttgtt (SEQ ID NO: 43)
1042











SEQ ID NO: 44










Met Ala Thr Ser Ile Ala Arg Leu Ser Arg Arg Gly Val Thr Ser Asn




1         5             10           15





Leu Ile Arg Arg Cys Phe Ala Ala Glu Ala Ala Leu Ala Arg Lys Thr


        20          25           30





Glu Leu Pro Lys Pro Gln Phe Thr Val Ser Pro Ser Thr Asp Arg Val


    35            40           45





Lys Trp Asp Tyr Arg Gly Gln Arg Gln Ile Ile Pro Leu Gly Gln Trp


  50           55          60





Leu Pro Lys Val Ala Val Asp Ala Tyr Val Ala Pro Asn Val Val Leu


65           70           75            80





Ala Gly Gln Val Thr Val Trp Asp Gly Ser Ser Val Trp Asn Gly Ala


         85           90           95





Val Leu Arg Gly Asp Leu Asn Lys Ile Thr Val Gly Phe Cys Ser Asn


       100         105           110





Val Gln Glu Arg Cys Val Val His Ala Ala Trp Ser Ser Pro Thr Gly


    115          120           125





Leu Pro Ala Ala Thr Ile Ile Asp Arg Tyr Val Thr Val Gly Ala Tyr


  130           135            140





Ser Leu Leu Arg Ser Cys Thr Ile Glu Pro Glu Cys Ile Ile Gly Gln


145          150           155           160





His Ser Ile Leu Met Glu Gly Ser Leu Val Glu Thr Arg Ser Ile Leu


          165          170          175





Glu Ala Gly Ser Val Val Pro Pro Gly Arg Arg Ile Pro Ser Gly Glu


       180           185           190





Leu Trp Gly Gly Asn Pro Ala Arg Phe Ile Arg Thr Leu Thr Asn Glu


    195           200           205





Glu Thr Leu Glu Ile Pro Lys Leu Ala Val Ala Ile Asn His Leu Ser


  210           215           220





Gly Asp Tyr Phe Ser Glu Phe Leu Pro Tyr Ser Thr Val Tyr Leu Glu


225          230          235           240





Val Glu Lys Phe Lys Lys Ser Leu Gly Ile Ala Val


         245           250











SEQ ID NO: 45/SEQ ID NO: 46










ctcccgacga ctcctctctg tctcctcctc cgggaagctt tctgtctctc tctctctctc
60






tctacacaag accttgaaga atccgattcc ataaca atg gcg act tcg tta gca
114


                         Met Ala Thr Ser Leu Ala


                         1         5





cga atc tct aaa aga agc ata aca tcg gct gtt tca tcg aat ctg att
162


Arg Ile Ser Lys Arg Ser Ile Thr Ser Ala Val Ser Ser Asn Leu Ile


        10           15           20





cgg cgt tac ttc gcc gcg gaa gca gta gcg gtg gcg acg acg gaa aca
210


Arg Arg Tyr Phe Ala Ala Glu Ala Val Ala Val Ala Thr Thr Glu Thr


    25           30           35





cct aaa ccg aaa tcg cag gtg acg ccg tcg ccg gat cgg gta aaa tgg
258


Pro Lys Pro Lys Ser Gln Val Thr Pro Ser Pro Asp Arg Val Lys Trp


  40            45           50





gac tac aga ggc cag aga cag ata att cct ctg gga cag tgg cta ccg
306


Asp Tyr Arg Gly Gln Arg Gln Ile Ile Pro Leu Gly Gln Trp Leu Pro


55           60           65           70





aag gta gct gta gat gct tac gtg gca cct aac gtt gtg ttg gct ggt
354


Lys Val Ala Val Asp Ala Tyr Val Ala Pro Asn Val Val Leu Ala Gly


         75           80             85





cag gtc acc gtc tgg gac ggc tcg tct gta tgg aac ggt gcc gtt ttg
402


Gln Val Thr Val Trp Asp Gly Ser Ser Val Trp Asn Gly Ala Val Leu


      90            95          100





aga gga gat ctt aat aag atc acc gtt gga ttc tgc tca aat gtc cag
450


Arg Gly Asp Leu Asn Lys Ile Thr Val Gly Phe Cys Ser Asn Val Gln


    105          110             115





gaa cgg tgt gtt gtt cat gct gcg tgg tcg tcg cct aca gga tta cca
498


Glu Arg Cys Val Val His Ala Ala Trp Ser Ser Pro Thr Gly Leu Pro


  120          125     130





gca caa aca ttg atc gat agg tac gtg aca gtt ggt gca tac agt ctt
546


Ala Gln Thr Leu Ile Asp Arg Tyr Val Thr Val Gly Ala Tyr Ser Leu


135          140           145           150





tta aga tca tgc act atc gaa cca gaa tgc atc atc ggg caa cac tca
594


Leu Arg Ser Cys Thr Ile Glu Pro Glu Cys Ile Ile Gly Gln His Ser


         155             160          165





atc cta atg gaa ggt tca ctg gtc gaa acc cgc tca atc cta gaa gct
642


Ile Leu Met Glu Gly Ser Leu Val Glu Thr Arg Ser Ile Leu Glu Ala


        170          175          180





ggt tct gtt tta cca cct ggc aga aga atc cca tct ggt gaa cta tgg
690


Gly Ser Val Leu Pro Pro Gly Arg Arg Ile Pro Ser Gly Glu Leu Trp


    185          190          195





gga ggc aat cca gca agg ttt att cga aca ctc acc aat gaa gaa acc
738


Gly Gly Asn Pro Ala Arg Phe Ile Arg Thr Leu Thr Asn Glu Glu Thr


  200          205          210





tta gag atc ccg aaa ctt gct gtt gcc att aac cac cta agt gga gat
786


Leu Glu Ile Pro Lys Leu Ala Val Ala Ile Asn His Leu Ser Gly Asp


215           220          225           230





tac ttc tca gag ttc ttg cct tac tca act atc tat cta gag gtt gag
834


Tyr Phe Ser Glu Phe Leu Pro Tyr Ser Thr Ile Tyr Leu Glu Val Glu


        235         240           245





aag ttc aag aaa tcc ctt gga atc gcc atc tag aaa gcttcttcca
880


Lys Phe Lys Lys Ser Leu Gly Ile Ala Ile Lys (SEQ ID NO: 46)


      250            255





ggtttctggc tacttccctc attaagaaag cttcttcgtt ttcggaattt gatctgaata
940





agtagctgcg gaacaagaaa aagagcagag ctgtgtttca aatgttgtct tctctgtttg
1000





ttttgtttaa gttcatatcc ttgtgttcaa actttctatg aagatgataa tggtgaaaac
1060





tggaaagtgt aaaacttctt tcgtctcccc tcacaattgg aaaagctaat aatctcgtag
1120





tgttatagaa (SEQ ID NO: 45)
1130











SEQ ID NO: 46










Met Ala Thr Ser Leu Ala Arg Ile Ser Lys Arg Ser Ile Thr Ser Ala




1        5           10             15





Val Ser Ser Asn Leu Ile Arg Arg Tyr Phe Ala Ala Glu Ala Val Ala


        20           25           30





Val Ala Thr Thr Glu Thr Pro Lys Pro Lys Ser Gln Val Thr Pro Ser


     35          40            45





Pro Asp Arg Val Lys Trp Asp Tyr Arg Gly Gln Arg Gln Ile Ile Pro


  50            55          60





Leu Gly Gln Trp Leu Pro Lys Val Ala Val Asp Ala Tyr Val Ala Pro


65          70           75            80





Asn Val Val Leu Ala Gly Gln Val Thr Val Trp Asp Gly Ser Ser Val


         85           90            95





Trp Asn Gly Ala Val Leu Arg Gly Asp Leu Asn Lys Ile Thr Val Gly


       100           105          110





Phe Cys Ser Asn Val Gln Glu Arg Cys Val Val His Ala Ala Trp Ser


    115           120           125





Ser Pro Thr Gly Leu Pro Ala Gln Thr Leu Ile Asp Arg Tyr Val Thr


  130          135           140





Val Gly Ala Tyr Ser Leu Leu Arg Ser Cys Thr Ile Glu Pro Glu Cys


145           150           155           160





Ile Ile Gly Gln His Ser Ile Leu Met Glu Gly Ser Leu Val Glu Thr


           165           170           175





Arg Ser Ile Leu Glu Ala Gly Ser Val Leu Pro Pro Gly Arg Arg Ile


       180           185           190





Pro Ser Gly Glu Leu Trp Gly Gly Asn Pro Ala Arg Phe Ile Arg Thr


     195           200           205





Leu Thr Asn Glu Glu Thr Leu Glu Ile Pro Lys Leu Ala Val Ala Ile


  210           215           220





Asn His Leu Ser Gly Asp Tyr Phe Ser Glu Phe Leu Pro Tyr Ser Thr


225           230           235           240





Ile Tyr Leu Glu Val Glu Lys Phe Lys Lys Ser Leu Gly Ile Ala Ile


          245           250          255






A number of embodiments of the invention have been described. Nevertheless, it can be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. A method for: increasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; orincreasing the rate of growth or biomass production in a plant, plant leaf, plant organ or plant part or under conditions of drought or increased atmospheric carbon dioxide; orenhancing the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; ordown-regulating or decreasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part;comprising:(a) in a cell of the plant, plant leaf, plant organ or plant part, or in a plant guard cell, increasing the expression and/or activity of: (1) an OST1 (Open Stomata 1, also known as SnRK2.6) protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity; or(2) a protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA or a message encoding a polypeptide with SnRK2.2- or SnRK2.3 protein kinase activity (SnRK2 genes are SNF1 Related Protein Kinase Subfamily 2 genes) (SNF1 is “Sucrose non-fermenting 1”);(b) the method of (a), wherein the increasing of expression and/or activity of the OST1, SnRK2.2 or SnRK2.3 protein kinase is by: (1) providing a heterologous OST1-, SnRK2.2- or SnRK2.3-expressing nucleic acid or a gene or a message and expressing the gene, message and/or protein in the guard cell, plant, plant leaf, plant organ or plant part;(2) increasing of expression and/or activity of a homologous OST1-, SnRK2.2- or SnRK2.3-expressing nucleic acid or a gene or a message; or,(3) a combination of (1) and (2);(c) the method of (a), further comprising in the cell of the plant, plant leaf, plant organ or plant part, or in the plant guard cell, increasing the expression and/or activity of a CO2 sensor protein or a carbonic anhydrase by: (1) providing a heterologous CO2 sensor protein-expressing nucleic acid or (e.g., a gene or a message, or a carbonic anhydrase-expressing nucleic acid (e.g., a gene or message) and expressing the gene, message and/or protein in the guard cell, plant, plant leaf, plant organ or plant part;(2) increasing of expression and/or activity of a homologous CO2 sensor protein-expressing nucleic acid or a gene or a message or a homologous OST1 carbonic anhydrase-expressing nucleic acid (e.g., a gene or message); or,(3) a combination of (1) and (2); or(d) the method of (c), wherein the carbonic anhydrase is a β-carbonic anhydrase;thereby:increasing the water use efficiency of the guard cell, plant, plant leaf, plant organ or plant part; orincreasing the rate of growth or biomass production in the plant, plant leaf, plant organ or plant part; orenhancing the carbon dioxide (CO2) sensitivity of the plant, plant leaf, plant organ or plant part; ordown-regulating or decreasing carbon dioxide (CO2) and/or water exchange in the guard cell of the plant, plant leaf, plant organ or plant part.
  • 2. A method for: up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell, a plant, plant leaf, plant organ or plant part; decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; ordecreasing or desensitizing the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; orupregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part; comprising:(1) (a) in a cell of the plant, plant leaf, plant organ or plant part, or in a plant guard cell, decreasing the expression and/or activity of: (1) an OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA or message encoding a polypeptide with OST1 protein kinase activity; or(2) a protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA or message encoding a polypeptide with SnRK2.2 or SnRK2.3 protein kinase activity;(b) the method of (a), wherein the decreasing of expression and/or activity of the OST1, SnRK2.2 or SnRK2.3 protein kinase is by: (1) providing a heterologous antisense or iRNA OST1, SnRK2.2 or SnRK2.3 protein kinase nucleic acid or to decrease the expression or activity of a gene or a message, or any nucleic acid inhibitory to the expression of the OST1, SnRK2.2 or SnRK2.3 protein kinase; and,expressing the inhibitory nucleic acid, the antisense or the iRNA in the guard cell, plant, plant leaf, plant organ or plant part;(2) decreasing of expression and/or activity of a homologous OST1-, SnRK2.2- or SnRK2.3 kinase-expressing nucleic acid or a gene or a message; or, (3) a combination of (1) and (2);(c) the method of (a), further comprising in the cell of the plant, plant leaf, plant organ or plant part, or in the plant guard cell, decreasing the expression and/or activity of a CO2 sensor protein or a carbonic anhydrase by: (1) providing a heterologous antisense or iRNA to a CO2 sensor protein- or a carbonic anhydrase- expressing nucleic acid or a gene or a message, or any nucleic acid inhibitory to the expression of the CO2 sensor protein or the carbonic anhydrase, and expressing the inhibitory nucleic acid, the antisense or the iRNA in the guard cell, plant, plant leaf, plant organ or plant part;(2) decreasing of expression and/or activity of a homologous CO2 sensor protein-expressing nucleic acid or a gene or a message or a homologous carbonic anhydrase-expressing nucleic acid (e.g., a gene or message); or,(3) a combination of (1) and (2); or(d) the method of (c), wherein the carbonic anhydrase is a β-carbonic anhydrase;thereby:up-regulating or increasing carbon dioxide (CO2) and/or water exchange in the guard cell, plant, plant leaf, plant organ or plant part;decreasing the water use efficiency of the guard cell, plant, plant leaf, plant organ or plant part;increasing the rate of growth or biomass production in the plant, plant leaf, plant organ or plant part; or decreasing or desensitizing the carbon dioxide (CO2) sensitivity of the plant, plant leaf, plant organ or plant part; orup-regulating or increasing carbon dioxide (CO2) and/or water exchange in the guard cell of the plant, plant leaf, plant organ or plant part; or(2) the method of (1), wherein the polypeptide having carbonic anhydrase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with a amino acid sequence comprising SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46; or(3) the method of (1), wherein the polypeptide having carbonic anhydrase activity is encoded by a nucleotide sequence comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45; or(4) the method of (1), wherein the polypeptide having OST1 protein kinase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with an amino acid sequence comprising SEQ ID NO:12 or SEQ ID NO:14; or(5) the method of (1), wherein wherein the polypeptide having OST1 protein kinase activity is encoded by a nucleotide sequence comprising SEQ ID NO:11 or SEQ ID NO:13; or(6) the method of (1), wherein the plant is characterized by controlled CO2 exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2, or the plant is characterized by controlled water exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2; or(7) the method of (1), wherein the CO2 sensor protein-expressing nucleic acid or gene, carbonic anhydrase-expressing nucleic acid, message or gene, and/or the protein kinase-expressing nucleic acid, message or gene, is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter; or(8) the method of (1), wherein the polypeptide having carbonic anhydrase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with an amino acid sequence comprising SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46.
  • 3. The method of claim 1, wherein: (a) the polypeptide having carbonic anhydrase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with an amino acid sequence comprising SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46; or(b) the polypeptide having carbonic anhydrase activity is encoded by a nucleotide sequence comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45.
  • 4. (canceled)
  • 5. The method of claim 1, wherein: (a) the polypeptide having OST1 protein kinase activity comprises an amino acid sequence having between about 75% to 100% sequence identity with an amino acid sequence comprising SEQ ID NO:12 or SEQ ID NO:14;(b) the polypeptide having OST1 protein kinase activity is encoded by a nucleotide sequence comprising SEQ ID NO:11 or SEQ ID NO:13;(c) the plant is characterized by controlled CO2 exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2, or the plant is characterized by controlled water exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2; or(d) the CO2 sensor protein-expressing nucleic acid or gene, carbonic anhydrase-expressing nucleic acid, message or gene, and/or the protein kinase-expressing nucleic acid, message or gene, is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter.
  • 6-8. (canceled)
  • 9. The method of claim 2, wherein the: up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant cell, plant leaf, plant organ or plant part;decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; ordecreasing or desensitizing the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; orupregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part; comprises:(a) providing: (i) a nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid or a CO2 sensor gene or transcript (mRNA), each encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity; and/or(ii) a nucleic acid inhibitory or antisense to the expression of an OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid or an OST1, SnRK2.2- or SnRK2.3 protein kinase gene or transcript; and(b) expressing the nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing nucleic acid, gene or transcript or expressing an antisense, iRNA or inhibitory nucleic acid in a guard cell; and/or, expressing a nucleic acid inhibitory to the expression of the protein kinase-expressing nucleic acid, gene or transcript,thereby up-regulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell; decreasing the water use efficiency of a guard cell, a plant, plant leaf, plant organ or plant part; or decreasing or desensitizing the carbon dioxide (CO2) sensitivity of a plant, plant leaf, plant organ or plant part; or upregulating or increasing carbon dioxide (CO2) and/or water exchange in a guard cell of a plant, plant leaf, plant organ or plant part.
  • 10. The method of claim 2, wherein the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises: (a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having carbonic anhydrase activity,the polypeptide optionally comprising an amino acid sequence having between about 75% and 100% sequence identity with an amino acid sequence of: SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ or ID. No.46, or(b) a partial or complete complementary sequence of the nucleotide sequence of (a).
  • 11. The method of claim 2, wherein the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises: (a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45; or(b) a partial or complete complementary sequence of the nucleotide sequence (a).
  • 12. The method of claim 2, wherein the nucleic acid inhibitory to the expression of the polypeptide having OST1 protein kinase activity comprises: (a) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding an amino acid sequence having between 75% and 100% sequence identity with amino acid sequence of SEQ ID NO:12 or SEQ ID NO:14; or(b) a partial or complete complementary sequence of the nucleotide sequence (a); or(c) a nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence of SEQ ID No.11 or SEQ ID NO:13; or(d) a partial or complete complementary sequence of the nucleotide sequence (c).
  • 13. (canceled)
  • 14. The method of claim 2, wherein: (a) the nucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides and a complementary sequence to the nucleotide sequence of at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides;(b) the nucleotide sequence comprising the at least about 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides is a nucleotide sequence comprising at least 50 or 100 or 300 nucleotides having between 75 to 100% sequence identity to the nucleotide sequence encoding a polypeptide having carbonic anhydrase activity and/or nucleotide sequence encoding a polypeptide having OST1 protein kinase activity;(c) the plant is characterized by controlled CO2 exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2, or the plant is characterized by controlled water exchange under ambient 365 ppm CO2, elevated ppm CO2 or reduced ppm CO2; or(d) the CO2 sensor protein-inhibitory nucleic acid and/or the OST1 protein kinase-inhibitory nucleic acid is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter.
  • 15-17. (canceled)
  • 18. A method for regulating water exchange in a cell of a plant, plant cell, plant leaf, plant organ or plant part comprising: (1) (a) expressing or increasing the expression of a CO2 sensor protein-encoding or a carbonic anhydrase-encoding gene or transcript, and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript, by providing and expressing a CO2 sensor protein expressing and an OST1, SnRK2.2- or SnRK2.3 protein kinase nucleic acid, gene or transcript, in the plant, guard cell, plant cell, plant leaf, plant organ or plant part; or(b) decreasing the expression of a CO2 sensor protein encoding gene or transcript or a carbonic anhydrase gene or transcript and an OST1, SnRK2.2- or SnRK2.3 protein kinase-encoding gene or transcript in the plant, guard cell, plant cell, plant leaf, plant organ or plant part, by expressing a nucleic acid inhibitory to the expression of the CO2 sensor protein-expressing or carbonic anhydrase-expressing nucleic acid, gene or transcript and the OST1, SnRK2.2- or SnRK2.3 protein kinase-expressing nucleic acid, gene or transcript, in the plant, guard cell, plant cell, plant leaf, plant organ, or plant part;thereby regulating water exchange, wherein down-regulating or decreasing water exchange is achieved by expression or increased expression of the carbonic anhydrase or CO2 sensor protein and the protein kinase and wherein up-regulating or increasing water exchange is achieved by reduction of expression of the carbonic anhydrase or CO2 sensor protein and the protein kinase in the plant, guard cell, plant cell, plant leaf, plant organ or plant part; or(2) the method of (1), wherein the increasing or decreasing of the expression is in the plant guard cell.
  • 19-31. (canceled)
  • 32. The method of claim 1, wherein the plant is, or the guard cell, plant cell, plant part or plant organ, is isolated and/or derived from: (i) a dicotyledonous or monocotyledonous plant; (ii) wheat, oat, rye, barley, rice, sorghum, maize (corn), tobacco, a legume, a lupins, potato, sugar beet, pea, bean, soybean (soy), a cruciferous plant, a cauliflower, rape (or rapa or canola), cane (sugarcane), flax, cotton, palm, sugar beet, peanut, a tree, a poplar, a lupin, a silk cotton tree, desert willow, creosote bush, winterfat, balsa, ramie, kenaf, hemp, roselle, jute, or sisal abaca; or, (c) a species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Man[iota]hot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solarium, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna or Zea.
  • 33. A transgenic guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ, comprising: (a) (1) a heterologous OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity; or (2) a heterologous protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2- or SnRK2.3 protein kinase activity;(b) the transgenic plant cell, plant, plant part or plant organ of (a), further comprising a heterologous nucleic acid, gene or transcript encoding a protein having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity, or encoding a CO2 sensor protein,wherein optionally the nucleic acid, gene or transcript is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter;and optionally the nucleic acid, gene or transcript is stably integrated into the genome of the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ, or is contained in an episomal vector in the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ;(c)(1) (1) a heterologous nucleic acid that is inhibitory to an OST1 protein kinase-expressing nucleic acid or an OST1 protein kinase gene or mRNA (message) encoding a polypeptide with OST1 protein kinase activity, or is inhibitory to the activity or the kinase; or(2) a heterologous nucleic acid that is inhibitory to a protein kinase SnRK2.2- or SnRK2.3-expressing nucleic acid or an SnRK2.2- or SnRK2.3 protein kinase gene or mRNA (message) encoding a polypeptide with SnRK2.2- or SnRK2.3 protein kinase activity, or is inhibitory to the activity or the kinase; or(b) the transgenic plant cell, plant, plant part or plant organ of (i), further comprising a heterologous nucleic acid that is inhibitory to a gene or transcript encoding a protein having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity, or is inhibitory to a gene or transcript encoding a CO2 sensor protein,wherein optionally the inhibitory nucleic acid is operably linked to a plant expressible promoter, an inducible promoter, a constitutive promoter, a guard cell specific promoter, a drought-inducible promoter, a stress-inducible promoter or a guard cell active promoter;and optionally the inhibitory nucleic acid is stably integrated into the genome of the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ, or is contained in an episomal vector in the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ,and optionally the inhibitory nucleic acid comprises an antisense RNA or an iRNA:(d) a first and second recombinant gene, wherein the first recombinant gene comprises an expression-increasing recombinant first gene or an expression-inhibiting first recombinant gene, and wherein the second recombinant gene comprises an expression-increasing second recombinant gene or an expression-inhibiting second recombinant gene;wherein the expression increasing first recombinant gene comprises:i. a plant, plant cell or guard cell expressible promoter; andii. a heterologous nucleic acid encoding: a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity, or, a CO2 sensor protein; andoptionally further comprising a transcription termination and polyadenylation signal;wherein the expression-inhibiting first recombinant gene comprises the following operably linked DNA fragments:i. a plant, plant cell or guard cell expressible promoter; andii. a heterologous nucleic acid, which when transcribed produces a nucleic acid or a ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid or a CO2 sensor gene or transcript, each optionally encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity,optionally further comprising a transcription termination and polyadenylation signal;wherein the expression-increasing second recombinant gene comprises: i. a plant, plant cell or guard cell expressible promoter; andii. a heterologous nucleic acid encoding a polypeptide with OST1, SnRK2.2- or SnRK2.3 protein kinase activity;optionally further comprising a transcription termination and polyadenylation signal;wherein the expression inhibiting second recombinant gene: i. a plant, plant cell or guard cell expressible promoter; andii. a heterologous nucleic acid, which when transcribed produces a nucleic acid (e.g., a ribonucleic acid) inhibitory to the expression of OST1, SnRK2.2- or SnRK2.3 protein kinase encoding gene;optionally further comprising a transcription termination and polyadenylation signal;(e) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (d), wherein a nucleic acid or a DNA fragment encoding a polypeptide having a carbonic anhydrase (CA) activity or a β-carbonic anhydrase activity encodes a polypeptide comprising an amino acid sequence having between 75% and 100% sequence identity with a amino acid sequence of SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46;(f) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (e), wherein the polypeptide having carbonic anhydrase activity is encoded by a nucleotide sequence comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5. SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45;(g) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (f), wherein the nucleic acid or the DNA fragment encoding the polypeptide with OST1, SnRK2.2- or SnRK2.3 protein kinase activity encodes a polypeptide comprising an amino acid sequence having between 75% and 100% sequence identity with an amino acid sequence comprising SEQ ID NO:12 or SEQ ID NO:14;(h) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (g), wherein the polypeptide having OST1 protein kinase activity is encoded by a nucleotide sequence selected from the nucleotide sequence comprising SEQ ID NO:11 or SEQ ID NO:13;(i) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (h), wherein the nucleic acid or the DNA fragment, which when transcribed yields an inhibitory nucleic acid or an inhibitory ribonucleic acid to the expression of a CO2 sensor protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having carbonic anhydrase activity comprising an amino acid sequence having between 75% and 100% sequence identity with a amino acid sequence selected from the amino acid sequence comprising SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, or SEQ ID NO:46, or a complete or partial complement thereof;(j) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (i), wherein a nucleic acid or a DNA fragment, which when transcribed yield a ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 94% sequence identity with a nucleotide sequence selected from the nucleotide sequence comprising SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43 or SEQ ID NO:45, or a complete or partial complement thereof;(k) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (j), wherein the ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides and a complementary sequence to the nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides;(l) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (k), wherein a nucleic acid or a DNA fragment, which when transcribed yield a ribonucleic acid inhibitory to the expression of a OST1 kinase protein-expressing nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence encoding a polypeptide having OST1 protein kinase activity comprising an amino acid sequence having between 75% and 100% sequence identity with a amino acid sequence selected from the amino acid sequence of comprising SEQ ID NO:12 or SEQ ID NO:14, or a complete or partial complement thereof;(m) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (l), wherein a nucleic acid or a DNA fragment, which when transcribed yield a ribonucleic acid inhibitory to the expression of a OST1 protein kinase encoding nucleic acid comprises a nucleotide sequence of at least 11, 12, 13, 14, 15, 16, 17, 18, or 19 or more nucleotides having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a nucleotide sequence selected from the nucleotide sequence comprising SEQ ID NO:11 or SEQ ID NO:13, or a complete or partial complement thereof;(n) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (m), wherein the ribonucleic acid inhibitory to the expression of a CO2 sensor protein-expressing nucleic acid comprises the nucleotide sequence of at least 19 nucleotides and a complementary sequence to the nucleotide sequence of at least 19 nucleotides;(o) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (n), wherein the first recombinant gene is an expression increasing first recombinant gene, and the second recombinant gene is an expression increasing second recombinant gene;(p) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (o), wherein the first recombinant gene is an expression inhibiting first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene;(q) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (p), wherein the first recombinant gene is an expression increasing first recombinant gene, and the second recombinant gene is an expression inhibiting second recombinant gene;(r) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (g), wherein the first recombinant gene is an expression inhibiting first recombinant gene, and the second recombinant gene is an expression increasing second recombinant gene; or(s) the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ of any of (a) to (r), wherein the plant is or the guard cell, plant, plant cell, plant tissue, plant seed or fruit, plant part or plant organ is isolated and/or derived from: (i) a dicotyledonous or monocotyledonous plant; (ii) wheat, oat, rye, barley, rice, sorghum, maize (corn), tobacco, a legume, a lupins, potato, sugar beet, pea, bean, soybean (soy), a cruciferous plant, a cauliflower, rape (or rapa or canola), cane (sugarcane), flax, cotton, palm, sugar beet, peanut, a tree, a poplar, a lupin, a silk cotton tree, desert willow, creosote bush, winterfat, balsa, ramie, kenaf, hemp, roselle, jute, or sisal abaca; or, (c) a species from the genera Anacardium, Arachis, Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Carthamus, Cocos, Coffea, Cucumis, Cucurbita, Daucus, Elaeis, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lupinus, Lycopersicon, Malus, Man[iota]hot, Majorana, Medicago, Nicotiana, Olea, Oryza, Panieum, Pannisetum, Persea, Phaseolus, Pistachia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Secale, Senecio, Sinapis, Solarium, Sorghum, Theobromus, Trigonella, Triticum, Vicia, Vitis, Vigna or Zea.
  • 34-54. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/022331 1/24/2012 WO 00 8/21/2013
Provisional Applications (1)
Number Date Country
61438618 Feb 2011 US