Masuda et al., 1991; Eur. J. Biochem. 202:783-787.* |
Voit et al. 1990; J. Biol. Chem. 265(39):19477-19452.* |
Janssen, I. et al. “Biological Activity of Structural Analogs and Efect of Oil as a Carrier of Trypsin Modulating Oostatic Factor of the Gray Fleshfly Neobellieria bullata,” Peptides 19(4): 627-634 (1998). |
Masoud, S.A., et al. “Expression of a cysteine proteinase inhibitor (oryzacystatin-I) in transgenic tobacco plants,” Plant Molecular Biology 21:655-663, 1993. |
Hua, Y-J., Koolman, J., “An ecdysiostatin from flies,” Regulatory Peptides 57: 263-271 (1995). |
Dahlen, J.R., et al. “Expression, Purification and Inhibitory Properties of Human Proteinase Inhibitor,” Biochemistry 1997, 35: 14874-14882. |
Bylemans, D., et al. “Immunolocalization of the Oostatic and Prothoracicostatic Peptide, Neb-TMOF, in Adults of the fleshfly, Neobellieria bullata. ” General and Comparative Endocrinology 103: 273-280 (1996). |
Borovsky, D., et al., “Molecular sequencing and modeling of Neobellieria bullata trypsin. Evidence for translational control by Neobellieria trypsin-modulating oostatic factor.”Eur. J. Biochem 237: 279-287 (1996). |
Bylemans, D., et al. “Neb-colloostatin, a second folliculostatin of the grey fleshfly, Neobellieria bullata.” Eur. J. Biochem 228: 45-49. |
Borovsky, D., “Physiological and Biochemical Studies of Trypsin Modulating Oostatic Factor (TMOF) in Insects.” Project statement—Investigative study, University of Florida Oct. 1, 1993-Sep. 30, 1998. |
Bylemans , et al., “Sequencing and characterization of trypsin modulating oostatic factor (TMOF) from the ovaries of the grey fleshfly, Neobellieria (Sarcophaga) bullata.” Regulatory Peptides 50: 61-72 (1994). |
Lin, Y., et al. “Structure, Expression and Hormonal Control of Genes from the Mosquito, Aedes aegypti, Which Encode Proteins Similar to the Vitelline Membrane Proteins of Drosophila melanogaster.” Developmental Biology 155: 558-568 (1993). |
Vaeck, M., et al. “Transgenic plants protected from insect attack.” Nature 328: 33-37 (1987). |
Taylor, M., “Trypsin Isolated from the Midgut of the Tobacco Hornworm, Manduca sexta, I Inhibited by Synthetic Pro-peptides in Vitro.” Biochemical and Biophysical Research Communications, 235: 606-609 (1997). |
Southwick, FS and D.L. Purich, “Inhibition of Listeria Locomotion by Mosquito Oostatic Factor, a Natural Oligoproline Peptide Uncoupler of Profilin Action.” Infection and Immunity, 63(1): 82-190 1995. |
Borovsky, “Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development.” Regulatory Peptides, (57) 273-281, 1995. |
Hlavacek et al, “The C-Terminus Shortened Analogs of the Insect Peptide Oostatic Hormone with Accelerated Activity”, Bioorganic Chemistry, (26), p. 131-140, 1998. |
Okada et al., 87: 146142, Synthesis of bradykinin fragments and their effect on pentobarbital sleeping time in mouse. Neuropharmacology 1977 16(5), 381-3. (abstract only). |
Shibnev et al., 11555lt “Synthesis of monomers that are triplets of the “crystalline” part of the collagen molecule.” Izv.Adad. Nauk SSSR, Ser. Khim, 1969, 2 392-7 (abstract only). |
Narberhaus et al., “The bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a . . . ” J. Bacteriol. 178 (18), 5337-5346 (1996) (abstract only). |
Gauthier et al., “A flavonol 3′/5′—O-methyltransferase cDNA clone . . . ” Plant Physiol. 108 (3), 1341 (1995) (abstract only). |
Borovsky et al. “Mass spectrometry and characterization of Aedes aegypti trypsin modulating oostatic factor (TMOF) and its analogs.” Insect Biochem. Molec. Biol. vol. 23, No. 6, patent 703-712, 1993. |
Borovsky. “Isolation and characterization of highly purified mosquito oostatic hormone.” Archives of Insect Biochemistry and Physiology 2:333-349 (1985). |
Borovsky. “Oostatic hormone inhibits biosynthesis of midgut proteolytic enzymes and egg development in mosquitoes.” Archives of Insect Biochemistry and Physiology 7: 187-210 (1988). |
Borovsky et al. “Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut.” The FASEB Journal. vol. 4, Sep. 1990. |
Borovsky et al. “Characterization and localization of mosquito-gut receptors for trypsin modulating oostatic factor using a complementary peptide and immunocytochemistry.” The FASEB Journal. vol. 8. 350-355 Mar. 1994. |
Borovsky et al. “Feeding the mosquito Aedes aegypti with TMOF and its analogs; effect on trypsin biosynthesis and egg development.” Regulatory Peptides 57 (1995) 273-281. |
Curry et al. “Neuropeptide F: primary structure from the tubellarian, Artioposthia Triangulata.” Comp. Biochem. Physiol. vol. 101C No. 2, 269-274, 1992. |
Duve et al. “Isolation and partial characterization of pancreatic polypeptide-like material in the brain of the blowfly Calliphora vomitoria.” Biochem J. (1981) 197, 767-770. |
Leung et al. “The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa.” ++++ Peptides, 1 (1992) 71-81. |
Maule et al. “Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea).” Parasitology (1991) 102: 309-316. |
Rajpara et al. “Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons.” Neuron, vol. 9, 505-513. Sep. 1992. |
Spittaels et al. “Insect neuropeptide F (NPF)-related peptides: isolation from Colorado Potato Beetle (Leptinotarsa decemlineata) Brain.” Insect Biochem Molec Biol. vol. 26, No. 4, 375-382, 1996. |
Veenstra et al. “Immunocytochemical localization of peptidergic neurons and neurosecretory cells in the neuro-endocrine system of the Colorado potato beetle with antisera to vertebrate regulatory peptides.” Histochemistry (1985) 82: 9-18. |
Verhaert et al. “Distinct localization of FMRFamide- and bovine pancreatic polypeptide-like material in the brain, retrocerebral complex and suboesophageal ganglion of the cockroach Periplaneta Americana L.” Brain Research, 348 (1985) 331-338. |
Shibnev et al. “Synthesis of monomers that are triplets of “crystalline” part of the collagen molecule.” Insec. Molec. Biol. 1969, (2), 392-7. (abstract only). |
Henderson et al. “Physiochemical studies of biologically active peptides by low-temperature reversed-phase high-performance liquid chromatography.” J. Chromatography. 1990, 499, 79-88. (abstract only). |
Okada et al. “Synthesis of bradykinin fragments and their effect on pentobarbital sleeping time in mouse.” Pharmacology, 1977, 16, 381-383. |
Ladram et al. “Characterization of receptors for thyrotropin-releasing hormone-potentiating peptide on rat anterior pituitary membranes.” The Jour. Of Biol. Chem. vol. 267, No. 36, 25697-25702, 1992. |
Bordusa et al. “The specificity of prolyl endopeptidase from Flavobacterium meningoseptum: mapping the S' subsites by positional scanning via Acyl transfer.” Bio. & Med. Chem 6 (1998) 1775-1780. |
Deslauriers et al. “Steric effects of cis-trans isomerism on neighboring reidues in proline oligopeptides: A13C-NMR study of conformational heterogeneity in linear tripeptides.” Biopolymers, vol. 18, 523-538 (1979). |
Kolaskar et al. “Conformational properties of pairs of amino acids.” Int. J. Peptide Protein Res. 22, 1983, 83-91. |
Richard, et al. “The fate of an oostatic peptide or its analogs including metabolites in insects Diptera and Orthoptera and its transformation to the next generation.” Collect. Symp. Ser. 1999, 3, 57-60. (abstract only). |
Borovsky et al. “Development of specific RIA and ELISA to study trypsin modulating oostatic factor in mosquitoes.” Archives of Insect Biochemistry and Physiology 21: 13-21 (1992). |
Merkler et al. “C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity.” Enzyme Microb. Technol., 1994, vol. 16, Jun. |
Pauletti et al. “Structural requirements for intestinal absorption of peptide drugs.” Jour. Of Controlled Release 41 (1996) 3-17. |
Rudinger. “Characteristics of the amino acids as components of a peptide hormone sequence.” |
Barberhaus et al. “Small Heat Shock Protein HSPB.” NCBI. May 30, 2000. |
Gauthier et al. “3′ flavonoid O-methyltransf . . . ” NCBI. Nov. 6, 1995. |
Hlavacek et al. “The C-terminus shortened analogs of the insect peptide oostatic hormone with accelerated activity.” Bioorganic Chem. 26, 131-140 (1998). |