COMPOSITIONS AND METHODS FOR DETECTING ANTIBIOTIC RESPONSIVE mRNA EXPRESSION SIGNATURES AND USES THEREOF

Information

  • Patent Application
  • 20210230675
  • Publication Number
    20210230675
  • Date Filed
    August 26, 2019
    5 years ago
  • Date Published
    July 29, 2021
    3 years ago
Abstract
The present disclosure relates to compositions, methods, and kits for rapid phenotypic detection of antibiotic resistance/susceptibility.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to compositions, methods, and kits for rapid phenotypic detection of antibiotic resistance/susceptibility.


SEQUENCE LISTING

The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 19, 2019, is named 52199_534001WO_BI10397_SL.txt and is 800 kB in size.


BACKGROUND OF THE DISCLOSURE

Antimicrobial agents such as antibiotics have been used successfully for many decades treat patients who have infectious diseases related to microbial pathogens. Unfortunately, these antimicrobial agents have been broadly used for such a long period of time that many microbial pathogens have become resistant to the antibiotics that are designed to kill them, which greatly reduces the efficacy of the antimicrobial agents that are currently available. This creates a significant healthcare issue. For example, each year in the United States at least 2 million people become infected with antibiotic resistant bacteria, which results in the death of at least 23,000 people each year. Accordingly, there is an urgent need for compositions and methods that enable rapid and accurate detection of antibiotic resistance in microbial pathogens.


BRIEF SUMMARY OF THE DISCLOSURE

The current disclosure relates, at least in part, to compositions, methods, and kits for rapid phenotypic detection of antibiotic resistance. The techniques herein provide compositions and methods that provide rapid phenotypic detection of antibiotic resistance/susceptibility in microbial pathogens, and are faster than the prior art growth-based phenotypic assays that currently comprise the gold standard for such detection (e.g., antibiotic susceptibility testing (AST)). The techniques herein also provide compositions and methods that enable simultaneous detection of multiple resistance genes in the same assay. In this manner, the techniques herein enable more accurate determination of antibiotic resistance, as well as provide: 1) mechanistic explanations for key antibiotic resistant strains, 2) epidemiologic tracking of known resistance mechanisms, and 3) immediate identification of unknown or potentially novel resistance mechanisms (such as, e.g., discordant cases when a resistant organism does not display a known resistance phenotype). Currently, detection of antibiotic resistance genes typically requires separate PCR or sequencing assays, which require different assay infrastructure and often necessitate sending samples out to reference laboratories.


In one aspect, the disclosure provides a method that includes the following steps: obtaining a sample including one or more bacterial cells, wherein the sample is obtained from a patient or an environmental source; processing the sample to enrich the one or more bacterial cells; contacting the sample with one or more antibiotic compounds; lysing the sample to release messenger ribonucleic acid (mRNA) from the one or more bacterial cells; hybridizing the released mRNA to at least one set of two nucleic acid probes, wherein each nucleic acid probe includes a unique barcode or tag; detecting the hybridized nucleic acid probes; identifying one or more genetic resistance determinants; and determining the identity of the one or more bacterial cells and the antibiotic susceptibility of each of the identified one or more bacterial cells.


In embodiments, the at least one set of two nucleic acid probes includes one or more probes from Table 3 and one or more probes from Table 4.


In embodiments, the at least one set of two nucleic acid probes includes one or more probes from Table 5 and one or more probes from Table 6.


In some embodiments, the at least one set of two nucleic acid probes includes a first probe that possesses a sequence of SEQ ID NOs: 1877-2762 and a second probe that possesses a sequence of SEQ ID NOs: 2763-3648. Optionally, the first probe possesses a sequence of SED ID NO: (1877+n) and the second probe possesses a sequence of SEQ ID NO: (2763+n), where n=an integer ranging from 0 to 885 in value. Optionally, one or both probes further includes a tag sequence.


In embodiments, the at least one set of two nucleic acid probes binds to one or more Cre2 target sequences listed in Table 1.


In embodiments, the at least one set of two nucleic acid probes binds to one or more KpMero4 target sequences listed in Table 2.


In embodiments, the hybridizing may occur at a temperature between about 64° C. and about 69° C. The hybridizing may occur at a temperature between about 65° C. and about 67° C. The hybridizing may also occur at a temperature of about 65° C. or about 66° C. or about 67° C. The hybridizing may occur at a temperature of about 65.0° C., 65.1° C., 65.2° C., 65.3° C., 65.4° C., 65.5° C., 65.6° C., 65.7° C., 65.8° C., 65.9° C., 66.0° C., 66.1° C., 66.2° C., 66.3° C., 66.4° C., 66.5° C., 66.6° C., 66.7° C., 66.8° C., 66.9° C., 67.0° C., 67.1° C., 67.2° C., 67.3° C., 67.4° C., 67.5° C., 67.6° C., 67.7° C., 67.8° C., or 67.9° C.


In one aspect, the disclosure provides a composition comprising a set of nucleic acid probes corresponding to the probes listed in Table 3 and Table 4.


In one aspect, the disclosure provides a composition comprising a set of nucleic acid probes corresponding to the probes listed in Table 5 and Table 6.


In an aspect, the disclosure provides a composition that includes at least one set of two nucleic acid probes including a first probe that possesses a sequence of SEQ ID NOs: 1877-2762 and a second probe that possesses a sequence of SEQ ID NOs: 2763-3648. Optionally, the first probe possesses a sequence of SED ID NO: (1877+n) and the second probe possesses a sequence of SEQ ID NO: (2763+n), where n=an integer ranging from 0 to 885 in value. Optionally, one or both probes further includes a tag sequence.


In one aspect, the disclosure provides a method of treating a patient that includes the steps of: obtaining a sample including one or more bacterial cells, wherein the sample is obtained from a patient or an environmental source; processing the sample to enrich the one or more bacterial cells; contacting the sample with one or more antibiotic compounds;


lysing the sample to release messenger ribonucleic acid (mRNA) from the one or more bacterial cells; hybridizing the released mRNA to at least one set of two nucleic acid probes at 65-67° C., wherein each nucleic acid probe includes a unique barcode or tag; detecting the hybridized nucleic acid probes; identifying one or more genetic resistance determinants; determining the identity of the one or more bacterial cells and the antibiotic susceptibility of each of the identified one or more bacterial cells; and administering to the patient an appropriate antibiotic based on the determination of the identity and the antibiotic susceptibility of the one or more bacterial cells.


In embodiments, the processing includes subjecting the sample to centrifugation or differential centrifugation.


In embodiments, the one or more antibiotic compounds are at a clinical breakpoint concentration.


In embodiments, lysing occurs by a method selected from the group consisting of mechanical lysis, liquid homogenization lysis, sonication, freeze-thaw lysis, and manual grinding.


In embodiments, the at least one set of two nucleic acid probes includes one control set and one responsive set, 3-5 control sets and 3-5 responsive sets, or 8-10 control sets and 8-10 responsive sets.


In embodiments, the hybridizing may occur at a temperature between about 64° C. and about 69° C. The hybridizing may occur at a temperature between about 65° C. and about 67° C. The hybridizing may also occur at a temperature of about 65° C. or about 66° C. or about 67° C. The hybridizing may occur at a temperature of about 65.0° C., 65.1° C., 65.2° C., 65.3° C., 65.4° C., 65.5° C., 65.6° C., 65.7° C., 65.8° C., 65.9° C., 66.0° C., 66.1° C., 66.2° C., 66.3° C., 66.4° C., 66.5° C., 66.6° C., 66.7° C., 66.8° C., 66.9° C., 67.0° C., 67.1° C., 67.2° C., 67.3° C., 67.4° C., 67.5° C., 67.6° C., 67.7° C., 67.8° C., or 67.9° C.


In one aspect, the disclosure provides a kit, including a set of nucleic acid probes corresponding to the probes listed in Table 3 and Table 4.


In one aspect, the disclosure provides a kit, comprising a set of nucleic acid probes corresponding to the probes listed in Table 5 and Table 6.


Another aspect of the instant disclosure provides a kit, including at least one set of two nucleic acid probes including a first probe that possesses a sequence of SEQ ID NOs: 1877-2762 and a second probe that possesses a sequence of SEQ ID NOs: 2763-3648, and instructions for its use.


Definitions

Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. “About” can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value). Unless otherwise clear from context, all numerical values provided herein are modified by the term “about.”


The term “administration” refers to introducing a substance into a subject. In general, any route of administration applicable to antimicrobial agents (e.g., an antibiotic) may be utilized including, for example, parenteral (e.g., intravenous), oral, topical, subcutaneous, peritoneal, intra-arterial, inhalation, vaginal, rectal, nasal, introduction into the cerebrospinal fluid, or instillation into body compartments. In some embodiments, administration is oral. Additionally or alternatively, in some embodiments, administration is parenteral. In some embodiments, administration is intravenous.


By “agent” is meant any small compound (e.g., small molecule), antibody, nucleic acid molecule, or polypeptide, or fragments thereof or cellular therapeutics such as allogeneic transplantation and/or CART-cell therapy.


As herein, the term “algorithm” refers to any formula, model, mathematical equation, algorithmic, analytical or programmed process, or statistical technique or classification analysis that takes one or more inputs or parameters, whether continuous or categorical, and calculates an output value, index, index value or score. Examples of algorithms include but are not limited to ratios, sums, regression operators such as exponents or coefficients, biomarker value transformations and normalizations (including, without limitation, normalization schemes that are based on clinical parameters such as age, gender, ethnicity, etc.), rules and guidelines, statistical classification models, statistical weights, and neural networks trained on populations or datasets.


By “alteration” is meant a change (increase or decrease) in the expression levels or activity of a gene or polypeptide as detected by standard art known methods such as those described herein. As used herein, an alteration includes a 10% change in expression levels, preferably a 25% change, more preferably a 40% change, and most preferably a 50% or greater change in expression levels.


The transitional term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. By contrast, the transitional phrase “consisting of” excludes any element, step, or ingredient not specified in the claim. The transitional phrase “consisting essentially of” limits the scope of a claim to the specified materials or steps “and those that do not materially affect the basic and novel characteristic(s)” of the claimed disclosure.


By “control” or “reference” is meant a standard of comparison. In one aspect, as used herein, “changed as compared to a control” sample or subject is understood as having a level that is statistically different than a sample from a normal, untreated, or control sample. Control samples include, for example, cells in culture, one or more laboratory test animals, or one or more human subjects. Methods to select and test control samples are within the ability of those in the art. Determination of statistical significance is within the ability of those skilled in the art, e.g., the number of standard deviations from the mean that constitute a positive result.


“Detect” refers to identifying the presence, absence or amount of the analyte (e.g., rRNA, mRNA, and the like) to be detected.


By “detectable label” is meant a composition that when linked to a molecule of interest (e.g., a nucleic acid probe) renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes (for example, as commonly used in an ELISA), biotin, digoxigenin, or haptens. As used herein, the term “gene” refers to a DNA sequence in a chromosome that codes for a product (either RNA or its translation product, a polypeptide). A gene contains a coding region and includes regions preceding and following the coding region (termed respectively “leader” and “trailer”). The coding region is comprised of a plurality of coding segments (“exons”) and intervening sequences (“introns”) between individual coding segments.


The disclosure provides a number of specific nucleic acid targets (e.g., mRNA transcripts) or sets of nucleic acid targets that are useful for the identifying microbial pathogens (e.g., bacteria) that are susceptible or resistant to treatment with specific antibiotics. In addition, the methods of the disclosure provide a facile means to identify therapies that are safe and efficacious for use in subjects that have acquired bacterial infections involving antibiotic resistant strains of bacteria. In addition, the methods of the disclosure provide a route for analyzing virtually any number of bacterial strains via antibiotic susceptibility testing (AST) to identify mRNA signature patterns indicative of antibiotic susceptibility or resistance, which may then be used to rapidly identify such traits in the clinic, and direct appropriate therapeutic intervention.


By “fragment” is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids.


“Hybridization” means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleobases. For example, adenine and thymine are complementary nucleobases that pair through the formation of hydrogen bonds.


“Infectious diseases,” also known as communicable diseases or transmissible diseases, comprise clinically evident illness (i.e., characteristic medical signs and/or symptoms of disease) resulting from the infection, presence, and growth of pathogenic biological agents (e.g., bacteria) in a subject (Ryan and Ray (eds.) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill). A diagnosis of an infectious disease can confirmed by a physician through, e.g., diagnostic tests (e.g., blood tests), chart review, and a review of clinical history. In certain cases, infectious diseases may be asymptomatic for some or all of their course. Infectious pathogens can include viruses, bacteria, fungi, protozoa, multicellular parasites, and prions. One of skill in the art would recognize that transmission of a pathogen can occur through different routes, including without exception physical contact, contaminated food, body fluids, objects, airborne inhalation, and through vector organisms. Infectious diseases that are especially infective are sometimes referred to as contagious and can be transmitted by contact with an ill person or their secretions.


The terms “isolated,” “purified,” or “biologically pure” refer to material that is free to varying degrees from components which normally accompany it as found in its native state. “Isolate” denotes a degree of separation from original source or surroundings. “Purify” denotes a degree of separation that is higher than isolation.


By “isolated polynucleotide” is meant a nucleic acid (e.g., a DNA) that is free of the genes which, in the naturally-occurring genome of the organism from which the nucleic acid molecule of the disclosure is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In addition, the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.


By “marker” is meant any protein or polynucleotide having an alteration in expression level or activity that is associated with a disease or disorder (e.g., increased or decreased expression in a bacterial strain indicative of antibiotic susceptibility).


As used herein, the term “next-generation sequencing (NGS)” refers to a variety of high-throughput sequencing technologies that parallelize the sequencing process, producing thousands or millions of sequence reads at once. NGS parallelization of sequencing reactions can generate hundreds of megabases to gigabases of nucleotide sequence reads in a single instrument run. Unlike conventional sequencing techniques, such as Sanger sequencing, which typically report the average genotype of an aggregate collection of molecules, NGS technologies typically digitally tabulate the sequence of numerous individual DNA fragments (sequence reads discussed in detail below), such that low frequency variants (e.g., variants present at less than about 10%, 5% or 1% frequency in a heterogeneous population of nucleic acid molecules) can be detected. The term “massively parallel” can also be used to refer to the simultaneous generation of sequence information from many different template molecules by NGS. NGS sequencing platforms include, but are not limited to, the following: Massively Parallel Signature Sequencing (Lynx Therapeutics); 454 pyro-sequencing (454 Life Sciences/Roche Diagnostics); solid-phase, reversible dye-terminator sequencing (Solexa/Illumina); SOLiD technology (Applied Biosystems); Ion semiconductor sequencing (ion Torrent); and DNA nanoball sequencing (Complete Genomics). Descriptions of certain NGS platforms can be found in the following: Shendure, et al., “Next-generation DNA sequencing,” Nature, 2008, vol. 26, No. 10, 135-1 145; Mardis, “The impact of next-generation sequencing technology on genetics,” Trends in Genetics, 2007, vol. 24, No. 3, pp. 133-141; Su, et al., “Next-generation sequencing and its applications in molecular diagnostics” Expert Rev Mol Diagn, 2011, 11 (3):333-43; and Zhang et al., “The impact of next-generation sequencing on genomics,” J Genet Genomics, 201, 38(3): 95-109.


Nucleic acid molecules useful in the methods of the disclosure include any nucleic acid molecule that encodes a polypeptide of the disclosure or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having “substantial identity” to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Nucleic acid molecules useful in the methods of the disclosure include any nucleic acid molecule that encodes a polypeptide of the disclosure or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having “substantial identity” to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By “hybridize” is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).


For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C., more preferably of at least about 37° C., and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred: embodiment, hybridization will occur at 30° C. in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37° C. in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C. in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.


For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25° C., more preferably of at least about 42° C., and even more preferably of at least about 68° C. In a preferred embodiment, wash steps will occur at 25° C. in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68° C. in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196:180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.


By “substantially identical” is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). Preferably, such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.


Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST, BESTFIT, GAP, or PILEUP/PRETTYBOX programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST program may be used, with a probability score between e-3 and e-100 indicating a closely related sequence.


Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms “a”, “an”, and “the” are understood to be singular or plural.


The term “probe” as used herein refers to an oligonucleotide that binds specifically to a target mRNA. A probe can be single stranded at the time of hybridization to a target.


By “reference” is meant a standard or control condition.


A “reference sequence” is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset of or the entirety of a specified sequence; for example, a segment of a full-length mRNA or cDNA or gene sequence, or the complete mRNA or cDNA or gene sequence. For nucleic acids, the length of the reference nucleic acid sequence will generally be at least about 25 nucleotides, about 50 nucleotides, about 60 nucleotides, about 75 nucleotides, about 100 nucleotides, or about 300 nucleotides, or any integer thereabout or therebetween.


As used herein, the term “subject” includes humans and mammals (e.g., mice, rats, pigs, cats, dogs, and horses). In many embodiments, subjects are mammals, particularly primates, especially humans. In some embodiments, subjects are livestock such as cattle, sheep, goats, cows, swine, and the like; poultry such as chickens, ducks, geese, turkeys, and the like; and domesticated animals particularly pets such as dogs and cats. In some embodiments (e.g., particularly in research contexts) subject mammals will be, for example, rodents (e.g., mice, rats, hamsters), rabbits, primates, or swine such as inbred pigs and the like.


As used herein, the terms “treatment,” “treating,” “treat” and the like, refer to obtaining a desired pharmacologic and/or physiologic effect (e.g., reduction or elimination of a bacterial infection). The effect can be prophylactic in terms of completely or partially preventing a disease or infection or symptom thereof and/or can be therapeutic in terms of a partial or complete cure for a disease or infection and/or adverse effect attributable to the disease or infection. “Treatment,” as used herein, covers any treatment of a disease or condition or infection in a mammal, particularly in a human, and includes: (a) preventing the disease or infection from occurring in a subject which can be predisposed to the disease or infection but has not yet been diagnosed as having it; (b) inhibiting the disease or infection, e.g., arresting its development; and (c) relieving the disease or infection, e.g., reducing or eliminating a bacterial infection.


The phrase “pharmaceutically acceptable carrier” is art recognized and includes a pharmaceutically acceptable material, composition or vehicle, suitable for administering compounds of the present disclosure to mammals. The carriers include liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject agent from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include: sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; and other non-toxic compatible substances employed in pharmaceutical formulations.


The term “pharmaceutically acceptable salts, esters, amides, and prodrugs” as used herein refers to those carboxylate salts, amino acid addition salts, esters, amides, and prodrugs of the compounds of the present disclosure which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the disclosure.


The term “salts” refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present disclosure. These salts can be prepared in situ during the final isolation and purification of the compounds or by separately reacting the purified compound in its free base form with a suitable organic or inorganic acid and isolating the salt thus formed. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, nitrate, acetate, oxalate, valerate, oleate, palmitate, stearate, laurate, borate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate mesylate, glucoheptonate, lactobionate and laurylsulphonate salts, and the like. These may include cations based on the alkali and alkaline earth metals, such as sodium, lithium, potassium, calcium, magnesium, and the like, as well as non-toxic ammonium, tetramethylammonium, tetramethylammonium, methlyamine, dimethlyamine, trimethlyamine, triethlyamine, ethylamine, and the like. (See, for example, S. M. Barge et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977, 66:1-19 which is incorporated herein by reference.).


Ranges can be expressed herein as from “about” one particular value and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it is understood that the particular value forms another aspect. It is further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. It is also understood that throughout the application, data are provided in a number of different formats and that this data represent endpoints and starting points and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 as well as all intervening decimal values between the aforementioned integers such as, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9. With respect to sub-ranges, “nested sub-ranges” that extend from either end point of the range are specifically contemplated. For example, a nested sub-range of an exemplary range of 1 to 50 may comprise 1 to 10, 1 to 20, 1 to 30, and 1 to 40 in one direction, or 50 to 40, 50 to 30, 50 to 20, and 50 to 10 in the other direction.


A “therapeutically effective amount” of an agent described herein is an amount sufficient to provide a therapeutic benefit in the treatment of a condition or to delay or minimize one or more symptoms associated with the condition (e.g., an amount sufficient to reduce or eliminate a bacterial infection). A therapeutically effective amount of an agent means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the condition. The term “therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms, signs, or causes of the condition, and/or enhances the therapeutic efficacy of another therapeutic agent.


By “KpMero4_C_KPN_00050 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_00050


(SEQ ID NO: 1)


ATGAAGAACTGGAAAACGCTGCTTCTCGGTATCGCCATGATCGCGAATAC





CAGTTTCGCTGCCCCCCAGGTGGTCGATAAAGTAGCGGCCGTCGTCAATA





ATGGCGTCGTGCTGGAAAGCGACGTCGATGGTTTGATGCAATCGGTTAAG





CTCAATGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNCAGAAAGATCGTGCTTACCGCATGCTGA





TGAACCGCAAATTCTCTGAAGAAGCGGCAACCTGGATGCAGGAACAGCGC





GCCAGTGCGTATGTTAAAATTCTGAGCAACTAAN






By “KpMero4_C_KPN_00098 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_00098


(SEQ ID NO: 2)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNGTGAAATGCGTACAGCGCGCCATCGACCA





GGCCGAACTGATGGCGGATTGCCAGATTTCATCAGTTTATTTGGCACTTT





CGGGTAAACATATAAGCTGTCAGAATGAAATCGGGATGGTACCGATTTCG





GAAGAAGAAGTGACGCAGGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNGTCCTGCACGTGATTCCGCAGGA





ATATGCTATCGACTACCAGGAAGGGATTAAAAACCCGGTAGGGCTGTCCG





GCGTGCGTATGCAGGCGAAGGTGCATCTGATCACCTGCCATAACGATATG





GCNNNNNNNNNNNNNNNNNNGTGGAACGTTGTGGTCTGAAAGTTGACCAA





CTTATTTTCGCCGGGTTAGCGGCCAGTTATTCGGTATTAACAGAAGACGA





ACGTGAGCTGGGCGTCTGCGTTGTGGANNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






By “KpMero4_C_KPN_00100 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_00100


(SEQ ID NO: 3)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCGATTGA





TGCCAGCACCCAGCGCTATACGCTGAACTTCTCGGCCGATGCGTTCATGC





GTCAGATTAGCCGTGCGCGTACCTTCGGTTTTATGCGCGATATCGAATAT





CTGCAGTCCCGCGGCCTGTGCCTGGGCGGCAGCTTCGATTGTGCCATCGT





TGTTGACGATTATCGCGTACTGAACGAAGACGGTCTGCGCTTTGAAGACG





AATTTGTTCGCCACAAAATGCTGGATGCGATCGGTGACCTGTTTATGTGT





GGTCACAACATTATCGGCGCATTCACGGCGTACAAATCGGGTCACGCGTT





GAACAACAAACTGCTGCAGGCGGTNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNN






By “KpMero4_C_KPN_01276 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_01276


(SEQ ID NO: 4)


ATGCTGGAGTTGTTGTTTCTGCTTTTACCCGTTGCCGCCGCTTACGGCTG





GTACATGGGGCGCAGAAGTGCACAACAGTCCAAACAGGACGATGCGAGCC





GCCTGTCGCGAGATTACGTGGCGGGGGTTAACTTCCTGCTCAGCAACCAG





CAGGATAAAGCCGTCGACCTGTTCCTTGATATGCTGAAAGAGGATACCGG





TACCGTTGAGGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






By “KpMero4_C_KPN_02846 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_02846


(SEQ ID NO: 5)


ATGAATACTGAAGCCACTCAAGATCATCAAGAAGCAAACACCACGGGCGC





GCGTCTGCGTCACGCCCGCGAACAACTCGGACTTAGCCAGCAAGCGGTGG





CCGAACGCTTATGCCTGAAGGTGTCCACGGTTCGTGATATTGAAGACGAT





AAGGCCCCCGCCGACCTCGCCTCCACCTTCCTGCGCGGNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNCCGGCGGCGTCGGCGCAGGATCTGGTGATGA





ACTTTTCCGCCGACTGCTGGCTGGAAGTGAGCGATGCCACCGGTAAAAAA





CTGTTCAGCGGCCTGCAGCGTAAAGGCGGTAANNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNN






By “KpMero4_C_KPN_03317 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_03317


(SEQ ID NO: 6)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN--ATGGCCGGGGAACACGT





CATTTTGCTGGATGAGCAGGATCAGCCTGCCGGTATGCTGGAGAAGTATG





CCGCCCATACGTTTGATACCCCTTTACATCTCGCGTTTTCCTGCTGGCTG





TTTAANNNNNNNNNNNNNNNNNNNNNNNNNNNCGTTCGTTGGGCAAAAAA





GCCTGGCCCGGGGTATGGACCAACTCGGTCTGCGGACACCCCCAGCAGGG





CGAGACCTTCGAGCAGGCCGTCACGCGCCGCTGTCGCTTCGAACTCGGTG





TGGAGATCTCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NCGCGTGGTAAGCGAAGTGCAGCCTAACGACGATGAAGTCATGGACTATC





AGTGGGTTGACCTGGCAACCATGTTAAGCGCGCTGGCCGCCACGCCGTGG





GCGTTCAGCCCGTGGATGGTGCTGGAAGCGGAAAATCGGGACGCCCGCCA





GGCGCTGACCGAN






By “KpMero4_C_KPN_03634 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_03634


(SEQ ID NO: 7)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNAACGATACGGCAGACGACTCCCCGGCGAGCTATAACGCCGCG





GTGCGCCGCGCGGCGCCCGCCGTGGTGAACGTCTATAACCGCGCCCTTAA





CAGCACCAGCCATAATCAGCTGACGCTTGGCTCAGGGGTGATTATGGATC





AGCGCGGCTATATCCTGACCAACAAGCATGTTATCAACGATGCCGATCAG





ATTATCGTCGCCCTGCAGGACGGCCGCGTCTTCGAAGCGCTGCTGGTAGG





ATCCGATTCCCTCACNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCAGG





GGATTATCAGCGCCACAGGGCGCATTGGCCTCAATCCGACCGGCCGCCAG





AACTTCCTGCAGACTGACGCCTCGATCAACCACGGTAACTCCGGCGGGGC





NCTGGTGAACTCCCTCGGCGAGCTGATGGGGATTAACACCCTCTCCTTTG





ACAAGAGCAATGACGGCGAAACGCCGGAAGGCATTGGCTTTGCGATCCCG





TTCCAGTTAGCGACCAAAATTATGGATAAACTGATCCGCGATGGCCGGGT





GATCCGCGGCTATATCGGCATTAGCGGCCGGGAGATCGCCCCGCTGCACG





CGCAGGGCGGAGGGATCGATCAGATTCAGGGGATCGTNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCGCTGGAGACGATGGATCA





GGTGGCCGAGATCCGCCCGGGATCGGAAATTCCGGTGGTCATCATGCGTG





ATGATAAGAAAATCACGCTCCATATCGCCGTCCAGGAATACCCGGCCACC





AACTAAN






By “KpMero4_C_KPN_04666 nucleic acid molecule” is meant a control polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721; reference genome NC_009648) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_C_KPN_04666


(SEQ ID NO: 8)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTTGGC





GATCCTATTCATCCTGTTACTGATTTTCTTTTGTCAGAAATTAGTCAGGA





TCCTCGGCGCCGCGGTGGATGGCGATATCCCAACCAATCTGGTGCTCTCG





CTGTTGGGGCTCGGCATCCCGGAGATGGCGCAGCTTATCCTGCCGTTAAG





TCTGTTCCTTGGCCTGCTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNAACCCCGGTATGGCGGCGCTGGCCCAGGGCCAGTTCCAGC





AGGCCAGCGATGGTAACGCGGTGATGTTTATCGAAAGCGTCAACGGCAAC





CGCTTCCATGACGTCTTCCTTGCCCAGCTGCGTCCGAAAGGCAATGCGCG





CCCCTCGGTGGTGGTGGCGGATTCCGGCGAGCTGTCGCAGCAGAAAGACG





GCTCGCAGGTGGTGACCCTCAACAAGGGCACCCGCTTTGAAGGCACCGCG





ATGCTGCGCGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNACCGACCGCGCGCGCGCCGAACTGCACT





GGCGCTTCACGCTGGTGGCGACCGTCTTCATTATGGCGCTGATGGTGGTG





CCGCTCAGCGTGGTGAACCCGCGTCAGGGCCGNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNGGCTATCTGGATGTGGGCGATTA





ACCTGCTCTATTTTGCGCTGGCGGTGCTGTTAAACCTGTGGGACACGGTG





CCGATGCGCCGCTTCCGCGCCCGTTTTAATAAAGGAGCGGCCTGAN






By “KpMero4_R01up_KPN_01226 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R01up_KPN_01226


(SEQ ID NO: 9)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGAAGAACG





CCGCGCGATGCACGATCTGATCGCCAGCGACACCTTCGATAAGGCGAAGG





CGGAAGCGCAGATCGATAAGATGGAAGCGCAGCATAAAGCGATGGCGCTG





TCCCGCCTGGAAACGCAGAACAAGATCTACAACATTCTGACNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN






By “KpMero4_R02up_KPN_01107 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R02up_KPN_01107


(SEQ ID NO: 10)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNGTGGCTGCCGCGCTGGGCGTTGCAG





CTGTCGCTGGTCTCAACGTGTTGGATCGCGGCCCGCAGTATGCGCAAGTG





GTCTCCAGTACACCGATTAAAGAAACCGTGAAAACGCCGCGTCAGGAATG





CCGCAATGTCACGGTGACTCATCGTCGTCCGGTNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNN






By “KpMero4_R03up_KPN_02345 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R03up_KPN_02345


(SEQ ID NO: 11)


ATGATGCGAATCGCGCTTTTCCTGCTGACGAACCTGGCAGTGATGGTCGT





GTTCGGGCTGGTGTTAAGCCTCACGGGGATCCAATCCAGCAGCATGACCG





GTCTTCTGATTATGGCCCTGCTGTTCGGCTTCGGTGGTTCTATCGTTTCG





CTGATGATGTCGAAGTGGATGGCGCTGAAGTCNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNN






By “KpMero4_R04up_KPN_02742 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R04up_KPN_02742


(SEQ ID NO: 12)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNATCACCCTGCTGCCATCGGTAAAATTACAAA





TAGGCGATCGTGACAATTACGGTAACTACTGGGACGGTGGCAGCTGGCGC





GACCGTGATTACTGGCGTCGTCACTATGAATGGCGTGATAACCGTTGGCA





TCGTCATGACAACGGCTGGCACN






By “KpMero4_R05dn_KPN_02241 nucleic acid molecule” is meant a downregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R05dn_KPN_02241


(SEQ ID NO: 13)


ATGAAACGCAAAAACGCTTCGTTACTCGGTAACGTACTCATGGGGTTAGG





GTTGGTGGTGATGGTTGTGGGGGTAGGTTACTCCATTCTGAACCAGCTTC





CGCAGCTTAACCTGCCACAATTCTTTGCGCATGGCGCAATCCTAAGCATC





TTCGTTGGCGCAGTGCTCTGGCTGGCCGGTGCCCGTATTGGCGGCCACGA





GCAGGTCAGCGACCGCTACTGGTGGGTGCGCCACTACGATAAACGCTGCC





GTCGTAACCAGCATCGTCACAGCTAAN






By “KpMero4_R06up_KPN_03358 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R06up_KPN_03358


(SEQ ID NO: 14)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNAACATGGACTCCAACGGTCTGCTCA





GCTCAGGCGCCGAAGCCTTCCAGGCATACTCTCTCAGCGACGCGCAGGTG





AAAACCTTAAGCGACCAGGCCTGTAAAGAGATGGACGCCAAAGCGAAAAT





CGCCCCGGCCAACAGTGAATACAGCCAGCGGCTGAACAAAATCGCGNCTG





CGCTGGGCGATAACATCAATGGTCAGCCCGTGAACTACAAGGTCTATGAG





ACCAAGGATGTCAACGCCTTCGCCATGGCCAACGGCTGCATCCGCGTCTA





CAGCGGGCTGATGGATCTGATGAACGATAATGAAGTCGAGGCGGNGATCG





GCCACGAAATGGGCCACGTCGCGCTGGGCCACGTGAAGAAAGGCATGCAG





GTCGCCCTGGGTACCAACGCCGTGCGTGCGGCGGCGGCCTCCGCGGGCGG





NNNNNNNNNAGCCTGTCGCAGTCTCAGTTGGGCGATCTGGGCGAAAAACT





GGTGAACTCGCAGTTCTCCCAGCGTCAGGAATCGGAAGCGGATGACTACT





CTTACGACCTGCTGCGTAAGCGCGGTATCAATCCGTCGGGACTGGCCACC





AGCTTCGAGAAACTGGCCAAGCTGGAAGCCGGCCGTCAGAGCTCCATGTT





TGACGATCACCCGGCATCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNN






By “KpMero4_R07up_KPN_03934 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R07up_KPN_03934


(SEQ ID NO: 15)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





N----ATGCCTTATATTACCAAGCAGAATCAGGCGATTACTGCGGATCGT





AACTGGCTTATTTCCAAGCAGTACGATGCTCGCTGGTCGCCGACTGAGAA





GGCGCGCCTGAAGGATATCGCTNCCCGTTATAAGGTGAAGTGGTCAGGCA





ATACGCGTCATGTGCCCTGGAACGCGCTGCTTGAGCGTGTCGACATTATT





CCGAACAGCATGGTGGCGACCATGGCGGCGGCGGAAAGTGGCTGGGGTAC





CTCCAGGCTGGCGCGCGAGAATAACAACCTGTTCGGCATGAAGTGCGGCG





CCGGTCGCTGCCGCGGCGCGATGAAAGGTTACTCGCAGTTTGAGTCNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNN






By “KpMero4_R08dn_KPN_00868 nucleic acid molecule” is meant a downregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R08dn_KPN_00868


(SEQ ID NO: 16)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCCAATATCGATATTG





ACGCCTATCTGCAACTGCGAAAGGCCAAAGGCTACATGTCAGTCAGCGAA





AATGACCATCTGCGTGATAACTTGTTTGAGCTTTGCCGTGAAATGCGTGC





GCAGGCGCCGCGCCTGCAGAATGCCATTTCACCGNNNNNNNNNNNNNNNN





NNNNNNNNNNGGCGAATCGGTCGCCGCCGCTGCACTATGCCTGATGAGCG





GGCATCATGATTGTCCGCTATACATCGCTGTTAACGTAGAGAAGCTAGAA





CGCTGTCTGACAGGATTGACCTCAAATATTCATAAATTGAATAAATTGGC





GCCAATCACTCATGCCTGAN






By “KpMero4_R09up_KPN_02342 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R09up_KPN_02342


(SEQ ID NO: 17)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTGGCTATCTTATGGATTGG





CGTATTATTGAGCGGTTATGGGGTGTTATTCCACAGTGAGGAAAACGTCG





GCGGTCTGGGTCTTAAGTGCCAATACCTCACCGCCCGCGGAGTCAGCACC





GCACTTTATGTTCATTCCGACAGCGGAGTGATCGGCGTCAGCAGTTGCCC





TCTGCTGCGTAAAAGCACAACCGTGGTTGATAACGGCTAAN






By “KpMero4_R10up_KPN_00833 nucleic acid molecule” is meant an upregulated responsive polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following Klebsiella pneumoniae (strain MGH 78578, also known as ATCC 700721) sequence, excluding “N” residues, that is part of the KpMero4 probeset.









>KpMero4_R10up_KPN_00833


(SEQ ID NO: 18)


NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN





NNNNNNNATCGGCGTGGTGTCTGCGCAAGGCGCAACCACTTTAGATGGTC





TGGAAGCAAAACTGGCTGCTAAAGCCGAAGCCGCTGGCGCGACCGGCTAC





AGCATTACTTCCGCTAACACCAACAACAAACTGAGCGGTACTGCGGTTAT





CTATAAATAAN






By “CRE2_KPC nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_KPC


(SEQ ID NO: 19)


TATCGCCGTCTAGTTCTGCTGTCTTGTCTCTCATGGCCGCTGGCTGGCTT





TTCTGCCACCGCGCTGACCAACCTCGTCGCGGAACCATTCGCTAAACTCG





AACAGGACTTTGGCGGCTCCATCGGTGTGTACGCGATGGATACCGGCTCA





GGCGCAACTGTAAGTTACCGCGCTGAGGAGCGCTTCCCACTGTGCAGCTC





ATTCAAGGGCTTTCTTGCTGCCGCTGTGCTGGCTCGCAGCCAGCAGCAGG





CCGGCTTGCTGGACACACCCATCCGTTACGGCAAAAATGCGCTGGTTCCG





TGGTCACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGA





GCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGT





TGCTGAAGGAGTTGGGCGGCCCGGCCGGGCTGACGGCCTTCATGCGCTCT





ATCGGCGATACCACGTTCCGTCTGGACCGCTGGGAGCTGGAGCTGAACTC





CGCCATCCCAGGCGATGCGCGCGATACCTCATCGCCGCGCGCCGTGACGG





AAAGCTTACAAAAACTGACACTGGGCTCTGCACTGGCTGCGCCGCAGCGG





CAGCAGTTTGTTGATTGGCTAAAGGGAAACACGACCGGCAACCACCGCAT





CCGCGCGGCGGTGCCGGCAGACTGGGCAGTCGGAGACAAAACCGGAACCT





GCGGAGTGTATGGCACGGCAAATGACTATGCCGTCGTCTGGCCCACTGGG





CGCGCACCTATTGTGTTGGCCGTCTACACCCGGGCGCCTAACAAGGATGA





CAAGCACAGCGAGGCCGTCATCGCCGCTGCGGCTAGACTCGCGCTCGAGG





GA






By “CRE2_NDM nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_NDM


(SEQ ID NO: 20)


ATGGAATTGCCCAATATTATGCACCCGGTCGCGAAGCTGAGCACCGCATT





AGCCGCTGCATTGATGCTGAGCGGGTGCATGCCCGGTGAAATCCGCCCGA





CGATTGGCCAGCAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTT





TTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACAT





GCCGGGTTTCGGGGCAGTCGCTTCCAACGGTTTGATCGTCAGGGATGGCG





GCCGCGTGCTGGTGGTCGATACCGCCTGGACCGATGACCAGACCGCCCAG





ATCCTCAACTGGATCAAGCAGGAGATCAACCTGCCGGTCGCGCTGGCGGT





GGTGACTCACGCGCATCAGGACAAGATGGGCGGTATGGACGCGCTGCATG





CGGCGGGGATTGCGACTTATGCCAATGCGTTGTCGAACCAGCTTGCCCCG





CAAGAGGGGATGGTTGCGGCGCAACACAGCCTGACTTTCGCCGCCAATGG





CTGGGTCGAACCAGCAACCGCGCCCAACTTTGGCCCGCTCAAGGTATTTT





ACCCCGGCCCCGGCCACACCAGTGACAATATCACCGTTGGGATCGACGGC





ACCGACATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGTC





GCTCGGCAATCTCGGTGATGCCGACACTGAGCACTACGCCGCGTCAGCGC





GCGCGTTTGGTGCGGCGTTCCCCAAGGCCAGCATGATCGTGATGAGCCAT





TCCGCCCCCGATAGCCGCGCCGCAATCACTCATACGGCCCGCATGGCCGA





CAAGCTGCGCT






By “CRE2_OXA48 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_OXA48


(SEQ ID NO: 21)


ATGCGTGTATTAGCCTTATCGGCTGTGTTTTTGGTGGCATCGATTATCGG





AATGCCTGCGGTAGCAAAGGAATGGCAAGAAAACAAAAGTTGGAATGCTC





ACTTTACTGAACATAAATCACAGGGCGTAGTTGTGCTCTGGAATGAGAAT





AAGCAGCAAGGATTTACCAATAATCTTAAACGGGCGAACCAAGCATTTTT





ACCCGCATCTACCTTTAAAATTCCCAATAGCTTGATCGCCCTCGATTTGG





GCGTGGTTAAGGATGAACACCAAGTCTTTAAGTGGGATGGACAGACGCGC





GATATCGCCACTTGGAATCGCGATCATAATCTAATCACCGCGATGAAATA





TTCAGTTGTGCCTGTTTATCAAGAATTTGCCCGCCAAATTGGCGAGGCAC





GTATGAGCAAGATGCTACATGCTTTCGATTATGGTAATGAGGACATTTCG





GGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCAC





GGAGCAAATCAGCTTTTTAAGAAAGCTGTATCACAATAAGTTACACGTAT





CGGAGCGCAGCCAGCGTATTGTCAAACAAGCCATGCTGACCGAAGCCAAT





GGTGACTATATTATTCGGGCTAAAACTGGATACTCGACTAGAATCGAACC





TAAGATTGGCTGGTGGGTCGGTTGGGTTGAACTTGATGATAATGTGTGGT





TTTTTGCGATGAATATGGATATGCCCACATCGGATGGTTTAGGGCTGCGC





CAAGCCATCACAAAAGAAGTGCTCAAACAGGAAAAAATTATTCCCT






By “CRE2_CTXM15 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_CTXM15


(SEQ ID NO: 22)


ATGGTTAAAAAATCACTGCGCCAGTTCACGCTGATGGCGACGGCAACCGT





CACGCTGTTGTTAGGAAGTGTGCCGCTGTATGCGCAAACGGCGGACGTAC





AGCAAAAACTTGCCGAATTAGAGCGGCAGTCGGGAGGCAGACTGGGTGTG





GCATTGATTAACACAGCAGATAATTCGCAAATACTTTATCGTGCTGATGA





GCGCTTTGCGATGTGCAGCACCAGTAAAGTGATGGCCGCGGCCGCGGTGC





TGAAGAAAAGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATC





AAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAA





TGGGACGATGTCACTGGCTGAGCTTAGCGCGGCCGCGCTACAGTACAGCG





ATAACGTGGCGATGAATAAGCTGATTGCTCACGTTGGCGGCCCGGCTAGC





GTCACCGCGTTCGCCCGACAGCTGGGAGACGAAACGTTCCGTCTCGACCG





TACCGAGCCGACGTTAAACACCGCCATTCCGGGCGATCCGCGTGATACCA





CTTCACCTCGGGCAATGGCGCAAACTCTGCGGAATCTGACGCTGGGTAAA





GCATTGGGCGACAGCCAACGGGCGCAGCTGGTGACATGGATGAAAGGCAA





TACCACCGGTGCAGCGAGCATTCAGGCTGGACTGCCTGCTTCCTGGGTTG





GGGGGATAAAACCGGCAGCGGTGGCTATGGCACCACCAACGATATCGCGG





TGATCTGGCCAAAAGATCGTGCGCCGCTGATTCTGGTCACTTACTTCACC





CAGCCTCAACCTAAGGCAGAAAGCCGTCGCGATGTATTAGCGTCGGCGGC





TAAAATCGTCACCGACGGTTTGT






By “CRE2_OXA10 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_OXA10


(SEQ ID NO: 23)


ATGAAAACATTTGCCGCATATGTAATTATCGCGTGTCTTTCGAGTACGGC





ATTAGCTGGTTCAATTACAGAAAATACGTCTTGGAACAAAGAGTTCTCTG





CCGAAGCCGTCAATGGTGTCTTCGTGCTTTGTAAAAGTAGCAGTAAATCC





TGCGCTACCAATGACTTAGCTCGTGCATCAAAGGAATATCTTCCAGCATC





AACATTTAAGATCCCCAACGCAATTATCGGCCTAGAAACTGGTGTCATAA





AGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAG





CAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCAGCTGT





TCCCGTATTTCAACAAATCGCCAGAGAAGTTGGCGAAGTAAGAATGCAGA





AATACCTTAAAAAATTTTCCTATGGCAACCAGAATATCAGTGGTGGCATT





GACAAATTCTGGTTGGAAGGCCAGCTTAGAATTTCCGCAGTTAATCAAGT





GGAGTTTCTAGAGTCTCTATATTTAAATAAATTGTCAGCATCTAAAGAAA





ACCAGCTAATAGTAAAAGAGGCTTTGGTAACGGAGGCGGCACCTGAATAT





CTAGTGCATTCAAAAACTGGTTTTTCTGGTGTGGGAACTGAGTCAAATCC





TGGTGTCGCATGGTGGGTTGGGTGGGTTGAGAAGGAGACAGAGGTTTACT





TTTTCGCCTTTAACATGGATATAGACAACGAAAGTAAGTTGCCGCTAAGA





AAATCCATTCCCACCAAAATCATGGAAAGTGAGGGCATCATTGGTGGCT






By “CRE2_VIM_1 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_VIM_1


(SEQ ID NO: 24)


ATGTTTCAA---ATTCGCAGCTTTCTGGTTGGTATCAGTGCATTCGTCAT





GGCCGTACTTGGATCAGCAGCATATTCCGCACAGCCTGGCGGTGAATATC





CGACAGTAGATGACATACCGGTAGGGGAAGTTCGGCTGTACAAGATTGGC





GATGGCGTTTGGTCGCATATCGCAACTCAGAAACTCGGTGACACGGTGTA





CTCGTCTAATGGACTTATCGTCCGCGATGCTGATGAGTTGCTTCTTATTG





ATACAGCGTGGGGGGCGAAGAACACGGTAGCCCTTCTCGCGGAGATTGAA





AAGCAAATTGGACTTCCAGTAACGCGCTCAATTTCTACGCACTTCCATGA





CGATCGAGTCGGTGGAGTTGATGTCCTCCGGGCGGCTGGAGTGGCAACGT





ACACCTCACCCTTGACACGCCAGCTGGCCGAAGCGGCGGGAAACGAGGTG





CCTGCGCACTCTCTAAAAGCGCTCTCCTCTAGTGGAGATGTGGTGCGCTT





CGGTCCCGTAGAGGTTTTCTATCCTGGTGCTGCGCATTCGGGCGACAATC





TTGTGGTATACGTGCCGGCCGTGCGCGTACTGTTTGGTGGCTGTGCAGTT





CATGAGGCGTCACGCGAATCCGCGGGTAATGTTGCCGATGCCAATTTGGC





AGAATGGCCTGCTACCATTAAACGAATTCAACAGCGGTATCCGGAAGCAG





AGGTCGTCATCCCCGGCCACGGTCTACCGGGCGGTCTGGAATTGCTCCAA





CACACAACTAACGTTGTCAAAACGCACAAAGTACGCCCGGTGGCCGAGT






By “CRE2_VIM_2 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_VIM_2


(SEQ ID NO: 25)


CGAGTGGTGAGTATCCGACAGTCAACGAAATTCCGGTCGGAGAGGTCCGG





CTTTACCAGATTGCCGATGGTGTTTGGTCGCATATCGCAACGCAGTCGTT





TGATGGCGCGGTCTACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATG





AGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTT





CTCGCGGAGATTGAGAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTC





CACGCACTTTCATGACGACCGCGTCGGCGGCGTTGATGTCCTTCGGGCGG





CTGGGGTGGCAACGTACGCATCACCGTCGACACGCCGGCTAGCCGAGG






By “CRE2_VIM_3 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_VIM_3


(SEQ ID NO: 26)


TACCCGTCCAATGGTCTCATTGTCCGTGATGGTGATGAGTTGCTTTTGAT





TGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTG





AGAAGCAAATTGGACTTCCCGTAACGCGTGCAGTCTCCACGCACTTTCAT





GACGACCGCGTCGGCG






By “CRE2_IMP_1 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_1


(SEQ ID NO: 27)


GGAGCGGCTTTGCCTGATTTAAAAATCGAGAAGCTTGAAGAAGGTGTTTA





TGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAAC





ACGGTTTGGTGGTTCTTGTAAACACTGACGCCTATCTGATTGACACTCCA





TTT






By “CRE2_IMP_2 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_2


(SEQ ID NO: 28)


ACTGAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGG





CACTATTTCCTCACATTTCCATAGCGACAGCACAGGNGGAATAGAGTGGC





TTAATTCTCAATCTATTCCCACGTATGCATCTGAATTAACAAATGAACTT






By “CRE2_IMP_3 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_3


(SEQ ID NO: 29)


TCATTTAGCGGAGTTAGTTATTGGCTAGTTAAAAATAAAATTGAAGTTTT





TTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTG





AAAAGAAAATTTTATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGT





AATTTGG






By “CRE2_IMP_4 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_4


(SEQ ID NO: 30)


CTGACGCCTATCTGATTGACACTCCATTTACTGCTACAGATACTGAAAAG





TTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCACTATTTC





CTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTAATTCTC






By “CRE2_IMP_5 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_5


(SEQ ID NO: 31)


ATGAAAAAAATATTTGTGTTATTTGTATTTTTGTTTTGCAGTATTACTGC





CGCCGGAGAGTCTTTGCCTGATATAAAAATTGAGAAACTTGACGAAGATG





TTTATGTTCATACTTCTTTTGAAAAAAAAAACGGCTGGGGTGTTATTACT





AAACACGGCTTGGTGGTTCTTGTAAATACTGATGCCTATATAATTGACAC





TCCATTTACAGCTAAAGATACTGAAAAATTAGTCCGCTGGTTTGTGGGGC





GTGGTTATAAAATCAAAGGCAGTATTTCCTCACATTTTCATAGCGATAGC





GCAGGTGGAATTGAGTGGCTTAATTCTCAATCTATCCCCACATATGCATC





TAAATTAACAAATGAGCTTCTTAAAAAGAACGGTAATGCGCAAGCCGAAA





ACTCATTTAGTGGCGTTAGCTATTGGCTAGTTAAACATAAAATTGAAGTT





TTCTATCCAGGACCAGGGCACACTCAGGATAATGTAGTGGTTTGGTTGCC





TGAAAAGAAAATTTTATTTGGCGGTTGTTTTATTAAGCCGGACGGTCTTG





GTTATTTGGGAGACGCAAATCTAGAAGCATGGCCTAAGTCCGCAGAAACA





TTAATGTCTAAGTATGGTAATGCAAAACTGGTTGTTTCGAGTCATAGTGA





AATTGGGGGCGCATCACTATTGAAGCGCACTTGGGAGCAGGCTGTTAAGG





GGCTAAAAGAAAGTAAAAAACCATCACAGCCAAACAAA






By “CRE2_IMP_6 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_6


(SEQ ID NO: 32)


CTGAGGCTTATCTAATTGACACTCCATTTACGGCTAAAGATACTGAAAAG





TTAGTCACTTGGTTTGTGGAACGTGGCTATAAAATAAAAGGCAGTATTTC





CTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTAATTCTC





AATCTATCCCCACGTATGCATCTGAATTAACAAATG






By “CRE2_IMP_7 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_7


(SEQ ID NO: 33)


TATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACA





AGCTAAAAATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGA





TTGAAGTTTTTTATCCTGGTCCAGGGCACACTCCAGATAACGTAGTGGTT





TGGC






By “CRE2_IMP_8 nucleic acid molecule” is meant a polynucleotide that is 95%, 96%, 97%, 98%, or 100% identical to the following sequence, and is part of the Cre2 probeset.









>CRE2_IMP_8


(SEQ ID NO: 34)


GGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTT





ATTCGGTGGTTGTTTTGTTAAACCGGACGGTCTTGGTAATTTGGGTGACG





CAAATTTAGAAGCTTGGCCAAAGTCCGCCAAAATATTAATGTCTAAATAT





G






Other features and advantages of the disclosure will be apparent from the following description of the preferred embodiments thereof, and from the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All published foreign patents and patent applications cited herein are incorporated herein by reference. All other published references, documents, manuscripts and scientific literature cited herein are incorporated herein by reference. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description, given by way of example, but not intended to limit the disclosure solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:



FIGS. 1A-1C are diagrams depicting a binding and detection of a bipartite probe structure including Probe A and Probe B according to an exemplary embodiment of the disclosure. FIG. 1A shows the bipartite probe bound to an exemplary target nucleic acid. FIG. 1B shows an exemplary embodiment in which Probe A and Probe B may be detected by tags that are directly coupled to one or both Probes. FIG. 1C shows an exemplary embodiment in which Probe A and Probe B may be detected by tags that are in directly coupled to one or both Probes.



FIGS. 2A-2D depict MA plots showing RNA-Seq data. FIG. 2A demonstrates that RNA-Seq data upon antibiotic exposure revealed differential gene expression between susceptible and resistant strains. Susceptible (left panels) or resistant (right panels) clinical isolates of K. pneumoniae (top), E. coli (middle), or A. baumannii (bottom) were treated with meropenem (left, 60 min), ciprofloxacin (center, 30 min), or gentamicin (right, 60 min) at CLSI breakpoint concentrations. Data are presented as MA plots, with mean transcript abundance plotted on the x-axis and fold-induction compared with untreated strains on the y-axis; each axis is log2 transformed. Transcripts whose expression was observed as statistically significantly changed upon antibiotic exposure are shown in red. FIGS. 2B-2D show that a timecourse of RNA-Seq data upon antibiotic exposure revealed differential gene expression between susceptible and resistant clinical isolates. Susceptible (left panels) or resistant (right panels) clinical isolates of K. pneumoniae (FIG. 2B), E. coli (FIG. 2C), or A. baumannii (FIG. 2D) were treated with meropenem (left), ciprofloxacin (center), or gentamicin (right) at CLSI breakpoint concentrations for the indicated times. Data are presented as MA plots, with mean transcript abundance plotted on the x-axis and fold-induction compared with untreated strains on the y-axis; each axis is log2 transformed. Transcripts whose expression is statistically significantly changed upon antibiotic exposure are shown in red.



FIG. 3 shows that NanoString® data from dozens of antibiotic-responsive genes distinguished susceptible from resistant isolates. Heatmaps of normalized, log-transformed fold-induction of antibiotic-responsive transcripts from 18-24 clinical isolates of K. pneumoniae (top), E. coli (middle), or A. baumannii (bottom) treated at CLSI breakpoint concentrations with meropenem (left), ciprofloxacin (center), or gentamicin (right), with strains arranged in order of MIC for each antibiotic. CLSI classifications are shown below. All antibiotic-responsive transcripts chosen as described from RNA-Seq data are shown here; the subset of these chosen by reliefF as the 10 most discriminating transcripts are shown in FIG. 6 below. *=strains with large inoculum effects in meropenem MIC; +=one-dilution errors; x=strains discordant by more than one dilution.



FIGS. 4A and 4B show that a one-dimensional projection of NanoString® data distinguished susceptible from resistant isolates and reflected MIC. FIG. 4A shows phase 1 NanoString® data from FIGS. 2A-2D above (i.e., normalized, log-transformed fold-induction for each responsive transcript), analyzed as described to generate squared projected distance (SPD) metrics (y-axes) for each strain (see Supplemental Methods below), and binned by CLSI classifications (x-axes), for the same 18-24 isolates shown in FIGS. 3 above and 6 and 7A below. By definition, an SPD of 0 indicates a transcriptional response to antibiotic equivalent to that of an average susceptible strain, while an SPD of 1 indicates a response equivalent to that of an average resistant strain. See Supplemental Methods sections below for details. Data are summarized as box-and-whisker plots, where boxes extend from 25th to 75th percentile for each category, with middle line at median, and whiskers extending from minimum to maximum; all data points are displayed as well. Note that for A. baumannii and meropenem, the clustering of the majority of susceptible strains by this simple metric (aside from one outlier which was misclassified as resistant by GoPhAST-R) underscores the true differences in transcription between susceptible and resistant isolates, despite the more subtle-appearing differences in heatmaps for this combination (FIGS. 3 and 6), which is largely caused by one strain exhibiting an exaggerated transcriptional response (seen here as the strain with a markedly negative SPD) that affects scaling of the heatmap. FIG. 4B shows the same SPD data (y-axes) plotted against broth microdilution MICs (x-axes), which revealed that the magnitude of the transcriptional response to antibiotic exposure correlated with MIC. In both FIGS. 4A and 4B, strains with large inoculum effect upon meropenem treatment have been displayed in red and enlarged. Vertical dashed line indicates the CLSI breakpoint between susceptible and not susceptible (i.e., intermediate or resistant).



FIG. 5 depicts a schematic of the data analysis scheme of the instant disclosure, including the “two-phase” machine learning approach to feature selection and strain classification employed herein. The schematic representation shows major data analysis steps employed for identifying antibiotic-responsive transcriptional signatures from RNA-Seq data, validating and optimizing these signatures using NanoString® in two phases, and using these signatures to classify strains of unknown MIC, also in two phases. First, candidate antibiotic-responsive and control transcripts were chosen from RNA-Seq data using custom scripts built around the DESeq2 package, and conserved regions of these transcripts were identified for targeting in a hybridization assay. In phase 1 (implemented for all pathogen-antibiotic pairs), these candidate transcripts were quantitated on the NanoString® assay platform, and the resulting data were partitioned by strain into training and testing cohorts. Ten transcripts that best distinguished susceptible from resistant strains within the training cohort were then selected (step 1A) using the reliefF feature selection algorithm (implemented via the CORElearn package), then used to train an ensemble classifier (step 1B) on the same training cohort using a random forest algorithm (implemented via the caret package). This trained classifier was then used to predict susceptibilities of strains in the testing cohort (step 1C), and accuracy was assessed by comparing with broth microdilution results (Table 10). In phase 2 (implemented for K. pneumoniae+meropenem and ciprofloxacin), the same process was repeated, but the phase 1 training and testing cohorts were combined into a single, larger training cohort for feature selection (step 2A) and classifier training (step 2B), and a new set of strains was obtained as a testing cohort. The 10 genes selected from the phase 2 training cohort were measured from this phase 2 testing cohort, and the trained classifier was used for AST on these new strains (step 2C), with accuracy again assessed by comparison with broth microdilution (Table 10). See Supplemental Methods for detailed descriptions of each of these analysis steps.



FIG. 6 shows that NanoString® data for top 10 antibiotic-responsive transcripts distinguished susceptible from resistant strains. Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-responsive transcripts from 18-24 clinical isolates of K. pneumoniae (top), E. coli (middle), or A. baumannii (bottom) treated at CLSI breakpoint concentrations with meropenem (left), ciprofloxacin (center), or gentamicin (right) are shown, with strains arranged in order of MIC for each antibiotic. Gene identifiers are listed at right, along with gene names if available. CLSI classifications of each strain based on broth microdilution are shown below. *=strains with large inoculum effects in meropenem MIC; +=one-dilution errors; x=strains discordant by more than one dilution.



FIGS. 7A and 7B show that GoPhAST-R accurately classified clinical isolates. FIG. 7A shows the probability of resistance obtained from a random forest model trained on NanoString® data and tested on validation cohort (y-axis), as compared with standard CLSI classification based on broth microdilution MIC (x-axis), for the nine indicated pathogen-antibiotic combinations tested in phase 1. FIG. 7B shows the probability of resistance obtained from a random forest model trained on NanoString® data and tested on validation cohort (y-axis), as compared with standard CLSI classification based on broth microdilution MIC (x-axis), for the new K. pneumoniae isolates tested in phase 2 for meropenem and ciprofloxacin susceptibility. Horizontal dashed lines indicate 50% chance of resistance based on random forest model. Vertical dashed lines indicate CLSI breakpoint between susceptible and not susceptible (i.e. intermediate/resistant); isolates also colored by CLSI classification as indicated. Numbers in each quadrant indicate concordant (green) and discordant (black) classifications between GoPhAST-R and broth microdilution. Carbapenemase (square outline) and select ESBL (diamond outline) gene content as detected by GoPhAST-R are also displayed on meropenem plots (none were found in the A. baumannii validation cohort). *=strains with large inoculum effects in meropenem MIC.



FIG. 8 shows NanoString® data for top 10 antibiotic-responsive transcripts for strains tested in phase 2. Heatmaps of normalized, log-transformed fold-induction of top 10 antibiotic-responsive transcripts observed from 25-31 clinical isolates of K. pneumoniae treated at CLSI breakpoint concentrations with meropenem (left) or ciprofloxacin (right) are shown, with strains arranged in order of MIC for each antibiotic. CLSI classifications are shown below. *=strain with large inoculum effects in meropenem MIC; +=one-dilution error; x=strain discordant by more than one dilution. Note that the 10 responsive transcripts shown were the only 10 tested for this second phase of GoPhAST-R implementation.



FIGS. 9A-9C show that GoPhAST-R detected carbapenemase and ESBL gene content from tested strains. Known carbapenemase and select ESBL transcript content based on WGS data (left panels) were compared with heatmaps of GoPhAST-R results (right panels) for all K. pneumoniae (FIG. 9A), E. coli (FIG. 9B), and A. baumannii (FIG. 9C) isolates tested for meropenem susceptibility for which WGS data were available. Heatmap intensity reflects normalized, background-subtracted, log-transformed NanoString® data from probes for the indicated gene families. Vertical dashed line separates carbapenemases (left) from ESBL genes (right). Phenotypic AST classification by broth microdilution and GoPhAST-R is shown at right (“S”=susceptible, “I”=intermediate, “R”=resistant; “tr.”=strain used in training cohort, thus not classified by GoPhAST-R). *=strains with large inoculum effects in meropenem MIC; x=strain discordant by more than one dilution.



FIG. 10 shows that GoPhAST-R detected antibiotic-responsive transcripts directly from positive blood culture bottles. Heatmaps are shown of normalized, log-transformed fold-induction of the top 10 ciprofloxacin-responsive transcripts from 8 positive blood culture bottles that grew either E. coli (6 strains, A-F) or K. pneumoniae (2 bottles, G-H). CLSI classifications of isolates, which were blinded until analysis was complete, are displayed below each heatmap.



FIGS. 11A and 11B show that GoPhAST-R accurately classified AST and detected key resistance elements directly from simulated positive blood culture bottles in <4 hours. FIG. 11A shows heatmaps of normalized, log-transformed fold-induction NanoString® data from the top 10 antibiotic-responsive transcripts directly from 12 simulated positive blood culture bottles for each indicated pathogen-antibiotic combination, which revealed antibiotic-responsive transcription in susceptible but not resistant isolates. For meropenem, results of carbapenemase/ESBL gene detection are also displayed as a normalized, background-subtracted, log-transformed heatmap above. CLSI classifications of isolates, which were blinded until analysis was complete, are displayed below each heatmap. FIG. 11B shows the probability of resistance from random forest model trained by leave-one-out cross-validation on NanoString® data from FIG. 11A (y-axis) compared with standard CLSI classification based on broth microdilution MIC (x-axis) for each isolate. Horizontal dashed lines indicate 50% chance of resistance based on random forest model. Vertical dashed lines indicate CLSI breakpoint between susceptible and resistant; isolates have also been colored by CLSI classification as indicated. Carbapenemase (square outline) and select ESBL (diamond outline) gene content as detected by GoPhAST-R are also displayed on meropenem plots. See Supplemental Methods for details of spike-in protocol.



FIGS. 12A and 12B show for an exemplary GoPhAST-R workflow that the NanoString® Hyb & Seq™ platform distinguished phenotypically susceptible from resistant strains and detected genetic resistance determinants in <4 hours. FIG. 12A shows a schematic of GoPhAST-R workflow on the Hyb & Seq detection platform. It is contemplated that pathogen identification can either be performed prior to this process, or in parallel by multiplexing mRNA targets from multiple organisms. FIG. 12B, at left, shows the Hyb & Seq hybridization scheme, in which probe pairs targeting each RNA transcript are hybridized in crude lysate. Each probe A contains a unique barcode sequence (green) for detection and a shared 3′ capture sequence; each probe B contains a biotin group (gray circle) for surface immobilization and a shared 5′ capture sequence. At middle, the Hyb & Seq detection strategy is shown: immobilized, purified ternary probe-target complexes undergo sequential cycles of multi-step imaging for spatially resolved single-molecule detection. Each cycle consists of reporter probe binding and detection, UV cleavage, a second round of reporter probe binding and detection, and a low-salt wash to regenerate the unbound probe-target complex. 5 Hyb & Seq cycles were used to generate the data shown. See Supplemental Methods sections below for details. At right, pilot study results for accelerated meropenem susceptibility testing of 6 clinical K. pneumoniae isolates are shown. At right top, heatmaps of normalized, log-transformed fold-induction of top 10 meropenem-responsive transcripts measured using the instant Hyb & Seq workflow are shown, with strains arranged in order of MIC for each antibiotic. CLSI classifications are shown immediately below. At right bottom, heatmaps of normalized, background-subtracted, log-transformed NanoString® data from carbapenemase (“CPase”) and select ESBL transcripts measured in the same Hyb & Seq assay are shown.



FIGS. 13A-13D show phylogenetic trees that highlight the diversity of strains used in that instant disclosure. FIG. 13A shows phylogenetic trees of all sequenced isolates deposited in NCBI for Klebsiella pneumoniae isolates, with all sequenced isolates used in the instant disclosure indicated by colored arrowheads around the periphery. FIG. 13B shows phylogenetic trees of all sequenced isolates deposited in NCBI for Escherichia coli isolates, with all sequenced isolates used in the instant disclosure indicated by colored arrowheads around the periphery. FIG. 13C shows phylogenetic trees of all sequenced isolates deposited in NCBI for Acinetobacter baumanii isolates isolates, with all sequenced isolates used in the instant disclosure indicated by colored arrowheads around the periphery. FIG. 13D shows phylogenetic trees of all sequenced isolates deposited in NCBI for Pseudomonas aeruginosa isolates, with all sequenced isolates used in the instant disclosure indicated by colored arrowheads around the periphery (ciprofloxacin sensitive strains are indicated by blue arrowheads and ciprofloxacin resistant strains are indicated by red arrowheads). See Supplemental Methods sections below for details.



FIGS. 14A-14F show that RNA-Seq and NanoString® data revealed differential gene expression that distinguished susceptible from resistant clinical isolates for S. aureus+levofloxacin and P. aeruginosa+ciprofloxacin. FIG. 14A shows RNA-Seq data from susceptible or resistant clinical isolates of S. aureus treated with the indicated fluoroquinolone levofloxacin at 1 mg/L for 60 minutes. Data are presented as MA plots, with mean transcript abundance plotted on the x-axis and fold-induction compared with untreated strains on the y-axis; each axis is log2 transformed. Transcripts whose expression is statistically significantly changed upon antibiotic exposure are shown in red. FIG. 14B shows heatmaps of normalized, log-transformed fold-induction of antibiotic-responsive transcripts from 24 clinical isolates of S. aureus treated with the indicated fluoroquinolone levofloxacin at 1 mg/L for 60 minutes. NanoString® data from all candidate transcripts are shown at left, and top 10 transcripts selected from Phase 1 testing are shown at right. (FIG. 14C=S. aureus+levofloxacin; FIG. 14F=P. aeruginosa+ciprofloxacin) FIG. 14C depicts the probability of S. aureus resistance to the indicated fluoroquinolone levofloxacin from random forest model trained on Phase 1 NanoString® data from derivation cohort and tested on validation cohort (y-axis) compared with standard CLSI classification based on broth microdilution MIC (x-axis). Horizontal dashed lines indicate 50% chance of resistance based on random forest model. Vertical dashed lines indicate CLSI breakpoint between susceptible and not susceptible (i.e. intermediate/resistant); isolates also colored by CLSI classification as indicated. Numbers in each quadrant indicate concordant (green) and discordant (black) classifications between GoPhAST-R and broth microdilution. FIG. 14D shows RNA-Seq data from susceptible or resistant clinical isolates of P. aeruginosa treated with the indicated fluoroquinolone ciprofloxacin at 1 mg/L for 60 minutes. Data are presented as MA plots, with mean transcript abundance plotted on the x-axis and fold-induction compared with untreated strains on the y-axis; each axis is log2 transformed. Transcripts whose expression is statistically significantly changed upon antibiotic exposure are shown in red. FIG. 14E shows heatmaps of normalized, log-transformed fold-induction of antibiotic-responsive transcripts from 24 clinical isolates of P. aeruginosa treated with the indicated fluoroquinolone ciprofloxacin at 1 mg/L for 60 minutes. NanoString® data from all candidate transcripts are shown at left, and top 10 transcripts selected from Phase 1 testing are shown at right. FIG. 14F depicts the probability of P. aeruginosa resistance to the indicated fluoroquinolone ciprofloxacin from random forest model trained on Phase 1 NanoString® data from derivation cohort and tested on validation cohort (y-axis) compared with standard CLSI classification based on broth microdilution MIC (x-axis). Horizontal dashed lines indicate 50% chance of resistance based on random forest model. Vertical dashed lines indicate CLSI breakpoint between susceptible and not susceptible (i.e. intermediate/resistant); isolates also colored by CLSI classification as indicated. Numbers in each quadrant indicate concordant (green) and discordant (black) classifications between GoPhAST-R and broth microdilution.





DETAILED DESCRIPTION OF THE DISCLOSURE

The present disclosure is based, at least in part, on the discovery of specific mRNA signature patterns that provide rapid phenotypic detection of single and multiple types of antibiotic resistance/susceptibility in specific microbial organisms (e.g., bacteria). In particular, the techniques herein relate, at least in part, to compositions, methods, and kits for rapid antibiotic susceptibility testing (AST) in microbial organisms (e.g., bacteria). The techniques herein provide compositions and methods that provide rapid phenotypic detection of antibiotic resistance/susceptibility in microbial pathogens, and are faster than the prior art growth-based phenotypic assays that currently comprise the gold standard. The techniques herein also provide compositions and methods that enable simultaneous detection of multiple resistance genes in the same assay. In this manner, the techniques herein enable more accurate determination of antibiotic resistance, as well as providing: 1) mechanistic explanations for key antibiotic resistant strains, 2) epidemiologic tracking of known resistance mechanisms, and 3) immediate identification of unknown or potentially novel resistance mechanisms (such as, e.g., discordant cases when a resistant organism does not display a known resistance phenotype). Currently, detection of antibiotic resistance genes typically requires separate PCR or sequencing assays, which require different assay infrastructure and often necessitate sending samples out to reference laboratories.


The techniques herein may be used for clinical diagnostics, e.g., to rapidly determine antibiotic susceptibility profiles on patient samples and easily allow antibiotic susceptibility testing (AST) to be performed on bacteria from any source, including environmental isolates. The techniques herein are based on the following steps: sample acquisition, processing to enrich for bacteria and remove host material (in order to increase signal-to-noise), antibiotic exposure, bacterial lysis, RNA measurement (hybridization followed by detection), and data interpretation. Advantageously, the techniques herein may be implemented within a single reaction that does not require sample purification.


As mentioned above, current growth-based antibiotic susceptibility testing (AST) is too slow to inform key clinical decisions. While genotypic assays hold promise, they remain incompletely predictive of susceptibility. The techniques herein provide rapid assays for combined genotypic and phenotypic AST through RNA detection (i.e., GoPhAST-R) that classifies strains with >94-99% accuracy by coupling machine learning analysis of quantitative early transcriptional responses to antibiotic exposure with simultaneous detection of key genetic resistance determinants. This two-pronged approach provides phenotypic AST as fast as <4 hours, increases accuracy of resistance detection, works directly from positive blood cultures, facilitates molecular epidemiology, and enables early detection of emerging resistance mechanisms.


Antibiotic resistance is one of the most pressing medical problems of modern times (Fauci & Morens; Nathan & Cars). The rise of multidrug resistant organisms (MDROs) has been recognized as one of the most serious threats to human health (Holdren et al.; WHO). Delays in identifying MDROs can lead to increased mortality (Kumar et al.; Kadri et al.) and increased use of broad-spectrum antibiotics to further select for resistant organisms. Rapid antibiotic susceptibility testing (AST) with pathogen identification would transform the care of infected patients while ensuring that the available antibiotic arsenal is deployed as efficiently as possible.


The current gold standard AST assays of measuring growth in the presence of an antibiotic, such as broth microdilution (Wiegand et al.), directly answer the key question of whether the antibiotic inhibits pathogen growth; however, their dependence on serial growth requires 2-3 days from sample collection to results. As an alternative approach, a new generation of assays has emerged to rapidly detect genotypic resistance determinants, yet these are simply proxies for antibiotic resistance in select cases with monogenic determinants (e.g., MRSA Xpert, VRE Xpert, GeneXpert; see Boehme et al., Ioannidis et al., Marlowe et al., Marner et al., and Wolk et al.), or limited to a subset of resistance determinants for a specific drug class (McMullen et al., Smith et al., Traczewski et al., Sullivan et al., Walker et al. J Clin Microbiol, Walker et al. Clin Chem, and Salimnia et al.). Such approaches fall short of universal AST because of the incomplete knowledge of the innumerable resistance-causing genes and mutations across a wide range of pathogens and antibiotics, and the interactions of these genetic factors with the wide diversity of genomic backgrounds within any given bacterial species (Arzanlou et al.; Cerqueira et al.). Genotypic resistance detection does, however, have the benefit of facilitating molecular epidemiology by allowing specific resistance mechanisms to be identified and tracked (Cerqueira et al.; Woodworth et al.). Whole genome sequencing (WGS) coupled with machine learning has promised the possibility of a more universal genomic approach to AST (Allcock et al.; Bradley et al.; Didelot et al.; Li, Y. et al.; and Nguyen et al.). But while the genomics revolution has undeniably transformed the microbiology field's understanding of antibiotic resistance (Burnham et al.; Gupta, S. K. et al.; Jia et al.; McArthur et al.; and Zankari et al.), as a clinical diagnostic, WGS remains technically demanding, costly, and slow. Moreover, the complexity and variability of bacterial genomes present serious challenges to the ability to predict antibiotic susceptibility with sufficient accuracy to direct patient care (Bhattacharyya et al.; Milheirico et al.; and Ellington et al.). Additionally, the inability to predict the emergence of new resistance mechanisms means that genotypic resistance detection, whether targeted or comprehensive, is fundamentally reactive as new resistance determinants are reported (see e.g., Caniaux et al. 2017; Ford 2018; Garcia-Alvarez et al. 2011; Liakopoulos et al. 2016; Liu et al. 2016; Ma et al. 2018; Paterson et al. 2014; Sun et al. 2018). While certain bacterial species or antibiotic classes are more amenable to genetic resistance prediction (see e.g., Bradley et al. 2015; Consortium et al. 2018), this approach is not readily generalizable (Bhattacharyya et al.; Ellington et al.; Rossen et al.; and Tagini & Greub). These gaps in genetic susceptibility prediction have motivated a number of novel approaches that focus on phenotypic AST but with a more rapid result, including rapid automated microscopy (see e.g., Charnot-Katsikas et al. 2018; Choi et al. 2017; Humphries and Di Martino 2019; Marschal et al. 2017), ultrafine mass measurements (see e.g., Cermak et al. 2016; Longo et al. 2013), and others (see e.g., Barczak et al; Quach et al. 2016; and van Belkum et al. 2017).


Of the current MDROs, carbapenem resistant organisms are the most alarming, as their resistance to this class of broad-spectrum antibiotics often leaves few to no treatment options available (Gupta, N. et al.; Iovleva & Doi et al.; and Nordmann et al. 2012). Yet phenotypic carbapenem resistance detection can be challenging (Lutgring and Limbago 2016; Miller and Humphries 2016), as some carbapenemase-producing strains, even those carrying canonical resistance determinants such as blaKPC, may be mistakenly identified as susceptible by current phenotypic assays (Anderson et al. 2007; Arnold et al. 2011; Centers for Disease and Prevention 2009; Chea et al. 2015; Gupta, V. et al. 2018; Nordmann et al. 2009; and Chea et al.) while failing clinical carbapenem therapy (Weisenberg et al. 2009). Rapid genotypic approaches are now available that use multiplexed PCR assays to detect several common carbapenemases in carbapenem-resistant Enterobactericeae (CRE) (see e.g., Evans et al. 2016; Smith et al. 2016; Sullivan et al. 2014). While one advantage of these assays is that they identify the specific mechanism of resistance when present, they fail to identify a significant fraction (13-68%) of CRE isolates with unknown or non-carbapenemase resistance mechanisms (see e.g., Cerqueira et al. 2017; Woodworth et al. 2018; Ye et al. 2018). For non-Enterobacteriaceae, this problem is even more challenging, as unexplained genetic resistance mechanisms account for the vast majority of resistance. For example; just 1.9% of over 1000 carbapenem-resistant Pseudomonas in the 2017 CDC survey were found to encode known carbapenemases (see e.g., Woodworth et al. 2018). These challenges have left clinical microbiology laboratories still seeking consensus on how to best apply the multiple possible workflows that currently exist for detecting carbapenem resistance (McMullen et al.; Humphries, R. M.), including phenotypic (CLSI), genetic (McMullen et al., Smith et al., Traczewski et al., Sullivan et al., Walker et al. J Clin Microbiol, Walker et al. Clin Chem), and biochemical (Humphries, R. M.) assays.


The present disclosure provides a diagnostic approach that has been termed Genotypic and Phenotypic AST through RNA detection (GoPhAST-R), which addresses the above-mentioned prior art problems by detecting both genotype and phenotype in a single assay. Advantageously, this allows for integration of all information while simultaneously providing information about both resistance prediction and molecular epidemiology. mRNA is uniquely informative in this regard, as it encodes genotypic information in its sequence and phenotypic information in its abundance in response to antibiotic exposure. For example, susceptible cells that are stressed upon antibiotic exposure look transcriptionally distinct from resistant cells that are not (Barczak et al. 2012). Leveraging this principle for rapid phenotypic AST built upon multiplexed hybridization-based detection of early transcriptional responses that occur within minutes of antibiotic exposure, the present disclosure defines a phenotypic measure that distinguishes susceptible (by measuring a response in susceptible strains) from resistant organisms, agnostic to the mechanism of resistance. As described in detail below, these techniques are demonstrated for three major antibiotic classes—fluoroquinolones, aminoglycosides, and importantly, carbapenems—in Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus, four gram-negative and one gram-positive pathogens that are classified as “critical” or “high priority” threats by the World Health Organization (Tacconelli et al.) and have a propensity for multi-drug resistance through diverse mechanisms that are difficult to determine based solely on genotypic determinants.


The working examples herein describe a generalizable process to extend this approach to any pathogen-antibiotic pair of interest, in certain aspects and without wishing to be bound by theory, the process requires only that an antibiotic elicit a differential transcriptional response in susceptible versus resistant isolates, a biological phenomenon that to date appears to be universal. An analytical framework is described to classify organisms as susceptible or resistant on the basis of 10-transcript signatures detected in a simple multiplexed fluorescent hybridization-based assay on an RNA detection platform (NanoString® nCounter™; Geiss et al.), demonstrating>94-99% categorical agreement with broth microdilution. For carbapenems, a simultaneous genotypic detection of key resistance determinants is incorporated into the same assay to improve accuracy of resistance detection, facilitate molecular epidemiology, and guide antibiotic selection for CRE treatment from among the newer available agents (Lomovskaya et al. 2017; Marshall et al. 2017; van Duin and Bonomo 2016), which has clearly demonstrated the superiority of GoPhAST-R techniques described herein over prior art approaches that measure either genotype or phenotype alone. This important feature shows that several of the discrepant results between GoPhAST-R and broth microdilution occur in carbapenemase-producing strains likely misclassified as susceptible by the gold standard, and correctly classified as resistant by GoPhAST-R. In this regard, the GoPhAST-R techniques described herein can be deployed directly on a positive blood culture bottle with a simple workflow, reporting phenotypic AST within hours of a positive culture, thus 24-36 hours faster than gold standard prior art methods in a head-to-head comparison, yielding AST results with 99% categorical agreement. Finally, GoPhAST-R can determine antibiotic susceptibilities in under 4 hours, using a pilot next-generation RNA detection platform (NanoString® Hyb & Seq™). Together, the techniques herein establish GoPhAST-R as a novel, accurate, rapid approach that can simultaneously report phenotypic and genotypic data and thus leverages the advantages of both approaches.


Treatment Selection

The methods described herein can be used for selecting, and then optionally administering, an optimal treatment (e.g., an antibiotic course) for a subject. Thus the methods described herein include methods for the treatment of bacterial infections. Generally, the methods include administering a therapeutically effective amount of a treatment as described herein, to a subject who is in need of, or who has been determined to be in need of, such treatment.


As used in this context, to “treat” means to ameliorate at least one symptom of the bacterial infection.


An “effective amount” is an amount sufficient to effect beneficial or desired results. For example, a therapeutic amount is one that achieves the desired therapeutic effect (e.g reduction or elimination of a bacterial infection). This amount can be the same or different from a prophylactically effective amount, which is an amount necessary to prevent onset of disease or disease symptoms. An effective amount can be administered in one or more administrations, applications or dosages. A therapeutically effective amount of a therapeutic compound (i.e., an effective dosage) depends on the therapeutic compounds selected. The compositions can be administered from one or more times per day to one or more times per week; including once every other day. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the bacterial infection, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of the therapeutic compounds described herein can include a single treatment or a series of treatments.


Dosage, toxicity and therapeutic efficacy of the therapeutic compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


The data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the disclosure, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


Combination Treatments

The compositions and methods of the present disclosure may be used two direct the administration of combination antibiotic therapies to treat particular bacterial infections. In order to increase the effectiveness of a treatment with the compositions of the present disclosure, e.g., an antibiotic selected and/or administered as a single agent, or to augment the protection of another therapy (second therapy), it may be desirable to combine these compositions and methods with one another, or with other agents and methods effective in the treatment, amelioration, or prevention of diseases and pathologic conditions, for example, an antibiotic infection.


Administration of a composition of the present disclosure to a subject will follow general protocols for the administration described herein, and the general protocols for the administration of a particular secondary therapy will also be followed, taking into account the toxicity, if any, of the treatment. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various standard therapies may be applied in combination with the described therapies.


Pharmaceutical Compositions

Agents of the present disclosure can be incorporated into a variety of formulations for therapeutic use (e.g., by administration) or in the manufacture of a medicament (e.g., for treating or preventing a bacterial infection) by combining the agents with appropriate pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms. Examples of such formulations include, without limitation, tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols.


Pharmaceutical compositions can include, depending on the formulation desired, pharmaceutically-acceptable, non-toxic carriers of diluents, which are vehicles commonly used to formulate pharmaceutical compositions for animal or human administration. The diluent is selected so as not to affect the biological activity of the combination. Examples of such diluents include, without limitation, distilled water, buffered water, physiological saline, PBS, Ringer's solution, dextrose solution, and Hank's solution. A pharmaceutical composition or formulation of the present disclosure can further include other carriers, adjuvants, or non-toxic, nontherapeutic, nonimmunogenic stabilizers, excipients and the like. The compositions can also include additional substances to approximate physiological conditions, such as pH adjusting and buffering agents, toxicity adjusting agents, wetting agents and detergents.


Further examples of formulations that are suitable for various types of administration can be found in Remington's Pharmaceutical Sciences, Mace Publishing Company, Philadelphia, Pa., 17th ed. (1985). For a brief review of methods for drug delivery, see, Langer, Science 249: 1527-1533 (1990).


For oral administration, the active ingredient can be administered in solid dosage forms, such as capsules, tablets, and powders, or in liquid dosage forms, such as elixirs, syrups, and suspensions. The active component(s) can be encapsulated in gelatin capsules together with inactive ingredients and powdered carriers, such as glucose, lactose, sucrose, mannitol, starch, cellulose or cellulose derivatives, magnesium stearate, stearic acid, sodium saccharin, talcum, magnesium carbonate. Examples of additional inactive ingredients that may be added to provide desirable color, taste, stability, buffering capacity, dispersion or other known desirable features are red iron oxide, silica gel, sodium lauryl sulfate, titanium dioxide, and edible white ink.


Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric-coated for selective disintegration in the gastrointestinal tract. Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.


Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.


As used herein, the term “pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts of amines, carboxylic acids, and other types of compounds, are well known in the art. For example, S. M. Berge, et al. describe pharmaceutically acceptable salts in detail in J Pharmaceutical Sciences 66 (1977):1-19, incorporated herein by reference. The salts can be prepared in situ during the final isolation and purification of the compounds (e.g., FDA-approved compounds) of the application, or separately by reacting a free base or free acid function with a suitable reagent, as described generally below. For example, a free base function can be reacted with a suitable acid. Furthermore, where the compounds to be administered of the application carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may, include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.


Additionally, as used herein, the term “pharmaceutically acceptable ester” refers to esters that hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound (e.g., an FDA-approved compound where administered to a human subject) or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moeity advantageously has not more than 6 carbon atoms. Examples of particular esters include formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.


Furthermore, the term “pharmaceutically acceptable prodrugs” as used herein refers to those prodrugs of the certain compounds of the present application which are, within the scope of sound medical judgment, suitable for use in contact with the issues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the application. The term “prodrug” refers to compounds that are rapidly transformed in vivo to yield the parent compound of an agent of the instant disclosure, for example by hydrolysis in blood. A thorough discussion is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, (1987), both of which are incorporated herein by reference.


The components used to formulate the pharmaceutical compositions are preferably of high purity and are substantially free of potentially harmful contaminants (e.g., at least National Food (NF) grade, generally at least analytical grade, and more typically at least pharmaceutical grade). Moreover, compositions intended for in vivo use are usually sterile. To the extent that a given compound must be synthesized prior to use, the resulting product is typically substantially free of any potentially toxic agents, particularly any endotoxins, which may be present during the synthesis or purification process. Compositions for parental administration are also sterile, substantially isotonic and made under GMP conditions.


Formulations may be optimized for retention and stabilization in a subject and/or tissue of a subject, e.g., to prevent rapid clearance of a formulation by the subject. Stabilization techniques include cross-linking, multimerizing, or linking to groups such as polyethylene glycol, polyacrylamide, neutral protein carriers, etc. in order to achieve an increase in molecular weight.


Other strategies for increasing retention include the entrapment of the agent in a biodegradable or bioerodible implant. The rate of release of the therapeutically active agent is controlled by the rate of transport through the polymeric matrix, and the biodegradation of the implant. The transport of drug through the polymer barrier will also be affected by compound solubility, polymer hydrophilicity, extent of polymer cross-linking, expansion of the polymer upon water absorption so as to make the polymer barrier more permeable to the drug, geometry of the implant, and the like. The implants are of dimensions commensurate with the size and shape of the region selected as the site of implantation. Implants may be particles, sheets, patches, plaques, fibers, microcapsules and the like and may be of any size or shape compatible with the selected site of insertion.


The implants may be monolithic, i.e. having the active agent homogenously distributed through the polymeric matrix, or encapsulated, where a reservoir of active agent is encapsulated by the polymeric matrix. The selection of the polymeric composition to be employed will vary with the site of administration, the desired period of treatment, patient tolerance, the nature of the disease to be treated and the like. Characteristics of the polymers will include biodegradability at the site of implantation, compatibility with the agent of interest, ease of encapsulation, a half-life in the physiological environment.


Biodegradable polymeric compositions which may be employed may be organic esters or ethers, which when degraded result in physiologically acceptable degradation products, including the monomers. Anhydrides, amides, orthoesters or the like, by themselves or in combination with other monomers, may find use. The polymers will be condensation polymers. The polymers may be cross-linked or non-cross-linked. Of particular interest are polymers of hydroxyaliphatic carboxylic acids, either homo- or copolymers, and polysaccharides. Included among the polyesters of interest are polymers of D-lactic acid, L-lactic acid, racemic lactic acid, glycolic acid, polycaprolactone, and combinations thereof. By employing the L-lactate or D-lactate, a slowly biodegrading polymer is achieved, while degradation is substantially enhanced with the racemate. Copolymers of glycolic and lactic acid are of particular interest, where the rate of biodegradation is controlled by the ratio of glycolic to lactic acid. The most rapidly degraded copolymer has roughly equal amounts of glycolic and lactic acid, where either homopolymer is more resistant to degradation. The ratio of glycolic acid to lactic acid will also affect the brittleness of in the implant, where a more flexible implant is desirable for larger geometries. Among the polysaccharides of interest are calcium alginate, and functionalized celluloses, particularly carboxymethylcellulose esters characterized by being water insoluble, a molecular weight of about 5 kD to 500 kD, etc. Biodegradable hydrogels may also be employed in the implants of the individual instant disclosure. Hydrogels are typically a copolymer material, characterized by the ability to imbibe a liquid. Exemplary biodegradable hydrogels which may be employed are described in Heller in: Hydrogels in Medicine and Pharmacy, N. A. Peppes ed., Vol. III, CRC Press, Boca Raton, Fla., 1987, pp 137-149.


Pharmaceutical Dosages

Pharmaceutical compositions of the present disclosure containing an agent described herein may be used (e.g., administered to an individual, such as a human individual, in need of treatment with an antibiotic) in accord with known methods, such as oral administration, intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, intracranial, intraspinal, subcutaneous, intraarticular, intrasynovial, intrathecal, topical, or inhalation routes.


Dosages and desired drug concentration of pharmaceutical compositions of the present disclosure may vary depending on the particular use envisioned. The determination of the appropriate dosage or route of administration is well within the skill of an ordinary artisan. Animal experiments provide reliable guidance for the determination of effective doses for human therapy. Interspecies scaling of effective doses can be performed following the principles described in Mordenti, J. and Chappell, W. “The Use of Interspecies Scaling in Toxicokinetics,” In Toxicokinetics and New Drug Development, Yacobi et al., Eds, Pergamon Press, New York 1989, pp. 42-46.


For in vivo administration of any of the agents of the present disclosure, normal dosage amounts may vary from about 10 ng/kg up to about 100 mg/kg of an individual's and/or subject's body weight or more per day, depending upon the route of administration. In some embodiments, the dose amount is about 1 mg/kg/day to 10 mg/kg/day. For repeated administrations over several days or longer, depending on the severity of the disease, disorder, or condition to be treated, the treatment is sustained until a desired suppression of symptoms is achieved.


An effective amount of an agent of the instant disclosure may vary, e.g., from about 0.001 mg/kg to about 1000 mg/kg or more in one or more dose administrations for one or several days (depending on the mode of administration). In certain embodiments, the effective amount per dose varies from about 0.001 mg/kg to about 1000 mg/kg, from about 0.01 mg/kg to about 750 mg/kg, from about 0.1 mg/kg to about 500 mg/kg, from about 1.0 mg/kg to about 250 mg/kg, and from about 10.0 mg/kg to about 150 mg/kg.


An exemplary dosing regimen may include administering an initial dose of an agent of the disclosure of about 200 μg/kg, followed by a weekly maintenance dose of about 100 μg/kg every other week. Other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the physician wishes to achieve. For example, dosing an individual from one to twenty-one times a week is contemplated herein. In certain embodiments, dosing ranging from about 3 μg/kg to about 2 mg/kg (such as about 3 μg/kg, about 10 μg/kg, about 30 μg/kg, about 100 μg/kg, about 300 μg/kg, about 1 mg/kg, or about 2 mg/kg) may be used. In certain embodiments, dosing frequency is three times per day, twice per day, once per day, once every other day, once weekly, once every two weeks, once every four weeks, once every five weeks, once every six weeks, once every seven weeks, once every eight weeks, once every nine weeks, once every ten weeks, or once monthly, once every two months, once every three months, or longer. Progress of the therapy is easily monitored by conventional techniques and assays. The dosing regimen, including the agent(s) administered, can vary over time independently of the dose used.


Pharmaceutical compositions described herein can be prepared by any method known in the art of pharmacology. In general, such preparatory methods include the steps of bringing the agent or compound described herein (i.e., the “active ingredient”) into association with a carrier or excipient, and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping, and/or packaging the product into a desired single- or multi-dose unit.


Pharmaceutical compositions can be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. A “unit dose” is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition described herein will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. The composition may comprise between 0.1% and 100% (w/w) active ingredient.


Pharmaceutically acceptable excipients used in the manufacture of provided pharmaceutical compositions include inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and perfuming agents may also be present in the composition.


Exemplary diluents include calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, and mixtures thereof.


Exemplary granulating and/or dispersing agents include potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose, and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, and mixtures thereof.


Exemplary surface active agents and/or emulsifiers include natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite (aluminum silicate) and Veegum (magnesium aluminum silicate)), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g., carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g., carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate (Tween® 20), polyoxyethylene sorbitan (Tween® 60), polyoxyethylene sorbitan monooleate (Tween® 80), sorbitan monopalmitate (Span® 40), sorbitan monostearate (Span® 60), sorbitan tristearate (Span® 65), glyceryl monooleate, sorbitan monooleate (Span® 80), polyoxyethylene esters (e.g., polyoxyethylene monostearate (Myrj® 45), polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and Solutol), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g., Cremophor®), polyoxyethylene ethers, (e.g., polyoxyethylene lauryl ether (Brij® 30)), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, Pluronic® F-68, Poloxamer P-188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, and/or mixtures thereof.


Exemplary binding agents include starch (e.g., cornstarch and starch paste), gelatin, sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol, etc.), natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum®), and larch arabogalactan), alginates, polyethylene oxide, polyethylene glycol, inorganic calcium salts, silicic acid, polymethacrylates, waxes, water, alcohol, and/or mixtures thereof.


Exemplary preservatives include antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, antiprotozoan preservatives, alcohol preservatives, acidic preservatives, and other preservatives. In certain embodiments, the preservative is an antioxidant. In other embodiments, the preservative is a chelating agent.


Exemplary antioxidants include alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and sodium sulfite.


Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA) and salts and hydrates thereof (e.g., sodium edetate, disodium edetate, trisodium edetate, calcium disodium edetate, dipotassium edetate, and the like), citric acid and salts and hydrates thereof (e.g., citric acid monohydrate), fumaric acid and salts and hydrates thereof, malic acid and salts and hydrates thereof, phosphoric acid and salts and hydrates thereof, and tartaric acid and salts and hydrates thereof. Exemplary antimicrobial preservatives include benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and thimerosal.


Exemplary antifungal preservatives include butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and sorbic acid.


Exemplary alcohol preservatives include ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and phenylethyl alcohol.


Exemplary acidic preservatives include vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and phytic acid.


Other preservatives include tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant® Plus, Phenonip®, methylparaben, Germall® 115, Germaben® II, Neolone®, Kathon®, and Euxyl®.


Exemplary buffering agents include citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, and mixtures thereof.


Exemplary lubricating agents include magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, and mixtures thereof.


Exemplary natural oils include almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils. Exemplary synthetic oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and mixtures thereof.


Liquid dosage forms for oral and parenteral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredients, the liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (e.g., cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. In certain embodiments for parenteral administration, the conjugates described herein are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and mixtures thereof.


Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can be a sterile injectable solution, suspension, or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or di-glycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.


The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.


In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This can be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form may be accomplished by dissolving or suspending the drug in an oil vehicle.


Compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing the conjugates described herein with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol, or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.


Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, (g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, (h) absorbents such as kaolin and bentonite clay, and (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets, and pills, the dosage form may include a buffering agent.


Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the art of pharmacology. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of encapsulating compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type can be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polethylene glycols and the like.


The active ingredient can be in a micro-encapsulated form with one or more excipients as noted above. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings, release controlling coatings, and other coatings well known in the pharmaceutical formulating art. In such solid dosage forms the active ingredient can be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may comprise, as is normal practice, additional substances other than inert diluents, e.g., tableting lubricants and other tableting aids such a magnesium stearate and microcrystalline cellulose. In the case of capsules, tablets and pills, the dosage forms may comprise buffering agents. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of encapsulating agents which can be used include polymeric substances and waxes.


Dosage forms for topical and/or transdermal administration of an agent (e.g., an antibiotic) described herein may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, and/or patches. Generally, the active ingredient is admixed under sterile conditions with a pharmaceutically acceptable carrier or excipient and/or any needed preservatives and/or buffers as can be required. Additionally, the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of an active ingredient to the body. Such dosage forms can be prepared, for example, by dissolving and/or dispensing the active ingredient in the proper medium. Alternatively or additionally, the rate can be controlled by either providing a rate controlling membrane and/or by dispersing the active ingredient in a polymer matrix and/or gel.


Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices. Intradermal compositions can be administered by devices which limit the effective penetration length of a needle into the skin. Alternatively or additionally, conventional syringes can be used in the classical mantoux method of intradermal administration. Jet injection devices which deliver liquid formulations to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable. Ballistic powder/particle delivery devices which use compressed gas to accelerate the compound in powder form through the outer layers of the skin to the dermis are suitable.


Formulations suitable for topical administration include, but are not limited to, liquid and/or semi-liquid preparations such as liniments, lotions, oil-in-water and/or water-in-oil emulsions such as creams, ointments, and/or pastes, and/or solutions and/or suspensions. Topically administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient can be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.


A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation suitable for pulmonary administration via the buccal cavity. Such a formulation may comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 to about 7 nanometers, or from about 1 to about 6 nanometers. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant can be directed to disperse the powder and/or using a self-propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container. Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nanometers and at least 95% of the particles by number have a diameter less than 7 nanometers. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nanometer and at least 90% of the particles by number have a diameter less than 6 nanometers. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.


Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute 50 to 99.9% (w/w) of the composition, and the active ingredient may constitute 0.1 to 20% (w/w) of the composition. The propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).


Pharmaceutical compositions described herein formulated for pulmonary delivery may provide the active ingredient in the form of droplets of a solution and/or suspension. Such formulations can be prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising the active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such formulations may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. The droplets provided by this route of administration may have an average diameter in the range from about 0.1 to about 200 nanometers.


Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition described herein. Another formulation suitable for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 to 500 micrometers. Such a formulation is administered by rapid inhalation through the nasal passage from a container of the powder held close to the nares.


Formulations for nasal administration may, for example, comprise from about as little as 0.1% (w/w) to as much as 100% (w/w) of the active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for buccal administration. Such formulations may, for example, be in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising the active ingredient. Such powdered, aerosolized, and/or aerosolized formulations, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.


A pharmaceutical composition described herein can be prepared, packaged, and/or sold in a formulation for ophthalmic administration. Such formulations may, for example, be in the form of eye drops including, for example, a 0.1-1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid carrier or excipient. Such drops may further comprise buffering agents, salts, and/or one or more other of the additional ingredients described herein. Other opthalmically-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are also contemplated as being within the scope of this disclosure.


Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with ordinary experimentation.


FDA-approved drugs provided herein are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the agents described herein will be decided by a physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular subject or organism will depend upon a variety of factors including the disease being treated and the severity of the disorder; the activity of the specific active ingredient employed; the specific composition employed; the age, body weight, general health, sex, and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific active ingredient employed; the duration of the treatment; drugs used in combination or coincidental with the specific active ingredient employed; and like factors well known in the medical arts.


The agents and compositions provided herein can be administered by any route, including enteral (e.g., oral), parenteral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (as by powders, ointments, creams, and/or drops), mucosal, nasal, bucal, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; and/or as an oral spray, nasal spray, and/or aerosol. Specifically contemplated routes are oral administration, intravenous administration (e.g., systemic intravenous injection), regional administration via blood and/or lymph supply, and/or direct administration to an affected site. In general, the most appropriate route of administration will depend upon a variety of factors including the nature of the agent (e.g., its stability in the environment of the gastrointestinal tract), and/or the condition of the subject (e.g., whether the subject is able to tolerate oral administration). In certain embodiments, the agent or pharmaceutical composition described herein is suitable for topical administration to the eye of a subject.


The exact amount of an agent required to achieve an effective amount will vary from subject to subject, depending, for example, on species, age, and general condition of a subject, severity of the side effects or disorder, identity of the particular agent, mode of administration, and the like. An effective amount may be included in a single dose (e.g., single oral dose) or multiple doses (e.g., multiple oral doses). In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, any two doses of the multiple doses include different or substantially the same amounts of an agent (e.g., an antibiotic) described herein.


As noted elsewhere herein, a drug of the instant disclosure may be administered via a number of routes of administration, including but not limited to: subcutaneous, intravenous, intrathecal, intramuscular, intranasal, oral, transepidermal, parenteral, by inhalation, or intracerebroventricular.


The term “injection” or “injectable” as used herein refers to a bolus injection (administration of a discrete amount of an agent for raising its concentration in a bodily fluid), slow bolus injection over several minutes, or prolonged infusion, or several consecutive injections/infusions that are given at spaced apart intervals.


In some embodiments of the present disclosure, a formulation as herein defined is administered to the subject by bolus administration.


The FDA-approved drug or other therapy is administered to the subject in an amount sufficient to achieve a desired effect at a desired site (e.g., reduction of cancer size, cancer cell abundance, symptoms, etc.) determined by a skilled clinician to be effective. In some embodiments of the disclosure, the agent is administered at least once a year. In other embodiments of the disclosure, the agent is administered at least once a day. In other embodiments of the disclosure, the agent is administered at least once a week. In some embodiments of the disclosure, the agent is administered at least once a month.


Additional exemplary doses for administration of an agent of the disclosure to a subject include, but are not limited to, the following: 1-20 mg/kg/day, 2-15 mg/kg/day, 5-12 mg/kg/day, 10 mg/kg/day, 1-500 mg/kg/day, 2-250 mg/kg/day, 5-150 mg/kg/day, 20-125 mg/kg/day, 50-120 mg/kg/day, 100 mg/kg/day, at least 10 μg/kg/day, at least 100 μg/kg/day, at least 250 μg/kg/day, at least 500 μg/kg/day, at least 1 mg/kg/day, at least 2 mg/kg/day, at least 5 mg/kg/day, at least 10 mg/kg/day, at least 20 mg/kg/day, at least 50 mg/kg/day, at least 75 mg/kg/day, at least 100 mg/kg/day, at least 200 mg/kg/day, at least 500 mg/kg/day, at least 1 g/kg/day, and a therapeutically effective dose that is less than 500 mg/kg/day, less than 200 mg/kg/day, less than 100 mg/kg/day, less than 50 mg/kg/day, less than 20 mg/kg/day, less than 10 mg/kg/day, less than 5 mg/kg/day, less than 2 mg/kg/day, less than 1 mg/kg/day, less than 500 μg/kg/day, and less than 500 μg/kg/day.


In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses a day, two doses a day, one dose a day, one dose every other day, one dose every third day, one dose every week, one dose every two weeks, one dose every three weeks, or one dose every four weeks. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is one dose per day. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is two doses per day. In certain embodiments, the frequency of administering the multiple doses to the subject or applying the multiple doses to the tissue or cell is three doses per day. In certain embodiments, when multiple doses are administered to a subject or applied to a tissue or cell, the duration between the first dose and last dose of the multiple doses is one day, two days, four days, one week, two weeks, three weeks, one month, two months, three months, four months, six months, nine months, one year, two years, three years, four years, five years, seven years, ten years, fifteen years, twenty years, or the lifetime of the subject, tissue, or cell. In certain embodiments, the duration between the first dose and last dose of the multiple doses is three months, six months, or one year. In certain embodiments, the duration between the first dose and last dose of the multiple doses is the lifetime of the subject, tissue, or cell. In certain embodiments, a dose (e.g., a single dose, or any dose of multiple doses) described herein includes independently between 0.1 μg and 1 between 0.001 mg and 0.01 mg, between 0.01 mg and 0.1 mg, between 0.1 mg and 1 mg, between 1 mg and 3 mg, between 3 mg and 10 mg, between 10 mg and 30 mg, between 30 mg and 100 mg, between 100 mg and 300 mg, between 300 mg and 1,000 mg, or between 1 g and 10 g, inclusive, of an agent (e.g., an antibiotic) described herein. In certain embodiments, a dose described herein includes independently between 1 mg and 3 mg, inclusive, of an agent (e.g., an antibiotic) described herein. In certain embodiments, a dose described herein includes independently between 3 mg and 10 mg, inclusive, of an agent (e.g., an antibiotic) described herein. In certain embodiments, a dose described herein includes independently between 10 mg and 30 mg, inclusive, of an agent (e.g., an antibiotic) described herein. In certain embodiments, a dose described herein includes independently between 30 mg and 100 mg, inclusive, of an agent (e.g., an antibiotic) described herein.


It will be appreciated that dose ranges as described herein provide guidance for the administration of provided pharmaceutical compositions to an adult. The amount to be administered to, for example, a child or an adolescent can be determined by a medical practitioner or person skilled in the art and can be lower or the same as that administered to an adult. In certain embodiments, a dose described herein is a dose to an adult human whose body weight is 70 kg.


It will be also appreciated that an agent (e.g., an antibiotic) or composition, as described herein, can be administered in combination with one or more additional pharmaceutical agents (e.g., therapeutically and/or prophylactically active agents), which are different from the agent or composition and may be useful as, e.g., combination therapies. The agents or compositions can be administered in combination with additional pharmaceutical agents that improve their activity (e.g., activity (e.g., potency and/or efficacy) in treating a disease in a subject in need thereof, in preventing a disease in a subject in need thereof, in reducing the risk of developing a disease in a subject in need thereof, in inhibiting the replication of a virus, in killing a virus, etc. in a subject or cell. In certain embodiments, a pharmaceutical composition described herein including an agent (e.g., an antibiotic) described herein and an additional pharmaceutical agent shows a synergistic effect that is absent in a pharmaceutical composition including one of the agent and the additional pharmaceutical agent, but not both.


In some embodiments of the disclosure, a therapeutic agent distinct from a first therapeutic agent of the disclosure is administered prior to, in combination with, at the same time, or after administration of the agent of the disclosure. In some embodiments, the second therapeutic agent is selected from the group consisting of a chemotherapeutic, an antioxidant, an anti-inflammatory agent, an antimicrobial, a steroid, etc.


The agent or composition can be administered concurrently with, prior to, or subsequent to one or more additional pharmaceutical agents, which may be useful as, e.g., combination therapies. Pharmaceutical agents include therapeutically active agents. Pharmaceutical agents also include prophylactically active agents. Pharmaceutical agents include small organic molecules such as drug compounds (e.g., compounds approved for human or veterinary use by the U.S. Food and Drug Administration as provided in the Code of Federal Regulations (CFR)), peptides, proteins, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, nucleoproteins, mucoproteins, lipoproteins, synthetic polypeptides or proteins, small molecules linked to proteins, glycoproteins, steroids, nucleic acids, DNAs, RNAs, nucleotides, nucleosides, oligonucleotides, antisense oligonucleotides, lipids, hormones, vitamins, and cells. In certain embodiments, the additional pharmaceutical agent is a pharmaceutical agent useful for treating and/or preventing a disease described herein. Each additional pharmaceutical agent may be administered at a dose and/or on a time schedule determined for that pharmaceutical agent. The additional pharmaceutical agents may also be administered together with each other and/or with the agent or composition described herein in a single dose or administered separately in different doses. The particular combination to employ in a regimen will take into account compatibility of the agent described herein with the additional pharmaceutical agent(s) and/or the desired therapeutic and/or prophylactic effect to be achieved. In general, it is expected that the additional pharmaceutical agent(s) in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.


Dosages for a particular agent of the instant disclosure may be determined empirically in individuals who have been given one or more administrations of the agent.


Administration of an agent of the present disclosure can be continuous or intermittent, depending, for example, on the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of an agent may be essentially continuous over a preselected period of time or may be in a series of spaced doses.


Guidance regarding particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. No. 4,657,760; 5,206,344; or 5,225,212. It is within the scope of the instant disclosure that different formulations will be effective for different treatments and different disorders, and that administration intended to treat a specific organ or tissue may necessitate delivery in a manner different from that to another organ or tissue. Moreover, dosages may be administered by one or more separate administrations, or by continuous infusion. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.


Kits

The instant disclosure also provides kits containing agents of this disclosure for use in the methods of the present disclosure. Kits of the instant disclosure may include one or more containers comprising an agent (e.g., a sample preparation reagent) of this disclosure and/or may contain agents (e.g., oligonucleotide primers, probes, and one or more detectable probes or probe sets etc.) for identifying a cancer or subject as possessing one or more variant sequences. In some embodiments, the kits further include instructions for use in accordance with the methods of this disclosure. In some embodiments, these instructions comprise a description of sample preparation and target binding/signal detection protocol. In some embodiments, the instructions comprise a description of how to detect antibiotic susceptibility and direct therapeutic intervention accordingly.


The instructions generally include information as to dosage, dosing schedule, and route of administration for the intended treatment. The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits of the instant disclosure are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.


The label or package insert indicates that the composition is used for treating, e.g., a class bacterial infections, in a subject. Instructions may be provided for practicing any of the methods described herein.


The kits of this disclosure are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like. In certain embodiments, at least one active agent in the composition is one or more by apartheid probe sets designed for detecting specific mRNAs or mRNA signature profiles. The container may further comprise a second pharmaceutically active agent.


Kits may optionally provide additional components such as buffers and interpretive information. Normally, the kit comprises a container and a label or package insert(s) on or associated with the container.


The practice of the present disclosure employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA, genetics, immunology, cell biology, cell culture and transgenic biology, which are within the skill of the art. See, e.g., Maniatis et al., 1982, Molecular Cloning (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Sambrook et al., 1989, Molecular Cloning, 2nd Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Sambrook and Russell, 2001, Molecular Cloning, 3rd Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Ausubel et al., 1992), Current Protocols in Molecular Biology (John Wiley & Sons, including periodic updates); Glover, 1985, DNA Cloning (IRL Press, Oxford); Anand, 1992; Guthrie and Fink, 1991; Harlow and Lane, 1988, Antibodies, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.); Jakoby and Pastan, 1979; Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Transcription And Translation (B. D. Hames & S. J. Higgins eds. 1984); Culture Of Animal Cells (R. I. Freshney, Alan R. Liss, Inc., 1987); Immobilized Cells And Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide To Molecular Cloning (1984); the treatise, Methods In Enzymology (Academic Press, Inc., N.Y.); Gene Transfer Vectors For Mammalian Cells (J. H. Miller and M. P. Calos eds., 1987, Cold Spring Harbor Laboratory); Methods In Enzymology, Vols. 154 and 155 (Wu et al. eds.), Immunochemical Methods In Cell And Molecular Biology (Mayer and Walker, eds., Academic Press, London, 1987); Handbook Of Experimental Immunology, Volumes I-IV (D. M. Weir and C. C. Blackwell, eds., 1986); Riott, Essential Immunology, 6th Edition, Blackwell Scientific Publications, Oxford, 1988; Hogan et al., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986); Westerfield, M., The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), (4th Ed., Univ. of Oregon Press, Eugene, 2000).


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Reference will now be made in detail to exemplary embodiments of the disclosure. While the disclosure will be described in conjunction with the exemplary embodiments, it will be understood that it is not intended to limit the disclosure to those embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the disclosure as defined by the appended claims. Standard techniques well known in the art or the techniques specifically described below were utilized.


EXAMPLES
Example 1: Rapid Phenotypic Detection of Antibiotic Resistance

The techniques herein allow for rapid phenotypic detection of antibiotic resistance, faster than growth-based phenotypic assays that currently comprise the gold standard. Advantageously, the techniques herein provide compositions and methods that allow simultaneous detection of multiple resistance genes in the same assay. Additionally, the techniques herein provide more accurate determination of resistance, as well as mechanistic explanations for key antibiotic resistant strains, epidemiologic tracking of known resistance mechanisms, and immediate identification of unknown or potentially novel resistance mechanisms (e.g., discordant cases when a resistant organism does not display a known resistance phenotype). Currently, detection of antibiotic resistance genes typically requires separate PCR or sequencing assays, which require different assay infrastructure and often necessitate sending samples out to reference laboratories.


The phenotypic antibiotic susceptibility testing (AST) portion of the techniques herein relies on quantitative measurement of the most antibiotic-responsive transcripts in a microbial pathogen upon antibiotic exposure. According to the techniques herein, RNA-Seq may be used to identify antibiotic responsive genes that change the most in susceptible, but not resistant, bacterial strains in response to exposure to an antibiotic. In this way, the nucleic acid targets for use in AST may be identified.


Once antibiotic responsive nucleic acid targets are identified, they can be assayed with target specific probes or sets of probes. According to the techniques herein, target specific probes may include bipartite probes (e.g., Probe A and Probe B) as shown in FIG. 1A. In embodiments, each such probe may range in length from about 15-100, 25-75, 30-70, 40-60, or 45-55 nucleotides in length. In embodiments, each such probe may be about 50 nucleotides in length. As shown in FIG. 1A, Probe A and Probe B are oriented in a tail to head configuration (e.g., the 3′ end of Probe B is positioned proximate to the 5′ end of Probe A). In embodiments, the 3′ end of Probe B abuts the 5′ and of Probe A; however, it is contemplated within the scope of the disclosure that a gap of about 1-50 nucleotides may occur between the 3′ end of Probe B and the 5′ end of Probe A. As shown in FIGS. 1B-1C, bipartite probes according to the techniques herein may be detected via directly coupled tags or indirectly coupled tags, respectively.


Current assay conditions: hybridization of the bipartite probe sets at 65-67° C. for 1 hour, then detection on a NanoString® Sprint instrument. Briefly, 3 μl of crude lysate is incubated with unlabeled probe pairs (e.g. probe sets) for each target along with labeled NanoString® Elements TagSet reagents. Standard hybridization conditions according to the manufacturer's protocol are followed, except hybridizations are incubated for one hour at 67° C. instead of the recommended 16-24 hours. Hybridizations are then loaded and processed on a Sprint instrument (NanoString®) for purification and quantitative detection. These methods have been validated on: bacteria in pure culture; clinical urine samples; clinical blood culture samples.


Example 2: Genetic Basis for Carbapenem Resistance

To test and validate the techniques described herein, the genetic basis for carbapenem resistance, carbapenemases, was assessed by identifying and measuring the most important, transmissible cause of resistance to this last-line antibiotic. The techniques herein allowed antibiotic-responsive transcripts to be detected quantitatively, and in a multiplexed fashion in a single assay from crude lysate, which enhanced the speed of detection while minimizing sample processing/manipulation. The techniques herein were conducted on the NanoString® assay platform; however, one of skill in the art will readily comprehend that these techniques are not dependent on a single detection platform and may be conducted on any of a variety of detection platforms for quantitative RNA measurement (e.g., NanoString®, SHERLOCK, qRT-PCR, microarrays, etc.) capable of providing the above features.


The analysis herein identified seventeen relevant target sequences to be targeted by the Cre2 probe targets (e.g., probeset), which are shown in Table 1.









TABLE 1







Cre2 Target Sequences


CRE2 Probe Targets:








Target:
target sequence in gene





ST258_wzi_1
ACCAGTCAATAAATAAAGCGTTCCCTCATGCCGATACTCTGAAAGGTGTTCAGCTGGGATGGAGTGGGAATGTTTATCAGT


(SEQ ID NO: 35)
CGGTTCGAATTAACACTTC





ST258_wzy_1
AAAAAACTAATCTATATATTGCTAATACCAATTGCAGGCTTAGCAGTTTTTGCAATTTTTCAGGAGAGGCTGTCGCATGAT


(SEQ ID NO: 36)
GGTTATACATCATATGAAC





ST58_wzi_2
AAACCTTCCTATTCCTCTGAGCAGGTAGTTCTGGCTCGTATCAATCAGCGACTGTCAGCGTTAAAAGCCGATTTCCGGGTC


(SEQ ID NO: 37)
ACCGGCTATACCTCGACCG





ST258_wzy_2
GCCAACATTTATCAGCTATAAAGCGCAACTTTACTTTGACCTGAATACGGAAGGAGACCTTAAAAGAGTTACAGCAGTTGC


(SEQ ID NO: 38)
AATGGGATTTGGAAGTCTT





CRE2_KPC_0.95
ACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGTCCGCGGCCGCCGTGCAATACAGTGATAACGC


(SEQ ID NO: 39)
CGCCGCCAATTTGTTGCTG





CRE2_NDM_0.95
CAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCTCGCACCGAATGTCTGGCAGCACACTTCCTAT


(SEQ ID NO: 40)
CTCGACATGCCGGGTTTCG





CRE2_OXA48_0.95
TGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGACAGTTTCTGGCTCGACGGTGGTATTCGAATTT


(SEQ ID NO: 41)
CGGCCACGGAGCAAATCAG





CRE2_CTXM15_0.95
AGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATCTGACCTTGTTAACTATAATCCGATTGCGGAA


(SEQ ID NO: 42)
AAGCACGTCAATGGGACGA





CRE2_IMP_1_0.95
GAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGGTGTTGTTTCTAAACACGGTTTGGTGGTTCTT


(SEQ ID NO: 43)
GTAAACACTGACGCCTATC





CRE2_IMP_3_8_0.95
GTTTTTTATCCCGGCCCGGGGCACACTCAAGATAACGTAGTGGTTTGGTTACCTGAAAAGAAAATTTTATTCGGTGGTTGT


(SEQ ID NO: 44)
TTTGTTAAACCGGACGGTC





CRE2_IMP_2_4_0.95
GAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCACTATTTCCTCACATTTCCATAGCGACAGCACA


(SEQ ID NO: 45)
GGGGGAATAGAGTGGCTTA





CRE2_IMP_5_0.95
AAGTATGGTAATGCAAAACTGGTTGTTTCGAGTCATAGTGAAATTGGGGGCGCATCACTATTGAAGCGCACTTGGGAGCAG


(SEQ ID NO: 46)
GCTGTTAAGGGGCTAAAAG





CRE2_IMP_6_0.95
GAAAAGTTAGTCACTTGGTTTGTGGAACGTGGCTATAAAATAAAAGGCAGTATTTCCTCTCATTTTCATAGCGACAGCACG


(SEQ ID NO: 47)
GGCGGAATAGAGTGGCTTA





CRE2_IMP_7_0.95
TATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACAAGCTAAAAATTCATTTAGCGGAGTTAGCTAT


(SEQ ID NO: 48)
TGGCTAGTTAAGAAAAAGA





CRE2_VIM_1_0.95
CTCTAGTGGAGATGTGGTGCGCTTCGGTCCCGTAGAGGTTTTCTATCCTGGTGCTGCGCATTCGGGCGACAATCTTGTGGT


(SEQ ID NO: 49)
ATACGTGCCGGCCGTGCGC





CRE2_VIM_2_3_0.95
TGATGGTGATGAGTTGCTTTTGATTGATACAGCGTGGGGTGCGAAAAACACAGCGGCACTTCTCGCGGAGATTGAGAAGCA


(SEQ ID NO: 50)
AATTGGACTTCCCGTAACG





OXA10_0.95
CATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCATGAAGCAATGGGAAAGAGACTTGACCTTAAG


(SEQ ID NO: 51)
AGGGGCAATACAAGTTTCA









The analysis herein also identified eighteen relevant target sequences to be targeted by KpMero4 probe targets (e.g., probeset), which are shown in Table 2.









TABLE 2







KpMero4 Target Sequences


KpMero4 Probes Targets:








Target:
target sequence in gene





KpMero4_C_KPN_00050_0.97
AGATCGTGCTTACCGCATGCTGATGAACCGCAAATTCTCTGAAGAAGCGGCAACCTGGATGCAGGAA


(SEQ ID NO: 52)
CAGCGCGCCAGTGCGTATGTTAAAATTCTGAGC





KpMero4_C_KPN_00098_0.97
GGAACGTTGTGGTCTGAAAGTTGACCAACTTATTTTCGCCGGGTTAGCGGCCAGTTATTCGGTATTA


(SEQ ID NO: 53)
ACAGAAGACGAACGTGAGCTGGGCGTCTGCGTT





KpMero4_C_KPN_00100_0.97
TCGATTGTGCCATCGTTGTTGACGATTATCGCGTACTGAACGAAGACGGTCTGCGCTTTGAAGACGA


(SEQ ID NO: 54)
ATTTGTTCGCCACAAAATGCTGGATGCGATCGG





KpMero4_C_KPN_01276_0.92
ATGCTGGAGTTGTTGTTTCTGCTTTTACCCGTTGCCGCCGCTTACGGCTGGTACATGGGGCGCAGAA


(SEQ ID NO: 55)
GTGCACAACAGTCCAAACAGGACGATGCGAGCC





KpMero4_C_KPN_02846_0.95
GCGCAGGATCTGGTGATGAACTTTTCCGCCGACTGCTGGCTGGAAGTGAGCGATGCCACCGGTAAAA


(SEQ ID NO: 56)
AACTGTTCAGCGGCCTGCAGCGTAAAGGCGGTA





KpMero4_C_KPN_03317_0.92
ATGGCCGGGGAACACGTCATTTTGCTGGATGAGCAGGATCAGCCTGCCGGTATGCTGGAGAAGTATG


(SEQ ID NO: 57)
CCGCCCATACGTTTGATACCCCTTTACATCTCG





KpMeros4_C_KPN_03634_0.92
AGCAATGACGGCGAAACGCCGGAAGGCATTGGCTTTGCGATCCCGTTCCAGTTAGCGACCAAAATTA


(SEQ ID NO: 58)
TGGATAAACTGATCCGCGATGGCCGGGTGATCC





KpMero4_C_KPN_04666_0.97
CAGGCCAGCGATGGTAACGCGGTGATGTTTATCGAAAGCGTCAACGGCAACCGCTTCCATGACGTCT


(SEQ ID NO: 59)
TCCTTGCCCAGCTGCGTCCGAAAGGCAATGCGC





KpMero4_R01up_KPN_01226_0.97
GCGCGATGCACGATCTGATCGCCAGCGACACCTTCGATAAGGCGAAGGCGGAAGCGCAGATCGATAA


(SEQ ID NO: 60)
GATGGAAGCGCAGCATAAAGCGATGGCGCTGTC





KpMero4_R02up_KPN_01107_0.97
GCTGTCGCTGGTCTCAACGTGTTGGATCGCGGCCCGCAGTATGCGCAAGTGGTCTCCAGTACACCGA


(SEQ ID NO: 61)
TTAAAGAAACCGTGAAAACGCCGCGTCAGGAAT





KpMero4_R03up_KPN_02345_0.95
ATGCGAATCGCGCTTTTCCTGCTGACGAACCTGGCAGTGATGGTCGTGTTCGGGCTGGTGTTAAGCC


(SEQ ID NO: 62)
TCACGGGGATCCAATCCAGCAGCATGACCGGTC





KpMero4_R04up_KPN_02742_0.97
CAAATAGGCGATCGTGACAATTACGGTAACTACTGGGACGGTGGCAGCTGGCGCGACCGTGATTACT


(SEQ ID NO: 63)
GGCGTCGTCACTATGAATGGCGTGATAACCGTT





KpMero4_R05dn_KPN_02241_0.92
GGGTAGGTTACTCCATTCTGAACCAGCTTCCGCAGCTTAACCTGCCACAATTCTTTGCGCATGGCGC


(SEQ ID NO: 64)
AATCCTAAGCATCTTCGTTGGCGCAGTGCTCTG





KpMero4_R06up_KPN_03358_0.92
GGGCGAAAAACTGGTGAACTCGCAGTTCTCCCAGCGTCAGGAATCGGAAGCGGATGACTACTCTTAC


(SEQ ID NO: 65)
GACCTGCTGCGTAAGCGCGGTATCAATCCGTCG





KpMero4_R07up_KPN_03934_0.92
TGCCTTATATTACCAAGCAGAATCAGGCGATTACTGCGGATCGTAACTGGCTTATTTCCAAGCAGTA


(SEQ ID NO: 66)
CGATGCTCGCTGGTCGCCGACTGAGAAGGCGCG





KpMero4_R08dn_KPN_00868_0.92
TGCAACTGCGAAAGGCCAAAGGCTACATGTCAGTCAGCGAAAATGACCATCTGCGTGATAACTTGTT


(SEQ ID NO: 67)
TGAGCTTTGCCGTGAAATGCGTGCGCAGGCGCC





KpMero4_R09up_KPN_02342_0.97
TATGGGGTGTTATTCCACAGTGAGGAAAACGTCGGCGGTCTGGGTCTTAAGTGCCAATACCTCACCG


(SEQ ID NO: 68)
CCCGCGGAGTCAGCACCGCACTTTATGTTCATT





KpMero4_R10up_KPN_00833_0.97
AACCACTTTAGATGGTCTGGAAGCAAAACTGGCTGCTAAAGCCGAAGCCGCTGGCGCGACCGGCTAC


(SEQ ID NO: 69)
AGCATTACTTCCGCTAACACCAACAACAAACTG









To facilitate identification of Cre2 probe targets, bipartite probes comprising a probe A and a probe B were constructed as shown in Table 3 and Table 4, respectively.









TABLE 3







Cre2 Probe A Sequences


CRE2 probes:








Target:
probe A sequence





ST258_wzi_1
AACACCTTTCAGAGTATCGGCATGAGGGAACGCTTTATTTATTGACTGGTCCTCAA


(SEQ ID NO: 70)
GACCTAAGCGACAGCGTGACCTTGTTTCA





ST258_wzy_1
AAAACTGCTAAGCCTGCAATTGGTATTAGCAATATATAGATTAGTTTTTTCATCCT


(SEQ ID NO: 71)
CTTCTTTTCTTGGTGTTGAGAAGATGCTC





ST58_wzi_2
CGCTGATTGATACGAGCCAGAACTACCTGCTCAGAGGAATAGGAAGGTTTCACAAT


(SEQ ID NO: 72)
TCTGCGGGTTAGCAGGAAGGTTAGGGAAC





ST258_wzy_2
CCGTATTCAGGTCAAAGTAAAGTTGCGCTTTATAGCTGATAAATGTTGGCCTGTTG


(SEQ ID NO: 73)
AGATTATTGAGCTTCATCATGACCAGAAG





CRE2_KPC_0.95
ACAGCTCCGCCACCGTCATGCCTGTTGTCAGATATCAAAGACGCCTATCTTCCAGT


(SEQ ID NO: 74)
TTGATCGGGAAACT





CRE2_NDM_0.95
AGCTGGCGGAAAACCAGATCGCCAAACCGTTGGTCGCCAGTTTCCATTTGCGAACC


(SEQ ID NO: 75)
TAACTCCTCGCTACATTCCTATTGTTTTC





CRE2_OXA48_0.95
GTCTACATTGCCCGAAATGTCCTCATTACCATAATCGAAAGCATGTAGCACCAATT


(SEQ ID NO: 76)
TGGTTTTACTCCCCTCGATTATGCGGAGT





CRE2_CTXM15_0.95
GATTTTTTGATCTCAACTCGCTGATTTAACAGATTCGGTTCGCTTTCACTCTTTCG


(SEQ ID NO: 77)
GGTTATATCTATCATTTACTTGACACCCT





CRE2_IMP_1_0.95
CCCCAACCGTTAACTTCTTCGAACGATGTATGAACATAAACACCTTCTTCCAACAG


(SEQ ID NO: 78)
CCACTTTTTTTCCAAATTTTGCAAGAGCC





CRE2_IMP_3_8_0.95
AACCAAACCACTACGTTATCTTGAGTGTGCCCCGGGCCGGGATAAAAAACCACCGT


(SEQ ID NO: 79)
GTGGACGGCAACTCAGAGATAACGCATAT





CRE2_IMP_2_4_0.95
GTGCCTTTGATTTTATAGCCGCGCTCCACAAACCAATTGACTAACTTTTCCCTGGA


(SEQ ID NO: 80)
GTTTATGTATTGCCAACGAGTTTGTCTTT





CRE2_IMP_5_0.95
CCCCCAATTTCACTATGACTCGAAACAACCAGTTTTGCATTACCATACTTCAGATA


(SEQ ID NO: 81)
AGGTTGTTATTGTGGAGGATGTTACTACA





CRE2_IMP_6_0.95
CTGCCTTTTATTTTATAGCCACGTTCCACAAACCAAGTGACTAACTTTTCCTTCCT


(SEQ ID NO: 82)
TCCTGTGTTCCAGCTACAAACTTAGAAAC





CRE2_IMP_7_0.95
TGTACCTTACCGTCTTTTTTAAGAAGTTCATTTGTTAATTCAGATGCATACATAAA


(SEQ ID NO: 83)
ATTGGTTTTGCCTTTCAGCAATTCAACTT





CRE2_VIM_1_0.95
GAAAACCTCTACGGGACCGAAGCGCACCACATCTCCACTAGAGCTGGTCAAGACTT


(SEQ ID NO: 84)
GCATGAGGACCCGCAAATTCCT





CRE2_VIM_2_3_0.95
CGCACCCCACGCTGTATCAATCAAAAGCAACTCATCACCATCACTTTCGTTGGGAC


(SEQ ID NO: 85)
GCTTGAAGCGCAAGTAGAAAAC





OXA10_0.95
TGGCTCTTGGCTTTCCGTCCCATTTGAAAACCTGATGCTCATTCTTTATGCCAGCA


(SEQ ID NO: 86)
GACCTGCAATATCAAAGTTATAAGCGCGT
















TABLE 4







Cre2 Probe B Sequences


CRE2 probes:








Target:
probe B sequence





ST258_wzi_1
CGAAAGCCATGACCTCCGATCACTCGAAGTGTTAATTCGAACCGACTGATAAAC


(SEQ ID NO: 87)
ATTCCCACTCCATCCCAGCTG





ST258_wzy_1
CGAAAGCCATGACCTCCGATCACTCGTTCATATGATGTATAACCATCATGCGAC


(SEQ ID NO: 88)
AGCCTCTCCTGAAAAATTGCA





ST58_wzi_2
CGAAAGCCATGACCTCCGATCACTCCGGTCGAGGTATAGCCGGTGACCCGGAAA


(SEQ ID NO: 89)
TCGGCTTTTAACGCTGACAGT





ST258_wzy_2
CGAAAGCCATGACCTCCGATCACTCAAGACTTCCAAATCCCATTGCAACTGCTG


(SEQ ID NO: 90)
TAACTCTTTTAAGGTCTCCTT





CRE2_KPC_0.95
CGAAAGCCATGACCTCCGATCACTCCAGCAACAAATTGGCGGCGGCGTTATCAC


(SEQ ID NO: 91)
TGTATTGCACGGCGGCCGCGG





CRE2_NDM_0.95
CGAAAGCCATGACCTCCGATCACTCCGAAACCCGGCATGTCGAGATAGGAAGTG


(SEQ ID NO: 92)
TGCTGCCAGACATTCGGTGCG





CRE2_OXA48_0.95
CGAAAGCCATGACCTCCGATCACTCCTGATTTGCTCCGTGGCCGAAATTCGAAT


(SEQ ID NO: 93)
ACCACCGTCGAGCCAGAAACT





CRE2_CTXM15_0.95
CGAAAGCCATGACCTCCGATCACTCTCGTCCCATTGACGTGCTTTTCCGCAATC


(SEQ ID NO: 94)
GGATTATAGTTAACAAGGTCA





CRE2_IMP_1_0.95
CGAAAGCCATGACCTCCGATCACTCGATAGGCGTCAGTGTTTACAAGAACCACC


(SEQ ID NO: 95)
AAACCGTGTTTAGAAACAACA





CRE2_IMP_3_8_0.95
CGAAAGCCATGACCTCCGATCACTCGACCGTCCGGTTTAACAAAACAACCACCG


(SEQ ID NO: 96)
AATAAAATTTTCTTTTCAGGT





CRE2_IMP_2_4_0.95
CGAAAGCCATGACCTCCGATCACTCTAAGCCACTCTATTCCCCCTGTGCTGTCG


(SEQ ID NO: 97)
CTATGGAAATGTGAGGAAATA





CRE2_IMP_5_0.95
CGAAAGCCATGACCTCCGATCACTCCCCTTAACAGCCTGCTCCCAAGTGCGCTT


(SEQ ID NO: 98)
CAATAGTGATGCG





CRE2_IMP_6_0.95
CGAAAGCCATGACCTCCGATCACTCTAAGCCACTCTATTCCGCCCGTGCTGTCG


(SEQ ID NO: 99)
CTATGAAAATGAGAGGAAATA





CRE2_IMP_7_0.95
CGAAAGCCATGACCTCCGATCACTCTCTTTTTCTTAACTAGCCAATAGCTAACT


(SEQ ID NO: 100)
CCGCTAAATGAATTTTTAGCT





CRE2_VIM_1_0.95
CGAAAGCCATGACCTCCGATCACTCCGTATACCACAAGATTGTCGCCCGAATGC


(SEQ ID NO: 101)
GCAGCACCAGGATA





CRE2_VIM_2_3_0.95
CGAAAGCCATGACCTCCGATCACTCCAATTTGCTTCTCAATCTCCGCGAGAAGT


(SEQ ID NO: 102)
GCCGCTGTGTTTTT





OXA10_0.95
CGAAAGCCATGACCTCCGATCACTCTGAAACTTGTATTGCCCCTCTTAAGGTCA


(SEQ ID NO: 103)
AGTCTCTTTCCCATTGCTTCA









Similarly, to facilitate identification of KpMero4 probe targets, bipartite probes comprising a probe A and a probe B were constructed as shown in Table 5 and Table 6, respectively.









TABLE 5







KpMero4 Probe A Sequences


KpMero4 probes:








Target:
probe A sequence





KpMero4_C_KPN_0005
CCGCTTCTTCAGAGAATTTGCGGTTCATCAGCATGCGGTAAGCACGATCCT


0_0.97(SEQ ID NO: 104)
GCCAATGCACTCGATCTTGTCATTTTTTTGCG





KpMero4_C_KPN_0009
CCGCTAACCCGGCGAAAATAAGTTGGTCAACTTTCAGACCACAACGTTCCC


8_0.97(SEQ ID NO: 105)
AAACTGGAGAGAGAAGTGAAGACGATTTAACCCA





KpMero4_C_KPN_0010
ACCGTCTTCGTTCAGTACGCGATAATCGTCAACAACGATGGCACAATCGAC


0_0.97(SEQ ID NO: 106)
GATTGCTGCATTCCGCTCAACGCTTGAGGAAGTA





KpMero4_C_KPN_0127
CAGCCGTAAGCGGCGGCAACGGGTAAAAGCAGAAACAACAACTCCAGCATC


6_0.92(SEQ ID NO: 107)
TGAGGCTGTTAAAGCTGTAGCAACTCTTCCACGA





KpMero4_C_KPN_0284
CTCACTTCCAGCCAGCAGTCGGCGGAAAAGTTCATCACCAGACTAGGACGC


6_0.95(SEQ ID NO: 108)
AAATCACTTGAAGAAGTGAAAGCGAG





KpMero4_C_KPN_0331
CCGGCAGGCTGATCCTGCTCATCCAGCAAAATGACGTGTTCCCCACGCGAT


7_0.92(SEQ ID NO: 109)
GACGTTCGTCAAGAGTCGCATAATCT





KpMero4_C_KPN_0363
TGGAACGGGATCGCAAAGCCAATGCCTTCCGGCGTTTCGCCGCATTTGGAA


4_0.92(SEQ ID NO: 110)
TGATGTGTACTGGGAATAAGACGACG





KpMero4_C_KPN_0466
TTGCCGTTGACGCTTTCGATAAACATCACCGCGTTACCATCGCTGGCCTGC


6_0.97(SEQ ID NO: 111)
ACAAGAATCCCTGCTAGCTGAAGGAGGGTCAAAC





KpMero4_R01up_KPN_
CGCCTTCGCCTTATCGAAGGTGTCGCTGGCGATCAGATCGTGCTTGACGTA


01226_0.97(SEQ ID NO:
GATTGCTATCAGGTTACGATGACTGC


112)






KpMero4_R02up_KPN_
ACTTGCGCATACTGCGGGCCGCGATCCAACACGTTGAGACCACTTACAGAT


01107_0.97(SEQ ID NO:
CGTGTGCTCATGACTTCCACAGACGT


113)






KpMero4_R03up_KPN_
AACACGACCATCACTGCCAGGTTCGTCAGCAGGAAAAGCGCGATTCGCATC


02345_0.95(SEQ ID NO:
TTGGAGGAGTTGATAGTGGTAAAACAACATTAGC


114)






KpMero4_R04up_KPN_
CAGCTGCCACCGTCCCAGTAGTTACCGTAATTGTCACGATCGCCTACGTAT


02742_0.97(SEQ ID NO:
ATATCCAAGTGGTTATGTCCGACGGC


115)






KpMero4_R05dn_KPN_
TTGTGGCAGGTTAAGCTGCGGAAGCTGGTTCAGAATGGAGTAACCTACCAG


02241_0.92(SEQ ID NO:
CAAGAAGGAGTATGGAACTTATAGCAAGAGAG


116)






KpMero4_R06up_KPN_
CTTCCGATTCCTGACGCTGGGAGAACTGCGAGTTCACCAGTTCACCCCTCC


03358_0.92(SEQ ID NO:
AAACGCATTCTTATTGGCAAATGGAA


117)






KpMero4_R07up_KPN_
CCAGTTACGATCCGCAGTAATCGCCTGATTCTGCTTGGTAATATAAGGCAC


03934_0.92(SEQ ID NO:
CCGAAGCAATACTGTCGTCACTCTGTATGTCCGT


118)






KpMero4_R08dn_KPN_
ATGGTCATTTTCGCTGACTGACATGTAGCCTTTGGCCTTTCGCCGGGAATC


00868_0.92(SEQ ID NO:
GGCATTTCGCATTCTTAGGATCTAAA


119)






KpMero4_R09up_KPN_
TTAAGACCCAGACCGCCGACGTTTTCCTCACTGTGGAATAACACCCCATAC


02342_0.97(SEQ ID NO:
CGATCTTCATAACGGACAAACTGAACGGGCCATT


120)






KpMero4_R10up_KPN_
CGGCTTCGGCTTTAGCAGCCAGTTTTGCTTCCAGACCATCTAAAGCGCTAT


00833_0.97(SEQ ID NO:
GCAGACGAGCTGGCAGAGGAGAGAAATCA


121)
















TABLE 6







KpMero4 Probe B Sequences


KpMero4 probes:








Target:
probe B sequence





KpMero4_C_KPN_0005
CGAAAGCCATGACCTCCGATCACTCCAGAATTTTAACATACGCA


0_0.97(SEQ ID NO: 122)
CTGGCGCGCTGTTCCTGCATCCAGGTTG





KpMero4_C_KPN_0009
CGAAAGCCATGACCTCCGATCACTCAACGCAGACGCCCAGCTCA


8_0.97(SEQ ID NO: 123)
CGTTCGTCTTCTGTTAATACCGAATAACTGG





KpMero4_C_KPN_0010
CGAAAGCCATGACCTCCGATCACTCCCGATCGCATCCAGCATTT


0_0.97(SEQ ID NO: 124)
TGTGGCGAACAAATTCGTCTTCAAAGCGCAG





KpMero4_C_KPN_0127
CGAAAGCCATGACCTCCGATCACTCGTTTGGACTGTTGTGCACT


6_0.92(SEQ ID NO: 125)
TCTGCGCCCCATGTAC





KpMero4_C_KPN_0284
CGAAAGCCATGACCTCCGATCACTCTTACGCTGCAGGCCGCTGA


6_0.95(SEQ ID NO: 126)
ACAGTTTTTTACCGGTGGCATCG





KpMero4_C_KPN_0331
CGAAAGCCATGACCTCCGATCACTCCGAGATGTAAAGGGGTATC


7_0.92(SEQ ID NO: 127)
AAACGTATGGGCGGCATACTTCTCCAGCATA





KpMero4_C_KPN_0363
CGAAAGCCATGACCTCCGATCACTCGGATCACCCGGCCATCGCG


4_0.92(SEQ ID NO: 128)
GATCAGTTTATCCATAATTTTGGTCGCTAAC





KpMero4_C_KPN_0466
CGAAAGCCATGACCTCCGATCACTCATTGCCTTTCGGACGCAGC


6_0.97(SEQ ID NO: 129)
TGGGCAAGGAAGACGTCATGGAAGCGG





KpMero4_R01up_KPN_
CGAAAGCCATGACCTCCGATCACTCCATCGCTTTATGCTGCGCT


01226_0.97(SEQ ID NO:
TCCATCTTATCGATCTGCGCTTC


130)






KpMero4_R02up_KPN_
CGAAAGCCATGACCTCCGATCACTCCTGACGCGGCGTTTTCACG


01107_0.97(SEQ ID NO:
GTTTCTTTAATCGGTGTACTGGAGACC


131)






KpMero4_R03up_KPN_
CGAAAGCCATGACCTCCGATCACTCCTGGATTGGATCCCCGTGA


02345_0.95(SEQ ID NO:
GGCTTAACACCAGCCCG


132)






KpMero4_R04up_KPN_
CGAAAGCCATGACCTCCGATCACTCAACGGTTATCACGCCATTC


02742_0.97(SEQ ID NO:
ATAGTGACGACGCCAGTAATCACGGTCGCGC


133)






KpMero4_R05dn_KPN_
CGAAAGCCATGACCTCCGATCACTCCAGAGCACTGCGCCAACGA


02241_0.92(SEQ ID NO:
AGATGCTTAGGATTGCGCCATGCGCAAAGAA


134)






KpMero4_R06up_KPN_
CGAAAGCCATGACCTCCGATCACTCCGACGGATTGATACCGCGC


03358_0.92(SEQ ID NO:
TTACGCAGCAGGTCGTAAGAGTAGTCATCCG


135)






KpMero4_R07up_KPN_
CGAAAGCCATGACCTCCGATCACTCCCTTCTCAGTCGGCGACCA


03934_0.92(SEQ ID NO:
GCGAGCATCGTACTGCTTGGAAATAAG


136)






KpMero4_R08dn_KPN_
CGAAAGCCATGACCTCCGATCACTCGGCGCCTGCGCACGCATTT


00868_0.92(SEQ ID NO:
CACGGCAAAGCTCAAACAAGTTATCACGCAG


137)






KpMero4_R09up_KPN_
CGAAAGCCATGACCTCCGATCACTCAATGAACATAAAGTGCGGT


02342_0.97(SEQ ID NO:
GCTGACTCCGCGGGCGGTGAGGTATTGGCAC


138)






KpMero4_R10up_KPN_
CGAAAGCCATGACCTCCGATCACTCTTGGTGTTAGCGGAAGTAA


00833_0.97(SEQ ID NO:
TGCTGTAGCCGGTCGCGCCAG


139)









Antibiotic susceptibility testing is typically done by growth-based assays, including broth microdilution (may be automated e.g. on VITEK-2), disk diffusion, or E-test. Other approaches to rapid phenotypic AST include automated microscopy (Accelerate Diagnostics), ultrafine mass measurements (LifeScale). Genotypic approaches include resistance gene detection by PCR or other nucleic acid amplification methods, including Cepheid, BioFire, etc. but are limited to cases for which the genetic basis for resistance is well characterized.


Example 3: AST in ESKAPE Pathogens

The techniques herein are currently being used to conduct AST for: Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumanii for three different drug classes (meropenem; ciprofloxacin; gentamicin) along with carbapenemase detection. Additionally, the techniques herein are you being used to conduct AST on all of the ESKAPE pathogens including: Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, A. baumanii, Pseudomonas aeruginosa, E. coli, and Enterobacter cloacae with respect to all major clinically relevant drug classes (e.g., carbapenems, penicillins, cephalosporins, aminoglycosides, fluoroquinolones, rifamycins, and the like). The techniques herein are also being extended to conduct AST on Mycobacterium tuberculosis for all first-line and second-line drugs as well as the newer agents, bedaquiline and delamanid.


For example, FIGS. 2A-2D, which are described in further detail below, are MA plots showing RNA-Seq data upon antibiotic exposure. FIG. 2A shows MA plots of susceptible (left panels) or resistant (right panels) Klebsiella pneumoniae, Escherichia coli or Acinetobacter baumanii treated with meropenem for 60 min (left column), ciprofloxacin for 30 min (middle column), or gentamicin for 30-60 min (right column). Transcripts whose expression is statistically significantly changed upon antibiotic exposure are shown in red.


Additionally, FIGS. 4A and 4B, which are described in further detail below, depict graphs showing that the squared projected distance (SPD) from transcriptional signatures reflected antibiotic susceptibility. Clinical isolates of Klebsiella pneumoniae, Escherichia coli or Acinetobacter baumanii were treated with meropenem for 60 min (left column), ciprofloxacin for 30 min (middle column), or gentamicin for 30-60 min (right column).


Example 4: Determining Optimal Transcriptional Signatures to Discriminate Between Susceptible and Resistant Bacteria

To identify the optimal transcripts that most robustly distinguish susceptible and resistant bacteria after brief antibiotic exposure, the transcriptomic responses of two susceptible and two resistant clinical isolates of K. pneumoniae, E. coli, and A. baumannii (see Table 7 below) treated with either meropenem (a carbapenem that inhibits cell wall biosynthesis), ciprofloxacin (a fluoroquinolone that targets DNA gyrase and topoisomerase), or gentamicin (an aminoglycoside that inhibits protein synthesis) were compared at clinical breakpoint concentrations (CLSI 2018) over time (e.g., 0, 10, 30, 60 minutes) using RNA-Seq. To enable these comparisons, a method optimized and modified from RNAtag-Seq (Shishkin et al. 2015), now termed RNAtag-Seqv2.0, was developed to dramatically decrease the cost and increase the throughput of library construction. For each pathogen, each antibiotic elicited a transcriptional response within 30-60 minutes in susceptible, but not in resistant, organisms (FIGS. 2A-2D).


To identify transcripts that best distinguish susceptible from resistant strains for each pathogen-antibiotic combination, a large number of candidate antibiotic-responsive transcripts from these RNA-Seq datasets was initially selected for evaluation in more clinical isolates using NanoString®. Complicating transcript selection is the fact that antibiotics arrest growth of susceptible strains, resulting in the rapid divergence of culture density and growth phase of treated and untreated cultures, factors that alone affect the transcription of hundreds of genes that can mistakenly be interpreted as the direct result of antibiotic exposure but may not generalize across growth conditions. To enrich for genes specifically perturbed by antibiotic exposure, DESeq2 (Love, Huber, and Anders 2014) was used to identify transcripts whose abundance changed most robustly upon antibiotic exposure (Table 9), followed by Fisher's combined probability test to identify transcripts whose expression changed more upon antibiotic treatment than under any phase of growth during the timecourse. Gene ontology enrichment analysis on the resulting gene lists (Table 8) revealed that meropenem affected lipopolysaccharide biosynthesis in both Enterobacteriaceae species, and induced a heat shock response in both E. coli and Acinetobacter. Ciprofloxacin induced the SOS response in all three species. Gentamicin induced the unfolded protein response and quinone binding in all three species. The top 60-100 responsive genes (see Methods) were selected as candidates for inclusion in the initial transcriptional signature (FIG. 3; Table 9). For normalization of these responsive genes across samples, DESeq2 was also used to select 10-20 transcripts for each pathogen-antibiotic pair that were most invariant to antibiotic treatment and growth phase (“control transcripts”; see Methods below).


Example 5: A Rapid, Multiplexed Phenotypic Assay to Classify Sensitive and Resistant Bacteria

For each of the selected genes for each pathogen-antibiotic pair, probes for multiplexed detection were designed using NanoString®, a simple, quantitative fluorescent hybridization platform that does not require nucleic acid purification (Barczak et al. 2012; Geiss et al. 2008). Because diversity among clinical strains in gene content or sequence may hinder probe hybridization, a homology masking algorithm was devised to identify conserved regions of each target gene (see Methods below), then designed pairs of 50mer probes to the specified conserved regions of the remaining responsive and control transcripts for each pathogen-antibiotic pair (Table 9). Using an assay protocol that was modified from the standard NanoString® nCounter assay to accelerate detection (see Methods below), these probes were used to quantify their cognate transcripts in 18-24 diverse clinical isolates of each species collected from various geographic locations (Table 7), spanning the breadth of the known phylogenetic landscape of each species (Letunic & Bork) (FIGS. 13A-13D). Because of the homology screening step in probe design, each probe recognizes the target transcript from its cognate species, thereby enabling simultaneous species identification through mRNA recognition (see, e.g., Barczak et al.). Normalized expression signatures of all responsive genes are shown as heatmaps (FIG. 3) and summarized as one-dimensional projections (FIGS. 4A-4B). For each pathogen-antibiotic pair tested, the transcriptional profile of susceptible strains was distinct from that of resistant strains (FIG. 4A), with the magnitude of the transcriptional response reflecting the MIC of the exposed isolate (FIG. 4B).


To further test the generalizability of this approach, the above-described steps from RNA-Seq through NanoString® detection of candidate responsive and control genes were repeated for two additional species including a Gram-positive pathogen, S. aureus, a common cause of serious infections, and P. aeruginosa, another high-priority and frequently multidrug-resistant Gram-negative pathogen, each treated with a fluoroquinolone, levofloxacin (given its greater potency against Gram positives (Hooper et al.)) and ciprofloxacin, respectively (FIGS. 14A-14F). Each showed a robust transcriptional response in susceptible clinical isolates, but no response in resistant isolates, by both RNA-Seq (FIGS. 14A and 14D) and NanoString® (FIGS. 14B and 14E). The overall responses of both pathogens to fluoroquinolones involved up-regulation of the SOS response, as expected (Table 8), including canonical DNA damage-responsive transcripts like lexA, recA, recX, uvrA, and uvrB, which were generally consistent with the genes identified for the other three Gram negative pathogens. However, the specific genes selected from the RNA-Seq data to best distinguish susceptible from resistant isolates included features particular to each species, even for such a stereotypical response pathway. In fact, recA was the only feature selected as a candidate responsive gene in all five species; lexA and uvrA emerged in four of the five, but no other single transcript was selected in more than three, underscoring the importance of deriving each antibiotic response signature individually.


Importantly, the expression signatures alone merely show that reliable differences occur in the transcriptional response in susceptible versus resistant organisms, while AST requires binary classification of a strain as susceptible or resistant. To address this general classification problem, machine-learning algorithms were deployed (FIG. 5, phase 1), first to identify the most informative transcripts, and second to use these select transcripts to classify unknown isolates. To avoid overtraining, the tested strains were partitioned into a training (derivation) cohort for both feature selection and classifier training, and a testing (validation) cohort as a naïve strain set for assessing classifier performance. ReliefF (Robnik-Šikonja and Kononenko 2003) was used to identify the 10 transcripts whose normalized expression best distinguished susceptible from resistant organisms among the training cohort (FIGS. 6, 14B, 14E; Table 9). Although fewer than 10 transcripts were required to robustly distinguish between the strains thus far tested, more genes were kept in the optimized signature to lessen the potential impact of unanticipated diversity in gene content, sequence, or regulation among clinical isolates.


Next, an ensemble classifier was trained using the random forest algorithm (Liaw & Wiener) to perform binary classification of isolates in the derivation cohort based solely on these selected features. Finally, this trained classifier was tested on the validation cohort. Across all 11 bacteria-antibiotic combinations, 109 isolates were used as derivation strains for training, and 108 isolates were tested as validation. The ensemble classifier correctly classified 100 of these 108 (93% categorical agreement, 95% confidence interval [CI] 87-96% by Jeffrey's interval (Brown et al.)), including 51 of 52 resistant isolates (1.9% very major error rate, 95% CI 0.21-8.6%) and 35 of 38 susceptible isolates (7.9% major error rate, 95% CI 2.3-20%), compared with standard broth microdilution (FIGS. 7A, 14C, 14F; Table 10). Of note, both categorical agreement and rates of very major and major errors are typically reported on a natural distribution of isolates. In contrast, as disclosed herein, a “challenge set” of isolates was deliberately assembled, one that was intentionally overrepresented for isolates near the clinical breakpoints, which will tend to artificially inflate all errors, since discrepant classifications are more common for strains with MICs near the breakpoint—both due to possible errors in the assay and to one-dilution errors inherent in the gold standard broth microdilution assay (CLSI). Consistent with this, all major and very major errors in Phase 1 testing involved strains less than or equal to two dilutions away from the breakpoint (“+” in FIG. 3). Two apparent major errors exhibited large inoculum effects (“*” in FIG. 6 and FIG. 3, discussed below) in carbapenemase-producing strains reported as resistant by GoPhAST-R but susceptible by standard broth microdiluton. These two likely represent isolates that are misclassified as susceptible by the gold standard method (Anderson et al. 2007; Centers for Disease and Prevention 2009; Nordmann, Cuzon, and Naas 2009; Weisenberg et al. 2009) but correctly recognized as resistant by GoPhAST-R.


To assess this approach to classification as it would be deployed on unknown isolates, and to ensure against overtraining on the initial set of isolates, a second, iterative round of training was performed on all strains from the initial phase of classification and tested a new set of Klebsiella pneumoniae isolates treated with meropenem and ciprofloxacin (FIG. 5, phase 2). The initial derivation and validation cohorts were combined into a single, larger training cohort, on which feature selection was repeated and retrained for the ensemble classifier. The top 10 features chosen in phase 2 were very similar to those chosen in phase 1 (Table 9), with 78% mean overlap in gene content, mean Jaccard similarity coefficient 0.67, and mean Spearman correlation coefficient 0.59 across all pathogen-antibiotic combinations. This refined classifier was then applied to predict susceptibility in a new test set of 25-30 isolates for each antibiotic (FIG. 8), this time measuring only the top 10 selected responsive transcripts, rather than the 60-100 transcripts measured in phase 1. Here, GoPhAST-R correctly classified 52 of 55 strains (95% categorical agreement, 95% CI 86-98%) (FIG. 7B), including all 25 resistant isolates (0% very major error rate, 95% CI 0-9.5%) and 25 of 27 susceptible isolates (7.4% major error rate, 95% CI 1.6-22%), compared with broth microdilution. One of the three discrepant isolates is only one dilution from the breakpoint (FIG. 8), and another exhibits a large inoculum effect (FIG. 8) in a carbapenemase-producing strain that was reported as resistant by GoPhAST-R, likely the same phenomenon described above.


Three isolates classified as meropenem-resistant by GoPhAST-R but susceptible by broth microdilution exhibited a large inoculum effect. These three isolates, a K. pneumoniae (BAA2524) and two E. coli (BAA2523 and AR0104), all had MICs of 0.5-1 mg/L on standard broth microdilution with an inoculum of 105 cfu/mL, but MICs of ≥32 mg/L with an inoculum of 107 cfu/mL. Each of these strains carried a carbapenemase gene: BAA2523 and BAA2524 contained blaOXA-48, and AR0104 contained blaKPC-4, as has been reported for other such strains with large inoculum effects (Adams-Sapper et al. 2015; Adler et al. 2015). While the clinical consequences of such large inoculum effects are uncertain, they may portend clinical failure (Paterson et al. 2001), particularly in the setting of carbapenemase production (Weisenberg et al. 2009); detection of this phenomenon is a known gap in standard broth microdilution assays (Humphries, R. M.) because they are performed at the lower inoculum (Smith and Kirby 2018; Wiegand, Hilpert, and Hancock 2008). GoPhAST-R recognized these strains as resistant, perhaps because the assay was performed at higher cell density (>107 cfu/mL), whereas conventional methods missed these CREs.


Importantly, the ability of the classifier disclosed herein to accurately call a strain susceptible or resistant was independent of resistance mechanism, as exemplified for meropenem resistance. In total, 22 of 47 meropenem-resistant isolates, including 7 of 22 K. pneumoniae, 4 of 12 E. coli, and 11 of 13 A. baumannii, lacked carbapenemases (Table 7; Cerqueira et al. 2017; (www)cdc.gov/ARIsolateBank/), yet 46 of these 47 isolates were correctly recognized as resistant by GoPhAST-R. These results underscore the ability of GoPhAST-R to assess phenotypic resistance, agnostic to its genotypic basis.


Example 6: Combining Genotypic and Phenotypic Information in a Single Assay Improves Accuracy in Carbapenem Resistance Detection and Enables Molecular Epidemiology

Since GoPhAST-R involves multiplexed, hybridization-based RNA detection, the techniques herein can readily accommodate simultaneous profiling of additional transcripts, including genetic resistance determinants such as carbapenemases. GoPhAST-R can thus provide valuable epidemiological data as well as resolve discrepancies between phenotype-based detection and standard broth dilution methods by providing genotypic information. For example, in the three cases with discrepant classifications and prominent inoculum effects, each isolate carried a carbapenemase gene. By incorporating probes to simultaneously detect resistance determinants such as carbapenemase genes, the genotypic component of GoPhAST-R can provide complementary evidence to reinforce its phenotypic call of resistance. This can be critical for the complex case of CRE detection (Anderson et al. 2007; Arnold et al. 2011; Centers for Disease and Prevention 2009; Gupta et al. 2018; Nordmann, Cuzon, and Naas 2009; Weisenberg et al. 2009): even the American Type Culture Collection, the source of archived strains BAA2523 and BAA2524, recognized this discrepancy in AST, noting that these carbapenemase-producing isolates were reported as susceptible upon deposition but tested resistant by other methods (ref: ATCC pdf comments (see e.g., World Wide Web at (www)atcc.org/˜/ps/BAA-2523.ashx).


Indeed, the most common known mechanism for carbapenem resistance among the Enterobacteriaceae involves the acquisition of one of several known carbapenemase genes (see e.g., Woodworth et al. 2018), most commonly the KPC, NDM, OXA-48, IMP, and VIM families (Martinez-Martinez and Gonzalez-Lopez 2014; Nordmann, Dortet, and Poirel 2012). Thus, probes were incorporated for these carbapenemases into the GoPhAST-R assay for meropenem AST, as well as two extended-spectrum beta-lactamase (ESBL) gene families that have been associated with carbapenem resistance when expressed in the context of porin loss-of-function, CTX-M-15 (Canton et al.; Cubero et al.) and OXA-10 (Ma et al. 2018) (Table 9). Of note, conventional PCR-based detection of the IMP and VIM gene families has been challenging because of their genetic diversity (Kaase et al.) and the relative intolerance of PCR to point mutations in primer binding sites, especially towards the 3′ end of the primer (Paterson et al.; Klungthong et al.). In contrast, hybridization is more tolerant to point mutations and is amenable to a multiplexed format that allows the inclusion of multiple probes to recognize different regions of the same target, and thus identify targets with greater diversity. For instance, the currently disclosed GoPhAST-R includes 4 separate probe pairs to increase robustness of IMP detection (Table 9; see section below on Homology Masking).


GoPhAST-R detected all 39 carbapenemase genes across 38 strains known to be present by WGS, including at least one member of each of the five targeted classes, and all 29 ESBL genes across 26 strains; no signal was detected in the 25 meropenem-resistant strains nor the 38 susceptible isolates known to lack these gene families, across all three species (FIGS. 9A-9C; Table 7). This included detection of OXA-48 or KPC in the three cases of discrepant phenotypic AST classification and prominent inoculum effects. Thus, in a single assay, GoPhAST-R can provide both phenotypic AST and genotypic information about resistance mechanism.


Example 7: GoPhAST-R can Measure Antibiotic Susceptibility Directly from Positive Blood Culture Bottles

Previous work had demonstrated that a simulated positive blood culture bottle contains sufficient bacteria to permit mRNA detection (Hou et al. 2015). To demonstrate one clinical application, GoPhAST-R was used to rapidly determine ciprofloxacin susceptibility in blood culture bottles that grew gram-negative rods from the MGH clinical microbiology laboratory. Ciprofloxacin was chosen because no rapid genotypic method exists for detection of fluoroquinolone resistance due to the diversity of genetic alterations that can cause fluoroquinolone resistance, and because of the relative prevalence of fluoroquinolone resistance, making it feasible to acquire both sensitive and resistant cases. Six clincal E. coli and two K. pneumoniae positive blood cultures were tested (FIG. 10) and the techniques herein made it possible to clearly distinguish three susceptible from three resistant E. coli; both K. pneumoniae species were susceptible. Given the relative scarcity of gentamicin and meropenem resistant isolates available for the instant studies, to test assay performance in this growth format, simulated positive blood cultures were generated by spiking in susceptible or resistant isolates of K. pneumoniae and E. coli. GoPhAST-R detected optimized transcriptional signatures for each pathogen/antibiotic pair directly from these positive blood culture bottles (FIG. 11A), and AST prediction using a random forest model and leave-one-out cross-validation (Efron & Gong) (FIG. 11B) correctly classified 71 of 72 blood cultures (99% categorical agreement with broth microdilution, 95% CI 94-100%), including 0% very major error rate (31 of 31 resistant isolates classified correctly; 95% CI 0-7.7%) and 2.6% major error rate (37 of 38 susceptible isolates classified correctly; 95% CI 0.29-11%).


Example 8: A Next-Generation NanoString® Detection Platform, Hyb & Seq™, Accelerates GoPhAST-R to <4 Hours

GoPhAST-R was deployed on an exemplary next-generation nucleic detection platform, NanoString® Hyb & Seq™ (J. Beechem, AGBT Precision Health 2017), that features accelerated detection technology, thus enabling AST in <4 hours (FIG. 12A). Relative to the nCounter detection platform, Hyb & Seq™ (FIG. 12B, left panel) enables accelerated hybridization by utilizing unlabeled reporter probes that are far smaller and thus equilibrate far faster than the standard nCounter probes, which are covalently attached to a bulky set of fluorophores during hybridization. Accelerated optical scanning enables fluorescent barcoding of these smaller reporter probes via sequential cycles of binding, detection, and removal of complementary barcoded fluorophores (FIG. 12B, middle panel; see Methods). On a prototype Hyb & Seq instrument, GoPhAST-R can measure expression signatures to determine antibiotic susceptibility in <4 hours, as demonstrated with K. pneumoniae for both phenotypic meropenem-responsive transcriptional signatures and detection of carbapenemase and select beta-lactamase genes (FIG. 12B, right panel). A head-to-head time trial on simulated blood culture bottles demonstrated GoPhAST-R results in <4 hours from the time of culture positivity, compared with 28-40 hours in the MGH clinical microbiology laboratory by standard methods, which entailed subculture followed by AST determination on a VITEK-2.


As discussed herein, fast, accurate antibiotic susceptibility testing is a critical need in the battle against escalating antibiotic resistance. Advantageously, the ability of the presently disclosed AST assays to be conducted in hours instead of days can inform decisions on antibiotic administration closer to real-time, which may both improve individual patient outcomes (Kumar et al. 2006) and minimize needless use of broad-spectrum antibiotics for susceptible organisms (Maurer et al.). Growth-based assays are fundamentally limited in speed by the doubling time of the pathogen, and genotypic assays are limited by the inability to comprehensively define the ever-growing diversity and complexity of bacterial antibiotic resistance mechanisms. At least in part by quantifying a refined set of transcripts whose antibiotic-induced expression reflects susceptibility, GoPhAST-R provides a conceptually distinct approach to rapid phenotypic antibiotic resistance detection, agnostic to resistance mechanism and extendable to any antibiotic class, while simultaneously providing select, complementary genotypic information that can both improve the accuracy of phenotypic classification and provide valuable epidemiologic data for identifying the emergence and tracking the spread of resistance. Considering the widespread adoption of rapid pathogen identification by matrix-associated laser desorption and ionization/time-of-flight (MALDI-TOF) mass spectrometry in 2 hours from subcultured colonies streaked from blood culture bottles (Florio et al.; Tanner et al.; Perez et al.), this comparatively more informative AST assay directly from blood culture bottles in <4 hours promises to be transformative. Probes have been designed herein to target regions conserved across all sequenced members of their parent species, thereby allowing each probeset to encode species identity in its reactivity profile. Since the NanoString® platform described herein can multiplex up to 800 probes in a single assay (Geiss et al.), the actual deployed test is expected to combine all 20 probes used for each pathogen-antibiotic pair (Table 9) into a single multi-species probeset for each antibiotic, thereby providing simultaneous pathogen identification along with AST. Alternatively, it is expected that species can be identified prior to AST on the same NanoString® platform using a more sensitive rRNA-based assay (Bhattacharyya et al.). The machine learning approach to strain classification developed for GoPhAST-R provides actionable information in excellent categorical agreement with the gold standard broth microdilution assay and should continue to improve in accuracy as it is trained on an increasing number of strains. Taken all together, omitting carbapenemase-producing strains with ambiguous and likely errant susceptible classification by the gold standard assay, GoPhAST-R correctly classified 100 of 106 strains (94%) in phase 1 and 52 of 54 strains (96%) in phase 2, as well as 71 of 72 (99%) simulated blood cultures, with 8 of the 9 discrepancies occurring on strains within two dilutions of the clinical breakpoint.


By integrating genotypic and early phenotypic information in a single rapid, highly multiplexed RNA detection assay, GoPhAST-R offers several advantages over the current gold standard that are unique among other rapid AST assays under development. First, like other phenotypic assays, it determines susceptibility agnostic to mechanism of resistance, a clear advantage over genotypic AST assays. Second, combining genotypic and phenotypic information enhances AST accuracy over conventional growth-based methods. This combined approach notably improves sensitivity of resistance detection in certain cases such as carbapenemase-producing Enterobacteriaceae that test susceptible by standard methods but may rapidly evolve resistance upon treatment (see e.g., Anderson et al. 2007; Arnold et al. 2011; Centers for Disease and Prevention 2009; Gupta, V. et al. 2018; Nordmann, Cuzon, and Naas 2009; Weisenberg et al. 2009). Third, the identification of carbapenem resistance determinants can guide antibiotic choice for some resistant isolates, as certain novel beta-lactamase inhibitors like avibactam or vaborbactam will overcome some classes of carbapenemases (e.g., KPC) but not others (e.g., metallo-beta-lactamases such as the NDM class) (Lomovskaya et al.; Marshall et al.; van Duin & Bonomo). Solely phenotypic assays would currently require additional, serial testing to provide this level of guidance. Fourth, the ability to track resistance determinants in conjunction with a phenotypic assay enables molecular epidemiology without requiring additional testing for use in local, regional, national, or global tracking. The techniques herein demonstrate this advantage for one major class of high-value resistance determinants, the carbapenemases (Woodworth et al. 2018); this combined approach can be extended readily to other critical emerging resistance determinants, such as mcr genes, plasmid-borne colistin resistance determinants recently found in the Enterobacteriaceae (Caniaux et al. 2017; Liakopoulos et al. 2016; Liu et al. 2016; Sun et al. 2018), or even to detect the presence of key bacterial toxins such as Shiga toxin (Rasko et al. 2011) in seamless conjunction with a phenotypic AST assay. Fifth, strains with unknown mechanism of resistance, such as CREs without carbapenemases, can be immediately identified from a single assay; such isolates could be flagged for further study such as WGS if desired. Sixth, the graded relationship between transcriptional response and MIC (FIGS. 14B and 14E) underscores the biology that underpins the strategy: the more susceptible the strain, the greater its transcriptional response to antibiotic exposure. This relationship allows GoPhAST-R to be informed by clinical breakpoint concentrations, thus leveraging decades of careful study linking in vitro strain behavior to clinical outcomes (CLSI). This relationship also explains why the majority of discrepancies between GoPhAST-R and broth microdilution occurred on strains with MICs close to the breakpoint. By contrast, the inability to map to MIC is considered a liability of genotypic assays, including WGS (Ellington et al.). Finally, as a hybridization-based assay, GoPhAST-R will tolerate mutation in its detection targets more robustly than PCR-based assays (see e.g., Klungthong et al. 2010; Paterson, Harrison, and Holmes 2014). This enables GoPhAST-R to more readily detect resistance determinants with marked sequence variation such as the IMP family of carbapenemases, which is challenging to detect by PCR (Kaase et al. 2012). The phenotypic portion of the assay is particularly robust to sequence variation, both because it incorporates the behavior of multiple targets to provide redundancy, and because it measures fold-induction of the target gene by antibiotic, so a target gene that has mutated beyond recognition would not inform AST classification when registered as absent.


The instant disclosure has therefore provided an important proof of principle of a new approach to AST, for expected application to clinical practice. Genetic diversity within a species poses a fundamental challenge to the generalizability of bacterial molecular diagnostics, including transcription-based assays (Wadsworth et al.). The instant GoPhAST-R technique addresses this crucial challenge in a number of ways. First, for each pathogen-antibiotic pair, GoPhAST-R is trained and tested on a geographically and phylogenetically diverse set of strains: strains in the instant disclosure were obtained from multiple geographic regions that sample across the entire phylogeny of each species (FIGS. 13A-13D), notably including the CDC's Antibiotic Resistance Isolate Bank collection ((www)cdc.gov/ARIsolateBank/) that is intended as a test set for new diagnostic assays. Additionally, by targeting transcripts affected by antibiotics, which by definition affect core bacterial processes required for bacterial survival and whose transcriptional regulation is thus generally conserved (Wadsworth et al.), GoPhAST-R measures responses that are also likely to be conserved and therefore generalizable. Indeed, the fact that GoPhAST-R performed well on test strains that were selected randomly relative to training strains, that the sets of genes selected through iterative phase 1 and 2 training were relatively similar, and that the same classes of antibiotic elicit responses in similar pathways (Table 8) and even homologous genes (Table 9) across different species, all point to the ability of GoPhAST-R to account for the genetic diversity within a species. In addition to accommodating the potential variable transcriptional responses of strains within a species, by focusing on the most conserved regions of core transcripts by imposing a homology screen in the probe design process, GoPhAST-R also takes into account variability in genetic sequence of conserved genes in different strains. The initial sample set described herein attempted to capture significant diversity; yet larger numbers of strains will likely improve the current techniques further. By employing a classification process built on machine-learning algorithms that can be iteratively refined as more strains are tested, GoPhAST-R is able to incorporate new diversity to asymptotically improve performance. With wider testing, while the specific classifiers will improve, the general strategy and approach remains valid. Indeed, the capacity to learn through iterative retraining is one of the strengths of this approach as it is used more broadly. Likewise, extending this assay to more pathogen and antibiotic pairs will be advantageous for widespread clinical utility.


To extend GoPhAST-R in this manner, the entire pathway described herein for signature derivation, from RNA-Seq to iterative phases of NanoString® refinement and validation, are employed and advanced towards implementation in a clinical setting. Some antibiotics elicit responses in predictable pathways, exemplified by fluoroquinolones up-regulating SOS-response transcripts; however, it is expected that applying the instant diagnostic assay to certain new pathogen-antibiotic pairs will be performed with additional rigor to meet clinical performance mandates. For instance, when the instant approach was applied herein to S. aureus and P. aeruginosa treated with fluoroquinolones, it was identified that experimental derivation resulted in refined transcriptional signatures and control genes that were not predictable from prior assays on related pathogen-antibiotic pairs, often involving hypothetical or uncharacterized ORFs. This observed difficulty in predicting the best-performing responsive and control genes by inference from other species highlights the significance, at least ideally, of individualizing the expression signature for each pathogen-antibiotic pair, a process that is equivalent to the individualization currently employed by CLSI to extend traditional AST assays to new pathogen-antibiotic pairs. Fortunately, the experimental and computational approaches described herein allow for very rapid and conceptually straightforward extension to all pathogen-antibiotic combinations, and it is further noted that advances in RNA-Seq library construction and sequencing, described herein and elsewhere (Shishkin et al.), make a full derivation cycle for GoPhAST-R routine. Underscoring the ready generalizability of this approach, preliminary RNA-Seq data have been generated for 50 additional pathogen-antibiotic pairs, spanning Gram positive, Gram negative, and mycobacteria, that demonstrate early differential transcriptional responses to antibiotics in all cases tested (data not shown). While GoPhAST-R cannot completely overcome the challenge of identifying delayed inducible resistance (though this would be true for any rapid phenotypic test), it is noted that GoPhAST-R is expected to accurately identify at least some of these cases through simultaneous genotypic detection of induced resistance determinants, where known.


Following the approach described herein as a blueprint, it is contemplated that GoPhAST-R can be extended to all other pathogens and antibiotic classes, including those with novel mechanisms of action and as-yet-unknown or newly emerging mechanisms of resistance. Because GoPhAST-R is specifically informed by MIC, it leverages decades of prior studies linking in vitro behavior to clinical outcomes (CLSI), thereby facilitating its extension to new pathogens or antibiotics. It is further contemplated that the instant approach can be expanded to other clinical specimen types, beyond the instant demonstration performed upon cultured blood. Notably, while the application of a next-generation nucleic acid detection platform that can yield an answer in <4 hours has been described herein, a reliable transcriptional signature of susceptibility has actually been described as present in <1 hour for each of these key antibiotic classes. Thus, as RNA detection methods become faster and more sensitive, the GoPhAST-R approach is contemplated to offer even more rapid phenotypic AST on timescales that can inform early antibiotic decisions and thus transform infectious disease practice.


Example 9: Materials and Methods
Strain Acquisition and Characterization

All strains in this study (Table 7) were obtained from clinical or reference microbiological laboratories, including both local hospitals and MDRO strain collections from the Centers for Disease Control's Antibiotic Resistance Isolate Bank (see e.g., World Wide Web at (www).cdc.gov/ARIsolateBank/) and the New York State Department of Health. MICs reported from those laboratories were validated by standard broth microdilution assays (Wiegand, Hilpert, and Hancock 2008) in Mueller-Hinton broth; any discrepancies of >1 doubling from reported values were resolved by repeating in triplicate.


RNA-Seq Experimental Conditions

For each bacteria-antibiotic pair, selected clinical isolates (Table 7), two susceptible and two resistant, were grown at 37° C. in Mueller-Hinton broth to early logarithmic phase, then treated with the relevant antibiotic at breakpoint concentrations set by the Clinical Laboratory Standards Institute (CLSI): 2 mg/L for meropenem, 1 mg/L for ciprofloxacin, and 4 mg/L for gentamicin. Total RNA was harvested from paired treated and untreated samples at 0, 10, 30, and 60 minutes. cDNA libraries were made using a variant of the previously described RNAtag-Seq protocol (Shishkin et al. 2015) and sequenced on either an Illumina™ HiSeq or NextSeq. Sequencing reads were aligned using BWA (Li and Durbin 2009) and tabulated as previously described (Shishkin et al. 2015).


Differential Gene Expression Analysis and Selection of Responsive and Control Transcripts

Differentially expressed genes were determined using the DESeq2 package (Love, Huber, and Anders 2014), comparing treated vs untreated samples at each timepoint. Fisher's combined probability test was used to select only those genes whose expression after antibiotic treatment was statistically distinguishable from its expression at any timepoint in the untreated samples. Gene ontology (GO) terms were assigned using blast2GO (version 1.4.4), with hypergeometric testing for enrichment. For each pathogen-antibiotic pair, the fold-change threshold in DESeq2 used to test statistical significance was increased to select 60-100 antibiotic-responsive transcripts with maximal stringency, a number readily accommodated by the NanoString® assay format. Control transcripts were also determined with DESeq2 using an inverted hypothesis test as described (Love, Huber, and Anders 2014) to select genes whose expression was expected to be unaffected by antibiotic exposure or growth in both susceptible and resistant isolates, at all timepoints and treatment conditions. As with responsive genes, the fold-change threshold was varied in order to select the top 10-20 control transcripts. The resulting control and responsive gene lists for each pathogen-antibiotic pair, and the fold-change thresholds used to generate them, are shown in Table 9. See Supplemental Methods sections below for further details.


Targeted Transcriptional Response to Antibiotic Exposure

After using BLASTn to identify regions of targeted transcripts with maximal conservation across all RefSeq genomes from that species (see Supplemental Methods), NanoString® probes were designed per manufacturer's standard process (Geiss et al. 2008) to these conserved regions. Strains treated with antibiotic at the CLSI breakpoint concentration, and untreated controls, were lysed via bead-beating at the desired timepoint. The resulting crude lysates were used as input for standard NanoString® (Seattle, Wash.) assays, which were performed on the nCounter® Sprint platform with variations on the manufacturer's protocol to enhance speed, detailed in Supplemental Methods. Raw counts for each target were extracted and processed as described in Supplemental Methods. Briefly, for each sample, each responsive gene was normalized by control gene expression as a proxy for cell loading using a variation on the geNorm algorithm (Vandesompele et al.), then converted to fold-induction in treated compared with untreated strains. Pilot NanoString® Hyb & Seq™ assays (FIGS. 12A and 12B) were performed on a prototype Hyb & Seq instrument at NanoString®, with 20 minute hybridization time and 5 imaging cycles to detect hybridization probes with two-segment 10-plex barcodes. See Supplemental Methods for more details.


Machine Learning: Feature Selection and Susceptibility Classification

For each pathogen-antibiotic pair, the normalized data were first partitioned, grouping half the strains into a derivation cohort on which the algorithm was trained, reserving the other half for validation (FIGS. 14A-14F), ensuring equivalent representation of susceptible and resistant isolates in each cohort.


In phase 1, implemented for all pathogen-antibiotic pairs, normalized fold-induction data of responsive genes from strains in the training cohort, along with CLSI susceptibility classification for each training strain, were input to the ReliefF algorithm using the CORElearn package (version 1.52.0) to rank the top 10 responsive transcripts that best distinguished susceptible from resistant strains. These 10 features were then used to train a random forest classifier using the caret package (version 6.0-78) in R (version 3.3.3) on the same training strains. Performance of this classifier was then assessed on the testing cohort, to which the classifier had yet to be exposed.


In phase 2, implemented for K. pneumoniae+meropenem and ciprofloxacin, all 18-24 strains from phase 1 were combined into a single, larger training set. For each antibiotic, ReliefF was again used to select the 10 most informative responsive transcripts, which were then used to train a random forest classifier on the same larger training set. Transcriptional data were then collected on a test set of 25-30 new strains using a trimmed NanoString® nCounter® Elements™ probeset containing only probes for these 10 selected transcripts, plus 8-13 control probes. Susceptibility of each strain in this test set was predicted using the trained classifier. See Supplemental Methods for further detail on machine learning strategy and implementation.


For classification of simulated blood cultures, NanoString® data were collected for the top 10 transcripts (selected in phase 1) from 12 strains for each pathogen-antibiotic pair, and analyzed using a leave-one-out cross-validation approach (Efron & Gong), training on 11 strains and classifying the 12th, then repeating with each strain omitted once from training and used for prediction.


Blood Culture Processing

Bacteria were isolated from real or simulated blood cultures in a clinical microbiology laboratory, isolated by differential centrifugation, resuspended in Mueller-Hinton broth, and immediately split for treatment with the indicated antibiotics. Lysis and targeted RNA detection were performed as above. Specimens were blinded until all data acquisition and analysis was complete. See Supplemental Methods for more detail. Samples were collected under waiver of patient consent due to experimental focus only on the bacterial isolates, not the patients from which they were derived.


Data Availability

All RNA-Seq data generated and analyzed during this study, supporting the analyses in FIGS. 2A-2D, have been deposited as aligned bam files in the NCBI Sequencing Read Archive under study ID PRJNA518730. All other datasets obtained herein, including raw and processed NanoString® data, are available upon reasonable request.


Code Availability

Custom scripts for transcript selection from RNA-Seq data are available at the World Wide Web at (www)github.com/broadinstitute/gene_select_v3/. Custom scripts for feature selection and strain classification from NanoString® data are available at World Wide Web at (www)github.com/broadinstitute/DecisionAnalysis/.


Example 10: Supplemental Methods
RNA Extraction for RNA-Seq:

After antibiotic treatment as described in the above Materials and Methods section, cells were pelleted, resuspended in 0.5 mL Trizol reagent (ThermoFisher Scientific), transferred to 1.5 mL screw-cap tubes containing 0.25 mL of 0.1 mm diameter Zirconia/Silica beads (BioSpec Products), and lysed mechanically via bead-beating for 3-5 one-minute cycles on a Minibeadbeater-16 (BioSpec) or one 90-second cycle at 10 m/sec on a FastPrep (MP Bio). After addition of 0.1 mL chloroform, each sample tube was mixed thoroughly by inversion, incubated for 3 minutes at room temperature, and centrifuged at 12,000×g for 15 minutes at 4° C. The aqueous phase was mixed with an equal volume of 100% ethanol, transferred to a Direct-zol spin plate (Zymo Research), and RNA was extracted according the Direct-zol protocol (Zymo Research).


Library Construction and RNA-Seq Data Generation:

Illumina cDNA libraries were generated using a modified version of the RNAtag-Seq protocol (Shishkin et al. 2015), RNAtag-Seq-TS, developed during the course of work for the instant disclosure, in which adapters are added to the 3′ end of cDNAs by template switching (Zhu et al. 2001) rather than by an overnight ligation, markedly decreasing the time, cost, and minimum input of library construction. Briefly, 250-500 ng of total RNA was fragmented, DNase treated to remove genomic DNA, dephosphorylated, and ligated to DNA adapters carrying 5′-AN8-3′ barcodes of known sequence with a 5′ phosphate and a 3′ blocking group. Barcoded RNAs were pooled and depleted of rRNA using the RiboZero rRNA depletion kit (Epicentre). Pools of barcoded RNAs were converted to Illumina cDNA libraries in 2 main steps: with template switching, then library amplification. RNA was reverse transcribed using a primer designed to the constant region of the barcoded adaptor with addition of an adapter to the 3′ end of the cDNA by template switching using SMARTScribe (Clontech). Briefly, two primers were added to the reverse transcription reaction to facilitate template switching: primer AR2 (Shishkin et al. 2015), which primes SMARTScribe reverse transcriptase off of the ligated adapter, and primer 3Tr3 (Shishkin et al. 2015), which contains 3 protected G's at the 3′ terminus to complement the C's added to the 3′ end of newly synthesized cDNA by SMARTScribe and also contains a 5′ blocking group to prevent multiple template-switching events. These primers were pre-incubated with rRNA-depleted, adapter-ligated RNA (at 8.33 uM of each primer) at 72° C.×3 min, then 42° C.×2 min, then added directly to a master mix containing SMARTScribe buffer (1×), DTT (2.5 mM), dNTPs (1 mM each; NEB), SUPERase-In RNase inhibitor (1 unit; Invitrogen), and SMARTScribe reverse transcriptase enzyme (final primer concentration in reaction mixture: 5 uM each). This reaction mixture was incubated at 42° C.×60 min, then 70° C.×10 min, followed by addition of Exonuclease I (1 μL) and incubation at 37° C.×30 min. After 1.5×SPRI cleanup, the resulting cDNA library was PCR amplified using primers whose 5′ ends target the constant regions of the ligated adapter (3′ end of original RNA) and the template-switching oligo (5′ end of original RNA) and whose termini contain the full Illumina P5 or P7 sequences. cDNA libraries were sequenced on the Illumina NextSeq 2500 or HiSeq 2000 platform to generate paired end reads.


RNA-Seq Data Alignment:

Sequencing reads from each sample in a pool were demultiplexed based on their associated barcode sequence. Barcode sequences were removed from the first read, as were terminal G's from the second read that may have been added by SMARTScribe during template switching. The resulting reads were aligned to reference sequences using BWA (Li and Durbin 2009), and read counts were assigned to genes and other genomic features as described (Shishkin et al. 2015). For each pathogen-antibiotic pair, a single reference genome was chosen for analysis of all four clinical isolates. This reference genome was selected by aligning a subset of RNA-Seq reads from each of the four isolates to all RefSeq genomes from that species and identifying the genome to which the highest percentage of reads aligned on average across all isolates. Since none of the isolates used for RNA-Seq have reference-quality genome assemblies themselves, and since four different isolates were used, not all genes in each isolate will be represented in the alignment. Yet for this application, any reads omitted due to the absence of a homologue in the reference genome used for alignment (i.e., accessory genes not shared by the reference) were assumed to be unlikely to be generalizable enough for diagnostic use. Using these criteria, the following reference genomes were chosen for alignment of RNA-Seq data for each of the following pathogen-antibiotic pairs: K. pneumoniae=NC_016845 for meropenem and ciprofloxacin, and NC_012731 for gentamicin; E. coli=NC_020163 for meropenem, and NC_008563 for ciprofloxacin and gentamicin; A. baumannii=NC_021726 for meropenem, and NC_017847 for ciprofloxacin and gentamicin. Note that for display purposes in FIGS. 5, 6, 10, 12A, 12B and 14A-14F, all responsive genes were named according to their homologues in the best-annotated reference available (NC_016845 for K. pneumoniae, NC_000913 for E. coli, and NC_017847 for A. baumannii) in order to convey gene names that were as meaningful as possible, instead of simply gene identifiers. Read tables were generated, quality control metrics examined, and coverage plots from raw sequencing reads in the context of genome sequences and gene annotations were visualized using GenomeView (Abeel et al. 2012). Aligned bam files were deposited to the Sequence Read Archive (SRA) under study ID PRJNA518730.


Selecting Candidate Responsive Genes from RNA-Seq Data:


The DESeq2 package (Love, Huber, and Anders 2014) was used to identify differentially expressed genes in treated vs untreated samples at each timepoint, in both susceptible and resistant strains. Analyses from select timepoints are displayed as MA plots in FIGS. 2A-2D. Since no statistically significant changes in transcription were observed in resistant strains, responsive gene selection was only carried out on susceptible isolates.


It was expected that the resulting list of differentially expressed genes would represent both genes that respond primarily to antibiotic exposure, and genes that respond to ongoing growth that may be prevented by antibiotic treatment in susceptible strains, i.e. whose differential expression upon antibiotic exposure is more a secondary effect. As an example of this type secondary effect, consider a gene whose expression is repressed by increasing cell density, or nutrient depletion from the medium, as cells grow. In the presence of antibiotic, cells may never reach that cell density; therefore, this gene would exhibit higher expression in the antibiotic-treated culture (where it is not repressed) than in the untreated culture (where it is repressed). Without any correction, this gene would appear indistinguishable from one whose expression is induced by antibiotic, although this may be entirely a secondary effect. Such “secondarily” regulated genes were reasoned to be more dependent upon precise growth conditions (media type, temperature, cell density, cell state, etc.—in other words, transcripts upregulated by progression towards stationary phase in minimal media will likely look different than that in rich media, etc.), some of which may vary across clinical samples. By contrast, since antibiotics target core cellular processes, it was hypothesized that the “direct” transcriptional response to antibiotic exposure would be more likely to be conserved across strains, which is critical for their success in a diagnostic assay. Therefore, a focus was placed on transcripts whose expression appeared to be a direct result of antibiotic exposure, rather than this indirect result of the effects of an antibiotic on the progression of the strain to different culture densities.


To identify such genes, additional differential expression analyses were carried out using DESeq2 to identify genes whose expression varied in untreated samples over the timecourse of the experiment. Such genes were very common: >10% of the transcriptome was differentially regulated at some timepoints compared with others in the timecourses of K. pneumoniae and E. coli (though considerably fewer in A. baumannii cultures). Therefore, the additional requirement that any candidate responsive gene exhibit a greater degree of differential expression in time-matched antibiotic-treated vs untreated samples at >1 timepoint, than it did in any untreated timepoint—in other words, that antibiotics induce a degree of induction or repression that exceeds that which was achieved at any timepoint in the absence of antibiotics—was imposed. To implement this, Fisher's combined probability test was imposed to combine p-values from each pairwise comparison, selecting those genes whose differential expression upon antibiotic treatment at a given timepoint exceeds their differential expression between any pair of points in the untreated timecourse, with adjusted p-value <0.05. As an additional filter for gene selection, in order to be sure to target genes with sufficient abundance to be readily detected in the hybridization assay, only genes in the upper 50% of expression in each condition were considered.


For most pathogen-antibiotic pairs, this analysis resulted in the identification of hundreds of candidate antibiotic-responsive genes. This process (differential expression analysis+Fisher's method) was repeated using progressively higher thresholds for the fold-change threshold used in the statistical test for differential expression, by increasing the lfcThreshold parameter in DESeq2 (for all comparisons, i.e. antibiotic treatment and each pair of untreated timepoints used in Fisher's method) until the resulting list of candidate responsive genes was 60-100 long, the size that was intended to target in phase 1 NanoString® assays. Table 9 shows the fold-change thresholds used to generate the final candidate responsive transcript list for each pathogen-antibiotic pair. This process was executed using custom scripts, available at World Wide Web at (www)github.com/broadinstitute/gene_select_v3/.


Selecting Candidate Control Genes from RNA-Seq Data


To quantitatively compare the transcription of key antibiotic-responsive genes, it is important to normalize for cell loading, lysis efficiency, and other experimental factors that may systematically affect absolute transcript abundance from a given sample. Such invariant transcripts (often referred to as “housekeeping” transcripts in qPCR) are important for scaling candidate responsive genes for comparison across samples, e.g. for comparing treated vs untreated samples. Control transcripts were therefore included in the NanoString® assay in order to normalize for these factors. Candidate control genes were identified by seeking transcripts whose expression did not change in the RNA-Seq timecourses, either upon antibiotic treatment or with over the untreated timecourse. To find such genes, a statistical test was imposed to find transcripts whose expression did not change by more than a certain fold-change threshold in any of the treated or untreated samples by re-running DESeq2 using an inverted hypothesis test (altHypothesis=“lessAbs”), tuning the lfcThreshold parameter until the 10-20 best control genes were identified. Table 9 shows the fold-change thresholds used to generate the final candidate control transcript list for each pathogen-antibiotic pair.


Gene Ontology (GO) Term Enrichment:

For GO enrichment analysis, the same protocol was followed for responsive gene selection using DESeq2 and Fisher's method (see “Selecting candidate responsive genes from RNA-Seq data”, above), with two exceptions. First, the lfcThreshold parameter (log 2 fold change threshold) was set to 0, in order to capture all differentially expressed genes. Second, genes of any expression level were considered, since sensitivity of detection was not a concern. This process produced a list of all genes that were differentially expressed upon antibiotic exposure to a greater extent than at any timepoint in the absence of antibiotic, over the full timecourse tested (0, 10, 30, and 60 min). These differentially expressed genes were named according to the reference genome that best matched the four strains used for RNA-Seq, as described (see “RNA-Seq analysis”, above). GO terms were assigned to annotated genes from each reference genome by blasting the peptide sequences for each ORF from that reference genome against a local database of ˜120 well-annotated reference strains from NCBI using blast2GO (version 1.4.4; Gotz et al. 2008). GO terms associated with the list of differentially expressed genes was then compared with all GO terms associated with the genome, and hypergeometric testing was deployed to identify GO terms that were enriched to a statistically significant extent among the differentially expressed genes, using the Benjamini-Hochberg correction for multiple hypothesis testing. A false discovery rate threshold of 0.05 was used to generate the list of enriched GO terms in Table 8.


Homology Masking of Selected Responsive and Control Transcripts

Within each candidate responsive or control gene, regions of highest homology to target with NanoString® probes were identified. For each species, all complete reference genomes from RefSeq as of Jan. 1, 2016 were compiled, and BLASTn was run to identify the closest homologue of each desired target from each reference genome, and eliminated targets without an annotated homologue in at least 80% of genomes. A multi-sequence alignment was then constructed and queried each sliding 100mer window to keep only those windows with at least one 100mer region of >97% nucleotide identity across all reference genomes; all sequences failing to meet this homology threshold were “masked”, i.e., removed from consideration as targets for probe design. If no such region was found, the homology threshold was relaxed to >95% identity, then to >92% identity; if no region with at least 92% identity was found, the transcript was deemed too variable to reliably target and thus eliminated from consideration entirely. The window size of 100 nucleotides was chosen because NanoString® detection involves targeting with two ˜50mer probes that bind consecutive regions (Geiss et al. 2008). The resulting homology-masked sequences, retaining only those regions of intended target transcripts with sufficient homology, were then provided to NanoString® for their standard probe design algorithms (Geiss et al. 2008).


Design of NanoString® Probes for Carbapenemase and Extended-Spectrum Betalactamase Gene Families:

All gene sequences representing each targeted antibiotic resistance gene family (carbapenemases: KPC, NDM, OXA-48, IMP, VIM; ESBLs: CTX-M-15, OXA-10) were collected from representatives reported in three databases of antibiotic resistance genes: Resfinder (Zankari et al. 2012), ArDB (Liu and Pop 2009), and the Lahey Clinic catalog of beta-lactamases on the World Wide Web at (www)lahey.org/Studies. Additional representatives of each family were identified by homology search (BLASTp, E-value <10-10, >80% similarity) against the conceptual translation of genes identified in the genomes of isolates collected as part a multi-institute analysis of carbapenem-resistant Enterobacteriaceae specimens (Cerqueira et al. 2017). All other genes in the pan-genome of that cohort that did not meet the homology search criterion for inclusion as one of the targeted families were consolidated in an outgroup sequence database, which was used to screen for cross-reactivity. This outgroup contains many other non-targeted beta-lactamases, as well as the complete genomes of hundreds of Enterobacteriaceae isolates (Cerqueira et al. 2017). For each targeted antibiotic resistance gene family, target regions for NanoString® probe design were identified as described above (see above section entitled Homology masking of selected responsive and control transcripts) by identifying regions with >95% sequence homology across 150 nucleotides in >90% of homologues within that family. In order to minimize risk of cross-reactivity with undesired targets, these conserved regions of the desired targets were then compared by BLASTn to the outgroup database, and any regions with E-value <10 were discarded. For the IMP gene family, no region of sufficient conservation could be identified due to sequence diversity within the family, consistent with reports that it is difficult to uniformly target by PCR (Kaase et al. 2012). Four different regions were identified that together were predicted to cover all IMP homologs from these databases, i.e., where each IMP homolog contained a stretch of sufficient homology to one or more of the four regions. These regions were submitted to NanoString® for probe design by their standard algorithms (Geiss et al. 2008), including four separate probe pairs for IMP (Table 9). Signal from each of these four IMP probes was combined to yield a single combined total IMP signal (see section entitled “NanoString® data processing, normalization, and visualization” below).


Lysate Preparation for NanoString® Transcriptional Profiling Assays:

Each strain to be tested was grown at 37° C. in Mueller-Hinton broth to mid-logarithmic phase, and split into a treated sample, to which antibiotic was added at the CLSI breakpoint concentration, and an untreated control. Both samples were grown for the specified time (30-60 min), then a 100 uL aliquot of culture was added to 100 uL of RLT buffer (Qiagen) plus 1% beta-mercaptoethanol and mechanically lysed using either the MiniBeadBeater-16 (BioSpec) or the FastPrep (MP Biomedicals). This crude lysate was either used directly for hybridization, or frozen immediately and stored at −80° C., then thawed on ice prior to use.


NanoString® nCounter® Assays:


All Phase 1 and Phase 2 NanoString® experiments (see FIG. 5) were performed on a NanoString® nCounter® Sprint instrument, with hybridization conditions as per manufacturer's recommendations, including a 10% final volume of crude lysate as input. Phase 1 experiments used probesets made with XT barcoded probe pools and were hybridized for 2 hours at 65° C., while Phase 2 experiments used probesets made with nCounter® Elements™ probe pools plus cognate barcoded TagSets (ref?) and were hybridized for 1 hour at 67° C., rather than the 16-24 hour hybridizations as recommended by the manufacturer's protocol. Including 30-60 min for antibiotic exposure and these hybridizations, plus a 6 hour run for 12 samples, the total run time was under 8 hours for phase 2. Technical replicates for five strains run on separate days resulted in Pearson correlations of 0.95-0.99 for normalized data, consistent with expectations for this assay platform (Geiss et al. 2008), indicating that the shorter hybridization time did not affect reproducibility.


Phylogenetic Analysis of Strains Included in this Study:


The Genome Tree report was downloaded for each species from the National Center for Biotechnology Information (NCBI; ncbi.nlm.nih.gov) in Newick file format and uploaded to the Interactive Tree of Life (iTOL; itol.embl.de; Letunic et al. 2019) for visualization and annotation. Strains from the instant disclosure that were available on NCBI were identified using strain name or other identifying metadata from the NCBI Tree View file, cross-referencing the NCBI ftp server (ftp.ncbi.nlm.nih.gov/pathogen/Results/) as needed to confirm strain identity.


Rapid transcriptional profiling with pilot NanoString® Hyb & Seq™ assay platform


For the rapid pilot GoPhAST-R experiment on a prototype Hyb & Seq™ instrument at NanoString® (FIGS. 12A and 12B), pairs of capture probes (Probe A and Probe B) were constructed for all targets of interest such that each pair could uniquely bind to one target transcript. For Hyb & Seq™ chemistry (FIG. 12A), each Probe A contained a unique target binding region, a universal purification sequence, and an affinity tag for surface immobilization. Each Probe B contained another unique target binding region, a barcoded sequence for downstream signal detection, and a common purification sequence that was different from that of Probes A. For multiplexed RNA profiling, crude lysates were mixed with all capture and reporter probes in a single hybridization reaction and incubated on a thermocycler with heated lid at 65° C. for 20 min. This hybridization reaction enables formation of unique trimeric complexes between target mRNA, Probe A, and Probe B for each target.


Three sequential steps of post-hybridization purification were then performed to ensure minimal background signal. Briefly, the hybridization product was first purified over magnetic beads coupled to oligonucleotides complementary to the universal sequence contained on every Probe B. The hybridization product was first incubated with the beads in 5×SSPE/60% formamide/0.1% Tween20 at room temperature for 10 min in order to bind all target complexes containing Probes B, along with the free (un-hybridized) Probes B, onto the beads. Bead complexes were then washed with 0.1×SSPE/0.1% Tween20 to remove unbound oligos and complexes without Probes B. The washed beads were then incubated in 0.1×SSPE/0.1% Tween20 at 45° C. for 10 min to elute the bound hybridized complexes off the beads. This second purification was carried out per manufacturer's instructions using Agencourt AMPure XP beads (Beckman Coulter) at a 1.8:1 volume ratio of beads to sample, in order to remove oligos shorter than 100 nt. This size-selective purification recovers the bigger hybridization complexes while removing smaller free capture Probes A and B. Eluates from these AMPure beads were purified over a third kind of magnetic beads coupled to oligonucleotides complementary to the common purification sequence contained on every Probe A, similar to the first bead purification, then eluted at 45° C. These triple-purified samples were driven through a microfluidic flow cell on a readout cartridge by hydrostatic pressure within 20 min. The flow cell was enclosed by a streptavidin-coated glass slide that can specifically bind to the affinity tag (biotin) of each Probe B, allowing the immobilization of purified complexes on the glass surface.


The cartridge with samples loaded was mounted on a Hyb & Seq™ prototype instrument equipped with an LED light source, an automated stage, and a fluorescent microscope. The barcoded region of each Probe A consisted of two short nucleic acid segments, each of which can bind to one of ten available fluorescent bi-colored DNA reporter complexes as dictated by complementarity to the exact segment sequences. To detect each complex captured on the glass surface (FIG. 12B), photocleavable fluorescent color-coded reporters were grouped by their target segment location and introduced into the flow cell one pool at a time. Following each reporter pool introduction, the flow cell was washed with non-fluorescent imaging buffer to remove unbound reporter complexes and scanned by the automated Hyb & Seq prototype. Each field of view (FOV) was scanned at different excitation wavelengths (480, 545, 580 and 622 nm) to generate four images (one for each wavelength) and then exposed to UV (375 nm) briefly to remove the fluorophore on surface-bound reporter probes by breaking a photocleavable linker. The flow cell was then subjected to a second round of probing with a new reporter pool targeting the second segment location on each Probe A. Thus, two rounds of probing, washing, imaging and cleavage completed one Hyb & Seq barcode readout cycle (FIG. 12B). In order to improve signal-to-noise ratio, 5 such cycles were completed for each assay. Between each cycle, the flow cell was incubated with low salt buffer (0.0033×SSPE/0.1% Tween20) to remove all bound reporter complexes without disrupting the ternary complex between Probe A, target mRNA, and Probe B.


A custom algorithm was implemented to process the raw images for each FOV on a FOV-by-FOV basis. This algorithm can identify fluorescent spots and register images between each wavelengths and readout cycles. A valid feature is defined as a spot showing positive fluorescence readout for all barcoded segment locations in the same spatial position of each image after image registration. The molecular identity of each valid feature is determined by the permutation of color codes for individual rounds of barcode segment readout. In this implementation, the maximal degree of available multiplexing for a single assay using 10-plex reporter pools was 102=100 kinds for two-segment barcodes, but up to four-segment barcodes are available, permitting up to 104=10,000 distinct barcodes. This algorithm provides tabulated results for the total raw count of each reporter barcode of interest identified in a single assay. These raw counts are used as input for subsequent data processing, visualization, and further analysis.


NanoString® Data Processing, Normalization, and Visualization:

For each sample, read counts from each targeted transcript were extracted using nSolver Analysis Software (v4.070, NanoString®, Seattle Wash.). Raw read counts underwent the following processing steps, all executed in R (version 3.3.3), utilizing the packages dplyr (version 0.7.4), xlsx (version 0.5.7), gplots (version 3.0.1), and DescTools (version 0.99.23):

    • 1. Data aggregation: all data for a given pathogen-antibiotic pair, for a given phase of analysis (eg phase 1 or phase 2), was read in to a single data object so that all subsequent data processing steps were done together.
    • 2. Positive control correction: per manufacturer's protocol, ERCC spike-ins were included in every hybridization at known concentrations, spanning the range of expected target RNA concentrations. For each sample, the geometric mean of counts from positive control probes targeting these ERCC spike-ins was calculated. This geometric mean was used to scale each remaining probe in the sample, in order to standardize across lanes for any systematic variation.
    • 3. Negative control subtraction: per manufacturer's protocol, for each sample, the mean of negative control probes targeting ERCC spike-ins not present in the hybridization reaction were subtracted from the raw read counts for each target.
    • 4. Failed probe removal: any control probe with fewer than 10 reads, or any responsive control with negative reads, after negative control subtraction in any sample was removed from all samples for a given pathogen-antibiotic pair, in order to omit transcripts whose content, sequence, or expression was too variable across strains.
    • 5. Selection of optimal control probes: among the set of candidate control probes, across all strains in a given phase of analysis, the subset of these control probes that performed most consistently across samples was selected using a variation on the geNorm algorithm (Vandesompele et al. 2002). The principle behind this algorithm is that the per-cell expression of ideal control probes will not vary under any experimental conditions, and therefore, the ratio between expression levels of a set of ideal control probes will be constant (reflecting only the difference in cell number in each sample). Accordingly, the coefficient of variation of each control probe with the geometric mean of all control probes was calculated. In the ideal case, this coefficient of variation will be zero. The candidate control probe with the highest coefficient of variation is removed, and the process is repeated with the remaining control probes until the highest coefficient of variation is less than a threshold set to yield an acceptable number of non-operonic control transcripts, typically 4-8. For these experiments, this threshold was adjusted from 0.2 to 0.3 depending on the bacteria-antibiotic pair. Thresholds chosen, and the optimal control probes used at this threshold, are noted in Table 9.
    • 6. Control transcript normalization: the geometric mean of the optimal control probes was calculated for each sample and used to normalize all remaining read counts from that sample, i.e. for candidate responsive transcripts, and for carbapenemase or ESBL genes (if applicable), by dividing these corrected read counts by this geometric mean for each sample.
    • 7. Calculation of fold-induction of normalized responsive transcripts by antibiotic: for each candidate responsive transcript, normalized counts from each antibiotic-treated strain were divided by normalized counts from untreated samples of the same strain. These fold-inductions of normalized expression for each candidate responsive transcript were used as input into machine learning algorithms, both reliefF for feature selection and the caret package for random forest classification.
    • 8. Log-transformation of fold-induction data for responsive transcripts: for visualization, the natural logarithm of fold-inductions of normalized expression for each candidate responsive transcript was calculated and displayed using the heatmap.2 function of the gplots R package (version 3.0.1). For each set of strains, ln(fold induction) for each transcript was clustered using the default hclust function, and strains were ordered by MIC.
    • 9. Combination of IMP probes: because of the variability of gene sequences in the IMP family, four separate IMP probes were designed, one or more of which was expected to recognize all sequenced members of this gene family. Following control gene normalization, signal from the four separate probes was added together to give a single IMP score.
    • 10. Background subtraction for carbapenemase/ESBL gene detection: For each species, the subset of tested strains was identified for which whole-genome-sequencing (WGS) data was available and none of the target beta-lactamase genes was found. From this subset, the arithmetic mean plus two standard deviations of the normalized signal from each probe (step 6) was calculated, and this mean+two standard deviations was subtracted from the normalized signal from each probe across all tested samples. All carbapenemases identified by WGS were detected above background, though the two A. baumannii isolates expressing blaNDM were only detected at very low levels. Background-subtracted data were log-transformed for visualization (any probe with a negative value after background-subtraction was set to 0.1 normalized counts for all standard nCounter experiments, or to 0.25 normalized counts for Hyb & Seq experiments, prior to log-transformation).


One-Dimensional Projection of Transcriptional Data Via Squared Projected Distance (SPD) Metric:

Normalized, log-transformed fold-induction data from the ˜60-100 responsive were collapsed into a one-dimensional projection referred to as a squared projected distance (SPD), essentially as described (Barczak et al. 2012). Conceptually, the transcriptional response of a test strain is placed on a vector in N-dimensional transcriptional space (where N=number of responsive genes, here ˜60-100 per probeset) between the average position (i.e. centroid in transcriptional space) of a derivation set of susceptible strains (defined as SPD=0) and the average position of a derivation set of resistant strains (defined as SPD=1). All vector math was performed exactly as described (Barczak et al. 2012) and implemented in R (version 3.3). For each pathogen-antibiotic pair, the same strains used for RNA-Seq were also used as the derivation set of two susceptible and two resistant strains, in order to ensure that the resulting projections of the remaining strains were not self-determined. In other words, only the strains used to select the transcripts to be used in the NanoString® experiments (based on RNA-Seq) were used to set the average position of susceptible or resistant isolates; any tendency of other isolates to cluster at a similar SPD as these derivation strains, either susceptible or resistant, is thus due to a similarity in their transcriptional profiles. These derivation strains are labeled in Table 7 as “deriv_S” and “deriv_R” for susceptible and resistant strains, respectively. SPD data are plotted by CLSI class (FIG. 4A) and by MIC (FIG. 4B), showing a proportional relationship between MIC and this summative metric of transcriptional response to antibiotic exposure upon treatment at the breakpoint concentration (vertical dashed line).


Approach to Strain Classification Based on NanoString® Data:

In order to select the most distinguishing features and to classify isolates as susceptible or resistant, machine learning algorithms were utilized and implemented in two phases (FIG. 5).


In phase 1, NanoString® XT probesets were designed targeting dozens (60-100) of antibiotic-responsive transcripts (Table 9) selected from RNA-Seq data as described and used to quantify target gene expression from 18-24 isolates of varying susceptibility, both treated and untreated with the antibiotic in question, from which normalized fold-induction data for each responsive gene candidate was determined as described above. These isolates are partitioned into 50% training strains and 50% testing strains, randomly but informed by MIC: isolates are sorted in order of MIC and then alternately assigned to training and testing sets in order to ensure a balanced mix of isolates in each cohort across the full range of MICs represented by the strains in question. The only exceptions to random strain assignments to training vs testing sets in Phase 1 were: (1) intermediate isolates were not used for training, but were assigned to the validation cohort (and were grouped with resistant isolates for accuracy reporting, i.e., “not susceptible”), and (2) the two E. coli isolates with large meropenem inoculum effects were noted prior to randomization and deliberately assigned to the validation cohort, given the physiological basis for their discrepant transcriptional response from that of a conventional susceptible strain. From the training (derivation) cohort, the top 10 features were first selected using reliefF (see details below, “Feature selection from NanoString® data”), then a random forest model was trained on this derivation cohort using the caret package, then implemented on the testing (validation) cohort, using only data from these top 10 selected features (see details below, “Random forest classification of strains from NanoString® data”). Accuracy of GoPhAST-R in this phase was assessed by comparing predictions of the random forest model for the strains in the testing cohort, which it had never previously seen, with known susceptibility data for these strains (FIG. 7A; Table 10).


In phase 2, the training and testing cohorts from phase 1 were first combined into a single, larger training set, and selection of the top 10 responsive features were repeated using the same algorithms (reliefF). These represent the best-informed prediction of the 10 responsive probes that most robustly discriminate between susceptible and resistant isolates, and are highlighted in Table 9 for each pathogen-antibiotic combination (column F=either “Phase 2” or “Top feature”). A new NanoString® nCounter® Elements™ probeset was then designed for each pathogen-antibiotic pair, targeting only these 10 transcripts as well as ˜10 control probes that performed best in phase 1 (i.e. had the lowest coefficients of variation compared with the geometric mean of all control probes, using the variation on the geNorm algorithm described above; also indicated in Table 9, column F). For K. pneumoniae+meropenem and ciprofloxacin, an additional 25-30 strains were tested using these focused phase 2 probesets, again quantifying target gene expression and normalized fold-induction of these responsive genes with and without antibiotic exposure. These data were supplied to the random forest classifier trained on all data from phase 1, and the resulting classifications of phase 2 strains were compared with known susceptibility data for these strains (FIG. 7B; Table 10). Of note, phase 2 deploys GoPhAST-R in exactly the way it was envisioned being deployed on true unknown samples: each of the phase 2 strains was an unknown, considered independently and not used at any point to train the model, only to assess its performance one strain at a time.


Every strain tested was an independent clinical isolate, with two minor exceptions. First, in the case of A. baumannii+ciprofloxacin, there were not sufficient numbers of independent ciprofloxacin-susceptible A. baumannii isolates to train and test a classifier (only five out of 22 A. baumannii isolates). For this bacteria-antibiotic pair, biological replicates of the two susceptible strains used for RNA-Seq, RB197 (three replicates) and RB201 (two replicates) were run. These biological replicates were grown from separate colonies in separate cultures, each split into treated and untreated samples. All three RB197 replicates ended up randomized to the phase 1 training set, while both RB201 replicates were randomized to the phase 1 testing set. Since there was not training on one biological replicate and testing on another, the reported categorical agreement should not be confounded by excessive similarity between replicates. One additional linkage between isolates was that one A. baumannii isolate, RB197, exhibited two distinct colony morphotypes upon streaking onto LB plates: a dominant, larger morphotype, and a less abundant, smaller morphotype. The smaller morphotype was renamed RB197s and tested in both the meropenem and ciprofloxacin datasets, randomized to the testing (validation) cohort in both cases.


Feature Selection from NanoString® Data:


For feature selection in both phase 1 and phase 2, the reliefF algorithm (Robnik-Šikonja and Kononenko 2003) was employed using the CORElearn package (version 1.52.0) in R (version 3.3.3) to generate a list of features ranked in order of importance in distinguishing susceptible from resistant strains within the training set. The input to the reliefF algorithm was normalized fold-induction data from all responsive probes, and the CLSI classification, for each training isolate. (For this analysis, CLSI classification was simplified into two classes by grouping intermediate strains with resistant strains, in keeping with common clinical practice to avoid an antibiotic for which an isolate tests intermediate.)


The process by which reliefF generates its ranking has been well-described elsewhere (Robnik-ikonja and Kononenko 2003). The specific estimator algorithm (lEst parameter) “ReliefFexpRank”, which considers the k nearest hits and misses, was chosen with the weight of each hit and miss exponentially decreasing with decreasing rank. This was iterated five times (ltimes parameter=5), with a separate 80% partition of the training data for each iteration, then averaged feature weight across each of these five iterations to generate the final ranked list. The output from this reliefF algorithm is a ranked list of features that best distinguish susceptible from resistant isolates; from this list, and the top 10 features (featureCount parameter=10) were kept. The same parameter values were chosen for feature selection for both phase 1 (i.e., on the half of the phase 1 data assigned to the training set) and phase 2 (i.e., using all of the phase 1 data, for use in designing new probesets for de novo data acquisition in phase 2).


Random Forest Classification of Strains from NanoString® Data:


To build a random forest classifier, the caret (classification and regression training) package (version 6.0-78) in R (version 3.3.3) was employed to classify strains in the testing cohort. Input data for this algorithm are normalized fold-inductions of the top 10 responsive genes selected by reliefF for both training and testing strains, and CLSI classifications for each training strain (again with intermediate and resistant isolates grouped together). This random forest model is a common example of an ensemble classifier (Liaw et al. 2001) that embeds feature selection and weighting in building its models, which should mitigate risk for overtraining from including additional features from reliefF, since features not required for accurate classification need not be considered. It enacts 5-fold cross-validation on the training set, i.e. 80% sampling of the testing data, run 5 times, to optimize parameters including “mtry”, “min.node.size”, and “splitrule”, to build 500 trees (parameter “ntree” set to 500) based on prediction of the omitted training strains. After these hyperparameters are optimized through this cross-validation, an additional 500 trees are built using all of the training data and used to classify strains from the test set, one strain at a time. The resulting output is this classifier model that generates predictions for the classification of each test strain, reported as “probability of resistance” (probR) based on what fraction of trees ended up classifying the strain as resistant. (For instance, a strain with probR of 0.2 was classified as susceptible in 100 trees and as resistant in 400.) For quantitative assessment of accuracy, the prediction of the most likely class as the ultimate classification (i.e., if probR>0.5, the classifier is predicting resistant; if probR<0.5, the classifier is predicting susceptible) was used. One might ultimately choose to set this threshold somewhere other than 0.5: since the cost of misclassifying a resistant isolate as susceptible (a “very major error” in the parlance of the FDA) is greater than the cost of misclassifying a susceptible isolate as resistant, one might wish to label an isolate resistant if its probR is, say, 0.3. However, for simplicity, and to avoid overtraining on the relatively limited number of samples in this manuscript, the default threshold of 0.5 was chosen, accepting the classifier's prediction as to which state is more likely.


Reproducibility of GoPhAST-R Classification:

Phase 2 probesets for meropenem susceptibility were combined with probes for carbapenemase and ESBL gene detection (Table 9). For K. pneumoniae+meropenem, in addition to testing all phase 2 strains simultaneously for phenotypic AST and genotypic resistance determinants, 23 of 24 phase 1 strains were retested using the phase 2 probeset in order to capture their carbapenemase and ESBL gene content. This provides a set of effective technical replicates for assessing the robustness of the classifier, since all phase 2 genes are included as a subset of the phase 1 probeset, but all data were regenerated in a new NanoString® experiment using the phase 2 probeset with added genotypic probes.


All 23 retested strains (11 susceptible, 12 resistant) were classified correctly based upon data from the phase 2 probeset; of these 23 strains, 12 (6 susceptible, 6 resistant) were phase 1 training strains (that were therefore not previously classified in phase 1), and 11 (5 susceptible, 6 resistant) were phase 1 testing strains that were classified the same way based upon data from the phase 2 probeset as they had been in phase 1 testing. The probability of resistance (probR) parameters for these 23 replicates from phase 1 (Table 10) versus those from “re-classification” using data from the phase 2 probeset were highly correlated (Pearson correlation coefficient=0.95). Note that because these same strains were used in training the random forest classifier, the results of re-classification of these retested strains are not included in the accuracy statistics reported elsewhere in this manuscript. The 100% concordance observed for re-classification of these 23 strains is thus not a reflection of GoPhAST-R's accuracy, but does speak to its reproducibility.


Blood Culture Processing:

Under Partners IRB 2015P002215, 1 mL aliquots from blood cultures in the MGH clinical microbiology laboratory whose Gram stain demonstrated gram-negative rods were removed for processing. For simulated blood cultures, consistent with clinical microbiology laboratory protocol (Clark et al. 2009), blood culture bottles were inoculated with individual isolates of each pathogen suspended in fetal bovine serum at <10 cfu/mL to simulate clinical samples and incubated in a BD BacTec FX instrument (BD Diagnostics; Sparks, MD) in the clinical microbiology laboratory at Massachusetts General Hospital, or on a rotating incubator at 37° C. in the research laboratory at the Broad Institute. Once the BacTec instrument signaled positive (after 8.5-11.75 hours of growth), or after an equivalent time to reach the same culture density in the research laboratory (confirmed by enumeration of colony-forming units), 1 mL aliquots were removed for processing. Bacteria were isolated by differential centrifugation: 100×g×10 min to pellet RBCs, followed by 16,000×g×5 min to pellet bacteria. The resulting pellet was resuspended in 100 uL of Mueller-Hinton broth and immediately split into 5×20 uL aliquots for treatment with the indicated antibiotics (three antibiotics, plus two untreated samples, one for harvesting at 30 min to pair with the ciprofloxacin-treated aliquot and one at 60 min to pair with both meropenem- and gentamicin-treated aliquots). After the appropriate treatment time, 80 uL of RLT buffer+1% beta-mercaptoethanol was added to 20 uL of treated bacterial sample, and lysis via bead-beating followed by NanoString® detection were carried out as above (see “Lysate preparation for NanoString® transcriptional profiling assays” section). For real blood cultures, lysates were stored at −80° C. until organisms were identified in the laboratory by conventional means; only samples containing E. coli or K. pneumoniae were run on NanoString®. GoPhAST-R results were compared with standard MIC testing in the MGH clinical microbiology laboratory, which were also run on simulated cultures. Specimens were blinded until all data acquisition and analysis was complete. For head-to-head time trial compared with gold standard AST testing in the MGH clinical microbiology laboratory (subculture+VITEK-2), blood culture processing steps were timed in the research laboratory (Boston, Mass., USA), then frozen and shipped to NanoString® for transcript quantification on the prototype Hyb & Seq™ platform at NanoString® (Seattle, Wash., USA). A timer was restarted when lysates were thawed, and the total time at each site was combined to estimate the complete assay duration.


Blood Culture AST Classification:

Simulated blood cultures were classified using the same random forest approach as cultured strains, using the top 10 features selected during Phase 1 for each pathogen-antibiotic pair. This was implemented using leave-one-out cross-validation (Efron et al. 1983) rather than an even partitioning into training and testing because (1) feature selection was already complete, allowing multiple rounds of classifier training without requiring one unified model, and (2) given this, leave-one-out cross-validation (i.e., iteratively omit each strain once from training, test on the omitted strain, repeat with each strain omitted) allowed for training on the maximum number of strains.









TABLE 7





Strains used in this study (including origin, and which assay (s) they were used in), with MIC measurements.


Highlight those used for RNA-Seq, and which were used for which NSTG assay,


and which were used as “derivation” or “validation” in ML algorithms and for SPD.

























CRE



















KpMero
Known
Other



















Alt
Alt


mero
gene (s)
known





name
name
Phase
Phase
MIC
in
bla




STRAIN
1
2
1
2
(mg/L)
probeset
gene (s)
Source
Comments





AR0034
CarbaNP-


x
2
IMP-4
TEM-1B;
CDC
ARBank



03





SHV-11




AR0040
CarbaNP-
RB408
x
(x)
>32
VIM-27;
SHV-11;
CDC
ARBank



09




CTX-M-15
OXA-1




AR0041
CarbaNP-
RB826

x x
16
NDM-1;
CMY-4;
CDC
ARBank



10




CTX-M-15;











OXA-10
SHV-11




AR0042
CarbaNP-
RB410
x
(x)
≤0.5
CTX-M15;
TEM-1B;
CDC
ARBank



11




OXA-10
SHV-1;











OXA-1




AR0043
CarbaNP-
RB411
x

2

SHV-12
CDC
ARBank



12










AR0044
CarbaNP-


x
4
CTX-M-
OXA-9;
CDC
ARBank



13




15
TEM-1A;











SHV-12;











OXA-1




AR0047
CarbaNP-


x
4

TEM-1A
CDC
ARBank



16










AR0075
CarbaNP-
RB414
x
(x)
8
CTX-M15
OXA-232;
CDC
ARBank



44





SHV-1;











OXA-1




AR0087
CarbaNP-
RB417
x
(x)
1

SHV-12
CDC
ARBank



56










AR0135
CRE-24


x
8
VIM-1
OXA-9;
CDC
ARBank









TEM-1A;











SHV-12




AR0139
CRE-28


x x
32
NDM-1;
CMY-4;
CDC
ARBank








CTX-M-15;
SHV-11










OXA-10





BAA2524
RB554


x
0.5*
OXA-48

ATCC



BIDMC_14
RB289


x
16
KPC-3
SHV-134;
BIDMC
Cerqueira









TEM-1

et al,











PNAS











2017


BIDMC_21
RB563






BIDMC
Cerqueira











et al,











PNAS











2017


BIDMC_22
RB564


x
0.25

SHV-134
BIDMC
Cerqueira











et al,











PNAS











2017


BIDMC_31
RB565


x
0.125

SHV-38
BIDMC
Cerqueira











et al,











PNAS











2017


BIDMC_35
RB552

x
(x)
>32
OXA-10
SHV-134
BIDMC
Cerqueira











et al,











PNAS











2017


BIT-03
RB400

x
(x)
8
KPC

CDC
precursor








(unknown


to








type)


ARBank











strain











collection,











shared by











J. Patel


BIT-04
RB401

x
x
32
KPC

CDC
precursor





(deriv_R)
(deriv_R)

(unknown


to








type)


ARBank











strain











collection,











shared by











J. Patel


BIT-05
RB402

x
(x)
>32
KPC

CDC
precursor








(unknown


to








type)


ARBank











strain











collection,











shared by











J. Patel


BIT-12
RB404

x
(x)
≤0.5


CDC
precursor











to











ARBank











strain











collection,











shared by











J. Patel


BIT-16
RB405

x
(x)
≤0.5


CDC
precursor











to











ARBank











strain











collection,











shared by











J. Patel


BWH_15
RB268

x
(x)
8
KPC-4
SHV-134;
BWH
Cerqueira











et al,









TEM-1

PNAS











2017


BWH_2
RB551


x
16
CTX-M-
OXA-30;
BWH
Cerqueira








15;
OXA-9;

et al,








OXA-48
SHV-38;

PNAS









TEM-1

2017


BWH_30
RB270

x
(x)
≤0.5

SHV-134
BWH
Cerqueira











et al,











PNAS











2017


BWH_36
RB271

x
(x)
16
KPC-3
SHV-134;
BWH
Cerqueira









TEM-1

et al,











PNAS











2017


CDC_1500610
RB419

x
(x)
≤0.5


CDC
precursor











to











ARBank











strain











collection,











shared by











J. Patel


IDR1200023303
RB596

x
(x)
>32

SHV-38
NYDOH
shared by











K. Musser


IDR1600031102-
RB579

x
(x)
>32
NDM-1;

NYDOH
shared by


01-00





CTX-M15


K. Musser


IDR1600037310
RB587

x
(x)
1
CTX-M-

NYDOH
shared by








15


K. Musser


IDR1600057468-
RB584


x
4
CTX-M-

NYDOH
shared by


01-00





15


K. Musser


MGH_17
RB273


x
≤0.5

SHV-134
MGH
Cerqueira











et al,











PNAS











2017


MGH_18
RB274

x
x
≤0.5

SHV-134
MGH
Cerqueira





(deriv_S)
(deriv_S)




et al,











PNAS











2017


MGH_19
RB275

x
(x)
≤0.5

SHV-134
MGH
Cerqueira











et al,











PNAS











2017


MGH_20
RB276


x
≤0.5

SHV-134
MGH
Cerqueira











et al,











PNAS











2017


MGH_31
RB291


x
8

SHV-134
MGH
Cerqueira











et al,











PNAS











2017


MGH_35
RB543


x
2
CTX-M-
OXA-30;
MGH
Cerqueira








15
SHV-134;

et al,









TEM-1

PNAS











2017


MGH_36
RB280


x
≤0.5

SHV-38
MGH
Cerqueira











et al,











PNAS











2017


MGH_39
RB780


x
2
KPC-3
OXA-9;
MGH
Cerqueira









SHV-38;

et al,









TEM-1

PNAS











2017


MGH_48
RB284


x
≤0.5

SHV-134
MGH
Cerqueira











et al,











PNAS











2017


MGH_71
RB462


x
32
KPC-2;
SHV-134;
MGH
Cerqueira








OXA-10
TEM-1

et al,











PNAS











2017


RB039


x
x
≤0.5


BWH
this





(deriv_S)
(deriv_S)




paper


RB041



x
≤0.5


BWH
this











paper


RB042



x
≤0.5


BWH
this











paper


UCI_19
RB285

x
x
>32
KPC-2
SHV-134;
UCI
Cerqueira





(deriv_R)
(deriv_R)


TEM-1

et al,











PNAS











2017


UCI_37
RB290

x
(x)
32
KPC-3
OXA-9;
UCI
Cerqueira









SHV-38;

et al,









TEM-1

PNAS











2017


UCI_38
RB288

x
(x)
≤0.5

SHV-134
UCI
Cerqueira











et al,











PNAS











2017


UCI_44
RB483


x
0.25

OXA-9;
UCI
Cerqueira









TEM-1

et al,











PNAS











2017


UCI_61
RB480


x
32
KPC-2
SHV-134;
UCI
Cerqueira









TEM-1

et al,











PNAS











2017


UCI_64
RB541


x
0.25

SHV-134
UCI
Cerqueira











et al,











PNAS











2017


UCI_7
RB540


x
0.25

SHV-134
UCI
Cerqueira











et al,











PNAS











2017





















KpCip























Alt
Alt


cip








name
name
Phase
Phase
MIC







STRAIN
1
2
1
2
(mg/L)
Source
Comments





AR0034
CarbaNP-


x
1
CDC
ARBank






03











AR0040
CarbaNP-
RB408

x
128
CDC
ARBank






09











AR0076
CarbaNP-
RB415
x

0.5
CDC
ARBank






45











AR0080
CarbaNP-
RB416
x

<0.03
CDC
ARBank






49











AR0126
CRE-15


x
0.125
CDC
ARBank





AR0160
CRE-49


x
0.06
CDC
ARBank





BAC0800005950
RB592

x

0.25
NYDOH
shared by












K. Musser





BIDMC 21
RB563


x
64
BIDMC
Cerqueira












et al,












PNAS












2017





BIDMC 22
RB564


x
0.03
BIDMC
Cerqueira












et al,












PNAS












2017





BIDMC 31
RB565


x
0.125
BIDMC
Cerqueira












et al,












PNAS












2017





BIT-03
RB400

x

32
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





BIT-04
RB401

x

16
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





BIT-05
RB402

x

128
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





BIT-10
RB403

x


CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





BIT-16
RB405

x

0.5
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





BWH_15
RB268

x

0.125
BWH
Cerqueira












et al,












PNAS












2017





BWH_22
RB287


x
64
BWH
Cerqueira












et al,












PNAS












2017





CDC_1500476
RB418

x

1
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





CDC_1500610
RB419


x
16
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel





IDR1200022727
RB595

x

>32
NYDOH
shared by












K. Musser





IDR1600031102-
RB579


x
64
NYDOH
shared by





01-00






K. Musser





IDR1600037319-
RB582


x
>32
NYDOH
shared by





01-00






K. Musser





IDR1600039511-
RB578

x

>32
NYDOH
shared by





01-00






K. Musser





IDR1600053363-
RB583


x
16
NYDOH
shared by





01-00






K. Musser





MGH_18
RB274


x
0.125
MGH
Cerqueira












et al,












PNAS












2017





MGH_21
RB277


x
0.125
MGH
Cerqueira












et al,












PNAS












2017





MGH_35
RB543


x
64
MGH
Cerqueira












et al,












PNAS












2017





MGH_39
RB780


x
0.06
MGH
Cerqueira












et al,












PNAS












2017





MGH_74
RB572


x
0.03
MGH
Cerqueira












et al,












PNAS












2017





RB013


x
x
128
BWH
this








(deriv_R)
(deriv_R)


paper





RB039


x
x
128
BWH
this








(deriv_R)
(deriv_R)


paper





RB040


x
x
<0.03
BWH
this








(deriv_S)
(deriv_S)


paper





RB041


x
x
<0.03
BWH
this








(deriv_S)
(deriv_S)


paper





RB122


x

2
BWH
this












paper





RB123


x

<0.03
BWH
this












paper





UCI_20
RB568


x
0.06
UCI
Cerqueira












et al,












PNAS












2017





UCI_22
RB569


x
64
UCI
Cerqueira












et al,












PNAS












2017





UCI_37
RB290


x
64
UCI
Cerqueira












et al,












PNAS












2017





UCI_56
RB571


x
0.125
UCI
Cerqueira












et al,












PNAS












2017






















KpGent
























Alt
Alt

gent









name
name
Phase
MIC








STRAIN
1
2
1
(mg/L)
Source
Comments





AR0042
CarbaNP-
RB410
x
32
CDC
ARBank







11











AR0043
CarbaNP-
RB411
x
1
CDC
ARBank







12











AR0076
CarbaNP-
RB415
x
32
CDC
ARBank







45











AR0080
CarbaNP-
RB416
x
2
CDC
ARBank







49











ATCC 700721
RB435

x
>32
ATCC







BAC0800007138
RB594

x
0.5
NYDOH
shared by












K. Musser






BIDMC_2A
RB469

x
2
BIDMC
Cerqueira












et al,












PNAS












2017






BIDMC_34
RB456

x
32
BIDMC
Cerqueira












et al,












PNAS












2017






BIT-10
RB403

x
4
CDC
precursor












to












ARBank












strain












collection,












shared by












J. Patel






BWH
15
RB268
x
4
BWH
Cerqueira












et al,












PNAS












2017






IDR1600031102-
RB579
x
>32

NYDOH
shared by






01-00





K. Musser






IDR1600039511-
RB578
x
0.5

NYDOH
shared by






01-00





K. Musser






MGH_30
RB278
x
1

MGH
Cerqueira












et al,












PNAS












2017






MGH_35
RB543
x
>16

MGH
Cerqueira












et al,












PNAS












2017






MGH_63
RB545
x
>16

MGH
Cerqueira












et al,












PNAS












2017






RB012


x
32
BWH
this









(deriv_R)


paper






RB040


x
0.5
BWH
this









(deriv_S)


paper






RB042


x
2
BWH
this












paper






RB121


x
1
BWH
this









(deriv_S)


paper






RB122


x
128
BWH
this









(deriv_R)


paper






UCI_13
RB487

x
0.5
UCI
Cerqueira












et al,












PNAS












2017






UCI_37
RB290

x
16
UCI
Cerqueira












et al,












PNAS












2017






UCI_63
RB481

x
4
UCI
Cerqueira












et al,












PNAS












2017






UCI_67
RB484

x
8
UCI
Cerqueira












et al,












PNAS












2017






UCI_7
RB540

x
0.5
UCI
Cerqueira












et al,












PNAS












2017






















CRE























EcMero
Known
Other






















Alt
Alt

mero
gene (s)
known







name
name
Phase
MIC
in
bla






STRAIN
1
2
1
(mg/L)
probeset
gene (s)
Source
Comments





AR0048
CarbaNP-
RB420
x (deriv_R)
32
NDM-1;
TEM-16;
CDC
ARBank





17



CTX-M-15
CMY-6;












OXA-1






AR0055
CarbaNP-

x
8
NDM-1
CMY-6;
CDC
ARBank





24




OXA-1






AR0058
CarbaNP-

x
0.25

TEM-52B
CDC
ARBank





27











AR0061
CarbaNP-

x
8
KPC-3
OXA-9;
CDC
ARBank





30




TEM-1A






AR0069
CarbaNP-
RB421
x
16
NDM-1
TEM-16;
CDC
ARBank





38

(deriv_R)


CMY-6






AR0077
CarbaNP-

x
0.5


CDC
ARBank





46











AR0089
CarbaNP-

x
0.5

CMY-2
CDC
ARBank





58











AR0104
CarbaNP-

x
1*
KPC-4
TEM-1A
CDC
ARBank





73











BAA2469
RB557

x
16
NDM-1

ATCC





BAA2523
RB553

x
0.5*
OXA-48

ATCC





BIDMC_77
RB827

x
0.5
CTX-M-
CFE-1;
BIDMC
Cerqueira









15
OXA-30

et al,












PNAS












2017




IDR1200024571
RB597

x
>32

CMY-2
NYDOH
shared by












K. Musser




IDR1200039757
RB598

x
>32

CMY-2
NYDOH
shared by












K. Musser




IDR1300027657
RB602

x
1

CMY-2
NYDOH
shared by












K. Musser




IDR1600029769
RB585

x
8
OXA-48

NYDOH
shared by












K. Musser




IDR1600035372
RB586

x
0.5
CTX-M-

NYDOH
shared by









15


K. Musser




IDR1600043633
RB589

x
2
CTX-M-

NYDOH
shared by









15


K. Musser




MGH_57
RB544

x
4
CTX-M-
CFE-1;
MGH
Cerqueira









15
TEM-1

et al,












PNAS












2017




RB001


x
0.25


BWH
this







(deriv_S)




paper




RB002


x
0.25


BWH
this







(deriv_S)




paper




RB076


x
≤0.5


BWH
this












paper




RB156


x
1


BWH
this












paper




RB765


x
>32
NDM; KPC

MGH
this












paper




RB767


x
>32
NDM

MGH
this












paper




UCI_51
RB828

x
4
CTX-M-
bl1_ec;
UCI
Cerqueira









15
OXA-30;

et al,










TEM-1

PNAS












2017






















EcCip
























Alt
Alt

gent









name
name
Phase
MIC








STRAIN
1
2
1
(mg/L)
Source
Comments





AR0061
CarbaNP-

x
0.25
CDC
ARBank







30











AR0081
CarbaNP-

x
16
CDC
ARBank







50











AR0085
CarbaNP-

x
16
CDC
ARBank







54











AR0089
CarbaNP-

x
0.25
CDC
ARBank







58











AR0104
CarbaNP-

x
32
CDC
ARBank







73











BAA2469
RB557

x
64
ATCC







BAA2523
RB553

x
0.5
ATCC







BAC0800005647
RB591

x
64
NYDOH
shared by












K. Musser






IDR1200024571
RB597

x
0.5
NYDOH
shared by












K. Musser






IDR1300034680
RB603

x
0.03
NYDOH
shared by












K. Musser






RB001


x
0.03
BWH
this









(deriv_S)


paper






RB025


x
0.25
BWH
this












paper






RB051


x
64
BWH
this









(deriv_R)


paper






RB057


x
64
BWH
this









(deriv_R)


paper






RB075


x
0.03
BWH
this









(deriv_S)


paper






RB077


x
1
BWH
this












paper






RB086


x
64
BWH
this












paper






RB110


x
8
BWH
this












paper






















EcGent
























Alt
Alt

gent









name
name
Phase
MIC








STRAIN
1
2
1
(mg/L)
Source
Comments





AR0055
CarbaNP-

x
64
CDC
ARBank







24











AR0061
CarbaNP-

x
32
CDC
ARBank







30











AR0081
CarbaNP-

x
0.5
CDC
ARBank







50











AR0084
CarbaNP-

x
0.5
CDC
ARBank







53











AR0085
CarbaNP-

x
2
CDC
ARBank







54











BAA2469
RB557

x
64
ATCC







BAC0800005647
RB591

x
1
NYDOH
shared by












K. Musser






IDR1300027657
RB602

x
64
NYDOH
shared by












K. Musser






IDR1300034680
RB603

x
1
NYDOH
shared by












K. Musser






IDR1600047120
RB590

x
64
NYDOH
shared by












K. Musser






MGH_57
RB544

x
0.5
MGH
Cerqueira












et al,












PNAS












2017






RB001


x
1
BWH
this









(deriv_S)


paper






RB051


x
256
BWH
this









(deriv_R)


paper






RB057


x
256
BWH
this









(deriv_R)


paper






RB075


x
0.5
BWH
this









(deriv_S)


paper






RB076


x
1
BWH
this












paper






RB765


x
64
MGH
this












paper






















CRE























AbMero
Known
Other






















Alt
Alt

gent
gene (s)
known







name
name
Phase
MIC
in
bla






STRAIN
1
2
1
(mg/L)
probeset
gene (s)
Source
Comments





ATCC 17978
RB651

x
≤0.5

OXA-95
ATCC





AR0033
CarbaNP-
RB389
x
>32
NDM-1
OXA-94
CDC
ARBank





02











AR0035
CarbaNP-
RB390
x
>32

TEM-1D;
CDC
ARBank





04




ADC-25;












OXA-66;












OXA-72






AR0036
CarbaNP-
RB425
x
16

OXA-65;
CDC
ARBank





05




OXA-24






AR0037
CarbaNP-
RB391
x
>32
NDM-1
OXA-94
CDC
ARBank





06











AR0045
CarbaNP-
RB392
x
32

TEM-1D;
CDC
ARBank





14




OXA-23;












OXA-69






AR0052
CarbaNP-
RB393
x
2

OXA-58;
CDC
ARBank





21




OXA-100






AR0056
CarbaNP-
RB394
x
>32

OXA-23;
CDC
ARBank





25




OXA-66






AR0063
CarbaNP-
RB395
x
4

OXA-23;
CDC
ARBank





32




OXA-24;












OXA 65






AR0070
CarbaNP-
RB396
x
16

OXA-58;
CDC
ARBank





39




OXA-100






AR0078
CarbaNP-
RB397
x
>32

ADC-25;
CDC
ARBank





47




SHV-5;












OXA-71






AR0101
CarbaNP-
RB398
x
>32

OXA-65;
CDC
ARBank





70




OXA-24






AR0102
CarbaNP-
RB399
x
4

ADC-25;
CDC
ARBank





71




OXA-66






RB197


x
≤0.5


BWH
this







(deriv_S)




paper




RB197s


x
≤0.5


BWH
this paper;












small












colony












morphotype












of RB197




RB198


x
8


BWH
this












paper




RB200


x
>32


BWH
this







(deriv_R)




paper




RB201


x
0.25


BWH
this







(deriv_S)




paper




RB202


x
32


BWH
this












paper




RB203


x
>32


BWH
this







(deriv_R)




paper




RB204


x
16


BWH
this












paper




RB205


x
1


BWH
this












paper




RB206


x
1


BWH
this












paper






















AbCip
























Alt
Alt

cip









name
name
Phase
MIC








STRAIN
1
2
1
(mg/L)
Source
Comments





ATCC 17978
RB651

x
0.5
ATCC







AR0033
CarbaNP-
RB389
x
>32
CDC
ARBank







02











AR0035
CarbaNP-
RB390
x
>32
CDC
ARBank







04











AR0036
CarbaNP-
RB425
x
>32
CDC
ARBank







05











AR0037
CarbaNP-
RB391
x
>32
CDC
ARBank







06











AR0045
CarbaNP-
RB392
x
>32
CDC
ARBank







14











AR0052
CarbaNP-
RB393
x
4
CDC
ARBank







21











AR0056
CarbaNP-
RB394
x
>32
CDC
ARBank







25











AR0063
CarbaNP-
RB395
x
8
CDC
ARBank







32











AR0070
CarbaNP-
RB396
x
8
CDC
ARBank







39











AR0078
CarbaNP-
RB397
x
>32
CDC
ARBank







47











AR0101
CarbaNP-
RB398
x
>32
CDC
ARBank







70











AR0102
CarbaNP-
RB399
x
>32
CDC
ARBank







71











RB197


x x x
0.25
BWH
this paper









(deriv_S)









RB197s


x
0.25
BWH
this paper;












small












colony












morphotype












of RB197






RB198


x
>32
BWH
this









(deriv_R)


paper






RB201


x x
0.25
BWH
this









(deriv_S)


paper






RB202


x
>32
BWH
this









(deriv_R)


paper






RB203


x
>32
BWH
this












paper






RB204


x
>32
BWH
this












paper






RB205


x
1
BWH
this












paper






RB206


x
>32
BWH
this












paper






















AbGent
























Alt
Alt

gent









name
name
Phase
MIC








STRAIN
1
2
1
(mg/L)
Source
Comments





ATCC 17978
RB651

x
≤0.5
ATCC







AR0033
CarbaNP-
RB389
x
32
CDC
ARBank







02











AR0035
CarbaNP-
RB390
x
16
CDC
ARBank







04











AR0037
CarbaNP-
RB391
x
>32
CDC
ARBank







06











AR0045
CarbaNP-
RB392
x
>32
CDC
ARBank







14











AR0052
CarbaNP-
RB393
x
32
CDC
ARBank







21











AR0056
CarbaNP-
RB394
x
>32
CDC
ARBank







25











AR0063
CarbaNP-
RB395
x
4
CDC
ARBank







32











AR0070
CarbaNP-
RB396
x
>32
CDC
ARBank







39











AR0078
CarbaNP-
RB397
x
>32
CDC
ARBank







47











AR0101
CarbaNP-
RB398
x
8
CDC
ARBank







70











AR0102
CarbaNP-
RB399
x
>32
CDC
ARBank







71











RB197


x
≤0.5
BWH
this









(deriv_S)


paper






RB198


x
>32
BWH
this












paper






RB200


x
>32
BWH
this









(deriv_R)


paper






RB201


x
1
BWH
this












paper






RB202


x
>32
BWH
this












paper






RB203


x
4
BWH
this












paper






RB204


x
>32
BWH
this









(deriv_R)


paper






RB205


x
2
BWH
this









(deriv_S)


paper






RB206


x
>32
BWH
this












paper

















CRE


















KpMero

Known
Other

KpGent





















mero

gene (s)
known


gent
Used in



Phase
Phase
MIC

in
bla
Found
Phase
MIC
blood


STRAIN
1
2
(mg/L)
Run?
probeset
gene (s)
by
1
(mg/L)
cultures?





AR0034

x
2
+
IMP-4
TEM-1B;
WGS











SHV-11






AR0040
x
(x)
>32
+
VIM-27;
SHV-11;
WGS










CTX-M-15
OXA-1






AR0041

x x
16
+
NDM-1;
CMY-4;
WGS










CTX-M-15;
SHV-11











OXA-10







AR0042
x
(x)
≤0.5
+
CTX-M15;
TEM-1B;
WGS
x
32








OXA-10
SHV-1;












OXA-1






AR0043
x

2


SHV-12
WGS
x
1



AR0044

x
4
+
CTX-M-15
OXA-9;
WGS











TEM-1A;












SHV-12;












OXA-1






AR0047

x
4
+

TEM-1A
WGS





AR0075
x
(x)
8
+
CTX-M15
OXA-232;
WGS


x








SHV-1;












OXA-1






AR0076







x
32



AR0080







x
2
x


AR0087
x
(x)
1
+

SHV-12
WGS





AR0126












AR0135

x
8
+
VIM-1
OXA-9;
WGS










NDM-1;
TEM-1A;











CTX-M-15;
SHV-12











OXA-10







AR0139

x x
32
+

CMY-4;
WGS











SHV-11






AR0160












ATCC 700721







x
>32



BAA2524

x
0.5*
+
OXA-48

unknown





BAC0800005950












BAC0800007138







x
0.5



BIDMC_14

x
16
+
KPC-3
SHV-134;
WGS


x








TEM-1






BIDMC_21












BIDMC_22

x
0.25
+
SHV-134
WGS






BIDMC_2A







x
2



BIDMC_31

x
0.125
+
SHV-38
WGS






BIDMC_34







x
32
x


BIDMC_35
x
(x)
>32
+
OXA-10
SHV-134
WGS










KPC







BIT-03
x
(x)
8
+
(unknown

unknown










type)












KPC







BIT-04
x
x
32
+
(unknown

unknown






(deriv_R)
(deriv_R)


type)












KPC







BIT-05
x
(x)
>32

(unknown

unknown










type)







BIT-10







x
4



BIT-12
x
(x)
≤0.5
+


unknown





BIT-16
x
(x)
≤0.5
+


unknown


x


BWH_15
x
(x)
8
+
KPC-4
SHV-134;
WGS
x
4









TEM-1






BWH_2

x
16
+
CDC-M-15;
OXA-30;
WGS










OXA-48
OXA-9;












SHV-38;












TEM-1






BWH_22









x


BWH_30
x
(x)
≤0.5


SHV-134
WGS





BWH_36
x
(x)
16
+
KPC-3
SHV-134;
WGS











TEM-1






CDC_1500476












CDC_1500610
x
(x)
≤0.5
+


(no data)





IDR1200022727












IDR1200023303
x
(x)
>32
+

SHV-38
WGS





IDR1600031102-
x
(x)
>32
+
NDM-1;

WGS
x
>32



01-00




CTX-M15







IDR1600037310
x
(x)
1
+
CTX-M-15

WGS





IDR1600037319-












01-00












IDR1600039511-












01-00




















x
0.5



IDR1600053363-












01-00












IDR1600057468-

x
4
+
CTX-M-15

WGS





01-00












MGH_17

x
≤0.5
+

SHV-134
WGS





MGH_18
x
x
≤0.5
+

SHV-134
WGS






(deriv_S)
(deriv_S)










MGH_19
x
(x)
≤0.5
+

SHV-134
WGS





MGH_20

x
≤0.5
+

SHV-134
WGS





MGH_21












MGH_30







x
1



MGH_31

x
8
+

SHV-134
WGS





MGH_35

x
2
+
CTX-M-15
OXA-30;
WGS
x
>16









SHV-134;












TEM-1






MGH_36

x
≤0.5
+

SHV-38
WGS





MGH_39

x
2
+
KPC-3
OXA-9;
WGS











SHV-38;












TEM-1






MGH_48

x
≤0.5
+

SHV-134
WGS





MGH_63







x
>16
x


MGH_71

x
32
+
KPC-2;
SHV-134;
WGS










OXA-10
TEM-1






MGH_74









x


RB012







x
32



RB013







(deriv_R)




RB039
x
x
≤0.5
+


(no data)





RB040
(deriv_S)
(deriv_S)





x
0.5











(deriv_S)




RB041

x
≤0.5
+


(no data)
x




RB042

x
≤0.5
+


(no data)
x
2



RB121







x
1











(deriv_S)




RB122







x
128











(deriv_R)




RB123









x


UCI_13







x
0.5



UCI_19
x
x
>32
+
KPC-2
SHV-134;
WGS






(deriv_R)
(deriv_R)



TEM-1






UCI_20












UCI_22












UCI_37
x
(x)
32
+
KPC-3
OXA-9;
WGS
x
16









SHV-38;












TEM-1






UCI_38
x
(x)
≤0.5


SHV-134
WGS





UCI_44

x
0.25
+

OXA-9;
WGS











TEM-1






UCI_56












UCI_61

x
32
+
KPC-2
SHV-134;
WGS











TEM-1






UCI_63







x
4



UCI_64

x
0.25
+

SHV-134
WGS


x


UCI_67







x
8
x


UCI_7

x
0.25
+

SHV-134
WGS
x
0.5



















EcCip
EcGent

























cip

gent
Used








Phase
MIC
Phase
MIC
in blood







STRAIN
1
(mg/L)
1
(mg/L)
cultures?





AR0048












AR0055


x
64
x







AR0058












AR0061
x
0.25
x
32
x







AR0069




x







AR0077












AR0081
x
16
x
0.5








AR0084


x
0.5








AR0085
x
16
x
2








AR0089
x
0.25


x







AR0104
x
32










BAA2469
x
64
x
64








BAA2523
x
0.5










BAC0800005647
x
64
x
1
x







BIDMC_77












IDR1200024571
x
0.5










IDR1200039757












IDR1300027657


x
64








1DR1300034680
x
0.03
x
1
x







IDR1600029769












IDR1600035372












IDR1600043633












IDR1600047120


x
64








MGH_57


x
0.5








RB001
x
0.03
x
1









(deriv_S)

(deriv_S)









RB002












RB025
x
0.25










RB051
x
64
x
256
x








(deriv_R)

(deriv_R)









RB057
x
64
x
256
x








(deriv_R)

(deriv_R)









RB075
x
0.03
x
0.5









(deriv_S)

(deriv_S)









RB076


x
1
x







RB077
x
1










RB086
x
64


x







RB110
x
8










RB156




x







RB765


x
64








RB767












UCI_51












BAA2471




x



















AbCip
AbGent

























cip

gent









Phase
MIC
Phase
MIC








STRAIN
1
(mg/L)
1
(mg/L)





ATCC 17978
x
0.5
x
≤0.5








AR0033
x
>32
x
32








AR0035
x
>32
x
16








AR0036
x
>32










AR0037
x
>32
x
>32








AR0045
x
>32
x
>32








AR0052
x
4
x
32








AR0056
x
>32
x
>32








AR0063
x
8
x
4








AR0070
x
8
x
>32








AR0078
x
>32
x
>32








AR0101
x
>32
x
8








AR0102
x
>32
x
>32








RB197
x x x
0.25
x
≤0.5









(deriv_S)

(deriv_S)









RB197s
x
0.25










RB198
x
>32
x
>32









(deriv_R)











RB200


x
>32











(deriv_R)









RB201
x x
0.25
x
1









(deriv_S)











RB202
x
>32
x
>32









(deriv_R)











RB203
x
>32
x
4








RB204
x
>32
x
>32











(deriv_R)









RB205
x
1
x
2











(deriv_S)









RB206
x
>32
x
>32





















PaCip

























Alt

cip










name
Phase
MIC









STRAIN
1
1
(mg/L)
Source
Comments





BL01
RB918
x
0.125
B&L
eye isolate







BL03
RB919
x
16
B&L
eye isolate







BL08
RB920
x
0.06
B&L
eye isolate







BL11
RB921
x
0.125
B&L
eye isolate







BL17
RB922
x
16
B&L
eye isolate







BL22
RB923
x
0.5
B&L
eye isolate







BWHPSA003
RB924
x
16
BWH
clinical












pulmonary












isolate







BWHPSA006
RB925
x
16
BWH
clinical












pulmonary












isolate







BWH029
RB926
x
0.03
BWH
clinical












pulmonary












isolate







BWH033
RB927
x
0.06
BWH
clinical












urinary












isolate







BWHPSA041
RB928
x
2
BWH
clinical












wound












isolate







BWHPSA043
RB929
x
0.06
BWH
clinical












wound












isolate







BWHPSA046
RB930
x
0.06
BWH
clinical












pulmonary












isolate







BWHPSA048
RB931
x
8
BWH
clinical












urinary












isolate







BWH049
RB932
x
16
BWH
clinical












urinary












isolate







BWH050
RB933
x
0.25
BWH
clinical












blood












isolate







BWH053
RB934
x
16
BWH
clinical












blood












isolate







BWH055
RB935
x
0.125
BWH
clinical












urinary












isolate







CF5
RB936
x
8
Lory lab
respiratory












isolate












from












CF patient












from Lory












lab via












Aussubel












lab







CF18
RB937
x
0.06
Lory lab
respiratory












isolate












from












CF patient












from Lory












lab via












Aussubel












lab







CF27
RB938
x
1
Lory lab
respiratory












isolate












from












CF patient












from Lory












lab via












Aussubel












lab







UDL
RB939
x
0.125
Lory lab
urinary












isolate












from












Lory












lab












via












Aussubel












lab







X13273
RB940
x
8
Lory lab
blood












isolate












from












Lory












lab via












Aussubel












lab







X24509
RB941
x
64
Lory lab
urinary












isolate












from












Lory












lab via












Aussubel












lab




















SaLevo



























levo











Phase
MIC










STRAIN
1
(mg/L)
Source
Comments





RB003
x
0.125
BWH
clinical












isolate












from












BWH








RB004
x
32
BWH
clinical












isolate












from












BWH








RB006
x
0.06
BWH
clinical












isolate












from












BWH












Crimson












Core








RB007
x
16
BWH
clinical












isolate












from












BWH












Crimson












Core








RB010
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB045
x
32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB047
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB064
x
8
BWH
clinical












isolate












from












BWH












Crimson












Core








RB065
x
0.06
BWH
clinical












isolate












from












BWH












Crimson












Core








RB066
x
0.06
BWH
clinical












isolate












from












BWH












Crimson












Core








RB067
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB069
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB072
x
4
BWH
clinical












isolate












from












BWH












Crimson












Core








RB074
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB090
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB095
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB096
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB098
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB211
x
16
BWH
clinical












isolate












from












BWH












Crimson












Core








RB219
x
>32
BWH
clinical












isolate












from












BWH












Crimson












Core








RB221
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB223
x
0.13
BWH
clinical












isolate












from












BWH












Crimson












Core








RB245
x
0.25
BWH
clinical












isolate












from












BWH








RB247
x
0.5
BWH
clinical












isolate












from












BWH





KEY/ABBREVIATIONS:


* large inoculum effect for meropenem MIC (RB554: MIC 0.5 at le5 cfu/mL , MIC 32 at 1e7 cfu/mL)


ATCC American Type Culture Collection


BWH Brigham and Women’s Hospital, Boston MA USA


CDC United States Centers for Disease Control


deriv_S susceptible strain used in RNA-Seq for derivation of responsive and control genes, and for derivation of “centroid ”of susceptible strains for SPD calculations, defined as SPD = 0 (see Barczak, Gomez et al, PNAS 2012).


deriv_R resistant strain used in RNA-Seq for derivation of control genes, and for derivation of “centroid ”of resistant strains for SPD calculations, defined as SPD : =1 (see Barczak, Gomez et al, PNAS 2012).


MGH Massachusetts General Hospital, Boston MA USA


NYDOH New York Department of Health (aka Wadsworth laboratories)


UCI University of California at Irvine, USA


(x) non-derivation strain from phase 1 that was rerun in phase 2






























TABLE 9







displays the initially selected responsive and control genes for each pathogen-antibiotic pair


disclosed herein, and all probes for carbapenemase and ESBL gene family detection, including


probe sequences, and also 12fc thresholds used to generate each responsive and control


gene list for each bug-drug pair. Also append reliefF ranking for the top 10 chosen.














Strain/

Posi-

SEQ ID
Ctrl/
Up/
Phase


Ab
GeneIDa
tionsb
Target Sequencec
NO:
Resp
Dnd
2?e





Kp_mero
KPN_00050
1178-1277
AGATCGTGCTTACCGCATGCTGATGAACCGCAAATTCTCTGAAGAAGCGG
SEQ ID
C

x


GeneID =


CAACCTGGATGCAGGAACAGCGCGCCAGTGCGTATGTTAAAATTCTGAGC
NO: 140





NC_00964









8












Kp_mero
KPN_00098
523-622
GGAACGTTGTGGTCTGAAAGTTGACCAACTTATTTTCGCCGGGTTAGCGG
SEQ ID
C

x





CCAGTTATTCGGTATTAACAGAAGACGAACGTGAGCTGGGCGTCTGCGTT
NO: 141








Kp_mero
KPN_00100
635-734
TCGATTGTGCCATCGTTGTTGACGATTATCGCGTACTGAACGAAGACGGT
SEQ ID
C

x





CTGCGCTTTGAAGACGAATTTGTTCGCCACAAAATGCTGGATGCGATCGG
NO: 142








Kp_mero
KPN_00945
637-736
AGTGCTGTGGTATGGCGAGAAAATCCATGTCGCCGTGGCGGCCGAAGTGC
SEQ ID
C







CCGGCACCGGCGTGGATACCCCGGAAGATCTGGAGCGCGTCCGCGCTGAG
NO: 143








Kp_mero
KPN_00949
157-256
GTGGATGCGTTCCGCCACGTCAGTGATGCGTTTGAGCAGACCAGCGAAAC
SEQ ID
C







CATCAGCCAGCGCGCCAATAACGCGATCAACGATTTGGTGCGCCAGCGTC
NO: 144








Kp_mero
KPN_00950
 61-160
GTTAAGCTGGCGCAGGCGTTGGCCAATCCGTTATTTCCGGCGCTGGACAG
SEQ ID
C







CGCCCTGCGCGCGGGCCGTCATATCGGTCTCGACGAGCTGGATAATCACG
NO: 145








Kp_mero
KPN_01276
 1-100
ATGCTGGAGTTGTTGTTTCTGCTTTTACCCGTTGCCGCCGCTTACGGCTG
SEQ ID
C

x





GTACATGGGGCGCAGAAGTGCACAACAGTCCAAACAGGACGATGCGAGCC
NO: 146








Kp_mero
KPN_02357
679-778
TGATCAAATGTGCGCTGGTCGCCGGGATGGTGGTAATTGCGTTAGTGAAC
SEQ ID
C







AGGTATGTTCTGGTACCGCGCATGTCGGCAAGCGGTTCGCAGGCGGAAAG
NO: 147








Kp_mero
KPN_02805
 81-180
GTTAATGATTGAACGCCTGCGTGCGATCGGCTTTACCGTTGAACCGATGG
SEQ ID
C







ATTTCGGCGATACGCAGAATTTCTGGGCCTGGCGCGGCCACGGCGAGACG
NO: 148








Kp_mero
KPN_02846
732-831
GCGCAGGATCTGGTGATGAACTTTTCCGCCGACTGCTGGCTGGAAGTGAG
SEQ ID
C

x





CGATGCCACCGGTAAAAAACTGTTCAGCGGCCTGCAGCGTAAAGGCGGTA
NO: 149








Kp_mero
KPN_02864
527-626
CCGTACCCGCTGGTGGACGATCTGGAGCGATTCTACGACCATCTTGAGCA
SEQ ID
C







GACGCTGCTGGCGACGGGCTTTATCCGCCCGAATCATCCGGGGCAGGTGA
NO: 150








Kp_mero
KPN_03230
100-199
ATCCGCAAAAGCGAAAAAGATACGCGTCAGTATCAGGCGATCCGCCTTGA
SEQ ID
C







TAACGACATGGTCGTGCTGCTGGTTTCCGATCCGCAGGCGGTGAAATCGC
NO: 151








Kp_mero
KPN_03317
 34-133
ATGGCCGGGGAACACGTCATTTTGCTGGATGAGCAGGATCAGCCTGCCGG
SEQ ID
C

x





TATGCTGGAGAAGTATGCCGCCCATACGTTTGATACCCCTTTACATCTCG
NO: 152








Kp_mero
KPN_03628
256-355
CCGCCGTTAATGCCGGTTTATCCGGTGGCGCGTGGTGAAAGCCGCCTGTA
SEQ ID
C







TATGCAACGTATCGAGAAGGACTGGTATTCGCTGATGAACACCATCCAGA
NO: 153








Kp_mero
KPN_03634
656-755
AGCAATGACGGCGAAACGCCGGAAGGCATTGGCTTTGCGATCCCGTTCCA
SEQ ID
C

x





GTTAGCGACCAAAATTATGGATAAACTGATCCGCGATGGCCGGGTGATCC
NO: 154








Kp_mero
KPN_04331
423-522
TCTGAAGGAGAATGGCAAAGAGGTGGTGATCAAGGTTATCCGCCCGGATA
SEQ ID
C







TTTTGCCGATCATTAAAGCGGACATGAAGCTCATCTACCGCCTGGCGCGC
NO: 155








Kp_mero
KPN_04429
 49-148
CAGGTGCTGGTAAAAAGCAAGTCTATTCCGGCAGAGCCTGCCCAGGAATT
SEQ ID
C







AGGACTCGATACCTCGCGTCCGGTCATGTACGTCCTGCCCTATAATTCGA
NO: 156








Kp_mero
KPN_04616
1272-1371
TCATCGTGATGCAGGCCCAGGACGTCTGGATCCGTACCCTCTATGACCGC
SEQ ID
C







CACCGCTTTGTGGTGCGCGGCAACCTTGGCTGGATCGAAGCGGACAACTT
NO: 157








Kp_mero
KPN_04617
3455-3554
CGATAGCGCCGCGATGACCTCAATGCTTATTGGTATGGGGGTTGCACAAA
SEQ ID
C







GTGGTCAGGTTGTGGGTAAAATCGGCGAGACGTTTGGCGTAAGCAACTTG
NO: 158








Kp_mero
KPN_04663
1199-1298
ATTCAGTTCGTGCCGAAGCAGTACGAAAATATGTACTTCTCCTGGATGCG
SEQ ID
C







CGATATTCAGGACTGGTGTATCTCCCGTCAGCTGTGGTGGGGTCACCGCA
NO: 159








Kp_mero
KPN_04666
450-549
CAGGCCAGCGATGGTAACGCGGTGATGTTTATCGAAAGCGTCAACGGCAA
SEQ ID
C

x





CCGCTTCCATGACGTCTTCCTTGCCCAGCTGCGTCCGAAAGGCAATGCGC
NO: 160








Kp_mero
KPN_00055
496-595
CCCGATGCTGTGCGGCGAAGTGGTCGGCATGCTGGTGGGCATCGGCGTCG
SEQ ID
R
dn






GCACGCTGCTGGGCATGGAGCCGTTCCAGGTGTTCTTCTTTATCGTGCTG
NO: 161








Kp_mero
KPN_00499
331-430
TCTTCCCAATTTTAAATAACCCGGTGCCAGCAGGTATTGCCTGTATTGCC
SEQ ID
R
dn






ATCGTGTGGATCTTTACTTTCGTTAATATGCTCGGCGGGACCTGGGTCAG
NO: 162








Kp_mero
KPN_00681
452-551
CTTCTCCGATACCATCTTCGTGGTCGGTACCCGTCTGCTGGTGAAGAAAG
SEQ ID
R
dn






GCGGTCCGATCAAAGATTTCCCGGACCTGAAGGATAAAGCGGTCGTCGTC
NO: 163








Kp_mero
KPN_00699
295-394
TCCGGCAGAAAATATCAACCTGCTGAATGGTAACGCGCCGGACATCGATG
SEQ ID
R
dn






CGGAATGCCGTCGCTATGAAGAAAAAATTCGTTCCTACGGTAAAATCCAC
NO: 164








Kp_mero
KPN_00840
385-484
GACATCAAAGATGTCAAAGATCTGAACGGTAAAGTGGTCGCGGTGAAGAG
SEQ ID
R
dn






CGGCACCGGCTCCGTTGACTACGCGAAAGCCAATATCAAAACCAAAGATC
NO: 165








Kp_mero
KPN_00868
110-209
TGCAACTGCGAAAGGCCAAAGGCTACATGTCAGTCAGCGAAAATGACCAT
SEQ ID
R
dn
x





CTGCGTGATAACTTGTTTGAGCTTTGCCGTGAAATGCGTGCGCAGGCGCC
NO: 166








Kp_mero
KPN_00956
570-669
CTTCAGCACCGCAGCCACCTACGCGTTCGACAACGGTATCGCACTGTCTG
SEQ ID
R
dn






CAGGCTACTCCAGCTCTAACCGTAGCGTCGATCAGAAAGCTGACGGCAAT
NO: 167








Kp_mero
KPN_01105
326-425
AGCGGATTGGTTTTCTGTGCGATATCCGCCAGGCGGTGTTCAATCCAAAC
SEQ ID
R
dn






CTGTTTCCGCATGAGAACATGGAAGGCAAAATCGACCGACCGGAAGAGTA
NO: 168








Kp_mero
KPN_01164
1059-1158
GGAAGCCTTACAGATTATGGAAGCGGATGTTATAAATGGCGCTCTGGATA
SEQ ID
R
dn






GCGATGTCTTCCTCGTTTTGCGCCACCATGCGGAAACGCTACACGCCATC
NO: 169








Kp_mero
KPN_01172
834-933
CTGTGCGGCGTCTACTTCCTCGGCGAACAGCGTATCGACTATGAGGGCGC
SEQ ID
R
dn






CAGCTTCGGGGTGGTCACCTGCGATCCGCAGAGTATCGATGTTGAAGCGG
NO: 170








Kp_mero
KPN_01229
 3-102
GAACAAAAGCTTAGCAGGAATACTGGGCGTCACCGTCGCGTTAACCTTAC
SEQ ID
R
dn






TGGCGGGCTGTACCGCTTACGATCGTACCAAAGACCAGTTTACCCAGCCG
NO: 171








Kp_mero
KPN_01529
 69-168
AGCGGTGTACCTGCACCAACGGATTGGTGGACGCATCAAAGCCTTTTTGC
SEQ ID
R
dn






CGATCTATGATTTTTCCTATGAAATGACCACCCTGCTGTCGCCGGACGAG
NO: 172








Kp_mero
KPN_01553
610-709
AGGCAGATCGTCAATATGCTGACAACCGGACTCGCCATCCGTGACGGTCG
SEQ ID
R
dn






GGTGTACAGCAATTTGCGGGTGGACGTGCAGGCTGACAATTCGCACTGGG
NO: 173








Kp_mero
KPN_02241
 71-170
GGGTAGGTTACTCCATTCTGAACCAGCTTCCGCAGCTTAACCTGCCACAA
SEQ ID
R
dn
x





TTCTTTGCGCATGGCGCAATCCTAAGCATCTTCGTTGGCGCAGTGCTCTG
NO: 174








Kp_mero
KPN_02411
1592-1691
CGCGATGAATCGCACGATCATGCGATCTCCGGGCATCGCAAAAAACGGGC
SEQ ID
R
dn






GAAAGTGAAGAGCACCAGCTCGCTTGAGACTATCGAGGGGGTGGGGCCGA
NO: 175








Kp_mero
KPN_02412
177-276
GTGCCGGGCTAATTCCGCAGATGTCGTCCTGATGGACATGAACATGCCTG
SEQ ID
R
dn






GGATCGGTGGTCTTGAAGCGACGCGCAAAATCGCGCGCTCCGTGGCGGGC
NO: 176








Kp_mero
KPN_02563
150-249
TCGCCTGCCGCACAAGCTGCTGTGCTACGTCACCTTCTCCATTTTCTGCA
SEQ ID
R
dn






TTATGGGGACCTATTTCGGTCTGCATATCGAAGACTCCATCGCCAACACC
NO: 177








Kp_mero
KPN_02725
174-273
GTTAAGCGAAAAAGCCCGCAATGTCGAATCTGAGCCGTGCCAAATTAACC
SEQ ID
R
dn






CAACCTTCACTGACGTTGACGGCGGTGTGCAGCTGGATATCGATTTTGTT
NO: 178








Kp_mero
KPN_02907
1176-1275
CGCGCGGTAAATATGTCACCGTGCTGACCAACTGGTGCGGCGAATTTTCC
SEQ ID
R
dn






TCGCAGGAAGCGCGACGTTTATTCAGCGATGCCGGCCTCCCTACCTACCG
NO: 179








Kp_mero
KPN_02919
100-199
GTCGCAGACCGTCTCGCCAAACTGGATAAGTGGCAAACTCATTTAATCAA
SEQ ID
R
dn






CCCGCACATCATTCTGTCTAAGGAGCCGCAGGGTTTTATCGCTGATGCAA
NO: 180








Kp_mero
KPN_03396
 15-114
GCAGCTCAAAATACTGTCGTTCCTGCAGTTCTGCCTTTGGGGGAGCTGGC
SEQ ID
R
dn






TCACCACGCTTGGCTCGTACATGTTTGTCACGCTGAAGTTTGACGGCGCG
NO: 181








Kp_mero
KPN_04155
512-611
GATCCCGACGCCGGTATGGATCATGGCGATTGTCTTCCTGGCGGCCTGGT
SEQ ID
R
dn






ACATGCTGCACCATACTCGCCTGGGCCGTTATATTTATGCCCTGGGCGGT
NO: 182








Kp_mero
KPN_04160
539-638
TCATTCGGTCTACCACACCTACTTCACGTCGATTACGCAAAATGAAGTGG
SEQ ID
R
dn






TGAAGCTCGATCTCCACCAGGCGATTGTCGATGCCATTCTTAACAGTGAT
NO: 183








Kp_mero
KPN_04423
109-208
ATTAACGGCGACAAAGGCTACAACGGCCTCGCTGAAGTGGGTAAAAAGTT
SEQ ID
R
dn






TGAAAAAGACACCGGCATTAAAGTTTCCGTAGAACACCCGGACAAGCTGG
NO: 184








Kp_mero
KPN_04425
402-501
TCATGACGTTCACATGATCGACTTCTACTACTGGGATATCTCCGGCCCGG
SEQ ID
R
dn






GTGCAGGTCTGGAAAACGTTGACCTTGGCTTCGGTAAGCTCTCTCTGGCC
NO: 185








Kp_mero
KPN_04553
452-551
CGCTTTGACGAACATTTCGTCCTTGACCTGCTGGTCGATGACGGGCAGGC
SEQ ID
R
dn






CCGCGGCCTGGTGGCGATGAATATGATGGAAGGCACCCTGGTGCAGATCC
NO: 186








Kp_mero
KPN_04582
56-155
GCGCCCTGCAGGGAACGCCGGAAGCCCCGCCGCCCGCCACCGACCATCCG
SEQ ID
R
dn






CAGGAGATCCAGCGCTACCAGACGGCTGGCCTGCAGAAAATGGCCACGGT
NO: 187








Kp_mero
KPN_04672
183-282
TTTTGCCAACGCCTTCGGCTTCAGCGGCTTTAACGAAATGAAACAGATGT
SEQ ID
R
dn






TCAAGCAACATTTGATGGAAGAGACCGCCAACTATACCGAGCGCGCCCGT
NO: 188








Kp_mero
KPN_04814
230-329
CGCAAAAATGTCGATCGCGGCATTAATATGCATGTGGTGACGGAAGTGCA
SEQ ID
R
dn






GCACATTGTGATCCTCGCCGAGCATAAGCTGCTGGACTATCGCGACGTCG
NO: 189








Kp_mero
KPN_00016
501-600
TGAAGATTTTCCTGATGGCGCTGGCGATTATTGATGACCTCGGGGCTATC
SEQ ID
R
up






GTGATTATCGCGCTGTTTTATACCCACGACCTGTCCATGCTCTCGCTGGG
NO: 190








Kp_mero
KPN_00017
403-502
TGGAGCAGCTGAGCCAGCATAAGCTCGACATGATTATCTCTGACTGCCCG
SEQ ID
R
up






ATCGACTCGACGCAGCAGGAAGGGCTATTTTCGGTGAAGATCGGCGAGTG
NO: 191








Kp_mero
KPN_00043
139-238
GCCGCCGAGCAGGCGGCGCTGGCCCGTGCCGATCTGGTTATCTGGCAGCA
SEQ ID
R
up






TCCTATGCAGTGGTATAGCGTACCGCCGCTGCTCAAGCTGTGGATGGACA
NO: 192








Kp_mero
KPN_00078
682-781
AAAGCGGGCCTGGTCGCGCCGGACGAAACCACCTTCAATTACGTACGCGG
SEQ ID
R
up






CCGTCTGCATGCGCCGAAAGGCAAAGATTTTGACGATGCCGTAGCGTACT
NO: 193








Kp_mero
KPN_00164
208-307
GCTGTGGCTGCTGGTCAAGCTGGGGATTGTCTTCGCGGTGCTGATTGCCG
SEQ ID
R
up






CCTATGGCGTCTACCTCGACCAGAAAATCCGCAGCCGCATTGACGGTAAA
NO: 194








Kp_mero
KPN_00176
597-696
GCAACCCGTTCGGTCTGGGCGAAACCGTGACCTCCGGGATTGTCTCCGCG
SEQ ID
R
up






CTGGGCCGTAGCGGCCTCAACGTGGAAAACTACGAAAACTTTATCCAGAC
NO: 195








Kp_mero
KPN_00200
 1-100
ATGCTGGGTTTGAAACGGGTTCACCATATTGCCATCATTGCGACCGACTA
SEQ ID
R
up






CGCCCGCAGTAAAGCGTTCTATTGCGATATTCTGGGGTTTACGCTGCAAA
NO: 196








Kp_mero
KPN_00320
351-450
CATTCCGCCGTTTCTGGTCCATACCGCGCTGAAGATCACCTCGCCAAACG
SEQ ID
R
up






GTAAAAGCTATAGCGACCGTCTGGACAATGTGAAGACGGAAAAGCAGTTG
NO: 197








Kp_mero
KPN_00331
478-577
GCGTGGTGCTGGGCAATATGCTGACCAATATGTTCAGCGGCTCGCACCCG
SEQ ID
R
up






CAGGAGATAGTCAATATCATCGAAGAGAAGCCGCAGCCTGATGCCGCCTC
NO: 198








Kp_mero
KPN_00341
205-304
CGCGGCAGTTGGGAGCCGCTGCTGTATGGTCTGCACCAGATGCAGATGCG
SEQ ID
R
up






TAATAAAAAGCGTCGGCGCGAGCTGGGAAGCCTGATTAAACGCTTTCGCA
NO: 199








Kp_mero
KPN_00560
 917-1016
GTGCTGAAGCCGGACCACACCGCCGGGCAGCGTCGTCTGACCCTCGCGGG
SEQ ID
R
up






GCAGCAGGGGCAGCAGTTTGCGGTCGAGAAAGGGCTGCAGGCGGGCGAGC
NO: 200








Kp_mero
KPN_00833
134-233
AACCACTTTAGATGGTCTGGAAGCAAAACTGGCTGCTAAAGCCGAAGCCG
SEQ ID
R
up
x





CTGGCGCGACCGGCTACAGCATTACTTCCGCTAACACCAACAACAAACTG
NO: 201








Kp_mero
KPN_01006
184-283
CTGATGTTCCTGACCTACAAAACGGCGAATAAACCCACCGGGATTATTTC
SEQ ID
R
up






CGCCTTCGCCTTCACCGGGTTCCTCGGCTATATCCTTGGGCCGATGCTGA
NO: 202








Kp_mero
KPN_01107
100-199
GCTGTCGCTGGTCTCAACGTGTTGGATCGCGGCCCGCAGTATGCGCAAGT
SEQ ID
R
up
x





GGTCTCCAGTACACCGATTAAAGAAACCGTGAAAACGCCGCGTCAGGAAT
NO: 203








Kp_mero
KPN_01111
722-821
GATCAAGGCGTCGGTTGAGCCGGATGGCCGCCGTCTGGTTGAGGTCCATC
SEQ ID
R
up






AGCCGCTGTCTGAGCATATCGATGACGACCCGCAGACCCTGCCCATTACG
NO: 204








Kp_mero
KPN_01183
 88-187
GCTCAGGACTATGTTGAGAAGCGAATCGACCTCAACGAGCTGCTGGTGCA
SEQ ID
R
up






GCATCCCAGCGCGACCTATTTTGTCAAAGCCGCTGGCGACAGCATGATCG
NO: 205








Kp_mero
KPN_01184
273-372
CCCGCGCTGCGAAATTTACAGTATCGATGAGGCCTTTTGCGATGTCAGCG
SEQ ID
R
up






GTGTGCGTCATTGCAGAGATCTGACCGATTTTGGCCGCGAAATCCGCGCC
NO: 206








Kp_mero
KPN_01226
253-352
GCGCGATGCACGATCTGATCGCCAGCGACACCTTCGATAAGGCGAAGGCG
SEQ ID
R
up
x





GAAGCGCAGATCGATAAGATGGAAGCGCAGCATAAAGCGATGGCGCTGTC
NO: 207








Kp_mero
KPN_01266
 19-118
CGCGAACGCCAGCAGCGGCTGAAAGATAAAGTTGACGCCCGGGTGGCGGC
SEQ ID
R
up






GGCCCAGGACGAGCGCGGCATTGTGATGGTCTTTACCGGCAACGGCAAAG
NO: 208








Kp_mero
KPN_01448
 49-148
TCCGGCTGTGTCTATAACAGTAAGGTGTCCACCGGTGCGGAACAGCTGCA
SEQ ID
R
up






GCATCATCGCTTCGTGCTGACCAGCGTCAACGGCCAGGCGGTCAACGCCA
NO: 209








Kp_mero
KPN_01624
130-229
CAACGTATGTTTAAGAAAGAGACCGGCCATTCCCTCGGCCAGTACATCCG
SEQ ID
R
up






CAGCCGCAAGCTGACGGAGATTGCGCAGAAGCTCAAGCAGAGCAATGAGC
NO: 210








Kp_mero
KPN_01625
 65-164
ACCAGAAAAAAGATCGCCTGCTCAATGACTACCTCTCACCTATGGATATT
SEQ ID
R
up






ACCGCGACCCAGTTTCGCGTGCTCTGCTCCATTCGTTGCGAAGTATGTAT
NO: 211








Kp_mero
KPN_02024
277-376
CACGGGCGCGCTCCCTTGCCGTGAACTACGGTCTGGTCGGCTATCAGGCG
SEQ ID
R
up






CTGCCGCCGGGTATCGCCAAAAATGTCGCCCGCGGCAAACCGCTCCCTCC
NO: 212








Kp_mero
KPN_02342
 67-166
TATGGGGTGTTATTCCACAGTGAGGAAAACGTCGGCGGTCTGGGTCTTAA
SEQ ID
R
up
x





GTGCCAATACCTCACCGCCCGCGGAGTCAGCACCGCACTTTATGTTCATT
NO: 213








Kp_mero
KPN_02345
 4-103
ATGCGAATCGCGCTTTTCCTGCTGACGAACCTGGCAGTGATGGTCGTGTT
SEQ ID
R
up
x





CGGGCTGGTGTTAAGCCTCACGGGGATCCAATCCAGCAGCATGACCGGTC
NO: 214








Kp_mero
KPN_02394
556-655
CGGATTATTACTAAACAAAACCACCTTTGGCCGTAATACGCTGGCTATTG
SEQ ID
R
up






GCGGCAATGAAGAGGCGGCGCGCCTGGCCGGCGTCCCGGTGGTGCGCACC
NO: 215








Kp_mero
KPN_02742
 97-196
CAAATAGGCGATCGTGACAATTACGGTAACTACTGGGACGGTGGCAGCTG
SEQ ID
R
up
x





GCGCGACCGTGATTACTGGCGTCGTCACTATGAATGGCGTGATAACCGTT
NO: 216








Kp_mero
KPN_02800
 75-174
GCAGCGCTTCAACGACTGGCTGGTCACCTGTAACAACCAAAATTTCTGCG
SEQ ID
R
up






TCACCCGTAACGTGGGGCTGCATCATGGCCTGGTGATGACCCTCAGCCGC
NO: 217








Kp_mero
KPN_02938
121-220
GCGCTGGGGCTGTGCCTCGGCGGCAGAGCGGAAGCCGACATGGTGCGTCG
SEQ ID
R
up






CGGCGCCACCCGTGCCGACCTGTGCGCGCGCTTCGCGCTGAAAGATACCC
NO: 218








Kp_mero
KPN_03000
 89-188
GCCGCGGCGATAATTATGTTTATGTGAACCGCGAAGCGCGCATGGGGCGA
SEQ ID
R
up






ACAGCGTTAGTTATTCATCCN
NO: 219








Kp_mero
KPN_03270
 1-100
ATGCAACAGACCCCACATCAGCGCAAGACGCTCACCGAACGCGTTATCCA
SEQ ID
R
up






CGCCATCACCTTCGAAGGACTGGCGACGCTGATCCTCGCCCCTACCGCCG
NO: 220








Kp_mero
KPN_03358
539-638
GGGCGAAAAACTGGTGAACTCGCAGTTCTCCCAGCGTCAGGAATCGGAAG
SEQ ID
R
up
x





CGGATGACTACTCTTACGACCTGCTGCGTAAGCGCGGTATCAATCCGTCG
NO: 221








Kp_mero
KPN_03458
362-461
CCGCGGGCCAGTTGCTGAACATTTATTACGAAACCGCCGATAACTGGCTG
SEQ ID
R
up






CGTCGTCACGATATGGGGCTGCGCATCCGCGGCGATCAGGGGCGTTATGA
NO: 222








Kp_mero
KPN_03844
749-848
CATGGCGGCGGAAGAAGAAATTCAGTTTTGCCCACTGAGCCAGCTGCTGC
SEQ ID
R
up






CCGCTGACTTTAGCGAGCTGCCCTCAGGCAAAGTGGTTCGTGGTGAACTG
NO: 223








Kp_mero
KPN_03846
100-199
TGCGCCACCCTGGGGCGGCAATATGAAATTCTGTTGATCGACGATGGCAG
SEQ ID
R
up






CAGCGACGATTCCGCGCGCATGCTCACCGAAGCCGCCGAGGCGGAAGGCA
NO: 224








Kp_mero
KPN_03847
229-328
GAAGTCATTACGCCGTCCCAGACCTGGGTCTCCACTCTCAATATGATCTG
SEQ ID
R
up






CCTGCTGGGCGCCACGCCGGTGATGATCGATGTCGATAACGACAATCTGA
NO: 225








Kp_mero
KPN_03856
895-994
TAAGCGGATCGGCATTGACCCGGCGGTAGTTTCCGCGCCGTTTATCGCCA
SEQ ID
R
up






CGCTGATTGATGGCACCGGGCTAATTATCTATTTCAAAATCGCCCAGTAT
NO: 226








Kp_mero
KPN_03903
141-240
GACCAGCCAGTTCCTGCTGGCCTGTAAATACGATGCGCCAGCGACGATCG
SEQ ID
R
up






CAGCCATGCTGGATAACGGCATTGATGTGGATGGTCAGGATAAAACCGGC
NO: 227








Kp_mero
KPN_03934
257-356
TGCCTTATATTACCAAGCAGAATCAGGCGATTACTGCGGATCGTAACTGG
SEQ ID
R
up
x





CTTATTTCCAAGCAGTACGATGCTCGCTGGTCGCCGACTGAGAAGGCGCG
NO: 228








Kp_mero
KPN_03993
558-657
TGGCGGCGGTCTATAACGTCCCGCTGGCCGGGGCGTTGTTCAGCCTTGAG
SEQ ID
R
up






GTCATGCTGCTGTCGTTTAGCTGGGAAAAAACGCTGGCGGCGATAATGAC
NO: 229








Kp_mero
KPN_04036
1361-1460
CTCGACTACCTCGACGCCTTCGGCGCGGCGATCCACGCGGCGTTTCTGAT
SEQ ID
R
up






GGCGGCCGGCATTATGGCGGTGGCGTTTGTCCTCTCATGGCTGTTAAAGG
NO: 230








Kp_mero
KPN_04037
309-408
GATGATGGTCGAGACGCTGGGGCATATGGCGGAGAAAAACGCCTGGTTCG
SEQ ID
R
up






CGCCGCTGTGGATGCAGGAGATCATCGGCGAGATGCCGATTCTGCGCCAG
NO: 231








Kp_mero
KPN_04077
 10-109
ACCGTATTCTGCATTTTGCTGTTCGCCGCCCTGCTGCACGCCAGCTGGAA
SEQ ID
R
up






CGCTATCGTCAAAGCCAGCGGCGATAAAATGTACGCGGCGATCGGCGTCA
NO: 232








Kp_mero
KPN_04129
387-486
CGCTGGGCCGCCACACGGTGCAGATGCTGCATGACGTACTGGATGCGTTT
SEQ ID
R
up






GCGCGTATGGATCTCGACGAAGCGGTACGTATCTATCGCGAAGATAAGAA
NO: 233





Kp_mero
KPN_04131
431-530
GGTGGCGCAGATGCAGCACTTCTCGGGCTGGGCGGGCGTTATCGCGCTGG
SEQ ID
R
up









CGCTGCTGCAGGTGCCTATCGTTATTCGTACCACCGAAAACATGCTGAAG
NO: 234





Kp_mero
KPN_04132
 48-147
CATGATTTTCAGTGCGCTGGTAAAACTGGCTGCGCTGATTGTGCTATTGA
SEQ ID
R
up









TGCTGGGCGGCATCATCGTTTCCCTGATCATCTCTTCCTGGCCGAGCATT
NO: 235





Kp_mero
KPN_04133
160-259
AATAAAGTGAACTACCAGGGTATTGGTTCCTCTGGTGGCGTTAAGCAGAT
SEQ ID
R
up






TATTGCCAACACCGTTGATTTCGGTGCTTCTGATGCTCCGCTGGCTGATG
NO: 236








Kp_mero
KPN_04244
253-352
CCCGGCGGCAAGAGCGTGGAGGAGTATCGCGCCTATTATAAGAAGGGCTA
SEQ ID
R
up









CGCCACCGATGTGGAGCAGATTGGCATTGAAGATGACGTGATTGAGTTCC
NO: 237








Kp_cip
KPHS_08300
141-240
GCAATTATTGCCGCAGGATGCACGCTCCCATGCGGTGGTCATTACTCGTG
SEQ ID





GeneID =
(KPN_0011

AAGATGGCGTCTTCTGTGGCAAACGCTGGGTGGAAGAGGTCTTTATTCAG
NO: 238
C

x


NC_
1 (nadC))








016845












Kp_cip
KPHS_08670
 82-181
CCGACGATGGGCAACCTGCATGATGGTCATATGAAGCTGGTTGATGAAGC
SEQ ID
C

x



(KPN_0014

CAAAGCCAGTGCGGACGTGGTGGTGGTCAGTATTTTCGTCAATCCGATGC
NO: 239






0(panC))











Kp_cip
KPHS_15300
347-446
CTGCCCGAGCGCACCCAGGAAACGCTGGAACACGCCCTGCTGAATATCAT
SEQ ID
C

x



(KPN_0069

CGCCACCTTTATCGAAAACTGTCAGCGCAAAATTCGCGAGCTGATCGCTA
NO: 240






7(nagC))











Kp_cip
KPHS_20110
 20-119
TGGATTATCAATTAACGCTTAACTGGCCCGACTTTATCGAACGCTACTGG
SEQ ID
C

x



(KPN_0113

CAAAAACGGCCGGTGGTATTGAAGCGCGGCTTCGCCAATTTTATCGACCC
NO: 241






4 (ycfD))











Kp_cip
KPHS_29220
 60-159
TGTTGCCGCCGTATGCGGAACGTCAGGAGTCGCTTCCTTATTCAGTCAGG
SEQ ID
C

x



(KPN_0194

CCGCTTTTGCCGAAGACGCGGGCATTGCCGACGGGCAAACGCGTCGTTTT
NO: 242






4 (ydcG))











Kp_cip
KPHS_33420
 80-179
TCAATCAGCGGCAGGCGGCGGTGCTGGTGCCGATCGTGCGCCGGCCGCAG
SEQ ID
C

x



(KPN_0232

CCCGGCCTGCTGCTGACCCAGCGTTCGCCGCTGCTGCGCAAGCACGCCGG
NO: 243






9(yeaB))











Kp_cip
KPHS_34080
100-199
GCGCGACTGGGACTGGAGATCGCCGGGCTCGACGCCGACCATATCTCCCT
SEQ ID
C

x



(KPN_0238

GCGCTGTCATCAGAATACCACTGCGGAACGCTGGCGCCGCGGTCTGGAGC
NO: 244






7(yecM))











Kp_cip
KPHS_37030
2443-2542
AGATTGTATACTGAAATCGAAGCGGGCGATTTTGCTGCTCTGGCGCAAAC
SEQ ID
C

x



(KPN_0263

CGCCCACCGCCTCAAAGGGGCATTTGCTATGCTTAATCTGATACCCGGCA
NO: 245






7 (yojN))











Kp_cip
KPHS_42920
350-449
GAACGGCAGATGGACGAGGCGGCGGTATTCACCATCCACGGCTTTTGCCA
SEQ ID
C

x



(KPN_0322

ACGGATGCTGAGCCTTAACGCCTTCGAGTCGGGCATGCTGTTCGAGCAAC
NO: 246






9 (recB))











Kp_cip
KPHS_44560
143-242
TCGGACCGCTGCGCCGGATTATCCCGGCAATGGGGCCGATTGACAGCGCC
SEQ ID
C

x



(KPN_0338

TCGCTGCTGGTGGCATTTATTCTCTGCGTCATCAAAGCGATCGTGCTGTT
NO: 247






6 (yggT))











Kp_cip
KPHS_47740
617-716
GGCGAGCTGATGGGGATTAACACCCTCTCCTTTGACAAGAGCAATGACGG
SEQ ID
C

x



(KPN_0363

CGAAACGCCGGAAGGCATTGGCTTTGCGATCCCGTTCCAGTTAGCGACCA
NO: 248






4(degS))











Kp_cip
KPHS_01170
 77-176
GAATGACCGATGCCGATTTCGGCAAACCGATTATCGCCGTCGTTAACTCC
SEQ ID
R
dn






TTTACCCAGTTTGTCCCCGGGCACGTGCACCTGCGCGATCTCGGCAAACT
NO: 249








Kp_cip
KPHS_0138
 2-101
TGATCCCATTTAACGCGCCGCCGGTGGTTGGAACCGAGCTTGATTACATG
SEQ ID
R
dn




0

CAGTCTGCGATGAACAGCGGCAAGCTGTGCGGCGACGGCGGCTTTACGCG
NO: 250








Kp_cip
KPHS_0141
1140-1239
CTGCACAGTTTCTGTTTCGGCGCTATCTTCAACATGATAGTGCTGGCGCG
SEQ ID
R
dn




0

CGAGGGGCTGGATTCGTTCGGCTCCCGCGTGGTGTTTTTCCTCGTGATCT
NO: 251








Kp_cip
KPHS_0142
475-574
CGACAGCGGGGCGAAAATCGTCACCGTCGCGATGGGGTCGCCGCGCCAGG
SEQ ID
R
dn




0

AGATCTTTATGCGCGACTGCCGGCGCCTGTATCCGCACGCGCTGTATATG
NO: 252








Kp_cip
KPHS_0193
151-250
GAAGAGGTTGCCGAGATCTATTTGCCGCTGTCGCGTTTGCTCAACTTCTA
SEQ ID
R
dn




0

TATCAGTTCTAACCTGCGTCGCCAGGCTGTTCTCGAACAATTTCTTGGCA
NO: 253








Kp_cip
KPHS_0712
1767-1866
CAAAAAGGCCAATACCTCTTCGCTGGATTACTATCACCAGCTGCGCCATG
SEQ ID
R
dn




0

CGGCCAGCAGCTCGCGGCGTAAGTTCCTCTATGACACTAACGTTGGCGCG
NO: 254








Kp_cip
KPHS_0756
587-686
CCTTGGGCGCTATCTGACCCGCCCGCTGCTGCGCTTTGTCGCCCGTTCCG
SEQ ID
R
dn




0

GCCTGCGCGAAGTGTTCAGCGCCGTGGCCCTGTTCCTGGTCTTCGGCTTT
NO: 255








Kp_cip
KPHS_1326
412-511
TGGGCAACCAGGCCGACACCTATGTGGAAATGAACCTCGAACATAAACAG
SEQ ID
R
dn




0

ACCCTGGACAACGGGGCGACCACCCGTTTCAAAGTGATGGTGGCCGACGG
NO: 256








Kp_cip
KPHS_1590
291-390
GAGATCGTCATGCGGGTCTATTTTGAAAAACCGCGCACCACCGTCGGCTG
SEQ ID
R
dn




0

GAAAGGGCTCATCAACGATCCCCATATGGATAACAGCTTCCGCATCAACG
NO: 257








Kp_cip
KPHS_1832
1319-1418
GAGTGGCTGGAAACCTTCCAGGCGAAAGAGCAGGAAGCGACGGAGAAAAT
SEQ ID
R
dn




0

GCTGTCGCTGGAACAGAAAATGAGCGTGGCGCAAACCGCGCACAGCCAGT
NO: 258








Kp_cip
KPHS_1837
563-662
GCGACGGCTTCAGCACCGCAGCCACCTACGCGTTCGACAACGGTATCGCA
SEQ ID
R
dn




0

CTGTCTGCAGGCTACTCCAGCTCTAACCGTAGCGTCGATCAGAAAGCTGA
NO: 259








Kp_cip
KPHS_18380
 39-138
CCTGCTGGTAGCCGGTGCAGCCAACGCTGCAGAAATCTATAACAAAAACG
SEQ ID
R
dn
x



(KPN_0095

GCAACAAACTGGACTTCTATGGAAAAATGGTCGGCGAGCACGTCTGGACC
NO: 260






6 (ompF))











Kp_cip
KPHS_1860
 972-1071
GGAGTTCCGCGGTATCCGTCTGGGCACCGTCGGCAAAGTGCCGTTCTTTA
SEQ ID
R
dn




0

TTCCGGGGCTGAAGCAGCGTTTGAACGATGACTATCGTATTCCAGTGGAA
NO: 261








Kp_cip
KPHS_1978
857-956
CCGCGCTGACCTCGTTCCTGACCGGTATCACCGAGCCGATCGAGTTCTCG
SEQ ID
R
dn




0

TTCATGTTCGTGGCGCCGATCCTGTACGTTATCCATGCCATTCTGGCGGG
NO: 262








Kp_cip
KPHS_2951
1162-1261
GCTGCAGTCTATCGGTGAACTGATGATTTCCGGCCTCGGCCTGGCGATGG
SEQ ID
R
dn




0

TCGCTCAGCTGGTTCCTCAGCGTCTGATGGGCTTCATCATGGGCAGCTGG
NO: 263








Kp_cip
KPHS_3198
181-280
TACCGTGAAATGCTGATTGCTGACGGTATTGATCCGAATGAACTGCTGAG
SEQ ID
R
dn




0

CACCATGGCTGCCGTTAAAGCCGGTACCAAAACCAAGCGTGCTGCACGTC
NO: 264








Kp_cip
KPHS_3712
220-319
ATCGCCTATGGATTTTCGAAATTCATCATGGGATCGGTCTCTGACCGCTC
SEQ ID
R
dn




0

GAATCCGCGCATTTTCCTGCCGGCTGGCTTGATCCTCGCCGCGCTGGTGA
NO: 265








Kp_cip
KPHS_3733
234-333
TGGTGCTGCTGGCGAGCCTCGCGACCTGTACTTTCGCCTACCCGTGGCTT
SEQ ID
R
dn




0

GAGGGTTACAAGGACAACAAAGAAGAGTTCTACCTGCTGGTGCTGATCGC
NO: 266








Kp_cip
KPHS_4940
898-997
GCTGGAGGAGATCGAACGCCAGGGGCTGTTCCTGCAGCGGATGGATGATT
SEQ ID
R
dn




0

CCGGCGAATGGTTCCGCTATCACCCGCTGTTTGGCAGCTTCCTGCGCCAG
NO: 267








Kp_cip
KPHS_0266
110-209
TCCGTTCCCCAAACGCGGCGGAAGAACACCTGAAAGCGCTGGCGCGTAAA
SEQ ID
R
up




0

GGCGCGATCGAGATCGTCTCCGGCGCTTCTCGCGGTATTCGCCTGCTGAC
NO: 268








Kp_cip
KPHS_0267
624-723
CGCGGAGTACGCCACCCTCATTATTGGCCTGCTGATGGCGAAGCGGGTGC
SEQ ID
R
up




0

TGACGCTGCGCGGCGTGTCGCTGGCGATGCTGAAAAACGCCTGGCGCGGG
NO: 269








Kp_cip
KPHS_02820
2299-2398
CTATAACCGCGAAACGCTGGAGATTAAGTACAAGGGTAAGACCATCCACG
SEQ ID
R
up
x



(KPN_0444

AAGTGCTGGATATGACCATTGAAGAGGCGCGTGAATTCTTTGATGCCGTA
NO: 270






5 (uvrA))











Kp_cip
KPHS_02830
114-213
CGAATCCTGGCGTGACAAGCAGACCGGCGAAATGAAAGAGCAGACCGAGT
SEQ ID
R
up
x



(KPN_0444

GGCACCGCGTTGTGCTGTTCGGCAAACTGGCGGAAGTCGCTGGTGAGTAT
NO: 271






6 (ssb))











Kp_cip
KPHS_0343
325-424
TGTCGGTGCTGCGCCCCGCCAGCGCCCATGTCGCCGAGGCCTTTGGCATC
SEQ ID
R
up




0

AATGAGGGCGAGAACGTGATCCACCTGCGTACCCTGCGCCGGGTCAATGG
NO: 272








Kp_cip
KPHS_0344
498-597
ATTGAGATGGCCTGGCAGGAAACCTTCTGGGCCCACGGCTTCGGCAAAGT
SEQ ID
R
up




0

CGTCGACCGCTTTGGCGTCCCCTGGATGATCAACGTGGTCAAACAAGGCT
NO: 273








Kp_cip
KPHS_03450
145-244
AGCGACATTCTGATCGTTAAAGATGCCAATGGCAATTTACTGGCCGATGG
SEQ ID
R
up
x



(KPN_0450

CGACAGCGTTACCGTCGTGAAAGATCTGAAGGTTAAAGGCAGCTCTTCGA
NO: 274






2 (phnA))











Kp_cip
KPHS_0491
1699-1798
ACCGACAAAGGTTACTACACCAACAGCTTCCACCTCGACGTGGAGAAGAA
SEQ ID
R
up




0

GGTCAACCCGTACGACAAGATCGATTTCGAAGCGCCGTACCCGCCGCTGG
NO: 275








Kp_cip
KPHS_0772
2271-2370
CCAGCAGTCGCCGCTCGATTACGATCACTATTTAACAAAGCAGTTGCAGC
SEQ ID
R
up




0

CGGTGGCGGAAGGGATCCTGCCCTTCGTCAACGATGACTTTGCTACAATA
NO: 276








Kp_cip
KPHS_0786
 913-1012
TGTTGAAGCGAACCGGCTCCGTCAACATCAGTCGAAAGTTACCAATAATT
SEQ ID
R
up




0

TCCGGTTTATTGCTGTCCAGCTGTATTATCGCGGCGAATTGGGTAAGCGC
NO: 277








Kp_cip
KPHS_0973
671-770
AGCGCTTCGGTAAATTCGGGCGTATTCTGTGGGAGCGCAGCCACGGGATT
SEQ ID
R
up




0

GATGAGCGGGAAATTCATAACGATCGGCAGCGTAAATCGGTGGGCGTGGA
NO: 278








Kp_cip
KPHS_1017
341-440
CTTGGCGCCCTGTACGACGTGGAAGCCTGGACCGATATGTTCCCGGAATT
SEQ ID
R
up




0

CGGCGGCGATTCCTCTGCCCAGACCGATAACTTTATGACCAAGCGCGCCA
NO: 279








Kp_cip
KPHS_1078
308-407
TCACCAAGCCTTTCTCTCCGAAAGAGCTGGTGGCGCGAATCAAAGCGGTG
SEQ ID
R
up




0

ATGCGCCGTATTTCACCGATGGCGGTGGAAGAGGTGATCGAAATGCAGGG
NO: 280








Kp_cip
KPHS_1632
1399-1498
GAGCACGGCGAGCGCGTGCGCTATCTGCACTCGGATATCGACACCGTCGA
SEQ ID
R
up




0

GCGCATGGAAATCATCCGCGACCTGCGTCTTGGCGAGTTTGACGTGCTGG
NO: 281








Kp_cip
KPHS_1663
125-224
GCAAGGCGCAACCACTTTAGATGGTCTGGAAGCAAAACTGGCTGCTAAAG
SEQ ID
R
up




0

CCGAAGCCGCTGGCGCGACCGGCTACAGCATTACTTCCGCTAACACCAAC
NO: 282








Kp_cip
KPHS_1993
157-256
CAGCTGGCGCAGAAAGCGGATGAGATGGGCGCCACTTCATACCGTATTAC
SEQ ID
R
up




0

TTCGGTAACCGGTCCGAATACCCTTCACGGTACCGCCGTTATCTACAAGT
NO: 283








Kp_cip
KPHS_2063
 80-179
CCAAACGCATGCAGCGCATTTTCCCGGAGGCGGAAGTGCGGGTGAAGCCG
SEQ ID
R
up




0

ATGATGACGCTGCCGGCGATCAACACCGACGCCAGCAAGCATGAAAAAGA
NO: 284








Kp_cip
KPHS_2065
 68-167
AGTGCGGCTTTCCCAGCCCGGCTCAGGACTATGTTGAGAAGCGAATCGAC
SEQ ID
R
up




0

CTCAACGAGCTGCTGGTGCAGCATCCCAGCGCGACCTATTTTGTCAAAGC
NO: 285








Kp_cip
KPHS_2066
276-375
GCGCTGCGAAATTTACAGTATCGATGAGGCCTTTTGCGATGTCAGCGGTG
SEQ ID
R
up




0

TGCGTCATTGCAGAGATCTGACCGATTTTGGCCGCGAAATCCGCGCCACG
NO: 286








Kp_cip
KPHS_2125
277-376
TGCTGGAGGCGCGGTTGATTAAAGAGCAGCAGCCGCTGTTTAACAAGCGG
SEQ ID
R
up




0

CTACGGCGTAACAAGCAGCTCTGCGCCTGGCTACTTGCGGACGACCGGCC
NO: 287








Kp_cip
KPHS_2139
187-286
AGCCCGTGGCGCGGGCCTTTGGCCACCGCGGCTTCACCCACAGCCTGCTG
SEQ ID
R
up




0

GCCGTCTTTGGCGCGCTGACGCTGTTCTATCTGAAAGTGCCTGACAGCTG
NO: 288








Kp_cip
KPHS_2789
610-709
ACCGTCTCCCTCGACGATTTTGACCAGACCGAGCTGGTGATCTCCATCGG
SEQ ID
R
up




0

CCATAATCCGGGCACCAACCACCCGCGGATGATGGGCACCCTGCATGAGC
NO: 289








Kp_cip
KPHS_3113
 5-104
TGCGCTCTATCGCCACCGTTTCGATTTCCGGCACCCTGCCTGAGAAGCTG
SEQ ID
R
up




0

CACGCTATTGCGGCGGCGGGGTATCAGGGGGTGGAAATTTTCGAGAACGA
NO: 290








Kp_cip
KPHS_3163
182-281
TGATCGGCGTTGATATTGTGCTGGCGGTCATCTCCTCGATTATTATCGCC
SEQ ID
R
up




0

ATGATAATGACCTCGACCGGCCTGCCGGAAATGGGCACGATGCTGGCGAA
NO: 291








Kp_cip
KPHS_33810
 4-103
GCGGTTGAAATTAAATATGTGGTGATCCGCGAAGGTGAGGAAAAAATGTC
SEQ ID
R
up
x



(KPN_0236

TTTTGCCAGCAAAAAAGAGGCCGACGCTTACGACAAAATGCTCGATCTGG
NO: 292






3 (yebG))











Kp_cip
KPHS_3414
622-721
TCGTTAATCAACTGCAGGGAATGTCGGTAAAAGTTGGCGCCGGGGAAACT
SEQ ID
R
up




0

CAGGCGCATTGGCGGTTGGCGGATGCCGCCGCTGTAAGGACGTGGTTGCA
NO: 293








Kp_cip
KPHS_37080
2010-2109
AACAACGACGGTTATCTGCAGCTGGTGGGTATCATGCAGAAGTTTATCGA
SEQ ID
R
up
x



(KPN_0264

CCAGTCGATCTCTGCCAACACTAACTACGATCCGACGCGCTTCCCGTCCG
NO: 294






2(nrdA))











Kp_cip
KPHS_37090
805-904
GCTGAACCTGCTGCGCTCCGGCAGCGACGATCCGGAAATGGCGGAAATCG
SEQ ID
R
up
x



(KPN_0264

CCGAAGAGTGCAAGCAGGAGTGCTATGACCTGTTCGTGCTGGCGGCGCAG
NO: 295






3(nrdB))











Kp_cip
KPHS_3977
256-355
CGTTTTGTGAAAGTCAACACCGAAGCGGAACGTGAGCTTAGCGCCCGGTT
SEQ ID
R
up




0

TCGTATCCGCAGCATCCCGACCATTATGATGTTCAAAAATGGCGAAGTGA
NO: 296








Kp_cip
KPHS_4056
121-220
GCGCTGGGGCTGTGCCTCGGCGGCAGAGCGGAAGCCGACATGGTGCGTCG
SEQ ID
R
up




0

CGGCGCCACCCGTGCCGACCTGTGCGCGCGCTTCGCGCTGAAAGATACCC
NO: 297








Kp_cip
KPHS_4058
 62-161
CCACTCTGGAACGAGTGGTTTACCGTCCTGACATCAACCAGGGTAACTAT
SEQ ID
R
up




0

CTGGCACCAAACGATGTAGCAAAAATTCGTGTCGGTATGACGCAACAGCA
NO: 298








Kp_cip
KPHS_41010
380-479
ACAGCGTAAATACGGCGAACCGTTACCTTCCGCCTTTACTGAAAAAGTGA
SEQ ID
R
up
x



(KPN_0303

AAGTTCAGCGATTCCTGCTTTACCGCGGCTACCTGATGGAAGATATCCAG
NO: 299






0 (recX))











Kp_cip
KPHS_41020
539-638
CGGGTAACCTGAAGCAGTCCAACACGCTGCTGATCTTTATCAACCAGATC
SEQ ID
R
up
x



(KPN_0303

CGTATGAAAATTGGCGTGATGTTCGGTAACCCGGAAACCACTACCGGTGG
NO: 300






1 (recA))











Kp_cip
KPHS_5223
272-371
TGCTGCAGGCGGCGGAAGCGCTCAATTACCGGCCAAACATGATAGCCCAG
SEQ ID
R
up




0

TCGTTGCTCAGCCAGTCCACCGGCTGCATCGGCGTCATCTGCGCCCAGGA
NO: 301








Kp_cip
KPHS_5248
 80-179
AAAGCCTTGAACAGCATTTCAATATGCTGCGCCGCCTGGCGGAAAACTGG
SEQ ID
R
up




0

CAGAGCGGCAAAAACCGCTTTAACGCGCCGGGCGAAACGCTGCTGGGCGC
NO: 302








Kp_cip
KPHS_5249
 10-109
ACCGTATTCTGCATTTTGCTGTTCGCCGCCCTGCTGCACGCCAGCTGGAA
SEQ ID
R
up




0

CGCTATCGTCAAAGCCAGCGGCGATAAAATGTACGCGGCGATCGGCGTCA
NO: 303








Kp_cip
KPHS_53000
160-259
AATAAAGTGAACTACCAGGGTATTGGTTCCTCTGGTGGCGTTAAGCAGAT
SEQ ID
R
up
x



(KPN_0413

TATTGCCAACACCGTTGATTTCGGTGCTTCTGATGCTCCGCTGGCTGATG
NO: 304






3 (pstS))











Kp_gent
KP1_0027
189-288
TTGCCATAAGCTGTGTTATTTCTGCGGCTGCAATAAGATAGTCACCCGCC
SEQ ID
C

x


GeneID =
(KPN_0417

AGCAGCATAAGGCCGATCAATATCTCGATGTCCTTGAACAGGAGATCATC
NO: 305





NC_01273
5 (hemN))








1












Kp_gent
KP1_0117
397-496
CGGAACTCGCCGACTATTTAGAACTCGAAAACCATATGCCGCGCGCCTTT
SEQ ID
C

x



(KPN_0425

ACCGAAGCGCAGGCTGAAGCTATGGTCACCATCGTTTTTAGCGCTGGCGC
NO: 306






2(yijC))











Kp_gent
KP1_0163
262-361
AAGATGTGCCGGTGGAATTCCCGGAGGGCCTGGGGCTGGTGACTATCTGC
SEQ ID
C







GAGCGCGACGATCCGCGCGACGCGTTTGTCTCCAATCGCTATGCCTCGAT
NO: 307








Kp_gent
KP1_0191
346-445
AACGTTGAGTATGTTCAGGCCAACGCGGAAGCCCTGCCTTTTGCTGATAA
SEQ ID
C

x



(KPN_0432

TACCTTTGACTGCATCACCATCTCTTTCGGTCTGCGTAACGTGACCGACA
NO: 308






9 (ubiE))











Kp_gent
KP1_0437
161-260
AGGGTAAACGTCTGGTGGCGCTGGATATCAAGCAGACCGGCGTATTGCAG
SEQ ID
C







GGACTACCGCTGCAGTTTAGCGGCAGCAACCTGGTGAAGAGTATTCGCGC
NO: 309








Kp_gent
KP1_0490
1254-1353
GGGGCTCGGACATCAACTTCATCGTGATGCAGGCCCAGGACGTCTGGATC
SEQ ID
C

x



(KPN_0461

CGTACCCTCTATGACCGCCACCGCTTTGTGGTGCGCGGCAACCTTGGCTG
NO: 310






6 (ytfM))











Kp_gent
KP1_0974
370-469
TACAGGCAGATGACCGACAAAACTGCTATATTGAAGTGAAATCGGTTACG
SEQ ID
C

x



(KPN_0014

TTGGCGGAGAAAGAATACGGTTATTTTCCCGATGCGGTGACCACGCGCGG
NO: 311






6 (sfsA))











Kp_gent
KP1_1702
1066-1165
GCACATTGCCAAACAAGATCTGGAAACGGGTGGTGTACAGGTTCTGTCAT
SEQ ID
C

x



(KPN_0074

CAACGTTTTTAGACGAAACGCCAAGTCTGGCACCTAACGGCACTATGGTA
NO: 312






4 (tolB))











Kp_gent
KP1_1918
641-740
CTGTGGTATGGCGAGAAAATCCATGTCGCCGTGGCGGCCGAAGTGCCCGG
SEQ ID
C







CACCGGCGTGGATACCCCGGAAGATCTGGAGCGCGTCCGCGCTGAGCTGC
NO: 313








Kp_gent
KP1_4363
829-928
AGATCACCCAGAATCTGGCCGGCGGCACCGACAACACCCTGGCCTCGGTA
SEQ ID
C







CTCGACTGTACGGTGACGCCGATGGGTAGCCGGATGCTCAAGCGCTGGCT
NO: 314








Kp_gent
KP1_4377
317-416
CGAGGGCTGCCAGGTACTGGAATATGCTCGCCATAAGCGTAAGCTGCGTT
SEQ ID
C

x



(KPN_0310

TAGGCGCGCTGAAAGGCAACCAGTTTACCGTGATCCTGCGCGAGATTAGC
NO: 315






7 (ygbO))











Kp_gent
KP1_4445
512-611
TCGTTGATGGATAACTTCATCATGGACGTGCAGGGCAGCGGCTATATCGA
SEQ ID
C

x



(KPN_0316

CTTTGGCGATGGTTCGCCGCTCAACTTCTTTAGCTATGCCGGGAAAAACG
NO: 316






4 (mltA))











Kp_gent
KP1_0041
225-324
GTCATGGACGGTCATGCGCTTCTCGGAGGTGGAACAAAACGACAAGCTGG
SEQ ID
R
dn






AATGGCTCATCCGCAAGGATGGCTGCATGCACTGCGCGGACCCGGGCTGC
NO: 317








Kp_gent
KP1_0276
987-1086
CGACGTGGTGTTGGTAGAAGAGGGAGCCACATTCGCTATCGGTTTGCCGC
SEQ ID
R
dn






CAGAACGTTGCCATTTATTCCGTGAGGATGGCACCGCTTGTCGTCGGCTG
NO: 318








Kp_gent
KP1_0395
 1-100
ATGTTAAACAACATTCGTATCGAAGAAGATCTGTTGGGCACCAGGGAAGT
SEQ ID
R
dn






TCCCGCGGACGCTTACTACGGCGTTCATACTCTGCGAGCGATTGAAAACT
NO: 319








Kp_gent
KP1_0425
 974-1073
GAGCGTCTGCCGTTTATCTGTGAACTGGCGAAAGCCTACGTCGGCGTCGA
SEQ ID
R
dn






TCCGGTGAAAGAGCCGATCCCGGTGCGCCCGACCGCGCACTACACCATGG
NO: 320








Kp_gent
KP1_0908
1213-1312
GAACATTTTAACGATAAAGCCGCCGTGGTGGCTCGCCTGCGCGAGCTGCT
SEQ ID
R
dn






GGCGGAGCACAAAATAATGACCATTTTAGTGAAGGGTTCACGTAGTGCCG
NO: 321








Kp_gent
KP1_0909
 59-158
CATATCTGACGTTTCGCGCCATCGTCAGCCTGCTGACCGCGCTGTTCATC
SEQ ID
R
dn






TCGTTGTGGATGGGCCCGCGCATGATCGCCCGTCTGCAAAAACTCGCCTT
NO: 322








Kp_gent
KP1_0910
507-606
GCAGGCGGTGGCGGCAACCATCCTCAACGTGACTGAGGACCATATGGACC
SEQ ID
R
dn






GCTACCCGCTGGGGCTGCAGCAGTATCGCGCGGCGAAGCTGCGGATTTAC
NO: 323








Kp_gent
KP1_1258
364-463
CTGGCCTGCTGGCTGGGGGTGATGGGGTTCGTGGTTTATGTCGGCGTCTA
SEQ ID
R
dn






CAGCCTGTACATGAAACGCCACTCCGTCTACGGCACGCTGATTGGCTCAC
NO: 324








Kp_gent
KP1_1259
127-226
CATGCGGTTATCCTTGGCACCATTCTGGTGACCGCTGTGGTGCAGATCGT
SEQ ID
R
dn






GGTACACCTCGTGTACTTCCTGCATATGAACAGCAAGTCCGATGAAGGTT
NO: 325








Kp_gent
KP1_1260
467-566
CGGTGCTGATGTTCCAGGTTTCACGTCGTGGCCTGACCAGCACTAACCGC
SEQ ID
R
dn






ACGCGTATCCTGTGCCTGAGCCTGTTCTGGCACTTCCTGGACGTCGTGTG
NO: 326








Kp_gent
KP1_1409
690-789
GGTATCGTCTACATCGCCGCGACTCAGGTTATCGCCGGTATGTATCCTGC
SEQ ID
R
dn






TTCTCAGATGGCCGCGTCCGGTGCGCCGTTCGCAATTAGCGCCTCTACCA
NO: 327








Kp_gent
KP1_1410
540-639
GATATCTCCATTTCGGTTTCTGAACTGGGTTCCCTGCTGGACCACAGCGG
SEQ ID
R
dn






CCCGCACAAAGAAGCGGAAGAGTATATCGCTCGCGTGTTTAACGCAGAAC
NO: 328








Kp_gent
KP1_1694
256-355
TTCTATGTGGCGATGATTCTGGTGCTGGCCTCGCTGTTCTTCCGTCCGGT
SEQ ID
R
dn






CGGTTTTGACTACCGTTCCAAGATCGAGGACACCCGCTGGCGCAACATGT
NO: 329








Kp_gent
KP1_1902
764-863
ATTCAGTGGACCTACTTCGGTTACCTGGCTGCCGTGAAATCTCAGAACGG
SEQ ID
R
dn






CGCGGCAATGTCCTTCGGTCGTACCTCCAGCTTCCTGGATATCTACATCG
NO: 330








Kp_gent
KP1_1903
473-572
ATACTTTTGTGGAGGCCGTGAGCCTGGGTATCCTCGCTAACCTGATGGTT
SEQ ID
R
dn






TGTCTCGCCGTATGGATGAGCTATTCCGGTCGTAGCCTGATGGATAAAGC
NO: 331








Kp_gent
KP1_3311
1193-1292
TTCTCAGGGTGGTATCGGTGACCTGTACAACTTCAAACTCGCGCCTTCCC
SEQ ID
R
dn
x



(KPN_0219

TGACTCTGGGTTGTGGTTCCTGGGGTGGTAACTCCATCTCTGAAAACGTT
NO: 332






9(adhE))











Kp_gent
KP1_3327
1095-1194
TCCACCTTCCAGATGATCTCCGTGATCTTCCGTAAGCTGACTATGGACCG
SEQ ID
R
dn






CGTGAAGGCCCAGGGCGGCAGCGAAGCGCAGGCGATGCGCGAGGCGGCGA
NO: 333








Kp_gent
KP1_3445
 45-144
TAATATTGCGAAAGAACGCCTGCAAATCATCGTCGCCGAGCGCCGCCGCG
SEQ ID
R
dn






GAGACGCGGAGCCGCATTACCTGCCGCAGTTACGCAAAGATATCCTGGAA
NO: 334








Kp_gent
KP1_3458
749-848
CGTATCGTCGAGGGCGGCGTGAAAATCACCAGCGTCAACATCGGCGGTAT
SEQ ID
R
dn






GGCGTTCCGCCAGGGTAAAACCCAGGTTAACAACGCGATTTCAGTCGATG
NO: 335








Kp_gent
KP1_3878
 66-165
ATACACCACTTTTTCACAGACGAAAAACGATCAGCTGCTGGAACCCATGT
SEQ ID
R
dn






TTTTTGGCCAGCCGGTTAACGTGGCCCGCTACGATCAGCAAAAATACGAC
NO: 336








Kp_gent
KP1_3908
 32-131
TGCTACCGCTGCTGATCGTCGGCTTGACGGTGGTGGTTGTGATGCTCTCC
SEQ ID
R
dn






ATTGCGTGGCGACGCAATCATTTTCTCAATGCCACGCTGTCGGTTCTTGG
NO: 337








Kp_gent
KP1_3909
319-418
CGTGAAATCGAAAAATACCAGGGCTTCTTCCACCTCAACCTGATGTGGAT
SEQ ID
R
dn






CCTGGGCGGCGTTATCGGCGTGTTCCTCGCCATCGACATGTTCCTGTTCT
NO: 338








Kp_gent
KP1_3910
1552-1651
TCCATCGCCAACAGTGCGCCTGGCCGCTTCTTCGGTACCTGGTGGTTCCA
SEQ ID
R
dn
x



(KPN_0266

TGCCTGGGGCTTCGACTGGTTATACGACAAGGTGTTCGTAAAACCATTCC
NO: 339






8 (nuoL)











Kp_gent
KP1_3913
315-414
GGTTATCGTTTACGCCATCCTGGGCATTAACGACCAGGGTATCGACGGTG
SEQ ID
R
dn






CGGCGATTAACGCCAAAGAAGTGGGCATTGCGCTGTTTGGGCCGTACGTC
NO: 340








Kp_gent
KP1_3914
 14-113
TAAAAGAATTATTGGTGGGGTTCGGCACCCAGGTCCGTAGTATCTGGATG
SEQ ID
R
dn






ATTGGCCTGCATGCCTTCGCCAAACGTGAAACCCGGATGTATCCGGAAGA
NO: 341








Kp_gent
KP1_3915
206-305
TTAAAGAGGACTGGATCCCGCGCTTCTCCGATCGCGTGATCTTTACTCTG
SEQ ID
R
dn






GCGCCGGTTATCGCCTTTACCTCGCTGCTGCTGGCCTTCGCTATCGTGCC
NO: 342








Kp_gent
KP1_3916
366-465
CATAGCTTCCGCCGCTATCGTTTCACCAAGCGTACCCACCGCAATCAGGA
SEQ ID
R
dn






TCTGGGGCCGTTTATTTCGCACGAAATGAACCGCTGCATCGCCTGCTACC
NO: 343








Kp_gent
KP1_3917
687-786
CCAACGGCGTCGAGTGGTACCAGAACATTTCCACCAGCAAAGATGCTGGC
SEQ ID
R
dn






ACCAAGCTGATGGGCTTCTCCGGCCGGGTGAAGAATCCGGGCGTCTGGGA
NO: 344








Kp_gent
KP1_3919
379-478
ACCCTGCTGCCGACCTGCTGCCTGGGTAACTGCGACAAGGGACCGACCAT
SEQ ID
R
dn
x



(KPN_0267

GATGATTGATGAGGATACTCACAGCCATCTGACGCCGGAGGCAATTCCTG
NO: 345






5 (nuoE))











Kp_gent
KP1_4642
714-813
CCGACCATCCTGCGCGACTCTCAGGAATATGTTTCCAAGAAACACAACCT
SEQ ID
R
dn






GCCGCACAACAGCCTGAACTTCGTGTTCCACGGCGGTTCCGGTTCTTCCG
NO: 346








Kp_gent
KP1_4873
 89-188
ATGACACCAACGCCCGCCACTTTGCCGGCCTTAATTTCACCGAAAAGAAA
SEQ ID
R
dn






CTGCAGGAAGCCGTCAGCTTTGTGCATCAGCACCGTCGTAAGCTGCATAT
NO: 347








Kp_gent
KP1_5122
390-489
ATCTGATCAATAATCCGGTGATCCATGACGCGATGCGCTTTTTCCTGCGC
SEQ ID
R
dn






CATCAGCCGGAGAATATGACCCTGGTGGTCCTGTCGCGTAACCTGCCGCA
NO: 348








Kp_gent
KP1_5513
 63-162
CGAAAAAATCCAGGTAACGGGTAGCGAAGGTGAACTGGGTATTTACCCGG
SEQ ID
R
dn






GCCACGCGCCGCTGCTCACCGCCATTAAGCCTGGTATGATTCGCATCGTT
NO: 349








Kp_gent
KP1_5514
672-771
CTGACCATGGCTGAGAAATTCCGTGACGAAGGTCGTGACGTACTGCTGTT
SEQ ID
R
dn






CGTCGATAACATCTATCGTTACACCCTGGCCGGTACTGAAGTATCCGCGC
NO: 350








Kp_gent
KP1_5515
425-524
TAACCCATCCCTGTCCGAACTGATCGGCCCGGTAAAAGTGATGTTGCAGG
SEQ ID
R
dn






CCTATGATGAAGGCCGTCTGGACAAGCTGTACGTTGTCAGCAACAAATTT
NO: 351








Kp_gent
KP1_0325
 1-100
ATGTCCCATCAGGATATTATTCAAACTTTGATTGAATGGATTGATGAACA
SEQ ID
R
up
x



(KPN_0446

TATCGATCAACCACTTAACATTGATATAGTCGCCAGAAAGTCAGGATACT
NO: 352






2 (soxS))











Kp_gent
KP1_0533
2300-2399
CGCTGGAACCCGGCCGATCTCGGGCGCTTTATGGTCTTCTTTGGACCGAT
SEQ ID
R
up






CAGCTCGATTTTCGATATCCTCACCTTCGGCCTGATGTGGTGGGTGTTCC
NO: 353








Kp_gent
KP1_0837
468-567
TGGCGCTGTTAGGTAGCCGGGTCCCGACGGCGCTGAAGATTTTCCTGATG
SEQ ID
R
up
x



(KPN_0001

GCGCTGGCGATTATTGATGACCTCGGGGCTATCGTGATTATCGCGCTGTT
NO: 354






6(nhaA))











Kp_gent
KP1_0838
403-502
TGGAGCAGCTGAGCCAGCATAAGCTCGACATGATTATCTCTGACTGCCCG
SEQ ID
R
up
x



(KPN_0001

ATCGACTCGACGCAGCAGGAAGGGCTATTTTCGGTGAAGATCGGCGAGTG
NO: 355






7 (nhaR))











Kp_gent
KP1_2104
107-206
TAGGCACCATCTCTGCTTCTGCCGGGACTAACCTGGGCTCGCTGGAAGAC
SEQ ID
R
up






CAGCTGGCGCAGAAAGCGGATGAGATGGGCGCCACTTCATACCGTATTAC
NO: 356








Kp_gent
KP1_2658
107-206
CCGGTTACTCTAAGTGGCACCTGCAACGTATGTTTAAGAAAGAGACCGGC
SEQ ID
R
up
x



(KPN_0162

CATTCCCTCGGCCAGTACATCCGCAGCCGCAAGCTGACGGAGATTGCGCA
NO: 357






4 (marA))











Kp_gent
KP1_2659
 65-164
ACCAGAAAAAAGATCGCCTGCTCAATGACTACCTCTCACCTATGGATATT
SEQ ID
R
up






ACCGCGACCCAGTTTCGCGTGCTCTGCTCCATTCGTTGCGAAGTATGTAT
NO: 358








Kp_gent
KP1_2873
406-505
GAGGCGGCGCAGCGCATTCATGCCTTGCCGGGGGCCGGTGACGAAGAGAA
SEQ ID
R
up






ACGCTATGTCTTACGCGTCACCTGTCTGCGCGAACATGAAAATGCCGTAC
NO: 359








Kp_gent
KP1_3472
 1-100
ATGATGCGAATCGCGCTTTTCCTGCTGACGAACCTGGCAGTGATGGTCGT
SEQ ID
R
up
x



(KPN_0234

GTTCGGGCTGGTGTTAAGCCTCACGGGGATCCAATCCAGCAGCATGACCG
NO: 360






5 (htpX))











Kp_gent
KP1_4962
121-220
GCTGATATTATCAACAGCGAGCAGGCCCAGGGCCGCGAGGCCATCGGCAC
SEQ ID
R
up






GGTTTCCGTCGGCGCGGTAGCATCTTCCCCGATGGATATGCATGAAATGC
NO: 361








Kp_gent
KP1_5196
893-992
CTTAAGCGGATCGGCATTGACCCGGCGGTAGTTTCCGCGCCGTTTATCGC
SEQ ID
R
up






CACGCTGATTGATGGCACCGGGCTAATTATCTATTTCAAAATCGCCCAGT
NO: 362








Kp_gent
KP1_5423
232-331
AGCGGCTCACGTGGCGTGAAGGAAGCCAGTCGTCAGGCGGTGCTGCAGGC
SEQ ID
R
up






GGCGGAAGCGCTCAATTACCGGCCAAACATGATAGCCCAGTCGTTGCTCA
NO: 363








Kp_gent
KP1_5452
101-200
ATATGCTGCGCCGCCTGGCGGAAAACTGGCAGAGCGGCAAAAACCGCTTT
SEQ ID
R
up






AACGCGCCGGGCGAAACGCTGCTGGGCGCCTTCGTCAACCACCAGCTGGT
NO: 364








Kp_gent
KP1_5467
180-279
TATTCAACTGGAAGGCACCCGTCTGGTGGTGAAAGGCACGCCGCAGCAGC
SEQ ID
R
up
x



(KPN_0409

CGGAAAAAGAGACCACATGGCTGCACCAGGGGTTGGTGAGCCAGGCCTTC
NO: 365






0 (ibpB))











Kp_gent
KP1_5468
130-229
CAGAGCAACGGCGGCTACCCTCCGTATAACGTCGAGCTGGTAGACGAAAA
SEQ ID
R
up
x



(KPN_0409

CCACTATCGCATCGCTATCGCGGTGGCTGGCTTTGCTGAAAGCGAGCTGG
NO: 366






1 (ibpA))











Ec_mero
APECO78_
 1-100
ATGAGTGTGATTGCGCAGGCAGGGGCGAAAGGTCGTCAGCTGCATAAATT
SEQ ID
C

x


GeneID =
00485

TGGTGGCAGTAGTCTGGCTGATGTGAAGTGTTATTTGCGTGTCGCGGGCA
NO: 367





NC_00856
(b3940: me








3(alt
tL)








GenelD=









NC_00091









3)












Ec_mero
APECO78_
 51-150
TCTGGAAGAAGCAGTTTCCACTGCGCTGGAGTTGGCCTCAGGCAAATCGG
SEQ ID
C

x



02145

ACGGTGCGGAAGTTGCCGTCAGCAAGACCACCGGCATTAGCGTAAGCACG
NO: 368






(b4235: pm









bA)











Ec_mero
APECO78_
656-755
TTGGCTCGCTTTGTAGAACTTTATCCGGTTTTACAGCAGCAGGCGCAAAC
SEQ ID
C





03915

CGATGGCAAACGGATTAGCTACGTTGATTTGCGTTATGACTCTGGAGCGG
NO: 369








Ec_mero
APECO78_
624-723
GATATCGGTGGTGGTACAATGGATATCGCCGTTTATACCGGTGGGGCATT
SEQ ID
C

x



03920

GCGCCACACTAAGGTAATTCCTTATGCTGGCAATGTCGTGACCAGTGATA
NO: 370






(b0094:









ftsA)











Ec_mero
APECO78_
362-461
GTCAGCCACGGGCTGATGATGAGTGAAGCCGAGCAATTGAATAAAGGCTT
SEQ ID
C





05580

TCTCAAGCGGATGCGCACCGGCTTTCCTTATATTCAGTTAAAACTTGGCG
NO: 371








Ec_mero
APECO78_
 935-1034
AACGTTGAATGAACTGAGCGAAGAAGCTCTGATTCAGATCCTCAAAGAGC
SEQ ID
C

x



05715

CGAAAAACGCCCTGACCAAGCAGTATCAGGCGCTGTTTAATCTGGAAGGC
NO: 372






(b0438:









clpX)











Ec_mero
APECO78_
170-269
AGGACGGTCTGTCACTGATTCGCCGCTGGCGTAGCAATGATGTTTCACTG
SEQ ID
C





09610

CCGATTCTGGTATTAACCGCCCGTGAAAGCTGGCAGGACAAAGTCGAAGT
NO: 373








Ec_mero
APECO78_
190-289
AACGGAAAACTGCGCATCGGCTATGTACCGCAGAAGCTGTATCTCGACAC
SEQ ID
C





13105

CACGTTGCCACTGACCGTAAACCGTTTTTTACGCTTACGCCCTGGTACAC
NO: 374








Ec_mero
APECO78_
 987-1086
GAACAGGCCCGACGGGTGCTGGATACCACTATGCAAATGTACGAACAGTG
SEQ ID
C

x



16235

GCGGGAACAGCAACCGAAGCTGGCGCATCCGCAACTGGAGGCGCTACTGC
NO: 375






(b2502:









ppx)











Ec_mero
APECO78_
1353-1452
AGGGCAGCGGTCTGGGATTAAGCATTGCCAGGGATTGTATTCGCCGTATG
SEQ ID
C





16510

CAAGGGGAACTGTATCTGGTCGACGAGAGCGGGCAAGACGTTTGTTTCCG
NO: 376








Ec_mero
APECO78_
289-388
GAGAGCGTCGGTAAGTCGGTCGTTAACCTTATTCACGGCGTGCGTGATAT
SEQ ID
C

x



17535

GGCGGCGATCCGCCAGCTGAAAGCGACGCACACTGATTCTGTTTCCTCCG
NO: 377






(b2784:









rdA)











Ec_mero
APECO78_
645-744
ATGCATACGGGCGATGAGATCCCGCATGTTAAGAAAACGGCCAGTCTGCG
SEQ ID
C

x



19825

TGACGCATTGCTGGAAGTTACCCGCAAAAATCTTGGTATGACTGTCATTT
NO: 378






(b3197:









kdsD)











Ec_mero
APECO78_
186-285
CGTTGTGCGCTCACCTCTGATATTGAAGTCGCTATCATTACCGGGCGAAA
SEQ ID
C





19830

GGCTAAACTGGTAGAAGATCGTTGTGCCACATTGGGGATCACTCACTTGT
NO: 379








Ec_mero
APECO78_
1327-1426
ACAAAGCGACGGCATTGACTGAAGCAGTTAATCGCCAGCTGCACCCTAAA
SEQ ID
C

x



20780

CCGGAAGATGAATCTCGCGTCAGTGCCTCATTACGTTCAGCAATTCAAAA
NO: 380






(b3398:









yrfF)











Ec_mero
APECO78_
1011-1110
GTCAGCAAGTGCTCACTATCATGAGCGAGCGCCTGCCGATTGAACGTATT
SEQ ID
C





21435

CAACTCCGTCCGCACTGTAGCATTGGCGTGGCGATGTTCTACGGCGATCT
NO: 381








Ec_mero
APECO78_
279-378
TCTGCAGGATGGCGCTATCAGCGCTTATGATCTGCTTGATTTGCTGCGCG
SEQ ID
R
dn




01050

AAGCTGAACCGCAAGCCAAGCCGCCAACGGTTTATCGCGCGCTGGATTTT
NO: 382








Ec_mero
APECO78_
844-943
TGCGCAATACCAGTTCGATTTCGGTCTGCGTCCGTCCATCGCTTACACCA
SEQ ID
R
dn




08635

AATCTAAAGCGAAAGACGTAGAAGGTATCGGTGATGTTGATCTGGTGAAC
NO: 383








Ec_mero
APECO78_
 1-100
ATGAAAGCTACTAAACTGGTACTGGGCGCGGTAATCCTGGGTTCTACTCT
SEQ ID
R
dn




12200

GCTGGCAGGTTGCTCCAGCAACGCTAAAATCGATCAGCTGTCTTCTGACG
NO: 384








Ec_mero
APECO78_
267-366
AAGATGCAGTTAAGCATCCGGAAAAATATCCGCAGCTGACCATCCGTGTA
SEQ ID
R
dn




16640

TCCGGTTATGCAGTTCGCTTTAACTCTCTGACTCCGGAACAGCAGCGCGA
NO: 385








Ec_mero
APECO78_
277-376
CAGCTGCAAAAACACCAGGGAAATACCATTGAAATTCGTTACACCACGCA
SEQ ID
R
dn




22630

TGAACAATTCAAACAACAAACCGCAGAAAGTCAGGCGGTAATTCGCAGCG
NO: 386








Ec_mero
APECO78_
149-248
AAGTTTAACCGAACATCAGCGTCAGCAGATGCGAGATCTTATGCAACAGG
SEQ ID
R
up




00325

CCCGGCACGAACAGCCTCCTGTTAATGTTAGCGAACTGGAGACAATGCAT
NO: 387






(b4484









(cpxP))











Ec_mero
APECO78_
133-232
ATCGATCGCCTTAGCAGCCTGAAACCGAAGTTTGTATCGGTGACCTATGG
SEQ ID
R
up




00495

CGCGAACTCCGGCGAGCGCGACCGTACGCACAGCATTATTAAAGGCATTA
NO: 388








Ec_mero
APECO78_
111-210
TGGGACAGTCTGTTCGGCACGCCAGGCGTACAGCTGACGGACGATGATAT
SEQ ID
R
up




00935

TCAAAATATGCCCTACGCCAGCCAGTACATGCAGCTTAATGGCGGGCCGC
NO: 389








Ec_mero
APECO78_
572-671
GGACGCACGCAAAAAGCGCCGGTGGCTTACTGGAACAAGCGTCACGTAGA
SEQ ID
R
up




00940

GCCGATGCCCGGCAGCATTATTTATGTTGGCCTCGCGGACTCCGTCTGGA
NO: 390








Ec_mero
APECO78_
1408-1507
CAACTACGACAAGTTTAACTACACCAATCCGCCGCAGGACTCGCACTTAC
SEQ ID
R
up




00945

CGCGCGTGCGTACCCATGTGCGCGAGTATGTGCAGAACGATGTCTATGTG
NO: 391








Ec_mero
APECO78_
695-794
ATACCTGCGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATG
SEQ ID
R
up




03465

TCCTACCAGGAAGCGATGGAGCTTTCCTACTTCGGCGCTAAAGTTCTTCA
NO: 392








Ec_mero
APECO78_
578-677
GCAGGCGGCACCGGGCATGTGGTGGAGTTTTGCGGCGAAGCAATCCGTGA
SEQ ID
R
up




03815

TTTAAGCATGGAAGGTCGTATGACCCTGTGCAATATGGCAATCGAAATGG
NO: 393








Ec_mero
APECO78_
712-811
ATCACAGTTTGACGTTCTGCTGTGCTCCAACCTGTTTGGCGACATTCTGT
SEQ ID
R
up




03820

CTGACGAGTGCGCAATGATCACTGGCTCGATGGGGATGTTGCCTTCCGCC
NO: 394








Ec_mero
APECO78_
809-908
CACACCGCCATTAATCACCAGGAGATATGGCGCACCAGCCAGTTAGTTAG
SEQ ID
R
up




03825

CCAGATTTGTAATATGCCGATCCCGGCAAACAAAGCCATTGTTGGCAGCG
NO: 395








Ec_mero
APECO78_
164-263
TTAACGTAGAAGGTAGCACAACCGTTAATACGCCGCGTATGCCGCGTAAT
SEQ ID
R
up




04245

TTCCAGCAGTTCTTCGGTGATGATTCTCCGTTCTGCCAGGAAGGTTCTCC
NO: 396






(b0161









(degP))











Ec_mero
APECO78_
 4-103
CCTTTACGACGGTTCTCCCCAGGACTGAAAGCCCAGTTTGCCTTCGGCAT
SEQ ID
R
up




04985

GGTCTTTTTGTTCGTTCAGCCCGATGCCAGCGCTGCTGACATAAGTGCGC
NO: 397








Ec_mero
APECO78_
190-289
ACGCCACTCGGTAGCCTGGCGTTCCAGTATGCCGAAGGCATTAAAGGTTT
SEQ ID
R
up




04995

TAACTCACAGAAAGGTCTATTTGACGTGGCTATCGAGGGTGACTCAACGG
NO: 398








Ec_mero
APECO78_
227-326
CCGTGATAATGAGTGGTTATCCGCGGTAAAGGGGAAACAGGTCGTATTGA
SEQ ID
R
up




05000

TTGCGGCCAGAAAGTCAGAAGCCTTAGCAAATTATTGGTATTACAACAGC
NO: 399








Ec_mero
APECO78_
177-276
GGAAACAGGTCGCCCACGGGTGGAAATTGGTTTAGGTGTCGGCACCATTT
SEQ ID
R
up




05395

TCGGGCTGATCCCGTTTTTAGTAGGCTGCCTCATTTTTGCAGTGGTGGCG
NO: 400






(b0379









(yaiY))











Ec_mero
APECO78_
 47-146
AAATGGTCTGCTTCGTGCTCGAACAAAATGGCTTTCAGCCGGTCGAAGCG
SEQ ID
R
up




05500

GAAGATTATGACAGTGCTGTGAATCAACTGAATGAACCCTGGCCGGATTT
NO: 401






(b0399









(phoB))











Ec_mero
APECO78_
524-623
TGGAAATTCGCGTCATGCCTTATACCCACAAACAGTTGCTGATGGTGGCG
SEQ ID
R
up




05505

CGTGATGTCACGCAAATGCATCAACTGGAAGGGGCGCGGCGTAACTTTTT
NO: 402








Ec_mero
APECO78_
181-280
GACGGCAGCAGTGGCGAAGTGAGTCTGGTGGGACAACCGCTACATAATAT
SEQ ID
R
up




05995

GGACGAAGAAGCGCGGGCAAAGTTGCGCGCGAAGCACGTCGGCTTTGTTT
NO: 403








Ec_mero
APECO78_
393-492
AGCGATACTTACACGACTACGCAACAGCGTTGTAAAACGGTGTATGACAA
SEQ ID
R
up




09510

GTCAGAAAAAATGCTCGGTTATGATGTGACCTATAAGATTGGCGATCAGC
NO: 404






(b1110









(ycfJ))











Ec_mero
APECO78_
513-612
TACTGCTGAGTGTGGCGGTTAATTTCGTTCCCACGCCGTGGTGGGGAATG
SEQ ID
R
up




09535

AACAGTGTGATCCGCAATTTGCCTTATTACAGCCTTGGCGCATGGTTTGG
NO: 405








Ec_mero
APECO78_
120-219
CCAACGAAATGGCAAAAACTGACAGCGCACAGGTTGCAGAAATTGTTGCG
SEQ ID
R
up




09705

GTAATGGGTAATGCCAGCGTTGCCAGCCGTGATTTAAAAATTGAGCAATC
NO: 406






(b1171









(ymgD))











Ec_mero
APECO78_
105-204
AGGCGTTGGTTTACTTACTGGCAATGGTGTTAATGGCGTACTGAAAGGTG
SEQ ID
R
up




09710

CAGCTGTTGGCGCTGGTGTTGGTGCAGTAACAGAAAAAGGCCGCGACGGT
NO: 407






(b1172









(ymgG))











Ec_mero
APECO78_
 58-157
CTCATGGCAGGGCACAAAGGACATGAATTTGTGTGGGTAAAGAATGTGGA
SEQ ID
R
up




10895

TCATCAGCTGCGTCATGAAGCGGACAGCGATGAATTGCGTGCTGTGGCGG
NO: 408








Ec mero
APECO78_
 60-159
GGTTAATCAGAAGAAAGATCGTCTGCTTAACGAGTATCTGTCTCCGCTGG
SEQ ID
R
up




11400

ATATTACCGCGGCACAGTTTAAGGTGCTCTGCTCTATCCGCTGCGCGGCG
NO: 409








Ec_mero
APECO78_
309-408
ACCTTCGATAAAGCAAAAGCTGAAGCGCAGATCGCAAAAATGGAAGAACA
SEQ ID
R
up




12545

GCGCAAAGCTAACATGCTGGCGCACATGGAAACCCAGAACAAAATTTACA
NO: 410






(b1743









(spy))











Ec_mero
APECO78_
395-494
ATGCCGACGTTATCATTGAGCCGAACCGAATCGAGTATGTTGCGAATGTG
SEQ ID
R
up




13545

GATGGCAGGTCAGGGAACCATTCAAATCTCTGACCAAATGAATATCAAAG
NO: 411








Ec_mero
APECO78_
 19-118
CGCGAGCGAGCGAAAACCAATGCATCGTTAATCTCTATGGTGCAACGCTT
SEQ ID
R
up




13965

TTCAGATATCACCATCATGTTTGCCGGACTATGGCTGGTTTGCGAAGTGA
NO: 412








Ec_mero
APECO78_
522-621
CCTTTGAAGTGGCGCAGTTTGTCGAAAAACCGAATCTGGAAACCGCCCAG
SEQ ID
R
up




13975

GCCTATGTGGCAAGCGGCGAATATTACTGGAACAGCGGTATGTTCCTGTT
NO: 413








Ec_mero
APECO78_
125-224
AGGGTTACTGGTTTGTGCCGGGAGGGCGCGTGCAGAAAGACGAAACGCTG
SEQ ID
R
up




13985

GAAGCCGCATTTGAGCGGCTGACGATGGCGGAACTGGGGCTGCGTCTGCC
NO: 414








Ec_mero
APECO78_
647-746
CTCGGCAATATGGATTCCCTGCGTGACTGGGGCCATGCCAAAGACTACGT
SEQ ID
R
up




13995

AAAAATGCAGTGGATGATGCTGCAACAGGAACAGCCGGAAGATTTCGTTA
NO: 415








Ec_mero
APECO78_
259-358
TATACCCTCGGTGAAATAACCATTGGCGCACATTCGGTGATATCGCAAAA
SEQ ID
R
up




14000

AAGTTATTTATGCACCGGTAGCCACGACCATGCAAGTCAACATTTCACCA
NO: 416








Ec_mero
APECO78_
523-622
CGAACCGGCATTTTTCGCTCTGGCATTAATCTCAATTTGGCTCAGCATCA
SEQ ID
R
up




14010

AACAGTTTGGTATCAAAACGCCTAAAACCGATGCTATGATTCTCGCAGGG
NO: 417








Ec_mero
APECO78_
475-574
AGGTCTTTACCTGGGCGTGGCGTTTCAAAGAGTGTTTGTTCGATACCGAA
SEQ ID
R
up




14025

CTGAAAGCGGCACAGGATTACGACATCTTCCTGCGGATGGTGGTGGAGTA
NO: 418








Ec_mero
APECO78_
2020-2119
ATGGTGGCGCGTTATGCGGTCAACACATTGAAAGAAGTGGAAACCAGTCT
SEQ ID
R
up




14030

GAGCCGCTTTGAGCAAAACGGTATTCCGGTGAAAGGGGTGATTCTGAACT
NO: 419








Ec_mero
APECO78_
231-330
CTGATTTTGACCATGGAAAAGCGCCATATCGAACGCTTATGCGAGATGGC
SEQ ID
R
up




14035

ACCTGAGATGCGCGGCAAAGTGATGCTGTTTGGTCACTGGGATAACGAAT
NO: 420








Ec_mero
APECO78_
1035-1134
CCCGGTTTCCCGCTGGAACCGTCTGATCAATCAGTTGCTGCCAACTATTA
SEQ ID
R
up




14040

GCGGTGTCCGTTACATGACGGATACAGCCAGCGACATTCATAACTGGTAA
NO: 421








Ec_mero
APECO78_
153-252
AGGCAGTTATAAATCCCGTTGGGTAATCGTAATCGTGGTGGTTATCGCCG
SEQ ID
R
up




14100

CCATCGCCGCATTCTGGTTCTGGCAAGGCCGCAATGACTCCCAGAGTGCA
NO: 422








Ec_mero
APECO78_
 22-121
GCGGCCGCCCTGATGGCATTTACCCCGCTTGCAGCAAACGCAGGTGAAAT
SEQ ID
R
up




15715

CACCCTACTGCCATCAATCAAATTACAAATTGGCGATCGCGATCATTACG
NO: 423








Ec_mero
APECO78_
111-210
CGAGTTCCGTAAAGCCGGACACGAAGTGATTACCATTGAAAAACAAGCGG
SEQ ID
R
up




19610

GTAAAACGGTGAAAGGCAAAAAAGGAGAAGCCAGCGTGACCATCGATAAA
NO: 424








Ec_mero
APECO78_
788-887
TTCATCAGCAAATAACTTACGAAGCATTGCGTGTTTGCCATGCGGTGCGC
SEQ ID
R
up




21920

AAAGAGCCGGATATTCTTACCCGCCAACGGATGATTGCCGAGATATTTAC
NO: 425






(b3615









(waaH))











Ec_mero
APECO78_
263-362
TGGTTATGGTGATCAGTAAAACCATTGCCGAGCTGGAGCGTATTGGCGAC
SEQ ID
R
up




22490

GTGGCGGACAAAATCTGCCGTACTGCGCTGGAGAAATTCTCCCAGCAGCA
NO: 426








Ec_mero
APECO78_
 5-104
CTGCAACCAAGCCTGCTTTTAACCCACCGGGTAAAAAGGGCGACATAATT
SEQ ID
R
up




22505

TTCAGCGTGCTGGTAAAACTGGCGGCGCTGATTGTGCTATTGATGTTGGG
NO: 427








Ec_mero
APECO78_
 9-108
TATGCGTACCACCGTCGCAACTGTTGTCGCCGCGACCTTATCGATGAGCG
SEQ ID
R
up




22510

CTTTCTCTGTGTTTGCAGAAGCAAGCCTGACAGGTGCAGGTGCAACCTTC
NO: 428






(b3728









(pstS))











Ec_mero
APECO78_
525-624
AAAACGAAGTGACTTTCCCACATGCCGAAGTTGAGCAAGCGCGCCAGATG
SEQ ID
R
up




22685

CTGGCAAAAGCGCAAAAACCGATGCTGTACGTTGGCGGTGGCGTGGGTAT
NO: 429








Ec_cip
b0176
432-531
GTGGTTGGTGAAATAGCAGCCAATTCGATAGCTGCGGAAGCACAAATTGC
SEQ ID
C

x


GeneID =


ACCAGGTACGGAACTAAAAGCCGTAGATGGTATCGAAACGCCTGATTGGG
NO: 430





NC_00091









3












Ec_cip
b0179
374-473
TCCGGCGTTGAACTGGGCGATAACGTGATTATCGGTGCCGGTTGCTTCGT
SEQ ID
C







AGGTAAAAACAGCAAAATCGGTGCAGGTTCGCGTCTCTGGGCGAACGTAA
NO: 431








Ec_cip
b0761
223-322
GGCGCAGTACTGACCCGCTATGGTCAGCGACTGATTCAGCTCTATGACTT
SEQ ID
C

x





ACTGGCGCAAATCCAGCAAAAAGCCTTTGATGTGTTAAGTGACGATGACG
NO: 432








Ec_cip
b1280
439-538
TGCTACAAATCTACCAGGCTACCAGTGAGTGGCAGAAAGCAATTGATGTT
SEQ ID
C

x





GCCGAACGCCTGGTGAAGCTGGGTAAAGATAAACAGCGCGTCGAAATTGC
NO: 433








Ec_cip
b1827
 1-100
ATGGCTAACGCAGATCTGGATAAACAGCCTGATTCTGTATCTTCCGTGCT
SEQ ID
C

x





AAAAGTTTTTGGCATTTTGCAGGCGCTGGGTGAAGAGCGCGAAATAGGGA
NO: 434








Ec_cip
b1870
142-241
ATGTTAGCCGAGCGCTTCGTTCAACCTGGTACGCAGGTTTACGATCTGGG
SEQ ID
C







TTGTTCTCTGGGCGCGGCGACGCTCTCGGTGCGTCGCAACATTCATCATG
NO: 435








Ec_cip
b2065
100-199
GATGTACGCCTGGGCAATAAATTTCGTACCTTCCGTGGTCACACGGCAGC
SEQ ID
C

x





GTTTATCGATCTGAGCGGTCCCAAAGATGAAGTGAGCGCCGCGCTTGACC
NO: 436








Ec_cip
b2153
167-266
CTGATGACAGTTTGATGGAAACGCCGCATCGCATCGCTAAAATGTATGTC
SEQ ID
C







GATGAAATTTTCTCCGGTCTGGATTACGCCAACTTCCCGAAAATCACCCT
NO: 437








Ec_cip
b2411
504-603
GAAGTGCGTGGTGAAGTGTTCCTGCCGCAGGCGGGGTTCGAAAAGATTAA
SEQ ID
C







CGAAGATGCGCGACGCACGGGCGGGAAAGTGTTTGCTAACCCACGTAATG
NO: 438








Ec_cip
b2515
277-376
ATTGCGCTGAAAGTAGCGGAATACGGCGTCGATTGTCTGCGTATTAACCC
SEQ ID
C

x





TGGCAATATCGGTAATGAAGAGCGTATTCGCATGGTGGTTGACTGTGCGC
NO: 439








Ec_cip
b2516
91-190
CAGGCCGTTGCCGAGCGACTTTGCCTGAAGGTTTCCACGGTACGCGACAT
SEQ ID
C







TGAAGAAGATAAGGCACCCGCCGATCTTGCTTCAACATTCCTGCGCGGAT
NO: 440








Ec_cip
b2829
781-880
GGTTGATAAAGGCTCGGTGGCAGAGTGGGCGGTAAAAACGGTCATTGAAA
SEQ ID
C







AATTTGCCGAACAGTTTGCCGCGCTAAGCGATAACTATCTCAAAGAGCGG
NO: 441








Ec_cip
b2830
223-322
TTGCGCTACAAATTACCGAAACGTTTGGTGCGTTGGGACACGAAGCCGGT
SEQ ID
C

x





TTGTATCGGCCAAAAACAAAAATGGTTTCTCTTGCAGCTGGTGAGCGGCG
NO: 442








Ec_cip
b2907
605-704
TTTACGCAACATGGCCCGCTGGCGATGTTGCCGATGTCTGACGGACGCTG
SEQ ID
C







TTCGCTGGTCTGGTGTCATCCACTGGAACGGCGCGAAGAGGTGCTGTCGT
NO: 443








Ec_cip
b3252
1103-1202
CCACGCGTAATGCGGGATTGCAGGGCGGCAATAGCTGGGCTATTTACGAT
SEQ ID
C

x





GACTCGTTGCCTGAAAAAGGACGCGGTAATGTTCGCTGGCGTACGCTTAT
NO: 444








Ec_cip
b3346
176-275
AGGATCTAAAATGTTCAGCCATTCGCATTGCTAACGGTGAACATACAGGC
SEQ ID
C







CGGAAGATTGGTTCGCCAATTACTGACCTGGCGCTACGTATGCTGCACGA
NO: 445








Ec_cip
b3803
 50-149
CCGTGGACACCACGTCACAACCTGTCGCAACAGAAAAAAAGAGTAAGAAC
SEQ ID
C







AATACCGCATTGATTCTCAGCGCGGTGGCTATCGCTATTGCTCTGGCGGC
NO: 446








Ec_cip
b4136
548-647
GAGCAGCCCACCGCGCAATTGCCCTTTTCCGCGCTCTGGGCGTTGTTGAT
SEQ ID
C







CGGTATTGGTATCGCCTTTACGCCATGCGTGCTGCCAATGTACCCACTGA
NO: 447








Ec_cip
b4175
175-274
ATTGAAACGGTGAAAATGCTCGACGCACGTATTCAGACCATGGACAACCA
SEQ ID
C







GGCCGACCGCTTTGTGACCAAAGAGAAGAAAGACCTGATCGTCGACTCTT
NO: 448








Ec_cip
b4178
208-307
CGGCGAGTGCGATACGTATTGGTGATGTGGTGCGCGAGCTGGAGCCCTTA
SEQ ID
C







TCGCTGGTGAATTGCAGCAGTGAGTTTTGCCACATTACACCTGCCTGTCG
NO: 449








Ec_cip
b0754
276-375
GTCTATTTTGAAAAGCCGCGTACCACGGTGGGCTGGAAAGGGCTGATTAA
SEQ ID
R
dn






CGATCCGCATATGGATAACAGCTTCCAGATCAACGACGGTCTGCGTATAG
NO: 450








Ec_cip
b0893
488-587
GTAATGAAAGGGCAGATTGCTCGCATGCACCGCGCACTGTCGCAGTTTAT
SEQ ID
R
dn






GCTGGATCTGCATACCGAACAGCATGGCTACAGTGAGAACTATGTTCCGT
NO: 451








Ec_cip
b0894
1466-1565
TCTGAAATCAACCGTACCCATGAAATCCTTCAGGATGATAAGAAGTGCGA
SEQ ID
R
dn






GCTGATTGTGGTTATCGACTGCCACATGACCTCATCGGCGAAATATGCTG
NO: 452








Ec_cip
b0926
311-410
CGCAAACCGGTGCAACTCATTTCCGGTTATCGTTCCATTGATACCAACAA
SEQ ID
R
dn






TGAACTACGCGCCCGCAGCCGTGGAGTAGCGAAGAAAAGCTATCACACTA
NO: 453








Ec_cip
b0929
 1-100
ATGATGAAGCGCAATATTCTGGCAGTGATCGTCCCTGCTCTGTTAGTAGC
SEQ ID
R
dn






AGGTACTGCAAACGCTGCAGAAATCTATAACAAAGATGGCAACAAAGTAG
NO: 454








Ec_cip
b1120
116-215
AAAAACCAAGAGTACTCGTACTGACAGGGGCAGGGATTTCTGCGGAATCA
SEQ ID
R
dn






GGTATTCGTACCTTTCGCGCCGCAGATGGCCTGTGGGAAGAACATCGGGT
NO: 455








Ec_cip
b1794
244-343
ACCTACCTGACCAAAGTGGATGTCGAAGCGCGCCTGCAGCATATTATGTT
SEQ ID
R
dn






TGCCCGTAACAGCCAGAAAATGCACATCCCGGAGAATTTTACCGTCTCGT
NO: 456








Ec_cip
b1895
 28-127
GTTGCGGTTACACCGGAAAGTCAGCAACTGCTGGCAAAAGCGGTATCTAT
SEQ ID
R
dn






CGCCAGGCCAGTAAAGGGACACATCAGTTTAATTACTCTCGCTTCCGACC
NO: 457








Ec_cip
b2276
182-281
TGGACGTTACGCCGCTGATGCGCGTTGATGGTTTCGCCATGCTTTACACC
SEQ ID
R
dn






GGGCTGGTATTGTTGGCGAGCCTCGCCACCTGTACTTTCGCCTACCCGTG
NO: 458








Ec_cip
b2277
421-520
CTTCTGGGAAATGATGCTGGTGCCGATGTACTTCCTGATCGCACTGTGGG
SEQ ID
R
dn






GGCATAAAGCCTCTGACGGTAAAACGCGTATCACGGCGGCAACCAAGTTC
NO: 459








Ec_cip
b2281
 47-146
GTATCTGGATGATCGGCCTGCACGCGTTCGCCAAACGCGAAACGCGAATG
SEQ ID
R
dn






TACCCGGAAGAGCCGGTCTATCTGCCGCCCCGTTATCGTGGTCGTATCGT
NO: 460








Ec_cip
b2903
1501-1600
CTCACCCATCCGGTGTTTAATCGCTACCACAGCGAAACCGAAATGATGCG
SEQ ID
R
dn






CTATATGCACTCGCTGGAGCGTAAAGATCTGGCGCTGAATCAGGCGATGA
NO: 461








Ec_cip
b3409
824-923
CCACTGCGGTAGATAAAATCGTGCTCAACCGTTTCCTCGGTCTGCCGATT
SEQ ID
R
dn






TTCCTCTTTGTGATGTACCTGATGTTCCTGCTGGCTATCAACATCGGCGG
NO: 462








Ec_cip
b3746
495-594
CGGAAGCAGACAGCAGTCTGGAAGCGTTATATGACCGCATGCTGATTCGT
SEQ ID
R
dn






CTGTGGTTAGATAAAGTGCAGGATAAAGCGAATTTCCGCTCCATGCTGAC
NO: 463








Ec_cip
b3771
 967-1066
AAGATGTTCACCGTGCTGGTGGTGTTATCGGTATTCTCGGCGAACTGGAT
SEQ ID
R
dn






CGCGCGGGGTTACTGAACCGTGATGTGAAAAACGTACTTGGCCTGACGTT
NO: 464








Ec_cip
b3863
693-792
TGGCAGCGAAGCTCGAGCAAAACAAAGAAGTTGCTTATCTCTCATACCAG
SEQ ID
R
dn






CTGGCGACGATTAAAACCGACGTTGAACTGGAGCTGACCTGTGAACAACT
NO: 465








Ec_cip
b0060
865-964
CTTCATTCTCGCTGGAAACTGTCGCTCAGGAGCTATTAGGCGAAGGAAAA
SEQ ID
R
up






TCTATCGATAACCCGTGGGATCGAATGGACGAAATTGACCGCCGTTTCGC
NO: 466








Ec_cip
b0068
577-676
AAAACGGTCACGGTCACCAAAGGCTGGAGCGAAGCCTACGGCCTGTTTTT
SEQ ID
R
up






AAAAGGTGAAAGCGATCTGGTACTGAGTTACACCACCTCTCCGGCTTATC
NO: 467








Ec_cip
b0231
102-201
CCGCGAACGTCGGGGGGTGATCAGCACCGCCAATTATCCCGCGCGTAAAT
SEQ ID
R
up






TTGGCGTACGTAGCGCTATGCCGACAGGGATGGCGCTCAAATTATGCCCG
NO: 468








Ec_cip
b0241
367-466
CGTGGAAGCCTGGACCGATATGTTCCCGGAATTTGGTGGCGACTCCTCGG
SEQ ID
R
up






CGCAGACCGACAACTTTATGACCAAACGCGCCAGCGGTCTGGCGACGTAT
NO: 469








Ec_cip
b0313
137-236
GCGTTTCTACGGGGATCATCAGCCACTATTTCAGGGACAAAAATGGTCTG
SEQ ID
R
up






CTGGAAGCAACCATGCGCGATATCACCAGTCAGCTGCGTGACGCGGTTTT
NO: 470








Ec_cip
b0399
 46-145
GAAATGGTCTGCTTCGTGCTCGAACAAAATGGCTTTCAGCCGGTCGAAGC
SEQ ID
R
up






GGAAGATTATGACAGTGCTGTGAATCAACTGAATGAACCCTGGCCGGATT
NO: 471








Ec_cip
b0400
334-433
GTGCTGACCACGGAAGAGGGCGGTATTTTCTGGTGTAACGGTCTGGCGCA
SEQ ID
R
up






ACAAATTCTTGGTTTGCGCTGGCCGGAAGATAACGGGCAGAACATCCTTA
NO: 472








Ec_cip
b0458
275-374
TCGATGTCTACCCACGCTACCGCTATGAAGATATCGACGTGCTGGATTTC
SEQ ID
R
up






CGCGTTTGCTATAACGGCGAATGGTACAACACGCGCTTTGTACCTGCCGC
NO: 473








Ec_cip
b0683
116-215
TATACAAACGTCTGATCGATATGGGTGAAGAAATTGGTCTGGCTACGGTA
SEQ ID
R
up






TATCGCGTACTGAACCAGTTTGACGACGCTGGTATCGTCACCCGCCACAA
NO: 474








Ec_cip
b0698
1234-1333
TACGGCATGATGCTGTTTGTCCTGCTGGCGGTGTTTATTGCCGGGCTGAT
SEQ ID
R
up






GATTGGTCGTACACCGGAATATCTGGGTAAAAAAATCGACGTACGCGAGA
NO: 475








Ec_cip
b0779
881-980
GAGATGATGAACGAGCTGGGCTACTGTTCGGGGATTGAAAACTACTCGCG
SEQ ID
R
up






CTTCCTCTCCGGTCGTGGACCGGGTGAGCCACCGCCGACGCTGTTTGATT
NO: 476








Ec_cip
b0958
114-213
TGTCTATCGCGAAGATCAGCCCATGATGACGCAACTTCTACTGTTGCCAT
SEQ ID
R
up






TGTTACAGCAACTCGGTCAGCAATCGCGCTGGCAACTCTGGTTAACACCG
NO: 477








Ec_cip
b1061
134-233
TGCGAATTGAAGTCACCATAGCGAAAACTTCTCCATTGCCAGCTGGGGCT
SEQ ID
R
up






ATTGACGCCCTGGCTGGCGAACTTTCCCGCCGTATTCAGTATGCGTTTCC
NO: 478








Ec_cip
b1183
129-228
GTTGATCCAGCATCCCAGCGCGACTTACTTCGTCAAAGCAAGTGGTGATT
SEQ ID
R
up






CTATGATTGATGGTGGAATTAGTGACGGTGATTTACTGATTGTCGATAGC
NO: 479








Ec_cip
b1184
453-552
CGGCAAAAAAATGGCAGCGGCAGACGGGTGGGGTGGTGGATTTATCAAAT
SEQ ID
R
up






CTGGAACGCCAGCGTAAATTAATGTCTGCTCTCCCCGTGGATGACGTCTG
NO: 480








Ec_cip
b1207
255-354
AACGACAACCTGATGGAATTAGTCGTTATGGTTGATGCCCTGCGTCGTGC
SEQ ID
R
up






TTCCGCAGGTCGTATCACCGCTGTTATCCCCTACTTTGGCTATGCGCGCC
NO: 481








Ec_cip
b1728
 40-139
TCTATTGCTTGTGCGGTATTTGCCAAAAATGCCGAGCTGACGCCCGTGCT
SEQ ID
R
up






GGCACAGGGTGACTGGTGGCATATTGTCCCTTCCGCAATCCTGACGTGTT
NO: 482








Ec_cip
b1848
117-216
CACCTGGCTGACAAATTCTCCAGTGCAAATGGAAGACGAGCAACGTGAAG
SEQ ID
R
up






CCCTTTCGCTATGGCTGGCAGAACAAAAAGATGTGCTGAGCACCATTCTG
NO: 483








Ec_cip
b2231
100-199
CTGCCAGATGTCCGAGATGGCCTGAAGCCGGTACACCGTCGCGTACTTTA
SEQ ID
R
up






CGCCATGAACGTACTAGGCAATGACTGGAACAAAGCCTATAAAAAATCTG
NO: 484








Ec_cip
b2234
 21-120
GACAAAGCGCGACGGTAGCACAGAGCGCATCAATCTCGACAAAATCCATC
SEQ ID
R
up






GCGTTCTGGATTGGGCGGCAGAAGGACTGCATAACGTTTCGATTTCCCAG
NO: 485








Ec_cip
b2498
318-417
GTTGTCGGTATGTACCGTAATGAAGAAACGCTGGAGCCGGTACCGTACTT
SEQ ID
R
up






CCAGAAACTGGTTTCTAACATCGATGAGCGTATGGCGCTGATCGTTGACC
NO: 486








Ec_cip
b2582
110-209
TGATTAATGCGACCGGTGAAACGCTCGACAAATTGCTGAAGGATGATCTA
SEQ ID
R
up






CCTGTGGTGATCGACTTCTGGGCACCGTGGTGCGGCCCCTGCCGTAATTT
NO: 487








Ec_cip
b2616
597-696
TAATCCGCAGCCCGGAGAGTTTGAACAAATCGACGAAGAGTACAAACGTC
SEQ ID
R
up






TGGCGAACAGCGGTCAATTGCTGACCACCAGCCAGAATGCATTGGCATTA
NO: 488








Ec_cip
b2670
153-252
GAACATCTTAATTGCATGGCCATACGGTATGTACCGCGATCTGTTTATGC
SEQ ID
R
up






GCGCGGCACGCAAAGTTAGCCCGTCGGGCTGGATAAAAAATCTGGCGGAT
NO: 489








Ec_cip
b2698
310-409
AAGCGACAGAAAAAGCGATGCGTGAATGTGACATCGACTGGTGCGCACTG
SEQ ID
R
up






GCGCGCGATCAGGCGACGCGAAAATATGGCGAACCTTTGCCAACTGTCTT
NO: 490








Ec_cip
b2699
 40-139
AAAGCGTTGGCGGCAGCACTGGGCCAGATTGAGAAACAATTTGGTAAAGG
SEQ ID
R
up






CTCCATCATGCGCCTGGGTGAAGACCGTTCCATGGATGTGGAAACCATCT
NO: 491








Ec_cip
b2700
274-373
TGAAAGCGGCTCGTGCTGATTATGCCGTGTCTATTAGTGGTATCGCCGGG
SEQ ID
R
up






CCGGATGGCGGCAGTGAAGAGAAGCCTGTCGGCACCGTCTGGTTTGCTTT
NO: 492








Ec_cip
b2980
427-526
GATAACCCGCTGTTATGAAAAAATGCTCGCCGCCAGTGAGAACAACAAAG
SEQ ID
R
up






AGATTTCGCTGATCGAACATGCGCAGTTGGATCACGCTTTCCATCTCGCC
NO: 493








Ec_cip
b3065
 56-155
TCAAGCGTTCCTGCGAAAAAGCAGGTGTTCTGGCGGAAGTTCGTCGTCGT
SEQ ID
R
up






GAGTTCTATGAAAAACCGACTACCGAACGTAAGCGCGCTAAAGCTTCTGC
NO: 494








Ec_cip
b3173
625-724
AGAGCATCAAAGATTACTCTCAATTGCAAACACGGTGCCGTATTTTCAAT
SEQ ID
R
up






TATCAGTCAGGGATACAGGTATTGATACCTACGTGTTGATTGTGGGGGAG
NO: 495








Ec_cip
b3348
 41-140
AGAGCCGACTGGCTTTTCAGGAAATCACCATTGAAGAACTGAACGTCACG
SEQ ID
R
up






GTGACCGCTCATGAAATGGAGATGGCGAAACTGCGCGATCATCTGCGTCT
NO: 496








Ec_cip
b3434
 64-163
CCTATTTTCATGTCCGTACTGAAACATACTGAACCGAAAAGACGGCGGGC
SEQ ID
R
up






AATCATGGTGCGAGAGTTGCTTATTGCTCTCCTGGTGATGCTGGTGTTCC
NO: 497








Ec_cip
b3452
487-586
TTGCCTCAGTATGGAAGCAAATCAGCTACAACTTCCTGTTCTTCTATGCC
SEQ ID
R
up






GCGCTGCAATCCATTCCCCGTTCGTTGATCGAAGCCGCAGCCATCGACGG
NO: 498








Ec_cip
b3453
100-199
AAGGGGAACTGGGTAAAGAGGTGGATTCTCTGGCCCAACGTTTTAACGCC
SEQ ID
R
up






GAAAACCCGGATTACAAAATTGTACCGACCTATAAAGGCAACTACGAACA
NO: 499








Ec_cip
b3645
256-355
TTCATCTCTCCCGCTATGCCTGTTACCTGGTAGTACAAAACGGCGACCCT
SEQ ID
R
up






GCGAAACCGGTTATTGCGGCAGGGCAAACTTATTTTGCTATCCAGACCCG
NO: 500








Ec_cip
b3666
700-799
AAGAGGACAAAGAGACAGAATCTACCGATATGACCAAGTGGCAGATCTTT
SEQ ID
R
up






GTTGAGTATGTGCTGAAAAACAAAGTGATCTGGCTGCTGTGCTTCGCCAA
NO: 501








Ec_cip
b3700
817-916
GCTTAAGCTGTTGATGTGCGCCTTACGTCTGGCGCAAGGAGAGTTCCTCA
SEQ ID
R
up






CCCGTGAAAGCGGGCGGCGGTGTCTCTACCTGATAGATGATTTTGCCTCT
NO: 502








Ec_cip
b3701
 37-136
CCGCTACAACAGGTGAGCGGTCCGTTAGGTGGTCGTCCTACGCTACCGAT
SEQ ID
R
up






TCTCGGTAATCTGCTGTTACAGGTTGCTGACGGTACGTTGTCGCTGACCG
NO: 503








Ec_cip
b3702
370-469
TCCCGGCCCCGGCAGAACCGACCTATCGTTCTAACGTAAACGTCAAACAC
SEQ ID
R
up






ACGTTTGATAACTTCGTTGAAGGTAAATCTAACCAACTGGCGCGCGCGGC
NO: 504








Ec_cip
b3727
 5-104
CTGCAACCAAGCCTGCTTTTAACCCACCGGGTAAAAAGGGCGACATAATT
SEQ ID
R
up






TTCAGCGTGCTGGTAAAACTGGCGGCGCTGATTGTGCTATTGATGTTGGG
NO: 505








Ec_cip
b3728
 8-107
TTATGCGTACCACCGTCGCAACTGTTGTCGCCGCGACCTTATCGATGAGC
SEQ ID
R
up






GCTTTCTCTGTGTTTGCAGAAGCAAGCCTGACAGGTGCAGGTGCAACCTT
NO: 506








Ec_cip
b3820
241-340
GTGTGCGTGGGAAGTACCTTAACCCGCCACGAAACCATCAGTGAAGATGA
SEQ ID
R
up






ACTACGCCAGCGGCTATCGCGGATGGGGACCATTGATCTTCGCGTTGATT
NO: 507








Ec_cip
b3832
833-932
CGCTACAGGAACATATCGCGTCGGTGCGTAACCATATCCGTTTGCTGGGA
SEQ ID
R
up






CGCAAAGATTATCAACAGCTGCCGGGGCTGCGAACTCTGGATTACGTGCT
NO: 508








Ec_cip
b3846
168-267
AGATGGCATTGCCGAACTGGTATTTGATGCCCCAGGTTCAGTTAATAAAC
SEQ ID
R
up






TCGACACTGCGACCGTCGCCAGCCTCGGCGAGGCCATCGGCGTGCTGGAA
NO: 509








Ec_cip
b4043
 11-110
TAACGGCCAGGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCAGC
SEQ ID
R
up






CAGACAGGTATGCCGCCGACGCGTGCGGAAATCGCGCAGCGTTTGGGGTT
NO: 510








Ec_cip
b4044
509-608
TACTCGGCGTGCAATATGCCCGTGCGCCAGTAATTTTGTTAGTGGTCGGC
SEQ ID
R
up






AATATCCTCAACATTGTGCTGGATGTCTGGCTGGTGATGGGGCTGCATAT
NO: 511








Ec_cip
b4058
 64-163
CCCCGCGACAAGCTCATTGTCGTGACCGGGCTTTCGGGTTCTGGCAAATC
SEQ ID
R
up






CTCGCTCGCTTTCGACACCTTATATGCCGAAGGGCAGCGCCGTTACGTTG
NO: 512








Ec_cip
b4060
100-199
ATGGCTACCCTCACCACTGGCGTGGTTCTTCTTCGCTGGCAACTTCTTAG
SEQ ID
R
up






TGCCGTAATGATGTTTCTGGCCAGCACACTCAACATCCGTTTTCGTCGGT
NO: 513








Ec_cip
b4062
171-270
CGCCTGTTACTGGCCGCCGTTGAGTTGCGCACCACCGAGCGTCCGATTTT
SEQ ID
R
up






TGATATCGCAATGGACCTGGGTTATGTCTCGCAGCAGACCTTCTCCCGCG
NO: 514








Ec_cip
b4105
374-473
AACAAAGATAGTCCGATCAACAACCTGAACGATCTGCTGGCGAAGCGGAA
SEQ ID
R
up






AGATCTCACCTTCGGCAATGGCGATCCTAACTCCACCTCNNNNNNNNNNN
NO: 515








Ec_cip
b4106
610-709
ACCGTGGTCGTCACGCTGCATCAGGTGGATTACGCCCTGCGCTACTGCGA
SEQ ID
R
up






ACGCATCGTCGCCCTGCGCCAGGGGCACGTCTTCTACGACGGCAGCAGCC
NO: 516








Ec_cip
b4142
24-123
TTGCATGATCGCGTGATCGTCAAGCGTAAAGAAGTTGAAACTAAATCTGC
SEQ ID
R
up






TGGCGGCATCGTTCTGACCGGCTCTGCAGCGGCTAAATCCACCCGCGGCG
NO: 517








Ec_cip
b4143
490-589
AGCGATGGACAAAGTCGGTAAAGAAGGCGTTATCACCGTTGAAGACGGTA
SEQ ID
R
up






CCGGTCTGCAGGACGAACTGGACGTGGTTGAAGGTATGCAGTTCGACCGT
NO: 518








Ec_cip
b4166
397-496
AAACTCGGCTATGTTAGCCGTTATGCGCTGGGCCGTGACTATCACAAACT
SEQ ID
R
up






TCTGCGCAACCGACTCAAAAAGCTGGGCGAGATGATTCAGCAACATTGTG
NO: 519








Ec_cip
b4242
808-907
CGTGTTAGTGAGCAGGAAAGCGAGCCGAATGCCTTTCAGCAAGGGATCAG
SEQ ID
R
up






CCGCGTCAGTATGCTGCTGATTCGCTTTATGCTGGTGATGGCTCCGGTGG
NO: 520








Ec_gent
b1272
523-622
GCTGCCAGCGGCGGTTACATGATGGCCTGTGTGGCGGACAAAATTGTTTC
SEQ ID
C

x


GeneID =


CGCACCGTTTGCTATTGTGGGTTCCATTGGGGTGGTGGCGCAAATGCCCA
NO: 521





NC_00091









3












Ec_gent
b1719
481-580
ACGAAAACATCGCCCATGATGACAAGCCAGGTCTGTACTTCCATGAAGAA
SEQ ID
C

x





TATGTCGATATGTGCCGCGGTCCGCACGTACCGAACATGCGTTTCTGCCA
NO: 522








Ec_gent
b1914
392-491
ACAAATGGCGTTAAGCCAGATCGAACCAGAAAAAACAGAAAGCCCATTTG
SEQ ID
C







CCAGTTTGTCTGAACGTGAATTGCAGATTATGCTGATGATCACCAAGGGC
NO: 523








Ec_gent
b2821
743-842
CGGACACCTTTGGTCGCGTGCCGAACAAAGAGAGCAAAAAACCGGAAATC
SEQ ID
C

x





ACCGTGCCGGTAGTCACCGACGCGCAAAAGGGCATTATCATTCATTACGT
NO: 524








Ec_gent
b2830
223-322
TTGCGCTACAAATTACCGAAACGTTTGGTGCGTTGGGACACGAAGCCGGT
SEQ ID
C

x





TTGTATCGGCCAAAAACAAAAATGGTTTCTCTTGCAGCTGGTGAGCGGCG
NO: 525








Ec_gent
b2910
 23-122
TCCAAATTTTTGGCCGTTCACTGCGTGTGAACTGCCCGCCTGACCAAAGG
SEQ ID
C

x





GATGCGTTGAATCAGGCAGCGGACGATCTGAACCAACGGTTGCAAGATCT
NO: 526








Ec_gent
b3040
300-399
CATGCGCATCCGCAGGATTTAATGCAAAAATCGGTGCAGCCGTTGCCAAA
SEQ ID
C

x





ATCGATCAAGCGCACAGCCATTCTGCTCACTCTCGGCATCAGTCTGCATA
NO: 527








Ec_gent
b3389
102-201
CGAGCAGGTCATGTTGGTCACCAACGAAACCCTGGCTCCTCTGTATCTCG
SEQ ID
C







ATAAGGTCCGCGGCGTACTTGAACAGGCGGGTGTTAACGTCGATAGCGTT
NO: 528








Ec_gent
b3929
443-542
GGTTGGTGCCGCTGGCGAAGGCATTGGCGAAAGCGATGTCCGCGTCAATT
SEQ ID
C







TTGGCGGTGTCACCTTCTTCTCCGGCGACCATCTTNNNTATGCCGACAAT
NO: 529








Ec_gent
b4041
1507-1606
ACTGGCGTGAATCTATCGATCCCATCGAAGCGGTGCGTCCGGCCTGGTTA
SEQ ID
C

x





ACGCCGACGGTCAATAATATTGCTGCCGATCTGATGGTACGCATTAACAA
NO: 530








Ec_gent
b4059
171-270
CGTTGTGCTGTTCGGCAAACTGGCAGAAGTGGCCAGCGAATATCTGCGTA
SEQ ID
C







AAGGTTCTCAGGTTTATATCGAAGGTCAGCTGCGTACCCGTAAATGGACC
NO: 531








Ec_gent
b4169
448-547
GCCTGCGGTTGTCGCACCGCGCGTCAGCGAACCGGCGCGCAATCCGTTTA
SEQ ID
C







AAACGGAAAGTAACCGCACTACGGGTGTTATCAGCAGTAATACGGTAACG
NO: 532








Ec_gent
b4174
729-828
GAAGAAGTAAAAGCGGCGTTTGACGATGCGATTGCCGCGCGTGAAAACGA
SEQ ID
C







ACAGCAATACATTCGTGAAGCAGAAGCGTATACCAACGAAGTTCAGCCGC
NO: 533








Ec_gent
b4175
175-274
ATTGAAACGGTGAAAATGCTCGACGCACGTATTCAGACCATGGACAACCA
SEQ ID
C

x





GGCCGACCGCTTTGTGACCAAAGAGAAGAAAGACCTGATCGTCGACTCTT
NO: 534








Ec_gent
b4220
495-594
CGCAGCTGGGCATTGCGCTCGGCCTGCATAAAGCCTTCTGGGATATTGAT
SEQ ID
C

x





TATAACAGTGGCGAACGTTACCGCTTTGGGCATGTGACCTTTGAAGGATC
NO: 535








Ec_gent
b4255
100-199
ACACCATCGAACACCATCTTTCCGCAGACGATCTGGAAACCCTGGAAAAA
SEQ ID
C

x





GCAGCAGTTGAAGCGTTTAAACTCGGTTACGAAGTGACCGATCCAGAAGA
NO: 536








Ec_gent
b0085
379-478
TGGCGCAGTGGAGCCAACTGCTTGGCGAAACCAGCGCGGTAATGGGCACC
SEQ ID
R
dn






GTTGGTAACGGCCTGCTGGGGAAAGTGATCCCGACAGAAAATACCACCGG
NO: 537








Ec_gent
b0086
362-461
TTTTAAGCCAGTGCGGCAACACGCTTTATACGGCAGGCAATCTCAACAAC
SEQ ID
R
dn






GACATCGGTGTACCGATGACGCTGTTGCGCTTAACGCCGGAATACGATTA
NO: 538








Ec_gent
b0087
860-959
CCTGCTGGTGATTATGGGGGGCGTGTTCGTGGTAGAAACGCTTTCTGTCA
SEQ ID
R
dn






TCCTGCAGGTCGGCTCCTTTAAACTGCGCGGACAACGTATTTTCCGCATG
NO: 539








Ec_gent
b0428
254-353
GGACGAAGAATCGGGTGCTGGTTAAAGGCCTGATCTCTCCTGCTGTCTCG
SEQ ID
R
dn






CTGGTGTACGCCACCTTGCTGGGTATTGCTGGCTTTATGCTGCTGTGGTT
NO: 540








Ec_gent
b0429
156-255
GATCATTCTGACGGTGATTCCGTTCTGGATGGTGATGACAGGGGCTGCCT
SEQ ID
R
dn






CTCCGGCCGTAATTCTGGGAACAATCCTGGCAATGGCAGTGGTACAGGTT
NO: 541








Ec_gent
b0430
163-262
GCAGGCGGCCCGACAGGTAAGGACATTTTCGAACTGCCGTTCGTTCTGGT
SEQ ID
R
dn






TGAAACTTTCTTGCTGTTGTTCAGCTCCATCACCTACGGCATGGCGGCTA
NO: 542








Ec_gent
b0733
1104-1203
TCTCCCGCTATGCGCCGGATATGAATCATGTCACAGCCGCACAGTACCAG
SEQ ID
R
dn






GCGGCGATGCGTGGCGCGATACCTCAGGTTGCGCCGGTATTCTGGAGTTT
NO: 543








Ec_gent
b0734
291-390
TCTTCCGTCCGGTCGGTTTTGACTACCGCTCCAAGATTGAAGAAACCCGC
SEQ ID
R
dn






TGGCGTAACATGTGGGACTGGGGCATCTTCATTGGTAGCTTCGTTCCGCC
NO: 544








Ec_gent
b0735
 95-194
TGTTTTGGGACCCATCTCGTTTTGCCGCGAAGACCAGTGAACTGGAAATC
SEQ ID
R
dn






TGGCATGGTTTATTGCTGATGTGGGCCGTCTGTGCTGGTGTGATTCACGG
NO: 545








Ec_gent
b0794
563-662
TGGCGGGCGAAGGGATGTTAATCCTCTGGAGTACCTCGTATCTCGACGAA
SEQ ID
R
dn






GCCGAGCAGTGCCGTGACGTGTTACTGATGAACGAAGGCGAGTTGCTGTA
NO: 546








Ec_gent
b1049
748-847
CCGGAGCATCGCACGGCGTTGATCATGCCTATCTGTAACGAAGACGTGAA
SEQ ID
R
dn






CCGTGTTTTTGCTGGCCTGCGTGCAACGTGGGAATCAGTAAAAGCCACCG
NO: 547








Ec_gent
b1244
397-496
GCTGGCAATGACCGGGGTTGTTATCCCCAGTTTTGTGGTTGCGCCATTAT
SEQ ID
R
dn






TAGTCATGATATTTGCGATCATTTTGCATTGGCTGCCGGGCGGTGGCTGG
NO: 548








Ec_gent
b1378
1056-1155
GAAACTCTGCCCCGTGTCATTGGTGGGCGCTATGGTCTTTCATCCAAAGA
SEQ ID
R
dn






ATTTGGCCCGGACTGTGTACTGGCGGTATTTGCCGAGCTCAACGCGGCTA
NO: 549








Ec_gent
b2255
 944-1043
CCGGGTACTCATCCTCGGGGTGAATGGCTTTATTGGCAACCATCTGACAG
SEQ ID
R
dn






AACGCCTGCTGCGCGAAGATCATTATGAAGTTTACGGTCTGGATATTGGC
NO: 550








Ec_gent
b2276
182-281
TGGACGTTACGCCGCTGATGCGCGTTGATGGTTTCGCCATGCTTTACACC
SEQ ID
R
dn






GGGCTGGTATTGTTGGCGAGCCTCGCCACCTGTACTTTCGCCTACCCGTG
NO: 551








Ec_gent
b2277
421-520
CTTCTGGGAAATGATGCTGGTGCCGATGTACTTCCTGATCGCACTGTGGG
SEQ ID
R
dn






GGCATAAAGCCTCTGACGGTAAAACGCGTATCACGGCGGCAACCAAGTTC
NO: 552








Ec_gent
b2278
 904-1003
GACATCAAACGTGTTCTCGCTTACTCTACCATGAGCCAGATTGGCTACAT
SEQ ID
R
dn






GTTCCTCGCGCTTGGCGTGCAGGCATGGGATGCGGCGATTTTCCACTTGA
NO: 553








Ec_gent
b2279
178-277
GTGATGTACATTCTCGCCATCAGCCTCGCGGCGGCAGAAGCGAGTATCGG
SEQ ID
R
dn






CCTTGCGCTGCTGCTGCAACTTCACCGTCGTCGCCAGAACCTGAACATCG
NO: 554








Ec_gent
b2280
311-410
TGGTGGTGATTGTTTACGCCATCCTCGGTGTTAACGATCAGGGTATCGAC
SEQ ID
R
dn






GGTACGCCAATCAGTGCTAAAGCAGTGGGTATTACGCTGTTCGGGCCTTA
NO: 555








Ec_gent
b2281
 47-146
GTATCTGGATGATCGGCCTGCACGCGTTCGCCAAACGCGAAACGCGAATG
SEQ ID
R
dn






TACCCGGAAGAGCCGGTCTATCTGCCGCCCCGTTATCGTGGTCGTATCGT
NO: 556








Ec_gent
b2282
723-822
ATCGGGATTGTGACCATCTCTGCATTGATGGTGACGCTGTTCTTCGGTGG
SEQ ID
R
dn






CTGGCAAGGCCCGTTGTTACCGCCATTCATCTGGTTCGCGCTGAAAACCG
NO: 557








Ec_gent
b2283
160-259
CAATACCAAAACGCGGAAGACACGCGTGGTCGCCTGGTGATGTCCTGTAT
SEQ ID
R
dn






GACACCGGCTTCCGATGGCACCTTTATTTCCATTGACGACGAAGAAGCGA
NO: 558








Ec_gent
b2284
655-754
GAAACCCTGTGTAACGTTCCGGCGATCCTCGCTAACGGCGTGGAGTGGTA
SEQ ID
R
dn






TCAGAACATCTCGAAAAGTAAAGATGCTGGCACCAAGCTGATGGGCTTCT
NO: 559








Ec_gent
b2285
 32-131
CTTTTGAGCTGAGTGCGGCAGAGCGTGAAGCGATTGAGCACGAGATGCAC
SEQ ID
R
dn






CACTACGAAGACCCGCGTGCGGCGTCCATTGAAGCGCTGAAAATCGTTCA
NO: 560








Ec_gent
b2286
192-291
AAAGAAACTGCCGAAACCTTACGTCATGCTGTTTGACTTACACGGCATGG
SEQ ID
R
dn






ACGAACGTCTGCGCACACACCGCGAAGGGTTACCTGCCGCGGATTTTTCC
NO: 561








Ec_gent
b2726
 31-130
TGCCAACGGGCACTGGAATTGATCGAACAGCAGGCCGCAAAACACGGCGC
SEQ ID
R
dn






AAAACGCGTAACTGGGGTCTGGCTCAAAATTGGCGCATTTTCTTGTGTCG
NO: 562








Ec_gent
b2727
 1-100
ATGTGTACAACATGCGGTTGCGGTGAAGGCAACCTGTATATCGAGGGTGA
SEQ ID
R
dn






TGAACATAACCCTCATTCCGCGTTTCGTAGCGCGCCATTTGCCCCGGCGG
NO: 563








Ec_gent
b2729
725-824
AAATAGCGGCCCACAGCAAGGTAGAGAATCAGTATCGTCGGGTGGTACCG
SEQ ID
R
dn






GATGCCGGTAACCTGCTGGCGCAACAGGCGATTGCCGATGTGTTCTGTGT
NO: 564








Ec_gent
b2957
 72-171
CAATATCACCATTTTAGCAACCGGCGGGACCATTGCCGGTGGTGGTGACT
SEQ ID
R
dn






CCGCAACCAAATCTAACTACACAGCGGGTAAAGTTGGCGTAGAAAATCTG
NO: 565








Ec_gent
b2996
 917-1016
GGTTCTGGTACTGACGGGTGTGCCTTATGAAAATCTCGACCTGCCGAAAC
SEQ ID
R
dn






TGGACGATCTTTCTACCGGTGCGCGTTCCGAANNNNNNNNNNNNNNNNNN
NO: 566








Ec_gent
b3118
187-286
TAACACCTGCCGGTCAATTGTTACTCTCCCGTTCCGAATCCATTACCCGT
SEQ ID
R
dn






GAAATGAAAAATATGGTTAATGAGATAAGCGGTATGTCTTCTGAGGCGGT
NO: 567








Ec_gent
b3745
435-534
CAGCTATTAGAAGAAGAACGCGAACAACTGTTGAGTGAAGTTCAGGAACG
SEQ ID
R
dn






CATGACGCTGAGCGGACAACTTGAACCGATTCTCGCAGATAACAATACCG
NO: 568








Ec_gent
b3891
371-470
CAGTGATTGAGAATCTGGAGAAGGCATCGACTCAGGAGCTGGAAGATATG
SEQ ID
R
dn






GCCAGCGCACTGTTTGCCTCTGATTTCTCGTCCGTCAGCAGCGATAAAGC
NO: 569








Ec_gent
b3892
287-386
TCGTCAACGAGGAAGTAGGTGACACCGGGCGTTATAACTTCGGTCAGAAA
SEQ ID
R
dn






TGCGTTTTCTGGGCGGCGATTATTTTCCTGGTTCTGCTGCTGGTGAGCGG
NO: 570








Ec_gent
b4139
503-602
TGGGTCACCAGAAAGGTGAATATCAGTACCTGAACCCGAACGACCATGTT
SEQ ID
R
dn






AACAAATGTCAGTCCACTAACGACGCCTACCCGACCGGTTTCCGTATCGC
NO: 571








Ec_gent
b4152
140-239
TGTTTGCCCTGAAAAATGGCCCGGAAGCCTGGGCGGGATTCGTCGACTTT
SEQ ID
R
dn






TTACAAAACCCGGTTATCGTGATCATTAACCTGATCACTCTGGCGGCAGC
NO: 572








Ec_gent
b4153
169-268
TCCTGCCGTATGGCGATTTGTGGTTCCTGCGGCATGATGGTTAACAACGT
SEQ ID
R
dn






GCCAAAACTGGCATGTAAAACCTTCCTGCGTGATTACACCGACGGTATGA
NO: 573








Ec_gent
b4154
 959-1058
GCGAGAAAAAACTGCATGAACGTCTGCCGTTCATCTGCGAACTGGCGAAA
SEQ ID
R
dn






GCGTACGTTGGCGTCGATCCGGTTAAAGAACCGATTCCGGTACGTCCGAC
NO: 574








Ec_gent
b0014
208-307
ACGCCTGATTGGCCGCCGCTTCCAGGACGAAGAAGTACAGCGTGATGTTT
SEQ ID
R
up






CCATCATGCCGTTCAAAATTATTGCTGCTGATAACGGCGACGCATGGGTC
NO: 575








Ec_gent
b0015
289-388
TTTCGGCGATATTTTTGGCGGCGGACGTGGTCGTCAACGTGCGGCGCGCG
SEQ ID
R
up






GTGCTGATTTACGCTATAACATGGAGCTCACCCTCGAAGAAGCTGTACGT
NO: 576








Ec_gent
b0019
464-563
TTGATGGCTCTGGCTATTATCGACGATCTTGGGGCCATCATTATCATCGC
SEQ ID
R
up






ATTGTTCTACACTAATGACTTATCGATGGCCTCTCTTGGCGTCGCGGCTG
NO: 577








Ec_gent
b0161
769-868
CGGCGGCAACATCGGTATCGGTTTTGCTATCCCGAGCAACATGGTGAAAA
SEQ ID
R
up






ACCTGACCTCGCAGATGGTGGAATACGGCCAGGTGAAACGCGGTGAGCTG
NO: 578








Ec_gent
b0199
787-886
CTGACTGCGTGCCGATGCTGCGTCTGGAGTTTACCGGTCAATCGGTCGAT
SEQ ID
R
up






GCCCCACTGCTTTCTGAAACCGCGCGTCGTTTCAACGTCAACAACAACAT
NO: 579








Ec_gent
b0313
137-236
GCGTTTCTACGGGGATCATCAGCCACTATTTCAGGGACAAAAATGGTCTG
SEQ ID
R
up






CTGGAAGCAACCATGCGCGATATCACCAGTCAGCTGCGTGACGCGGTTTT
NO: 580








Ec_gent
b0460
298-397
TGCCAGACAATTGACACGCTGGAGCGTGTTATCGAGAAAAATAAATACGA
SEQ ID
R
up






ATTATCAGATAATGAACTGGCGGTATTTTACTCAGCCGCAGATCACCGCC
NO: 581








Ec_gent
b0631
 67-166
GCGTTACCTGAGCTGGTTGATCAGGTGGTTGAAGTGGTACAGCGCCATGC
SEQ ID
R
up






GCCAGGTGACTACACCCCAACGGTAAAACCAAGCAGCAAAGGCAACTACC
NO: 582








Ec_gent
b0841
233-332
TCCGCACGACCGACCCTTTGTCGAAAATATCGGCTATAACTTCCTGCATC
SEQ ID
R
up






ATGCGGCGGATGACTCATTCCCAAGCGATCACGGTACGGTGATTTTCACC
NO: 583








Ec_gent
b1113
737-836
GTCTGGCGGCCTATGGCGGCGTTTATTTGCTTCACGGTACGAACGCCGAT
SEQ ID
R
up






TTCGGCATTGGCATGCGGGTAAGTTCTGGCTGTATTCGTCTGCGGGATGA
NO: 584








Ec_gent
b1304
368-467
CGAGCTGGAAAACAAATTGAGCGAAACACGCGCTCGCCAGCAGGCATTGA
SEQ ID
R
up






TGTTACGCCATCAGGCGGCAAACTCGTCGCGCGATGTGCGTCGTCAGCTG
NO: 585








Ec_gent
b1305
 72-171
GCATTACAGCAATCGTTCTGGTCGCAGTGAATTGTCGCAAAGTGAGCAGC
SEQ ID
R
up






AGCGATTAGCGCAACTGGCTGATGAAGCAAAACGGATGCGCGAACGTATT
NO: 586








Ec_gent
b1306
 91-190
GATGTACCGGTAAAACTGGTGCGTATCCTGGTGGTGCTGTCGATTTTCTT
SEQ ID
R
up






CGGTCTGGCGCTGTTTACCCTGGTTGCTTACATCATTTTGTCATTTGCGC
NO: 587








Ec_gent
b1436
 58-157
CTCATGGCAGGGCACAAAGGACATGAATTTGTGTGGGTAAAGAATGTGGA
SEQ ID
R
up






TCATCAGCTGCGTCATGAAGCGGACAGCGATGAATTGCGTGCTGTGGCGG
NO: 588








Ec_gent
b1530
 73-172
AAAGATCGTCTGCTTAACGAGTATCTGTCTCCGCTGGATATTACCGCGGC
SEQ ID
R
up






ACAGTTTAAGGTGCTCTGCTCTATCCGCTGCGCGGCGTGTATTACTCCGG
NO: 589








Ec_gent
b1531
112-211
GGTTACTCCAAATGGCACCTGCAACGGATGTTTAAAAAAGAAACCGGTCA
SEQ ID
R
up






TTCATTAGGCCAATACATCCGCAGCCGTAAGATGACGGAAATCGCGCAAA
NO: 590








Ec_gent
b1599
127-226
CGGCGGTGCTGGCTGCCTTTAGTGCGCTTTCTCAGGCCGTTAAAGGGATC
SEQ ID
R
up






GACTTGTCTGTCGCTTATGCATTGTGGGGCGGGTTTGGTATTGCCGCCAC
NO: 591








Ec_gent
b1728
 40-139
TCTATTGCTTGTGCGGTATTTGCCAAAAATGCCGAGCTGACGCCCGTGCT
SEQ ID
R
up






GGCACAGGGTGACTGGTGGCATATTGTCCCTTCCGCAATCCTGACGTGTT
NO: 592








Ec_gent
b1829
27-126
AACGAACCTGGCCGTAATGGTCGTTTTCGGGCTGGTACTGAGCCTGACAG
SEQ ID
R
up






GGATACAGTCGAGCAGCGTTCAGGGGCTGATGATCATGGCCTTGCTGTTC
NO: 593








Ec_gent
b2106
505-604
AGGATGCCCATGCACGAGCCCATGCCAATGACATTAAACGACGCTTTGAT
SEQ ID
R
up






GGTAGAGAGGTCACCAACTGGCAAATTTTGCTATTTGGCTTAACCGGTGG
NO: 594








Ec_gent
b2119
114-213
ATACGCCGATGAACTGGCAAAATTAAAACAAAATGATAACGCACCTTGCC
SEQ ID
R
up






CGCCCGGTTGGCAGTTAAGTTTGCCTGCGGCCCGTGCTTTTATCCTTGGC
NO: 595








Ec_gent
b2181
108-207
CGGTGACAACAGCCTGGTGGCGCTTAAATTGCTTAGCCCGGATGGTGATA
SEQ ID
R
up






ATGCATGGTCGGTGATGTATAAACTAAGCCAGGCGTTAAGCGACATCGAA
NO: 596








Ec_gent
b2392
669-768
ATGGCGGTTCGCGTCAACAACGTTATTCCGCCACCAAATGGGATGTGGCT
SEQ ID
R
up






ATCGCCATGACGATTGCCGGTTTTGTCAATCTGGCGATGATGGCTACAGC
NO: 597








Ec_gent
b2531
137-236
TTTCCCGTCTGCGTAAAAATGGTCTGGTTTCCAGCGTACGTGGACCAGGC
SEQ ID
R
up






GGTGGTTATCTGTTAGGCAAAGATGCCAGCAGCATCGCCGTTGGCGAAGT
NO: 598








Ec_gent
b2582
110-209
TGATTAATGCGACCGGTGAAACGCTCGACAAATTGCTGAAGGATGATCTA
SEQ ID
R
up






CCTGTGGTGATCGACTTCTGGGCACCGTGGTGCGGCCCCTGCCGTAATTT
NO: 599








Ec_gent
b2667
113-212
GCACCAGCGCGGGAGAGCTGACGCGCATTACCGGACTGAGTGCCTCTGCG
SEQ ID
R
up






ACATCACAGCATCTCGCTCGTATGCGGGACGAAGGGCTTATCGACAGCCA
NO: 600








Ec_gent
b2980
427-526
GATAACCCGCTGTTATGAAAAAATGCTCGCCGCCAGTGAGAACAACAAAG
SEQ ID
R
up






AGATTTCGCTGATCGAACATGCGCAGTTGGATCACGCTTTCCATCTCGCC
NO: 601








Ec_gent
b3184
 20-119
TTGGCATTCTTTTGGCGCTCACCACAGCAATTTGCTGGGGGGCGTTGCCA
SEQ ID
R
up






ATCGCAATGAAGCAGGTGCTGGAGGTGATGGAACCTCCGACAATCGTGTT
NO: 602








Ec_gent
b3343
 1-100
ATGCTGCACACATTACATCGTTCACCCTGGCTGACGGATTTTGCTGCGCT
SEQ ID
R
up






GCTGCGTCTGCTCAGTGAAGGAGACGAACTGCTATTATTGCAAGATGGCG
NO: 603








Ec_gent
b3399
178-277
GTTACGCCACAGGAAGCGATGGAATATATGCGCCAGCAATATCACGACGT
SEQ ID
R
up






ACAGCATACGCTAAACTGGTACTGTCTTGATTACTGGAGTGAGCAACTGG
NO: 604








Ec_gent
b3400
147-246
GAGCTGAATGCCACGCTCACTCTGCGCCAGGGAAATGACGAACGCACGGT
SEQ ID
R
up






GATTGTAAAGGCGATTACTGAACAGCGTCGCCCCGCCAGCGAGGCAGCCT
NO: 605








Ec_gent
b3401
390-489
GTTGGTCTGGAAGGTGATACCCTGGCGGCCTGCCTGGAAGATTACTTTAT
SEQ ID
R
up






GCGTTCTGAACAGCTGCCGACGCGCCTGTTTATTCGCACCGGCGACGTAG
NO: 606








Ec_gent
b3461
130-229
CATGGCGATCTGGAAGCAGCTAAAACGCTGATCCTGTCTCACCTGCGGTT
SEQ ID
R
up






TGTTGTTCATATTGCTCGTAATTATGCGGGCTATGGCCTGCCACAGGCGG
NO: 607








Ec_gent
b3635
113-212
CAGAAGAGATCTACCGTTTAAGCGACCAACCAGTGCTTAGCGTGCAGCGG
SEQ ID
R
up






CGGGCTAAATATCTGCTGCTGGAGCTGCCTGAGGGCTGGATTATCATTCA
NO: 608








Ec_gent
b3686
100-199
TTCCCGCCGTACAACATTGAGAAAAGCGACGATAACCACTACCGCATTAC
SEQ ID
R
up






CCTTGCGCTGGCAGGTTTCCGTCAGGAAGATTTAGAGATTCAACTGGAAG
NO: 609








Ec_gent
b3687
101-200
GCGGCTACCCTCCGTATAACGTTGAACTGGTAGACGAAAACCATTACCGC
SEQ ID
R
up






ATTGCTATCGCTGTGGCTGGTTTTGCTGAGAGCGAACTGGAAATTACCGC
NO: 610








Ec_gent
b3743
149-248
GGATCATTACCGGGGCGCGTATTGATGTCAGCCCGAAGCAGCTCGGTTAT
SEQ ID
R
up






GACGTAGGCTGCTTTATCGGCATTATATTAAAGAGCGCCAAAGACTACCC
NO: 611








Ec_gent
b3820
241-340
GTGTGCGTGGGAAGTACCTTAACCCGCCACGAAACCATCAGTGAAGATGA
SEQ ID
R
up






ACTACGCCAGCGGCTATCGCGGATGGGGACCATTGATCTTCGCGTTGATT
NO: 612








Ec_gent
b3828
 62-161
CCGCTGCGGCGACGTTGCATCAGACGCAATCCGCCCTGTCTCACCAGTTT
SEQ ID
R
up






AGCGATCTGGAACAACGCCTTGGCTTCCGGCTATTTGTGCGTAAGAGCCA
NO: 613








Ec_gent
b3932
133-232
GCGGGCTTTGCGGGCGGTACTGCGGATGCTTTTACGCTGTTCGAACTGTT
SEQ ID
R
up






TGAACGTAAACTGGAAATGCATCAGGGCCATCTGGTCAAAGCCGCCGTTG
NO: 614








Ec_gent
b3941
125-224
GGAACTCCATCGATCGCCTTAGCAGCCTGAAACCGAAGTTTGTATCGGTG
SEQ ID
R
up






ACCTATGGCGCGAACTCCGGCGAGCGCGACCGTACGCACAGCATTATTAA
NO: 615








Ec_gent
b4060
100-199
ATGGCTACCCTCACCACTGGCGTGGTTCTTCTTCGCTGGCAACTTCTTAG
SEQ ID
R
up






TGCCGTAATGATGTTTCTGGCCAGCACACTCAACATCCGTTTTCGTCGGT
NO: 616








Ec_gent
b4062
171-270
CGCCTGTTACTGGCCGCCGTTGAGTTGCGCACCACCGAGCGTCCGATTTT
SEQ ID
R
up






TGATATCGCAATGGACCTGGGTTATGTCTCGCAGCAGACCTTCTCCCGCG
NO: 617








Ec_gent
b4242
808-907
CGTGTTAGTGAGCAGGAAAGCGAGCCGAATGCCTTTCAGCAAGGGATCAG
SEQ ID
R
up






CCGCGTCAGTATGCTGCTGATTCGCTTTATGCTGGTGATGGCTCCGGTGG
NO: 618








Ec_gent
b4321
100-199
GCGGCGCTGTCCGTCGGGATGCTGGCGGGCATGGATTTGATGTCGCTGCT
SEQ ID
R
up






GCACACCATGAAAGCGGGCTTCGGCAACACGCTGGGGGAACTGGCTATCA
NO: 619








Ec_gent
b4322
867-966
GGTCCGCGTATTTACTTCACCCATCTGCGCTCCACCATGCGTGAAGATAA
SEQ ID
R
up






CCCGAAAACCTTCCACGAAGCGGCGCACCTGAACGGTGACGTTGATATGT
NO: 620








Ec_gent
b4484
128-227
GAGCCATATGTTCGACGGCATAAGTTTAACCGAACATCAGCGTCAGCAGA
SEQ ID
R
up






TGCGAGATCTTATGCAACAGGCCCGGCACGAACAGCCTCCTGTTAATGTT
NO: 621








Ec_gent
b4550
 6-105
CCGATATCAGCATACTAAAGGGCAGATAAAGGATAATGCGATAGAAGCAT
SEQ ID
R
up






TACTACATGATCCCTTATTCCGACAGCGCGTAGAGAAAAATAAGAAGGGG
NO: 622








Ab_mero
BJAB07104
1591-1690
GGACCAATATTTAAGTCATGCTGTCGGGAAAACCAATCAGCGAGTTTACT
SEQ ID
C

x


GeneID =
_00229

TCCTTGATGAAACAGGGCGCAGCTATGCCTTGCCAATTAGTAACTTACCT
NO: 623





NC_02172
(ABTJ_036








6 (alt
09)








GeneID =









NC_01784









7, used









for FIG.









6









heatmap)












Ab_mero
BJAB07104
877-976
GATTTTGCACTATAACCCTTCGCAAGAATATTGGGCCGATAGTGTCGACC
SEQ ID
C

x



_00412

CACTCTGGAAACAGCGCTATGACTTAGGGGTAAAAGAGCGTTTTATAGCG
NO: 624






(ABTJ_034









19)











Ab_mero
BJAB07104
163-262
ACGAATAAGGCAGATCCATTACGTTTACAACTTGATGCTAGCGAAGGTGT
SEQ ID
C

x



_00560

TGTTTTTACCCTTGATCCTAAAGGTGAAGTTGCTGCATACCGTGGTAAAC
NO: 625






(ABTJ_032









70)











Ab_mero
BJAB07104
326-425
TCCTGACACGGTTACTTGATGAAGTGCATCAACAATTACCGAAGATTCAG
SEQ ID
C

x



_01090

TTGCATTTACATGAAGCTCAAAGTGAGAAGATTGTAGAGCGCCTAGAACA
NO: 626






(ABTJ_028









19)











Ab_mero
BJAB07104
 58-157
GCTAATGCAGCTGGTTATGGGGTAATTGATCTAGCTAAAGTTGTTGAAAG
SEQ ID
C





_01651

TAGTACTTATTTGAAACAGCAAAATGCAAGCTTAAACCAGTCAGTGAAAC
NO: 627








Ab_mero
BJAB07104
419-518
TAAGCAAGCTCAAGTCATTGGTAATCCGGGTTGTTACCCAACGACTGTTC
SEQ ID
C

x



_01716

AACTGGGCTTGGCTCCACTTTTAAAATCAGCACAAGCATTGATTGAAACA
NO: 628






(ABTJ_016









86)











Ab_mero
BJAB07104
221-320
CAGCTGCGGTGAATGATGCTGTGCGTCAAGCTGAAGTAGTTTCTGAAGAA
SEQ ID
C





_02033

AAAATGCAAAAAGCTAACTCTGGTATGGGTTTACCTCCTGGTTTAGCAGG
NO: 629








Ab_mero
BJAB07104
139-238
GTAGATGTTAATGAAGTGGCTGCGGAAAGCCAGCGAAAAGCAGCATTAAG
SEQ ID
C





_02399

TGAACATGACAACTTAGAACCGGGGTCAAATTTATGGATTGCTCGTCAGG
NO: 630








Ab_mero
BJAB07104
896-995
TACCACGTAATCTTAAACTTTCGGCTGAAGATGTTTGGGATGGCGTGAAC
SEQ ID
C

x



_03654

TATATTTTATCGCTTAAGTTCCAAGAACCACAGTTCTCTGGTCAAACCAA
NO: 631






(ABTJ_001









21)











Ab_mero
BJAB07104
148-247
GACCAGTCAACTCGTTGCAGACAGCTTATCTGAGCTTGAACCTGCCAATA
SEQ ID
C

x



_03685

CGGTCTCTTTAGCTCTGATTGCCAATCGCTATGCGACCAATCCAAGTGTG
NO: 632






(ABTJ_000









92)











Ab_mero
BJAB07104
466-565
TTGTGTCTGGCGGACCAATGGAAGCAGGTAAGGTTAAATTCCGCGGTGAT
SEQ ID
C

x



_03755

GAAAAAGCAATTGACCTTGTAGATGCTATGGTTGTTGCAGCTGATGACAG
NO: 633






(ABTJ_000









27)











Ab_mero
BJAB07104
361-460
CTCATGAACTTAATGGACTTGATCCCAGTTGACTGGATTCCTCAAGTTGC
SEQ ID
R
dn




_00185

TGCATTTGTGGGTGCTAACGTATTTGGTATGGACCCTCACCACGTTTACT
NO: 634








Ab_mero
BJAB07104
105-204
AGAAGCTGTTGCTCGTCAACCAGAATTAGCTCCACAACTTCAAACTCGTA
SEQ ID
R
dn
x



_00186

TGTTCTTAATCGCGGGTCTTCTTGATGCTGTGCCTATGATCGGTGTTGGT
NO: 635






(ABTJ_036









55)











Ab_mero
BJAB07104
227-326
TCGAACAAGCGAACCGTCGTGCAGCGCAATTGATCGAAGAAGCTCGTACT
SEQ ID
R
dn




_00187

CAAGCTGCGGCTGAAGGTGAGCGTATTCGTCAACAGGCTAAAGAAGCTGT
NO: 636








Ab_mero
BJAB07104
404-503
CAGCACAGTAACTGTTTCAGTTGAAGTTAAACCTGAGCTTATTGCAGGTG
SEQ ID
R
dn
x



_00188

TTGTAATTCGTGCAGGCGATCAAGTGATAGATGATTCTGCGCTTAACAAG
NO: 637






(ABTJ_036









53)











Ab_mero
BJAB07104
410-509
AAGTAGCACCAGGTGTAATTTGGCGTCAATCTGTAGACCAACCTGTTCAA
SEQ ID
R
dn




_00189

ACTGGTTATAAATCAGTTGATACCATGATTCCTGTGGGTCGTGGTCAGCG
NO: 638








Ab_mero
BJAB07104
730-829
CACGTATGGTCGCAATGAAAGCAGCGACAGATAACGCAGGTCAGCTTATC
SEQ ID
R
dn
x



_00190

AAAGACTTACAACTCATCTATAACAAGCTGCGTCAAGCCGCGATTACTCA
NO: 639






(ABTJ_036









51)











Ab_mero
BJAB07104
868-967
ACTAAATCTGGTTCGATCACTTCGATCCAAGCAGTATATGTACCTGCCGA
SEQ ID
R
dn
x



_00191

TGACTTAACAGACCCATCGCCTGCAACTACATTTGCTCACTTAGACGCAA
NO: 640






(ABTJ_036









50)











Ab_mero
BJAB07104
215-314
AACCTCATGTTGTGACGGTTCTTGCAGATACTGCAATCCGTGCTGACAAT
SEQ ID
R
dn
x



_00192

TTGGATGAAGCTGCAATTTTAGAAGCACGTAAAAATGCTGAACAATTGCT
NO: 641






(ABTJ_036









49)











Ab_mero
BJAB07104
1153-1252
AGCATTTATTGCTGGTGTTGACCGTATCATGGATATGGCTCGTACTGCGT
SEQ ID
R
dn




_00485

TGAACGTTGTAGGTAACGCGCTTGCTGTACTTGTAATCAGTAAATGGGAA
NO: 642








Ab_mero
BJAB07104
336-435
TAACCATATTCAACATGATGATGCCGATTATGTGGGGGCAGTAAAAGAAA
SEQ ID
R
dn




_00893

ATATGATGGGGATTATTAGAGAAAAAGAAAAGAAGAAAGGAAAGAACTGG
NO: 643








Ab_mero
BJAB07104
 93-192
TTTACTGGTGCATCCTTCCCTCATGTTAGATGCAAACGGACACTACAATC
SEQ ID
R
dn




_01701

ATAGCCAGCTTATGCTGGTGATGGTGGGTATTTCCGGAGGCTTCATTTAT
NO: 644








Ab_mero
BJAB07104
381-480
CAACATCTAGGAGTAACTTGGTTAGTTGCCCTAGGTTCTAACATGTCAGC
SEQ ID
R
dn




_01703

GCTCTGGATTTTAGTTGCGAATGGCTGGATGCAAAACCCTGTAGGTGCAG
NO: 645








Ab_mero
BJAB07104
361-460
AGCCGTTTCTTCAATGGTTTCCGTCGTGATGCTCACCCTATGGCAATCAT
SEQ ID
R
dn




_03045

GGTTGGTGTAGTAGGCGCATTATCTGCTTTCTATCACAACAACCTTGACA
NO: 646








Ab_mero
BJAB07104
673-772
TTTAGAAGAAACTCCTCCTGATGAAAGCCTTTGGGAAGGTGAATGTTTCG
SEQ ID
R
dn




_03047

TATTTGATGGACGTACTGCTGTAACTCATGGTGTTGAAGAAGGTGCAAAC
NO: 647








Ab_mero
BJAB07104
 62-161
TCAATAGCTGCTATATGTTGAATGACCAAGGTAAAGAAGTACCAATCACA
SEQ ID
R
dn




_03111

ACTGCAATGATTCGTTCAGTATGTCATCAGTTACTTAACCAGTGCCGCGC
NO: 648








Ab_mero
BJAB07104
107-206
ATCATGATGACGATCGTTATGACCGTAACGATGGACGTCGATATAGTGAG
SEQ ID
R
up




_00049

TGGGAACGCAAACGTTGGGAAGAGCGTAAAAGATTATATGAACAACAACG
NO: 649








Ab_mero
BJAB07104
132-231
TATGGCAAGCTTTGCTGATCCTCCTTTTGACCGAGGACATGGCCCGAAAG
SEQ ID
R
up
x



_00069

GTCCTAAAGGCGGACCTCGTGGTGAATGGAATGATCGTGGGCATAAATTT
NO: 650






(ABTJ_037









81)











Ab_mero
BJAB07104
260-359
AAGACTTGATCCGTGCCAACATGAAAGAAATCGCACAAGTATTGACGGCT
SEQ ID
R
up




_00138

GAACAAGGTAAAACTTTGGCAGATGCCGAAGGTGATATTCAACGTGGTCT
NO: 651








Ab_mero
BJAB07104
518-617
ATAACCTGATTTTAGGAATTTCAATGGCTGCGGTGGCCGAAGGCATGGCA
SEQ ID
R
up




_00139

CTCGGTGTGAAGCTAGGCATCGACCCACAAGCATTGGCAGGTGTAATTAA
NO: 652








Ab_mero
BJAB07104
1011-1110
GGGCAAACTGAAGTAGGCATGGTGGTGTGTAATCATCATGGTTTAAAACA
SEQ ID
R
up




_00140

TGAAATTCATGCTGGTTCAGCAGGTTTTCCAAGTCCGGGCTATCGTGTTG
NO: 653








Ab_mero
BJAB07104
132-231
TGTGACTCTTGATATTTCAAGTGCATCACACCCGTTCTACACAGGTGAAG
SEQ ID
R
up




_00444

TACGTCAAGCAAGTAATGAAGGGCGTGTTGCAAGCTTTAACAAACGCTTC
NO: 654








Ab_mero
BJAB07104
373-472
GCTGATTTAACCGCGAATAAACAAGGCTTACGGACCAACTCTAGTGTTTC
SEQ ID
R
up




_00589

TACAGGACATTCTTTCGACTTAAATTCGGGAGATGACAGCGCGAAAGGTT
NO: 655








Ab_mero
BJAB07104
1663-1762
GAATATTATGCTGGTTTCGGTGACTGAACGTACGCAAGAAATTGGTGTGC
SEQ ID
R
up




_00590

GTATGGCTGTGGGTGCTCGACAAAGTGATATTTTGCAGCAGTTCCTGATT
NO: 656








Ab_mero
BJAB07104
1104-1203
TGAACAAAAACAACTTATTGAACAAGGCAAAGCAACACTAAGTGTAGTTC
SEQ ID
R
up
x



_00591

GCGTTTTACAAGCAGATGGTACGACTAAACCAACACAAATTTTGGTAGGT
NO: 657






(ABTJ_032









39)











Ab_mero
BJAB07104
436-535
TGATTAATGGCACAGATATGCCACGCTTTTTGGTACAGAACATTGCCCAA
SEQ ID
R
up




_00622

GCCCAAGAAATGCTAGAAGCAGTCAATCACCCTGCCTTAAAAATGCAATA
NO: 658








Ab_mero
BJAB07104
328-427
CGTTCTAAGTTGAAAAAAATTATCGATGAAGATAGTTATTTGACTGCCGA
SEQ ID
R
up




_01132

ACATGAATTAAGTCCAATGACGATTAATGTAGATAAGGCAACGCAAGAAA
NO: 659








Ab_mero
BJAB07104
1390-1489
CTGGTAGAAGGCACTAAACAAGCTCAGGTTGAACTTGATAAAGCACGTAT
SEQ ID
R
up




_01335

TGCTTTTGAAAAAGCTCAGCGCGAAGGCGATTTGGCAGAAGCAGCACGTT
NO: 660








Ab_mero
BJAB07104
775-874
ACAGGCCAAAAACTACGTAACCACCCTCACCTCAATAAATATTCGATTCC
SEQ ID
R
up




_01499

ATTTAGTATGGAAGCCGACTCGGTAAACAGTGCAATTTTAAGCCCTGAGG
NO: 661








Ab_mero
BJAB07104
798-897
TAAAGTTCAATGAAGAAACAGGCCACTATGAGTTTGGCGAGATTGACTGG
SEQ ID
R
up




_01500

CACGAATTTAATGAAGTGATTGCCGGACGTGGACCATGTAATCACGAGCG
NO: 662








Ab_mero
BJAB07104
227-326
AGAACGTGAGTTTTTAAACCTCTTGTTGTGCGAACAACCCAATGGTGACT
SEQ ID
R
up




_01502

TTGCACAAACGATTGTACGCCAATGGTTGATGGACCATTACCATCTTCAT
NO: 663








Ab_mero
BJAB07104
472-571
GCCGAGCAAATTATGGATTTGAAAGATCAGTTCAAAGAACGCTTTCAACT
SEQ ID
R
up




_01504

TATCAATATTTTTTCTCGTGAGTTCAACGATAGTGAACTAATGAACGGTC
NO: 664








Ab_mero
BJAB07104
525-624
TGCAGTCAAGTGGTTCCGACCGAATTAACCGTTGAATATGCGGTTCAACT
SEQ ID
R
up




_01505

TGCAGCCAAAATTGCCAAACAAGCGCCTTTAGCGATTCGCGTGATTAAAC
NO: 665








Ab_mero
BJAB07104
 927-1026
CAGGTTTAACGCTAGATCAGATGGATGTGATTGAGCTGAATGAAGCATTC
SEQ ID
R
up




_01508

GCAGCCCAATCTTTGGCTTGTATGCGTGAACTTGGTCTAAAAGATGACGA
NO: 666








Ab_mero
BJAB07104
228-327
AGACAACTATCCGTTTGGTATGTTTGCCGTACCGCAAGAGCAAATTGTGC
SEQ ID
R
up




_01509

GTTTACATGCATCATCTGGTACAACGGGTAAACCGACTGTGGTGGGTTAT
NO: 667








Ab_mero
BJAB07104
567-666
GAGTATGTAGCACAGCTCCCTAAAAATATTGTACCGCTTGCCATGCAAGT
SEQ ID
R
up




_01629

TGCAGCGATGCAACGTGATTTAATTGAGTTACAGGATCAGTCTTCTACCG
NO: 668








Ab_mero
BJAB07104
1236-1335
ATTGGTTATGAAAACTCTGCAAAAGTGGCGAAAACTGCTTATAAAGAGAA
SEQ ID
R
up




_01630

TAAAACTTTAAAACAAGTTGCTGTAGAGCTAGGACTTGTTACAGCAGAGC
NO: 669








Ab_mero
BJAB07104
705-804
AATTGCAAGTGTGCTTGGCATGATTGTCGGGAATACGGGCAAGATGGCAC
SEQ ID
R
up




_01739

GGGATTGGTCACTCATGATGCAAACTGAAATTGCAGAGTTGTTTGAGCCA
NO: 670








Ab_mero
BJAB07104
425-524
TTTAGCCGAGCTAGTTAAAACTACCCATACCCGCTGGTTCAGTGAAAAAT
SEQ ID
R
up




_01740

TTGACTATCAGCATAATGTGGTTGCACAGACAACGATTCAAAGTCTCGCA
NO: 671








Ab_mero
BJAB07104
792-891
CCAAAGGTACGGTTTTGCTTTGGGTGACTTACTTCATGGGACTCGTGGTT
SEQ ID
R
up




_01741

GTTTACTTGCTAACAAGTTGGTTACCAACACTTATGCGTGAAACAGGTGC
NO: 672








Ab_mero
BJAB07104
268-367
ACTAAAGAAGATTTAAAAGAGCTGATCTTACACAGTTCACTCTATGCGGG
SEQ ID
R
up




_01742

TTTACCTGCTGCAAACGCTGCAATGCATATGGCTGAAGAAGTCTTTAAAG
NO: 673








Ab_mero
BJAB07104
291-390
TCTAGAAGTATGGCAAGCCAATGCTTCTGGTCGTTACCGCCATCCAAACG
SEQ ID
R
up




_01743

ATAAGTTTATTGGTGCAATGGACCCTAACTTTGGTGGGTGTGGTCGTACC
NO: 674








Ab_m ero
BJAB07104
459-558
TTTGAAGATGAAGCAGAGGCAAATGCTAACGATCCAATTCTAAATAGCAT
SEQ ID
R
up




_01744

TGAATGGGCACCACGTCGCCAAACACTTATTGCGAAACGTTTTGAAGAAA
NO: 675








Ab_mero
BJAB07104
393-492
TCGCGGGAAAATTTGGCGTTTATCCCAAGCATGGGTGAAGAAGGGCTTTG
SEQ ID
R
up




_01747

TTGATAATACTGTACAGGTCAAATTTGGTCGTATGGGAATGTCAGAGGAC
NO: 676








Ab_mero
BJAB07104
 63-162
ATTAGGAACAGGTATTGCGATTGGCATGTGTATGTACAAGAAAAAGCAAA
SEQ ID
R
up




_01949

AGAACAGTAAGAGCTTCTCTACTGATAGTGATACCGACTCATTGATTAGT
NO: 677








Ab_mero
BJAB07104
713-812
TATTAGTGGTTGGATACACTTCTGCTGGTTCATTAACGTTTTATGTAGAG
SEQ ID
R
up




_01991

ACCGTTTATTCAAAAACCTATTTAACCAACTTAGGGATGGACGGAAAAAC
NO: 678








Ab_mero
BJAB07104
837-936
GGACTAGAACGTTTAGGTGTAGAACTCAATCCACAAGGTTTTGTGGCAAT
SEQ ID
R
up




_02013

TGATGACTATTGTAAAACCAACGTAGCAGGGCTTTATGCCATTGGTGATG
NO: 679








Ab_mero
BJAB07104
1274-1373
GGTGGTAGCTTTAGCATTTCAAATTTAGGAATGTTAGGCATTAAACAGTT
SEQ ID
R
up




_02014

CGATGCCATTATTAACCCACCGCAAGGTGCAATTATGGCATTAGGTGCTT
NO: 680








Ab_mero
BJAB07104
459-558
TCCGTTATATGTTTGGCGGAAAAGCAAAAGCACCAATGGTTGTACGTGGC
SEQ ID
R
up




_02015

ATGATTGGCGCAGGTTTCTCTGCGGCAGCTCAGCATTCTCAGTCACCATA
NO: 681








Ab_mero
BJAB07104
305-404
TTGCCGATTTAGATAAAGGTATGCTCGGTGCCAACGGGATTGTGGGTGGT
SEQ ID
R
up




_02016

GGGCCTCCTTTAGCAATTGGTGCAGCGTTGACAGCGAAAACCTTAAAGAC
NO: 682








Ab_mero
BJAB07104
727-826
CTATGCCTTATATGGCGATCGACCAGTGAGTACCACTACACTAAAAGCTG
SEQ ID
R
up




_02018

AGCTCTCACAGCTTCGAAACCTGATTCCCGATGTGATCGAGTCACGACCA
NO: 683








Ab_mero
BJAB07104
1747-1846
GTGACTGATGAAATCAAACTGTTAAATGAAGAAGACGGTATTGCGCCAGG
SEQ ID
R
up




_02356

TGTAGAAATTCGCCACCGTAATGAACTTGACGCAGTTCAACGTGAGCTGC
NO: 684








Ab_mero
BJAB07104
155-254
ATGACGCCTTAGGTAAAGTGAAATTACCAAATAAAAAAGTGCAGGCACTG
SEQ ID
R
up




_02449

ATCAATGCCAAAAAACTTGGACAAAATGATGAGACCTTGCCGTGCCCTGT
NO: 685








Ab_mero
BJAB07104
227-326
ATCTGCAATTGGCGGTGGTTTAGGTGGCGGTGCAGGTTATACTGTTGGTA
SEQ ID
R
up
x



_02515

AAAGCATGGGTGGTACAAACGGTGGTTACATCGGTGCTGCTTTAGGTGCA
NO: 686






(ABTJ_013









86)











Ab_mero
BJAB07104
229-328
GCGACCGTCGTAACCGTACAGAAGCGGCTATTGGTGGTGCTTTAGGCGGT
SEQ ID
R
up
x



_02516

GGCGCGGGTTACACCGTTGGTAAAAACATGGGCGGTACAAATGGCGGATA
NO: 687






(ABTJ_013









85)











Ab_mero
BJAB07104
410-509
CGGCATTAACTTGGTAAATGTCCGCTTTTTTGGGGAATCGGAGTTCTTAT
SEQ ID
R
up




_02813

TTTCCTGCATTAAAATTGTTGCGATTTTAAGTATGATTGGCTTCGGTGCT
NO: 688








Ab_mero
BJAB07104
398-497
TTGCCCAAACTCGTTTAACTCCTGCAAATGCAGCTTCTGAAATTGACCGC
SEQ ID
R
up




_02814

GTATTGCGTCAGTGTTTCCTTGAACGCCGTCCTGTACACATCCAACTACC
NO: 689








Ab_mero
BJAB07104
606-705
TGTGGTTGGTGCTGGTGAGATTGGTGAAGCATTATCTTCTCATCCAGATG
SEQ ID
R
up




_02816

TGCAAAAAGTCGTGTTTACGGGATCAACTCGAACAGGGCAGCACATTATG
NO: 690








Ab_mero
BJAB07104
240-339
AATACCCACAAGTGAAAGTGGAAACTGGTGCCCAAAGCACTTATCCAATT
SEQ ID
R
up




_02819

TATGACAATGACAGTAATAAATTAAAAGAATGGCGTGGCCGCGCGGAAAT
NO: 691








Ab_mero
BJAB07104
847-946
GGCTATCCTGCCGCAGGTTTGGGTATTTCTTTATCTTCGGGTGCAAATGC
SEQ ID
R
up




_02995

AATTCAGACCTCTAAGCTCATCCACCAAACTCTAGATCAGCTTACAACGA
NO: 692








Ab_mero
BJAB07104
 980-1079
TTACATCAGCATGAAGAATCACGACGTCAATGGGTTGCAGATACCTCTCA
SEQ ID
R
up




_03220

TGAATTGAAAACTCCATTGGCTGTTTTGCAAGCGCAGATTGAAGCGATGC
NO: 693








Ab_mero
BJAB07104
183-282
TGGGAACAACACCGTGCAGAGCGTAAAGCTCGTTTTGAGCAAATTCAAAA
SEQ ID
R
up




_03221

AGCATGTGAAGGTAAAGCTGTTGGACAAACTGTCAATGTTCAAGTTGGAG
NO: 694








Ab_mero
BJAB07104
 84-183
ACTTGCTTCTGCCTCTATTTTTGCACAAAGTGCGGGCGTTAATGCAGGTG
SEQ ID
R
up




_03416

CATCTGCTCAAGTCAACGTACAACCAGGTGGTCTTGTTAGTGGCGTAGCC
NO: 695








Ab_mero
BJAB07104
 916-1015
GGTTTAATTGGCGGAATGCCAGTGACCTCAGTGATTGTCCGTAGTTCTGT
SEQ ID
R
up




_03517

AAATGCCAATACAGGTGCACGTAGTAAATGCTCAACCATTATTCACGGTG
NO: 696








Ab_mero
BJAB07104
158-257
AAAGCTTATCTAAAGTAAAAGTGACTACAACCGTCAACGGCCAACCAGGT
SEQ ID
R
up




_03543

TCTATTAGCGATTTGGTCAATAGCGGACAAGTACAGCAAGTTTCTGCTGC
NO: 697








Ab_mero
BJAB07104
255-354
CGGCACAAAAGACACTCAATATGGCGTAGGCGTTGAGTACTTCGTTCCTA
SEQ ID
R
up
x



_03610

ACTCTGACTTTTACCTTAGCGGTGATGTAGGCAGAAACGAACGTGAAATC
NO: 698






(ABTJ_001









67)











Ab_mero
BJAB07104
 67-166
CTAAACGGAACGGTATGGAAAACGATTGATGACCAAACCAATAAGCCCAA
SEQ ID
R
up




_03637

AGCCGTAGTAAAATTTACGGAACAGAAGGATGGAACCTTAACTGCAACCA
NO: 699








Ab_cip
ABTJ_0014
382-481
TCAGTGATTGCTGAATTGGGGTTGCCTGTCATTATCAAGCCTGTACATGA
SEQ ID
C




GeneID =
6

AGGTTCAAGTGTAGGCATGAGTAAAGTTGAGAAAGCTGAAGATTTTGCGG
NO: 700





NC_01784









7












Ab_cip
ABTJ_0014
617-716
ATGGTGTCTGTCTTGTCGATATTGGTGCAGGTATTACCAATCTGGCAGTT
SEQ ID
C





8

TATTTAGATGGCCGTTTGGCTTTAGCACGCACCTTACAGCGTGGAGGTGA
NO: 701








Ab_cip
ABTJ_0029
614-713
ATTGGTTTGACCAATAGTGAAGGTCAAGGTATCGAAGGCTTGGAAATGCA
SEQ ID
C





1

GTTGAATAAGCAACTGTCAGGTGTAGACGGTGAGCAAAAAATTATTCGCG
NO: 702








Ab_cip
ABTJ_0030
588-687
TTTGGCTTGAAGAAAATATGGATGGCCTAGTTGCAAGAGATGCTGACCTT
SEQ ID
C

x



4

TTAGCAGAGGCTGTTTATCGTTCATGTGCTCACAAAGCCCGCATTGTTGC
NO: 703








Ab_cip
ABTJ_0072
257-356
TATTTGCTGAAGGAAGCTATGTTCGTGAAGGTCAGGCGCTTTATGAGCTC
SEQ ID
C

x



7

GACTCTAGAACGAACCGTGCAACGTTAGAAAATGCAAAAGCATCACTCCT
NO: 704








Ab_cip
ABTJ_0086
314-413
TGACAGGAGTTGCACCTTTTACCCAATTGCAAGGTATGTTAACTGCTCAA
SEQ ID
C

x



0

GGGCAAGTGGCAGGTATTATGGTGACGGGTATTGACCCTAAATATGAAAA
NO: 705








Ab_cip
ABTJ_0107
1236-1335
TCATTGGCTTAGTAAAATCTGGAAAACCGCTTGATATGGTGGATGTCCAA
SEQ ID
C

x



9

ATTGGGAATAACCATTATAAAGTGAAGCCAGATGAAGTGGGGTATTGGAA
NO: 706








Ab_cip
ABTJ_0205
1002-1101
CCAGTTTCCACGAATGCTTGTAAGCGCAGAAACTATTGAAGAAAAAGCTG
SEQ ID
C

x



6

GTGCACTTAATCTTAAAACTGAACAACCACCCAAGTTGCCAGTCGATCCG
NO: 707








Ab_cip
ABTJ_0209
213-312
TGTGAAAGTCGTTATATTAGGGCAAGATCCATATCATGGTCCAAATCAGG
SEQ ID
C

x



3

CAAATGGCTTAAGTTTCTCGGTTCAAAGAGGGGTTGCATTACCACCATCT
NO: 708








Ab_cip
ABTJ_0211
722-821
CTGGGCGCGGTGTTACGCGCGGAACAAAACTATATGTAAAAGATGTTCCA
SEQ ID
C

x



4

GTTCTAGCAGTTCCCTACTTTAACTTCCCGATCGATGACCGCCGTACTAC
NO: 709








Ab_cip
ABTJ_0247
288-387
CGTGAAATTCAAACGATCACTGCTAAAGGTAGACCGTCTAAGTTTCAGCA
SEQ ID
C

x



7

ACAAATAAGTGCTGATAAAGGTATTGCACGCGGTGAAGGACAAACGATTG
NO: 710








Ab_cip
ABTJ_0264
 997-1096
GCACATGAACAAACCTTAATGCGTTATGAACACCGCCGTAAAGGACAAAA
SEQ ID
C

x



0

TGATGCGATGATGCATAGTATGTCGGCAATTGGTTGGCTAGAAAGCAGTG
NO: 711








Ab_cip
ABTJ_0281
536-635
AGCGCCTCAACCATTAGGCCGTTTATTACCTTCACACATTGCTTCAGCAT
SEQ ID
C

x



7

TCCAGCAGAATCTTGAAGAAGCGGGTGTTAAATTTGCCTTAGGCACAACC
NO: 712








Ab_cip
ABTJ_0282
1195-1294
TGGTAAAGAAGTGACGGCGGTAATTGAATTACGTGCCCGTTTCGATGAAG
SEQ ID
C





1

AGTCGAATATCGAAGTGGCTAACGTTTTACAAGAAGCAGGGGCAGTCGTT
NO: 713








Ab_cip
ABTJ_0292
831-930
TGTGCAGTTGGCTAGAGAACAACTTGCTCAGCGTCAGCTTATGCCTGTTT
SEQ ID
C





0

TACAATGGGTGATTATTGTTGTAGCAATTGCAGTTTGGGCTGTGCCGGAA
NO: 714








Ab_cip
ABTJ_0320
1860-1959
ATTGATGGTTTAGACAATGTTGAGCTACATATTGCGCAGTGTTGCCAACC
SEQ ID
C





2

AGTTCATGGTGAATCAATTGCCGGTTATATCACGTTGAACCGTGGGGTAA
NO: 715








Ab_cip
ABTJ_0330
360-459
TATGGTCCAGATTTCCCGTTAGTAACGGTCCGTGACTGGGTCAAAACTCA
SEQ ID
C





2

AGCCATGCTTTCTGACCGCTTAGGAATAAGTGTCTGGTATGCGGTGGTCG
NO: 716








Ab_cip
ABTJ_0333
249-348
TGAAGAGCATATGGCGGCAAAAGGACAAGTTTCTCCGGAAGTTTCTGTTT
SEQ ID
C

x



0

TGCAGCAATTGGCAAAAGATGGCTTCGTTGCAGAATTAAAACGTGCTTAC
NO: 717








Ab_cip
ABTJ_0342
576-675
CAAGACTACCGCCAAATCATTTTAAATGAGCTGGACTTGAGTATTGAGGC
SEQ ID
C

x



5

AGATAACACCCGTCGTATGCGCCATTACTTCACTGGTTCAACCATGATGT
NO: 718








Ab_cip
ABTJ_0350
352-451
GATTTAAGCGATCAAGGTATGCCAAGTATTGCGGAGCGTGCAGCAGAAAC
SEQ ID
C

x



3

TGAAGTGAGTCGTGATGGAATGCCTCAGCGAGTTTCTGTGCCAAAACCAG
NO: 719








Ab_cip
ABTJ_0354
 97-196
AAATACTTTGGTGTGGCGGCACAGGGGCGACTAGATGCCAGTATCTTGTT
SEQ ID
C





4

TAGCATCATTGGATATCGTTTACCTGAATTTCTAACCCTCATTTTACCAC
NO: 720








Ab_cip
ABTJ_0379
1243-1342
ACACTGCTGGCGTCATAAGACTCCGATTATTTTCCGTGCTACACCACAAT
SEQ ID
C

x



3

GGTTTATCAGCATGGATCAAAAAGGTTTACGTGACGGTGCGCTTAATGCC
NO: 721








Ab_cip
ABTJ_0018
132-231
CATGTTAGTGCTTTATGTGGGCTTTATGCTACTTGTGGGCTACAACAAAG
SEQ ID
R
dn




5

AATTTTTGATGAGTTCCTTTAGTGGTGGTGTAACGACATGGGGGATCCCG
NO: 722








Ab_cip
ABTJ_0018
798-897
TGCTGCAAAAATTATGGGACCAGGTAAACTTGCCGCAAACCCGATTGATG
SEQ ID
R
dn




6

CCTTATCTCTTGGCTTAGCACTCATGTTTGGTACAGCAGGTCTTCCACAC
NO: 723








Ab_cip
ABTJ_0020
 60-159
TAAATCACGCCACTTAACCATGATCTCGATTGCAGGGGTTATTGGTGGCT
SEQ ID
R
dn




4

CTCTCTTTGTTGGCTCAGGCAGTATTATCTACAACACCGGCCCTGTAGTT
NO: 724








Ab_cip
ABTJ_0051
339-438
GCGAACCTCTTCTTGACTCACGGTTTTAAAAAGGAAAATATTTACGTTAT
SEQ ID
R
dn




0

TGGACGTGGTTCAACTCAACCGTATGTACCGAATACAACCAATGAAAATC
NO: 725








Ab_cip
ABTJ_0053
182-281
TTTCAGCTGAGCTTAACTATGCTCAGCCAGCAAATCAGGCAGAAGTTATT
SEQ ID
R
dn




6

CAGGCTCTCGACAAAGCTGGTTTTAAAGATGCTGTAGTACAAACTTTAGG
NO: 726








Ab_cip
ABTJ_0068
390-489
TGACCAAAAGCGTGAGTCGGTTAAAGCACTACATGGTTTGAATTTCCGTG
SEQ ID
R
dn




9

TGATTGCAGCAGGTGATTCATATAATGATACAACGATGCTTGGTGAAGCC
NO: 727








Ab_cip
ABTJ_0070
 68-167
GTGGAGCAATTGGTACCGGATTATTTTTAGGCTCGGCGCAAGTGATTCAA
SEQ ID
R
dn




0

TCTGCGGGACCATCCATTATTTTAGGATATGCCATTGGTGGCTTAATTGC
NO: 728








Ab_cip
ABTJ_0114
1608-1707
GGCAGGTACAAACTTATGTCCAAGCGGGTTCAAATTTAGATAAAGGCTGG
SEQ ID
R
dn




8

CGTGTGGGAGTAGGGCCGACATTAGGATGTATGAATCAGTGGCTTGAAAA
NO: 729








Ab_cip
ABTJ_0119
313-412
AAGTTTAGCCAAACTGGCATGGCATCGTGGTATGGTCGTCAATTTCATGG
SEQ ID
R
dn




9

CCGTAAAACTGCAAGTGGTGAAACATTCGATATGAATGCACTTACTGCTG
NO: 730








Ab_cip
ABTJ_0140
122-221
TGATGGCAATTGTATGGCTTGGAACAGTGGTTACAGGCATTAGTACAATC
SEQ ID
R
dn




3

TTAGGTTACACCACGCTGATATTTGGTTTAGTGGTTACAGCAATTCTGTT
NO: 731








Ab_cip
ABTJ_0144
391-490
TGTATTCGTGCTCAAGAAGGCGGCATCTCTGAAATTGATGAAGATACCAT
SEQ ID
R
dn




2

TGCCTACCATTTCCATGAACCACTAGGTGTGGTTGGTCAAATCATTCCAT
NO: 732








Ab_cip
ABTJ_0144
306-405
TGTCCACAACGGTGTGAATGCCTATAACGAAAATGGCTGTGACTTTATTG
SEQ ID
R
dn




5

TGTCGTTAGGCGGTGGCTCATCTCATGACTGTGCAAAAGGGATTGGCTTA
NO: 733








Ab_cip
ABTJ_0166
 93-192
TTTACTGGTGCATCCTTCCCTCATGTTAGATGCAAACGGACACTACAATC
SEQ ID
R
dn




9

ATAGCCAGCTTATGCTGGTGATGGTGGGTATTTCCGGAGGCTTCATTTAT
NO: 734








Ab_cip
ABTJ_0167
518-617
TTGTCAGCCTTTCTATGTTGTGTGCTCATGGCGGCGCTTGGCTTATGCTA
SEQ ID
R
dn




1

CGCACAGACGGTGCCTTGAAACAACGCTCTGCTAAAGCAACTCAAATTAT
NO: 735








Ab_cip
ABTJ_0167
381-480
CAACATCTAGGAGTAACTTGGTTAGTTGCCCTAGGTTCTAACATGTCAGC
SEQ ID
R
dn




2

GCTCTGGATTTTAGTTGCGAATGGCTGGATGCAAAACCCTGTAGGTGCAG
NO: 736








Ab_cip
ABTJ_0194
1188-1287
ACGGCGAACCCTGAACACTGTAAAGCTTTGGTTGAAAATTCAATTGGTAT
SEQ ID
R
dn




6

TGTGACTGCACTTAACCCATACCTAGGTTATGAAACTACAACTCGTATTG
NO: 737








Ab_cip
ABTJ_0213
1959-2058
AAACGCGCAGCTGACCTCATGGAAAGCCGTATTCAAGAGTTGATGGTATT
SEQ ID
R
dn




4

ACTTTGCCGTGAAAGTGGTAAAACTTATGCCAATGCGATTGCAGAAGTTC
NO: 738








Ab_cip
ABTJ_0220
280-379
GTCTCACTTGCCATCGGTATGGGTTTAGCAAACTTTTTCCAACCTGGCGC
SEQ ID
R
dn




4

GGCGCTAGACCTAGCATTACCAACAGCTCAACAACTTAGTAGTTCTTCTC
NO: 739








Ab_cip
ABTJ_0280
402-501
GGCAGCCATGCTCCCTCTTTATCAACGCCTCGGTATGAATACACTGATCA
SEQ ID
R
dn




6

TGACAGCACTTATGTTGTTATGTAGTGGTGTAATGAATCTGACCCCATGG
NO: 740








Ab_cip
ABTJ_0305
1030-1129
GCAGTAGCGTTAATGTCTAGCCCATATAACAACGTAGATGAAGCGCAAAG
SEQ ID
R
dn




1

CCTTGCAGACTACCGTGGTTTGTTCTGGCGCCGTCCAGTACTTACAGCAA
NO: 741








Ab_cip
ABTJ_0305
710-809
TTGCAGTGAAGTTACCAGTTTTCCCATTGCATGGCTGGTTACCGGATGCC
SEQ ID
R
dn




2

CATGCTCAAGCACCTACAGCGGGTTCTGTAGACTTGGCGGGTATCTTGAT
NO: 742








Ab_cip
ABTJ_0339
176-275
AGGTGAAGACCTTGTCAAAAAATTTGCTGTGAATGGTGTGTACCGTTGGT
SEQ ID
R
dn




0

TTTGTAGCGAATGTGGTTCACCGCTTATTAGCTCGCGTGATGCTCAGCCT
NO: 743








Ab_cip
ABTJ_0343
100-199
GGCTTAGCAGTGCTGGGCTATGCGGTTAACTTATTTTTGTTTGCGATGGG
SEQ ID
R
dn




1

TCGTTTGCAAGTCAGCTCACCAGCCATCCTAACCGAAACCACCAATATTA
NO: 744








Ab_cip
ABTJ_0343
1131-1230
TTAAAGATTGCACCGAGAATTAAACAAGAAAAAGCAGCCATGCTGACTTA
SEQ ID
R
dn




2

TTTCCTGATTGCCATGATGCTCGCAGGCTTACCACCTTTTAGTGGCTTCT
NO: 745








Ab_cip
ABTJ_0343
394-493
GAGCGTGGTGATATTTTGGTCCACTCTCTTAGCACAGAAAATACTGAAAG
SEQ ID
R
dn




3

TGATGTGCAAGACATCAAACAACGCTATGAGGCTCCACTCATGGAAATTT
NO: 746








Ab_cip
ABTJ_0350
544-643
CAGAACGGACAGCTACAAGTGGACATCCGTGATCAGCGTAATCAAAAAAT
SEQ ID
R
dn




6

GGCCAATCTTTTACTAGATGCCAATATGATGCTGGATGTTCAGCTCACAC
NO: 747








Ab_cip
ABTJ_0350
 1-100
ATGAAACCGGATATTAGTGAATTATCTGTTGAAGAGTTAAAACGCTTACA
SEQ ID
R
dn




7

AGAAGAAGCAGAAGCTTTAATTGCAAGCAAAAAAGATCAAGCAATCGAAG
NO: 748








Ab_cip
ABTJ_0373
 909-1008
TGTTCTACATCGACCAAAACACAATCGACTACTTACGCCTAACAGGCCGT
SEQ ID
R
dn




4

GAAGATGCTCAAGTGGCATTGGTTGAACAGTACGCAAAAGAAATTGGCCT
NO: 749








Ab_cip
ABTJ_0373
126-225
TGTACCGTAGGACGTAGCGGTAACGACTTGCACTATCGTGGCTATGACAT
SEQ ID
R
dn




5

TCTTGACCTTGCGGCAGGTAGCGAGTTTGAAGAAGTTGCTCACTTGCTCG
NO: 750








Ab_cip
ABTJ_0373
885-984
TTACCACTGAAGAGTTAGCATCTGCCGATGTAAGCCTTGCGCTTTATCCG
SEQ ID
R
dn




6

CTTTCTGCTTTCCGTGCCATGAACAAGGCAGCCGAAACTGTGTATGAAAC
NO: 751








Ab_cip
ABTJ_0000
1055-1154
GTATCAAGTGAGGTAAAACCAGCGGTAGAGCAAGCAATGAACAAAGAGTT
SEQ ID
R
up




4

CTCTGCTTACTTACTTGAGAATCCACAAGCTGCAAAATCAATTGCAGGCA
NO: 752








Ab_cip
ABTJ_0009
125-224
GGCTTGGTTTTATGCTTGCAGGGATGTTTTTTTGGGGGCTATTGGAAGTG
SEQ ID
R
up
x



4

GTCCGTTTTGGAGTTCAAGTCACTTTTGAAATGCCAGTCACATATAGTTA
NO: 753








Ab_cip
ABTJ_0012
100-199
TTGCCAGATTTAAATAGATCTCCGGAACAGGTAGTAGCACAGGTTTCAGA
SEQ ID
R
up




0

GCTGATTGAGTCTTTACAAGAGGTGGCTTTAGTCGGCAGTAGTCTTGGTG
NO: 754








Ab_cip
ABTJ_0012
880-979
GAGTTACGTAATTTATTACCACGTAATCTTAAACTTTCGGCTGAAGATGT
SEQ ID
R
up
x



1

TTGGGATGGCGTGAACTATATTTTATCGCTTAAGTTCCAAGAACCACAGT
NO: 755








Ab_cip
ABTJ_0019
1893-1992
AACCATCCCACTTGGCATTATGACTTGTGTCACGGGTGTTTCAGGTTCAG
SEQ ID
R
up
x



2

GTAAATCAACACTGATTAACCGTACGTTACTCCCACTGGCTGCAACACAG
NO: 756








Ab_cip
ABTJ_0035
160-259
GACGACGGTTCAATCCAGCACTTTGAAGGCTACCGTGTACAACACAACTT
SEQ ID
R
up
x



7

GTCTCGTGGTCCTGGTAAAGGTGGTGTTCGTTACCATCCAAATGTTGACT
NO: 757








Ab_cip
ABTJ_0037
427-526
CTAAAAACAATTCCGGGTGCATCGCCTGAACTGATCCATGAAGCAGGTTT
SEQ ID
R
up
x



5

ATATGCTGACCGGATGAGTATTAATTTAGAGATGCCGACTGAGATTGGGT
NO: 758








Ab_cip
ABTJ_0037
440-539
AGTCTGGTTCGTCCTGATTTTAATGTCTTACCACTCATTCAGCCGCATTT
SEQ ID
R
up




6

TAAACGGCGTTATCAAGATCAGCGTTGGCTCATTTATGATGAGCAACGTA
NO: 759








Ab_cip
ABTJ_0088
398-497
CTTTGGCACAAGGAACTTCTAGCGCTGCGGCCCTGCCTCAGATTCAATTT
SEQ ID
R
up




6

GTTTCGAACTCACCTGTTGCAGAAGCAGAAGCAGCCTTACAGTCACTAGG
NO: 760








Ab_cip
ABTJ_0088
874-973
ACATGGCAACAAAAAATTTCGGCATTGCGTGGCCGTGTTATGAAGCGTCT
SEQ ID
R
up




7

GGTTGATGAAGTCACTACAGCTTTTGCCAAACATCATTATGAAATTATTA
NO: 761








Ab_cip
ABTJ_0093
 31-130
GCTTTGGTGAAATTGCCATTTCCAATGCCGAATGAAAGTAACCAAGCAGG
SEQ ID
R
up




0

CGATGCTGTACACAACCAAGTACGTCCGAAACCTGAACAATATGCAGATA
NO: 762








Ab_cip
ABTJ_0145
1020-1119
ATATTTGTACAACCTGTATGGAAAGCATGGCGAAAAATCGAACCTCGTTT
SEQ ID
R
up




0

AAACTTTTACTCGGTTAAACGTTGTATGTACTGTGGTTCAAATGATCTAA
NO: 763








Ab_cip
ABTJ_0157
525-624
CATCACCTTAGATCCATTAATTATGGAAGACCTCATGCAACAGACATCAG
SEQ ID
R
up




6

TCAAAGAGGTATGGGGAATCGGCTATCAATTAGTCAAACAGCTACAAAGT
NO: 764








Ab_cip
ABTJ_0162
 25-124
TCTCAGCAGCGCCCTCCTCTTACTGGCCAACGTTTACGCTCATATGCTTT
SEQ ID
R
up




5

TGCTTTACTCACTCGCCGAGATTACTCTAAAGCAGAGCTTATCGAGAAAT
NO: 765








Ab_cip
ABTJ_0162
446-545
CTAAAGCAGAAATCGAAGGTGAGATGGGTGACTCTCATATGGGTCTACAA
SEQ ID
R
up
x



6

GCACGTCTTATGAGCCAGGCACTTCGTAAAATTACGGGTAATGCTAAACG
NO: 766








Ab_cip
ABTJ_0206
269-368
AAAACATACTTATAACGCCCGTCATGAAACAATTTTCCAAAAACCGAGTT
SEQ ID
R
up
x



6

TTCAAGAAGCTGCTCTTAAATGTAAGTTCGGTGTAATACCCGTGACGGAG
NO: 767








Ab_cip
ABTJ_0228
200-299
ACAACGATAAAATTTACCACATTCCTTTGGCGACAGAACGTGTTGCTGCG
SEQ ID
R
up




0

GGTTTCCCATCACCAGCGCAAGACGATATTGAGCAAGCACTCGATTTAAA
NO: 768








Ab_cip
ABTJ_0263
 77-176
GGGTCGCCAGTAATTATCATTCACGCCGTGGAGAGGTCGATCTGATTGTA
SEQ ID
R
up




2

AAACGCGGTAACGAATTGATTTTTGTTGAGGTAAAAGCGCGAGGGCAGGG
NO: 769








Ab_cip
ABTJ_0290
812-911
ACATGAAATCGCGCTTGATATTCAAGAAGGCGCCGACATGGTGATTGTAA
SEQ ID
R
up




6

AACCGGGCATGCCATATCTGGATGTGGTACGTGAAGTGAAAGATACCTTT
NO: 770








Ab_cip
ABTJ_0306
1045-1144
TTATGACATTTATGGTGCAATGCGTGACAACGCGATGCTCTCTAAATGGG
SEQ ID
R
up
x



8

CAGGTGGTTTAGGTAATGACTGGACACCTGTACGTGCCTTGAACTCTTAT
NO: 771








Ab_cip
ABTJ_0307
377-476
TTAAATATGAGTGGGCTTGGCAAAAATATCTAGATGGTTGTGCAAACCAC
SEQ ID
R
up
x



0

TGGATGCCTCAAGAAGTGAACATGAACCACGATATCGCACTTTGGAAGTC
NO: 772








Ab_cip
ABTJ_0334
 1-100
ATGACTAAACCACCATATCATGATGATCAAGCGTCATTTTCCGCACCCAT
SEQ ID
R
up




0

TGAAGATTTGCAAGTGCGAATTGCATTTTTAGATGATTTAGTTGAGGAAT
NO: 773








Ab_cip
ABTJ_0360
1577-1676
AACTACCGTGCTGGGGACCAATATTTAAGTCATGCTGTCGGGAAAACCAA
SEQ ID
R
up
x



9

TCAGCGAGTTTACTTCCTTGATGAAACAGGGCGCAGCTATGCCTTGCCAA
NO: 774








Ab_cip
ABTJ_0378
 72-171
GCTAGGTGGTTGTGCCAAAAAAGAGGAGCACACCACAACAACTTTAAATA
SEQ ID
R
up




4

TCGGCTATCAGAAATATGGCATCCTTCCTATTCTAAAAGCACGTGGTGAC
NO: 775








Ab_cip
ABTJ_0378
197-296
AATTTCCAAATGCCAAAATCACTTGGAATGAGTTCCCCGCTGGCCCTCAA
SEQ ID
R
up




5

ATTTTAGAAGCCTTAGCTGTTGGCTCACTCGATGTTGGCGTTACTGGAGA
NO: 776








Ab_cip
ABTJ_0380
298-397
CAGTATTTCCCGAATGTACAGATCATTGCTACGCCGGAAACAGTAAAGCA
SEQ ID
R
up




8

TATTCAGGATACTCAAGCGCTTAAAGTTAAATATTGGGGGCCACAAATGG
NO: 777








Ab_cip
ABTJ_0382
339-438
CCCAACTGAAATCCAGTTTCAAGACAAAACATATGCAAGCGAAATTGCCC
SEQ ID
R
up




7

AGTTCTTTGTTCAGGAACTCTTAAAACACGGTACAACCACGGCCCTCGTT
NO: 778








Ab_cip
ABTJ_0382
144-243
CATGGCAGACTTATGCCGTACGATTACCAAACCACATGAACTCGACTTTA
SEQ ID
R
up




9

TGACAGTGTCTAGCTATGGCGGCGGTACCACTTCAAGTCGAGACGTTAAA
NO: 779








Ab_gent
ABTJ_0011
325-424
TGTATGCTAGATGACAATGAAGAACGTATTCGTCTAGCTCAATATGGCAC
SEQ ID
C

x


GeneID =
3

TTCTAATATTGGCCGTTTCAAGACGCTTTATCGCCGTGGTTTAGGTATTC
NO: 780





NC_01784









7












Ab_gent
ABTJ_0013
254-353
GCCTAAAGCAGTTTCTCAATATGATGAGAACTATGGCCAAAGCCAAGTTT
SEQ ID
C

x



4

ATTACCATCAAGTCAACTTCCAGATTAAAACCAAGCCTTCAGAGCACTAC
NO: 781








Ab_gent
ABTJ_0065
351-450
TATATCTATATTCATGGTACACCTGATAAAGAACCGATGGGGGTTCCAAT
SEQ ID
C

x



5

GTCACATGGGTGTATTCGAATGCGTAATGAAGAAATCATTGAATTGTTTG
NO: 782








Ab_gent
ABTJ_0066
964-1063
AGGAATTGGTTTAACTGGACCAAATGCTATGGCTCTAGCCATGTCAAAGC
SEQ ID
C

x



6

AAGGTGCTCGTGCAGGAACAGCCAGTGCAATTATGGGCAGTATGCAATTT
NO: 783








Ab_gent
ABTJ_0073
 95-194
GGGCATCTTTAGAGACTCGCCGTAAAGACTTGCAATCAAAAACTGAAAAG
SEQ ID
C

x



5

TTACAGGCAGAGCGAAATGCCGGTGCTAAACAAGTGGGTCAGATTAAAAA
NO: 784








Ab_gent
ABTJ_0086
314-413
TGACAGGAGTTGCACCTTTTACCCAATTGCAAGGTATGTTAACTGCTCAA
SEQ ID
C

x



0

GGGCAAGTGGCAGGTATTATGGTGACGGGTATTGACCCTAAATATGAAAA
NO: 785








Ab_gent
ABTJ_0088
565-664
TCGTGTCACGATCTGCAAACCTCATGGATGTACCCATTACAGTTGAGGGT
SEQ ID
C





5

GCAGAAGAAGTTGCACGCCGTTCACGCGGAACACCGCGTATTGCCAATCG
NO: 786








Ab_gent
ABTJ_0088
398-497
CTTTGGCACAAGGAACTTCTAGCGCTGCGGCCCTGCCTCAGATTCAATTT
SEQ ID
C





6

GTTTCGAACTCACCTGTTGCAGAAGCAGAAGCAGCCTTACAGTCACTAGG
NO: 787








Ab_gent
ABTJ_0125
645-744
GTAGAAAATGAGGATTGGGAAGAACAAAGTACATCTGCTTTGCATGACGC
SEQ ID
C





4

AATGAACCAGCTAGATGACCGTTCACGTAATATTTTGCAGCGCCGTTGGT
NO: 788








Ab_gent
ABTJ_0247
378-477
TTACTGTTCCAAACGGACATGAGGAAGTGCGCCGTCGTGCGGATTTGGTA
SEQ ID
C





9

ACACAGGCGATGGGTGGCCGTGGAGCTGTGCGTGAAGTTTGTGATATGTT
NO: 789








Ab_gent
ABTJ_0281
326-425
TCCTGACACGGTTACTTGATGAAGTGCATCAACAATTACCGAAGATTCAG
SEQ ID
C

x



9

TTGCATTTACATGAAGCTCAAAGTGAGAAGATTGTAGAGCGCCTAGAACA
NO: 790








Ab_gent
ABTJ_0313
621-720
TGCTTTTTATGCACAAAGTAAATTACTTCATGATGCTTTAGAGCAAGTTC
SEQ ID
C





1

AATATGGTGAGTTAGCTAAAAGTCATTGGTATTTCTTGGGTGTTGCAGGC
NO: 791








Ab_gent
ABTJ_0339
562-661
AAACTGGTGACATGGGTATTGGTAAAGATGGCGAGCCTACACATAACTTT
SEQ ID
C

x



9

ACTCCGGGTTATGAACTTCACGCTAAATACACTCTCTTTGCTGAAGGCTG
NO: 792








Ab_gent
ABTJ_0021
1097-1196
AAGTGACCTTAACGCGTGCAGTTGTAGACTCGCAAACTATTGCTTTAAAC
SEQ ID
R
dn




1

AAAGAGCTACAACAACGTCACTTAGAACCAAACCGTAAAGTATTCTACTG
NO: 793








Ab_gent
ABTJ_0052
 25-124
GAATTAGAGTTATTTGAAGTTAATCACGCTGTACAAAACACCCAAAAAGA
SEQ ID
R
dn




6

GATTGCAACACGTTTTGACTTCCGTGGTCATGATGTTTCTATCGAATTAA
NO: 794








Ab_gent
ABTJ_0053
519-618
GATCACTGTTCAGTTTGCTGACAATGCGGATCGTGATGCAGCAATGGATT
SEQ ID
R
dn




7

TTTTACGCCGTAATGGTAATGAATATACCCAACAGGCATTAGCGAGCACG
NO: 795








Ab_gent
ABTJ_0066
139-238
TTCTTGCAAAGTATTCGTGTTATGAAAAGCAGCCGTACAGAAGGCGAAGA
SEQ ID
R
dn




9

TGAGCATGGCCTTACACCTTTCCAAGCGTTTGTAACTGGTCTTGCGAGCC
NO: 796








Ab_gent
ABTJ_0070
 85-184
AATGCGGCAACTTCTGATAAAGAGGAAATTCGAAAGCTTCGTCAAGAAGT
SEQ ID
R
dn




9

TGAAGCATTAAAAGCATTAGTTCAAGAACAACGTCAAGTACAGCAACAAC
NO: 797








Ab_gent
ABTJ_0075
769-868
AAGGTAACATCGGTTGTATGGTTAACGGTGCTGGTCTTGCAATGGCAACT
SEQ ID
R
dn
x



9

ATGGACATCATTAAACTTTATGGTGGTCAGCCTGCAAACTTCCTTGACGT
NO: 798








Ab_gent
ABTJ_0081
116-215
CAGATGCTTCTGGAAATACCGAATTAGCGTTAGATGGGGGTAAAATCCAA
SEQ ID
R
dn




6

AAAGGTTTGTCTTCAAATGCCAAAACTACATTAAACATGGATGCTGAAAC
NO: 799








Ab_gent
ABTJ_0107
647-746
AACGGTATCAAACAAGGTAACCGTAATGCTTTACTTTACACTGACCCAAG
SEQ ID
R
dn




2

TGTTGATGGCTTAAAAACAGGCCATACTGATGAAGCTGGTTACTGCTTAA
NO: 800








Ab_gent
ABTJ_0167
381-480
CAACATCTAGGAGTAACTTGGTTAGTTGCCCTAGGTTCTAACATGTCAGC
SEQ ID
R
dn




2

GCTCTGGATTTTAGTTGCGAATGGCTGGATGCAAAACCCTGTAGGTGCAG
NO: 801








Ab_gent
ABTJ_0205
423-522
GGCGTGCGATTATTGGCTTTGTAGATGGAACAGAAAATCCTGAACCTGTA
SEQ ID
R
dn




8

ATTGCTGCACAATGGGCATTAGTGGGTAACGAAGATCCTGACTTTATTGG
NO: 802








Ab_gent
ABTJ_0261
667-766
TGAAAGACGCAATCTTCCGTGAGCCAATCGATCAGTCTACTAAGCTTTAT
SEQ ID
R
dn




0

GTCAACTTATTGGGTGTTGCTGAAGCGAACAAAAATGACCCGATCTATAC
NO: 803








Ab_gent
ABTJ_0280
620-719
AAATGGCGATAACGTTGTAAATCCATCAGCTCATACTCCTTGGTACAAGG
SEQ ID
R
dn
x



9

GGCAAACCTTAATGAGTATTCTTGAGTCTGTGGAAATCAACCGCGAGTCA
NO: 804








Ab_gent
ABTJ_0281
411-510
GCGCCGTGACGAAGAAAAATCACGTGCGAAAGAGCGTGTGTATTCATTCC
SEQ ID
R
dn




0

GTGATAGTAAACATCGTTGGGATCCTAAAAACCAACGTCCTGAACTTTGG
NO: 805








Ab_gent
ABTJ_0292
338-437
ACCATATTCAACATGATGATGCCGATTATGTGGGGGCAGTAAAAGAAAAT
SEQ ID
R
dn




1

ATGATGGGGATTATTAGAGAAAAAGAAAAGAAGAAAGGAAAGAACTGGTT
NO: 806








Ab_gent
ABTJ_0305
1024-1123
TTTGGTGCAGTAGCGTTAATGTCTAGCCCATATAACAACGTAGATGAAGC
SEQ ID
R
dn




1

GCAAAGCCTTGCAGACTACCGTGGTTTGTTCTGGCGCCGTCCAGTACTTA
NO: 807








Ab_gent
ABTJ_0305
717-816
GAAGTTACCAGTTTTCCCATTGCATGGCTGGTTACCGGATGCCCATGCTC
SEQ ID
R
dn




2

AAGCACCTACAGCGGGTTCTGTAGACTTGGCGGGTATCTTGATTAAAACA
NO: 808








Ab_gent
ABTJ_0305
683-782
TAAATCTGCACAAATTCCATTGCAAACATGGTTAGCAGATGCGATGGCAG
SEQ ID
R
dn




3

GTCCTACACCTGTTTCTGCATTAATCCACGCAGCAACAATGGTAACAGCT
NO: 809








Ab_gent
ABTJ_0305
128-227
CTGCAGCGTTAGCATTCGTTCTTGCGGGTAGCGTATGGGCACAACCAGAT
SEQ ID
R
dn
x



4

GGACAAGTCATGTTCATTCTGATTTTAACCCTTGCTGCGGCAGAGGCGTG
NO: 810








Ab_gent
ABTJ_0305
168-267
GGAAGAGCGTTGTGTGGCATGTAACCTTTGTGCGGTTGCATGTCCGGTTG
SEQ ID
R
dn




6

GCTGTATTTCACTGCAAAAAGCTGAAAAAGAAGACGGACGTTGGTATCCG
NO: 811








Ab_gent
ABTJ_0305
341-440
TGGGTGTTGCGGACATGAGCATCGGTTTGTTGTTCTTTATGGCAATGGCT
SEQ ID
R
dn
x



7

GGTATTGCGGTTTATGCAGTGTTATTCGGTGGTTGGTCATCAAATAACAA
NO: 812








Ab_gent
ABTJ_0305
1755-1854
GTGAAACTGAAACTGTGAAACAGGCTGATATTGTACTTTCAGCAGCAAGC
SEQ ID
R
dn




8

TTTGCCGAAGGTGATGGTACTGTCGTAAGCCAAGAAGGTCGTGCACAACG
NO: 813








Ab_gent
ABTJ_0324
220-319
TTTGCTGAGCAATTCGGTTCTAAGCTTGTGTTTCCATGTGATGTTGCCGT
SEQ ID
R
dn




2

TGATGCTGAAATTGATAATGCATTTGCGGAACTTGCAAAACATTGGGACG
NO: 814








Ab_gent
ABTJ_0024
526-625
TGCTGGAAAGGTAAATTTGCGTCGCGTCACCATTATTCAACTTGGTGTCG
SEQ ID
R
up




9

CCTCTCTACTTTCTTTTACCATTATGCCTATAGTAGGTGAACATACAATT
NO: 815








Ab_gent
ABTJ_0034
530-629
GCAATTGCTTTACTTGCACTGCTGAGTTGGGTTGGCTTAAAGAAACAAAT
SEQ ID
R
up
x



6

GCCTAGTCATAAGGTGAGTGTAACCAAACAGCCTTTTAGTTATCTTTTTG
NO: 816








Ab_gent
ABTJ_0061
443-542
TAAAAAGCATCCGGGTCTTGTCCGAATGCTTCGTCAGTTTGAGGCAACAT
SEQ ID
R
up




8

GGCAAAAACAGTTGGGCACTTTAGGCGGCGGTAATCACTTTATAGAGTTA
NO: 817








Ab_gent
ABTJ_0073
190-289
TTAGAGAGAGACGGTTTTATCGAACGAAAAATTCAGGATACTTCCCCTAT
SEQ ID
R
up




8

TCGTGTCGATTATTCCCTCACGCCACTTGGGCAAAATGTAGCTGCTATGG
NO: 818








Ab_gent
ABTJ_0074
 34-133
ATGTTAGACCGCACTCCATCTCGCGAACTCCGTGAAGACCTTTGGGTATT
SEQ ID
R
up
x



4

TCCAATGGACTATCCAATTAAACTCATTGGCGATGCGGGTGAAGAATTAC
NO: 819








Ab_gent
ABTJ_0074
647-746
AGGTGATGATGATTCTGAAGGTGATTCAGGTCCAGACCCTGAAGTTGCAA
SEQ ID
R
up




5

AAGTTCGTTTTGCTGAATTAGAAGCTGCATGGGCTCAAACTAAAGCTGTC
NO: 820








Ab_gent
ABTJ_0103
324-423
GCTTAATGAATGTATGCAGCAACATCCGAATCTGCCGCTTGAACTTCAAA
SEQ ID
R
up




4

CTCACCCGACAGGATATTTGTTAAATGCTGTGCAACAAGGAGAAGTCGAT
NO: 821








Ab_gent
ABTJ_0138
484-583
GTGGACATCAGGAAACAGAAGATCAGTTCCCGAGAGATGTTGTAGAAATC
SEQ ID
R
up




4

TTGCAATATTTCAAAGCACCTCAAGTGGGCCAAAAGATTATTGCGACACC
NO: 822








Ab_gent
ABTJ_0138
224-323
AGCAAGCGACCGTCGTAACCGTACAGAAGCGGCTATTGGTGGTGCTTTAG
SEQ ID
R
up
x



5

GCGGTGGCGCGGGTTACACCGTTGGTAAAAACATGGGCGGTACAAATGGC
NO: 823








Ab_gent
ABTJ_0140
122-221
TGATGGCAATTGTATGGCTTGGAACAGTGGTTACAGGCATTAGTACAATC
SEQ ID
R
up




3

TTAGGTTACACCACGCTGATATTTGGTTTAGTGGTTACAGCAATTCTGTT
NO: 824








Ab_gent
ABTJ_0148
329-428
GGGAAAGAACGATCTCTGTGCGGATTTTACATGCGATTGGTTTTGAGGGT
SEQ ID
R
up




6

GGTTTGCTGATTGCGACTGTTCCAATGATTGCATATATGATGCAGATGAC
NO: 825








Ab_gent
ABTJ_0149
127-226
AGTGCAGCATTGAATTTAACTGCCAATCAGCTTTTATGGATTATTGATAT
SEQ ID
R
up




2

TTATTCGCTGATTATGGCGGGTTTGATTTTACCGATGGGTGCACTCGGTG
NO: 826








Ab_gent
ABTJ_0159
443-542
GCATCGGCGATTTATACATGCTTATTGCAATTATTTTGTGTGGATTTGGC
SEQ ID
R
up




2

TATGCAGAAGGCGGAGTACTTTCGAAAAAAATAGGTGGATGGCAGGTGAT
NO: 827








Ab_gent
ABTJ_0170
705-804
AATTGCAAGTGTGCTTGGCATGATTGTCGGGAATACGGGCAAGATGGCAC
SEQ ID
R
up




9

GGGATTGGTCACTCATGATGCAAACTGAAATTGCAGAGTTGTTTGAGCCA
NO: 828








Ab_gent
ABTJ_0171
425-524
TTTAGCCGAGCTAGTTAAAACTACCCATACCCGCTGGTTCAGTGAAAAAT
SEQ ID
R
up




0

TTGACTATCAGCATAATGTGGTTGCACAGACAACGATTCAAAGTCTCGCA
NO: 829








Ab_gent
ABTJ_0171
792-891
CCAAAGGTACGGTTTTGCTTTGGGTGACTTACTTCATGGGACTCGTGGTT
SEQ ID
R
up




1

GTTTACTTGCTAACAAGTTGGTTACCAACACTTATGCGTGAAACAGGTGC
NO: 830








Ab_gent
ABTJ_0178
465-564
AGGTGCGCTTGCCGAAGTTACACTTAATTTTATTGCCCAAGACCCTTCTC
SEQ ID
R
up




7

AAGCCGAGCGTTACCGCAAATCTGGTTTTGAAGCATTTTGGCATGCAGTT
NO: 831








Ab_gent
ABTJ_0180
 39-138
AATGGGGCTATCGGTCGAAGCTGGGCTTTTAGGGCCGTTAGGAAAGGAAG
SEQ ID
R
up




7

TAGGTGAGTTGTGGGCCACTTTTAGTATTTTTGGTGTGGGTGCAGCACTT
NO: 832








Ab_gent
ABTJ_0192
178-277
ACTATGCACCATGTTAAAACAGGCGCATTGTCTATTAGCCGCTTGGAATA
SEQ ID
R
up




4

TGGCGCAGATGTTATTATTGAACCAGATCATCTTGATAACTTTTACTTAA
NO: 833








Ab_gent
ABTJ_0204
380-479
AAATCACTCTTGCCAACCTCATTAGCCGAGACAACGTTCAAACTGTTGCA
SEQ ID
R
up




7

TTACGCCAAAATGTAACTGGCACAGATTCAGCTCTTTTATCGGGTACAGG
NO: 834








Ab_gent
ABTJ_0205
125-224
AATTTGTAGATGATATCGATGAACATGATCAAATTTTCGAACAATTCGGC
SEQ ID
R
up
x



0

GTTAAGGTTTTTGTAGATCCTAAAAGCTTAGTTTACTTAGACGGCTTAGA
NO: 835








Ab_gent
ABTJ_0205
219-318
AGCTCTTAAAAAGCAAGATCATCATCTTGATCAATCTATTAGTGATTTCG
SEQ ID
R
up




1

AATTTCTACAATCCGCTTTAGAACTTCGTGAACAACTTGATGAAGCGACA
NO: 836








Ab_gent
ABTJ_0205
1358-1457
TACTTCATGGCATTCCACCAATGACTGCAGGCCAAGCTCGTATTGAAGTC
SEQ ID
R
up




2

ACTTTCCAAGTTGATGCAGATGGCTTACTCACCGTTTCTGCTCGTGAAGC
NO: 837








Ab_gent
ABTJ_0221
737-836
AGCTTACCTTTAGATGTATTACGTATTGCGATTCCACTCACGATTTACTT
SEQ ID
R
up




5

TGTAGTGATGTTCTTTATTAGTTTCTTTATGAGTAAACGGATGAGGAATA
NO: 838








Ab_gent
ABTJ_0231
151-250
GACGGGGCCGACTTAGGTTTTTTGGCATTAAGCCTCACTAGTCTTAAAGC
SEQ ID
R
up




5

AGAGTTTCATTTAACTGGTGTGCAAGCCGGAACATTAGGAAGCTTGACAC
NO: 839








Ab_gent
ABTJ_0231
229-328
GCAGGTGCAGATCTAAAAGAAATGGCAACCGCAACTTCCACAGAAATGTT
SEQ ID
R
up




7

ATTGCGTCATACAGAACGTTATTGGAACGCGATTGCCCAGTGCCCTAAAC
NO: 840








Ab_gent
ABTJ_0231
367-466
TTAAAGCAAGCACAGGCAGGCGTGATTATAAATATGTCATCTATTGCCGG
SEQ ID
R
up




8

ACGCTTAGGCTATCCATATCGATTGGCCTATTCCACTTCAAAATGGGGAC
NO: 841








Ab_gent
ABTJ_0232
591-690
GTGGTTGAAGATGTGGCAATTAAACTTGCTCACAAACCAAGCCAAGCCTT
SEQ ID
R
up




4

ACAGCTCAGTAAAAAGTTACTAAGAGATATGCCAATTGATGATCTACTCA
NO: 842








Ab_gent
ABTJ_0232
220-319
CAGATGACAGGTTTGCCAAAACCAACCATTACTCGCCTCACACATACCTT
SEQ ID
R
up




5

GTCGCGTTTGGGTTATATCAAACAAGTACCTAACTCAAGCAAATTTCAGC
NO: 843








Ab_gent
ABTJ_0232
148-247
TTCGGTCTTACAATTCCCGAAGAATATGGTGGCTTAGGCATCACTATGGA
SEQ ID
R
up




7

AGAGGAAGTCAGAGTTGCATTTGAACTTGGACAAACTTCACCGGCTTTTC
NO: 844








Ab_gent
ABTJ_0244
190-289
GGTCAAACCCTTAAAAAAGATTATGCTTCTGTTGCATCAAAATTTAAGTT
SEQ ID
R
up




5

TTCTGAAAAGCAATTAGGTAATGCTTCTGAAGGTTCAAATTGTAGTCAGT
NO: 845








Ab_gent
ABTJ_0250
111-210
CAATGCCAATGGTTCAGTTTTGTATATTGTTAAAGAGGAAAGTAAGATTC
SEQ ID
R
up




7

CACTGGATGTAGAAAAGTTTAAAACTGACCGACCTAAAATCTATGATGCG
NO: 846








Ab_gent
ABTJ_0280
 2-101
TGAATACTAAAATCACCTATACTGCTTTCACTGGAAGCACGCTTATTGCG
SEQ ID
R
up




8

AGTGACTCCCTTGTTGAACTTGCAAAGAAACTAAAAGCTCTTCCTAAAAC
NO: 847








Ab_gent
ABTJ_0284
1054-1153
GCAGGTTTAATGTTTGGCCTTATGTTTGGGGTAAGTGGTATTGCCGCAGC
SEQ ID
R
up
x



7

GGGGCTAGGGCATTTAGCGGATATTAACGGCATTGAATGGGTATTTGGTT
NO: 848








Ab_gent
ABTJ_0286
756-855
CTGGTACGTCAACTCACCATTGGGTGGTGCATTTGAATATTACACCAACG
SEQ ID
R
up




1

ATGATTATTTGACCGAAGAATGGCAGCCACGTGTAGAAGAACATCGTCTA
NO: 849








Ab_gent
ABTJ_0286
623-722
TTGAAGCAACCGAGTATGTGCCACAGGAACGTCATGATTTATATGTCAAC
SEQ ID
R
up




2

GGAAGAGCGATTCAACGCCAGCAACTTCCACAAGATTTAAATGGAACAGC
NO: 850








Ab_gent
ABTJ_0286
315-414
AATGACTGGAACCAAGTGTTTAAAGAGCTATCCGGTCATTGAACAGCATG
SEQ ID
R
up




3

GTGCAATCTTCATCTGGTTTGGTATCGATGCAAATGAACAACCCGCACCG
NO: 851








Ab_gent
ABTJ_0305
151-250
GCCGGCGCCCTCGAAATCATTGTTTATGCTGGTGCGATTATGGTCTTGTT
SEQ ID
R
up




5

CGTATTCGTTGTGATGATGCTTAACTTAGGGCAACACACAGTTGAACAAG
NO: 852








Ab_gent
ABTJ_0345
118-217
CCGTGGACACGTGATGGTCGAGTTCGTGGTGACGTTATTCAGGTCTCTTC
SEQ ID
R
up




6

AGATGTAGCAGGACTTGTAACGGAAGTATTGGTTCAAGATAACCAGACTG
NO: 853








Ab_gent
ABTJ_0345
 67-166
CCTGCTTTGCTCGTCCAAGCCATTTTTGCATATATATGTTTTCGCTGGTT
SEQ ID
R
up




7

AAGTCCCTTAACCAACAAATGGATTGCACAAGGCTGGATTGCATTACCCA
NO: 854








Ab_gent
ABTJ_0345
851-950
GAACAAAAAGATCAGATGACTGATGAAAATATTCTGCAGTTACCTGACGA
SEQ ID
R
up




8

GTTTGAAAATGATTTCTTGAACTTAAATGATTCGGCTTCTGAACATCAGC
NO: 855








Ab_gent
ABTJ_0371
235-334
GGCGATGTATTTGATCAGGTGGCTAGAGACTTAGTTGAGATTCCTGAAGT
SEQ ID
R
up




5

ACTCGAATGTCACCTCATTTCAGGTGAATTTGACTACCTTGTAAAAGCGC
NO: 856








Ab_gent
ABTJ_0377
235-334
TACCAACAACGTAGCTATTCGATTATTGAAGTAACCACTCAAGGTGAAAT
SEQ ID
R
up
x



4

CGCTTTAGGTATTAAAGTACAAGGCTTGGTGTCTCGTGCAGCTCAACTAT
NO: 857








Pa_cip
PA14_0439
 12-111
CGATGGTTTTCGCCCGAATGTCGGCATCATTCTCGCCAACGAGGCGGGGC
SEQ ID
C

x


GeneID =
0

AGGTGCTGTGGGCGCGGCGTATCAATCAGGAAGCCTGGCAGTTCCCGCAG
NO: 858





NC_00846









3












Pa_cip
PA14_0463
1118-1217
CCTTCTTCAAGGCCGGTCCGGCGGGCATCCCGACCCAGACCGCGTTCAGC
SEQ ID
C

x



0

CAGAACACCCGCTGGCCGAGCCTGGACGACGACCGCGCCGAGGGCTGCAT
NO: 859








Pa_cip
PA14_0548
542-641
AGCGTATCCGTTCGCGCTACGACGAACCGTCGCGCCTGTCGCTGCTCTAC
SEQ ID
C





0

CTCGCCCAGCAGGGCCGCGCCTACCGTGGCGTCGACGACCGCGACCTGCG
NO: 860








Pa_cip
PA14_0556
714-813
TGCTGGCGCACCTGGTAACCGTCGGCGCCTGGGAACAGGTGCTGGTCTTC
SEQ ID
C

x



0

ACCCGTACCAAGCACGGCGCCAACCGTCTCGCCGAGTACCTGACCAAGCA
NO: 861








Pa_cip
PA14_0592
764-863
ACGAGCGCGCCAGTTCCTCGCACTACCCGTACAACCGGCTGGCCGAGGCG
SEQ ID
C

x



0

TTCTTCCACAGCGACGTGCTGTTCCGCTGCCAGCGCCTGCTCAACCAGCA
NO: 862








Pa_cip
PA14_0770
157-256
TATGCCATGCGCGAGTCGGTGGTCAGCGTCCTGGGCAACCACGACCTGCA
SEQ ID
C

x



0

CCTGCTGGCGGTGGCGCACAAGTCCGAGCGCCTGAAGAAGTCCGACACGC
NO: 863








Pa_cip
PA14_1004
711-810
TCGCCGACGATCCCGATACCCGCGGCGACCTCTGGCGCATGCAGCCCTGG
SEQ ID
C

x



0

GTGCCGATCCCCAAGGCCTCCGAGGTACGCCCGGCGAGCTACCCGGCCCT
NO: 864








Pa_cip
PA14_1490
290-389
GTTCGTGGCCAAGGTCGCGGTCGACAGCGGCAAGCTGGATGACGCCGTTG
SEQ ID
C
x




0

CCGAGCTGAAGGCGGTCATGGACAAGCCGGCCGACGCCACCCTCGGCGAA
NO: 865








Pa_cip
PA14_2500
743-842
CGCGGCAGGACCCGGAAAAGGCCCTTAGCCTGCTCGACTACTACAGCTCG
SEQ ID
C





0

GCGCTACCCTTCTCCAGCGACGAGAAGGTCGCCATCGCCCGCGAGATCGG
NO: 866








Pa_cip
PA14_2588
335-434
CGAGATCGTCGAAGTGGTCAGCCCCGACACCTTCAAGCGTCCGATCTACG
SEQ ID
C

x



0

CCGGTAACGCCATCGCTACCGTGCAGTCCTCGGCTGCGGTCAAGGTGATC
NO: 867








Pa_cip
PA14_3023
281-380
GTGCAGAGTTCCGGCAAGCGCGAAGTGACCGGGGCCAATGTCCTGGTGGC
SEQ ID
C

x



0

GATCTTCAGCGAACAGGAAAGCCAGGCGGTGTTCCTGCTCAAGCAGCAGA
NO: 868








Pa_cip
PA14_0252
120-219
ATGGGCTGCGGCAACGGCGCCAGCCGCACCCAGCATCCCAGCGAACTGTT
SEQ ID
R
dn




0

CGGCGAGGACTGGGCCGGTGAATGGGAAGTCGAAGGAACGGAGGACGCCA
NO: 869








Pa_cip
PA14_1686
2184-2283
GACCGCCGAGGAACTGGAGAACCTCTGCACCGTGATGGCCCAGCGCCTGT
SEQ ID
R
dn




0

CGATCCTGCATGGCCTGAACGCCCCGGAGTTCTTCGACAAGAGCCTGTTC
NO: 870








Pa_cip
PA14_1755
383-482
CATGGCCGCCGCCCACGAAGGCGCCGGGCTGGAGAACAGCCTGGGCTTCA
SEQ ID
R
dn




0

ACATCACCCTGCCCTTCGAGCAGCACGCCAACCATACGGTGGACGGCAGC
NO: 871








Pa_cip
PA14_2513
211-310
GCTCCTCGCGTGGATGCATTGCTGAATGCCGAAGTGCTGGCGGCCGCGCC
SEQ ID
R
dn




0

CAGCCCCGAGCTGGCTGAACTGGTGGAGTTGGCGTCGCAGCCGGAAACCT
NO: 872








Pa_cip
PA14_2959
 70-169
CTGAAAAGCGACAGCAGCCTGAAGCAGGAACTGGAATTCAAGGACAAGTT
SEQ ID
R
dn
x



0

GCAGGCGTTGATGGACAAGTACGGCATGACCCTGCACAACATCATCGCCA
NO: 873








Pa_cip
PA14_0081
616-715
GCCCTCGGCGCGACTGCGGGCGATCCGCACGCTCAGCGGCAACGGCATCC
SEQ ID
R
up




0

CGGTGGGCGTGCTCTGCTCGCCGATGATCCCGATGGTCAACGACATGGAG
NO: 874








Pa_cip
PA14_0431
471-570
CGGTCTACCGCGAAGGCGTGCTGACCGACAACGGCAATATCATCCTCGAC
SEQ ID
R
up




0

GTGCACAACCTGCGCATCGACAGCCCGGTGGAACTGGAAGAGAAGATCAA
NO: 875








Pa_cip
PA14_0562
409-508
TGGACGACGGCGGTGACCTGACCGAGATCCTGCACAAGAAATACCCGCAG
SEQ ID
R
up




0

ATGCTCGAGCGCATCCACGGCATCACCGAAGAGACCACCACCGGGGTCCA
NO: 876








Pa_cip
PA14_0777
 62-161
TGGCTCTGCAGCCGGTCGCAGCATTGACTGTACAGGCCGCCGATCAGTTC
SEQ ID
R
up




0

GACTGCAAGGTATCGGCCACCGGCGGCTGGGATTGCTCCCCGCTGCAGAA
NO: 877








Pa_cip
PA14_0796
 2-101
TGGACAAGAGCACCCAGATCCCGCCCGACAGCTTCGCCGCTCGCCTCAAG
SEQ ID
R
up
x



0

CAGGCCATGGCGATGCGCAACCTGAAGCAGGAAACCCTCGCCGAAGCGGC
NO: 878








Pa_cip
PA14_0797
 4-103
GCTGACCTTGCCGATCACGCCAACGAACTGGTCCTGGCTCGCCTCGACGG
SEQ ID
R
up




0

CCTCCTGGCGGCGCGCCCGGCGCTGGCCATCCGCGAGTCCGCGGAAGACT
NO: 879








Pa_cip
PA14_0798
130-229
CGCGGCCACCGTGGCAGCCGGGTGATCCTCGACCGTGTGGCGGAGGTCGA
SEQ ID
R
up
x



0

TCGCCTGGTAAATCGCCTACCCGAGGAACTGAAGAACGTGGTGGTGGAGC
NO: 880








Pa_cip
PA14_0799
108-207
CCGCAGACACTGACGGAAATGCCGCTCTGGGTACTGATCCTGCTCGCCGC
SEQ ID
R
up




0

GCTGGGCGGCGTCAGCGGCGAGATGTGGCGTGCCGACAAGGCCGGTCTCG
NO: 881








Pa_cip
PA14_0818
 13-112
GCTCTGCTCCTGCCGGCCGTGTTGCTGGTCCTGCTGGCCGGCGCCTTGCT
SEQ ID
R
up




0

CGGCGGCGGCCTGGTTGCCCGCCACTATCGTCCGCAACTGGAGGAGGCCC
NO: 882








Pa_cip
PA14_1201
131-230
CCGCCCGCGCGGAGTTGTCCCACGCCAACGAGCAGGACCTCGCCGCCGGC
SEQ ID
R
up




0

CGCGCCAATGGCCTGGAGCCGGCGATGCTGGACCGCCTGGCGCTGACCCC
NO: 883








Pa_cip
PA14_1255
291-390
GATGGCGGTCGCCGAGCACGACCGCGACTGCGACGCCGAGACCCGCGACG
SEQ ID
R
up




0

CCTGGCGCGACGTGATGGGTCGCGGCATCGCCGTGATCAAGTCGTACTAC
NO: 884








Pa_cip
PA14_1303
536-635
CGTTCCCCTACCGCCTGCTGCACATGTCGGTCGCCGCGTTCCTCGCCACC
SEQ ID
R
up




0

GCCTTCTTCGTCGGCGCCTCGGCCGCCTGGCACCTGCTGCGCGGGCGCGA
NO: 885








Pa_cip
PA14_1352
363-462
CACCGCTGGCCGGACGACTATTTCTACGGCCCCGGCGACCTGGCGCGGAC
SEQ ID
R
up




0

CACTTCCTGGAACAACTCCACCGAGATCGGCCTGAACTACAAGCTCGATC
NO: 886








Pa_cip
PA14_1353
1282-1381
GCCCCACGGCGGCACCTTCGCCCTCACCGCGGTACTGATCTCGGCGCTCT
SEQ ID
R
up




0

CCTCGACCTCGCCGAATCCCGGCCGGTTGTCGCTGCAACTCACCCTCGGG
NO: 887








Pa_cip
PA14_1450
313-412
CGGCGCTGCTGGTGGCGATCCTGGTGGCCTGGCTGAGCCTGTTCCTGGCG
SEQ ID
R
up




0

CCCCAGGGCATCAACCAGTTCGCCCTGCTGTTGAACAAGCAGGATACCCT
NO: 888








Pa_cip
PA14_1460
645-744
GTCGGTGGGCGAGCCGAAGGAAGAGATGATCCGCGTGCTCGATTTCCTGC
SEQ ID
R
up




0

CGCCGCAGATGCCGGCCGACAAGCCGCGCTACCTGATGGGCGTGGGCAAG
NO: 889








Pa_cip
PA14_1461
197-296
TCACTTCCGGCGGTATCGCCGGCAAGGTGACCAAGGTCGCCGACGATTTC
SEQ ID
R
up




0

GTCGTCGTCGAGGTTTCCGACAACGTCGAGCTGAAGTTCCAGAAGGCCGC
NO: 890








Pa_cip
PA14_1468
299-398
ACTTCGCCGTGAGCATCGCCTGCAAGTACAAGGGCCGCCTGGAGCACGCC
SEQ ID
R
up
x



0

GTGGTCCTCGACCCGGTACGCCAGGAAGAATTCACCGCCAGCCGCGGTCG
NO: 891








Pa_cip
PA14_1531
 33-132
CGACGACGTCCTTCTGATCCCCGGTTATTCCGAAGTCCTGCCCAAGGACG
SEQ ID
R
up




0

TGAGTTTGAAAACTCGCCTGACCCGCGGCATCGAACTGAACATCCCGCTG
NO: 892








Pa_cip
PA14_1574
1382-1481
CGACTTCGCCTCGGTGCAGCGCGACAACCCGGAAATGGAGCGACGTTGCC
SEQ ID
R
up




0

AGGAAGTGATCGACCGCTGCTGGCAGCTCGGCGAGCGCAACCCGATCAGC
NO: 893








Pa_cip
PA14_1596
 62-161
AGCTGACCGAGGACAACATCAAGGACACTCTGCGCGAAGTGCGCATGGCC
SEQ ID
R
up




0

CTGCTCGAGGCCGACGTGGCCCTGCCGGTGGTCAAGGACTTCGTCAACAA
NO: 894








Pa_cip
PA14_1597
 60-159
CGTGACCAACAGCCGCAATGCGCGCGATGGTCGCTTCGTCGAGCGCATCG
SEQ ID
R
up




0

GTTTCTTCAACCCGGTTGCGACTGGTGGCGAAGTGCGTCTGTCCGTCGAC
NO: 895








Pa_cip
PA14_1598
241-340
GCCCGCACCTTCACCGGTTACGAGATCTGCATCCCGCGTAGCGAGTTGCC
SEQ ID
R
up




0

CTCTCTCGAGGAAGGTGAGTACTACTGGCACCAGCTGGAAGGCCTGAAGG
NO: 896








Pa_cip
PA14_1599
417-516
CGATTATGTCCTGTCCGGCGGTGAGTTGCCGGCCATGGTGCTGGTCGATG
SEQ ID
R
up




0

CAGTGACGCGGTTGCTGCCCGGTGCATTGGGTCATGCAGATTCCGCCGAG
NO: 897








Pa_cip
PA14_1601
 21-120
AATCCTGCGTCGCACCGAGCTTTCCGAAACCCGTGTGACCAAGGCGGTAT
SEQ ID
R
up




0

TCCCGCCCACCACCAATCACCACAACACCCTGTTCGGCGGGACTGCGCTG
NO: 898








Pa_cip
PA14_1753
347-446
CAGCCGGACACCGGCGAGCAGGCCCTGGAAATCACCGACATGCTGGTGCG
SEQ ID
R
up




0

CTCCAACGCGGTCGACGTGATCATCGTCGACTCCGTGGCCGCGCTGGTAC
NO: 899








Pa_cip
PA14_1754
141-240
CGACCGCCTGGCCGAGGAAGGTCTGCTCGACGAATCCCGCTATCTCGAAA
SEQ ID
R
up
x



0

GCTTCATCGCCAGTCGCGCCCGTAGCGGCCATGGGCCGTTGCGCATCCGT
NO: 900








Pa_cip
PA14_1869
197-296
AGGCGCGCAACGTCGAGGTGATCGGCGTTTCCATCGACTCCCACTTCACC
SEQ ID
R
up




0

CACAACGCCTGGCGCAACACCCCGGTGGACAAGGGCGGCATCGGCGCCGT
NO: 901








Pa_cip
PA14_1875
271-370
CCAGGCCTGCGACGACATCCGCAACAACGGCGGCCAGGTCACCCGCGAAG
SEQ ID
R
up




0

CCGGGCCGATGAAGCACGGTACCACCGTGATCGCCTTCGTGACCGACCCG
NO: 902








Pa_cip
PA14_1994
417-516
CAGCCGCTACCGCGTGGCCGGCACCGAGGTCTATCGCCTGCGCGGCAGCC
SEQ ID
R
up




0

AGGCCGGCAAGCCCTACCACGCGCTCTACCTGCTCGACGGTCCCCAGGTG
NO: 903








Pa_cip
PA14_1995
 44-143
GTTTGTTCATGGACAAGGCTGAAGCCGATCGTTACGACAAGATGCTGGAG
SEQ ID
R
up
x



0

CTGGCGGAAACGCTGGCCGAGGTGCTGCAGAAGGCGGTGCCGTCGCTGAA
NO: 904








Pa_cip
PA14_2325
 51-150
GGACGGTACGCTGCGGTTGCTGGATCAGCGCCTGCTGCCCCAGGAGGAGG
SEQ ID
R
up




0

TCTGGCTCGAACACGAGTCGGCGGCCGAGGTGGCCAAGGCCATTCGCGAT
NO: 905








Pa_cip
PA14_2390
 52-151
ATCGTCGTTTCCAGCCTGATCAGTCTGAGTCGCGGCTTCGTCAAGGAAGC
SEQ ID
R
up




0

CTTGTCCCTGCTTACCTGGATAGTCGCCGGCGCGGTGGCCTGGATGTTCG
NO: 906








Pa_cip
PA14_2392
457-556
TTCGCCGCGGTTTCCTGCGTGCACGACCGTTGCGTCGGCGGCTACGCGGT
SEQ ID
R
up




0

GGTGGCGATGATCACCGGCCATGGCATCGTCGGTTTCCGCGACCCCAATG
NO: 907








Pa_cip
PA14_2516
298-397
TCGAGGAATCCTGCCGTATCAATCCCGCCTTCTTCAATCCTCGCGCCGAC
SEQ ID
R
up
x



0

TACCTGTTGCGCGTGCGCGGCATGAGCATGAAGGACATCGGCATCCTCGA
NO: 908








Pa_cip
PA14_2562
404-503
CCATGACCCCGAAGTATGTCAGCACCCGGCTGGATTCGTCGTCGAAGACG
SEQ ID
R
up




0

AGCCGGAGTCGAGCGAAGTCGAGGACAAGCGTCCTAATCCGTTCAGCGTA
NO: 909








Pa_cip
PA14_2563
 40-139
GACATGCGTCGTTCCCACGATGCGCTCGAGTCCAATGCTCTGTCCGTGGA
SEQ ID
R
up




0

AAAGAGCACCGGTGAAGTCCACCTGCGCCACCACGTATCCCCGGACGGCT
NO: 910








Pa_cip
PA14_2705
695-794
CTGCGCGTCGACCGCCACCTGGTGCTGGACAATCGCGCCGACATGGCCTG
SEQ ID
R
up




0

GTACGTGCGCCGCGATGCCAGCACCCTGCGCGCGACCATCGACCGCTTCC
NO: 911








Pa_cip
PA14_2737
659-758
GCCGCCAAGACCCAGACCGTGGCGCGCATCGAGCAGGTCCACCTGATGGT
SEQ ID
R
up
x



0

CCATGCCGACCAGAAGGCCGGTTCGATCCAGCGTCTGCTGGAAGTCGAGC
NO: 912








Pa_cip
PA14_2798
536-635
CGCCATCCTCGAAGGGCTCTCGCCCAAGGAAAACCGCGAGGTGCCGCCGC
SEQ ID
R
up




0

TGCGCTACGAGGTCGCGGCGCAATTGAAGAAGGACTTCCCGGACCTGGAG
NO: 913








Pa_cip
PA14_2845
 8-107
CACTACTGATCGCCGCCGGCGTTGCCGCTCTTTCCAGCACCGCCATGGCC
SEQ ID
R
up




0

GCCAAACTGGATGAAAAGGTTCCCTACCCGAANNNNNNNNNNNNNNNNNN
NO: 914








Pa_cip
PA14_2865
1644-1743
CCGATTTCGCCGCCGAGGTGGTGCGGATCCTCGGGGAAAGCGGATTCCGT
SEQ ID
R
up




0

GCCAAGTCCGACTTGAGAAACGAGAAGATCGGCTTTAAAATCCGCGAGCA
NO: 915








Pa_cip
PA14_2866
246-345
GAAGCAGGCTGCGGTCGCCAAGAAGAACCAGAAGCAGGCGCAGGTCAAAG
SEQ ID
R
up




0

AAATCAAGTTTCGTCCAGGGACGGAAGAAGGGGATTACCAGGTAAAACTA
NO: 916








Pa_cip
PA14_3018
761-860
AGGCGACCATGATGAAGATTTCCCACCCGATCGTCTTCGGACATGCGGTG
SEQ ID
R
up
x



0

AGCGTCTACTACAAGGACGTCTTCGACAAGTGGGGCCAACTCTTCGAAGA
NO: 917








Pa_cip
PA14_3019
348-447
AACGTGGCCCTGCGCCAGCAACTCGATCTCTACGTCTGCCAGCGCCCGGT
SEQ ID
R
up




0

ACGCTGGTTCGAAGGCGTGCCCAGCCCGGTGAAGAAGCCCGGCGACGTGG
NO: 918








Pa_cip
PA14_3024
 55-154
AACACCATGTTCCGTGTGGAGTTGGAAAATGGGCACGTCGTCACCGCGCA
SEQ ID
R
up




0

CATCTCCGGCAAAATGCGCAAGAACTACATCCGCATCCTCACCGGCGACA
NO: 919








Pa_cip
PA14_5248
260-359
ACTTCACTGCAAGGCGCTTCCGAAACGGTGGACGTGCAAACGGGATTCCA
SEQ ID
R
up




0

CCTGTATCGCGGTCTGTTCATCACGCGCGTTGTTGCCCGGCGAACCGCAG
NO: 920








Pa_cip
PA14_5251
 85-184
AACGCCTTGCTGGGAGGCTTCGGCGGCGCCATCTTCTTTGTCGTGTTCGC
SEQ ID
R
up
x



0

CCGTGACTACAACGCCCTGACCCGCCTCGGCTACCTGCTGGTGTCCTGGG
NO: 921








Sa_levo
SA0013
1180-1279
AAAAAGCCAGAGTTAAGAGAGCGATTTATTACATCAGATGATGCTTGGGA
SEQ ID
C

x


GeneID =


TATGATGACATCTAAGACAACCGTAGTGATTGTTGATACGCATAAACCGG
NO: 922





NC_00274









5












Sa_levo
SA0441
183-282
CAAACGTGTGGTAATAGAGAACAGTTGGTTTCACCTATTACACCTATGGG
SEQ ID
C

x





AGGCAGTGCGGATTCGTACATTCCATATCCAGTTGAAGTTGAAGTTGGCG
NO: 923








Sa_levo
SA0448
1526-1625
ATGGTTACTGGGCAACCTAAACCTATTTTCCCAAGATTGGATAGCGAAGC
SEQ ID
C

x





GGAAATTGCATATATCAAAGAATCAATGCAACCGCCTGCTACTGAAGAGG
NO: 924








Sa_levo
SA0490
501-600
TGGCTTTTGGGTAGCTGGCACTGAAGCTAATAATGCAACAGATTATAGAA
SEQ ID
C

x





ATCTAGAAGCGGACATGTCATTGGCTATTGTAATTGGTAGCGAAGGACAG
NO: 925








Sa_levo
SA0491
302-401
TACAGTTGTAACAAGTGATATGAGTGAGCAACATGCTATCTTTGGATCAG
SEQ ID
C







GTGCATATAGAATATCATCTCGCGAAATGTGGAGAGATTTAAAAGAAAAT
NO: 926








Sa_levo
SA0811
226-325
TATGAAGCGAACGTAAAAAGCTATGTTGATCCTATCCCGCAAGCACTTAT
SEQ ID
C

x





TTTAACAGCAATCGTTATCGCCTTTGCGACAACAGCCTTTTTCTTAGTAT
NO: 927








Sa_levo
SA0869
572-671
TCCAATCCGTACATTAAGTGCAAAAGGTGTGGGTGGTTTCAATACAATTC
SEQ ID
C







TTAAAGAAATCGAAGAGCGTGCACCTTTAAAACGTAACGTTGATCAAGTA
NO: 928








Sa_levo
SA1055
1574-1673
CATAAAACGACAGACTTATTAAAATGTCACTATTGTGGTTACCAAGAGAC
SEQ ID
C







GCCACCGAATCAATGTCCAAATTGTGAGAGTGAACACATTCGACAAGTAG
NO: 929








Sa_levo
SA1077
1584-1683
TTGATGTGCCATCTAAATTAACTCAGGCAATTGAAACAGCATTAGGTGCT
SEQ ID
C

x





TCATTACAACATGTCATTGTAGATTCAGAAAAAGATGGACGCCAGGCTAT
NO: 930








Sa_levo
SA1135
147-246
GCATCAAAAACAAGCAGTAAACTTTCAAAATTACGGGAAACAAAATGCGC
SEQ ID
C

x





TAGAACAGTCGGAACATACCATTCAAAGTATAGAAGCAGAAATAAATACA
NO: 931








Sa_levo
SA1288
754-853
GACCGCAACAATTATATTTAGCGGAAACTATATTAGATCAGCTCATGCAT
SEQ ID
C

x





AGTGAAAAAGCAATGATTGAAGCATCACTAGGCAGTGGTAAATCATTAGC
NO: 932








Sa_levo
SA1296
540-639
GTAACTATAGTGATGCGATTCGCTTATACGATGAAATTAATGAAGATGAA
SEQ ID
C







ATGACTTCAGAAGATTATCTCAAAAAAGCCATTTCTTACGATAAAAATGA
NO: 933








Sa_levo
SA1394
596-695
AAATTGGTAAATCATTCCGTAATGAAATCACTCCAGGTAACTTCATTTTC
SEQ ID
C







AGAACAAGAGAATTTGAACAAATGGAACTTGAATTCTTCTGTAAACCTGG
NO: 934








Sa_levo
SA1445
 90-189
TTATCGAACATTAGATGAACGAGGATATAATGCCGTAAACCAAATTGTAG
SEQ ID
C

x





GTTATTTATTATCAGGTGACCCTGCGTATATTCCACGCCAAAATGAAGCA
NO: 935








Sa_levo
SA1525
1358-1457
ACACATGCGGCAGGAATTATTATTAATGACCATCCATTATATGAATATGC
SEQ ID
C

x





CCCTTTAACGAAAGGGGATACAGGATTATTAACGCAATGGACAATGACTG
NO: 936








Sa_levo
SA1526
870-969
GATATTGCGCAAGATTTTGGTGGCGGTGGTCATCCGAATGCGTCAGGAGT
SEQ ID
C







TTCAGTGAACAGCTGGGATGAATTTGAGCAACTTGCTACAGCTTTACGCA
NO: 937








Sa_levo
SA1579
1311-1410
ACAATGACAACTGTTCCTGAAGAAGAGCTACCATTGTTGTTACCTGAAAC
SEQ ID
C

x





AGATGAAATCAAGCCATCAGGGACTGGTGAGTCTCCACTAGCTAATATTG
NO: 938








Sa_levo
SA1654
427-526
TTTGGAGTCAGTGCATTAATTTTTCCATATGTTGGTTTACGCTTAAGATG
SEQ ID
C







GCAATGGTATCAATCGGGACTTAAAACATGGCAAGTTAATTTAATATCAT
NO: 939








Sa_levo
SA1682
685-784
ACTATAGCGAAGAACGTCCTATTACAAAAAAACATATTCACCAACAGAAT
SEQ ID
C







AGAAAGAAAATACTTTTCAGAGAAGTAGTTCAGACGACTAGACAAGCTTA
NO: 940








Sa_levo
SA1687
282-381
TTTAATATTTCCGCAGCGACGCCAGTAGTTATTATGTCTATTTTAAGTTT
SEQ ID
C

x





TATTATGCTAGTCATTTTGACGATGATTAGTGCATTGGTTAAACCAGTAA
NO: 941








Sa_levo
SA1886
282-381
CAATTGGCACAAGCTTACTTGAGACATGTAAACCCTAAAGTAATTGCCGT
SEQ ID
C

x





CACAGGGTCTAATGGTAAAACAACGACTAAAGATATGATTGAAAGTGTAT
NO: 942








Sa_levo
SA2055
211-310
TTCCAAAAGAGAATTGGTGGGTATTTATCGTCTTATTACTCTTAGTCGGT
SEQ ID
C







AATGTCGAAGTGACAGGATTTAAAATGCTTAAAAAAGATCTAAAAGGCGT
NO: 943








Sa_levo
SA0269
688-787
ATTAAGGTTAATGGTGAAAAGTACAAAGTTAGACCTGTCACGTTAACACT
SEQ ID
R
dn






TAGCAGAGCTGACACTAAAAAAATTACATTAGCTGTATTAGAAGAAGCTA
NO: 944








Sa_levo
SA0682
100-199
TTCTGGGAAAGGTTTAGTTATTATGGCATGCGTGCCCTACTCATTTTCTA
SEQ ID
R
dn






CATGTACTTTGCCGTAACAGATAATGGCCTTGGAATTGATAAAACAACAG
NO: 945








Sa_levo
SA0730
115-214
AAATATCCAACGACTCAAATCGAAGCGAGTGGCTTAGATGTTGGACTACC
SEQ ID
R
dn






TGAAGGACAAATGGGTAACTCAGAAGTTGGTCATATGAATATCGGTGCAG
NO: 946








Sa_levo
SA1021
288-387
CGCTAATTTAACTAAAGAATGTACAGTAATCGGTGTTTCAAATCGTATTG
SEQ ID
R
dn






AGATTTGGGATAGAGAAACTTGGAATGATTTCTATGAAGAATCTGAAGAA
NO: 947








Sa_levo
SA1022
294-393
TTACGACTTGGGTGTTTCAAGCCCACAACTCGACATTCCAGAACGAGGAT
SEQ ID
R
dn
x





TCAGTTATCACCATGACGCAACATTAGACATGCGTATGGACCAAACACAA
NO: 948








Sa_levo
SA1023
326-425
AGAATTCTTCTTATGAACGCATATACGAAAAGGCTAAGAAACAGGGGATG
SEQ ID
R
dn
x





AGCCTTGAGAACGATAATGTAAAGGTAGTGCGTAGTAATGGCGAAGCAAA
NO: 949








Sa_levo
SA1987
541-640
GTGGACCTTTAGGTGGTGCCATTGATGTATTGGCAGTCATAGCTACAGTA
SEQ ID
R
dn






ACAGGCGTTGCTGCAACATTAGGTTTCGGTGCATTGCAAATAAACGAAGG
NO: 950








Sa_levo
SA0128
188-287
TACCGGAAGCGATGAGGATGTCAGTCCGTAATAATGGCGGTGGTCATTTT
SEQ ID
R
up






AACCATTCATTATTCTGGGAAATACTATCACCTAATTCTGAAGAAAAAGG
NO: 951








Sa_levo
SA0480
150-249
ACACGATTCACTAATGAACATGGTTATGAAATCGAAAGTAAACGTGGTGG
SEQ ID
R
up






TGGTGGTTACATCCGAATCACTAAAATTGAAAATAAAGATGCAACAGGTT
NO: 952








Sa_levo
SA0481
279-378
TTTGAAAGATATTGCACATGTTGGTAAATTTGGGTGTGCTAATTGTTATG
SEQ ID
R
up






CAACATTTAAAGATGACATCATTGATATCGTCCGCAGAGTTCAAGGTGGA
NO: 953








Sa_levo
SA0482
744-843
CGACAAAAGTTAGACACTTATAATCAATTAGAAACACAAGACCGTGTTTT
SEQ ID
R
up






TCGCTCGCTAGGTATTTTACAAAACTGTAGAATGATAACTATGGAAGAGG
NO: 954








Sa_levo
SA0685
274-373
GCGGGTCGCACGATATCAGAAGAGTATAATGTCCCTTTATTAATGAAGTT
SEQ ID
R
up
x





TGAGTTACATGGAAAAAACAAAGACGTTATTGAATTTAAGAACAAGGTGG
NO: 955








Sa_levo
SA0686
559-658
AGCTAGTGTCATGTTTCTTATTAGAAGTGGATGACAGCTTAAATTCAATT
SEQ ID
R
up
x





AACTTTATTGATTCAACTGCAAAACAATTAAGTAAAATTGGGGGCGGCGT
NO: 956








Sa_levo
SA0687
 18-117
GAACACACAAGAAGATATGACGAATATGTTTTGGAGACAAAATATATCTC
SEQ ID
R
up
x





AAATGTGGGTTGAAACAGAATTTAAAGTATCAAAAGACATTGCAAGTTGG
NO: 957








Sa_levo
SA0713
492-591
GGTTTAGGTAATCCTGAAGAATATAAAGATTTAGTAGTAAGTGTTCGAGT
SEQ ID
R
up
x





TGGTATGGAAATGGATAGAAGTGAATTACTTAGAAAACTTGTAGATGTGC
NO: 958








Sa_levo
SA0714
2434-2533
TGGTCTTGGATACGTCACATTAGGTCAACAAGCTACAACGTTATCAGGTG
SEQ ID
R
up






GTGAGGCTCAACGTGTGAAACTTGCATCTGAACTTCATAAACGTTCAACT
NO: 959








Sa_levo
SA0835
1313-1412
AAAGCGCACTTAAAAATGAATCTGACAATGCGAGCAAACAGAGATTACAA
SEQ ID
R
up






GAACTACAAGAAGAGCTTGCCAATGAAAAAGAGAAACAAGCAGCACTTCA
NO: 960








Sa_levo
SA1128
605-704
TCGGTAATCCAGAGACTACACCAGGTGGACGTGCATTAAAATTCTATAGT
SEQ ID
R
up
x





TCAGTAAGACTAGAAGTACGTCGTGCAGAACAGCTTAAACAAGGACAAGA
NO: 961








Sa_levo
SA1174
321-420
TCCATTACCTGAACACTTAACATCGACACATAATAGCGACATATTCATAT
SEQ ID
R
up






TAAACGTCGTAGGCGACAGTATGATTGAGGCTGGTATATTAGACGGAGAC
NO: 962








Sa_levo
SA1175
178-277
GCTCACTCGGAACAAGTGTACGAAATGACTGACCATCAAATTAAGAACAA
SEQ ID
R
up






TACGATAAATAAAGCATACGAACATAAAGACCCTACAAACAATAGCGAAC
NO: 963








Sa_levo
SA1180
499-598
ATTGATGAAGATGCCGTCAATATTTTAATTAGTCATCTGACTGTTCAAGG
SEQ ID
R
up
x





TGGAAAGACATCTGATTCTGAAAGACCATTAACTATTGGAACGGTTGAAT
NO: 964








Sa_levo
SA1181
133-232
GATGCAATGACTTATGCCTTGTTTGGTAAAGCATCAACTGAACAAAGAGA
SEQ ID
R
up
x





AGAAAATGATTTGAGAAGTCATTTCGCTGATGGTAAACAGCCGATGTCAG
NO: 965








Sa_levo
SA1196
864-963
AGCAGAGTTCGAGCAAGAAAAAAAGTGGCAAGAACGATACATTTTGCCTT
SEQ ID
R
up






TGGCTATAGTGATGAAGGCGGTGTACATAAGCAATATACTTTGAAAGATC
NO: 966








Sa_levo
SA1198
144-243
AATAACAGTGCCAGGCAAAAATGATGAAGTACAACGCTGTATTACTGCTC
SEQ ID
R
up
x





ATGTTGATACTTTAGGTGCAATGGTTAAAGAAATTAAAGAAGATGGTCGC
NO: 967








Sa_levo
SA1221
 3-102
GAAAAAATGGCAATTTGTTGGTACTACAGCTTTAGGTGCAACACTATTAT
SEQ ID
R
up






TAGGTGCTTGTGGTGGCGGTAATGGTGGCAGTGGTAATAGTGATTTAAAA
NO: 968








Sa_levo
SA1315
 49-148
GCATGCGGTGCAGCAGCGCCAGATATATATGATTACGACGACGAAGGTAT
SEQ ID
R
up






TGCTTTCGTAATCCTTGACGATAACCAAGGTACTGCAGAAGTACCTGAGG
NO: 969








Sa_levo
SA1411
 8-107
CAGATAGGCAATTGAGTATATTAAACGCAATTGTTGAGGATTATGTTGAT
SEQ ID
R
up






TTTGGACAACCCGTTGGTTCTAAAACACTAATTGAGCGACATAACTTGAA
NO: 970








Sa_levo
SA1738
209-308
GGCTACACGAGGCGCTACAATATGCCCAACCTGTAGAAGTTAAATTTTAT
SEQ ID
R
up






AATAATGGCTTTGTAGATTCAGTACGCTTAACCATTTATCGTATTGATGC
NO: 971








Sa_levo
SA1759
134-233
TGTGGGGAAATGCAAAAGATGCAATCAATAACGATTTTAAAAACATGGCA
SEQ ID
R
up






ACAGTATATGAAAACACACCATCGTTTGTTCCACAAATAGGTGATGTGGC
NO: 972








Sa_levo
SA1764
1165-1264
AGTGATACACCGCCAGAAAATCCAGTCAATGATATGCTTTGGTATGATAC
SEQ ID
R
up






AAGTAACCCTGATGTTGCTGTCTTGCGTAGATATTGGAATGGTCGATGGA
NO: 973








Sa_levo
SA1765
686-785
GTCGGCGGTGACTTTGTGATATCCAATCTTGGCGAAGGATATAAAGCAAC
SEQ ID
R
up






TAATTTTCCTGATGCAAAAGGTTGGGTTGGTGCTGGCACGAAACGAGGGC
NO: 974








Sa_levo
SA1811
696-795
AAAGGCACTCCAGAGTTCAAAGATATGCTTAAAAACTTGAATGTAAATGA
SEQ ID
R
up






TGTTCTATATGCAGGTCATAATAGCACATGGGACCCTCAATCAAATTCAA
NO: 975








Sa_levo
SA1898
 25-124
TCATTAGCAGTAGGTTTAGGAATCGTAGCAGGAAATGCAGGTCACGAAGC
SEQ ID
R
up






CCATGCAAGTGAAGCGGACTTAAATAAAGCATCTTTAGCGCAAATGGCGC
NO: 976








Sa_levo
SA2097
268-367
GCTAATAATTGGGCTGCTGCTGCACAAGGTGCTGGATTCACAGTAAATCA
SEQ ID
R
up






TACACCTTCTAAAGGCGCTATCCTACAATCTTCTGAAGGACCATTTGGTC
NO: 977








Sa_levo
SA2420
 962-1061
GTCGTTGCAACAGCAGATCACTCTACTGGTGGTCTAACAATTGGTAAAGA
SEQ ID
R
up






TAAAGGATACGAATGGAATCCTCAACCGATTAAATCGATGAAACACTCTG
NO: 978








Sa_levo
SAS009
 34-133
CAAGAATTCCAAGAGATACTTAATAGTGGCATTCATCCTGAATGGCTTTA
SEQ ID
R
up






TTGTGCAAAGGCTAATCTTGTTTTAGAGCCTGCTTATACTGGCGAAGGCA
NO: 979








Sa_levo
SAS016
 6-105
TATTTATCGACAGTATCACCATGAAGGCGCACCAGTTTATGAAATTATAA
SEQ ID
R
up






CCAAAACGTTTCAGCATGTTTCAATTAAATGTGACGATTCATTTAGTGAT
NO: 980








Cpase_ES
KPC
314-413
ACCCATCTCGGAAAAATATCTGACAACAGGCATGACGGTGGCGGAGCTGT
SEQ ID
carba




BL


CCGCGGCCGCCGTGCAATACAGTGATAACGCCGCCGCCAATTTGTTGCTG
NO: 981
pene









mase







Cpase_ES
NDM
112-211
CAAATGGAAACTGGCGACCAACGGTTTGGCGATCTGGTTTTCCGCCAGCT
SEQ ID
carba




BL


CGCACCGAATGTCTGGCAGCACACTTCCTATCTCGACATGCCGGGTTTCG
NO: 982
pene









mase







Cpase_ES
OXA48
413-512
TGCTACATGCTTTCGATTATGGTAATGAGGACATTTCGGGCAATGTAGAC
SEQ ID
carba




BL


AGTTTCTGGCTCGACGGTGGTATTCGAATTTCGGCCACGGAGCAAATCAG
NO: 983
pene









mase







Cpase_ES
IMP_A
 37-136
GAAGAAGGTGTTTATGTTCATACATCGTTCGAAGAAGTTAACGGTTGGGG
SEQ ID
carba




BL


TGTTGTTTCTAAACACGGTTTGGTGGTTCTTGTAAACACTGACGCCTATC
NO: 984
pene









mase







Cpase_ES
IMP_B
 45-144
GAAAAGTTAGTCAATTGGTTTGTGGAGCGCGGCTATAAAATCAAAGGCAC
SEQ ID
carba




BL


TATTTCCTCACATTTCCATAGCGACAGCACAGGGGGAATAGAGTGGCTTA
NO: 985
pene









mase







Cpase_ES
IMP_C
 45-144
GAAAAGTTAGTCACTTGGTTTGTGGAACGTGGCTATAAAATAAAAGGCAG
SEQ ID
carba




BL


TATTTCCTCTCATTTTCATAGCGACAGCACGGGCGGAATAGAGTGGCTTA
NO: 986
pene









mase







Cpase_ES
IMP_D
 1-100
TATGCATCTGAATTAACAAATGAACTTCTTAAAAAAGACGGTAAGGTACA
SEQ ID
carba




BL


AGCTAAAAATTCATTTAGCGGAGTTAGCTATTGGCTAGTTAAGAAAAAGA
NO: 987
pene









mase







Cpase_ES
VIM
477-576
CTCTAGTGGAGATGTGGTGCGCTTCGGTCCCGTAGAGGTTTTCTATCCTG
SEQ ID
carba




BL


GTGCTGCGCATTCGGGCGACAATCTTGTGGTATACGTGCCGGCCGTGCGC
NO: 988
pene









mase







Cpase_ES
CTXM15
259-358
AGTGAAAGCGAACCGAATCTGTTAAATCAGCGAGTTGAGATCAAAAAATC
SEQ ID





BL


TGACCTTGTTAACTATAATCCGATTGCGGAAAAGCACGTCAATGGGACGA
NO: 989
ESBL







Cpase_ES
OXA10
246-345
CATAAAGAATGAGCATCAGGTTTTCAAATGGGACGGAAAGCCAAGAGCCA
SEQ ID





BL


TGAAGCAATGGGAAAGAGACTTGACCTTAAGAGGGGCAATACAAGTTTCA
NO: 990
ESBL





Table legend: aGeneID refers to reference genome as indicated, with alternate GeneID references in parentheses; when GeneID is NC_009648, reference is using what is currently referred to as “old_locus_tag”; bPosition is listed relative to the start codon of that locus; c100-mer target selected based on homology masking of full-length gene, used to design hybridization probes. Probe A is complementary to the first half; probe B is complementary to the second half of the target sequence; dfor responsive genes, listing whether they are predicted to be up-regulated (“up”) or down-regulated (“dn”) based on RNA-Seq results. Note that for all genes selected by reliefF, the direction of change expected from RNA-Seq matched that seen in NanoString ® data; eselected by reliefF as top 10 responsive feature, or by variation on geNorm algorithm as top ~10 control feature, and thus used in phase 2 experiments.







Reverse complement sequences of select 100mer target sequences are presented in SEQ ID NOs: 991-1876 of the accompanying Sequence Listing, with SEQ ID NOs: 1877-2762 presenting select “Probe B” sequences (without terminal tag sequences) and SEQ ID NOs: 2763-3648 presenting select “Probe A” sequences (also without terminal tag sequences).


One skilled in the art would readily appreciate that the present disclosure is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the disclosure. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the disclosure, are defined by the scope of the claims.


In addition, where features or aspects of the disclosure are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.


All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.


Embodiments of this disclosure are described herein, including the best mode known to the inventors for carrying out the disclosed disclosure. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.


The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of”, and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure claimed. Thus, it should be understood that although the present disclosure provides preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure as defined by the description and the appended claims.


It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the disclosure disclosed herein without departing from the scope and spirit of the disclosure. Thus, such additional embodiments are within the scope of the present disclosure and the following claims. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the disclosure to be practiced otherwise than as specifically described herein. Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein or otherwise clearly contradicted by context. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the disclosure described herein. Such equivalents are intended to be encompassed by the following claims.


REFERENCES



  • Abeel, T., T. Van Parys, Y. Saeys, J. Galagan, and Y. Van de Peer. 2012. ‘GenomeView: a next-generation genome browser’, Nucleic Acids Res, 40: e12.

  • Adams-Sapper, S., S. Nolen, G. F. Donzelli, M. Lal, K. Chen, L. H. Justo da Silva, B. M. Moreira, and L. W. Riley. 2015. ‘Rapid induction of high-level carbapenem resistance in heteroresistant KPC-producing Klebsiella pneumoniae’, Antimicrob Agents Chemother, 59: 3281-9.

  • Adler, A., M. Ben-Dalak, I. Chmelnitsky, and Y. Carmeli. 2015. ‘Effect of Resistance Mechanisms on the Inoculum Effect of Carbapenem in Klebsiella pneumoniae Isolates with Borderline Carbapenem Resistance’, Antimicrob Agents Chemother, 59: 5014-7.

  • Allcock, R. J. N., A. V. Jennison, and D. Warrilow. 2017. ‘Towards a Universal Molecular Microbiological Test’, J Clin Microbiol, 55: 3175-82.

  • Anderson, K. F., D. R. Lonsway, J. K. Rasheed, J. Biddle, B. Jensen, L. K. McDougal, R. B. Carey, A. Thompson, S. Stocker, B. Limbago, and J. B. Patel. 2007. ‘Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae’, J Clin Microbiol, 45: 2723-5.

  • Arnold, R. S., K. A. Thom, S. Sharma, M. Phillips, J. Kristie Johnson, and D. J. Morgan. 2011. ‘Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria’, South Med J, 104: 40-5.

  • Arzanlou, M., Chai, W. C. & Venter, H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem 61, 49-59, doi:10.1042/EBC20160063 (2017).

  • Barczak, A. K., J. E. Gomez, B. B. Kaufmann, E. R. Hinson, L. Cosimi, M. L. Borowsky, A. B. Onderdonk, S. A. Stanley, D. Kaur, K. F. Bryant, D. M. Knipe, A. Sloutsky, and D. T. Hung. 2012. ‘RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities’, Proc Natl Acad Sci USA, 109: 6217-22.

  • Bhattacharyya, R. P., M. Walker, R. Boykin, S. S. Son, J. Liu, A. C. Hachey, P. Ma, L. Wu, K. Choi, K. C. Cummins, M. Benson, J. Skerry, H. Ryu, S. Y. Wong, M. B. Goldberg, J. Han, V. M. Pierce, L. A. Cosimi, N. Shoresh, J. Livny, J. Beechem, and D. T. Hung. 2019. ‘Rapid identification and phylogenetic classification of diverse bacterial pathogens in a multiplexed hybridization assay targeting ribosomal RNA’, Sci Rep.

  • Bhattacharyya, R. P., Grad, Y. H. & Hung, D. T. in Harrison's Principles of Internal Medicine (eds J. L. Jameson et al.) Ch. 474, 3491-3504 (McGraw-Hill Education, 2018).

  • Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363, 1005-1015, doi:10.1056/NEJMoa0907847 (2010). Bradley, P., H. C. den Bakker, E. P. C. Rocha, G. McVean, and Z. Iqbal. 2019. ‘Ultrafast search of all deposited bacterial and viral genomic data’, Nat Biotechnol, 37: 152-59.

  • Bradley, P., N. C. Gordon, T. M. Walker, L. Dunn, S. Heys, B. Huang, S. Earle, L. J. Pankhurst, L. Anson, M. de Cesare, P. Piazza, A. A. Votintseva, T. Golubchik, D. J. Wilson, D. H. Wyllie, R. Diel, S. Niemann, S. Feuerriegel, T. A. Kohl, N. Ismail, S. V. Omar, E. G. Smith, D. Buck, G. McVean, A. S. Walker, T. E. Peto, D. W. Crook, and Z. Iqbal. 2015. ‘Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis’, Nat Commun, 6: 10063.

  • Bradley, P., den Bakker, H. C., Rocha, E. P. C., McVean, G. & Iqbal, Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol 37, 152-159, doi:10.1038/s41587-018-0010-1 (2019).

  • Brown, L. D., Cai, T. T. & DasGupta, A. Interval Estimation for a Binomial Proportion. Statist Sci 16, 101-133, doi:10.1214/ss/1009213286 (2001).

  • Burnham, C. D., Leeds, J., Nordmann, P., O'Grady, J. & Patel, J. Diagnosing antimicrobial resistance. Nat Rev Microbiol 15, 697-703, doi:10.1038/nrmicro.2017.103 (2017).

  • Caniaux, I., A. van Belkum, G. Zambardi, L. Poirel, and M. F. Gros. 2017. ‘MCR: modern colistin resistance’, Eur J Clin Microbiol Infect Dis, 36: 415-20.

  • Canton, R., Gonzalez-Alba, J. M. & Galan, J. C. CTX-M Enzymes: Origin and Diffusion. Front Microbiol 3, 110, doi:10.3389/fmicb.2012.00110 (2012).

  • Centers for Disease, Control, and Prevention. 2009. ‘Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities’, MMWR Morb Mortal Wkly Rep, 58: 256-60.

  • Cermak, N., S. Olcum, F. F. Delgado, S. C. Wasserman, K. R. Payer, A. Murakami M, S. M. Knudsen, R. J. Kimmerling, M. M. Stevens, Y. Kikuchi, A. Sandikci, M. Ogawa, V. Agache, F. Baleras, D. M. Weinstock, and S. R. Manalis. 2016. ‘High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays’, Nat Biotechnol, 34: 1052-59.

  • Cerqueira, G. C., A. M. Earl, C. M. Ernst, Y. H. Grad, J. P. Dekker, M. Feldgarden, S. B. Chapman, J. L. Reis-Cunha, T. P. Shea, S. Young, Q. Zeng, M. L. Delaney, D. Kim, E. M. Peterson, T. F. O'Brien, M. J. Ferraro, D. C. Hooper, S. S. Huang, J. E. Kirby, A. B. Onderdonk, B. W. Birren, D. T. Hung, L. A. Cosimi, J. R. Wortman, C. I. Murphy, and W. P. Hanage. 2017. ‘Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks’, Proc Natl Acad Sci USA, 114: 1135-40.

  • Charnot-Katsikas, A., V. Tesic, N. Love, B. Hill, C. Bethel, S. Boonlayangoor, and K. G. Beavis. 2018. ‘Use of the Accelerate Pheno System for Identification and Antimicrobial Susceptibility Testing of Pathogens in Positive Blood Cultures and Impact on Time to Results and Workflow’, J Clin Microbiol, 56.

  • Chea, N., S. N. Bulens, T. Kongphet-Tran, R. Lynfield, K. M. Shaw, P. S. Vagnone, M. A. Kainer, D. B. Muleta, L. Wilson, E. Vaeth, G. Dumyati, C. Concannon, E. C. Phipps, K. Culbreath, S. J. Janelle, W. M. Bamberg, A. Y. Guh, B. Limbago, and A. J. Kallen. 2015. ‘Improved Phenotype-Based Definition for Identifying Carbapenemase Producers among Carbapenem-Resistant Enterobacteriaceae’, Emerg Infect Dis, 21: 1611-6.

  • Choi, J., H. Y. Jeong, G. Y. Lee, S. Han, S. Han, B. Jin, T. Lim, S. Kim, D. Y. Kim, H. C. Kim, E. C. Kim, S. H. Song, T. S. Kim, and S. Kwon. 2017. ‘Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis’, Sci Rep, 7: 1148.

  • Clark, R. B., Lewinski, M. A., Loeffelholz, M. J. & Tibbetts, R. J. Cumitech 31A, Verification and validation of procedures in the clinical microbiology laboratory. (ASM Press, 2009).

  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th edn. CLSI Supplement M07. Wayne, Pa.: Clinical and Laboratory Standards Institute (2018).

  • CLSI. 2018. Performance Standards for Antimicrobial Susceptibility Testing.

  • Consortium, C. RyPTIC, Genomes Project the, C. Allix-Beguec, I. Arandjelovic, L. Bi, P. Beckert, M. Bonnet, P. Bradley, A. M. Cabibbe, I. Cancino-Munoz, M. J. Caulfield, A. Chaiprasert, D. M. Cirillo, D. A. Clifton, I. Comas, D. W. Crook, M. R. De Filippo, H. de Neeling, R. Diel, F. A. Drobniewski, K. Faksri, M. R. Farhat, J. Fleming, P. Fowler, T. A. Fowler, Q. Gao, J. Gardy, D. Gascoyne-Binzi, A. L. Gibertoni-Cruz, A. Gil-Brusola, T. Golubchik, X. Gonzalo, L. Grandjean, G. He, J. L. Guthrie, S. Hoosdally, M. Hunt, Z. Iqbal, N. Ismail, J. Johnston, F. M. Khanzada, C. C. Khor, T. A. Kohl, C. Kong, S. Lipworth, Q. Liu, G. Maphalala, E. Martinez, V. Mathys, M. Merker, P. Miotto, N. Mistry, D. A. J. Moore, M. Murray, S. Niemann, S. V. Omar, R. T. Ong, T. E. A. Peto, J. E. Posey, T. Prammananan, A. Pym, C. Rodrigues, M. Rodrigues, T. Rodwell, G. M. Rossolini, E. Sanchez Padilla, M. Schito, X. Shen, J. Shendure, V. Sintchenko, A. Sloutsky, E. G. Smith, M. Snyder, K. Soetaert, A. M. Starks, P. Supply, P. Suriyapol, S. Tahseen, P. Tang, Y. Y. Teo, T. N. T. Thuong, G. Thwaites, E. Tortoli, D. van Soolingen, A. S. Walker, T. M. Walker, M. Wilcox, D. J. Wilson, D. Wyllie, Y. Yang, H. Zhang, Y. Zhao, and B. Zhu. 2018. ‘Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing’, N Engl J Med, 379: 1403-15.

  • Cubero, M. et al. Carbapenem-resistant and carbapenem-susceptible isogenic isolates of Klebsiella pneumoniae ST101 causing infection in a tertiary hospital. BMC Microbiol 15, 177, doi:10.1186/s12866-015-0510-9 (2015).

  • Didelot, X., R. Bowden, D. J. Wilson, T. E. A. Peto, and D. W. Crook. 2012. ‘Transforming clinical microbiology with bacterial genome sequencing’, Nat Rev Genet, 13: 601-12.

  • Efron, B. & Gong, G. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. American Statistician 37, 36-48, doi:Doi 10.2307/2685844 (1983).

  • Ellington, M. J., O. Ekelund, F. M. Aarestrup, R. Canton, M. Doumith, C. Giske, H. Grundman, H. Hasman, M. T. G. Holden, K. L. Hopkins, J. Iredell, G. Kahlmeter, C. U. Koser, A. MacGowan, D. Mevius, M. Mulvey, T. Naas, T. Peto, J. M. Rolain, O. Samuelsen, and N. Woodford. 2017. ‘The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee’, Clin Microbiol Infect, 23: 2-22.

  • Evans, S. R., A. M. Hujer, H. Jiang, K. M. Hujer, T. Hall, C. Marzan, M. R. Jacobs, R. Sampath, D. J. Ecker, C. Manca, K. Chavda, P. Zhang, H. Fernandez, L. Chen, J. R. Mediavilla, C. B. Hill, F. Perez, A. M. Caliendo, V. G. Fowler, Jr., H. F. Chambers, B. N. Kreiswirth, R. A. Bonomo, and Group Antibacterial Resistance Leadership. 2016. ‘Rapid Molecular Diagnostics, Antibiotic Treatment Decisions, and Developing Approaches to Inform Empiric Therapy: PRIMERS I and II’, Clin Infect Dis, 62: 181-9.

  • Fauci, A. S. & Morens, D. M. The perpetual challenge of infectious diseases. N Engl J Med 366, 454-461, doi:10.1056/NEJMra1108296 (2012).

  • Florio, W., Tavanti, A., Barnini, S., Ghelardi, E. & Lupetti, A. Recent Advances and Ongoing Challenges in the Diagnosis of Microbial Infections by MALDI-TOF Mass Spectrometry. Front Microbiol 9, 1097, doi:10.3389/fmicb.2018.01097 (2018).

  • Ford, B. A. 2018. ‘mecC-Harboring Methicillin-Resistant Staphylococcus aureus: Hiding in Plain Sight’, J Clin Microbiol, 56.

  • Garcia-Alvarez, L., M. T. Holden, H. Lindsay, C. R. Webb, D. F. Brown, M. D. Curran, E. Walpole, K. Brooks, D. J. Pickard, C. Teale, J. Parkhill, S. D. Bentley, G. F. Edwards, E. K. Girvan, A. M. Kearns, B. Pichon, R. L. Hill, A. R. Larsen, R. L. Skov, S. J. Peacock, D. J. Maskell, and M. A. Holmes. 2011. ‘Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study’, Lancet Infect Dis, 11: 595-603.

  • Geiss, G. K., R. E. Bumgarner, B. Birditt, T. Dahl, N. Dowidar, D. L. Dunaway, H. P. Fell, S. Ferree, R. D. George, T. Grogan, J. J. James, M. Maysuria, J. D. Mitton, P. Oliveri, J. L. Osborn, T. Peng, A. L. Ratcliffe, P. J. Webster, E. H. Davidson, L. Hood, and K. Dimitrov. 2008. ‘Direct multiplexed measurement of gene expression with color-coded probe pairs’, Nat Biotechnol, 26: 317-25.

  • Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36, 3420-3435, doi:10.1093/nar/gkn176 (2008).

  • Gupta, N., Limbago, B. M., Patel, J. B. & Kallen, A. J. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53, 60-67, doi:10.1093/cid/cir202 (2011).

  • Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58, 212-220, doi:10.1128/AAC.01310-13 (2014).

  • Gupta, V., R. Garg, K. Kumaraswamy, P. Datta, G. K. Mohi, and J. Chander. 2018. ‘Phenotypic and genotypic characterization of carbapenem resistance mechanisms in Klebsiella pneumoniae from blood culture specimens: A study from North India’, J Lab Physicians, 10: 125-29.

  • Holdren, J. P. et al. President's Council of Advisors on Science and Technology: Report to the President on Combating Antibiotic Resistance. (2014).

  • Hooper, D. C. New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis 30, 243-254, doi:10.1086/313677 (2000).

  • Hou, H. W., R. P. Bhattacharyya, D. T. Hung, and J. Han. 2015. ‘Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics’, Lab Chip, 15: 2297-307.

  • Humphries, R., and T. Di Martino. 2019. ‘Effective implementation of the Accelerate Pheno system for positive blood cultures’, J Antimicrob Chemother, 74: i40-i43.

  • Humphries, R. M. CIM City: The game continues for a better carbapenemase test. J Clin Microbiol, doi:10.1128/JCM.00353-19 (2019).

  • Ioannidis, P. et al. Cepheid GeneXpert MTB/RIF assay for Mycobacterium tuberculosis detection and rifampin resistance identification in patients with substantial clinical indications of tuberculosis and smear-negative microscopy results. J Clin Microbiol 49, 3068-3070, doi:10.1128/JCM.00718-11 (2011).

  • Iovleva, A. & Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin Lab Med 37, 303-315, doi:10.1016/j.cll.2017.01.005 (2017).

  • Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45, D566-D573, doi:10.1093/nar/gkw1004 (2017).

  • Kaase, M., F. Szabados, L. Wassill, and S. G. Gatermann. 2012. ‘Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR’, J Clin Microbiol, 50: 3115-8.

  • Kadri, S. S. et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin Infect Dis 67, 1803-1814, doi:10.1093/cid/ciy378 (2018).

  • Klungthong, C., P. Chinnawirotpisan, K. Hussem, T. Phonpakobsin, W. Manasatienkij, C. Ajariyakhajorn, K. Rungrojcharoenkit, R. V. Gibbons, and R. G. Jarman. 2010. ‘The impact of primer and probe-template mismatches on the sensitivity of pandemic influenza A/H1N1/2009 virus detection by real-time RT-PCR’, J Clin Virol, 48: 91-5.

  • Kumar, A., D. Roberts, K. E. Wood, B. Light, J. E. Parrillo, S. Sharma, R. Suppes, D. Feinstein, S. Zanotti, L. Taiberg, D. Gurka, A. Kumar, and M. Cheang. 2006. ‘Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock’, Crit Care Med, 34: 1589-96.

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256-W259, doi:10.1093/nar/gkz239 (2019).

  • Li, H., and R. Durbin. 2009. ‘Fast and accurate short read alignment with Burrows-Wheeler transform’, Bioinformatics, 25: 1754-60.

  • Li, Y. et al. Penicillin-Binding Protein Transpeptidase Signatures for Tracking and Predicting beta-Lactam Resistance Levels in Streptococcus pneumoniae. MBio 7, doi:10.1128/mBio.00756-16 (2016).

  • Liakopoulos, A., D. J. Mevius, B. Olsen, and J. Bonnedahl. 2016. ‘The colistin resistance mcr-1 gene is going wild’, J Antimicrob Chemother, 71: 2335-6.

  • Liaw, A. & Wiener, M. Classification and Regression by RandomForest. Vol. 23 (2001).

  • Liu, B., and M. Pop. 2009. ‘ARDB—Antibiotic Resistance Genes Database’, Nucleic Acids Res, 37: D443-7.

  • Liu, Y. Y., Y. Wang, T. R. Walsh, L. X. Yi, R. Zhang, J. Spencer, Y. Doi, G. Tian, B. Dong, X. Huang, L. F. Yu, D. Gu, H. Ren, X. Chen, L. Lv, D. He, H. Zhou, Z. Liang, J. H. Liu, and J. Shen. 2016. ‘Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study’, Lancet Infect Dis, 16: 161-8.

  • Lomovskaya, O., D. Sun, D. Rubio-Aparicio, K. Nelson, R. Tsivkovski, D. C. Griffith, and M. N. Dudley. 2017. ‘Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae’, Antimicrob Agents Chemother, 61.

  • Longo, G., L. Alonso-Sarduy, L. M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, and S. Kasas. 2013. ‘Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors’, Nat Nanotechnol, 8: 522-6.

  • Love, M. I., W. Huber, and S. Anders. 2014. ‘Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2’, Genome Biol, 15: 550.

  • Lutgring, J. D., and B. M. Limbago. 2016. ‘The Problem of Carbapenemase-Producing-Carbapenem-Resistant-Enterobacteriaceae Detection’, J Clin Microbiol, 54: 529-34.

  • Ma, P., H. H. Laibinis, C. M. Ernst, and D. T. Hung. 2018. ‘Carbapenem Resistance Caused by High-Level Expression of OXA-663 beta-Lactamase in an OmpK36-Deficient Klebsiella pneumoniae Clinical Isolate’, Antimicrob Agents Chemother, 62.

  • Marlowe, E. M. et al. Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 49, 1621-1623, doi:10.1128/JCM.02214-10 (2011).

  • Marner, E. S. et al. Diagnostic accuracy of the Cepheid GeneXpert vanA/vanB assay ver. 1.0 to detect the vanA and vanB vancomycin resistance genes in Enterococcus from perianal specimens. Diagn Microbiol Infect Dis 69, 382-389, doi:10.1016/j.diagmicrobio.2010.11.005 (2011).

  • Marschal, M., J. Bachmaier, I. Autenrieth, P. Oberhettinger, M. Willmann, and S. Peter. 2017. ‘Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by Gram-Negative Pathogens’, J Clin Microbiol, 55: 2116-26.

  • Marshall, S., A. M. Hujer, L. J. Rojas, K. M. Papp-Wallace, R. M. Humphries, B. Spellberg, K. M. Hujer, E. K. Marshall, S. D. Rudin, F. Perez, B. M. Wilson, R. B. Wasserman, L. Chikowski, D. L. Paterson, A. J. Vila, D. van Duin, B. N. Kreiswirth, H. F. Chambers, V. G. Fowler, Jr., M. R. Jacobs, M. E. Pulse, W. J. Weiss, and R. A. Bonomo. 2017. ‘Can Ceftazidime-Avibactam and Aztreonam Overcome beta-Lactam Resistance Conferred by Metallo-beta-Lactamases in Enterobacteriaceae?’, Antimicrob Agents Chemother, 61.

  • Martinez-Martinez, L., and J. J. Gonzalez-Lopez. 2014. ‘Carbapenemases in Enterobacteriaceae: types and molecular epidemiology’, Enferm Infecc Microbiol Clin, 32 Suppl 4: 4-9.

  • Maurer, F. P., Christner, M., Hentschke, M. & Rohde, H. Advances in Rapid Identification and Susceptibility Testing of Bacteria in the Clinical Microbiology Laboratory: Implications for Patient Care and Antimicrobial Stewardship Programs. Infect Dis Rep 9, 6839, doi:10.4081/idr.2017.6839 (2017).

  • McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57, 3348-3357, doi:10.1128/AAC.00419-13 (2013).

  • McMullen, A. R., Yarbrough, M. L., Wallace, M. A., Shupe, A. & Burnham, C. D. Evaluation of Genotypic and Phenotypic Methods to Detect Carbapenemase Production in Gram-Negative Bacilli. Clin Chem 63, 723-730, doi:10.1373/clinchem.2016.264804 (2017).

  • Milheirico, C., de Lencastre, H. & Tomasz, A. Full-Genome Sequencing Identifies in the Genetic Background Several Determinants That Modulate the Resistance Phenotype in Methicillin-Resistant Staphylococcus aureus Strains Carrying the Novel mecC Gene. Antimicrob Agents Chemother 61, doi:10.1128/AAC.02500-16 (2017).

  • Miller, S., and R. M. Humphries. 2016. ‘Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae’, Expert Rev Anti Infect Ther, 14: 705-17.

  • Nathan, C. & Cars, O. Antibiotic Resistance—Problems, Progress, and Prospects. N Engl J Med, doi:10.1056/NEJMp1408040 (2014).

  • Nguyen, M. et al. Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep 8, 421, doi:10.1038/s41598-017-18972-w (2018).

  • Nordmann, P., G. Cuzon, and T. Naas. 2009. ‘The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria’, Lancet Infect Dis, 9: 228-36.

  • Nordmann, P., L. Dortet, and L. Poirel. 2012. “Carbapenem resistance in Enterobacteriaceae: here is the storm!” Trends Mol Med, 18: 263-72.

  • Paterson, D. L., W. C. Ko, A. Von Gottberg, J. M. Casellas, L. Mulazimoglu, K. P. Klugman, R. A. Bonomo, L. B. Rice, J. G. McCormack, and V. L. Yu. 2001. ‘Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory’, J Clin Microbiol, 39: 2206-12.

  • Paterson, G. K., E. M. Harrison, and M. A. Holmes. 2014. ‘The emergence of mecC methicillin-resistant Staphylococcus aureus’, Trends Microbiol, 22: 42-7.

  • Perez, K. K. et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137, 1247-1254, doi:10.5858/arpa.2012-0651-OA (2013).

  • Quach, D. T., G. Sakoulas, V. Nizet, J. Pogliano, and K. Pogliano. 2016. ‘Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus’, EBioMedicine, 4: 95-103.

  • Rasko, D. A., D. R. Webster, J. W. Sahl, A. Bashir, N. Boisen, F. Scheutz, E. E. Paxinos, R. Sebra, C. S. Chin, D. Iliopoulos, A. Klammer, P. Peluso, L. Lee, A. O. Kislyuk, J. Bullard, A. Kasarskis, S. Wang, J. Eid, D. Rank, J. C. Redman, S. R. Steyert, J. Frimodt-Moller, C. Struve, A. M. Petersen, K. A. Krogfelt, J. P. Nataro, E. E. Schadt, and M. K. Waldor. 2011. ‘Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany’, N Engl J Med, 365: 709-17.

  • Robnik-Šikonja, Marko, and Igor Kononenko. 2003. ‘Theoretical and Empirical Analysis of ReliefF and RReliefF’, Machine Learning, 53: 23-69.

  • Rossen, J. W. A., A. W. Friedrich, J. Moran-Gilad, Escmid Study Group for Genomic, and Diagnostics Molecular. 2018. ‘Practical issues in implementing whole-genome-sequencing in routine diagnostic microbiology’, Clin Microbiol Infect, 24: 355-60.

  • Salimnia, H. et al. Evaluation of the FilmArray Blood Culture Identification Panel: Results of a Multicenter Controlled Trial. J Clin Microbiol 54, 687-698, doi:10.1128/JCM.01679-15 (2016).

  • Shishkin, A. A., G. Giannoukos, A. Kucukural, D. Ciulla, M. Busby, C. Surka, J. Chen, R. P. Bhattacharyya, R. F. Rudy, M. M. Patel, N. Novod, D. T. Hung, A. Gnirke, M. Garber, M. Guttman, and J. Livny. 2015. ‘Simultaneous generation of many RNA-seq libraries in a single reaction’, Nat Methods, 12: 323-5.

  • Smith, K. P., and J. E. Kirby. 2018. ‘The Inoculum Effect in the Era of Multidrug Resistance: Minor Differences in Inoculum Have Dramatic Effect on MIC Determination’, Antimicrob Agents Chemother, 62.

  • Smith, M., B. Diederen, J. Scharringa, M. Leversteijn-van Hall, A. C. Fluit, and J. Cohen Stuart. 2016. ‘Rapid and accurate detection of carbapenemase genes in Enterobacteriaceae with the Cepheid Xpert Carba-R assay’, J Med Microbiol, 65: 951-3.

  • Sullivan, K. V., B. Deburger, S. S. Roundtree, C. A. Ventrola, D. L. Blecker-Shelly, and J. E. Mortensen. 2014. ‘Pediatric multicenter evaluation of the Verigene gram-negative blood culture test for rapid detection of inpatient bacteremia involving gram-negative organisms, extended-spectrum beta-lactamases, and carbapenemases’, J Clin Microbiol, 52: 2416-21.

  • Sun, J., H. Zhang, Y. H. Liu, and Y. Feng. 2018. ‘Towards Understanding MCR-like Colistin Resistance’, Trends Microbiol, 26: 794-808.

  • Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318-327, doi:10.1016/S1473-3099(17)30753-3 (2018).

  • Tagini, F., and G. Greub. 2017. ‘Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review’, Eur J Clin Microbiol Infect Dis, 36: 2007-20.

  • Tanner, H., Evans, J. T., Gossain, S. & Hussain, A. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF. BMC Res Notes 10, 48, doi:10.1186/s13104-016-2366-y (2017).

  • Traczewski, M. M., Carretto, E., Canton, R., Moore, N. M. & Carba, R. S. T. Multicenter Evaluation of the Xpert Carba-R Assay for Detection of Carbapenemase Genes in Gram-Negative Isolates. J Clin Microbiol 56, doi:10.1128/JCM.00272-18 (2018).

  • van Belkum, A., M. Welker, D. Pincus, J. P. Charrier, and V. Girard. 2017. ‘Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?’, Ann Lab Med, 37: 475-83.

  • van Duin, D., and R. A. Bonomo. 2016. ‘Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation beta-Lactam/beta-Lactamase Inhibitor Combinations’, Clin Infect Dis, 63: 234-41.

  • Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034 (2002).

  • Wadsworth, C. B., Sater, M. R. A., Bhattacharyya, R. P. & Grad, Y. H. Impact of species diversity on the design of RNA-based diagnostics for antibiotic resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother, doi:10.1128/AAC.00549-19 (2019).

  • Walker, G. T. et al. Analytical Performance of Multiplexed Screening Test for 10 Antibiotic Resistance Genes from Perianal Swab Samples. Clin Chem 62, 353-359, doi:10.1373/clinchem.2015.246371 (2016).

  • Walker, T. et al. Clinical Impact of Laboratory Implementation of Verigene BC-GN Microarray-Based Assay for Detection of Gram-Negative Bacteria in Positive Blood Cultures. J Clin Microbiol 54, 1789-1796, doi:10.1128/JCM.00376-16 (2016).

  • Weisenberg, S. A., D. J. Morgan, R. Espinal-Witter, and D. H. Larone. 2009. ‘Clinical outcomes of patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae after treatment with imipenem or meropenem’, Diagn Microbiol Infect Dis, 64: 233-5.

  • Wiegand, I., K. Hilpert, and R. E. Hancock. 2008. ‘Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances’, Nat Protoc, 3: 163-75.

  • Wolk, D. M. et al. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J Clin Microbiol 47, 758-764, doi:10.1128/JCM.01714-08 (2009).

  • Woodworth, K. R., M. S. Walters, L. M. Weiner, J. Edwards, A. C. Brown, J. Y. Huang, S. Malik, R. B. Slayton, P. Paul, C. Capers, M. A. Kainer, N. Wilde, A. Shugart, G. Mahon, A. J. Kallen, J. Patel, L. C. McDonald, A. Srinivasan, M. Craig, and D. M. Cardo. 2018. ‘Vital Signs: Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms—United States, 2006-2017’, MMWR Morb Mortal Wkly Rep, 67: 396-401.

  • World_Health_Organization. Antimicrobial resistance: global report on surveillance 2014. (2014).

  • Ye, Y., L. Xu, Y. Han, Z. Chen, C. Liu, and L. Ming. 2018. ‘Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates’, Exp Ther Med, 15: 1143-49.

  • Zankari, E., H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F. M. Aarestrup, and M. V. Larsen. 2012. ‘Identification of acquired antimicrobial resistance genes’, J Antimicrob Chemother, 67: 2640-4.

  • Zhu, Y. Y., E. M. Machleder, A. Chenchik, R. Li, and P. D. Siebert. 2001. ‘Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction’, Biotechniques, 30: 892-7.


Claims
  • 1. A method, comprising: obtaining a sample including one or more bacterial cells, wherein the sample is obtained from a patient or an environmental source;processing the sample to enrich the one or more bacterial cells;contacting the sample with one or more antibiotic compounds;lysing the sample to release messenger ribonucleic acid (mRNA) from the one or more bacterial cells;hybridizing the released mRNA to at least one set of two nucleic acid probes, wherein each nucleic acid probe includes a unique barcode or tag;detecting the hybridized nucleic acid probes;identifying one or more genetic resistance determinants; anddetermining the identity of the one or more bacterial cells and the antibiotic susceptibility of each of the identified one or more bacterial cells.
  • 2. The method of claim 1, wherein the at least one set of two nucleic acid probes includes one or more probes from Table 3 and one or more probes from Table 4.
  • 3. The method of claim 1, wherein the at least one set of two nucleic acid probes includes one or more probes from Table 5 and one or more probes from Table 6.
  • 4. The method of claim 1, wherein the at least one set of two nucleic acid probes includes a first probe comprising a sequence selected from the group consisting of SEQ ID NOs: 1877-2762 and a second probe comprising a sequence selected from the group consisting of SEQ ID NOs: 2763-3648, optionally wherein the first probe comprises a sequence of SED ID NO: (1877+n) and the second probe comprises a sequence of SEQ ID NO: (2763+n), wherein n=an integer ranging from 0 to 885, optionally wherein one or both probes further comprises a tag sequence.
  • 5. The method of claim 1, wherein the at least one set of two nucleic acid probes binds to one or more Cre2 target sequences listed in Table 1.
  • 6. The method of claim 1, wherein the at least one set of two nucleic acid probes binds to one or more KpMero4 target sequences listed in Table 2.
  • 7. The method of claim 1, wherein the hybridizing occurs at a temperature between about 64° C. and about 69° C.
  • 8. The method of claim 1, wherein the hybridizing occurs at a temperature between about 65° C. and about 67° C.
  • 9. The method of claim 1, wherein the hybridizing occurs at about 65° C. or about 66° C. or about 67° C.
  • 10. A composition comprising: a set of nucleic acid probes corresponding to the probes listed in Table 3 and Table 4;a set of nucleic acid probes corresponding to the probes listed in Table 5 and Table 6;a set of nucleic acid probes that includes a first probe comprising a sequence selected from the group consisting of SEQ ID NOs: 1877-2762 and a second probe comprising a sequence selected from the group consisting of SEQ ID NOs: 2763-3648, optionally wherein the first probe comprises a sequence of SED ID NO: (1877+n) and the second probe comprises a sequence of SEQ ID NO: (2763+n), wherein n=an integer ranging from 0 to 885, optionally wherein one or both of the first and second probes further comprises a tag sequence;a kit comprising a set of nucleic acid probes corresponding to the probes listed in Table 3 and Table 4, and instructions for its use;a kit comprising a set of nucleic acid probes corresponding to the probes listed in Table 5 and Table 6, and instructions for its use; ora kit comprising a set of nucleic acid probes that includes a first probe comprising a sequence selected from the group consisting of SEQ ID NOs: 1877-2762 and a second probe comprising a sequence selected from the group consisting of SEQ ID NOs: 2763-3648, and instructions for its use, optionally wherein the first probe comprises a sequence of SED ID NO: (1877+n) and the second probe comprises a sequence of SEQ ID NO: (2763+n), wherein n=an integer ranging from 0 to 885, optionally wherein one or both of the first and second probes further comprises a tag sequence.
  • 11-12. (canceled)
  • 13. A method of treating a patient, comprising: obtaining a sample including one or more bacterial cells, wherein the sample is obtained from a patient or an environmental source;processing the sample to enrich the one or more bacterial cells;contacting the sample with one or more antibiotic compounds;lysing the sample to release messenger ribonucleic acid (mRNA) from the one or more bacterial cells;hybridizing the released mRNA to at least one set of two nucleic acid probes, wherein each nucleic acid probe includes a unique barcode or tag;detecting the hybridized nucleic acid probes;identifying one or more genetic resistance determinants;determining the identity of the one or more bacterial cells and the antibiotic susceptibility of each of the identified one or more bacterial cells; andadministering to the patient an appropriate antibiotic based on the determination of the identity and the antibiotic susceptibility of the one or more bacterial cells.
  • 14. The method of claim 1, wherein processing includes subjecting the sample to centrifugation or differential centrifugation.
  • 15. The method of claim 1, wherein the one or more antibiotic compounds are at a clinical breakpoint concentration.
  • 16. The method of claim 1, wherein lysing occurs by a method selected from the group consisting of mechanical lysis, liquid homogenization lysis, sonication, freeze-thaw lysis, and manual grinding.
  • 17. The method of claim 1, wherein the at least one set of two nucleic acid probes includes one control set and one responsive set, 3-5 control sets and 3-5 responsive sets, or 8-10 control sets and 8-10 responsive sets.
  • 18. The method of claim 13, wherein the hybridizing occurs at a temperature between about 64° C. and about 69° C.
  • 19. The method of claim 13, wherein the hybridizing occurs at a temperature between about 65° C. and about 67° C.
  • 20. The method of claim 13, wherein the hybridizing occurs at about 65° C. or about 66° C. or about 67° C.
  • 21-23. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is an International Patent Application which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/723,417, filed on Aug. 27, 2018, entitled, “Compositions and Methods for Detecting Antibiotic Responsive mRNA Expression Signatures and Uses Thereof”; and to U.S. Provisional Application No. 62/834,786, filed on Apr. 16, 2019, entitled, “Compositions and Methods for Detecting Antibiotic Responsive mRNA Expression Signatures and Uses Thereof.” The entire contents of these patent applications are hereby incorporated by reference herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

The invention was made with government support under Grant Nos. AI117043 and AI119157, awarded by the National Institutes of Health, and by contract No. HESN272200900018C. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/048114 8/26/2019 WO 00
Provisional Applications (2)
Number Date Country
62834786 Apr 2019 US
62723417 Aug 2018 US