Compositions and methods for detecting sessile serrated adenomas/polyps

Information

  • Patent Grant
  • 11236398
  • Patent Number
    11,236,398
  • Date Filed
    Thursday, March 1, 2018
    6 years ago
  • Date Issued
    Tuesday, February 1, 2022
    2 years ago
Abstract
The disclosure provides a method to detect sessile serrated adenomas/polyps (SSA/Ps) and to differentiate SSA/Ps from hyperplastic polyps (HPs). The method uses a molecular signature that is platform-independent and could be used with multiple platforms such as microarray, RNA-seq or real-time quantitative platforms.
Description
FIELD OF THE INVENTION

The disclosure provides a method to detect sessile serrated adenomas/polyps (SSA/Ps) and to differentiate SSA/Ps from hyperplastic polyps (HPs). The method uses a molecular signature that is platform-independent and could be used with multiple platforms such as microarray, RNA-seq or real-time qPCR platforms.


BACKGROUND OF THE INVENTION

Colon cancer is the second largest cause of cancer-related deaths in the United States. Colonic neoplasms originate primarily from colon polyps, and develop via partially overlapping but mechanistically distinct pathways that have been designated as the adenomatous and serrated pathways. Accumulating evidence indicates that the majority of other colon adenocarcinomas, possibly 20-30%, arise from a subset of serrated polyps, designated sessile serrated adenomas/polyps (SSA/Ps), which were previously classified as hyperplastic polyps and thought to have little or no tumorigenic potential.


Sessile serrated adenomas/polyps (SSA/Ps) have been distinguished from hyperplastic polyps (HPs) on the basis of their endoscopic appearance (larger, flat and hypermucinous) and histologic characteristics (dilatated crypts, horizontal crypts, and boot shaped deformities). However, because HPs may often have overlapping similar features, including serrated crypt architecture, borderline phenotypes can be difficult to assign. This has been highlighted by a number of studies documenting the frequent misclassification of SSA/Ps as HPs, resulting in inadequate follow-up. Conversely, misclassifying an HP as an SSA/P may result in unnecessary cancer screening in these patients. SSA/Ps account for 20-30% of colon cancers whereas HPs have little or no risk of progressing to colon cancer.


Thus, there is a need in the art for reliable diagnostic assays that could aid in the distinction between these lesions. Such an assay would be helpful for both diagnosis and surveillance stratification of patients.


SUMMARY OF THE INVENTION

In an aspect, the disclosure provides a method of detecting sessile serrated adenomas/polyps (SSA/Ps) in a subject. The method comprises: (a) determining the level of expression of the nucleic acids in the molecular signature in a biological sample obtained from the subject, wherein the molecular signature is selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYCN, and TM4SF4; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value.


In another aspect, the disclosure provides a method of differentiating sessile serrated adenomas/polyps (SSA/Ps) from hyperplastic polyps (HPs) in a subject. The method comprises: (a) determining the level of expression of the nucleic acids in the molecular signature in a biological sample obtained from the subject, wherein the molecular signature is selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYCN, and TM4SF4; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps or HPs in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value.


In still another aspect, the disclosure provides a method of predicting the likelihood that a colorectal polyp in a subject will develop into colorectal cancer. The method comprises: (a) determining the level of expression of the nucleic acids in the molecular signature in a biological sample obtained from the subject, wherein the molecular signature is selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYCN, and TM4SF4; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value, wherein the detection of SSA/Ps in the subject indicates an increased likelihood of developing colorectal cancer.


In still yet another aspect, the disclosure provides a method of determining treatment of a subject diagnosed with serrated polyps or suspected of having serrated polyps. The method comprises: (a) determining the level of expression of the nucleic acids in the molecular signature in a biological sample obtained from the subject, wherein the molecular signature is selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYCN, and TM4SF4; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value; and (d) treating the subject more aggressively if SSA/Ps are detected.


Additionally, the disclosure provides a kit to differentiate SSA/Ps and HPs in a subject. The kit comprises detection agents that can detect the expression products of a molecular signature in a biological sample obtained from the subject, wherein the molecular signature is selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYCN, and TM4SF4.





BRIEF DESCRIPTION OF THE FIGURES

The application file contains at least one drawing executed in color. Copies of this patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 depicts a Venn diagram summarizing the differentially expressed (DE) genes in three comparisons.



FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D depicts principle component analysis (PCA) scatter plots. (FIG. 2A) SSA/P and HP samples are not well-separated when all the expressed genes are considered; (FIG. 2B) control right (CR) and control left (CL) samples are well-separated when all the expressed genes are considered; (FIG. 2C) SSA/P and HP samples are well-separated when only the genes differentially expressed between SSA/Ps and HPs with the exclusion of genes, DE between CR and CL are considered (139 genes); (FIG. 2D) CR and CL samples are well-separated when only the 152 genes in (FIG. 2C) are considered.



FIG. 3 depicts a heatmap of RNA-seq expression data. Hierarchical clustering of CR (green), HP (yellow) and SSA/Ps (blue) biopsies (columns) and differentially expressed genes (rows). Only genes that were expressed at the same level in HP and CR samples but significantly up- or down-regulated in SSA/Ps are shown. Down-regulated and up-regulated genes in SSA/P are indicated in blue and orange colors, respectively. The log2(SSA/P/HP) is shown next to gene names on the right side.



FIG. 4 depicts MST2 of the ‘Golgi stack’ gene set from the C5 collection of MSigDB. This gene set was detected by GSNCA (P<0.05) in both comparisons: HPs versus SSA/Ps (FIG. 4A) and CRs versus SSA/Ps (FIG. 4B).



FIG. 5A, FIG. 5B, FIG. 5C, and FIG. 5D depicts examples, illustrating the new feature selection step. (FIG. 5A) The fold change in both platforms was larger than the within-phenotype variability and the correlation coefficient between platforms (ρtrue) was high; (FIG. 5B) when phenotypic labels in part A were randomly resampled, the fold change in both platforms became negligible as compared to the within-phenotype variability and the correlation coefficient between platforms (ρrandom) became low. (FIG. 5C) The fold change in both platforms was smaller than the within-phenotype variability and the correlation coefficient between platforms (ρtrue) was low; (FIG. 5D) when phenotypic labels in FIG. 5C were randomly resampled, the correlation coefficient (ρrandom) was low.



FIG. 6 depicts the probability of an assigned SSA/P (HP) class is the cumulative distribution function CDF(SM) (1-CDF(SM)) of the empirical distribution of SM after standardization. The empirical approach can also be substituted by the normal approximation of SM. Since both approaches have limitations, the Cantelli lower bound (CLB) is used as a conservative probability assignment for the SM score.



FIG. 7 depicts MST2 of the MEIOSIS gene set of the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 7A) and CR versus SSA/P (FIG. 7B).



FIG. 8 depicts MST2 of the REGULATION OF DNA REPLICATION gene set of the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 8A) and CR versus SSA/P (FIG. 8B).



FIG. 9 depicts MST2 of the PROTEIN TARGETING TO MEMBRANE gene set of the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 9A) and CR versus SSA/P (FIG. 9B).



FIG. 10 depicts MST2 of the MEIOTIC RECOMBINATION gene set from the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 10A) and CR versus SSA/P (FIG. 10B).



FIG. 11 depicts MST2 of the KINASE ACTIVATOR ACTIVITY gene set from the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 11A) and CR versus SSA/P (FIG. 11B).



FIG. 12 depicts MST2 of the HORMONE ACTIVITY gene set from the C5 collection obtained from MSigDB. This gene set is detected by GSNCA (P<0.05) in both comparisons: HP versus SSA/P (FIG. 12A) and CR versus SSA/P (FIG. 12B).



FIG. 13A, FIG. 13B, FIG. 13C, and FIG. 13D depict histograms of the Pearson correlation coefficient between two platforms obtained in 10000 iterations. Only 117 genes expressed in all three platforms (RNA-seq, Illumina, and Affymetrix) and found to be differentially expressed between SSA/Ps and both HPs and CRs are considered. (FIG. 13A) correlation between the RNA-seq and the Illumina platforms when phenotypic labels are preserved; (FIG. 13B) correlation between the RNA-seq and the Illumina platforms when phenotypic labels are randomly resampled; (FIG. 13C) correlation between the RNA-seq and the Affymetrix platforms when phenotypic labels are preserved; (FIG. 13D) correlation between the RNA-seq and the Affymetrix platforms when phenotypic labels are randomly resampled.



FIG. 14A, FIG. 14B, and FIG. 14C depict histograms of the MAD-normalized log-scale gene expression data in all three platforms approximately follows a Laplace-like distribution centered around zero; (FIG. 14A) RNA-seq dataset (17243 genes and 31 samples); (FIG. 14B) Illumina dataset (17123 genes and 12 samples); (FIG. 14C) Affymetrix dataset (19090 genes and 17 samples).



FIG. 15A, FIG. 15B, and FIG. 15C depict histograms of the summary metric (SM) obtained by summing the MAD-normalized expressions of a random signature of 15 genes in all three platforms. Six HP and six SSA/P samples were randomly selected from each platform in each iteration and a total of 10000 iterations were used to generate the histogram of SM. The SM approximately follows a normal-like distribution that is centered around zero and has a higher kurtosis than the standard normal distribution; (FIG. 15A) RNA-seq data set; (FIG. 15B) Illumina data set; (FIG. 15C) Affymetrix data set.



FIG. 16 depicts a principle component analysis (PCA) scatter plot showing the first and second components for normalized expression levels by first subtracting sample medians and then by subtracting gene-wise medians from each individual gene.



FIG. 17 depicts a barplot of the average raw expression levels of 13 genes obtained by qPCR from 45 FFPE tissue samples. For each gene, samples are grouped according to their phenotype (HP or SSA/P). Error bars extend to ±one standard deviation. Raw expression levels are relative to the housekeeping genes, hence higher levels here refer to lower values.



FIG. 18A and FIG. 18B depict boxplots for the expression levels of 13 genes obtained by qPCR from 45 FFPE tissue samples. (FIG. 18A) raw expression levels centered around zero; (FIG. 18B) normalized expression levels by first subtracting sample medians and then by subtracting gene-wise medians from each individual gene.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein are methods to detect sessile serrated adenomas/polyps (SSA/Ps) and to distinguish SSA/Ps from hyperplastic polyps (HPs). Prior to the disclosure, there has been difficulty in distinguishing SSA/Ps from HPs. Current histopathological methods have about 60-70% accuracy in distinguishing SSA/Ps from HPs. However, the methodology disclosed herein has an impressive 90% accuracy at correctly distinguishing SSA/Ps from HPs. Notably, the molecular signature disclosed herein was able to achieve this accuracy on preserved FFPE tissues. Further, the molecular signature was developed such that it is platform-independent and could be used with multiple platforms such as microarray, RNA-seq or real-time qPCR platforms to effectively distinguish SSA/Ps from HPs. As SSA/Ps have a higher risk of progressing to cancer, it is important that SSA/Ps are accurately diagnosed such that the subject is treated properly. By accurately detecting SSA/Ps, the subject may be treated more aggressively or monitored more frequently. Thus, the method disclosed herein may be used to determine the risk of progression to colorectal cancer and also decrease the risk of progression to colorectal cancer by allowing for earlier interventions.


Details of the methods are described in more detail below.


I. Molecular Signature


In an aspect, the disclosure provides a molecular signature for differentiating sessile serrated adenomas/polyps (SSA/Ps) and hyperplastic polyps (HPs) in a subject. As used herein, the term “molecular signature” refers to a set of nucleic acids that are differentially expressed in a subject. For example, serrated polyps may be classified into hyperplastic polyps (HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas (TSAs) and the expression levels of the nucleic acids in the molecular signature may be used to differentiate SSA/Ps and HPs. Accordingly, the molecular signature may also be used to predict prognosis, predict development of colorectal cancer, develop a treatment strategy, develop a follow-up/monitoring strategy, determine response to treatment, monitor progression of disease, etc.


In one embodiment, the molecular signature comprises at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. Specifically, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4.


In another embodiment, the molecular signature comprises at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, or at least 15 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. Specifically, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2.


In still another embodiment, the molecular signature comprises at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, or at least 12 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2. Specifically, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2.


Alternatively, a molecular signature of the disclosure may comprise 3 to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 200, 200 to 300, 300 to 400 and more than 400 nucleic acids. In one embodiment, a molecular signature of the disclosure may comprise at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 21, at least 22, at least 23, at least 24, at least 25, or all 26 nucleic acids from Table A. In addition, other nucleic acids not herein described may be combined with any of the presently disclosed nucleic acids to aid in the differentiation of sessile serrated adenomas/polyps (SSA/Ps) and hyperplastic polyps (HPs). A skilled artisan would be able to determine the various sequences of the nucleic acids listed in Table A. Nucleic acids have transcript variants due to alternative splicing. A skilled artisan would be able to determine various transcript variants from the accession numbers provided.









TABLE A







Nucleic acids for molecular signature.












Homo sapiens



Gene

Accession


Name
Description
Number





C4BPA
complement component 4 binding
NM_000715.3



protein alpha


CHFR
checkpoint with forkhead and ring finger
NM_001161344.1



domains, E3 ubiquitin protein ligase


CHGA
chromogranin A
NM_001275.3


CLDN1
claudin 1
NM_021101.4


CPE
carboxypeptidase E
NM_001873.3


DPP10
dipeptidyl peptidase like 10
NM_020868.4


FOXD1
forkhead box D1
NM_004472.2


GRAMD1B
GRAM domain containing 1B
NM_001286563.1


GRIN2D
glutamate ionotropic receptor NMDA type
NM_000836.2



subunit 2D


KIZ
kizuna centrosomal protein
NM_018474.4


KLK7
kallikrein related peptidase 7
NM_005046.3


MEGF6
multiple EGF like domains 6
NM_001409.3


MYCN
v-myc avian myelocytomatosis viral oncogene
NM_001293228.1



neuroblastoma derived homolog


NTRK2
neurotrophic tyrosine kinase, receptor, type 2
NM_006180.4


PIK3R3
phosphoinositide-3-kinase regulatory subunit 3
NM_003629.3


PLA2G16
phospholipase A2 group XVI
NM_007069.3


PRUNE2
prune homolog 2
NM_015225.2


PTAFR
platelet activating factor receptor
NM_001164721.1


SBSPON
somatomedin B and thrombospondin type
NM_153225.3



1 domain containing


SEMG1
semenogelin I
NM_003007.4


SLC7A9
solute carrier family 7 member 9
NM_014270.4


SPIRE1
spire type actin nucleation factor 1
NM_001128626.1


TACSTD2
tumor-associated calcium signal transducer 2
NM_002353.2


TM4SF4
transmembrane 4 L six family member 4
NM_004617.3


TPD52L1
tumor protein D52-like 1
NM_003287.3


TRIB2
tribbles pseudokinase 2
NM_021643.3









The molecular signature may further comprise one or more nucleic acids used as a normalization control. A normalization control compensates for systemic technical differences between experiments, to see more clearly the systemic biological differences between samples. A normalization control is a nucleic acid whose expression is not expected to be different across samples. Generally, these nucleic acids may be known as ‘housekeeping’ nucleic acids which are required for basic cell processes. Non-limiting examples of housekeeping nucleic acids commonly used as normalization controls include GAPDH, ACTB, B2M, TUBA, G6PD, LDHA, HPRT, ALDOA, PFKP, PGK1, PGAM1, VIM and UBC.


II. Methods


In an aspect, the disclosure provides a method to classify a subject based on the level of expression of the nucleic acids in a molecular signature of the disclosure. The method generally comprises: (a) determining the level of expression of the nucleic acids in a molecular signature of the disclosure in a biological sample obtained from the subject; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) classifying the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value. In an embodiment, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2.


In another aspect, the disclosure provides a method of detecting sessile serrated adenomas/polyps (SSA/Ps) in a subject. The method comprises: (a) determining the level of expression of the nucleic acids in a molecular signature of the disclosure in a biological sample obtained from the subject; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value. In an embodiment, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYON, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2. Specifically, step (c) comprises detecting SSA/Ps in the subject when CHFR, CHGA, and NTRK2 are decreased relative to the reference value and when CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Additionally, step (c) comprises detecting SSA/Ps in the subject when NTRK2 is decreased relative to the reference value and when CLDN1, FOXD1, KIZ, MEGF6, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Further, step (c) comprises detecting SSA/Ps in the subject when CHGA, CPE, DPP10, and NTRK2 are decreased relative to the reference value and when C4BPA, CLDN1, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample.


In still another aspect, the disclosure provides a method of differentiating sessile serrated adenomas/polyps (SSA/Ps) from hyperplastic polyps (HPs) in a subject. The method comprises: (a) determining the level of expression of the nucleic acids in a molecular signature of the disclosure in a biological sample obtained from the subject; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps or HPs in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value. In an embodiment, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2. Specifically, step (c) comprises detecting SSA/Ps in the subject when CHFR, CHGA, and NTRK2 are decreased relative to the reference value and when CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Additionally, step (c) comprises detecting SSA/Ps in the subject when NTRK2 is decreased relative to the reference value and when CLDN1, FOXD1, KIZ, MEGF6, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Further, step (c) comprises detecting SSA/Ps in the subject when CHGA, CPE, DPP10, and NTRK2 are decreased relative to the reference value and when C4BPA, CLDN1, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample.


In still yet another aspect, the disclosure provides a method of predicting the likelihood that a colorectal polyp in a subject will develop into colorectal cancer. The method comprises: (a) determining the level of expression of the nucleic acids in a molecular signature of the disclosure in a biological sample obtained from the subject; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; and (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value, wherein the detection of SSA/Ps in the subject indicates an increased likelihood of developing colorectal cancer. Treatment decisions may then be made based on the detection of SSA/Ps. In an embodiment, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2. Specifically, step (c) comprises detecting SSA/Ps in the subject when CHFR, CHGA, and NTRK2 are decreased relative to the reference value and when CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Additionally, step (c) comprises detecting SSA/Ps in the subject when NTRK2 is decreased relative to the reference value and when CLDN1, FOXD1, KIZ, MEGF6, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Further, step (c) comprises detecting SSA/Ps in the subject when CHGA, CPE, DPP10, and NTRK2 are decreased relative to the reference value and when C4BPA, CLDN1, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample.


In other aspects, the disclosure provides a method of determining treatment of a subject diagnosed with serrated polyps or suspected of having serrated polyps. The method generally comprises: (a) determining the level of expression of the nucleic acids in a molecular signature of the disclosure in a biological sample obtained from the subject; (b) comparing the level of expression of each nucleic acid in the molecular signature to a reference value; (c) detecting SSA/Ps in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value; and (d) treating the subject more aggressively if SSA/Ps are detected. Serrated polyps may be classified into hyperplastic polyps (HPs), sessile serrated adenomas/polyps (SSA/Ps), and traditional serrated adenomas (TSAs). SSA/Ps have the strongest association with an increased risk for colon cancer. Accordingly, if SSA/Ps are detected, the subject may be more aggressively treated relative to treatment for HPs. Non-limiting examples of treatment for SSA/Ps include polypectomy, endoscopic resection, and surgical resection, all followed with surveillance. Additionally or alternatively, if SSA/Ps are detected, the subject may be subjected to an increased frequency of surveillance, such as colonoscopy. For example, the subject may receive a colonoscopy about every 1 to about every 6 years. Accordingly, if SSA/Ps are detected, the subject may receive a colonoscopy about every 1 year, about every 2 years, about every 3 years, about every 4 years, about every 5 years, or about every 6 years. For example, a subject having a polyp classified as an SSA/P according to the methods detailed herein and the polyp having diameter of at least about 10 mm would have a subsequent colonoscopy in about 2 years to about 4 years, or about 3 years. For example, a subject having a polyp classified as an SSA/P according to the methods detailed herein and the polyp having of diameter of less than about 5 mm would have a subsequent colonoscopy in about 4 years to about 6 years, or about 5 years. A subject having a polyp classified as an SSA/P according to the methods detailed herein and being of diameter of about 5 mm to about 10 mm would have a subsequent colonoscopy in about 2 years to about 6 years, about 3 to about 5 years, or about 4 years. More frequent colonoscopies may be suggested for subjects having multiple SSA/P polyps. By more accurately diagnosing a polyp as a SSA/P instead of as a hyperplastic polyp, a subject may be more frequently screened by colonoscopy, leading to a reduced incidence of colon cancer and deaths due to colon cancer. In an embodiment, the molecular signature comprises 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the molecular signature comprises 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the molecular signature comprises 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2. Specifically, step (c) comprises detecting SSA/Ps in the subject when CHFR, CHGA, and NTRK2 are decreased relative to the reference value and when CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Additionally, step (c) comprises detecting SSA/Ps in the subject when NTRK2 is decreased relative to the reference value and when CLDN1, FOXD1, KIZ, MEGF6, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample. Further, step (c) comprises detecting SSA/Ps in the subject when CHGA, CPE, DPP10, and NTRK2 are decreased relative to the reference value and when C4BPA, CLDN1, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4 are increased relative to the reference value, wherein the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased or HP sample.


In other aspects, the disclosure provides a method for monitoring serrated polyps in a subject. In such an embodiment, a method of detecting sessile serrated adenomas/polyps (SSA/Ps) in a subject is performed at one point in time. Then, at a later time, the method of detecting sessile serrated adenomas/polyps (SSA/Ps) in the subject may be performed to determine the change in serrated polyps over time. For example, the method of detecting sessile serrated adenomas/polyps (SSA/Ps) may be performed on the same subject days, weeks, months, or years following the initial use of the method to detect sessile serrated adenomas/polyps (SSA/Ps). Accordingly, the method of detecting SSA/Ps may be used to follow a subject over time to determine when the risk of progressing to more severe disease is high thereby requiring treatment. Additionally, the method of detecting SSA/Ps may be used to measure the rate of disease progression. For example, an increased level of CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2 and decreased level of CHFR, CHGA, and NTRK2 may indicate disease progression. Early assessment of the risk of colorectal cancer in the subject may reduce the development and/or progression of symptoms associated with colorectal cancer by enabling improved interventions or enabling earlier interventions. The term “risk” as used herein refers to the probability that an event will occur over a specific time period, for example, as in the development of colorectal cancer (CRC) and can mean a subject's “absolute” risk or “relative” risk. Absolute risk can be measured with reference to either actual observation, post-measurement for the relevant time cohort, or with reference to index values developed from statistically valid historical cohorts that have been followed for the relevant time period. Relative risk refers to the ratio of absolute risks of a subject compared either to the absolute risks of low risk cohorts or an average population risk, which can vary depending on how clinical risk factors are assessed. Odds ratios, the proportion of positive events to negative events for a given test result, are also commonly used (odds are according to the formula p/(1−p) where p is the probability of event and (1−p) is the probability of no event) to no-conversion.


Additionally, a method for monitoring serrated polyps in a subject may be used to determine the response to treatment. As used herein, subjects who respond to treatment are said to have benefited from treatment. For example, a method of detecting SSA/Ps may be performed on the biological sample of the subject prior to initiation of treatment. Then, at a later time, a method of detecting SSA/Ps may be used to determine the response to treatment over time. For example, a method of detecting SSA/Ps may be performed on the biological sample of the same subject days, weeks, months, or years following initiation of treatment. Accordingly, a method of detecting SSA/Ps may be used to follow a subject receiving treatment to determine if the subject is responding to treatment. If the level of expression of the nucleic acids in a molecular signature of the disclosure remains the same, then the subject may not be responding to treatment. If the level of expression of the nucleic acids in a molecular signature of the disclosure changes, then the subject may be responding to treatment. These steps may be repeated to determine the response to therapy over time.


In any of the foregoing embodiments, the subject may or may not be diagnosed with serrated polyps or SSA/Ps. In certain embodiments, the subject may not be diagnosed with serrated polyps or SSA/Ps but is suspected of having serrated polyps or SSA/Ps based on symptoms. Non-limiting examples of symptoms of serrated polyps or SSA/Ps that may lead to a diagnosis include bleeding and iron deficiency anemia. In other embodiments, the subject may not be diagnosed with serrated polyps or SSA/Ps but is at risk of having serrated polyps or SSA/Ps. Non-limiting examples of risk factors for serrated polyps or SSA/Ps include smoking, diabetes, obesity, age, sex, diet, and family history. In other embodiment, the subject has no symptoms and/or no risk factors for serrated polyps or SSA/Ps. Methods of diagnosing serrated polyps or SSA/Ps are known in the art. Non-limiting examples of methods of diagnosing serrated polyps or SSA/Ps include histological pathology.


Suitable subjects include, but are not limited to, a human, a livestock animal, a companion animal, a lab animal, and a zoological animal. In one embodiment, the subject may be a rodent, e.g. a mouse, a rat, a guinea pig, etc. In another embodiment, the subject may be a livestock animal. Non-limiting examples of suitable livestock animals may include pigs, cows, horses, goats, sheep, llamas, and alpacas. In yet another embodiment, the subject may be a companion animal. Non-limiting examples of companion animals may include pets such as dogs, cats, rabbits, and birds. In yet another embodiment, the subject may be a zoological animal. As used herein, a “zoological animal” refers to an animal that may be found in a zoo. Such animals may include non-human primates, large cats, wolves, and bears. In an embodiment, the animal is a laboratory animal. Non-limiting examples of a laboratory animal may include rodents, canines, felines, and non-human primates. In certain embodiments, the animal is a rodent. In a preferred embodiment, the subject is human.


(a) Biological Sample


As used herein, the term “biological sample” refers to a sample obtained from a subject. Any biological sample which may be assayed for nucleic acid expression products may be used. Numerous types of biological samples are known in the art. Suitable biological sample may include, but are not limited to, tissue samples or bodily fluids. In some embodiments, the biological sample is a tissue sample such as a tissue biopsy from the gastrointestinal tract. The biopsy may be taken during a colonoscopy, prior to surgical resection, during surgical resection or following surgical resection. The biopsied tissue may be fixed, embedded in paraffin or plastic, and sectioned, or the biopsied tissue may be frozen and cryosectioned. In an embodiment, the biological sample is a formalin-fixed paraffin-embedded (FFPE) tissue sample. Alternatively, the biopsied tissue may be processed into individual cells or an explant, or processed into a homogenate, a cell extract, a membranous fraction, or a protein extract. In a specific embodiment, the biopsied tissue is from a colorectal polyp. In other embodiments, the sample may be a bodily fluid. Non-limiting examples of suitable bodily fluids include blood, plasma, serum, or feces. The fluid may be used “as is”, the cellular components may be isolated from the fluid, or a protein fraction may be isolated from the fluid using standard techniques.


As will be appreciated by a skilled artisan, the method of collecting a biological sample can and will vary depending upon the nature of the biological sample and the type of analysis to be performed. Any of a variety of methods generally known in the art may be utilized to collect a biological sample. Generally speaking, the method preferably maintains the integrity of the sample such that the nucleic acids of a molecular signature of the disclosure can be accurately detected and the level of expression measured according to the disclosure.


In some embodiments, a single sample is obtained from a subject to detect the molecular signature in the sample. Alternatively, the molecular signature may be detected in samples obtained over time from a subject. As such, more than one sample may be collected from a subject over time. For instance, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more samples may be collected from a subject over time. In some embodiments, 2, 3, 4, 5, or 6 samples are collected from a subject over time. In other embodiments, 6, 7, 8, 9, or 10 samples are collected from a subject over time. In yet other embodiments, 10, 11, 12, 13, or 14 samples are collected from a subject over time. In other embodiments, 14, 15, 16, or more samples are collected from a subject over time.


When more than one sample is collected from a subject over time, samples may be collected every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more days. In some embodiments, samples are collected every 1, 2, 3, 4, or 5 days. In other embodiments, samples are collected every 5, 6, 7, 8, or 9 days. In yet other embodiments, samples are collected every 9, 10, 11, 12, or more days. In still other embodiments, samples are collected a month apart, 3 months apart, 6 months apart, 1 year apart, 2 years apart, 5 years apart, 10 years apart, or more.


(b) Determining the Level of Nucleic Acid Expression


Once a sample is obtained, it is processed in vitro to detect and measure the level of expression of the nucleic acids in a molecular signature of the disclosure. Methods for assessing the level of nucleic acid expression are well known in the art and all suitable methods for detecting and measuring the level of expression of nucleic acids known to one of skill in the art are contemplated within the scope of the invention. The term “amount of nucleic acid expression” or “level of nucleic acid expression” or “expression level” as used herein refers to a measurable level of expression of the nucleic acids, such as, without limitation, the level of messenger RNA transcript expressed or a specific exon or other portion of a transcript, the level of proteins or portions thereof expressed from the nucleic acids, the number or presence of DNA polymorphisms of the nucleic acids, the enzymatic or other activities of the proteins codec by the nucleic acids, and the level of a specific metabolite. The term “nucleic acid” includes DNA and RNA and can be either double stranded or single stranded. In a specific embodiment, determining the level of expression of a nucleic acid of the molecular signature comprises, in part, measuring the level of RNA expression. The term “RNA” includes mRNA transcripts, and/or specific spliced or other alternative variants of mRNA, including anti-sense products. The term “RNA product of the nucleic acid” as used herein refers to RNA transcripts transcribed from the nucleic acids and/or specific spliced or alternative variants. Non-limiting examples of suitable methods to assess a level of nucleic acid expression may include arrays, such as microarrays, RNA-seq, PCR, such as RT-PCR (including quantitative RT-PCR), nuclease protection assays and Northern blot analyses. In an embodiment, the method to assess the level of nucleic acid expression is microarray, RNA-seq or real-time qPCR.


In one embodiment, the level of nucleic acid expression may be determined by using an array, such as a microarray. Methods of using a nucleic acid microarray are well and widely known in the art. For example, a plurality of nucleic acid probes that are complementary or hybridizable to an expression product of each nucleic acid of the molecular signature are used on the array. Accordingly, 3 to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 200, 200 to 300, 300 to 400, and more than 400 nucleic acids may be used on the array. The term “hybridize” or “hybridizable” refers to the sequence specific non-covalent binding interaction with a complementary nucleic acid. In a preferred embodiment, the hybridization is under high stringency conditions. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6. The term “probe” as used herein refers to a nucleic acid sequence that will hybridize to a nucleic acid target sequence. In one example, the probe hybridizes to an RNA product of the nucleic acid or a nucleic acid sequence complementary thereof. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence. In one embodiment, the probe is at least 8, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 400, 500, or more nucleotides in length.


In another embodiment, the level of nucleic acid expression may be determined using PCR. Methods of PCR are well and widely known in the art, and may include quantitative PCR, semi-quantitative PCR, multiplex PCR, or any combination thereof. Specifically, the level of nucleic acid expression may be determined using quantitative RT-PCR. Methods of performing quantitative RT-PCR are common in the art. In such an embodiment, the primers used for quantitative RT-PCR may comprise a forward and reverse primer for a target gene. The term “primer” as used herein refers to a nucleic acid sequence, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand is induced (e.g. in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon factors, including temperature, sequences of the primer and the methods used. A primer typically contains 15-25 or more nucleotides, although it can contain less or more. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art.


The level of nucleic acid expression may be measured by measuring an entire mRNA transcript for a nucleic acid sequence, or measuring a portion of the mRNA transcript for a nucleic acid sequence. For instance, if a nucleic acid array is utilized to measure the amount of mRNA expression, the array may comprise a probe for a portion of the mRNA of the nucleic acid sequence of interest, or the array may comprise a probe for the full mRNA of the nucleic acid sequence of interest. Similarly, in a PCR reaction, the primers may be designed to amplify the entire cDNA sequence of the nucleic acid sequence of interest, or a portion of the cDNA sequence. One of skill in the art will recognize that there is more than one set of primers that may be used to amplify either the entire cDNA or a portion of the cDNA for a nucleic acid sequence of interest. Methods of designing primers are known in the art. Methods of extracting RNA from a biological sample are known in the art.


The level of expression may or may not be normalized to the level of a control nucleic acid. This allows comparisons between assays that are performed on different occasions.


(c) Comparing the Level of Nucleic Acid Expression and Detecting SSA/Ps


The level of expression of each nucleic acid of the molecular signature may be compared to a reference expression level for each nucleic acid of the molecular signature. The subject expression levels of the nucleic acids in the molecular signature in a biological sample are compared to the corresponding reference expression levels of the nucleic acids of the molecular signature to detect SSA/Ps. Accordingly, a reference expression level may comprise 3 to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 200, 200 to 300, 300 to 400, and more than 400 expression levels based on the number of nucleic acids in the molecular signature. Any suitable reference value known in the art may be used. For example, a suitable reference value may be the level of molecular signature in a biological sample obtained from a subject or group of subjects of the same species that have no signs or symptoms of disease (i.e. serrated polyps). In another example, a suitable reference value may be the level of molecular signature in a biological sample obtained from a subject or group of subjects of the same species that have not been diagnosed with disease (i.e. serrated polyps). In still another example, a suitable reference value may be the level of molecular signature in a biological sample obtained from a subject or group of subjects of the same species that have been diagnosed with SSA/Ps. In yet still another example, a suitable reference value may be the level of molecular signature in a biological sample obtained from a subject or group of subjects of the same species that been diagnosed with HPs. In a different example, a suitable reference value may be the background signal of the assay as determined by methods known in the art. In another different example, a suitable reference value may be the level of molecular signature in a non-diseased or HP sample stored on a computer readable medium. In still another different example, a suitable reference value may be the level of molecular signature in a SSA/Ps sample stored on a computer readable medium. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or other magnetic medium, a CD-ROM, CDRW, DVD, or other optical medium, punch cards, paper tape, optical mark sheets, or other physical medium with patterns of holes or other optically recognizable indicia, a RAM, a PROM, and EPROM, a FLASH-EPROM, or other memory chip or cartridge, a carrier wave, or other medium from which a computer can read.


In other examples, a suitable reference value may be the level of the molecular signature in a reference sample obtained from the same subject. The reference sample may or may not have been obtained from the subject when serrated polyps or SSA/Ps were not suspected. A skilled artisan will appreciate that that is not always possible or desirable to obtain a reference sample from a subject when the subject is otherwise healthy. For example, in an acute setting, a reference sample may be the first sample obtained from the subject at presentation. In another example, when monitoring effectiveness of a therapy, a reference sample may be a sample obtained from a subject before therapy began. In a specific embodiment, a reference value may be the level of expression of each nucleic acid of the molecular signature in a non-diseased portion of the subject. Such a reference expression level may be used to create a control value that is used in testing diseased samples from the subject.


The expression level of each nucleic acid of the molecular signature is compared to the reference expression level of each nucleic acid of the molecular signature to determine if the nucleic acids of the molecular signature in the test sample are differentially expressed relative to the reference expression level of the corresponding nucleic acid. The term “differentially expressed” or “differential expression” as used herein refers to a difference in the level of expression of the nucleic acids that can be assayed by measuring the level of expression of the products of the nucleic acids, such as the difference in level of messenger RNA transcript or a portion thereof expression or of proteins expressed of the nucleic acids.


The term “difference in the level of expression” refers to an increase or decrease in the measurable expression levels of a given nucleic acid, for example as measured by the amount of messenger RNA transcript and/or the amount of protein in a biological sample as compared with the measureable expression level of a given nucleic acid in a reference sample (i.e. non-diseased or HP sample). In one embodiment, the differential expression can be compared using the ratio of the level of expression of a given nucleic acid or nucleic acids as compared with the expression level of the given nucleic acid or nucleic acids of a reference sample, wherein the ratio is not equal to 1.0. For example, an RNA or protein is differentially expressed if the ratio of the level of expression of a first sample as compared with a second sample is greater than or less than 1.0. For example, a ratio of greater than 1, 1.2, 1.5, 1.7, 2, 3, 4, 5, 10, 15, 20 or more, or a ratio less than 1, 0.8, 0.6, 0.4, 0.2, 0.1, 0.05, 0.001, or less. In another embodiment, the differential expression is measured using p-value. For instance, when using p-value, a nucleic acid is identified as being differentially expressed between a first sample and a second sample when the p-value is less than 0.1, preferably less than 0.05, more preferably less than 0.01, even more preferably less than 0.005, the most preferably less than 0.0001.


Depending on the sample used for reference expression levels, the difference in the level of expression may or may not be statistically significant. For example, if the sample used for reference expression levels is from a subject or subjects diagnosed with SSA/Ps, then when the difference in the level of expression is not significantly different, the subject has SSA/Ps. However, when the difference in the level of expression is significantly different, the subject has HPs. Alternatively, if the sample used for reference expression levels is from a subject or subjects diagnosed with no disease or HP, then when the difference in the level of expression is not significantly different, the subject does not have SSA/Ps. However, when the difference in the level of expression is significantly different, the subject has SSA/Ps.


(d) Treatment


The determination of SSA/Ps may be used to select treatment for subjects. As explained herein, a molecular signature disclosed herein can classify a subject as having HPs or SSA/Ps and into groups that might benefit from more aggressive therapy or determine the appropriate treatment for the subject. In an embodiment, a subject classified as having SSA/Ps may be treated. A skilled artisan would be able to determine standard treatment for SSA/Ps. Accordingly, the methods disclosed herein may be used to select treatment for serrated polyp subjects. In an embodiment, the subject is treated based on the level of expression of the nucleic acids in a molecular signature of the disclosure measured in the sample. This classification may be used to identify groups that are in need of treatment or not or in need of more aggressive treatment. The term “treatment” or “therapy” as used herein means any treatment suitable for the treatment of SSA/Ps. Treatment may consist of standard treatments for SSA/Ps. Non-limiting examples of standard treatment for SSA/Ps include increased surveillance, polypectomy, endoscopic resection, and surgical resection. Additionally, the treatment decision may be made based on evidence of progression from SSA/Ps to cancer.


III. Kit


In an aspect, there is provided a kit to differentiate SSA/Ps and HPs in a subject, comprising detection agents that can detect the expression products of a molecular signature of the disclosure, and instructions for use. The kit may further comprise one or more nucleic acids used as a normalization control. The kit may comprise detection agents that can detect the expression products of 3 to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 200, 200 to 300, 300 to 400, and more than 400 nucleic acids described herein.


In another aspect, there is provided a kit to select a therapy for a subject with serrated polyps, comprising detection agents that can detect the expression products of a molecular signature of the disclosure, and instructions for use. The kit may further comprise one or more nucleic acids used as a normalization control. The kit may comprise detection agents that can detect the expression products of 3 to 10, 10 to 20, 20 to 30, 30 to 50, 50 to 100, 100 to 200, 200 to 300, 300 to 400, and more than 400 nucleic acids described herein.


A person skilled in the art will appreciate that a number of detection agents can be used to determine the expression of the nucleic acids. For example, to detect RNA products of the biomarkers, probes, primers, complementary nucleotide sequences or nucleotide sequences that hybridize to the RNA products can be used.


Accordingly, in one embodiment, the detection agents are probes that hybridize to the nucleic acids in the molecular signature. A person skilled in the art will appreciate that the detection agents can be labeled. The label is preferably capable of producing, either directly or indirectly, a detectable signal. For example, the label may be radio-opaque or a radioisotope, such as 3H, 14C, 32P, 35S, 123I, 125I, 131I; a fluorescent (fluorophore) or chemiluminescent (chromophore) compound, such as fluorescein isothiocyanate, rhodamine or luciferin; an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase; an imaging agent; or a metal ion.


The kit can also include a control or reference standard and/or instructions for use thereof. In addition, the kit can include ancillary agents such as vessels for storing or transporting the detection agents and/or buffers or stabilizers.


In some embodiments, the kit is a nucleic acid array, a multiplex RNA, a chip based array, and the like.


In certain embodiments, the kit is a nucleic acid array. Such an array may be used to determine the expression level of the nucleic acids in a biological sample. An array may be comprised of a substrate having disposed thereon nucleic acid sequences capable of hybridizing to the nucleic acid sequences of a molecular signature of the disclosure. For instance, the array may comprise nucleic acid sequences capable of hybridizing to 18 nucleic acids selected from the group consisting of C4BPA, CHGA, CLDN1, CPE, DPP10, GRAMD1B, GRIN2D, KIZ, KLK7, MEGF6, MYCN, NTRK2, PLA2G16, SBSPON, SEMG1, SLC7A9, SPIRE1, and TM4SF4. In another embodiment, the array may comprise nucleic acid sequences capable of hybridizing to 16 nucleic acids selected from the group consisting of CLDN1, FOXD1, KIZ, MEGF6, NTRK2, PIK3R3, PLA2G16, PRUNE2, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, TACSTD2, TPD52L1, and TRIB2. In still another embodiment, the array may comprise nucleic acid sequences capable of hybridizing to 13 nucleic acids selected from the group consisting of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SEMG1, SLC7A9, SPIRE1, and TACSTD2.


In certain embodiments, the kit is a chip based array. Such an array may be used to determine the expression level of the proteins in a biological sample. The proteins may be the transcription products from the nucleic acid sequences disclosed herein.


A person skilled in the art will appreciate that a number of detection agents can be used to determine the expression level of the transcription products of the nucleic acid sequences disclosed herein.


Several substrates suitable for the construction of arrays are known in the art. The substrate may be a material that may be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid and is amenable to at least one detection method. Alternatively, the substrate may be a material that may be modified for the bulk attachment or association of the nucleic acid and is amenable to at least one detection method. Non-limiting examples of substrate materials include glass, modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), nylon or nitrocellulose, polysaccharides, nylon, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses and plastics. In an embodiment, the substrates may allow optical detection without appreciably fluorescing.


A substrate may be planar, a substrate may be a well, i.e. a 1534-, 384-, or 96-well plate, or alternatively, a substrate may be a bead. Additionally, the substrate may be the inner surface of a tube for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics. Other suitable substrates are known in the art.


The nucleic acid or biomolecules may be attached to the substrate in a wide variety of ways, as will be appreciated by those in the art. The nucleic acid may either be synthesized first, with subsequent attachment to the substrate, or may be directly synthesized on the substrate. The substrate and the nucleic acid may both be derivatized with chemical functional groups for subsequent attachment of the two. For example, the substrate may be derivatized with a chemical functional group including, but not limited to, amino groups, carboxyl groups, oxo groups or thiol groups. Using these functional groups, the nucleic acid may be attached using functional groups on the biomolecule either directly or indirectly using linkers.


The nucleic acid may also be attached to the substrate non-covalently. For example, a biotinylated nucleic acid can be prepared, which may bind to surfaces covalently coated with streptavidin, resulting in attachment. Alternatively, a nucleic acid or nucleic acids may be synthesized on the surface using techniques such as photopolymerization and photolithography. Additional methods of attaching biomolecules to arrays and methods of synthesizing biomolecules on substrates are well known in the art, i.e. VLSIPS technology from Affymetrix (e.g., see U.S. Pat. No. 6,566,495, and Rockett and Dix, Xenobiotica 30(2):155-177, each of which is hereby incorporated by reference in its entirety).


In one embodiment, the nucleic acid or nucleic acids attached to the substrate are located at a spatially defined address of the array. Arrays may comprise from about 1 to about several hundred thousand addresses. A nucleic acid may be represented more than once on a given array. In other words, more than one address of an array may be comprised of the same nucleic acid. In some embodiments, two, three, or more than three addresses of the array may be comprised of the same nucleic acid. In certain embodiments, the array may comprise control nucleic acids and/or control addresses. The controls may be internal controls, positive controls, negative controls, or background controls.


Furthermore, the nucleic acids used for the array may be labeled. One skilled in the art understands that the type of label selected depends in part on how the array is being used. Suitable labels may include fluorescent labels, chromagraphic labels, chemi-luminescent labels, FRET labels, etc. Such labels are well known in the art.


As various changes could be made in the above compounds, products and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and in the examples given below, shall be interpreted as illustrative and not in a limiting sense.


EXAMPLES

The following examples are included to demonstrate various embodiments of the present disclosure. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.


Introduction.


Screening programs have resulted in significant reduction of colorectal cancer (CRC) related deaths. Key to the improvement of clinical outcomes is the appropriate follow-up using colonoscopy and removal of premalignant polyps. However, different types of colonic polyps have different malignant potentials and recommendations for removal and follow-up vary depending on their type. The most common polyps include the conventional adenomas and serrated polyps, and until approximately 1996 the hyperplastic polyp was the only recognized type of serrated polyp. The term sessile serrated adenoma/polyp was introduced to define serrated lesions which were generally considered to be preneoplastic, usually lack cytological dysplasia and have been reported in 5% of average-risk patients undergoing screening colonoscopy. Currently, serrated polyps are divided into three main categories: typical hyperplastic polyps (HPs), sessile serrated adenoma polyps (SSA/Ps) and traditional serrated adenomas (relatively rare). However, SSA/Ps and HPs share significant histological similarities, as serrated crypt architecture is the principal microscopic feature in both polyps. Dilated or boot-shaped crypt bases are diagnostic features of SSA/Ps. In general, SSA/Ps are larger than HPs and are more commonly located in proximal (right) colon. However, given the significant histologic overlap between the two polyp types, biopsy specimens are frequently equivocal in cases lacking the diagnostic hallmarks of SSA/Ps. In addition, several studies have pointed out significant observer-to-observer variability, even among expert pathologists. Because SSA/Ps have the potential to progress into colon cancer, reliable biomarkers that aid in this differential diagnosis are needed. It is estimated that SSA/Ps account for 15-30% of colon cancers by progression through the serrated neoplasia pathway. However, this pathway remains relatively uncharacterized as compared to the adenoma-carcinoma pathway. Genetic and epigenetic mechanisms operating in the serrated pathway can include BRAF mutations, KRAS mutations, CpG island methylator high (CIMP-H) and microsatellite instability high (MSI-H) phenotypes which often predict a poor clinical outcome. However, the serrated neoplasia pathway remains to be defined by a characteristic set of genetic and epigenetic lesions.


Since the advent of high-throughput gene expression technologies (microarrays, RNA sequencing) molecular signatures that accurately diagnose or predict disease outcome based on expression of sets of genes have been developed. In many cases gene expression signatures can be associated with biological mechanisms, subtypes of cancer that look histologically similar, tumor stages, as well as the ability to metastasize, relapse or respond to specific therapies. Expression-based classifiers were also developed to identify patients with a poor prognosis for stage II colon cancers. Recently, a subgroup of colon cancers with a very poor prognosis was identified and this subgroup has several up-regulated pathways in common with sessile serrated adenomas. However, there is no molecular classifier, differentiating between SSA/Ps and HPs.


Several recent studies used transcriptome analyses to gain insights into the biology of SSA/Ps. For example, in a gene array study SSA/Ps were compared to tubular adenomas (TAs) and control samples. Among 67 differentially expressed (DE) genes the two most up-regulated genes (Cathepsin E and Trefoil Factor 1) were verified in QRT-PCR and immunohistochemistry experiments that showed that these genes were overexpressed in SSA/Ps. In another gene array study 162 DE genes were identified in SSA/Ps as compared to microvesicular hyperplastic polyps (MVHP, HP subtype). Validation by QRT-PCR and immunohistochemistry identified annexin A10 as a potential diagnostic marker of SSA/Ps. Another study used RNA sequencing (RNA-seq) to analyze the SSA/P transcriptomes and identified 1,294 genes, differentially expressed in SSA/Ps as compared to HPs. This analysis provided evidence that molecular pathways involved in colonic mucosal integrity and cell adhesion were overrepresented in SSA/Ps.


The goals of this study were two-fold. First, to gain insights into the biological processes underlying the differences between SSA/Ps and HPs. Data from HPs and SSA/Ps matched with control samples was analyzed. Importantly, the right and left colon have a different embryological origin and it was shown that more than 1,000 genes are differentially expressed in adult right versus left colon. SSA/Ps occur predominantly in the right colon and HPs occur predominantly in the left colon. Consequently, some genes that are DE between SSA/Ps and HPs are likely to be due to their different anatomical location (right versus left). Therefore, to find genes and pathways that are DE specifically between SSA/Ps and HPs, it is first necessary to exclude genes that are DE between the right and left colon. As such, in addition to SSA/Ps and HPs, control samples obtained from the right colon (CR) and left colon (CL) were also included in the study. The analysis of differentially expressed genes and pathways revealed several differentially expressed and differentially co-expressed pathways between SSA/Ps and HP, CR samples. The pathways found here are generally considered hallmarks of cancer: they were associated with the ability to escape apoptotic signals, the inflammatory state of premalignant lesions and uncontrolled proliferation.


Second, to develop an expression-based classifier that reliably differentiates between HPs and SSA/Ps and is platform-independent (it works for RNA-seq as well as for microarrays). For that independent microarray data sets were collected: an Illumina gene array data set (six HPs and six SSA/Ps) and subsets of samples from two Affymetrix data sets (eleven HPs from GSE10714 and six SSA/Ps from GSE45270). Typically, the most ambiguous step in classifier development is the step of feature selection because of the ‘large p small n’ problem of omics data. Omics data have at most only hundreds of samples (n) and thousands of features (p), and using all features will lead to model over-fitting and poor generalizability. Feature selection techniques differ in the way they combine feature selection with the construction of the classification model and usually are classified into three categories: filter, wrapper, and embedded algorithms. Filter algorithms preselect features before using classifier based, for example, on the results of significance testing. Wrapper algorithms combine the search of optimal features with the model selection and evaluate features by training and testing classification model. For example, the Shrunken Centroid Classifier (SCC) first finds a centroid for each class and selects features to shrink the gene centroid toward the overall class centroid. Here is presented a new way to combine filter and wrapper algorithms that fitted best to the goal, i.e. building platform independent classifier. First, the feature space was reduced by selecting only those features (genes) that were concordantly expressed over all three platforms. Second, SCC (using all genes left after filtering) was applied on RNA-seq data for further reducing the feature space and selecting features with optimal classification performance. The classifier, developed based on RNA-seq data identified SSA/P and HP subtypes in independent microarray data sets with low classification errors. The molecular signature that correctly classifies SSA/Ps and HPs consists of thirteen genes and is a first platform-independent signature that is applicable as diagnostic tool for distinguishing SSA/Ps from HPs. The molecular signature achieved an impressive correct classification rate (90%) when expression levels obtained by real-time quantitative polymerase chain reaction (qPCR) from 45 independent formalin-fixed paraffin-embedded (FFPE) SSA/P and HP samples were used for validation. These results demonstrate the clinical value of the molecular signature.


Expression Analysis.


Filtering Steps.


Genes were called DE if two conditions were met: |log2FC|>0.5 and adjusted p-values Padj<0.05 (see Methods for more detail). The intersections of the three comparisons: (1) Control Right (CR) versus Control Left (CL) samples (CR_CL), (2) HP versus SSA/P samples (HP_SSA/P) and (3) CR versus SSA/P samples (CR_SSA/P) are shown in FIG. 1. There were 1049 genes DE between CR and CL samples, and among these genes 157 were also DE between HPs and SSA/Ps and 276 were DE between CR and SSA/P samples. There were 121 genes in the intersection of all three comparisons. With the aim of identifying only genes that reliably differentiate between HPs and SSA/Ps as well as between SSA/Ps and CR samples, the three aforementioned groups were excluded from the further study. The following groups were considered for further analysis: (1) 139 genes that were DE between SSA/Ps and both HP and CR samples (Table 4), (2) 134 genes, exclusively DE between HPs and SSA/Ps (Table 5) and (3) 1058 genes, exclusively DE between CR and SSA/P samples (Table 6). The 121 genes in the intersection of all three comparisons (Table 7) were excluded for the sake of rigor, i.e. for considering only genes that were DE between different polyp types, without referring to the anatomical location. Although these 121 genes were excluded here, further investigation is needed to assess their importance in differentiating between HPs and SSA/Ps.



FIG. 2 presents PCA plot illustrating the difficulties in differentiating between SSA/P and HP samples even at the molecular level. The two groups are clearly intermingled when all expressed genes are included (FIG. 2A) and the separation is much better when genes DE between HPs and SSA/Ps as well as between SSA/Ps and CR samples are included with the exclusion of genes DE between CR and CL samples (FIG. 2C). Thus, the filtering step allows more detailed characterization of the differences between HPs and SSA/Ps (so the better separation).


Characteristic Differences Between SSA/Ps and Other Samples.


To understand more clearly the biological differences between SSA/Ps and other samples, only genes expressed at the same level in HP and CR samples and significantly up- or down-regulated in SSA/Ps were first considered. At this step only genes satisfying the following conditions: (1) gene expression level (e) satisfied an equation: e=/(CR−HP)//(CR+HP+0.01)<0.1 and (2) gene was significantly DE in CR_SSA/P and HP_SSA/P comparisons were considered.


There were only five genes down-regulated in SSA/Ps and expressed at the same level in HPs and CRs (FIG. 3). Two of them regulate cell differentiation and proliferation: NEUROD1 (neuronal differentiation 1) is involved in enteroendocrine cell differentiation and CHFR (checkpoint with forkhead associated and RING Finger) is an early mitotic checkpoint regulator that delays transition to metaphase in response to mitotic stress. CHFR has been found to be frequently inactivated in many malignancies by promoter methylation, in particular, in microsatellite stable and BRAF wild-type CRCs stage II. NEU4, another down-regulated gene, maintains normal mucosa and its down-regulation was suggested to contribute to invasive properties of colon cancers. Other down-regulated genes are RASL11A (regulates translation and transcription) and WSCD1 (WSC domain containing 1, poorly characterized).


Twenty out of thirty genes up-regulated in SSA/Ps and expressed at the same level in CR and HP samples, were found to be interferon-regulated (IR). In addition to modulating innate immune response, interferons regulate a large variety of cellular functions, such as cell proliferation, differentiation, as well as play important roles in inflammatory diseases and anti-tumor response. These twenty genes were represented by (1) genes, involved in the epithelial-mesenchymal transition (EMT): PIK3R3, RAB27B, and MSX2; (2) classical IR genes: GBP2, CFB, TRIB2, TBX3, OAS2, IFIT3, XAF1, MX1, IDO1, CXCL9, CXCL10, GBP1, CCL22, CCL2; (3) genes, not conventionally considered IR: RAMP1, PARP14, and TPD52L1.


Among these twenty genes there were three especially interesting in the context of SSA/Ps progression toward cancer. Indoleamine 2,3-dioxygenase 1 (IDO1) has attracted considerable attention recently because of its immune-modulatory role besides the degradation of tryptophan. IDO regulates T cell activity by reducing the local concentration of tryptophan and increasing the production of its metabolites that suppress T lymphocytes proliferation and induce apoptosis. Because most human tumors constitutively express IDO, the idea that IDO inhibitors may reverse immune suppression, associated with tumor growth, is very attractive for immunotherapy and a competitive inhibitor for IDO (I-mT) is currently in clinical trials. 001 was 2.7 times up-regulated in SSA/Ps as compared to HP, CR samples. PIK3R3, an isoform of class IA phosphoinositide 3-kinase (PI3K), that specifically interacts with cell proliferation regulators and promotes metastasis and EMT in colorectal cancer, was also up-regulated in SSA/Ps. PARP14 promotes aerobic glycolysis or the Warburg effect, used by the majority of tumor cells, by inhibiting pro-apoptotic kinase JNK1. Immunosuppressive state, the shift toward aerobic glycolysis and the EMT, are all considered the major hallmarks of cancer. While these three genes are only infinitesimal parts of the invasive cascades, their up-regulation points toward how SSA/Ps may progress to cancer.


Several IR genes reported here have been also found to be up-regulated in a number of malignancies (including CRCs). For example, RAB27B was expressed at a high level and is a special member of the small GTPase Rab family regulating exocytosis which has been associated with a poor prognosis in patients with CRC. Increased expression of RAB27B has been shown to predict a poor outcome in patients with breast cancer. The suggested mechanism by which Rab27b stimulates invasive tumor growth includes regulation of the heat shock HSP90a protein and the indirect induction of MMP-2, a protease that requires an association with extracellular HSP90a for its activity to accelerate the degradation of extracellular matrix. The transcription factor TBX3 (T-box 3), which plays an important role in embryonic development, was also up-regulated in SSA/Ps. Previously it was suggested that TBX3 promotes an invasive cancer phenotype and more recently it was also shown that increased expression of TBX3 was associated with a poor prognosis in CRC patients. The transcriptional co-regulator LIM-only protein 4 (LMO4) has been associated with poor prognosis and is overexpressed in about 60% of all human breast tumors and has been shown to increase cell proliferation and migration. LMO4 was up-regulated in SSA/Ps. Tumor protein D52-like proteins (TPD52) are small proteins that were first identified in breast cancer, are overexpressed in many other cancers, but remain poorly characterized. TPD52L1, member of the family, was upregulated in SSA/Ps.


Besides the twenty IR genes, there were other interesting genes up-regulated in SSA/Ps and expressed at the same level in CR and HP samples. MUC6 (mucin 6) was the most highly up-regulated gene and has been previously suggested as a candidate biomarker for SSA/Ps but later was found to be not specific enough to reliably differentiate SSA/Ps form HPs. KIZ (kizuna centrosomal protein) is a gene that is critical for the establishment of robust mitotic centrosome architecture and proper chromosome segregation at mitosis. While depletion of KIZ results in multipolar spindles, how up-regulation of KIZ affects mitosis is unknown. SPIRE1, an actin organizer, was recently found to contribute to invadosome functions by speeding up extracellular matrix lysis while overexpressed.


One of the limitations of studying differentially expressed genes one gene at a time is that it does not allow a systems-level view of global changes in expression and co-expression patterns between phenotypes. Thus, the inventors sought to identify all pathways that were significantly up- or down-regulated, as well as differentially co-expressed between SSA/Ps and HP, CR samples. Pathways were presented by all gene ontology (GO) terms from C5 collection of gene sets in MSigDB.


Pathways, Differentially Expressed Between SSA/Ps and HP, CR Samples.


To find pathways, significantly up- or down-regulated ROAST, a parametric multivariate rotation gene set test, was applied. ROAST uses the framework of linear models and tests whether for all genes in a pathway, a particular contrast of the coefficients is non-zero. It can account for correlations between genes and has the flexibility of using different alternative hypotheses, testing whether the direction of changes for a gene in a pathway is up, down or mixed (up or down). Only pathways where genes were significantly up- or down-regulated (FDR<0.05) were selected. There were fifteen pathways, significantly up-regulated in SSA/Ps as compared to HP, CR samples (Table 1). In agreement with the pattern found for individual genes, two out of the fifteen pathways were ‘Inflammatory response’ and ‘Immunological synapse’ (Table 1). GO term ‘Extracellular structure organization and biogenesis’ overlaps with two KEGG pathways: ‘KEGG focal adhesion’ and ‘KEGG ECM receptor interaction’. Overexpression of these pathways as well as ‘Cell adhesion’ (two pathways) category might indicate changes in cell motility and migration ability in SSA/Ps phenotype as compared to HP, CR samples. Up-regulation of ‘Cell growth and death’ (two pathways) category suggests increased cellular proliferation in SSA/Ps phenotype.


There was only one pathway down-regulated in SSA/Ps as compared to HP, CR samples, namely ‘Transmembrane receptor protein serine threonine kinase signaling pathways’ (FDR<0.05). The pathway generates a series of molecular signals as a consequence of a transmembrane receptor serine/threonine kinase binding to its ligand and regulates fundamental cell processes such as proliferation, differentiation, death, cytoskeletal organization, adhesion and migration. For this pathway, one of the most significantly down-regulated genes was HIPK2 (homeodomain interacting protein kinase 2). HIPK2 interacts with many transcription factors including p53 and is a tumor suppressor that regulates cell-cycle checkpoint activation and apoptosis. Therefore, its down-regulation may contribute to up-regulation of ‘Positive regulation of cell proliferation’ pathway. However, given that Transmembrane receptor protein serine threonine kinase signaling pathways' regulates many fundamental cellular processes, its main downstream targets in the case of SSA/Ps require further study.


Pathways, Differentially Co-Expressed Between SSA/Ps and HP, Cr Samples.


To find pathways that were differentially co-expressed, an approach that assesses multivariate changes in the gene co-expression network between two conditions, the Gene Sets Net Correlations Analysis (GSNCA), was applied. GSNCA tests the hypothesis that the co-expression network of a pathway did not change between two conditions. In addition, for each condition it builds a core of co-expression network, using the most highly correlated genes, and finds a ‘hub’ gene, defined as the one, with the highest correlations with the other genes in a pathway (see Rahmatallah et al., Bioinformatics 2014; 30(3): 360-8, the disclosure of which is hereby incorporated by reference in its entirety, for more detail). In other words, hub genes are the most ‘influential’ genes in a pathway. When hub genes in a pathway are different between phenotypes, it points toward regulatory changes in a pathway dynamic.


There were seven pathways significantly differentially co-expressed between SSA/Ps and CR, HP samples (P<0.05). Five out of seven were pathways regulating homologous and non-homologous recombination, DNA replication, GTPase activities and proteins targeting towards a membrane using signals contained within the protein (FIG. 7, FIG. 8, FIG. 9, FIG. 10, and FIG. 11). For all five pathways, hub genes were different between HPs and SSA/Ps, with a shift in SSA/Ps toward hub genes related to genomic instability. For example, for ‘Meiosis I’ and ‘Meiotic recombination’ pathways, hub genes were RAD51 and MRE11A in HPs and SSA/Ps, respectively. Both proteins are involved in the homologous recombination and repair of DNA double strand breaks. MRE11A also participates in alternative end-joining (A-EJ), an important pathway in the formation of chromosomal translocations. The shift from RAD51 to MRE11A in SSA/P phenotype might indicate an increased genomic instability, the key change in all cancer cells.


For ‘Golgi stack’ pathway, the shift of hub genes was associated with the well-known phenotypic difference between HPs and SSA/Ps (FIG. 4). The hub gene in HP phenotype was RAB14, low molecular mass GTPase that is involved in intracellular membrane trafficking and cell-cell adhesion. The hub gene in SSA/P phenotype was B3GALT6, a beta-1,3-galactosyltransferase, required for glycosaminoglycan (mucopolysaccharides) synthesis, including mucin. The presence of abundant surface mucin is the conventional colonoscopic characteristic of SSA/Ps. For ‘Hormone activity’ in HP phenotype the hub gene was IGF1, the insulin-like growth factor that promotes cell proliferation and inhibits apoptosis, stimulates glucose transport in cells and enhances glucose uptake (FIG. 12). In SSA/P phenotype, the hub gene was PYY, encoding a member of the neuropeptide Y (NPY) family of peptides. This gut peptide plays important roles in energy and glucose homeostasis, in regulating gastrointestinal motility and absorption of water and electrolytes and has been associated with several gastrointestinal diseases. Its role in SSA/P phenotype, if any, remains to be defined.


These cases illustrate the ability of GSNCA to confirm existing knowledge, generate new testable hypotheses and raise interesting questions. For ‘Golgi stack’ pathway, the shift from RAB14 toward B3GALT6, essential for the mucopolysaccharides synthesis corresponded to known phenotypic differences between HPs and SSA/Ps. The involvement of deficient mismatch repair (dMMR) pathway (that includes MRE11) in CRC is well documented. Recently, the truncated MRE11 polypeptide was found to be a significant prognostic marker for long-term survival and response to treatment of patients with CRC stage III. GSNCA highlighted MRE11A as a new hub gene in ‘Meiosis I’ and ‘Meiotic recombination’ pathways, and it would be worth investigating its mutational status and prognostic potential in the context of SSA/Ps.


Based on the analysis of individual genes and differentially expressed and co-expressed pathways SSA/Ps difference from HP, CR samples involves: (1) up-regulation of IR genes, EMT genes and genes previously associated with the invasive cancer phenotype; (2) up-regulation of pathways, implicated in proliferation, inflammation, cell-cell adhesion and down-regulation of serine threonine kinase signaling pathway; and (3) de-regulation of a set of pathways regulating cell division, protein trafficking and kinase activities.


Given the complexity of the molecular processes underlying SSA/P phenotype, involving hundreds of differentially expressed genes and many pathways, for the practical purpose of readily distinguishing SSA/Ps from HPs, the inventors developed a platform-independent molecular classifier with low classification error rate (see below).


Molecular Classifiers.


Typically, the development of molecular classifiers consists of the following steps: feature selection, model selection, training, estimation of the classification error rate, with every step potentially leading to an inflated performance estimate. The systematic errors in classifier development, such as inappropriate applications of cross-validation for classifiers' training and testing, are usually the first to blame for poor generalizability (high error rate on independent data sets). Poor generalizability is further emphasized when the training and independent test data are obtained using different platforms, e.g. different microarray platforms, or microarrays and RNA-seq. To avoid such errors, the inventors developed a new feature selection step identifying the genes, most concordant between different platforms. After the new feature selection step was implemented, a classifier was trained on RNA-seq data and further tested on two independent microarray data sets (testing sets, see Methods for more details). Identifiers from different platforms were mapped to gene symbols and only genes that were expressed in RNA-seq data and present on both microarray platforms were considered (Table 8).


Feature Normalization.


For classifier development, 139 genes DE between SSA/Ps and HP, CR samples (Table 4) were considered. Gene expressions for both RNA-seq and microarray platforms were normalized to a common range by subtracting the median absolute deviation (MAD) from each gene's expression. Hence, gene expressions were centered around zero and genes with large fold changes between two phenotypes had positive expressions under one phenotype and negative expressions under the other. Genes with the small variability were filtered out (MAD<0.1). Finally, only the genes expressed in all three platforms (117 genes) were considered for further classifier design steps.


Feature Selection Step.


Selecting only genes (features) with high concordance between platforms is crucial to design a platform-independent classifier. Platform-independent classifier, trained using one platform, should have low classification error rate while being tested using other platform. Here, to assess genes concordance between platforms, a new non-parametric test was developed (see Methods for details). The test identified genes, robustly differentiating two phenotypes under different platforms, the best candidates for an inter-platform signature. Previously, the concordance between platforms has been measured by the correlation between mean expressions or fold changes or by intersection between lists of DE genes.


The idea behind the new test is simple: identify genes with expression levels highly correlated between platforms. The practical difficulty of implementing the idea is that the numbers of samples, as well as the samples identities, are different between platforms. Consider two distributions: (1) correlation coefficients for all genes between two platforms, preserving phenotypic labels (0) and (2) correlation coefficients for all genes between two platforms, randomly resampling phenotypic labels (ρrandom). FIG. 13 presents the distributions of ρtrue ρrandom when the HP and SSA/P samples from the RNA-seq training data were compared with the Illumina and Affymetrix data sets. Some genes had higher correlations when phenotypic labels were preserved, compared to when they were randomly resampled, introducing negative skewness to the distribution of ρtrue (see FIG. 13). In other words, these genes correlations between platforms were higher than by chance, illustrated by the case when phenotypic labels were randomly resampled. These genes were our candidate concordant genes. More formally, to identify concordant genes, the null hypothesis H0: ρtrueρrandom+max(SD(ρtrue∪ρrandom)) was tested.



FIG. 5 illustrates how the test works using two examples of typical MAD-normalized gene expressions in two platforms. In one example, forty observations were sampled from two normal distributions N(0.5, 0.25) and N(−0.5, 0.25), representing different phenotypes. In this example, the fold change in both platforms was larger than the within-phenotype variability (FIG. 5A) and the correlation coefficient between platforms (ρtrue) was high. When phenotypic labels were randomly resampled, the fold change in both platforms became negligible as compared to the within-phenotype variability (FIG. 5B) and the correlation coefficient between platforms (ρrandom) became low. In another example, forty observations were sampled from two normal distributions N(0.5, 1) and N(−0.5, 1), again representing different phenotypes. However, in this example, the fold change in both platforms was smaller than the within-phenotype variability (FIG. 5C and FIG. 5D) and the correlation coefficient between platforms was low when phenotypic labels were either preserved or randomly resampled. Although the fold change between phenotypes was the same in both examples (log2FC=1), Pearson correlation coefficient between expressions in two platforms preserving phenotypic labels (ρtrue) was higher in case A compared to case C because of the lower within-phenotype variability. Randomly resampling phenotypic labels led, expectedly, to much lower correlations between two platforms (ρrandom) (FIG. 5B and FIG. 5D). Accordingly, ρtruerandom in the first example (FIG. 5A and FIG. 5B) but not in the second (FIG. 5B, FIG. 5D). Taking average correlation between platforms, for a large number of iterations, H0 will be rejected for the first example (FIG. 5A and FIG. 5B) but not for the second (FIG. 5C and FIG. 5D). The Methods summarizes the steps of the proposed test.


The test was used to find genes with high concordance between RNA-seq and Illumina platforms (23 genes detected), RNA-seq and Affymetrix platforms (20 genes detected), and between RNA-seq and both Illumina and Affymetrix platforms (16 genes detected). Only genes, detected by the Wilcoxon's test at P<0.05 were considered. The values of the term max(SD(ρtrue∪ρrandom) were 0.41 and 0.39 when RNA-seq data were compared with Illumina and Affymetrix data sets, respectively.


Classifier Design and Gene Signatures.


The model selection step provides a great flexibility because there are many machine learning algorithms available for classification purposes. The nearest shrunken centroid classifier (SCC) was selected because it was successfully used before for developing many microarray-based classifiers, in particular a prognostic classifier in CRCs. To select the threshold value that returns the minimum mean error with the least number of genes, a 3-fold cross-validation was performed over a range of threshold values for 100 iterations.


Training the classifier using the RNA-seq data set and considering only the genes with high concordance with the Illumina, Affymetrix, and both platforms yielded three signatures of 18, 16, and 13 genes (see Table 2). The 18 and 16 gene signatures resulted in zero (out of 12 Illumina samples) and three (out of 17 Affymetrix samples) errors. Classification errors did not change when the 13 genes signature was used instead. Hence we considered these 13 genes as the smallest successful signature for both Illumina and Affymetrix platforms. The samples in the Illumina data set were identified as belonging to SSA/Ps or HPs phenotypes by gastrointestinal pathologists based on a higher stringency criterion than what has been done for the samples in the Affymetrix data set. It is therefore no surprise that there was less ambiguity in classifying the Illumina samples. Although the Illumina samples were acquired by a different platform compared to the training RNA-seq data set, they were classified without errors. Aside from the stringent criterion in assigning phenotype labels for Illumina samples, this result could be due to the higher resolution in quantifying gene expression by the RNA-seq platform.


In conclusion, the independent validation (i.e. using different platforms) results have shown the feasibility of building molecular classifiers using RNA-seq training data. Moreover, classifiers built using one platform (RNA-seq) were applicable to other platforms (Affymetrix, Illumina) and had low classification error rates in predicting HP or SSA/P phenotypes as long as only concordant features were considered.


Smallest Successful Signature.


The genes included in the smallest signature (13 genes) were on the average approximately four folds up-(down-) regulated between SSA/Ps and HPs (Table 3). The average absolute fold change considering all the 14006 expressed genes in the RNA-seq training data set was 1.27. There were three down- and ten up-regulated genes in SSA/Ps, involved in several molecular processes that have been discussed earlier. Down-regulated genes included NTRK2 (neurotrophic tyrosine kinase receptor, type 2), CHFR (negative regulator of cell cycle checkpoint) and CHGA (chromogranin A, endocrine marker). NTRK2 controls the signaling cascade that mainly regulates cells growth and survival.


Up-regulated genes included several genes (SLC7A9, SEMG1, SBSPON and MEGF6) that were not well functionally characterized (except SLC7A9, a marker for cystinuria) and are not discussed here. Two genes (KIZ and SPIRE1) were among the genes up-regulated in SSA/Ps and equally down-regulated in HP, CR samples (FIG. 3). TROP-2 (TACSTD2, tumor-associated calcium signal transducer 2) is a cell-surface transmembrane glycoprotein overexpressed in many epithelial tumors. TROP-2 was suggested as a biomarker to determine the clinical prognosis and as a potential therapeutic target in colon cancer and an antibody-drug conjugate targeting TROP-2 is currently in phase II clinical trials. Claudin-1 (CLDN1, tight junction protein) was also up-regulated. Specifically, Claudin-1 has been suggested to be involved in the regulation of colorectal cancer progression by up-regulating Notch- and Wnt-signaling and mucosal inflammation. In addition, CLDN1 was also associated with liver metastasis of CRC. PLA2G16 phospholipase was also up-regulated and its up-regulation may be a signal of gain-of-function activities of mutant p53 that is required for metastasis. Finally, PTAFR, platelet activating factor receptor, was found to stimulate EMT by activating STAT3 cascade.


In sum, the up-regulated signature genes included those previously associated with invasive cell activities (CLDN1, PLA2G16, PTAFR, SPIRE1), spindle formation (KIZ) while down-regulated genes included checkpoints controlling cell growth (CHFR, NTRK2).


Summary Metric with Class Probability.


The ultimate goal of building a classifier and finding gene signatures is to use the signature in clinical practice for diagnostic and prognostic purposes. Here, a simple procedure that uses the signatures in Table 2 was developed to classify new samples as either HP or SSA/P and provides a class probability for the decision. The mean of the MAD-normalized expression of the genes in the signature was used as a summary metric (SM). Since most of the genes in the signatures in Table 2 were over-expressed in SSA/P, SM>0 for SSA/P samples and SM<0 for HP samples. Before calculating the mean expression, the signs of the expressions of the few genes that were over-expressed in HP were inverted. This step increased the magnitude of the mean regardless of its sign. There were only three genes over-expressed in HP in the 13-gene signature (CHFR, CHGA and NTRK2), one in the 16-gene Affymetrix signature (NTRK2), and four in the 18-gene Illumina signature (CHGA, CPE, DPP10, and NTRK2). The class assignment (HP or SSA/P) depends simply on the sign of the mean expression.


MAD-normalized gene expressions had approximately Laplace-like distribution (FIG. 14) and SM distributions were approximately normal (FIG. 15). According to the central-limit theorem, the SM distributions should be normal, especially for signatures with a large number of genes p≥30 (FIG. 15). The normal approximation is still valid when the signature size p<30 if the population is not too different from a normal distribution. There are several ways of assigning a class probability to a new sample using training RNA-seq data set as a reference. The distribution of SM can be estimated by calculating SMs for many random signatures of the same size as the signature in use. The probability of an assigned SSA/P (HP) class is the cumulative distribution function CDF(SM) (1−CDF(SM)) of the empirical distribution of SM after standardization (FIG. 6). Another possibility is to use the normal approximation of SM (FIG. 6). The first approach is impaired by the possible differences in the distribution of SM between different platforms. For example, applying MAD normalization to the loge-scale FPKM RNA-seq data yielded SM with negative tail that extended beyond the corresponding tail in microarray data (FIG. 15). The second approach is impaired by deviation from normality especially for very small signatures. Generally, the distribution of SM was normal-like with higher kurtosis for small signatures. While the distribution of SM had kurtosis ≈8 and 4 for RNA-seq and microarray data, respectively (using 15 genes in a signature), the kurtosis of a standard normal distribution is 3.


Due to the potential difficulties in fitting an exact distribution to SM another solution was found. A lower bound for P(X≥SM) as the probability for an assigned SSA/P class and P(X≤−SM) as the probability for an assigned HP can be estimated using Cantelli's inequality (also known as one-sided Tchebycheff's inequality). Cantelli's inequality estimates an upper bound for the probability that observations from some distribution are bigger than or smaller than their average:








P


(


X
-
μ


a

)


=


CDF


(

μ
+
a

)




1
-


σ
2



σ
2

+

a
2






,

a

0









P


(


X
-
μ


a

)


=


CDF


(

μ
+
a

)





σ
2



σ
2

+

a
2





,

a
<
0






We either choose a=SM and σ=0.14 (which happened to be a standard deviation of SM in all three platforms when the number of genes is 15), or choose a=standardized SM and σ=1. FIG. 6 presents Cantelli lower bound (CLB) SSA/P (HP) probabilities. When SM∈[−σ, σ] (or SMstandardized ∈[−1,1]) the probability of class assignment is zero for one class and <50% for the other, therefore no probability was assigned (Uncertain zone, FIG. 6). To avoid false positive the probability was assigned if and only if Cantelli lower bound of SM was >0.5. The results of classifying samples in the Illumina and Affymetrix data sets using the summary metric and the class probability assigned to each decision are presented in Table 9, Table 10, and Table 11. For comparison, the class probabilities obtained using the empirical approach, normal approximation, and the SCC (independent of SM) are also shown. Standardized SM and σ=1 were used. When the Affymetrix samples were classified using the 16-gene signature, 2 of the 3 misclassified HP samples by SCC are deemed uncertain by CLB while assigned P(SSA/P) of 75% and 94% by SCC (Table 10).


Independent Validation and Clinical Diagnostic Tool.


To further validate the accuracy of the 13 genes molecular signature and demonstrate its diagnostic value in clinically relevant settings, expression levels were obtained from 45 (24 HPs and 21 SSA/Ps) independent FFPE SSA/P and HP samples with real-time qPCR (see Methods). By simply applying proper normalization and summarizing expression levels using the summary metric (see Methods), the 13 genes molecular signature correctly classified 90% of the independent FFPE samples (Table 12). FIG. 16 shows the scatter plot of the first and second principle components of normalized expression levels. The 13 genes molecular signature indeed placed HP and SSA/P independent FFPE samples in two well-separated clusters. This approach is simple and relies on the ability of the combined 13 genes to properly distinguish between HP and SSA/P, rather than relying on a complex classifier. The steps required to apply this simple approach as a clinical diagnostic tool to new qPCR samples are summarized in Methods. It is worth mentioning here that the signature that was found using RNA-seq data from fresh tissue samples achieved a remarkable correct classification rate despite any possible RNA degradation in preserved FFPE tissues.


Discussion.


Conventionally, SSA/Ps are distinguished from HPs on the basis of histopathological features. Because HPs have similar histopathological features, a significant error rate of classifying SSA/P as HP can occur, especially if expert gastrointestinal pathologists are not available. This clinical challenge was the driver of this study, which aimed to develop biomarker-based test to distinguish between SSA/Ps and HPs. Another challenge was to elucidate molecular mechanisms, contributing to the differences between SSA/P and HP phenotypes.


Previously, the differences between phenotypes were considered mostly at the level of individual genes. The genes DE between SSA/Ps and CR (or HP) samples (MUC17, TFF1 and CTSE, SLIT2) were also found in the present analysis. In addition, these genes were also DE between CR and CL samples, so their association with HP and SSA/P phenotypes is uncertain. Among other SSA/Ps potential biomarkers (ANXA10, FABP6 and TTF2), ANXA10 was found to be significantly DE between HP and SSA/P samples (Table 5) and TFF2 was found to be significantly DE between SSA/Ps and HP, CR samples (Table 4). FABP6 was not significantly DE.


To get the systems-level view of the differences between HP and SSA/P phenotypes the data were analyzed employing different functional units (genes and pathways) as well as different regulatory relationships (differential expression, co-expression). At the level of individual genes, only genes expressed at the same level in HP and CR samples and significantly up- or down-regulated in SSA/Ps were considered. Most interestingly, two third of the up-regulated genes were interferon-regulated genes, including IDO1. In addition, at the pathway level, ‘Inflammatory response’ and ‘Immunological synapse’ were also up-regulated in SSA/Ps as compared to HP, CR samples. IDO has been implicated in inflammatory processes; for example, in the mouse model of DSS induced colitis, it has been shown that IDO1 stimulates an inflammatory response (elevated levels of pro-inflammatory chemokines and cytokines), the same pathway that was found up-regulated here. However, generally IDO is known as being immunosuppressive: its activity promotes apoptosis of T-cells, NK cells and induces the differentiation of T regulatory cells (Tregs). The mechanism by which IDO mediates inflammation is not well understood but the connection between IDO-mediated inflammation and immunosuppression in tumor cells has been discussed. It could be that IDO1 also plays a role in potentiating SSA/Ps into tumor progression by increasing inflammatory state and facilitating immune escape, but whether there is a link requires further study. Other important up-regulated genes and pathways differentiating SSA/P from HP phenotypes involve cell motility, migration ability, EMT and ECM interaction (FIG. 3 and Table 1) that impact cell invasive and metastatic behavior, another important hallmark of cancer. Considering pathways differentially co-expressed between SSA/Ps and HP phenotypes, it was found that hub genes were always different between two phenotypes (R code). For two differentially co-expressed meiosis-related pathways, the shift was from RAD51 to MRE11A, a gene involved in non-homologous recombination and mismatch repair pathway. One of the most studied genotypic subtypes of CRC is that characterized by a deficient mismatch repair pathway (dMMR), usually found in combination with microsatellite instability (MSI). Whether SSA/Ps indeed result in dMMR CRC subtype remains to be studied. For now, as evidenced by up-regulation of pathways and genes found, it appears that SSA/Ps are prone to neoplastic changes most probably because of inflammatory and immune escape state, as well as an increased cell motility and migration ability.


While the computational analysis indeed elucidated genes and pathways DE between SSA/Ps and HPs, indicated plausible directions toward tumor progression and even pointed to existing preventive/treatment options (suppressors of IDO1 and TROP-2), the major goal was more practical: to build a molecular classifier accurately differentiating between SSA/Ps and HPs. Using RNA-seq data set and the new feature selection strategy suggested here in combination with popular SCC, a molecular classifier that is applicable to microarray data was developed. The classifier was tested on two independent data sets and resulted in zero (out of 12 Illumina samples) and three (out of 17 Affymetrix samples) errors. The smallest successful signature for both platforms (13 genes, Table 3) included up-regulated genes previously associated with invasive cell activities (CLD1, PLA2G16, PTAFR, SPIRE1) and down-regulated checkpoints controlling cell growth (CHFR, NTRK2). In addition, a simple procedure was developed that uses the MAD-normalized signatures in Table 2 to classify new samples as either HP or SSA/P and provides a class probability for the decision, estimated using Cantelli's inequality. The median expression for any gene in any new platform can also be calculated reliably given that enough samples are available. Any new sample from the same platform is then added to re-calculate the median and perform the MAD normalization. For high throughput platforms where thousands of genes are profiled, it is possible to calculate the Cantelli lower bound for SSA/P and HP probabilities. For other clinical settings that profile a few genes (such as real-time qPCR), accurate classification is also possible (results demonstrated herein) but without class assignment probabilities (see Methods). The proposed molecular classifier demonstrates clinical diagnostic value and it could be used to classify future samples profiled with microarray, RNA-seq, or real-time qPCR platforms. The more accurate diagnosis of patients with SSA/Ps will enable future studies that better define the risk of colon cancer in patients with SSA/Ps, determine if subsets of patients have stratified risks for colon cancer and refine the recommendations for follow up care of patients with SSA/Ps.


Methods.


RNA-Seq Training Data Set.


The RNA-seq data set used in this study consists of a subset of the NCBI gene expression omnibus (GEO) series with the accession number GSE76987. Ten (10) control left (CL), 10 control right (CR), 10 microvesicular hyperplastic polyps (MVHPs), and 21 sessile serrated adenoma/polyps (SSA/Ps) samples were included. Raw single-end (SE) RNA-seq reads of 50 base pairs were provided in FASTQ file format from the ILLUMINA HiSeq 2000 platform. To insure high quality reads, the fastX-toolkit (version 0.0.13) was employed to discard any read with median Phred score<30. The surviving sequence reads were aligned to the UCSC hg19 human reference genome using Tophat (version 2.0.12). Tophat aligns RNA-seq reads to mammalian-sized genomes using the high-throughput short read aligner Bowtie (version 2.2.1) and then analyzes the mapping results to identify splice junctions between exons. Cufflinks was used to quantify the abundances of genes, taking into account biases in library preparation protocols. Cufflinks implements a linear statistical model to estimate the assigned abundance to each transcript that explains the observed reads (especially reads originating from a common exon in several isoforms of the same gene) with maximum likelihood. The normalized gene expression values are provided in fragments per kilobase per millions (FPKM) of mapped reads. The log2(1+FPKM) transformation was applied to FPKM values in all analyses.


Illumine Testing Data Set.


This data set consists of 6 normal colon samples, 6 microvesicular hyperplastic polyps (MVHPs) and 6 sessile serrated adenomas/polyps (SSA/Ps). The total RNA was converted to cDNA and modified using the Illumina DASL-HT assay and hybridized to the Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip. The biopsies were classified by seven gastrointestinal pathologists who reviewed 109 serrated polyps and identified 60 polyps with consensus. The loge-scale of the expression measurements provided under the gene expression omnibus (GEO) accession number GSE43841 was used. Only MVHP and SSA/P samples were considered for the analyses. Illumina probe identifiers were mapped to gene symbol identifiers using the Bioconductor annotation package illuminaHumanWGDASLv4.db. Whenever multiple probes were mapped to the same gene, the probe with the largest t-statistic between MVHP and SSA/P was selected.


Affymetrix Testing Data Set.


Subsets of samples from two GEO data sets, GSE10714 and GSE45270, were considered. The total RNA was extracted from 11 patients with hyperplastic polyps (HPs) from GSE10714 and from 6 patients with sessile serrated adenoma/polyps (SSPs) from GSE45270. Genome-wide gene expression profile was evaluated by the HGU133plus2 microarrays from Affymetrix. The background correction, normalization, and probe summarization steps were implemented using the robust multi-array (RMA) method for the combined samples. Probe identifiers were mapped to gene symbol identifiers using the Bioconductor annotation package hgu133plus2.db. When multiple probes were mapped to the same gene, the probe with the largest t-statistic between the 11 HP samples and the 6 SSA/P samples was selected.


Biospecimens for Independent Validation Studies.


Formalin-fixed paraffin embedded (FFPE) specimens of SSA/Ps (n=21, size range 0.3-3 cm) and HPs (n=24, size range 0.3-0.5 cm) with an unequivocal diagnosis based on the review of at least two independent expert GI pathologists were analyzed. SSA/Ps were from the right colon (sigmoid flexure to cecum) and HPs were from both the left and transverse colon. All samples represented unused de-identified pathologic specimens that were obtained under IRB approval. Total RNA was extracted from six to seven 10 μm slices of FFPE tissues using a RNeasy FFPE kit (Qiagen, Germany) according to the manufacturer's instructions. The concentration of extracted RNA was determined by Qubit RNA HS assays. Reverse transcription reactions were performed utilizing high capacity RNA-to-cDNA kit (Applied Biosystems, Carlsbad, Calif.) in 20 μL reactions containing 1 μg of RNA, in compliance with the manufacturer's protocol.


qPCR was performed with an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems, Carlsbad, Calif.). With the exception of SBSPON all primers were selected from the PrimerBank database[101], and specific primers for SBSPON were purchased from OriGene Technologies (Rockville, Md.) (Table S11). As a control we utilized human 18S ribosomal RNA (Qiagen, Germany). 15 μL reaction mixtures contained 7.5 μL of PowerUp SYBR green 2× master mix (Applied Biosystems, Carlsbad, Calif.), 0.75 μL of each primer pair (10 μM), and 20 ng of cDNA. The reaction involved initial denaturing for 2 minutes at 95° C., followed by 40 cycles of 95° C. for 15 seconds and 60° C. for 60 seconds. All analyses were carried out in triplicates.


Differential Expression Analysis.


Differentially expressed (DE) genes were detected using the returned values from the Cuffdiff2 algorithm. Expressed genes with adjusted p-values Padj<0.05 and absolute log2 fold change>0.5 were considered DE. P-values were controlled for multiple testing using the Benjamini-Hochberg false discovery rate (FDR) method.


Feature Selection Step (Concordant Genes).


The following algorithm for selecting genes, concordant between platforms, was developed:

    • 1. Let matrices X=[X1, . . . , Xn] and Y=[Y1, . . . , Ym] represent n(m) p-dimensional measurements of gene expression from two platforms. Let n=n1+n2, m=m1+m2 where X(Y) has n1(m1) samples that belong to phenotype 1 and n2(m2) samples that belong to phenotype 2.
    • 2. Sample without replacement from each platform selecting min(n1, m1) random samples that belong to phenotype 1 and min(n2, m2) random samples that belong to phenotype 2. Find the Pearson correlation coefficient between the two platforms for each of the p genes. These correlations are calculated with actual phenotype labels (ρtrue).
    • 3. Sample without replacement from each platform selecting min(n1, m1) and min(n2, m2) random samples that belong to any phenotype. Find the Pearson correlation coefficient between the two platforms for each of the p genes. These correlations are calculated when samples from both phenotypes are randomly sampled (ρrandom).
    • 4. Repeat steps 2 and 3 for a large number of times (we use 104 times) and record the p (number of genes) correlation values in each step to estimate the distribution of ρtrue and ρrandom (see FIG. 13). Calculate pooled standard deviation for each gene from the two estimated distributions of ρsep and ρm,x and use the maximum value max(SD(ρtrue∪ρrandom)) for step 5.
    • 5. Use the non-parametric Wilcoxon's test of means to test the one-sided hypothesis H0: ρtrueρrandom+max(SD(ρtrue∪ρrandom)) against the alternative H1: ρtrue>ρrandom+max (SD(ρtrue ∪ρrandom). This test rejects the null hypothesis for genes that are consistently over-expressed in one phenotype under both platforms, especially when the within-phenotype variability is negligible compared to the fold change (see FIG. 5). The term max(SD(ρtrue∪ρrandom)) can optionally be multiplied by a constant to increase or decrease the number of genes that rejects the null hypothesis.


Building the Classifier.


The shrunken centroid classifier (SCC) works as follows: First, it shrinks each phenotype gene centroids towards the overall centroids and standardizes by the within-phenotype standard deviation of each gene, giving higher weights to genes with stable within-phenotype expression. The centroids of each phenotype deviate from the overall centroids and the deviation is quantified by the absolute standardized deviation. The absolute standardized deviation is compared to a shrinkage threshold and any value smaller than the threshold leads to discarding the corresponding gene from the classification process.


To select the threshold for the centroid shrinkage, a 3-fold cross-validation over a range of 30 threshold values for 100 iterations was performed (R package pamr version 1.55). The threshold returning the minimum mean error with the least number of genes was selected. Within every iteration, genes' ability to separate between HP and SSA/P samples was assessed by calculating the area under the ROC curve (R package ROCR version 1.0-7) and only genes with AUC>0.8 were left in the signature. The signature was employed with the SCC to classify independent validation samples as either HPs or SSA/Ps. For a p-dimensional validation sample X, the classifier calculates a discriminant score δk(X′) for class k and assigns the class with minkk(X′)) as the classification decision. Discriminant scores are used to estimate class probabilities (posterior probabilities) as a measure of the certainty of classification decision








p
k



(

X
*

)


=


e


-

1
2





δ
k



(

X
*

)








m
=
1

M



e


-

1
2





δ
m



(

X
*

)











where M is the number of classes.


Classification of Independent FFPE Samples.


Expression levels of 13 genes were estimated relative to a reference level of a housekeeping gene, such that larger values represent lower expression levels and smaller values represent higher expression levels (see FIG. 17). Some samples were positively or negatively biased relative to each other (see FIG. 18A). Therefore, raw expression levels were normalized using two steps. First, raw expressions were shifted by their respective sample means or medians to remove any possible positive or negative biases between samples and center expression levels around zero. This step is crucial to reduce technical variation between samples. Three options that keep gene ranks in each sample unchanged (arithmetic mean, geometric mean, and median) were tried and no significant difference in the classification results was noticed (see Table 12). It was also found that the quantile normalization which forces all samples to have similar quantiles yielded lower performance (data not shown). Although subtracting the arithmetic or geometric mean showed minor improvement in Table 12, subtracting the median is recommended when outliers are present in some samples. Expression levels are then multiplied by −1 to let higher expression levels be represented by larger values. Second, the gene-wise MAD normalization was applied such that genes with large fold changes between HP and SSA/P are likely to have positive values under one phenotype and negative values under the other. The normalized expression levels are shown in FIG. 18B. The summary metric (SM) is used to score each sample and each sample is then labeled as HP if SM<0 and as SSA/P if SM>0.



FIG. 14 and FIG. 15 have shown that the distribution of the MAD-normalized expression and the distribution of SM in one RNA-seq and two microarray data sets were comparable hence the shrunken centroid classifier trained with RNA-seq data can be applied successfully to classify microarray samples. Accurate estimates of the summary metric distribution for each platform allowed proper standardization of the summary metric and hence proper phenotype assignment probability using CLB. While this approach works for high throughput platforms that profile thousands of genes, it is not applicable under typical clinical settings when qPCR is used to profile only a few genes because the distribution of SM is unknown. This is why phenotype assignment probabilities are not available when platforms that profile a few genes (such as small-scale qPCR) are used.


To classify new qPCR samples using our simple approach, the two normalization steps above must be applied. R code implementing the two normalization steps and classifying samples using the summary metric of 13 genes is provided in R code below. To apply MAD normalization to real-time qPCR expression levels, multiple samples are necessary to estimate the median expression level for each gene accurately. Therefore the raw qPCR expression levels for the FFPE data set (24 HPs and 21 SSA/Ps) in Table S10 was provided to allow the normalization of any new qPCR samples. The first normalization step resolves any potential shift biases between the new samples and the samples in Table 13.


Software Availability.


The nearest shrunken centroid classifier implementation in R is available in the CRAN package pamr. Below provides R code and instructions on how to apply the simple 13 genes signature to classify new qPCR samples into either HP or SSA/P.


R Code and Instructions.














# save a copy of Supplementary Table S10 in you working directory


setwd(“working directory here”)


# choose “mean”, “geometricMean”, or “median” for sample normalization


sample.nor <− “median”


# read Table 13


FFPEtab <− read.csv(“Table_13.csv”)


class.labels <− as.character(FFPEtab[,2])


FFPEmat <− as.matrix(FFPEtab[,3:15])


rownames(FFPEmat) <− as.character(FFPEtab[,1])


colnames(FFPEmat) <− colnames(FFPEtab)[3:15]


FFPEmat <− t(FFPEmat)


# read you new samples from a comma-delimited file


# expression levels should occupy one or more columns


# gene names must be in the first column and sample names can be used


new.samples <− read.csv(“new_samples.csv”)


new.mat <− as.matrix(new.samples)


rownames(new.mat) <− as.character(new.samples[,1])


new.mat <- new.mat[rownames(FFPEmat),]


# append new samples to Table 13


FFPEmat <− cbind(FFPEmat, new.mat)


# subtract the mean/median from each sample


if(sample.nor == “median”) mm <− apply(FFPEmat, 2, “median”)


if(sample.nor == “mean”) mm <− apply(FFPEmat, 2, “mean”)


if(sample.nor == “geometricMean”) mm <− apply(FFPEmat, 2,


function(x){prod(x){circumflex over ( )}length(x)})


mat <− matrix(mm, 13, 45, byrow=TRUE)


FFPEmat <− FFPEmat − mat


# center each gene's expression around zero


# multiply by −1 to let higher values represent higher expression levels


FFPEmat.nor <− −sweep(FFPEmat, 1, apply(FFPEmat, 1, “median”))


# calculate the summary metric (SM)


# expression of genes “CHFR”, “CHGA”, and “NTRK2” is multiplied by −1


sig <−


c(“CHFR”,“CHGA”,“CLDN1”,“KIZ”,“MEGF6”,“NTRK2”,“PLA2G16”,“PTAFR”,“SBSPO


N”,“SEMG1”,“SLC7A9”,“SPIRE1”,“TACSTD2”)


signature.size <− length(sig)


mask <− matrix(1, signature.size, ncol(FFPEmat.nor), byrow=FALSE)


mask[c(1,2,6),] <− −1


SM <− colMeans(FFPEmat.nor[sig,]*mask)


# if SM>0 then sample is classified as SSA/P


# else if SM<0 then sample is classified as HP









REFERENCES



  • 1. Zauber, A. G., S. J. Winawer, M. J. O'Brien, I. Lansdorp-Vogelaar, M. van Ballegooijen, B. F. Hankey, W. Shi, J. H. Bond, M. Schapiro, J. F. Panish, E. T. Stewart, and J. D. Waye, Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med, 2012. 366(8): p. 687-96.

  • 2. Lieberman, D. A., D. G. Weiss, J. H. Bond, D. J. Ahnen, H. Garewal, and G. Chejfec, Use of colonoscopy to screen asymptomatic adults for colorectal cancer. Veterans Affairs Cooperative Study Group 380. N Engl J Med, 2000. 343(3): p. 162-8.

  • 3. Levin, B., D. A. Lieberman, B. McFarland, R. A. Smith, D. Brooks, K. S. Andrews, C. Dash, F. M. Giardiello, S. Glick, T. R. Levin, P. Pickhardt, D. K. Rex, A. Thorson, S. J. Winawer, G. American Cancer Society Colorectal Cancer Advisory, U. S. M.-S. T. Force, and C. American College of Radiology Colon Cancer, Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin, 2008. 58(3): p. 130-60.

  • 4. Quintero, E., A. Castells, L. Bujanda, J. Cubiella, D. Salas, A. Lanas, M. Andreu, F. Carballo, J. D. Morillas, C. Hernandez, R. Jover, I. Montalvo, J. Arenas, E. Laredo, V. Hernandez, F. Iglesias, E. Cid, R. Zubizarreta, T. Sala, M. Ponce, M. Andres, G. Teruel, A. Perls, M. P. Roncales, M. Polo-Tomas, X. Bessa, O. Ferrer-Armengou, J. Grau, A. Serradesanferm, A. Ono, J. Cruzado, F. Perez-Riquelme, I. Alonso-Abreu, M. de la Vega-Prieto, J. M. Reyes-Melian, G. Cacho, J. Diaz-Tasende, A. Herreros-de-Tejada, C. Poves, C. Santander, A. Gonzalez-Navarro, and C. S. Investigators, Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N Engl J Med, 2012. 366(8): p. 697-706.

  • 5. Limketkai, B. N., D. Lam-Himlin, M. A. Arnold, and C. A. Arnold, The cutting edge of serrated polyps: a practical guide to approaching and managing serrated colon polyps. Gastrointest Endosc, 2013. 77(3): p. 360-75.

  • 6. Kahi, C. J., D. G. Hewett, D. L. Norton, G. J. Eckert, and D. K. Rex, Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy. Clin Gastroenterol Hepatol, 2011. 9(1): p. 42-6.

  • 7. Torlakovic, E. and D. C. Snover, Serrated adenomatous polyposis in humans. Gastroenterology, 1996. 110(3): p. 748-55.

  • 8. Kahi, C. J., X. Li, G. J. Eckert, and D. K. Rex, High colonoscopic prevalence of proximal colon serrated polyps in average-risk men and women. Gastrointest Endosc, 2012. 75(3): p. 515-20.

  • 9. Torlakovic, E., E. Skovlund, D. C. Snover, G. Torlakovic, and J. M. Nesland, Morphologic reappraisal of serrated colorectal polyps. Am J Surg Pathol, 2003. 27(1): p. 65-81.

  • 10. Torlakovic, E. E., J. D. Gomez, D. K. Driman, J. R. Parfitt, C. Wang, T. Benerjee, and D. C. Snover, Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol, 2008. 32(1): p. 21-9.

  • 11. Lash, R. H., R. M. Genta, and C. M. Schuler, Sessile serrated adenomas: prevalence of dysplasia and carcinoma in 2139 patients. J Clin Pathol, 2010. 63(8): p. 681-6.

  • 12. Rex, D. K., D. J. Ahnen, J. A. Baron, K. P. Batts, C. A. Burke, R. W. Burt, J. R. Goldblum, J. G. Guillem, C. J. Kahi, M. F. Kalady, M. J. O'Brien, R. D. Odze, S. Ogino, S. Parry, D. C. Snover, E. E. Torlakovic, P. E. Wise, J. Young, and J. Church, Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol, 2012. 107(9): p. 1315-29; quiz 1314, 1330.

  • 13. Payne, S. R., T. R. Church, M. Wandell, T. Rosch, N. Osborn, D. Snover, R. W. Day, D. F. Ransohoff, and D. K. Rex, Endoscopic detection of proximal serrated lesions and pathologic identification of sessile serrated adenomas/polyps vary on the basis of center. Clin Gastroenterol Hepatol, 2014. 12(7): p. 1119-26.

  • 14. Tinmouth, J., P. Henry, E. Hsieh, N. N. Baxter, R. J. Hilsden, S. Elizabeth McGregor, L. F. Paszat, A. Ruco, R. Saskin, A. J. Schell, E. E. Torlakovic, and L. Rabeneck, Sessile serrated polyps at screening colonoscopy: have they been under diagnosed? Am J Gastroenterol, 2014. 109(11): p. 1698-704.

  • 15. Bettington, M., N. Walker, A. Clouston, I. Brown, B. Leggett, and V. Whitehall, The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology, 2013. 62(3): p. 367-86.

  • 16. De Sousa, E. M. F., X. Wang, M. Jansen, E. Fessler, A. Trinh, L. P. de Rooij, J. H. de Jong, O. J. de Boer, R. van Leersum, M. F. Bijlsma, H. Rodermond, M. van der Heijden, C. J. van Noesel, J. B. Tuynman, E. Dekker, F. Markowetz, J. P. Medema, and L. Vermeulen, Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med, 2013. 19(5): p. 614-8.

  • 17. Castaldi, P. J., I. J. Dahabreh, and J. P. loannidis, An empirical assessment of validation practices for molecular classifiers. Brief Bioinform, 2011. 12(3): p. 189-202.

  • 18. Chang, C. Q., S. R. Tingle, K. K. Filipski, M. J. Khoury, T. K. Lam, S. D. Schully, and J. P. loannidis, An overview of recommendations and translational milestones for genomic tests in cancer. Genet Med, 2014.

  • 19. Chibon, F., Cancer gene expression signatures—the rise and fall? Eur J Cancer, 2013. 49(8): p. 2000-9.

  • 20. Shi, W., M. Bessarabova, D. Dosymbekov, Z. Derso, T. Nikolskaya, M. Dudoladova, T. Serebryiskaya, A. Bugrim, A. Guryanov, R. J. Brennan, R. Shah, J. Dopazo, M. Chen, Y. Deng, T. Shi, G. Jurman, C. Furlanello, R. S. Thomas, J. C. Corton, W. Tong, L. Shi, and Y. Nikolsky, Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes. Pharmacogenomics J, 2010. 10(4): p. 310-23.

  • 21. Su, Z., H. Fang, H. Hong, L. Shi, W. Zhang, W. Zhang, Y. Zhang, Z. Dong, L. J. Lancashire, M. Bessarabova, X. Yang, B. Ning, B. Gong, J. Meehan, J. Xu, W. Ge, R. Perkins, M. Fischer, and W. Tong, An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era. Genome Biol, 2014. 15(12): p. 523.

  • 22. Tarca, A. L., M. Lauria, M. Unger, E. Bilal, S. Boue, K. Kumar Dey, J. Hoeng, H. Koeppl, F. Martin, P. Meyer, P. Nandy, R. Norel, M. Peitsch, J. J. Rice, R. Romero, G. Stolovitzky, M. Talikka, Y. Xiang, C. Zechner, and I. D. Collaborators, Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics, 2013. 29(22): p. 2892-9.

  • 23. Alizadeh, A. A., M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson, Jr., L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Greyer, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000. 403(6769): p. 503-11.

  • 24. Dave, S. S., G. Wright, B. Tan, A. Rosenwald, R. D. Gascoyne, W. C. Chan, R. I. Fisher, R. M. Braziel, L. M. Rimsza, T. M. Grogan, T. P. Miller, M. LeBlanc, T. C. Greiner, D. D. Weisenburger, J. C. Lynch, J. Vose, J. O. Armitage, E. B. Smeland, S. Kvaloy, H. Nolte, J. Delabie, J. M. Connors, P. M. Lansdorp, Q. Ouyang, T. A. Lister, A. J. Davies, A. J. Norton, H. K. Muller-Hermelink, G. Ott, E. Campo, E. Montserrat, W. H. Wilson, E. S. Jaffe, R. Simon, L. Yang, J. Powell, H. Zhao, N. Goldschmidt, M. Chiorazzi, and L. M. Staudt, Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med, 2004. 351(21): p. 2159-69.

  • 25. Lascorz, J., B. Chen, K. Hemminki, and A. Forsti, Consensus pathways implicated in prognosis of colorectal cancer identified through systematic enrichment analysis of gene expression profiling studies. PLoS One, 2011. 6(4): p. e18867.

  • 26. Salazar, R., P. Roepman, G. Capella, V. Moreno, I. Simon, C. Dreezen, A. Lopez-Doriga, C. Santos, C. Marijnen, J. Westerga, S. Bruin, D. Kerr, P. Kuppen, C. van de Velde, H. Morreau, L. Van Velthuysen, A. M. Glas, L. J. Van't Veer, and R. Tollenaar, Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J Clin Oncol, 2011. 29(1): p. 17-24.

  • 27. Gray, R. G., P. Quirke, K. Handley, M. Lopatin, L. Magill, F. L. Baehner, C. Beaumont, K. M. Clark-Langone, C. N. Yoshizawa, M. Lee, D. Watson, S. Shak, and D. J. Kerr, Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol, 2011. 29(35): p. 4611-9.

  • 28. Caruso, M., J. Moore, G. J. Goodall, M. Thomas, S. Phillis, A. Tyskin, G. Cheetham, N. Lerda, H. Takahashi, and A. Ruszkiewicz, Over-expression of cathepsin E and trefoil factor 1 in sessile serrated adenomas of the colorectum identified by gene expression analysis. Virchows Arch, 2009. 454(3): p. 291-302.

  • 29. Gonzalo, D. H., K. K. Lai, B. Shadrach, J. R. Goldblum, A. E. Bennett, E. Downs-Kelly, X. Liu, W. Henricks, D. T. Patil, P. Carver, J. Na, B. Gopalan, L. Rybicki, and R. K. Pai, Gene expression profiling of serrated polyps identifies annexin A10 as a marker of a sessile serrated adenoma/polyp. J Pathol, 2013. 230(4): p. 420-9.

  • 30. Delker, D. A., B. M. McGettigan, P. Kanth, S. Pop, D. W. Neklason, M. P. Bronner, R. W. Burt, and C. H. Hagedorn, RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS One, 2014. 9(2): p. e88367.

  • 31. Glebov, O. K., L. M. Rodriguez, K. Nakahara, J. Jenkins, J. Cliatt, C. J. Humbyrd, J. DeNobile, P. Soballe, R. Simon, G. Wright, P. Lynch, S. Patterson, H. Lynch, S. Gallinger, A. Buchbinder, G. Gordon, E. Hawk, and I. R. Kirsch, Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev, 2003. 12(8): p. 755-62.

  • 32. Hanahan, D. and R. A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.

  • 33. Galamb, O., F. Sipos, N. Solymosi, S. Spisak, T. Krenacs, K. Toth, Z. Tulassay, and B. Molnar, Diagnostic mRNA expression patterns of inflamed, benign, and malignant colorectal biopsy specimen and their correlation with peripheral blood results. Cancer Epidemiol Biomarkers Prev, 2008. 17(10): p. 2835-45.

  • 34. Saeys, Y., I. Inza, and P. Larranaga, A review of feature selection techniques in bioinformatics. Bioinformatics, 2007. 23(19): p. 2507-17.

  • 35. Tibshirani, R., T. Hastie, B. Narasimhan, and G. Chu, Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA, 2002. 99(10): p. 6567-72.

  • 36. Li, H. J., S. K. Ray, N. K. Singh, B. Johnston, and A. B. Leiter, Basic helix-loop—helix transcription factors and enteroendocrine cell differentiation. Diabetes Obes Metab, 2011. 13 Suppl 1: p. 5-12.

  • 37. Scolnick, D. M. and T. D. Halazonetis, Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature, 2000. 406(6794): p. 430-5.

  • 38. Yu, X., K. Minter-Dykhouse, L. Malureanu, W. M. Zhao, D. Zhang, C. J. Merkle, I. M. Ward, H. Saya, G. Fang, J. van Deursen, and J. Chen, Chfr is required for tumor suppression and Aurora A regulation. Nat Genet, 2005. 37(4): p. 401-6.

  • 39. Cleven, A. H., S. Derks, M. X. Draht, K. M. Smits, V. Melotte, L. Van Neste, B. Tournier, V. Jooste, C. Chapusot, M. P. Weijenberg, J. G. Herman, A. P. de Bruine, and M. van Engeland, CHFR promoter methylation indicates poor prognosis in stage II microsatellite stable colorectal cancer. Clin Cancer Res, 2014. 20(12): p. 3261-71.

  • 40. Yamanami, H., K. Shiozaki, T. Wada, K. Yamaguchi, T. Uemura, Y. Kakugawa, T. Hujiya, and T. Miyagi, Down-regulation of sialidase NEU4 may contribute to invasive properties of human colon cancers. Cancer Sci, 2007. 98(3): p. 299-307.

  • 41. Samarajiwa, S. A., S. Forster, K. Auchettl, and P. J. Hertzog, INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res, 2009. 37(Database issue): p. D852-7.

  • 42. de Veer, M. J., M. Holko, M. Frevel, E. Walker, S. Der, J. M. Paranjape, R. H. Silverman, and B. R. Williams, Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol, 2001. 69(6): p. 912-20.

  • 43. Carrega, P., S. Campana, I. Bonaccorsi, and G. Ferlazzo, The Yin and Yang of Innate Lymphoid Cells in Cancer. Immunol Lett, 2016.

  • 44. Wang, G., X. Yang, C. Li, X. Cao, X. Luo, and J. Hu, PIK3R3 induces epithelial-to-mesenchymal transition and promotes metastasis in colorectal cancer. Mol Cancer Ther, 2014. 13(7): p. 1837-47.

  • 45. Zhang, J. X., X. X. Huang, M. B. Cai, Z. T. Tong, J. W. Chen, D. Qian, Y. J. Liao, H. X. Deng, D. Z. Liao, M. Y. Huang, Y. X. Zeng, D. Xie, and S. J. Mai, Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis. J Transl Med, 2012. 10: p. 242.

  • 46. Hamada, S., K. Satoh, A. Masamune, and T. Shimosegawa, Regulators of epithelial mesenchymal transition in pancreatic cancer. Front Physiol, 2012. 3: p. 254.

  • 47. Ball, H. J., H. J. Yuasa, C. J. Austin, S. Weiser, and N. H. Hunt, Indoleamine

  • 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol, 2009. 41(3): p. 467-71.

  • 48. Fallarino, F., U. Grohmann, C. Vacca, C. Orabona, A. Spreca, M. C. Fioretti, and P. Puccetti, T cell apoptosis by kynurenines. Adv Exp Med Biol, 2003. 527: p. 183-90.

  • 49. Uyttenhove, C., L. Pilotte, I. Theate, V. Stroobant, D. Colau, N. Parmentier, T. Boon, and B. J. Van den Eynde, Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 2003. 9(10): p. 1269-74.

  • 50. Opitz, C. A., U. M. Litzenburger, U. Opitz, F. Sahm, K. Ochs, C. Lutz, W. Wick, and M. Platten, The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One, 2011. 6(5): p. e19823.

  • 51. Iansante, V., P. M. Choy, S. W. Fung, Y. Liu, J. G. Chai, J. Dyson, A. Del Rio, C. D'Santos, R. Williams, S. Chokshi, R. A. Anders, C. Bubici, and S. Papa, PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation. Nat Commun, 2015. 6: p. 7882.

  • 52. Bao, J., Y. Ni, H. Qin, L. Xu, Z. Ge, F. Zhan, H. Zhu, J. Zhao, X. Zhou, X. Tang, and L. Tang, Rab27b is a potential predictor for metastasis and prognosis in colorectal cancer. Gastroenterol Res Pract, 2014. 2014: p. 913106.

  • 53. Hendrix, A., D. Maynard, P. Pauwels, G. Braems, H. Denys, R. Van den Broecke, J. Lambert, S. Van Belle, V. Cocquyt, C. Gespach, M. Bracke, M. C. Seabra, W. A. Gahl, O. De Wever, and W. Westbroek, Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst, 2010. 102(12): p. 866-80.

  • 54. Li, J., M. S. Weinberg, L. Zerbini, and S. Prince, The oncogenic TBX3 is a downstream target and mediator of the TGF-beta 1 signaling pathway. Mol Biol Cell, 2013. 24(22): p. 3569-76.

  • 55. Shan, Z. Z., X. B. Yan, L. L. Yan, Y. Tian, Q. C. Meng, W. W. Qiu, Z. Zhang, and Z. M. Jin, Overexpression of Tbx3 is correlated with Epithelial-Mesenchymal Transition phenotype and predicts poor prognosis of colorectal cancer. Am J Cancer Res, 2015. 5(1): p. 344-53.

  • 56. Baron, K. D., K. Al-Zahrani, J. Conway, C. Labreche, C. J. Storbeck, J. E. Visvader, and L. A. Sabourin, Recruitment and activation of SLK at the leading edge of migrating cells requires Src family kinase activity and the LIM-only protein 4. Biochim Biophys Acta, 2015. 1853(7): p. 1683-92.

  • 57. Byrne, J. A., S. Frost, Y. Chen, and R. K. Bright, Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol, 2014. 35(8): p. 7369-82.

  • 58. Owens, S. R., S. I. Chiosea, and S. F. Kuan, Selective expression of gastric mucin MUC6 in colonic sessile serrated adenoma but not in hyperplastic polyp aids in morphological diagnosis of serrated polyps. Mod Pathol, 2008. 21(6): p. 660-9.

  • 59. Bartley, A. N., P. A. Thompson, J. A. Buckmeier, C. Y. Kepler, C. H. Hsu, M. S. Snyder, P. Lance, A. Bhattacharyya, and S. R. Hamilton, Expression of gastric pyloric mucin, MUC6, in colorectal serrated polyps. Mod Pathol, 2010. 23(2): p. 169-76.

  • 60. Gibson, J. A., H. P. Hahn, A. Shahsafaei, and R. D. Odze, MUC expression in hyperplastic and serrated colonic polyps: lack of specificity of MUC6. Am J Surg Pathol, 2011. 35(5): p. 742-9.

  • 61. Oshimori, N., M. Ohsugi, and T. Yamamoto, The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol, 2006. 8(10): p. 1095-101.

  • 62. Lagal, V., M. Abrivard, V. Gonzalez, A. Perazzi, S. Popli, E. Verzeroli, and I. Tardieux, Spire-1 contributes to the invadosome and its associated invasive properties. J Cell Sci, 2014. 127(Pt 2): p. 328-40.

  • 63. Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.

  • 64. Liberzon, A., A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo, and J. P. Mesirov, Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 27(12): p. 1739-40.

  • 65. Wu, D., E. Lim, F. Vaillant, M. L. Asselin-Labat, J. E. Visvader, and G. K. Smyth, ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics, 2010. 26(17): p. 2176-82.

  • 66. Weiss, A. and L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63.

  • 67. Rahmatallah, Y., F. Emmert-Streib, and G. Glazko, Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics, 2014. 30(3): p. 360-8.

  • 68. McVey, M. and S. E. Lee, MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet, 2008. 24(11): p. 529-38.

  • 69. Ishigooka, S., M. Nomoto, N. Obinata, Y. Oishi, Y. Sato, S. Nakatsu, M. Suzuki, Y. Ikeda, T. Maehata, T. Kimura, Y. Watanabe, T. Nakajima, H. O. Yamano, H. Yasuda, and F. Itoh, Evaluation of magnifying colonoscopy in the diagnosis of serrated polyps. World J Gastroenterol, 2012. 18(32): p. 4308-16.

  • 70. Manning, S. and R. L. Batterham, The role of gut hormone peptide YY in energy and glucose homeostasis: twelve years on. Annu Rev Physiol, 2014. 76: p. 585-608.

  • 71. EI-Salhy, M., T. Mazzawi, D. Gundersen, J. G. Hatlebakk, and T. Hausken, The role of peptide YY in gastrointestinal diseases and disorders (review). Int J Mol Med, 2013. 31(2): p. 275-82.

  • 72. Newish, M., C. J. Lord, S. A. Martin, D. Cunningham, and A. Ashworth, Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol, 2010. 7(4): p. 197-208.

  • 73. Pavelitz, T., L. Renfro, N. R. Foster, A. Caracol, P. Welsch, V. V. Lao, W. B. Grady, D. Niedzwiecki, L. B. Saltz, M. M. Bertagnolli, R. M. Goldberg, P. S. Rabinovitch, M. Emond, R. J. Monnat, Jr., and N. Maizels, MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial. PLoS One, 2014. 9(10): p. e108483.

  • 74. Ambroise, C. and G. J. McLachlan, Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA, 2002. 99(10): p. 6562-6.

  • 75. Simon, R., Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol, 2005. 23(29): p. 7332-41.

  • 76. Trapnell, C., D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn, and L. Pachter, Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol, 2013. 31(1): p. 46-53.

  • 77. Fumagalli, D., A. Blanchet-Cohen, D. Brown, C. Desmedt, D. Gacquer, S. Michiels, F. Rothe, S. Majjaj, R. Salgado, D. Larsimont, M. Ignatiadis, M. Maetens, M. Piccart, V. Detours, C. Sotiriou, and B. Haibe-Kains, Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology. BMC Genomics, 2014. 15: p. 1008.

  • 78. Marioni, J. C., C. E. Mason, S. M. Mane, M. Stephens, and Y. Gilad, RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008. 18(9): p. 1509-17.

  • 79. Wang, C., B. Gong, P. R. Bushel, J. Thierry-Mieg, D. Thierry-Mieg, J. Xu, H. Fang, H. Hong, J. Shen, Z. Su, J. Meehan, X. Li, L. Yang, H. Li, P. P. Labaj, D. P. Kreil, D. Megherbi, S. Gaj, F. Caiment, J. van Delft, J. Kleinjans, A. Scherer, V. Devanarayan, J. Wang, Y. Yang, H. R. Qian, L. J. Lancashire, M. Bessarabova, Y. Nikolsky, C. Furlanello, M. Chierici, D. Albanese, G. Jurman, S. Riccadonna, M. Filosi, R. Visintainer, K. K. Zhang, J. Li, J. H. Hsieh, D. L. Svoboda, J. C. Fuscoe, Y. Deng, L. Shi, R. S. Paules, S. S. Auerbach, and W. Tong, The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol, 2014. 32(9): p. 926-32.

  • 80. Zhao, P., H. Z. Yu, and J. H. Cai, Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer. Mol Med Rep, 2015. 12(3): p. 4364-9.

  • 81. Fang, Y. J., Z. H. Lu, G. Q. Wang, Z. Z. Pan, Z. W. Zhou, J. P. Yun, M. F. Zhang, and D. S. Wan, Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int J Colorectal Dis, 2009. 24(8): p. 875-84.

  • 82. Starodub, A. N., A. J. Ocean, M. A. Shah, M. J. Guarino, V. J. Picozzi, Jr., L. T. Vandat, S. S. Thomas, S. V. Govindan, P. P. Maliakal, W. A. Wegener, S. A. Hamburger, R. M. Sharkey, and D. M. Goldenberg, First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin Cancer Res, 2015. 21(17): p. 3870-8.

  • 83. Pope, J. L., R. Ahmad, A. A. Bhat, M. K. Washington, A. B. Singh, and P. Dhawan, Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer, 2014. 13: p. 167.

  • 84. Kim, J. C., Y. J. Ha, K. H. Tak, S. A. Roh, C. W. Kim, T. W. Kim, S. K. Kim, S. Y. Kim, D. H. Cho, and Y. S. Kim, Complex Behavior of ALDH1A1 and IGFBP1 in Liver Metastasis from a Colorectal Cancer. PLoS One, 2016. 11(5): p. e0155160.

  • 85. Xiong, S., H. Tu, M. Kollareddy, V. Pant, Q. Li, Y. Zhang, J. G. Jackson, Y. A. Suh, A. C. Elizondo-Fraire, P. Yang, G. Chau, M. Tashakori, A. R. Wasylishen, Z. Ju, H. Solomon, V. Rotter, B. Liu, A. K. El-Naggar, L. A. Donehower, L. A. Martinez, and G. Lozano, Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proc Natl Acad Sci USA, 2014. 111(30): p. 11145-50.

  • 86. Chen, J., T. Lan, W. Zhang, L. Dong, N. Kang, S. Zhang, M. Fu, B. Liu, K. Liu, and Q. Zhan, Feed-Forward Reciprocal Activation of PAFR and STATS Regulates Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer. Cancer Res, 2015. 75(19): p. 4198-210.

  • 87. Walpole, R., R. Myers, and S. Myers, Probability and statistics for engineers and scientists., 1998, Prentice Hall.

  • 88. Savage, R., Probability Inequalities of the Tchebycheff Type. JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics 1961. 65B(3): p. 211-226.

  • 89. Higuchi, T. and J. R. Jass, My approach to serrated polyps of the colorectum. J Clin Pathol, 2004. 57(7): p. 682-6.

  • 90. Beggs, A. D., A. Jones, N. Shepherd, A. Arnaout, C. Finlayson, A. M. Abulafi, D. G. Morton, G. M. Matthews, S. V. Hodgson, and I. P. Tomlinson, Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation. PLoS Genet, 2013. 9(5): p. e1003488.

  • 91. Shon, W. J., Y. K. Lee, J. H. Shin, E. Y. Choi, and D. M. Shin, Severity of DSS—induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks. Sci Rep, 2015. 5: p. 17305.

  • 92. Prendergast, G. C., C. Smith, S. Thomas, L. Mandik-Nayak, L. Laury-Kleintop, R. Metz, and A. J. Muller, Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother, 2014. 63(7): p. 721-35.

  • 93. Prendergast, G. C., R. Metz, and A. J. Muller, Towards a genetic definition of cancer-associated inflammation: role of the IDO pathway. Am J Pathol, 2010. 176(5): p. 2082-7.

  • 94. Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, and L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012. 7(3): p. 562-78.

  • 95. Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 2009. 10(3): p. R25.

  • 96. Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed, Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 2003. 4(2): p. 249-64.

  • 97. Mestdagh, P., P. Van Vlierberghe, A. De Weer, D. Muth, F. Westermann, F. Speleman, and J. Vandesompele, A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol, 2009. 10(6): p. R64.



All cited references are herein expressly incorporated by reference in their entirety.


Whereas particular embodiments have been described above for purposes of illustration, it will be appreciated by those skilled in the art that numerous variations of the details may be made without departing from the disclosure as described in the appended claims.









TABLE 1







Up-regulated pathways (GO categories).









Category
Pathway
FDR





Cell adhesion
CALCIUM_INDEPENDENT_CELL_CELL_ADHESION
0.022



CELL_SUBSTRATE_ADHERENS_JUNCTION
0.042


Cell growth
CELL_STRUCTURE_DISASSEMBLY_DURING_APOPTOSIS
0.033


and death
POSITIVE_REGULATION_OF_CELL_PROLIFERATION
0.033


Immune system
INFLAMMATORY_RESPONSE
0.033



IMMUNOLOGICAL_SYNAPSE
0.045


Signal
POSITIVE_REGULATION_OF_SECRETION
0.045


transduction
G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING
0.042



SECOND_MESSENGER_MEDIATED_SIGNALING
0.045


Metabolism
AROMATIC_COMPOUND_METABOLIC_PROCESS
0.022



HETEROCYCLE_METABOLIC_PROCESS
0.022


Differentiation
CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIATION
0.045


Cellular component
EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_BIOGENESIS
0.042


organization


Neuron
AXONOGENESIS
0.042


development
NEURITE_DEVELOPMENT
0.045
















TABLE 2







Performance of the nearest shrunken centroid classifier in classifying independent


SSA/P and HP samples acquired by microarray platforms using 3 signatures.














Signature

Ilium.
Affy.


Platforms
Concordant genes
size
Signature
errors
errors





Training:
C4BPA, CEMIP, CHGA, CLDN1, CPE,
18
C4BPA, CHGA, CLDN1, CPE, DPP10,
0



RNA-seq
DPP10, FSIP2, GRAMD1B, GRIN2D,

GRAMD1 B, GRIN2D, KIZ, KLK7,


Testing:
IL2RG, KIZ, KLK7, MEGF6, MYCN,

MEGF6, MYCN, NTRK2, PLA2G16,


Illumina
NTRK2, PLA2G16, RAMP1, SBSPON,

SBSPON, SEMG1 , SLC7A9, SPIRE1,



SEMG1, SLC7A9, SPIRE1 , TM4SF4

TM4SF4


Training:
CLDN1 , FOXD1 , IDO1, IL2RG, KIZ,
16
CLDN1 , FOXD1 , KIZ, MEGF6, NTRK2,

3


RNA-seq
LMO4, MEGF6, NTRK2, PIK3R3,

PIK3R3, PLA2G16, PRUNE2, PTAFR,


Testing:
PLA2G16, PRUNE2, PTAFR, SBSPON,

SBSPON, SEMG1 , SLC7A9, SPIRE1,


Affymetrix
SEMG1 , SLC7A9, SPIRE1 , TACSTD2,

TACSTD2, TPD52L1 , TRIB2



TPD52L1, TRIB2, ZIC2


Training:
CHFR, CHGA, CLDN1, IL2RG,
13
CHFR, CHGA, CLDN1 , KIZ, MEGF6,
0
3


RNA-seq
KIZ, MEGF6, NTRK2, PLA2G16,

NTRK2, PLA2G16, PTAFR, SBSPON,


Testing:
PTAFR, SBSPON, SEMG1,

SEMG1 , SLC7A9, SPIRE1 , TACSTD2


Illumina
SLC7A9, SPIRE1 , TACSTD2,


and
VSIG1, ZIC2


Affymetrix
















TABLE 3







Genes included in the smallest 13 genes signature.










Gene
log2FC
FC
Description













SLC7A9
3.22
9.34
solute carrier family 7 member 9


SEMG1
2.95
7.72
semenogelin I


MEGF6
2.66
6.34
multiple EGF like domains 6


TACSTD2
1.93
3.82
tumor-associated calcium signal transducer 2


CLDN1
1.85
3.59
claudin 1


SBSPON
1.23
2.35
somatomedin B and thrombospondin type 1 domain





containing


PLA2G16
1.18
2.27
phospholipase A2 group XVI


PTAFR
1.08
2.11
platelet activating factor receptor


KIZ
0.98
1.98
kizuna centrosomal protein


SPIRE1
0.82
1.76
spire type actin nucleation factor 1


CHFR
−0.62
0.65
checkpoint with forkhead and ring finger domains,





E3 ubiquitin protein ligase


CHGA
−1.63
0.32
chromogranin A


NTRK2
−2.32
0.20
neurotrophic tyrosine kinase, receptor, type 2
















TABLE 4







List of 139 genes DE between HP and SSA/P and between CR and SSA/P but not between CR and CL.




















mean








gene
locus
mean_HP
SSA/P
log2FC
test_stat
p_value
padjvalue
Description




















1
KLK7
chr19: 51479734-
0.17
6.77
5.33
2.90
2.50E−04
1.03E−02
kallikrein-related peptidase 7




51487320


2
MUC6
chr11: 1012823-
0.10
2.41
4.58
2.92
5.00E−05
2.53E−03
mucin 6, oligomeric mucus/gel-




1036706






forming


3
GRIN2D
chr19: 48898131-
0.50
5.36
3.43
2.87
5.00E−05
2.53E−03
glutamate receptor, ionotropic,




48948188






N-methyl D-aspartate 2D


4
SLC7A9
chr19: 33321418-
0.28
2.63
3.22
1.96
5.00E−05
2.53E−03
solute carrier family 7 (amino




33360683






acid transporter light chain,











bo, +system), member 9


5
SEMG1
chr20: 43835637-
0.38
2.97
2.95
1.99
5.00E−05
2.53E−03
semenogelin I




43838414


6
AMH
chr19: 2249112-
0.33
2.50
2.91
1.84
5.00E−05
2.53E−03
anti-Mullerian hormone




2252072


7
MEGF6
chr1: 3404505-
1.45
9.20
2.66
2.81
5.00E−05
2.53E−03
multiple EGF-like-domains 6




3528059


8
ZIC2
chr13: 100634025-
0.40
2.33
2.56
1.71
5.00E−05
2.53E−03
Zic family member 2




100639019


9
TM4SF4
chr3: 149192367-
14.79
82.89
2.49
2.58
5.00E−05
2.53E−03
transmembrane 4 L six family




149221181






member 4


10
CA9
chr9: 35673914-
0.73
4.02
2.46
1.38
5.00E−05
2.53E−03
carbonic anhydrase IX




35681154


11
CXCL9
chr4: 76922622-
1.79
9.09
2.35
1.94
5.00E−05
2.53E−03
chemokine (C-X-C motif)




76928641






ligand 9


12
CXCL10
chr4: 76932332-
2.62
13.27
2.34
1.35
1.40E−03
3.88E−02
chemokine (C-X-C motif)




77033955






ligand 10


13
CLDN2
chrX: 106143292-
1.37
6.53
2.25
2.16
5.00E−05
2.53E−03
claudin 2




106174091


14
CNTD2
chr19: 40728114-
0.37
1.71
2.22
1.28
1.50E−04
6.74E−03
cyclin N-terminal domain




40732597






containing 2


15
DEFA5
chr8: 6912828-
4.34
19.74
2.19
1.34
1.50E−04
6.74E−03
defensin, alpha 5, Paneth cell-




6914259






specific


16
FOXD1
chr5: 72742084-
0.70
3.15
2.17
1.39
1.00E−04
4.83E−03
forkhead box D1




72744352


17
NR0B2
chr1: 27237974-
1.54
6.46
2.07
1.65
5.00E−05
2.53E−03
nuclear receptor subfamily 0,




27240567






group B, member 2


18
C4BPA
chr1: 207277606-
1.27
5.25
2.04
1.69
5.00E−05
2.53E−03
complement component 4




207318317






binding protein, alpha


19
MYCN
chr2: 16076386-
0.53
2.16
2.03
1.50
5.00E−05
2.53E−03
v-myc avian myelocytomatosis




16087129






viral oncogene neuroblastoma











derived homolog


20
PLA2G3
chr22: 31530792-
0.39
1.53
1.98
1.45
5.00E−05
2.53E−03
phospholipase A2, group III




31536593


21
MSX2
chr5: 174151574-
0.32
1.26
1.97
1.26
4.50E−04
1.62E−02
msh homeobox 2




174157902


22
URAD
chr13: 28552242-
3.45
13.28
1.95
1.41
5.00E−05
2.53E−03
ureidoimidazoline (2-oxo-4-




28562774






hydroxy-4-carboxy-5-)











decarboxylase


23
TACSTD2
chr1: 59041094-
3.03
11.57
1.93
1.87
5.00E−05
2.53E−03
tumor-associated calcium




59043166






signal transducer 2


24
NOS2
chr17: 26083791-
6.56
24.21
1.88
1.66
5.00E−05
2.53E−03
nitric oxide synthase 2,




26127555






inducible


25
CLDN1
chr3: 190023489-
2.38
8.54
1.85
2.16
5.00E−05
2.53E−03
claudin 1




190040235


26
TFF2
chr21: 43766466-
42.79
152.57
1.83
2.01
5.00E−05
2.53E−03
trefoil factor 2




43771208


27
TLX1
chr10: 102891060-
0.44
1.52
1.77
1.25
1.75E−03
4.53E−02
T-cell leukemia homeobox 1




102897546


28
KLK11
chr19: 51525486-
10.61
34.70
1.71
2.12
5.00E−05
2.53E−03
kallikrein-related




51531290






peptidase 11


29
LOC102723854
chr2: 43254991-
0.52
1.68
1.69
0.87
1.90E−03
4.85E−02
uncharacterized




43266682






LOC102723854


30
CYP4X1
chr1: 47489239-
0.31
0.97
1.66
1.14
5.00E−05
2.53E−03
cytochrome P450, family 4,




47516423






subfamily X, polypeptide 1


31
MMP1
chr11: 102654406-
5.37
16.68
1.64
1.80
5.00E−05
2.53E−03
matrix metallopeptidase 1




102714342


32
ATG9B
chr7: 150688143-
1.11
3.44
1.63
1.36
5.50E−04
1.86E−02
autophagy related 9B




150721586


33
GRAMD1B
chr11: 123396343-
0.78
2.37
1.60
1.62
5.00E−05
2.53E−03
GRAM domain containing 1B




123498479


34
WDR72
chr15: 53805937-
0.79
2.37
1.59
1.52
5.00E−05
2.53E−03
WD repeat domain 72




54055075


35
APOL1
chr22: 36649116-
15.22
44.08
1.53
2.10
5.00E−05
2.53E−03
apolipoprotein L, 1




36663577


36
RNF183
chr9: 116059372-
0.70
1.88
1.43
0.96
4.50E−04
1.62E−02
ring finger protein 183




116061320


37
CEMIP
chr15: 81071711-
1.45
3.91
1.43
1.66
5.00E−05
2.53E−03
cell migration inducing




81243999






protein, hyaluronan binding


38
LYPD5
chr19: 44300078-
0.66
1.77
1.43
1.07
4.50E−04
1.62E−02
LY6/PLAUR domain




44324808






containing 5


39
KLK10
chr19: 51515999-
15.31
41.05
1.42
1.69
5.00E−05
2.53E−03
kallikrein-related




51523431






peptidase 10


40
HLA-DRB5
chr6: 32485153-
7.40
19.67
1.41
1.36
5.00E−05
2.53E−03
major histocompatibility




32498006






complex, class II, DR beta 5


41
RAMP1
chr2: 238768186-
2.09
5.53
1.41
1.21
3.00E−04
1.18E−02
receptor (G protein-coupled)




238820755






activity modifying protein 1


42
IDO1
chr8: 39771327-
2.18
5.76
1.40
1.32
5.00E−05
2.53E−03
indoleamine 2,3-dioxygenase 1




39786309


43
NBPF7
chr1: 120377387-
1.43
3.78
1.40
1.29
5.00E−05
2.53E−03
neuroblastoma breakpoint




120387503






family, member 7


44
UBD
chr6_qbl_hap6:
6.92
17.76
1.36
1.25
5.00E−05
2.53E−03
ubiquitin D




826706-




831021


45
SLFN5
chr17: 33570085-
1.05
2.60
1.31
1.40
5.00E−05
2.53E−03
schlafen family member 5




33594761


46
APOD
chr3: 195295572-
4.78
11.69
1.29
1.22
5.00E−05
2.53E−03
apolipoprotein D




195311076


47
GBP4
chr1: 89646830-
2.19
5.23
1.26
1.51
5.00E−05
2.53E−03
guanylate binding protein 4




89664633


48
CARD6
chr5: 40841409-
1.51
3.58
1.24
1.41
5.00E−05
2.53E−03
caspase recruitment domain




40855456






family, member 6


49
SBSPON
chr8: 73976777-
0.70
1.63
1.23
1.17
5.00E−05
2.53E−03
somatomedin B and




74005507






thrombospondin, type 1











domain containing


50
LCN2
chr9: 130911731-
242.72
565.65
1.22
1.21
5.00E−05
2.53E−03
lipocalin 2




130915734


51
TRIB2
chr2: 12856997-
3.63
8.27
1.19
1.48
5.00E−05
2.53E−03
tribbles pseudokinase 2




12882858


52
PLA2G16
chr11: 63341943-
10.94
24.83
1.18
1.41
5.00E−05
2.53E−03
phospholipase A2, group XVI




63381941


53
TPD52L1
chr6: 125474878-
6.24
14.12
1.18
1.45
5.00E−05
2.53E−03
tumor protein D52-like 1




125584644


54
CFB
chr6_ssto_hap7:
12.33
27.89
1.18
1.67
5.00E−05
2.53E−03
complement factor B




3246430-




3252571


55
TMEM92
chr17: 48348766-
4.61
10.25
1.15
1.43
5.00E−05
2.53E−03
transmembrane protein 92




48358846


56
CASP5
chr11: 104864966-
10.67
23.11
1.11
1.29
5.00E−05
2.53E−03
caspase 5, apoptosis-related




104893895






cysteine peptidase


57
GPD1
chr12: 50497601-
3.30
7.08
1.10
1.27
5.00E−05
2.53E−03
glycerol-3-phosphate




50505103






dehydrogenase 1 (soluble)


58
VSIG1
chrX: 107288199-
13.32
28.55
1.10
1.09
1.60E−03
4.26E−02
V-set and immunoglobulin




107322414






domain containing 1


59
CCL22
chr16: 57392694-
0.89
1.90
1.09
0.91
7.00E−04
2.26E−02
chemokine (C-C motif)




57400102






ligand 22


60
TRNP1
chr1: 27320194-
4.52
9.56
1.08
1.06
5.50E−04
1.86E−02
TMF1-regulated nuclear




27327377






protein 1


61
LAMP3
chr3: 182840002-
0.97
2.04
1.08
0.99
9.50E−04
2.87E−02
lysosomal-associated membrane




182880667






protein 3


62
PTAFR
chr1: 28473676-
4.89
10.32
1.08
1.52
5.00E−05
2.53E−03
platelet-activating factor




28520447






receptor


63
CNGA1
chr4: 47937993-
1.36
2.84
1.06
1.06
8.00E−04
2.53E−02
cyclic nucleotide gated




48014961






channel alpha 1


64
GZMA
chr5: 54398473-
8.49
17.42
1.04
1.20
5.00E−05
2.53E−03
granzyme A (granzyme 1,




54406080






cytotoxic T-lymphocyte-











associated serine esterase











3)


65
NXF3
chrX: 102330749-
3.67
7.47
1.03
1.11
2.00E−04
8.55E−03
nuclear RNA export factor 3




102348022


66
TMEM45A
chr3: 100211462-
2.33
4.73
1.02
0.87
1.70E−03
4.44E−02
transmembrane protein 45A




100296285


67
FKBP10
chr17: 39968961-
5.93
11.80
0.99
1.41
5.00E−05
2.53E−03
FK506 binding protein 10,




39979469






65 kDa


68
KIZ
chr20: 21106623-
2.73
5.40
0.98
1.17
2.00E−04
8.55E−03
kizuna centrosomal protein




21227258


69
TESC
chr12: 117476727-
4.93
9.66
0.97
0.93
1.25E−03
3.53E−02
tescalcin




117537251


70
ZNF488
chr10: 48355088-
0.83
1.62
0.96
0.88
1.50E−03
4.05E−02
zinc finger protein 488




48373866


71
GOLGA7B
chr10: 99609994-
0.79
1.53
0.96
0.97
8.50E−04
2.66E−02
golgin A7 family, member B




99790585


72
CCL2
chr17: 32582295-
11.11
21.24
0.93
1.04
2.00E−04
8.55E−03
chemokine (C-C motif)




32584220






ligand 2


73
HBB
chr11: 5246695-
18.21
34.40
0.92
0.98
5.50E−04
1.86E−02
hemoglobin, beta




5248301


74
GALNT6
chr12: 51745832-
6.65
12.55
0.92
1.32
5.00E−05
2.53E−03
polypeptide N-acetyl-




51909547






galactosaminyltransferase











6


75
BIRC3
chr11: 102188180-
10.86
20.43
0.91
1.30
5.00E−05
2.53E−03
baculoviral IAP repeat




102210135






containing 3


76
GBP2
chr1: 89571815-
13.55
25.31
0.90
1.51
5.00E−05
2.53E−03
guanylate binding protein 2,




89591842






interferon-inducible


77
SEC16B
chr1: 177898241-
3.65
6.81
0.90
1.22
5.00E−05
2.53E−03
SEC16 homolog B, endoplasmic




177939050






reticulum export factor


78
EPSTI1
chr13: 43460523-
4.24
7.85
0.89
1.26
5.00E−05
2.53E−03
epithelial stromal




43566407






interaction 1 (breast)


79
XAF1
chr17: 6659155-
7.25
13.42
0.89
1.36
5.00E−05
2.53E−03
XIAP associated factor 1




6678964


80
GBP1
chr1: 89517986-
6.29
11.36
0.85
1.12
1.00E−04
4.83E−03
guanylate binding protein 1,




89531043






interferon-inducible


81
EVPL
chr17: 74002926-
7.91
14.27
0.85
1.41
5.00E−05
2.53E−03
envoplakin




74023507


82
IFIT3
chr10: 91087575-
3.66
6.60
0.85
1.06
2.00E−04
8.55E−03
interferon-induced protein




91100725






with tetratricopeptide











repeats 3


83
KIFC3
chr16: 57792128-
2.83
5.07
0.84
1.03
6.50E−04
2.11E−02
kinesin family member C3




57836439


84
RAB27B
chr18: 52495707-
4.69
8.31
0.82
1.39
5.00E−05
2.53E−03
RAB27B, member RAS oncogene




52562747






family


85
SPIRE1
chr18: 12446510-
2.19
3.87
0.82
1.09
1.50E−04
6.74E−03
spire-type actin nucleation




12657912






factor 1


86
TBX3
chr12: 115108058-
5.34
9.19
0.78
1.11
5.00E−05
2.53E−03
T-box 3




115121969


87
OAS2
chr12: 113416273-
5.11
8.70
0.77
1.02
5.50E−04
1.86E−02
2′-5′-oligoadenylate




113449528






synthetase 2, 69/71 kDa


88
YBX2
chr17: 7191570-
9.82
16.73
0.77
0.91
9.00E−04
2.76E−02
Y box binding protein 2




7197876


89
DCDC2
chr6: 24171982-
2.88
4.90
0.77
0.97
1.50E−03
4.05E−02
doublecortin domain




24383520






containing 2


90
MX1
chr21: 42792484-
10.08
16.99
0.75
1.09
5.00E−05
2.53E−03
MX dynamin-like GTPase 1




42831141


91
UNC5CL
chr6: 40994639-
4.00
6.60
0.72
0.93
9.00E−04
2.76E−02
unc-5 family C-terminal like




41006938


92
IFI6
chr1: 27992571-
29.98
49.49
0.72
0.95
1.15E−03
3.29E−02
interferon, alpha-inducible




27998724






protein 6


93
CROT
chr7: 86974950-
6.33
10.43
0.72
0.99
1.15E−03
3.29E−02
carnitine O-octanoyltransferase




87029112


94
SAMD9L
chr7: 92759367-
6.11
10.00
0.71
1.10
5.00E−05
2.53E−03
sterile alpha motif domain




92777680






containing 9-like


95
TNFSF15
chr9: 117546914-
6.06
9.90
0.71
1.03
3.50E−04
1.32E−02
tumor necrosis factor (ligand)




117568408






superfamily, member 15


96
PRUNE2
chr9: 79226291-
1.24
2.02
0.71
1.00
2.50E−04
1.03E−02
prune homolog 2 (Drosophila)




79521003


97
ADGRG6
chr6: 142623055-
9.79
15.85
0.70
1.07
6.50E−04
2.11E−02
adhesion G protein-coupled




142767403






receptor G6


98
ANO1
chr11: 69924407-
5.25
8.45
0.69
0.99
4.50E−04
1.62E−02
anoctamin 1, calcium activated




70035652






chloride channel


99
ERO1A
chr14: 53108604-
43.91
70.11
0.68
1.10
6.00E−04
1.99E−02
endoplasmic reticulum




53162419






oxidoreductase alpha


100
SLC7A7
chr14: 23242431-
7.94
12.66
0.67
0.92
1.75E−03
4.53E−02
solute carrier family 7 (amino




23289020






acid transporter light chain,











y + L system), member 7


101
PIK3R3
chr1: 46505811-
2.63
4.17
0.67
0.91
1.55E−03
4.17E−02
phosphoinositide-3-kinase,




46598708






regulatory subunit 3 (gamma)


102
CA13
chr8: 86157715-
4.69
7.42
0.66
0.94
1.10E−03
3.22E−02
carbonic anhydrase XIII




86196302


103
RHOBTB1
chr10: 62629197-
6.43
10.16
0.66
0.95
8.00E−04
2.53E−02
Rho-related BTB domain




62761198






containing 1


104
IRS2
chr13: 110406183-
9.42
14.73
0.65
1.04
1.50E−04
6.74E−03
insulin receptor substrate 2




110438914


105
MYRF
chr11: 61520120-
13.30
20.75
0.64
0.99
5.00E−04
1.75E−02
myelin regulatory factor




61555989


106
IFI27
chr14: 94577078-
715.46
1115.84
0.64
0.92
9.50E−04
2.87E−02
interferon, alpha-inducible




94583036






protein 27


107
FSIP2
chr2: 186584600-
1.29
2.01
0.64
1.09
1.15E−03
3.29E−02
fibrous sheath interacting




186698016






protein 2


108
LMO4
chr1: 87794150-
7.65
11.83
0.63
1.00
6.50E−04
2.11E−02
LIM domain only 4




87814607


109
IMPDH1
chr7: 128032330-
13.26
20.52
0.63
0.95
9.50E−04
2.87E−02
IMP (inosine 5′-monophosphate)




128050036






dehydrogenase 1


110
APOL2
chr22: 36622254-
16.40
25.15
0.62
0.96
5.00E−04
1.75E−02
apolipoprotein L, 2




36636000


111
PARP14
chr3: 122399671-
10.79
16.24
0.59
0.93
9.00E−04
2.76E−02
poly (ADP-ribose) polymerase




122449687






family, member 14


112
SLC5A1
chr22: 32439018-
12.26
18.42
0.59
0.91
1.30E−03
3.64E−02
solute carrier family 5




32509011






(sodium/glucose cotransporter),











member 1


113
VSIG2
chr11: 124617369-
282.20
196.63
−0.52
−0.84
1.60E−03
4.26E−02
V-set and immunoglobulin domain




124622109






containing 2


114
C11orf86
chr11: 66742753-
101.24
68.68
−0.56
−0.91
1.05E−03
3.10E−02
chromosome 11 open reading




66744479






frame 86


115
AK1
chr9: 130628758-
66.42
44.84
−0.57
−0.95
3.00E−04
1.18E−02
adenylate kinase 1




130640022


116
AIM1L
chr1: 26648349-
13.43
8.94
−0.59
−0.97
4.50E−04
1.62E−02
absent in melanoma 1 -like




26680621


117
CHFR
chr12: 133416937-
13.81
8.96
−0.62
−0.93
9.50E−04
2.87E−02
checkpoint with forkhead and




133464204






ring finger domains, E3 ubiquitin











protein ligase


118
IL2RG
chrX: 70327253-
184.79
116.15
−0.67
−1.00
1.00E−04
4.83E−03
interleukin 2 receptor, gamma




70331481


119
CSRNP1
chr3: 39183341-
13.00
7.76
−0.75
−1.08
5.00E−05
2.53E−03
cysteine-serine-rich nuclear




39195102






protein 1


120
RASL11A
chr13: 27844463-
28.05
16.35
−0.78
−1.14
5.00E−05
2.53E−03
RAS-like, family 11, member A




27847827


121
TRIM40
chr6_ssto_hap7:
8.23
4.75
−0.79
−0.95
1.15E−03
3.29E−02
tripartite motif containing 40




1434344-




1446965


122
CCND1
chr11: 69455872-
35.15
20.10
−0.81
−1.29
5.00E−05
2.53E−03
cyclin D1




69469242


123
NEU4
chr2: 242750159-
22.57
11.83
−0.93
−1.38
2.00E−04
8.55E−03
sialidase 4




242758739


124
JUNB
chr19: 12902309-
155.87
81.48
−0.94
−1.35
5.00E−05
2.53E−03
jun B proto-oncogene




12904125


125
SFRP1
chr8: 41119475-
1.99
1.03
−0.95
−0.91
1.30E−03
3.64E−02
secreted frizzled-related




41166990






protein 1


126
WSCD1
chr17: 5973933-
8.34
4.32
−0.95
−1.34
5.00E−05
2.53E−03
WSC domain containing 1




6027747


127
SHROOM2
chrX: 9754495-
1.28
0.65
−0.98
−0.98
1.05E−03
3.10E−02
shroom family member 2




9917481


128
RNASE1
chr14: 21269514-
389.26
195.05
−1.00
−1.30
5.00E−05
2.53E−03
ribonuclease, RNase A family, 1




21271036






(pancreatic)


129
C2orf54
chr2: 241825464-
3.81
1.89
−1.01
−1.00
1.20E−03
3.40E−02
chromosome 2 open reading frame




241835573






54


130
CPE
chr4: 166300096-
17.08
8.21
−1.06
−1.48
5.00E−05
2.53E−03
carboxypeptidase E




166419482


131
SLC6A14
chrX: 115567746-
24.17
10.92
−1.15
−1.67
5.00E−05
2.53E−03
solute carrier family 6 (amino




115592625






acid transporter), member 14


132
HBEGF
chr5: 139712427-
26.40
11.52
−1.20
−1.50
5.00E−05
2.53E−03
heparin-binding EGF-like growth




139726188






factor


133
BAMBI
chr10: 28966423-
20.28
8.51
−1.25
−1.68
5.00E−05
2.53E−03
BMP and activin membrane-bound




28971868






inhibitor


134
DPP10
chr2: 115199898-
1.39
0.58
−1.27
−0.98
1.80E−03
4.63E−02
dipeptidyl-peptidase 10 (non-




116602326






functional)


135
CHGA
chr14: 93389444-
219.86
71.16
−1.63
−1.87
5.00E−05
2.53E−03
chromogranin A




93401638


136
NEUROD1
chr2: 182540832-
1.56
0.45
−1.79
−1.32
5.00E−05
2.53E−03
neuronal differentiation 1




182545392


137
VLDLR
chr9: 2535654-
7.39
2.12
−1.80
−1.94
5.00E−05
2.53E−03
very low density lipoprotein




2654485






receptor


138
RPPH1
chr14: 20811229-
123.42
30.35
−2.02
−1.32
2.00E−04
8.55E−03
ribonuclease P RNA component




20811570






H1


139
NTRK2
chr9: 87283372-
3.92
0.78
−2.32
−2.35
5.00E−05
2.53E−03
neurotrophic tyrosine kinase,




87641985






receptor, type 2
















TABLE 5







The list of 134 genes exclusively DE between HP and SSA/P.




















mean








gene
locus
mean_HP
SSA/P
log2FC
test_stat
p_value
padjvalue
Description




















1
MIR4800
chr4: 2249159-
0.00
37.38
Inf
NA
1.45E−03
3.98E−02
microRNA 4800




2263739


2
KLK8
chr19: 51499263-
0.17
4.74
4.83
1.36
1.65E−03
4.36E−02
kallikrein-related peptidase 8




51504958


3
DUSP27
chr1: 167064086-
0.36
6.91
4.25
2.54
5.00E−05
2.53E−03
dual specificity phosphatase 27




167098402






(putative)


4
ANXA10
chr4: 169013687-
6.18
51.85
3.07
3.11
5.00E−05
2.53E−03
annexin A10




169108893


5
CLDN18
chr3: 137717657-
0.21
1.37
2.73
1.73
8.50E−04
2.66E−02
claudin 18




137752494


6
NMUR2
chr5: 151771101-
0.26
1.59
2.64
1.34
5.00E−05
2.53E−03
neuromedin U receptor 2




151784840


7
HLA-DQB1
chr6_qbl_hap6:
4.59
23.80
2.37
2.45
5.00E−05
2.53E−03
major histocompatibility complex,




3858964-






class II, DQ beta 1




3866565


8
FEZF1-AS1
chr7: 121941447-
0.67
3.11
2.21
1.67
5.00E−05
2.53E−03
FEZF1 antisense RNA 1




121950131


9
SULT1C2P1
chr2: 108938693-
0.25
1.17
2.20
1.25
4.50E−04
1.62E−02
sulfotransferase family, cytosolic,




108970254






1C, member 2 pseudogene 1


10
SLCO1B3
chr12: 20963637-
0.43
1.92
2.16
1.77
1.00E−04
4.83E−03
solute carrier organic anion




21069843






transporter family, member 1B3


11
TDO2
chr4: 156824844-
0.51
1.64
1.69
1.29
5.00E−05
2.53E−03
tryptophan 2,3-dioxygenase




156841558


12
TCN1
chr11: 59620280-
2.32
7.25
1.64
1.58
5.00E−05
2.53E−03
transcobalamin I (vitamin B12




59634041






binding protein, R binder family)


13
CCL8
chr17: 32646065-
1.47
4.41
1.59
1.38
5.00E−05
2.53E−03
chemokine (C-C motif) ligand 8




32648421


14
NAT8B
chr2: 73927635-
1.88
5.33
1.51
1.11
5.00E−05
2.53E−03
N-acetyltransferase 8B (GCN5-




73928467






related, putative,











gene/pseudogene)


15
PSCA
chr8: 143751725-
11.23
31.23
1.48
1.58
5.00E−05
2.53E−03
prostate stem cell antigen




143764145


16
LRRIQ4
chr3: 169539709-
0.46
1.26
1.45
1.07
1.50E−04
6.74E−03
leucine-rich repeats and IQ motif




169555560






containing 4


17
CTHRC1
chr8: 104383742-
0.85
2.31
1.44
1.09
2.50E−04
1.03E−02
collagen triple helix repeat




104395232






containing 1


18
SRMS
chr20: 62171276-
0.95
2.42
1.36
1.27
5.00E−05
2.53E−03
src-related kinase lacking C-




62178857






terminal regulatory tyrosine and N-











terminal myristylation sites


19
MMP10
chr11: 102641232-
0.56
1.41
1.33
0.94
7.50E−04
2.40E−02
matrix metallopeptidase 10




102651359


20
DMBT1
chr10: 124320180-
4.66
11.35
1.29
1.48
5.00E−05
2.53E−03
deleted in malignant brain tumors 1




124403252


21
TRHDE
chr12: 72647286-
1.17
2.85
1.28
1.46
5.00E−05
2.53E−03
thyrotropin-releasing hormone




73059422






degrading enzyme


22
SLC52A1
chr17: 4935896-
0.51
1.23
1.27
0.93
5.50E−04
1.86E−02
solute carrier family 52 (riboflavin




4938727






transporter), member 1


23
PRAP1
chr10: 135160843-
81.41
188.04
1.21
1.88
5.00E−05
2.53E−03
proline-rich acidic protein 1




135166187


24
C4orf48
chr4: 2043719-
21.05
48.12
1.19
1.18
1.50E−04
6.74E−03
chromosome 4 open reading frame




2045697






48


25
CD244
chr1: 160799949-
0.59
1.24
1.07
0.89
1.50E−03
4.05E−02
CD244 molecule, natural killer cell




160832692






receptor 2B4


26
S100A9
chr1: 153330329-
8.46
17.45
1.04
1.00
2.50E−04
1.03E−02
S100 calcium binding protein A9




153333503


27
RBBP8NL
chr20: 60985292-
1.77
3.63
1.03
1.22
5.00E−05
2.53E−03
RBBP8 N-terminal like




61002629


28
MNDA
chr1: 158801167-
1.72
3.32
0.95
0.95
5.50E−04
1.86E−02
myeloid cell nuclear differentiation




158819270






antigen


29
PRKXP1
chr15: 101087956-
0.71
1.36
0.94
1.02
5.00E−04
1.75E−02
protein kinase, X-linked,




101099488






pseudogene 1


30
NXPE2
chr11: 114549199-
2.50
4.66
0.90
0.95
1.05E−03
3.10E−02
neurexophilin and PC-esterase




114577652






domain family, member 2


31
KLRB1
chr12: 9747869-
11.08
20.55
0.89
1.07
2.00E−04
8.55E−03
killer cell lectin-like receptor




9760497






subfamily B, member 1


32
TRIP6
chr7: 100464949-
12.10
22.25
0.88
1.21
5.00E−05
2.53E−03
thyroid hormone receptor interactor




100471076






6


33
C3
chr19: 6677845-
6.29
11.51
0.87
1.21
5.00E−05
2.53E−03
complement component 3




6720662


34
PEAR1
chr1: 156863522-
1.25
2.28
0.87
0.92
9.00E−04
2.76E−02
platelet endothelial aggregation




156886226






receptor 1


35
ANK3
chr10: 61786055-
4.83
8.57
0.83
1.30
5.00E−05
2.53E−03
ankyrin 3, node of Ranvier (ankyrin




62493284






G)


36
PRKCDBP
chr11: 6340175-
6.23
11.03
0.82
0.96
1.80E−03
4.63E−02
protein kinase C, delta binding




6341740






protein


37
CSF3R
chr1: 36931643-
1.10
1.94
0.82
0.89
1.70E−03
4.44E−02
colony stimulating factor 3 receptor




36948915






(granulocyte)


38
DDX60
chr4: 169137441-
10.72
18.82
0.81
1.25
5.00E−05
2.53E−03
DEAD (Asp-Glu-Ala-Asp) box




169239958






polypeptide 60


39
GPT2
chr16: 46918307-
7.21
12.44
0.79
1.16
1.00E−04
4.83E−03
glutamic pyruvate transaminase




46965201






(alanine aminotransferase) 2


40
SMOC2
chr6: 168841830-
4.50
7.76
0.78
1.00
1.50E−04
6.74E−03
SPARC related modular calcium




169068674






binding 2


41
MX2
chr21: 42733949-
2.27
3.87
0.77
0.89
1.15E−03
3.29E−02
MX dynamin-like GTPase 2




42780869


42
FUOM
chr10: 135168657-
20.79
35.24
0.76
0.90
1.65E−03
4.36E−02
fucose mutarotase




135171529


43
PLEKHH2
chr2: 43864438-
1.35
2.24
0.73
0.94
9.00E−04
2.76E−02
pleckstrin homology domain




43995126






containing, family H (with MyTH4











domain) member 2


44
PRRT2
chr16: 29823408-
8.71
14.40
0.72
1.02
1.50E−04
6.74E−03
proline-rich transmembrane protein




29827202






2


45
CCDC88A
chr2: 55514977-
0.98
1.59
0.70
0.95
1.20E−03
3.40E−02
coiled-coil domain containing 88A




55647057


46
ENPP1
chr6: 132129155-
2.38
3.87
0.70
1.04
2.00E−04
8.55E−03
ectonucleotide




132216295






pyrophosphatase/











phosphodiesterase 1


47
LCP1
chr13: 46700057-
17.79
28.70
0.69
1.09
5.00E−05
2.53E−03
lymphocyte cytosolic protein 1 (L-




46756459






plastin)


48
DISP2
chr15: 40650433-
6.09
9.75
0.68
1.00
4.50E−04
1.62E−02
dispatched homolog 2 (Drosophila)




40663256


49
ATHL1
chr11: 289137-
10.02
15.98
0.67
1.05
2.00E−04
8.55E−03
ATH1, acid trehalase-like 1 (yeast)




295688


50
LOC730102
chr1: 177975274-
12.59
19.86
0.66
1.06
2.00E−04
8.55E−03
quinone oxidoreductase-like




178007142






protein 2 pseudogene


51
ACE2
chrX: 15579155-
8.39
13.02
0.63
0.98
7.00E−04
2.26E−02
angiotensin I converting enzyme 2




15620192


52
ABCA7
chr19: 1040101-
4.22
6.52
0.63
1.02
3.00E−04
1.18E−02
ATP-binding cassette, sub-family A




1065570






(ABC1), member 7


53
PTPRC
chr1: 198608097-
9.24
14.12
0.61
0.97
8.00E−04
2.53E−02
protein tyrosine phosphatase,




198726605






receptor type, C


54
LAMB2
chr3: 49158546-
9.70
14.52
0.58
0.92
6.50E−04
2.11E−02
laminin, beta 2 (laminin S)




49170599


55
ITGAV
chr2: 187454789-
13.14
19.55
0.57
0.92
1.60E−03
4.26E−02
integrin, alpha V




187545629


56
CNNM4
chr2: 97426638-
62.68
43.69
−0.52
−0.85
1.55E−03
4.17E−02
cyclin and CBS domain divalent




97477628






metal cation transport mediator 4


57
CYP2J2
chr1: 60358979-
29.69
20.41
−0.54
−0.88
1.50E−03
4.05E−02
cytochrome P450, family 2,




60392423






subfamily J, polypeptide 2


58
VDR
chr12: 48235319-
47.70
32.51
−0.55
−0.91
1.75E−03
4.53E−02
vitamin D (1,25-dihydroxyvitamin




48298814






D3) receptor


59
KCTD10
chr12: 109886459-
30.87
20.82
−0.57
−0.95
3.00E−04
1.18E−02
potassium channel tetramerization




109915155






domain containing 10


60
NEDD9
chr6: 11183530-
30.10
20.30
−0.57
−0.82
1.15E−03
3.29E−02
neural precursor cell expressed,




11382581






developmentally down-regulated 9


61
PIM1
chr6: 37137921-
45.23
30.41
−0.57
−0.91
1.15E−03
3.29E−02
Pim-1 proto-oncogene,




37143204






serine/threonine kinase


62
SIRT6
chr19: 4174105-
67.88
45.43
−0.58
−1.01
5.00E−04
1.75E−02
sirtuin 6




4182596


63
MUC20
chr3: 195447752-
63.08
42.21
−0.58
−0.92
1.60E−03
4.26E−02
mucin 20, cell surface associated




195460424


64
TMEM98
chr17: 31254927-
87.80
58.68
−0.58
−0.97
3.00E−04
1.18E−02
transmembrane protein 98




31268667


65
CLCN2
chr3: 184053716-
37.60
25.13
−0.58
−0.93
1.65E−03
4.36E−02
chloride channel, voltage-sensitive




184079439






2


66
LEFTY1
chr1: 226073981-
62.02
40.94
−0.60
−0.99
5.50E−04
1.86E−02
left-right determination factor 1




226076846


67
TBC1D22B
chr6: 37179953-
9.73
6.42
−0.60
−0.86
1.75E−03
4.53E−02
TBC1 domain family, member 22B




37300746


68
ID1
chr20: 30193085-
236.63
154.07
−0.62
−1.05
6.00E−04
1.99E−02
inhibitor of DNA binding 1,




30194317






dominant negative helix-loop-helix











protein


69
MIDN
chr19: 1248551-
61.35
39.86
−0.62
−1.04
1.00E−04
4.83E−03
midnolin




1259142


70
JUND
chr19: 18390503-
142.42
92.25
−0.63
−1.09
4.00E−04
1.49E−02
jun D proto-oncogene




18392466


71
PDGFA
chr7: 536896-
25.93
16.68
−0.64
−1.01
3.50E−04
1.32E−02
platelet-derived growth factor alpha




559481






polypeptide


72
DNTTIP1
chr20: 44420575-
29.99
19.22
−0.64
−0.99
3.00E−04
1.18E−02
deoxynucleotidyltransferase,




44440066






terminal, interacting protein 1


73
SH2B3
chr12: 111843751-
11.65
7.41
−0.65
−0.98
3.50E−04
1.32E−02
SH2B adaptor protein 3




111889427


74
HSPA1A
chr6_qbl_hap6:
18.87
11.74
−0.68
−1.12
1.50E−04
6.74E−03
heat shock 70 kDa protein 1A




3076937-




3079366


75
ZFP36
chr19: 39897486-
149.93
93.12
−0.69
−0.96
7.50E−04
2.40E−02
ZFP36 ring finger protein




39900052


76
AQP3
chr9: 33441151-
11.73
7.24
−0.70
−0.88
1.35E−03
3.76E−02
aquaporin 3 (Gill blood group)




33447631


77
DDAH2
chr6_ssto_hap7:
87.31
53.77
−0.70
−1.03
2.50E−04
1.03E−02
dimethylarginine




3025633-






dimethylaminohydrolase 2




3028856


78
SERTAD1
chr19: 40928408-
33.04
20.20
−0.71
−1.07
1.50E−04
6.74E−03
SERTA domain containing 1




40931932


79
CD14
chr5: 140011312-
62.69
38.02
−0.72
−1.11
2.00E−04
8.55E−03
CD14 molecule




140013286


80
LINC00675
chr17: 10616638-
54.21
32.59
−0.73
−1.01
1.50E−04
6.74E−03
long intergenic non-protein coding




10718481






RNA 675


81
CLDN4
chr7: 73245192-
720.19
432.86
−0.73
−0.94
1.70E−03
4.44E−02
claudin 4




73247023


82
DENND2A
chr7: 140218219-
4.92
2.96
−0.74
−0.91
1.45E−03
3.98E−02
DENN/MADD domain containing




140302342






2A


83
PDE9A
chr21: 44073861-
53.48
31.85
−0.75
−0.99
5.50E−04
1.86E−02
phosphodiesterase 9A




44195618


84
PC
chr11: 66615996-
18.59
11.05
−0.75
−0.94
1.15E−03
3.29E−02
pyruvate carboxylase




66725847


85
DES
chr2: 220283098-
20.13
11.91
−0.76
−0.93
6.00E−04
1.99E−02
desmin




220291461


86
BTG2
chr1: 203274663-
77.53
45.56
−0.77
−1.00
1.05E−03
3.10E−02
BTG family, member 2




203278729


87
AVPI1
chr10: 99437180-
36.62
21.08
−0.80
−1.22
5.00E−05
2.53E−03
arginine vasopressin-induced 1




99447015


88
EMB
chr5: 49692030-
8.04
4.61
−0.80
−1.24
5.00E−05
2.53E−03
em bigin




49737234


89
KLF4
chr9: 110247132-
197.26
111.42
−0.82
−1.25
5.00E−05
2.53E−03
Kruppel-like factor 4 (gut)




110252047


90
IER2
chr19: 13261281-
109.13
61.47
−0.83
−1.30
5.00E−05
2.53E−03
immediate early response 2




13265718


91
TPPP3
chr16: 67423709-
9.48
5.32
−0.83
−0.93
1.90E−03
4.85E−02
tubulin polymerization-promoting




67427438






protein family member 3


92
ILDR1
chr3: 121706169-
10.99
6.12
−0.84
−1.22
5.00E−05
2.53E−03
immunoglobulin-like domain




121741127






containing receptor 1


93
TPPP
chr5: 659976-
3.08
1.69
−0.87
−1.12
5.00E−05
2.53E−03
tubulin polymerization promoting




693510






protein


94
WNT5B
chr12: 1726221-
5.41
2.90
−0.90
−0.97
9.00E−04
2.76E−02
wingless-type MMTV integration




1756378






site family, member 5B


95
N4BP3
chr5: 177540555-
1.68
0.90
−0.90
−1.00
6.50E−04
2.11E−02
NEDD4 binding protein 3




177553107


96
GREM1
chr15: 33010204-
5.55
2.96
−0.91
−1.13
1.50E−04
6.74E−03
gremlin 1, DAN family BMP




33026870






antagonist


97
NUPR1
chr16: 28548661-
68.19
35.67
−0.93
−1.19
5.00E−05
2.53E−03
nuclear protein, transcriptional




28550495






regulator, 1


98
ADAMTS1
chr21: 28208605-
3.84
2.01
−0.94
−1.13
5.00E−05
2.53E−03
ADAM metallopeptidase with




28217728






thrombospondin type 1 motif, 1


99
FRAS1
chr4: 78978723-
0.97
0.49
−0.98
−1.17
5.00E−05
2.53E−03
Fraser extracellular matrix complex




79465423






subunit 1


100
IER3
chr6_ssto_hap7:
104.82
52.52
−1.00
−1.40
5.00E−05
2.53E−03
immediate early response 3




2043292-




2044644


101
RHOB
chr2: 20646834-
57.49
28.46
−1.01
−1.42
5.00E−05
2.53E−03
ras homolog family member B




20649201


102
CAP2
chr6: 17393735-
1.18
0.58
−1.02
−0.89
1.20E−03
3.40E−02
CAP, adenylate cyclase-associated




17558023






protein, 2 (yeast)


103
P3H2
chr3: 189674516-
18.52
9.08
−1.03
−1.49
5.00E−05
2.53E−03
prolyl 3-hydroxylase 2




189840226


104
MTRNR2L1
chr17: 22022436-
157.37
76.54
−1.04
−1.44
5.00E−05
2.53E−03
MT-RNR2-like 1




22023991


105
MST1P2
chr1: 16972068-
3.54
1.68
−1.08
−1.03
6.00E−04
1.99E−02
macrophage stimulating 1




16976915






(hepatocyte growth factor-like)











pseudogene 2


106
CELSR1
chr22: 46756730-
2.16
0.98
−1.13
−1.49
5.00E−05
2.53E−03
cadherin, EGF LAG seven-pass G-




46933067






type receptor 1


107
LYPD6B
chr2: 149894980-
3.69
1.67
−1.14
−1.02
5.00E−05
2.53E−03
LY6/PLAUR domain containing 6B




150071772


108
ZNF334
chr20: 45128268-
1.02
0.44
−1.22
−0.94
9.50E−04
2.87E−02
zinc finger protein 334




45142198


109
FAR2P2
chr2: 131174325-
0.94
0.39
−1.28
−0.98
8.50E−04
2.66E−02
fatty acyl CoA reductase 2




131186119






pseudogene 2


110
SOX8
chr16: 1031807-
1.64
0.67
−1.29
−1.07
1.50E−03
4.05E−02
SRY (sex determining region Y)-




1036979






box 8


111
ITLN1
chr1: 160846329-
592.60
242.61
−1.29
−1.36
5.00E−05
2.53E−03
intelectin 1 (galactofuranose




160854960






binding)


112
RRAD
chr16: 66955581-
2.59
1.06
−1.29
−0.96
1.40E−03
3.88E−02
Ras-related associated with




66959439






diabetes


113
VSTM2L
chr20: 36531498-
1.24
0.48
−1.36
−0.97
1.10E−03
3.22E−02
V-set and transmembrane domain




36573747






containing 2 like


114
GP2
chr16: 20321810-
3.44
1.22
−1.50
−1.37
5.00E−05
2.53E−03
glycoprotein 2 (zymogen granule




20338835






membrane)


115
PPP1R3G
chr6: 5085719-
3.67
1.28
−1.52
−1.27
1.50E−04
6.74E−03
protein phosphatase 1, regulatory




5087455






subunit 3G


116
PEG10
chr7: 94285636-
1.38
0.47
−1.57
−1.39
5.00E−05
2.53E−03
paternally expressed 10




94299006


117
BEX1
chrX: 102317580-
2.45
0.81
−1.60
−0.95
1.60E−03
4.26E−02
brain expressed, X-linked 1




102319168


118
SLC18A1
chr8: 20002365-
2.63
0.86
−1.61
−1.43
5.00E−05
2.53E−03
solute carrier family 18 (vesicular




20040717






monoamine transporter), member











1


119
KLK15
chr19: 51328544-
7.78
2.54
−1.62
−1.52
5.00E−05
2.53E−03
kallikrein-related peptidase 15




51334779


120
RFX6
chr6: 117198375-
0.93
0.26
−1.84
−1.38
5.00E−05
2.53E−03
regulatory factor X, 6




117253326


121
SCG3
chr15: 51973549-
1.07
0.29
−1.90
−1.26
5.00E−04
1.75E−02
secretogranin III




52013223


122
TTR
chr18: 29171729-
5.66
1.50
−1.92
−1.26
5.00E−05
2.53E−03
transthyretin




29178986


123
PYY2
chr17: 26553588-
1.76
0.46
−1.95
−1.05
1.85E−03
4.74E−02
peptide YY, 2 (pseudogene)




26555085


124
RUNDC3A
chr17: 42385926-
1.13
0.29
−1.97
−1.22
4.50E−04
1.62E−02
RUN domain containing 3A




42396038


125
HOXD9
chr2: 176987412-
10.70
2.60
−2.04
−2.05
5.00E−05
2.53E−03
homeobox D9




176989645


126
TMPRSS6
chr22: 37461475-
1.40
0.34
−2.05
−1.68
5.00E−05
2.53E−03
transmembrane protease, serine 6




37505603


127
NCCRP1
chr19: 39687603-
1.35
0.32
−2.10
−1.20
3.00E−04
1.18E−02
non-specific cytotoxic cell receptor




39692522






protein 1 homolog (zebrafish)


128
CRYBA2
chr2: 219854911-
7.02
1.54
−2.19
−1.32
3.00E−04
1.18E−02
crystallin, beta A2




219858127


129
NKX2-2
chr20: 21491659-
0.96
0.21
−2.22
−1.30
3.50E−04
1.32E−02
NK2 homeobox 2




21494664


130
LOC441454
chr9: 99671356-
1.71
0.36
−2.24
−1.27
1.00E−04
4.83E−03
prothymosin, alpha pseudogene




99672737


131
HOXD10
chr2: 176981491-
10.02
1.72
−2.55
−2.52
5.00E−05
2.53E−03
homeobox D10




176984670


132
OR51E2
chr11: 4701400-
6.33
0.66
−3.26
−2.30
5.00E−05
2.53E−03
olfactory receptor, family 51,




4719076






subfamily E, member 2


133
COL2A1
chr12: 48366747-
1.36
0.14
−3.32
−2.62
5.00E−05
2.53E−03
collagen, type II, alpha 1




48398285


134
ALDH1A2
chr15: 58245621-
1.13
0.10
−3.49
−1.81
1.00E−03
3.00E−02
aldehyde dehydrogenase 1 family,




58358121






member A2
















TABLE 6







The list of 1058 genes exclusively DE between CR and SSA/P samples.




















mean








gene
locus
mean_CR
SSA/P
log2FC
test_stat
p_value
padjvalue
Description




















1
KLK6
chr19: 51461886-
0.00
2.31
Inf
NA
5.00E−05
7.97E−04
kallikrein-related peptidase 6




51472929


2
CASC19
chr8: 128200030-
0.00
4.02
Inf
NA
5.00E−05
7.97E−04
cancer susceptibility candidate 19




128209872






(non-protein coding)


3
MIR4687
chr11: 3876932-
0.00
12.04
Inf
NA
2.50E−04
3.38E−03
microRNA 4687




4114440


4
MIR6727
chr1: 1243993-
0.00
378.27
Inf
NA
3.50E−04
4.55E−03
microRNA 6727




1260067


5
FAM25A
chr10: 88780045-
0.06
6.54
6.69
1.06
1.00E−04
1.51E−03
family with sequence similarity 25,




88784487






member A


6
HTR1D
chr1: 23518387-
0.13
10.29
6.28
4.15
5.00E−05
7.97E−04
5-hydroxytryptamine (serotonin)




23521222






receptor 1D, G protein-coupled


7
CDH3
chr16: 68678150-
0.14
9.02
5.97
3.87
5.00E−05
7.97E−04
cadherin 3, type 1, P-cadherin




68732957






(placental)


8
PIWIL1
chr12: 130822432-
0.05
2.21
5.50
2.91
5.00E−05
7.97E−04
piwi-like RNA-mediated gene




130856877






silencing 1


9
AFAP1-AS1
chr4: 7755816-
0.03
1.31
5.29
0.86
1.50E−04
2.18E−03
AFAP1 antisense RNA 1




7941653


10
PRSS22
chr16: 2902727-
0.68
25.53
5.24
4.31
5.00E−05
7.97E−04
protease, serine, 22




2908171


11
EPHX4
chr1: 92495532-
0.19
6.74
5.13
3.11
5.00E−05
7.97E−04
epoxide hydrolase 4




92529093


12
KRT7
chr12: 52626953-
0.22
7.17
5.05
2.93
5.00E−05
7.97E−04
keratin 7, type II




52642709


13
KLHL30
chr2: 239047362-
0.05
1.60
4.97
2.58
5.00E−05
7.97E−04
kelch-like family member 30




239061547


14
MYBPC1
chr12: 101988708-
0.11
3.16
4.90
3.30
5.00E−05
7.97E−04
myosin binding protein C, slow




102079658






type


15
SAA1
chr11: 18287807-
0.28
8.21
4.85
1.84
6.00E−04
7.22E−03
serum amyloid A1




18291523


16
CXCL11
chr4: 76932332-
0.17
4.70
4.79
1.59
5.75E−03
4.55E−02
chemokine (C-X-C motif)




77033955






ligand 11


17
SH3PXD2A-
chr10: 105353783-
0.29
8.08
4.78
0.81
5.00E−05
7.97E−04
SH3PXD2A antisense RNA 1



AS1
105615164


18
SFTA2
chr_6qbl_hap6:
0.07
1.79
4.75
0.95
5.00E−05
7.97E−04
surfactant associated 2




2192097-




2192923


19
DUSP4
chr8: 29190578-
0.40
9.96
4.62
4.75
5.00E−05
7.97E−04
dual specificity phosphatase 4




29208267


20
DUOXA1
chr15: 45406522-
0.69
15.69
4.51
1.68
5.00E−05
7.97E−04
dual oxidase maturation factor 1




45422075


21
CRNDE
chr16: 54952776-
0.19
3.75
4.32
1.74
3.00E−04
3.97E−03
colorectal neoplasia differentially




54963101






expressed (non-protein coding)


22
SAA2
chr11: 18252901-
0.22
4.23
4.28
1.90
9.00E−04
1.01E−02
serum amyloid A2




18270221


23
CCAT1
chr8: 128219626-
0.14
2.62
4.26
2.62
5.00E−05
7.97E−04
colon cancer associated transcript




128231513






1 (non-protein coding)


24
PDX1
chr13: 28403895-
0.24
4.61
4.24
3.12
5.00E−05
7.97E−04
pancreatic and duodenal




28500451






homeobox 1


25
SSTR5
chr16: 1114081-
0.09
1.64
4.13
1.45
6.00E−04
7.22E−03
somatostatin receptor 5




1131454


26
LINC00520
chr14: 56247852-
0.56
8.76
3.97
3.32
5.00E−05
7.97E−04
long intergenic non-protein coding




56263392






RNA520


27
KRT80
chr12: 52562779-
0.08
1.28
3.92
2.51
5.00E−05
7.97E−04
keratin 80, type II




52585784


28
UGT1A3
chr2: 234526290-
0.21
2.90
3.75
0.34
7.50E−04
8.64E−03
UDP glucuronosyltransferase 1




234681951






family, polypeptide A3


29
F0SL1
chr11: 65659691-
0.18
2.46
3.74
2.34
5.00E−05
7.97E−04
FOS-like antigen 1




65667997


30
C11orf91
chr11: 33719653-
0.21
2.65
3.64
1.81
3.50E−04
4.55E−03
chromosome 11 open reading




33722286






frame 91


31
MDFI
chr6: 41606194-
0.59
7.08
3.59
3.13
5.00E−05
7.97E−04
MyoD family inhibitor




41621982


32
LMO7DN
chr13: 76445173-
0.15
1.72
3.54
1.84
1.00E−04
1.51E−03
LMO7 downstream neighbor




76457948


33
KCTD14
chr11: 77726760-
0.30
3.52
3.53
0.59
5.90E−03
4.65E−02
potassium channel tetramerization




77850699






domain containing 14


34
SSTR5-AS1
chr16: 1114081-
0.49
5.47
3.47
2.61
5.00E−05
7.97E−04
SSTR5 antisense RNA 1




1131454


35
KCP
chr7: 128516918-
0.32
3.31
3.37
3.11
5.00E−05
7.97E−04
kielin/chordin-like protein




128550773


36
CLDN14
chr21: 37832919-
0.16
1.64
3.37
1.29
5.00E−05
7.97E−04
claudin 14




37948867


37
DUOX2
chr15: 45384851-
11.84
118.72
3.33
1.76
5.00E−05
7.97E−04
dual oxidase 2




45406359


38
GJC2
chr1: 228337414-
0.16
1.59
3.30
1.96
1.50E−04
2.18E−03
gap junction protein, gamma 2,




228347527






47 kDa


39
SLC6A20
chr3: 45796940-
1.53
15.01
3.30
4.52
5.00E−05
7.97E−04
solute carrier family 6 (proline




45838035






IMINO transporter), member 20


40
C2CD4A
chr15: 62359175-
0.24
2.24
3.24
2.41
5.00E−05
7.97E−04
C2 calcium-dependent domain




62363116






containing 4A


41
MYEOV
chr11: 69061621-
2.61
24.67
3.24
3.75
5.00E−05
7.97E−04
myeloma overexpressed




69064754


42
TFAP2A
chr6: 10396915-
0.20
1.80
3.20
2.14
5.00E−05
7.97E−04
transcription factor AP-2 alpha




10419797






(activating enhancer binding











protein 2 alpha)


43
TNFSF9
chr19: 6531009-
0.21
1.75
3.08
1.67
5.00E−05
7.97E−04
tumor necrosis factor (ligand)




6535939






superfamily, member 9


44
SEC14L2
chr22: 30792929-
0.44
3.72
3.07
2.89
5.00E−05
7.97E−04
SEC14-like lipid binding 2




30821291


45
PLA2G2F
chr1: 20465822-
0.16
1.24
2.98
1.45
5.00E−05
7.97E−04
phospholipase A2, group IIF




20476879


46
C6orf223
chr6: 43968336-
0.97
7.57
2.97
2.90
5.00E−05
7.97E−04
chromosome 6 open reading frame




43973694






223


47
IRX2
chr5: 2746278-
0.19
1.50
2.94
1.90
5.00E−05
7.97E−04
iroquois homeobox 2




2751769


48
SIM2
chr21: 38071990-
0.27
2.06
2.92
2.28
5.00E−05
7.97E−04
single-minded family bHLH




38122510






transcription factor 2


49
SLC4A11
chr20: 3208062-
0.31
2.32
2.91
2.39
5.00E−05
7.97E−04
solute carrier family 4, sodium




3219887






borate transporter, member 11


50
TTC9
chr14: 71108503-
0.62
4.64
2.91
3.31
5.00E−05
7.97E−04
tetratricopeptide repeat domain 9




71142077


51
TMPRSS3
chr21: 43791995-
0.53
3.86
2.87
2.27
5.00E−05
7.97E−04
transmembrane protease, serine 3




43816955


52
SLC16A4
chr1: 110905472-
1.08
7.54
2.81
2.86
5.00E−05
7.97E−04
solute carrier family 16, member 4




110933704


53
XKR9
chr8: 71581599-
0.64
4.40
2.79
2.88
5.00E−05
7.97E−04
XK, Kell blood group complex




71648177






subunit-related family, member 9


54
IL1RN
chr2: 113875469-
3.40
23.19
2.77
3.42
5.00E−05
7.97E−04
interleukin 1 receptor antagonist




113891593


55
C2CD4B
chr15: 62455736-
0.53
3.62
2.76
2.03
5.00E−05
7.97E−04
C2 calcium-dependent domain




62457482






containing 4B


56
IL1B
chr2: 113587336-
1.41
9.47
2.74
2.67
5.00E−05
7.97E−04
interleukin 1, beta




113594356


57
DSG3
chr18: 29027731-
0.21
1.37
2.72
2.37
5.00E−05
7.97E−04
desmoglein 3




29058665


58
ANXA1
chr9: 75766780-
25.34
161.24
2.67
4.39
5.00E−05
7.97E−04
annexin A1




75785307


59
MTCL1
chr18: 8717368-
0.48
2.95
2.63
2.94
5.00E−05
7.97E−04
microtubule crosslinking factor 1




8832775


60
CXCL1
chr4: 74735108-
3.81
23.37
2.62
3.02
5.00E−05
7.97E−04
chemokine (C-X-C motif) ligand 1




74737019






(melanoma growth stimulating











activity, alpha)


61
CHAC1
chr15: 41245635-
1.72
10.35
2.59
2.51
5.00E−05
7.97E−04
ChaC glutathione-specific gamma-




41248717






glutamylcyclotransferase 1


62
CXCL3
chr4: 74902311-
2.22
13.30
2.58
2.52
5.00E−05
7.97E−04
chemokine (C-X-C motif) ligand 3




74904490


63
AHNAK2
chr14: 105403590-
0.28
1.70
2.58
3.20
5.00E−05
7.97E−04
AHNAK nucleoprotein 2




105444694


64
IL33
chr9: 6215785-
1.69
10.04
2.57
3.21
5.00E−05
7.97E−04
interleukin 33




6257983


65
SYT12
chr11: 66790189-
0.27
1.57
2.53
1.60
5.00E−05
7.97E−04
synaptotagmin XII




66818334


66
IRAK2
chr3: 10206562-
1.07
6.19
2.53
2.86
5.00E−05
7.97E−04
interleukin-1 receptor-associated




10285427






kinase 2


67
TM4SF1
chr3: 149086804-
24.36
139.66
2.52
4.27
5.00E−05
7.97E−04
transmembrane 4 L six family




149104370






member 1


68
CDSN
chr6_qbl_hap6:
0.68
3.84
2.50
1.41
4.00E−04
5.06E−03
corneodesmosin




2378425-




2403713


69
GRHL1
chr2: 10091791-
0.24
1.34
2.45
1.92
5.00E−05
7.97E−04
grainyhead-like transcription factor




10142412






1


70
PHLDA1
chr12: 76419226-
2.67
14.50
2.44
3.70
5.00E−05
7.97E−04
pleckstrin homology-like domain,




76425556






family A, member 1


71
SERPINE2
chr2: 224839764-
8.44
43.34
2.36
3.56
5.00E−05
7.97E−04
serpin peptidase inhibitor, clade E




224904036






(nexin, plasminogen activator











inhibitor type 1), member 2


72
SRD5A3
chr4: 56212387-
2.95
14.76
2.32
3.49
5.00E−05
7.97E−04
steroid 5 alpha-reductase 3




56251747


73
PLEKHN1
chr1: 901876-
0.47
2.37
2.32
1.94
5.00E−05
7.97E−04
pleckstrin homology domain




910484






containing, family N member 1


74
DUOX1
chr15: 45422191-
0.43
2.11
2.28
2.25
5.00E−05
7.97E−04
dual oxidase 1




45457776


75
FADS2
chr11: 61567096-
2.55
12.27
2.26
2.13
5.00E−05
7.97E−04
fatty acid desaturase 2




61634826


76
PHLDA2
chr11: 2949502-
15.13
72.46
2.26
2.94
5.00E−05
7.97E−04
pleckstrin homology-like domain,




2950650






family A, member 2


77
RTN4R
chr22: 20228937-
1.47
6.95
2.24
2.32
5.00E−05
7.97E−04
reticulon 4 receptor




20255816


78
WFDC21P
chr17: 58160926-
1.09
5.00
2.20
1.49
5.00E−05
7.97E−04
WAP four-disulfide core domain




58165828






21, pseudogene


79
TNFRSF11B
chr8: 119935795-
1.96
8.83
2.17
2.72
5.00E−05
7.97E−04
tumor necrosis factor receptor




119964383






superfamily, member 11b


80
CLIC3
chr9: 139889059-
2.05
9.10
2.15
1.72
5.00E−05
7.97E−04
chloride intracellular channel 3




139891024


81
S100A2
chr1: 153533584-
0.55
2.43
2.14
1.27
4.00E−04
5.06E−03
S100 calcium binding protein A2




153538306


82
NAT8
chr2: 73867849-
1.26
5.56
2.14
1.61
5.00E−05
7.97E−04
N-acetyltransferase 8 (GCN5-




73869537






related, putative)


83
TRIM7
chr5: 180620923-
3.12
13.61
2.13
2.07
5.00E−05
7.97E−04
tripartite motif containing 7




180632293


84
RGS2
chr1: 192778168-
10.92
47.56
2.12
3.33
5.00E−05
7.97E−04
regulator of G-protein signaling 2




192781407


85
ZSCAN12P1
chr6: 28058584-
0.55
2.36
2.09
2.02
5.00E−05
7.97E−04
zinc finger and SCAN domain




28063493






containing 12 pseudogene 1


86
ELFN1-AS1
chr7: 1748797-
0.39
1.64
2.08
0.92
5.15E−03
4.16E−02
ELFN1 antisense RNA 1




1787590


87
TNFRSF12A
chr16: 3070312-
7.12
29.77
2.06
2.52
5.00E−05
7.97E−04
tumor necrosis factor receptor




3072383






superfamily, member 12A


88
MYPN
chr10: 69865873-
0.38
1.60
2.06
1.99
5.00E−05
7.97E−04
myopalladin




69971773


89
KIAA0895
chr7: 36363758-
0.66
2.70
2.04
1.28
6.00E−04
7.22E−03
KIAA0895




36493401


90
ENTPD3
chr3: 40428646-
0.60
2.44
2.03
1.68
5.00E−05
7.97E−04
ectonucleoside triphosphate




40494799






diphosphohydrolase 3


91
ADAMTSL5
chr19: 1505016-
1.06
4.31
2.02
2.03
5.00E−05
7.97E−04
ADAMTS-like 5




1513188


92
STX1A
chr7: 73113534-
1.24
4.95
2.00
1.94
5.00E−05
7.97E−04
syntaxin 1A (brain)




73134017


93
ME1
chr6: 83920109-
7.99
31.89
2.00
3.33
5.00E−05
7.97E−04
malic enzyme 1, NADP(+)-




84140938






dependent, cytosolic


94
ANXA3
chr4: 79472741-
18.26
72.68
1.99
3.37
5.00E−05
7.97E−04
annexin A3




79531605


95
TM4SF1-AS1
chr3: 149086804-
0.27
1.07
1.99
0.22
4.75E−03
3.89E−02
TM4SF1 antisense RNA 1




149104370


96
C10orf10
chr10: 45455218-
3.11
12.27
1.98
1.32
1.05E−03
1.15E−02
chromosome 10 open reading




45490172






frame 10


97
LRRC8E
chr19: 7953389-
0.60
2.37
1.97
1.94
5.00E−05
7.97E−04
leucine rich repeat containing 8




7966908






family, member E


98
CATSPERB
chr14: 92047117-
0.86
3.37
1.97
2.20
5.00E−05
7.97E−04
catsper channel auxiliary subunit




92198413






beta


99
CCNO
chr5: 54526980-
1.46
5.71
1.96
1.57
5.00E−05
7.97E−04
cyclin O




54529508


100
MIR614
chr12: 13068762-
673.60
2602.29
1.95
1.42
5.00E−05
7.97E−04
microRNA 614




13068852


101
C17orf67
chr17: 54869273-
0.98
3.74
1.94
1.79
5.00E−05
7.97E−04
chromosome 17 open reading




54911256






frame 67


102
ETV4
chr17: 41605210-
2.02
7.73
1.93
2.11
5.00E−05
7.97E−04
ets variant 4




41623800


103
CAPN11
chr6: 44126547-
0.65
2.47
1.92
1.54
5.00E−05
7.97E−04
calpain 11




44152139


104
SMOX
chr20: 4129425-
2.21
8.16
1.89
2.12
5.00E−05
7.97E−04
spermine oxidase




4168394


105
ARX
chrX: 25021812-
0.34
1.26
1.87
1.40
1.50E−04
2.18E−03
aristaless related homeobox




25034065


106
TSPAN5
chr4: 99391517-
1.40
5.06
1.85
2.24
5.00E−05
7.97E−04
tetraspanin 5




99579812


107
TIMP1
chrX: 47420498-
61.09
216.38
1.82
1.94
5.00E−05
7.97E−04
TIMP metallopeptidase inhibitor 1




47479256


108
ARNTL2
chr12: 27485786-
0.85
3.00
1.82
2.44
5.00E−05
7.97E−04
aryl hydrocarbon receptor nuclear




27599567






translocator-like 2


109
PARP8
chr5: 49961732-
1.43
5.02
1.81
2.66
5.00E−05
7.97E−04
poly (ADP-ribose) polymerase




50142356






family, member 8


110
OTUB2
chr14: 94492723-
0.65
2.27
1.81
1.87
5.00E−05
7.97E−04
OTU deubiquitinase, ubiquitin




94515276






aldehyde binding 2


111
MPP3
chr17: 41878166-
0.53
1.86
1.81
1.72
5.00E−05
7.97E−04
membrane protein, palmitoylated 3




41910547






(MAGUK p55 subfamily member











3)


112
EIF5A2
chr3: 170606203-
0.33
1.14
1.78
1.82
5.00E−05
7.97E−04
eukaryotic translation initiation




170626426






factor 5A2


113
RHOD
chr11: 66824288-
8.98
30.71
1.77
2.30
5.00E−05
7.97E−04
ras homolog family member D




66839488


114
ASPHD2
chr22: 26825279-
1.82
6.19
1.77
2.16
5.00E−05
7.97E−04
aspartate beta-hydroxylase domain




26840978






containing 2


115
STRIP2
chr7: 129074273-
0.80
2.73
1.77
1.87
5.00E−05
7.97E−04
striatin interacting protein 2




129128239


116
INSC
chr11: 15133969-
1.32
4.50
1.77
1.90
5.00E−05
7.97E−04
inscuteable homolog (Drosophila)




15268756


117
SPTBN2
chr11: 66452719-
0.65
2.21
1.76
2.04
5.00E−05
7.97E−04
spectrin, beta, non-erythrocytic 2




66488870


118
PF4
chr4: 74846541-
0.42
1.40
1.75
1.00
3.05E−03
2.72E−02
platelet factor 4




74847841


119
ALPPL2
chr2: 233271551-
0.40
1.32
1.74
1.26
5.00E−05
7.97E−04
alkaline phosphatase, placental-




233275424






like 2


120
CD82
chr11: 44587140-
18.88
62.74
1.73
2.81
5.00E−05
7.97E−04
CD82 molecule




44641315


121
HAPLN4
chr19: 19366451-
0.53
1.75
1.72
1.53
5.00E−05
7.97E−04
hyaluronan and proteoglycan link




19373596






protein 4


122
LOC100130705
chr7: 128506463-
0.78
2.56
1.72
1.65
5.00E−05
7.97E−04
uncharacterized LOC100130705




128512101


123
ARFGAP3
chr22: 43192531-
13.97
45.68
1.71
2.97
5.00E−05
7.97E−04
ADP-ribosylation factor GTPase




43253408






activating protein 3


124
LDLR
chr19: 11200037-
11.17
36.20
1.70
2.74
5.00E−05
7.97E−04
low density lipoprotein receptor




11244505


125
UNC13D
chr17: 73823307-
9.64
30.97
1.68
2.84
5.00E−05
7.97E−04
unc-13 homolog D (C. elegans)




73840798


126
GPRIN1
chr5: 176022802-
2.98
9.37
1.66
2.31
5.00E−05
7.97E−04
G protein regulated inducer of




176037131






neurite outgrowth 1


127
LAMC2
chr1: 183155173-
15.08
47.41
1.65
2.58
5.00E−05
7.97E−04
laminin, gamma 2




183214262


128
TRIB3
chr20: 361307-
2.05
6.39
1.64
1.83
5.00E−05
7.97E−04
tribbles pseudokinase 3




378203


129
SLC5A9
chr1: 48688356-
0.97
3.02
1.64
1.78
5.00E−05
7.97E−04
solute carrier family 5




48714316






(sodium/sugar cotransporter),











member 9


130
ITGA2
chr5: 52285155-
4.93
15.24
1.63
2.75
5.00E−05
7.97E−04
integrin, alpha 2 (CD49B, alpha 2




52390609






subunit of VLA-2 receptor)


131
SESTD1
chr2: 179966418-
1.58
4.88
1.62
2.74
5.00E−05
7.97E−04
SEC14 and spectrin domains 1




180129350


132
SIGLEC12
chr19: 51994480-
0.80
2.42
1.60
1.38
5.00E−05
7.97E−04
sialic acid binding Ig-like lectin 12




52005043






(gene/pseudogene)


133
HSPA4L
chr4: 128703452-
0.67
2.02
1.60
1.64
5.00E−05
7.97E−04
heat shock 70 kDa protein 4-like




128754526


134
BTNL9
chr5: 180467224-
1.12
3.36
1.59
1.69
5.00E−05
7.97E−04
butyrophilin-like 9




180488523


135
BACE2
chr21: 42539727-
8.52
25.38
1.58
2.73
5.00E−05
7.97E−04
beta-site APP-cleaving enzyme 2




42654461


136
PRDM8
chr4: 81106423-
0.71
2.09
1.56
1.40
5.00E−05
7.97E−04
PR domain containing 8




81125482


137
TUBB2A
chr6: 3153901-
6.96
20.52
1.56
2.16
5.00E−05
7.97E−04
tubulin, beta 2A class Ila




3157783


138
ZG16B
chr16: 2880172-
25.29
73.85
1.55
2.33
5.00E−05
7.97E−04
zymogen granule protein 16B




2882285


139
CELSR3
chr3: 48673895-
0.49
1.42
1.53
1.83
5.00E−05
7.97E−04
cadherin, EGF LAG seven-pass G-




48700348






type receptor 3


140
MET
chr7: 116312458-
6.21
17.84
1.52
2.69
5.00E−05
7.97E−04
MET proto-oncogene, receptor




116438440






tyrosine kinase


141
TMEM163
chr2: 135213329-
0.48
1.37
1.51
1.03
4.00E−04
5.06E−03
transmembrane protein 163




135476571


142
SLC28A3
chr9: 86890764-
0.38
1.08
1.49
1.38
5.00E−05
7.97E−04
solute carrier family 28




86983413






(concentrative nucleoside











transporter), member 3


143
LPL
chr8: 19796581-
0.38
1.05
1.48
1.30
5.00E−05
7.97E−04
lipoprotein lipase




19824770


144
TRIM16
chr17: 15531279-
4.49
12.55
1.48
2.22
5.00E−05
7.97E−04
tripartite motif containing 16




15586193


145
TPK1
chr7: 144149033-
4.47
12.38
1.47
2.13
5.00E−05
7.97E−04
thiamin pyrophosphokinase 1




144533146


146
ADM2
chr22: 50919984-
1.61
4.46
1.47
1.77
5.00E−05
7.97E−04
adrenomedullin 2




50924866


147
C8G
chr9: 139839697-
3.94
10.79
1.45
1.35
5.00E−05
7.97E−04
complement component 8, gamma




139841426






polypeptide


148
S100A11
chr1: 152004981-
295.16
806.03
1.45
2.44
5.00E−05
7.97E−04
S100 calcium binding protein A11




152009511


149
RAPGEF3
chr12: 48128452-
1.60
4.34
1.44
1.96
5.00E−05
7.97E−04
Rap guanine nucleotide exchange




48152889






factor (GEF) 3


150
TM4SF5
chr17: 4675186-
21.66
58.69
1.44
1.91
5.00E−05
7.97E−04
transmembrane 4 L six family




4686506






member 5


151
BMP7
chr20: 55743808-
0.87
2.36
1.44
1.53
5.00E−05
7.97E−04
bone morphogenetic protein 7




55841707


152
SYT8
chr11: 1855539-
0.80
2.15
1.43
1.08
5.50E−04
6.69E−03
synaptotagmin VIII




1858751


153
SSUH2
chr3: 8661085-
3.55
9.57
1.43
1.70
5.00E−05
7.97E−04
ssu-2 homolog (C. elegans)




8693764


154
DPP4
chr2: 162848754-
12.22
32.97
1.43
2.43
5.00E−05
7.97E−04
dipeptidyl-peptidase 4




162931052


155
FAM83H-AS1
chr8: 144816309-
2.07
5.56
1.43
1.71
5.00E−05
7.97E−04
FAM83H antisense RNA 1 (head




144828507






to head)


156
LM07
chr13: 76123615-
24.92
66.89
1.42
2.19
5.00E−05
7.97E−04
LIM domain 7




76434006


157
SLC7A4
chr22: 21383006-
1.46
3.88
1.41
1.29
5.00E−05
7.97E−04
solute carrier family 7,




21386847






member 4


158
MLPH
chr2: 238395052-
20.32
53.64
1.40
2.42
5.00E−05
7.97E−04
melanophilin




238463961


159
ERRFI1
chr1: 8071778-
12.88
34.00
1.40
2.39
5.00E−05
7.97E−04
ERBB receptor feedback




8086393






inhibitor 1


160
ARHGAP29
chr1: 94634462-
0.55
1.44
1.40
1.76
5.00E−05
7.97E−04
Rho GTPase activating protein 29




94703307


161
MUC3A
chr7: 100547051-
25.38
66.35
1.39
2.26
5.00E−05
7.97E−04
mucin 3A, cell surface associated




100611619


162
ISG15
chr1: 948846-
20.73
53.92
1.38
1.84
5.00E−05
7.97E−04
ISG15 ubiquitin-like modifier




949919


163
PMAIP1
chr18: 57567191-
1.70
4.39
1.37
1.50
5.00E−05
7.97E−04
phorbol-12-myristate-13-acetate-




57571538






induced protein 1


164
ZMYND15
chr17: 4643309-
1.08
2.80
1.37
1.29
5.00E−05
7.97E−04
zinc finger, MYND-type




4649414






containing 15


165
PPL
chr16: 4932507-
1.85
4.77
1.37
1.98
5.00E−05
7.97E−04
periplakin




4987136


166
LPGAT1
chr1: 211916798-
8.03
20.49
1.35
2.52
5.00E−05
7.97E−04
lysophosphatidylglycerol




212004114






acyltransferase 1


167
AGR2
chr7: 16832263-
1120.97
2856.30
1.35
1.43
5.00E−05
7.97E−04
anterior gradient 2, protein




16844738






disulphide isomerase family











member


168
GATSL2
chr7: 74601103-
0.61
1.54
1.34
1.53
5.00E−05
7.97E−04
GATS protein-like 2




74988276


169
CDKN2A
chr9: 21967137-
0.56
1.43
1.34
0.76
3.45E−03
3.01E−02
cyclin-dependent kinase




21994490






inhibitor 2A


170
ZC3H12A
chr1: 37940118-
8.19
20.58
1.33
2.08
5.00E−05
7.97E−04
zinc finger CCCH-type




37949978






containing 12A


171
ALDH3B1
chr11: 67776016-
9.36
23.45
1.33
2.17
5.00E−05
7.97E−04
aldehyde dehydrogenase 3 family,




67796749






member B1


172
NDUFC2-
chr11: 77726760-
9.47
23.70
1.32
1.11
2.50E−04
3.38E−03
NDUFC2-KCTD14 readthrough



KCTD14
77850699


173
GIPR
chr19: 46171501-
5.98
14.87
1.31
1.75
5.00E−05
7.97E−04
gastric inhibitory polypeptide




46185717






receptor


174
ZNF165
chr6: 28048481-
1.69
4.20
1.31
1.51
5.00E−05
7.97E−04
zinc finger protein 165




28057340


175
GMPR
chr6: 16238810-
2.15
5.32
1.31
1.37
5.00E−05
7.97E−04
guanosine monophosphate




16295780






reductase


176
RTN2
chr19: 45988545-
3.17
7.83
1.30
1.18
5.00E−05
7.97E−04
reticulon 2




46000313


177
TYRO3
chr15: 41851219-
0.55
1.36
1.30
1.23
2.00E−04
2.80E−03
TYRO3 protein tyrosine kinase




41871536


178
VSTM5
chr11: 93553734-
1.51
3.72
1.30
0.93
1.90E−03
1.87E−02
V-set and transmembrane domain




93583668






containing 5


179
KYNU
chr2: 143635194-
1.31
3.20
1.29
1.26
5.00E−05
7.97E−04
kynureninase




143799885


180
SERPINB8
chr18: 61637262-
4.71
11.46
1.28
1.87
5.00E−05
7.97E−04
serpin peptidase inhibitor,




2-61656608






clade B (ovalbumin), member 8


181
RSAD2
chr2: 7017795-
6.48
15.78
1.28
1.82
5.00E−05
7.97E−04
radical S-adenosyl methionine




7038363






domain containing 2


182
PLAUR
chr19: 44150246-
22.04
53.41
1.28
2.05
5.00E−05
7.97E−04
plasminogen activator,




44174498






urokinase receptor


183
TM6SF2
chr19: 19375173-
10.03
24.31
1.28
1.73
5.00E−05
7.97E−04
transmembrane 6 superfamily




19384074






member 2


184
MMP12
chr11: 102733463-
15.23
36.65
1.27
1.87
5.00E−05
7.97E−04
matrix metallopeptidase 12




102745764


185
VSIG10L
chr19: 51834794-
1.04
2.49
1.26
1.29
5.00E−05
7.97E−04
V-set and immunoglobulin domain




51845378






containing 10 like


186
CXCL16
chr17: 4634722-
17.88
42.76
1.26
1.88
5.00E−05
7.97E−04
chemokine (C-X-C motif)




4643223






ligand 16


187
ABHD2
chr15: 89631380-
24.14
57.42
1.25
1.94
5.00E−05
7.97E−04
abhydrolase domain containing 2




89745591


188
MAPK15
chr8: 144798506-
0.60
1.42
1.25
0.99
1.95E−03
1.91E−02
mitogen-activated protein kinase




144804633






15


189
FGF2
chr4: 123747862-
0.49
1.17
1.24
0.97
2.40E−03
2.25E−02
fibroblast growth factor 2




123844159






(basic)


190
ADAM9
chr8: 38854504-
29.81
70.07
1.23
2.16
5.00E−05
7.97E−04
ADAM metallopeptidase domain 9




38962779


191
CYP2S1
chr19: 41699114-
26.65
62.36
1.23
1.98
5.00E−05
7.97E−04
cytochrome P450, family 2,




41713444






subfamily S, polypeptide 1


192
UST
chr6: 149068270-
0.69
1.60
1.22
1.24
5.00E−05
7.97E−04
uronyl-2-sulfotransferase




149398126


193
AP1S3
chr2: 224620046-
2.04
4.74
1.22
1.62
5.00E−05
7.97E−04
adaptor-related protein complex




224702319






1, sigma 3 subunit


194
PITPNC1
chr17: 65373396-
1.64
3.81
1.22
1.74
5.00E−05
7.97E−04
phosphatidylinositol transfer




65693379






protein, cytoplasmic 1


195
ST3GAL1
chr8: 134467090-
2.45
5.62
1.20
1.44
5.00E−05
7.97E−04
ST3 beta-galactoside alpha-2,3-




134584183






sialyltransferase 1


196
GNA15
chr19: 3136029-
1.96
4.48
1.19
1.32
5.00E−05
7.97E−04
guanine nucleotide binding




3163767






protein (G protein), alpha 15











(Gq class)


197
PVRL4
chr1: 161040780-
1.50
3.42
1.19
1.29
5.00E−05
7.97E−04
poliovirus receptor-related 4




161059385


198
TSTA3
chr8: 144694787-
49.13
111.80
1.19
2.14
5.00E−05
7.97E−04
tissue specific transplantation




144699732






antigen P35B


199
SCD
chr10: 102106771-
23.98
54.51
1.18
1.65
5.00E−05
7.97E−04
stearoyl-CoA desaturase (delta-




102124588






9-desaturase)


200
HTATSF1P2
chr6: 3020389-
0.63
1.43
1.18
1.22
5.00E−05
7.97E−04
HIV-1 Tat specific factor 1




3025005






pseudogene 2


201
AJUBA
chr14: 23440382-
0.81
1.83
1.18
1.15
5.00E−05
7.97E−04
ajuba LIM protein




234518516-


202
PHLDA3
chr1: 201434606-
4.80
10.83
1.17
1.48
5.00E−05
7.97E−04
pleckstrin homology-like domain,




201438299






family A, member 3


203
C1orf116
chr1: 207191865-
10.04
22.65
1.17
2.07
5.00E−05
7.97E−04
chromosome 1 open reading frame




207206101






116


204
C6orf141
chr6: 49518112-
3.21
7.24
1.17
1.26
5.00E−05
7.97E−04
chromosome 6 open reading frame




49519808






141


205
TMC7
chr16: 18995255-
3.65
8.19
1.16
1.33
5.00E−05
7.97E−04
transmembrane channel-like 7




19091417


206
KIAA1549
chr7: 138516126-
0.42
0.95
1.16
1.39
5.00E−05
7.97E−04
KIAA1549




138666064


207
DAPP1
chr4: 100737980-
2.00
4.48
1.16
1.49
5.00E−05
7.97E−04
dual adaptor of phosphotyrosine




100791346






and 3-phosphoinositides


208
ZNF432
chr19: 52536676-
2.29
5.12
1.16
1.49
5.00E−05
7.97E−04
zinc finger protein 432




52552073


209
DUSP5
chr10: 112257624-
14.15
31.63
1.16
1.87
5.00E−05
7.97E−04
dual specificity phosphatase 5




112271302


210
ISG20
chr15: 89182038-
32.62
72.51
1.15
1.94
5.00E−05
7.97E−04
interferon stimulated




89198879






exonuclease gene 20 kDa


211
TPM4
chr19: 16178316-
129.57
287.54
1.15
1.72
5.00E−05
7.97E−04
tropomyosin 4




16213813


212
PTPN13
chr4: 87515467-
0.60
1.32
1.15
1.35
5.00E−05
7.97E−04
protein tyrosine phosphatase,




87736328






non-receptor type 13 (APO-1/











CD95 (Fas)-associated











phosphatase)


213
AMOTL2
chr3: 134074186-
1.90
4.20
1.15
1.52
5.00E−05
7.97E−04
angiomotin like 2




134094259


214
PLK3
chr1: 45266035-
3.02
6.68
1.14
1.38
5.00E−05
7.97E−04
polo-like kinase 3




45272957


215
ADCY4
chr14: 24787554-
2.88
6.34
1.14
1.48
5.00E−05
7.97E−04
adenylate cyclase 4




24804277


216
TNS4
chr17: 38632079-
3.51
7.71
1.14
1.67
5.00E−05
7.97E−04
tensin 4




38657854


217
CITED4
chr1: 41326727-
1.39
3.06
1.14
0.91
4.10E−03
3.46E−02
Cbp/p300-interacting




41328018






transactivator, with Glu/Asp-











rich carboxy-terminal domain, 4


218
GLRA4
chrX: 102962271-
0.60
1.31
1.13
0.82
4.10E−03
3.46E−02
glycine receptor, alpha 4




102983552


219
ASPH
chr8: 62200524-
31.72
69.58
1.13
1.92
5.00E−05
7.97E−04
aspartate beta-hydroxylase




62627199


220
MSMO1
chr4: 166248817-
39.79
87.24
1.13
1.81
5.00E−05
7.97E−04
methylsterol monooxygenase 1




166264314


221
DDIT4
chr10: 74033676-
23.50
51.22
1.12
1.88
5.00E−05
7.97E−04
DNA-damage-inducible




74035797






transcript 4


222
PAM
chr5: 102201526-
8.73
18.99
1.12
2.01
5.00E−05
7.97E−04
peptidylglycine alpha-amidating




102366808






monooxygenase


223
SHF
chr15: 45459411-
1.29
2.80
1.12
1.14
5.00E−05
7.97E−04
Src homology 2 domain




45493373






containing F


224
ARHGEF3
chr3: 567614451-
2.38
5.17
1.12
1.51
5.00E−05
7.97E−04
Rho guanine nucleotide exchange




57113336






factor (GEF) 3


225
LPCAT1
chr5: 1461541-
7.26
15.73
1.11
1.77
5.00E−05
7.97E−04
lysophosphatidylcholine




1524076






acyltransferase 1


226
ACY3
chr11: 67410025-
8.03
17.34
1.11
1.45
5.00E−05
7.97E−04
aminoacylase 3




67418130


227
PLXNA3
chrX: 153686620-
8.18
17.63
1.11
1.92
5.00E−05
7.97E−04
plexin A3




153701989


228
SEC24D
chr4: 119643977-
14.58
31.42
1.11
1.95
5.00E−05
7.97E−04
SEC24 homolog D, COPII coat




119757326






complex component


229
AKR1B15
chr7: 134233848-
2.91
6.27
1.10
1.18
5.00E−05
7.97E−04
aldo-keto reductase family 1,




134264592






member B15


230
SLC22A15
chr1: 116519118-
0.64
1.38
1.10
1.13
5.00E−05
7.97E−04
solute carrier family 22,




116612675






member 15


231
MACC1
chr7: 19958603-
2.20
4.72
1.10
1.80
5.00E−05
7.97E−04
metastasis associated in colon




20257013






cancer 1


232
FAM86DP
chr3: 75470702-
1.68
3.60
1.10
1.23
5.00E−05
7.97E−04
family with sequence similarity




75484266






86, member D, pseudogene


233
DAPK1
chr9: 90112142-
5.72
12.28
1.10
1.86
5.00E−05
7.97E−04
death-associated protein




90323549






kinase 1


234
TSPAN8
chr12: 71518876-
1477.14
3166.40
1.10
1.17
7.00E−04
8.19E−03
tetraspanin 8




71551779


235
EPS8L1
chr19: 55587220-
18.44
39.39
1.09
1.89
5.00E−05
7.97E−04
EPS8-like 1




55599291


236
IL1R2
chr2: 102608305-
38.23
81.56
1.09
1.83
5.00E−05
7.97E−04
interleukin 1 receptor, type II




102644884


237
AGRN
chr1: 955502-
14.45
30.82
1.09
1.96
5.00E−05
7.97E−04
aqrin




991499


238
ACY1
chr3: 52009041-
54.72
116.70
1.09
1.89
5.00E−05
7.97E−04
aminoacylase 1




52023218


239
ATP13A2
chr1: 17312452-
17.04
36.30
1.09
1.94
5.00E−05
7.97E−04
ATPase type 13A2




17338467


240
SFXN3
chr10: 102790995-
7.52
16.00
1.09
1.75
5.00E−05
7.97E−04
sideroflexin 3




102800998


241
SGMS2
chr4: 108745720-
8.11
17.18
1.08
2.01
5.00E−05
7.97E−04
sphingomyelin synthase 2




108836204


242
KLK13
chr19: 51559462-
0.77
1.64
1.08
0.79
4.00E−03
3.39E−02
kallikrein-related peptidase 13




51568367


243
KPNA7
chr7: 98771196-
0.58
1.23
1.08
0.79
5.45E−03
4.37E−02
karyopherin alpha 7 (importin




98805089






alpha 8)


244
CHPF
chr2: 220403668-
15.25
32.27
1.08
1.95
5.00E−05
7.97E−04
chondroitin polymerizing factor




220408487


245
CCR6
chr6: 167525294-
1.61
3.41
1.08
1.26
5.00E−05
7.97E−04
chemokine (C-C motif)




167552629






receptor 6


246
VWA1
chr1: 1370902-
5.71
12.01
1.07
1.78
5.00E−05
7.97E−04
von Willebrand factor A domain




1378262






containing 1


247
MEIS2
chr15: 37183221-
0.75
1.57
1.06
0.98
4.00E−04
5.06E−03
Meis homeobox 2




37393500


248
USP18
chr22: 18632757-
3.62
7.53
1.06
1.35
5.00E−05
7.97E−04
ubiquitin specific peptidase 18




18660162


249
LIMCH1
chr4: 41361623-
1.51
3.13
1.05
1.42
5.00E−05
7.97E−04
LIM and calponin homology




41702061






domains 1


250
PERP
chr6: 138409641-
47.52
97.23
1.03
1.83
5.00E−05
7.97E−04
PERP, TP53 apoptosis effector




138428660


251
GPX2
chr14: 65381078-
168.48
344.46
1.03
1.18
5.00E−05
7.97E−04
glutathione peroxidase 2




65569413


252
TIMP4
chr3: 12045833-
1.27
2.60
1.03
0.89
1.95E−03
1.91E−02
TIMP metallopeptidase




12233532






inhibitor 4


253
DUSP14
chr17: 35849950-
1.53
3.13
1.03
0.93
1.65E−03
1.66E−02
dual specificity phosphatase 14




35873588


254
TMEM150B
chr19: 55824168-
25.21
51.40
1.03
1.52
5.00E−05
7.97E−04
transmembrane protein 150B




55836708


255
C8orf4
chr8: 40010986-
15.29
31.16
1.03
1.74
5.00E−05
7.97E−04
chromosome 8 open reading frame




40012827






4


256
DHRS9
chr2: 169923544-
148.32
302.30
1.03
1.67
5.00E−05
7.97E−04
dehydrogenase/reductase (SDR




169952677






family) member 9


257
LAMA3
chr18: 21269561-
16.87
34.36
1.03
1.75
5.00E−05
7.97E−04
laminin, alpha 3




21535029


258
TRIM47
chr17: 73870244-
12.77
25.99
1.03
1.70
5.00E−05
7.97E−04
tripartite motif containing 47




73874656


259
IFIT1
chr10: 91152302-
1.69
3.42
1.02
1.32
5.00E−05
7.97E−04
interferon-induced protein with




91166244






tetratricopeptide repeats 1


260
PGM3
chr6: 83777384-
10.48
21.26
1.02
1.33
5.00E−05
7.97E−04
phosphoglucomutase 3




83906256


261
NABP1
chr2: 192542797-
7.63
15.43
1.02
1.75
5.00E−05
7.97E−04
nucleic acid binding protein 1




192553248


262
FCHO1
chr19: 17858526-
2.21
4.46
1.01
1.26
5.00E−05
7.97E−04
FCH domain only 1




17899377


263
PNMA1
chr14: 74178485-
10.79
21.73
1.01
1.63
5.00E−05
7.97E−04
paraneoplastic Ma antigen 1




74181128


264
PPP1R13L
chr19: 45882891-
6.68
13.43
1.01
0.96
2.05E−03
1.98E−02
protein phosphatase 1,




45927177






regulatory subunit 13 like


265
INPP1
chr2: 191208195-
15.81
31.68
1.00
1.71
5.00E−05
7.97E−04
inositol polyphosphate-1-




191236391






phosphatase


266
IL1RL2
chr2: 102803432-
0.50
1.00
1.00
0.80
2.25E−03
2.14E−02
interleukin 1 receptor-like 2




102855811


267
GBP3
chr1: 89472359-
32.08
64.03
1.00
1.71
5.00E−05
7.97E−04
guanylate binding protein 3




89488549


268
BAG3
chr10: 121410881-
8.77
17.47
0.99
1.61
5.00E−05
7.97E−04
BCL2-associated athanogene 3




121437329


269
SLC2A1
chr1: 43391045-
20.36
40.51
0.99
1.71
5.00E−05
7.97E−04
solute carrier family 2




43449029






(facilitated glucose











transporter), member 1


270
WWC1
chr5: 167719064-
4.39
8.69
0.98
1.65
5.00E−05
7.97E−04
WW and C2 domain containing 1




167899308


271
MAPK8IP1
chr11: 45907046-
0.72
1.43
0.98
0.92
2.30E−03
2.18E−02
mitogen-activated protein kinase




45928016






8 interacting protein 1


272
NOCT
chr4: 139936912-
1.80
3.56
0.98
1.01
2.50E−04
3.38E−03
nocturnin




139967093


273
BHLHE40
chr3: 5021096-
14.64
28.84
0.98
1.62
5.00E−05
7.97E−04
basic helix-loop-helix family,




5026865






member e40


274
LINC01138
chr1: 143717587-
1.98
3.90
0.98
0.95
9.00E−04
1.01E−02
long intergenic non-protein




143744519






coding RNA 1138


275
RHOF
chr12: 122150657-
38.24
75.22
0.98
1.57
5.00E−05
7.97E−04
ras homolog family member F (in




122231594






filopodia)


276
FAM214B
chr9: 35104117-
14.72
28.95
0.98
1.69
5.00E−05
7.97E−04
family with sequence similarity




35115893






214, member B


277
SPRED1
chr15: 38545051-
7.77
15.29
0.98
1.77
5.00E−05
7.97E−04
sprouty-related, EVH1 domain




38649450






containing 1


278
NUCB2
chr11: 17298285-
21.28
41.76
0.97
1.80
5.00E−05
7.97E−04
nucleobindin 2




17353070


279
MST1
chr3: 49721379-
1.97
3.86
0.97
1.06
2.00E−04
2.80E−03
macrophage stimulating 1




49726196


280
ANTXR2
chr4: 80822770-
16.05
31.45
0.97
1.35
5.00E−05
7.97E−04
anthrax toxin receptor 2




80994626


281
CD59
chr11: 33724555-
38.45
75.33
0.97
1.58
5.00E−05
7.97E−04
CD59 molecule, complement




33758025






regulatory protein


282
ITGB4
chr17: 73717515-
45.05
88.26
0.97
1.64
5.00E−05
7.97E−04
integrin, beta 4




73753899


283
CYP4F11
chr19: 16023179-
2.99
5.86
0.97
1.19
1.50E−04
2.18E−03
cytochrome P450, family 4,




16045676






subfamily F, polypeptide 11


284
LINC01207
chr4: 165675282-
9.06
17.62
0.96
1.63
5.00E−05
7.97E−04
long intergenic non-protein




165724947






coding RNA 1207


285
CCNG2
chr4: 78078356-
16.17
31.43
0.96
1.78
5.00E−05
7.97E−04
cyclin G2




78091213


286
PODN
chr1: 53527723-
1.61
3.08
0.94
1.06
5.50E−04
6.69E−03
podocan




53551174


287
BAIAP2L1
chr7: 97910978-
34.22
65.52
0.94
1.32
5.00E−05
7.97E−04
BAH-associated protein 2-like 1




98030427


288
ITGA6
chr2: 173292313-
49.72
95.14
0.94
1.51
5.00E−05
7.97E−04
integrin, alpha 6




173371181


289
FLJ32255
chr5: 42985500-
1.55
2.95
0.94
0.99
6.50E−04
7.69E−03
uncharacterized LOC643977




42993435


290
ETV7
chr6: 36321997-
2.55
4.88
0.93
0.99
1.20E−03
1.28E−02
ets variant 7




36355577


291
LYZ
chr12: 69742133-
249.84
477.20
0.93
1.42
5.00E−05
7.97E−04
lysozyme




69748013


292
RIPK3
chr14: 24805226-
24.96
47.65
0.93
1.63
5.00E−05
7.97E−04
receptor-interacting serine-




24809242






threonine kinase 3


293
RHBDF1
chr16: 108057-
13.85
26.42
0.93
1.60
5.00E−05
7.97E−04
rhomboid 5 homolog 1




122629






(Drosophila)


294
OPTN
chr10: 13142081-
28.46
54.27
0.93
1.71
5.00E−05
7.97E−04
optineurin




13180276


295
ZNF200
chr16: 3272324-
2.58
4.91
0.93
1.20
5.00E−05
7.97E−04
zinc finger protein 200




3285457


296
LRRC8A
chr9: 131644390-
11.56
21.99
0.93
1.62
5.00E−05
7.97E−04
leucine rich repeat containing 8




131680317






family, member A


297
CNN2
chr19: 1026297-
22.16
42.14
0.93
1.62
5.00E−05
7.97E−04
calponin 2




1039064


298
NOS3
chr7: 150688143-
0.90
1.71
0.93
0.73
5.75E−03
4.55E−02
nitric oxide synthase 3




150721586






(endothelial cell)


299
TNFRSF21
chr6: 47199262-
35.07
66.68
0.93
1.62
5.00E−05
7.97E−04
tumor necrosis factor receptor




47277683






superfamily, member 21


300
PODXL
chr7: 131185020-
3.84
7.30
0.93
1.49
5.00E−05
7.97E−04
podocalyxin-like




131241376


301
TIFAB
chr5: 134784557-
1.16
2.20
0.92
0.75
4.40E−03
3.65E−02
TRAF-interacting protein with




134788089






forkhead-associated domain,











family member B


302
TNFRSF10B
chr8: 22844929-
13.00
24.63
0.92
1.43
5.00E−05
7.97E−04
tumor necrosis factor receptor




22941132






superfamily, member 10b


303
SLC25A29
chr14: 100757447-
7.64
14.47
0.92
1.38
5.00E−05
7.97E−04
solute carrier family 25




100772884






(mitochondrial











carnitine/acylcarnitine carrier),











member 29


304
PHKA1
chrX: 71798663-
1.33
2.51
0.92
1.18
5.00E−05
7.97E−04
phosphorylase kinase, alpha 1




71934029






(muscle)


305
ARHGAP10
chr4: 148653452-
1.18
2.22
0.92
1.02
2.50E−04
3.38E−03
Rho GTPase activating protein 10




148993927


306
PMEPA1
chr20: 56223447-
5.99
11.32
0.92
1.48
5.00E−05
7.97E−04
prostate transmembrane protein,




56286592






androgen induced 1


307
HAPLN3
chr15: 89420518-
1.79
3.37
0.92
0.83
3.30E−03
2.90E−02
hyaluronan and proteoglycan link




89438770






protein 3


308
KRT19
chr17: 39679868-
875.64
1652.07
0.92
1.06
1.50E−04
2.18E−03
keratin 19, type I




39684641


309
PPP4R1L
chr20: 56807832-
0.90
1.69
0.92
0.82
4.45E−03
3.68E−02
protein phosphatase 4, regulatory




56884495






subunit 1 -like (pseudogene)


310
FHL2
chr2: 105977282-
59.88
112.80
0.91
1.64
5.00E−05
7.97E−04
four and a half LIM domains 2




106055230


311
GALE
chr1: 24122088-
72.79
136.72
0.91
1.64
5.00E−05
7.97E−04
UDP-galactose-4-epimerase




24127294


312
BCL2L1
chr20: 30252260-
33.07
62.07
0.91
1.64
5.00E−05
7.97E−04
BCL2-like 1




30310656


313
CASP4
chr11: 104813593-
16.46
30.81
0.90
1.52
5.00E−05
7.97E−04
caspase 4, apoptosis-related




104839325






cysteine peptidase


314
MXRA8
chr1: 1288068-
13.33
24.92
0.90
1.52
5.00E−05
7.97E−04
matrix-remodelling associated 8




1298921


315
NFKBIZ
chr3: 101498028-
16.54
30.88
0.90
1.45
5.00E−05
7.97E−04
nuclear factor of kappa light




101579869






polypeptide gene enhancer in B-











cells inhibitor, zeta


316
LPIN1
chr2: 11817704-
6.17
11.50
0.90
1.44
5.00E−05
7.97E−04
lipin 1




11967533


317
NBPF15
chr1: 147574322-
1.62
3.02
0.90
1.08
1.50E−04
2.18E−03
neuroblastoma breakpoint family,




149109725






member 15


318
UACA
chr15: 70946892-
6.58
12.26
0.90
1.71
5.00E−05
7.97E−04
uveal autoantigen with coiled-




71055850






coil domains and ankyrin repeats


319
CPD
chr17: 28705941-
12.89
24.02
0.90
1.67
5.00E−05
7.97E−04
carboxypeptidase D




28796675


320
S100A6
chr1: 153507075-
3434.60
6398.04
0.90
0.96
2.85E−03
2.59E−02
S100 calcium binding protein A6




153508717


321
TLR4
chr9: 120466452-
3.64
6.76
0.89
1.46
5.00E−05
7.97E−04
toll-like receptor 4




120479769


322
SYTL1
chr1: 27668482-
10.19
18.91
0.89
1.39
5.00E−05
7.97E−04
synaptotagmin-like 1




27680423


323
TIMP2
chr17: 76849058-
36.71
68.02
0.89
1.55
5.00E−05
7.97E−04
TIMP metallopeptidase




76921472






inhibitor 2


324
RAB37
chr17: 72667255-
6.30
11.65
0.89
1.16
5.00E−05
7.97E−04
RAB37, member RAS oncogene




72743474






family


325
SORD
chr15: 45315301-
12.55
23.21
0.89
1.50
5.00E−05
7.97E−04
sorbitol dehydrogenase




45367287


326
ARL5B
chr10: 18948312-
3.96
7.31
0.88
1.31
5.00E−05
7.97E−04
ADP-ribosylation factor-like 5B




18966940


327
MAP3K6
chr1: 27681669-
4.43
8.16
0.88
1.37
5.00E−05
7.97E−04
mitogen-activated protein kinase




27693337






kinase kinase 6


328
FAM57A
chr17: 635846-
7.74
14.27
0.88
1.28
5.00E−05
7.97E−04
family with sequence similarity




646075






57, member A


329
PLA2G4C
chr19: 48551099-
1.73
3.19
0.88
0.94
1.35E−03
1.41E−02
phospholipase A2, group IVC




48614109






(cytosolic, calcium-independent)


330
TTC7A
chr2: 47129008-
8.10
14.93
0.88
0.99
5.00E−04
6.13E−03
tetratricopeptide repeat




47303275






domain 7A


331
SGMS1
chr10: 520653444-
3.77
6.95
0.88
1.32
5.00E−05
7.97E−04
sphingomyelin synthase 1




52383737


332
SETD7
chr4: 140427191-
5.58
10.24
0.88
1.53
5.00E−05
7.97E−04
SET domain containing (lysine




140477577






methyltransferase) 7


333
RPL22L1
chr3: 170582664-
9.10
16.68
0.87
1.32
5.00E−05
7.97E−04
ribosomal protein L22-like 1




170588045


334
ANXA2
chr15: 60639349-
576.09
1055.30
0.87
1.11
2.50E−04
3.38E−03
annexin A2




60690185


335
IBTK
chr6: 82879955-
14.47
26.46
0.87
1.61
5.00E−05
7.97E−04
inhibitor of Bruton




82957448






agammaglobulinemia tyrosine











kinase


336
COL9A2
chr1: 40766162-
3.72
6.78
0.87
1.21
1.50E−04
2.18E−03
collagen, type IX, alpha 2




40782939


337
TMEM165
chr4: 56262079-
34.83
63.43
0.86
1.56
5.00E−05
7.97E−04
transmembrane protein 165




56292342


338
KCNK6
chr19: 38810483-
14.23
25.91
0.86
1.47
5.00E−05
7.97E−04
potassium channel, two pore




38819649






domain subfamily K, member 6


339
SP110
chr2: 231033644-
4.45
8.11
0.86
1.22
5.00E−05
7.97E−04
SP110 nuclear body protein




231090444


340
ORAI3
chr16: 30960404-
7.04
12.80
0.86
1.22
5.00E−05
7.97E−04
ORAI calcium release-activated




30966259






calcium modulator 3


341
KCNQ4
chr1: 41249683-
1.04
1.89
0.86
0.92
1.50E−03
1.53E−02
potassium channel, voltage gated




41306124






KQT-like subfamily Q, member 4


342
SNX9
chr6: 158244202-
29.39
53.33
0.86
1.54
5.00E−05
7.97E−04
sorting nexin 9




158366109


343
CABLES1
chr18: 20714527-
3.44
6.25
0.86
1.27
5.00E−05
7.97E−04
Cdk5 and Abl enzyme substrate 1




20840434


344
GGT1
chr22: 24979717-
8.14
14.77
0.86
1.04
9.00E−04
1.01E−02
gamma-glutamyltransferase 1




25024972


345
DDX60L
chr4: 169277885-
7.16
12.99
0.86
1.58
5.00E−05
7.97E−04
DEAD (Asp-Glu-Ala-Asp) box




169401665






polypeptide 60-like


346
SLC16A3
chr17: 80186281-
57.19
103.38
0.85
1.49
5.00E−05
7.97E−04
solute carrier family 16




80197375






(monocarboxylate transporter),











member 3


347
WWC2
chr4: 184020462-
0.61
1.10
0.85
0.97
7.00E−04
8.19E−03
WW and C2 domain containing 2




184241929


348
MAP2K3
chr17: 21187967-
30.45
54.88
0.85
1.50
5.00E−05
7.97E−04
mitogen-activated protein kinase




21218551






kinase 3


349
IFIT2
chr10: 91061705-
2.39
4.30
0.85
1.18
5.00E−05
7.97E−04
interferon-induced protein with




91069033






tetratricopeptide repeats 2


350
ERAP2
chr5: 96211643-
8.96
16.14
0.85
1.26
5.00E−05
7.97E−04
endoplasmic reticulum




96255406






aminopeptidase 2


351
CALU
chr7: 128379345-
12.79
23.01
0.85
1.56
5.00E−05
7.97E−04
calumenin




128415844


352
PFKFB3
chr10: 6186842-
5.30
9.53
0.85
1.33
5.00E−05
7.97E−04
6-phosphofructo-2-kinase/




6277507






fructose-2,6-biphosphatase 3


353
SNHG5
chr6: 86386724-
96.63
173.62
0.85
1.32
5.00E−05
7.97E−04
small nucleolar RNA host gene 5




86388451


354
GCNT3
chr15: 59903981-
204.61
367.58
0.85
1.22
5.00E−05
7.97E−04
glucosaminyl (N-acetyl)




59912210






transferase 3, mucin type


355
NUP62CL
chrX: 106366656-
1.59
2.85
0.84
0.83
6.30E−03
4.91E−02
nucleoporin 62 kDa C-terminal




106449670






like


356
CD276
chr15: 73976621-
10.23
18.36
0.84
1.40
5.00E−05
7.97E−04
CD276 molecule




74006859


357
SLCO4A1
chr20: 61273796-
3.44
6.15
0.84
0.97
8.00E−04
9.10E−03
solute carrier organic anion




61303647






transporter family, member 4A1


358
COL17A1
chr10: 105791045-
57.93
103.64
0.84
1.31
5.00E−05
7.97E−04
collagen, type XVII, alpha 1




105845638


359
ABTB1
chr3: 127391780-
12.64
22.53
0.83
1.33
5.00E−05
7.97E−04
ankyrin repeat and BTB (POZ)




127399769






domain containing 1


360
TNFRSF1B
chr1: 12226999-
11.28
20.07
0.83
1.43
5.00E−05
7.97E−04
tumor necrosis factor receptor




12269277






superfamily, member 1B


361
GNPNAT1
chr14: 53241910-
18.14
32.26
0.83
1.57
5.00E−05
7.97E−04
glucosamine-phosphate N-




53258386






acetyltransferase 1


362
ICA1
chr7: 8152814-
13.90
24.68
0.83
1.41
5.00E−05
7.97E−04
islet cell autoantigen 1, 69 kDa




8302242


363
RRAS
chr19: 50138551-
41.18
73.08
0.83
1.41
5.00E−05
7.97E−04
related RAS viral (r-ras)




50143400






oncogene homolog


364
TRANK1
chr3: 36868307-
13.30
23.57
0.83
1.43
5.00E−05
7.97E−04
tetratricopeptide repeat and




36986548






ankyrin repeat containing 1


365
NFE2L3
chr7: 26191846-
6.13
10.86
0.82
1.35
5.00E−05
7.97E−04
nuclear factor, erythroid 2-




26226756






like 3


366
STXBP6
chr14: 25281305-
6.42
11.35
0.82
1.14
1.00E−04
1.51E−03
syntaxin binding protein 6




25519095






(amisyn)


367
ACPP
chr3: 132036210-
2.96
5.21
0.82
0.92
1.75E−03
1.74E−02
acid phosphatase, prostate




132087146


368
LOC100288778
chr12: 87983-
3.19
5.63
0.82
0.82
1.65E−03
1.66E−02
WAS protein family homolog 1




91263






pseudogene


369
SC5D
chr11: 121163387-
6.78
11.94
0.82
1.43
5.00E−05
7.97E−04
sterol-C5-desaturase




121184119


370
CYP51A1
chr7: 91741462-
48.27
84.95
0.82
1.38
5.00E−05
7.97E−04
cytochrome P450, family 51,




91764059






subfamily A, polypeptide 1


371
GLMP
chr1: 156262477-
21.65
38.09
0.81
1.30
5.00E−05
7.97E−04
glycosylated lysosomal membrane




156265480






protein


372
SOCS3
chr17: 76352857-
3.69
6.48
0.81
1.02
8.50E−04
9.59E−03
suppressor of cytokine




76356160






signaling 3


373
EHD1
chr11: 64620198-
18.85
33.13
0.81
1.47
5.00E−05
7.97E−04
EH-domain containing 1




64647185


374
KLF2
chr19: 16435650-
9.99
17.55
0.81
1.14
3.50E−04
4.55E−03
Kruppel-like factor 2




16438339


375
LIF
chr22: 30636435-
4.62
8.11
0.81
1.23
5.00E−05
7.97E−04
leukemia inhibitory factor




30642840


376
PLS3
chrX: 114752496-
9.47
16.60
0.81
1.45
5.00E−05
7.97E−04
plastin 3




114885179


377
HS3ST1
chr4: 11399987-
3.42
6.00
0.81
0.93
1.00E−03
1.10E−02
heparan sulfate (glucosamine) 3-




11430537






O-sulfotransferase 1


378
SLC17A9
chr20: 61583998-
10.48
18.37
0.81
1.27
5.00E−05
7.97E−04
solute carrier family 17




61599949






(vesicular nucleotide











transporter), member 9


379
SCG5
chr15: 32933869-
4.74
8.30
0.81
0.92
9.50E−04
1.05E−02
secretogranin V




32989298


380
C1GALT1
chr7: 7222245-
6.53
11.43
0.81
1.48
5.00E−05
7.97E−04
core 1 synthase, glycoprotein-N-




7288280






acetylgalactosamine 3-beta-











galactosyltransferase 1


381
BOK
chr2: 242483800-
5.68
9.94
0.81
1.18
1.50E−04
2.18E−03
BCL2-related ovarian killer




242513553


382
SHB
chr9: 37915894-
3.58
6.27
0.81
1.27
5.00E−05
7.97E−04
Src homology 2 domain containing




38069210






adaptor protein B


383
PDLIM7
chr5: 176910394-
11.66
20.39
0.81
1.12
2.00E−04
2.80E−03
PDZ and LIM domain 7 (enigma)




176924606


384
P4HB
chr17: 79801033-
318.06
556.16
0.81
1.09
5.00E−05
7.97E−04
prolyl 4-hydroxylase, beta




79818544






polypeptide


385
ANKRD22
chr10: 90562486-
5.76
10.06
0.81
1.41
5.00E−05
7.97E−04
ankyrin repeat domain 22




90611732


386
INSIG2
chr2: 118846049-
8.45
14.76
0.80
1.37
5.00E−05
7.97E−04
insulin induced gene 2




118867597


387
GABRE
chrX: 151121595-
7.51
13.07
0.80
1.25
5.00E−05
7.97E−04
gamma-aminobutyric acid (GABA)




151143151






A receptor, epsilon


388
TXNDC17
chr17: 6481644-
23.91
41.54
0.80
1.19
5.00E−05
7.97E−04
thioredoxin domain




6554954






containing 17


389
GAN
chr16: 81348570-
1.00
1.73
0.80
0.92
1.15E−03
1.24E−02
gigaxonin




81413803


390
MST1R
chr3: 49924435-
31.40
54.48
0.79
1.41
5.00E−05
7.97E−04
macrophage stimulating 1




49941306






receptor


391
ITGB6
chr2: 160956176-
11.17
19.32
0.79
1.40
5.00E−05
7.97E−04
integrin, beta 6




161056824


392
MFSD2A
chr1: 40420783-
10.01
17.30
0.79
1.17
5.00E−05
7.97E−04
major facilitator superfamily




40435640






domain containing 2A


393
FUT8
chr14: 65877309-
6.81
11.75
0.79
1.34
5.00E−05
7.97E−04
fucosyltransferase 8 (alpha




66210839






(1,6) fucosyltransferase)


394
RIMS3
chr1: 41086351-
3.48
6.01
0.79
1.27
5.00E−05
7.97E−04
regulating synaptic membrane




41131324






exocytosis 3


395
SERPINA1
chr14: 94843083-
48.63
83.86
0.79
1.28
5.00E−05
7.97E−04
serpin peptidase inhibitor, clade




94857029






A (alpha-1 antiproteinase,











antitrypsin), member 1


396
SMURF2
chr17: 62540734-
4.42
7.63
0.79
1.22
5.00E−05
7.97E−04
SMAD specific E3 ubiquitin




62658386






protein ligase 2


397
TMEM61
chr1: 55446464-
6.34
10.89
0.78
0.86
3.15E−03
2.79E−02
transmembrane protein 61




55457966


398
SH3D21
chr1: 36771993-
10.24
17.59
0.78
1.27
5.00E−05
7.97E−04
SH3 domain containing 21




36786948


399
OAS3
chr12: 113376248-
8.44
14.50
0.78
1.28
5.00E−05
7.97E−04
2′-5′-oligoadenylate




113411054






synthetase 3, 100 kDa


400
CBLB
chr3: 105377108-
6.14
10.53
0.78
1.31
5.00E−05
7.97E−04
Cbl proto-oncogene B, E3




105587887






ubiquitin protein ligase


401
LOC101927391
chr7: 7589734-
0.95
1.62
0.78
0.82
5.75E−03
4.55E−02
uncharacterized LOC101927391




7605696


402
PFKFB4
chr3: 48555116-
3.33
5.70
0.78
1.07
2.50E−04
3.38E−03
6-phosphofructo-2-kinase/fructose-




48594227






2,6-biphosphatase 4


403
KIAA1551
chr12: 32112352-
5.70
9.75
0.77
1.40
5.00E−05
7.97E−04
KIAA1551




32146043


404
STXBP1
chr9: 130374485-
2.15
3.68
0.77
1.00
5.00E−04
6.13E−03
syntaxin binding protein 1




130454995


405
DFNB31
chr9: 117164359-
2.57
4.40
0.77
0.97
1.60E−03
1.62E−02
deafness, autosomal recessive 31




117267736


406
VWA7
chr6_ssto_hap7:
2.21
3.78
0.77
0.92
1.45E−03
1.49E−02
von Willebrand factor A domain




3064183-






containing 7




3075920


407
IL18
chr11: 112013973-
39.19
66.93
0.77
1.41
5.00E−05
7.97E−04
interleukin 18




112034840


408
RNF149
chr2: 101892062-
18.58
31.64
0.77
1.42
5.00E−05
7.97E−04
ring finger protein 149




101925178


409
LACTB2
chr8: 71520811-
13.48
22.91
0.77
1.27
5.00E−05
7.97E−04
lactamase, beta 2




71581447


410
DPY19L1
chr7: 34968492-
7.14
12.13
0.76
1.35
5.00E−05
7.97E−04
dpy-19-like 1 (C. elegans)




35077653


411
PLIN3
chr19: 4838345-
49.01
83.23
0.76
1.35
5.00E−05
7.97E−04
perilipin 3




4867780


412
STX18
chr4: 4387982-
14.44
24.52
0.76
1.25
5.00E−05
7.97E−04
syntaxin 18




4543775


413
ALS2CL
chr3: 46710484-
20.13
34.15
0.76
1.27
5.00E−05
7.97E−04
ALS2 C-terminal like




46735194


414
REEP6
chr19: 1491164-
3.65
6.18
0.76
0.83
3.55E−03
3.07E−02
receptor accessory protein 6




1497924


415
SERPINB1
chr6: 2832565-
95.42
161.49
0.76
1.33
5.00E−05
7.97E−04
serpin peptidase inhibitor, clade B




2842283






(ovalbumin), member 1


416
AFAP1L2
chr10: 116054582-
5.04
8.52
0.76
1.21
5.00E−05
7.97E−04
actin filament associated protein 1-




116164537






like 2


417
BIK
chr22: 43506753-
10.12
17.11
0.76
0.88
1.60E−03
1.62E−02
BCL2-interacting killer (apoptosis-




43525718






inducing)


418
CCDC68
chr18: 52568739-
17.33
29.29
0.76
1.44
5.00E−05
7.97E−04
coiled-coil domain containing 68




52626739


419
GEM
chr8: 95261484-
2.04
3.45
0.75
0.82
3.30E−03
2.90E−02
GTP binding protein




95274547






overexpressed in skeletal muscle


420
MCFD2
chr2: 47129008-
12.30
20.72
0.75
1.01
6.50E−04
7.69E−03
multiple coagulation factor




47303275






deficiency 2


421
TCP11L2
chr12: 106696568-
4.71
7.93
0.75
1.02
5.00E−05
7.97E−04
t-complex 11, testis-specific-like 2




106740792


422
NOSTRIN
chr2: 169643048-
12.71
21.39
0.75
1.33
1.00E−04
1.51E−03
nitric oxide synthase trafficking




169721849


423
RARG
chr12: 53604349-
4.98
8.36
0.75
1.05
1.00E−04
1.51E−03
retinoic acid receptor, gamma




53626040


424
ST6GALNAC4
chr9: 130670164-
15.43
25.90
0.75
1.17
5.00E−05
7.97E−04
ST6 (alpha-N-acetyl-neuraminyl-




130679305






2,3-beta-galactosyl-1,3)-N-











acetylgalactosaminide alpha-2,6-











sialyltransferase 4


425
HIST1H1C
chr6: 26055967-
67.62
113.43
0.75
1.24
5.00E−05
7.97E−04
histone cluster 1, H1c




26056699


426
FRY
chr13: 32598195-
0.85
1.42
0.75
0.97
5.00E−04
6.13E−03
furry homolog (Drosophila)




5-32870776


427
FAM109B
chr22: 42470254-
7.37
12.35
0.75
1.11
5.00E−05
7.97E−04
family with sequence similarity




42475442






109, member B


428
TMEM140
chr7: 134832765-
9.03
15.13
0.74
0.85
2.60E−03
2.41E−02
transmembrane protein 140




134855578


429
GK
chrX: 30671475-
12.29
20.57
0.74
1.39
5.00E−05
7.97E−04
glycerol kinase




30749577


430
CREB3L2
chr7: 137559724-
12.24
20.48
0.74
1.21
5.00E−05
7.97E−04
cAMP responsive element binding




137686847






protein 3-like 2


431
ACOT9
chrX: 23721776-
14.34
23.98
0.74
1.22
5.00E−05
7.97E−04
acyl-CoA thioesterase 9




23761407


432
RBPMS
chr8: 30239634-
11.58
19.36
0.74
0.99
8.00E−04
9.10E−03
RNA binding protein with multiple




30429778






splicing


433
GDAP1
chr8: 75262617-
1.13
1.89
0.74
0.86
3.05E−03
2.72E−02
ganglioside induced differentiation




75279335






associated protein 1


434
BCO1
chr16: 81272295-
1.66
2.78
0.74
0.78
3.00E−03
2.69E−02
beta-carotene oxygenase 1




81324747


435
GALK2
chr15: 49447955-
7.84
13.10
0.74
1.18
5.00E−05
7.97E−04
galactokinase 2




49913118


436
GSTO2
chr10: 106028630-
10.13
16.90
0.74
0.92
1.05E−03
1.15E−02
glutathione S-transferase omega 2




106059176


437
CEP85
chr1: 26560643-
5.56
9.27
0.74
1.01
7.50E−04
8.64E−03
centrosomal protein 85 kDa




26605529


438
ETV5
chr3: 185764105-
1.92
3.19
0.74
0.92
1.05E−03
1.15E−02
ets variant 5




185826901


439
SLC45A4
chr8: 142217264-
6.10
10.17
0.74
1.15
5.00E−05
7.97E−04
solute carrier family 45, member 4




142264728


440
FDPS
chr1: 155278538-
104.25
173.68
0.74
1.00
7.50E−04
8.64E−03
farnesyl diphosphate synthase




155300909


441
BACH1
chr21: 30671219-
6.63
11.04
0.73
1.28
5.00E−05
7.97E−04
BTB and CNC homology 1, basic




30734217






leucine zipper transcription factor 1


442
KIAA1217
chr10: 23983674-
11.97
19.92
0.73
1.12
5.00E−05
7.97E−04
KIAA1217




24836777


443
MAOB
chrX: 43625856-
5.58
9.27
0.73
1.08
5.00E−05
7.97E−04
monoamine oxidase B




43741721


444
SPRY4
chr5: 141689991-
5.11
8.47
0.73
1.15
1.00E−04
1.51E−03
sprouty RTK signaling antagonist 4




141704620


445
IL7R
chr5: 35856976-
5.04
8.34
0.73
1.15
1.00E−04
1.51E−03
interleukin 7 receptor




35879705


446
YIPF5
chr5: 143537722-
16.40
27.15
0.73
1.39
5.00E−05
7.97E−04
Yip1 domain family, member 5




143550278


447
MMP14
chr14: 23305741-
27.80
45.99
0.73
1.28
5.00E−05
7.97E−04
matrix metallopeptidase 14




23316808






(membrane-inserted)


448
RASEF
chr9: 85594499-
15.99
26.46
0.73
1.28
5.00E−05
7.97E−04
RAS and EF-hand domain




85678043






containing


449
GLRX
chr5: 95149552-
51.86
85.78
0.73
1.29
5.00E−05
7.97E−04
glutaredoxin (thioltransferase)




95158577


450
FAXDC2
chr5: 154198051-
5.97
9.86
0.73
1.11
1.50E−04
2.18E−03
fatty acid hydroxylase domain




154230213






containing 2


451
SMIM3
chr5: 150157507-
7.36
12.17
0.73
1.06
1.00E−04
1.51E−03
small integral membrane protein 3




150176298


452
YPEL3
chr16: 30103634-
35.25
58.05
0.72
1.15
5.00E−05
7.97E−04
yippee-like 3




30107537


453
TINAGL1
chr1: 32042085-
59.52
98.00
0.72
1.28
5.00E−05
7.97E−04
tubulointerstitial nephritis antigen-




32053287






like 1


454
CRYZ
chr1: 75171171-
8.39
13.77
0.72
0.83
4.60E−03
3.78E−02
crystallin, zeta (quinone reductase)




75232360


455
SRXN1
chr20: 627267-
11.46
18.81
0.71
1.18
5.00E−05
7.97E−04
sulfiredoxin 1




634014


456
RASA4
chr7: 102220092-
4.62
7.58
0.71
1.17
5.00E−05
7.97E−04
RAS p21 protein activator 4




102257205


457
RSPH1
chr21: 43892596-
3.87
6.33
0.71
0.80
3.50E−03
3.04E−02
radial spoke head 1 homolog




43916464






(Chlamydomonas)


458
ZNF292
chr6: 87865268-
3.26
5.33
0.71
1.26
5.00E−05
7.97E−04
zinc finger protein 292




87973406


459
LRP10
chr14: 23340959-
124.41
202.86
0.71
1.14
1.00E−04
1.51E−03
low density lipoprotein receptor-




23347291






related protein 10


460
CAPN8
chr1: 223714971-
53.82
87.75
0.71
1.22
5.00E−05
7.97E−04
calpain 8




223853436


461
LOC146880
chr17: 62745779-
21.87
35.64
0.70
1.25
5.00E−05
7.97E−04
Rho GTPase activating protein 27




62778117






pseudogene


462
TMEM263
chr12: 107349543-
10.60
17.27
0.70
1.28
5.00E−05
7.97E−04
transmembrane protein 263




107367813


463
BBS12
chr4: 123653856-
1.70
2.77
0.70
0.81
4.25E−03
3.56E−02
Bardet-Biedl syndrome 12




123666098


464
RAPH1
chr2: 204298404-
5.04
8.20
0.70
1.16
5.00E−05
7.97E−04
Ras association (RalGDS/AF-6)




204400058






and pleckstrin homology











domains 1


465
TANK
chr2: 161993465-
19.25
31.30
0.70
1.15
1.00E−04
1.51E−03
TRAF family member-associated




162111154






NFKB activator


466
SLC30A7
chr1: 101361631-
5.81
9.44
0.70
1.29
5.00E−05
7.97E−04
solute carrier family 30 (zinc




101447311






transporter), member 7


467
NID2
chr14: 52471519-
2.46
4.00
0.70
0.96
3.50E−04
4.55E−03
nidogen 2 (osteonidogen)




52535946


468
PTPN12
chr7: 77166772-
12.85
20.86
0.70
1.29
5.00E−05
7.97E−04
protein tyrosine phosphatase, non-




77269388






receptor type 12


469
ABHD11-AS1
chr7: 73149398-
32.52
52.76
0.70
0.91
1.25E−03
1.33E−02
ABHD11 antisense RNA 1 (tail to




73150330






tail)


470
SEMA4B
chr15: 90728151-
36.01
58.43
0.70
1.28
5.00E−05
7.97E−04
sema domain, immunoglobulin




90772892






domain (Ig), transmembrane











domain (TM) and short











cytoplasmic domain,











(semaphorin) 4B


471
GTF2E2
chr8: 30436030-
14.84
24.09
0.70
1.17
5.00E−05
7.97E−04
general transcription factor IIE,




30515738






polypeptide 2, beta 34 kDa


472
CYTH2
chr19: 48972464-
17.54
28.41
0.70
1.27
5.00E−05
7.97E−04
cytohesin 2




48985571


473
TSPAN1
chr1: 46640748-
1044.92
1691.96
0.70
0.77
4.55E−03
3.75E−02
tetraspanin 1




46651634


474
SEC13
chr3: 10342612-
68.75
111.28
0.69
1.28
5.00E−05
7.97E−04
SEC13 homolog, nuclear pore and




10362872






COPII coat complex component


475
DYNLT3
chrX: 37698088-
16.59
26.79
0.69
1.30
5.00E−05
7.97E−04
dynein, light chain, Tctex-type 3




37706889


476
INSIG1
chr7: 155089485-
26.44
42.70
0.69
1.11
5.00E−05
7.97E−04
insulin induced gene 1




155101945


477
DVL1
chr1: 1270657-
21.31
34.39
0.69
1.29
5.00E−05
7.97E−04
dishevelled segment polarity




1284492






protein 1


478
CNKSR3
chr6: 154726432-
8.64
13.93
0.69
1.15
5.00E−05
7.97E−04
CNKSR family member 3




154831753


479
DCUN1D5
chr11: 102921412-
0.92
1.49
0.69
1.08
4.00E−04
5.06E−03
DCN1, defective in cullin




102962944






neddylation 1, domain containing 5


480
PRKY
chrY: 7142012-
1.33
2.15
0.69
0.78
6.20E−03
4.85E−02
protein kinase, Y-linked,




7249588






pseudogene


481
OSBPL8
chr12: 76745577-
4.59
7.38
0.68
1.18
5.00E−05
7.97E−04
oxysterol binding protein-like 8




76953589


482
CAPG
chr2: 85621870-
77.07
123.87
0.68
1.25
5.00E−05
7.97E−04
capping protein (actin filament),




85641197






gelsolin-like


483
ETV3
chr1: 157094458-
4.17
6.69
0.68
0.86
2.40E−03
2.25E−02
ets variant 3




157108383


484
FBXO6
chr1: 11724149-
5.04
8.09
0.68
0.80
4.85E−03
3.96E−02
F-box protein 6




11734409


485
TNFRSF10A
chr8: 23048969-
4.04
6.47
0.68
0.84
9.50E−04
1.05E−02
tumor necrosis factor receptor




23082680






superfamily, member 10a


486
MYDGF
chr19: 4657556-
90.58
144.76
0.68
1.22
5.00E−05
7.97E−04
myeloid-derived growth factor




4670415


487
TGM2
chr20: 36756863-
10.34
16.51
0.68
1.08
5.00E−05
7.97E−04
transglutaminase 2




36793700


488
ZFYVE1
chr14: 73436152-
5.78
9.24
0.68
0.96
7.50E−04
8.64E−03
zinc finger, FYVE domain




73493920






containing 1


489
HERC4
chr10: 69681655-
15.20
24.25
0.67
1.25
5.00E−05
7.97E−04
HECT and RLD domain containing




69835103






E3 ubiquitin protein ligase 4


490
IL15RA
chr10: 5994333-
6.27
10.00
0.67
0.88
2.65E−03
2.44E−02
interleukin 15 receptor, alpha




6020150


491
CKLF
chr16: 66586465-
27.10
43.23
0.67
0.96
8.50E−04
9.59E−03
chemokine-like factor




66613038


492
PCBP4
chr3: 51989329-
8.08
12.89
0.67
0.97
9.00E−04
1.01E−02
poly(rC) binding protein 4




52001482


493
ARHGEF28
chr5: 72921982-
2.05
3.26
0.67
0.96
5.00E−04
6.13E−03
Rho guanine nucleotide exchange




73237818






factor (GEF) 28


494
CD2
chr1: 117297085-
6.39
10.18
0.67
0.92
1.25E−03
1.33E−02
CD2 molecule




117311851


495
STX19
chr3: 93698982-
11.60
18.49
0.67
1.01
9.50E−04
1.05E−02
syntaxin 19




93774522


496
LYST
chr1: 235824330-
2.89
4.60
0.67
0.93
2.40E−03
2.25E−02
lysosomal trafficking regulator




236047008


497
RPL37
chr5: 40831429-
230.43
366.73
0.67
1.13
3.00E−04
3.97E−03
ribosomal protein L37




40835387


498
BZW1
chr2: 201560445-
99.09
157.57
0.67
1.15
5.00E−05
7.97E−04
basic leucine zipper and W2




201688569






domains 1


499
EEPD1
chr7: 36192835-
2.96
4.71
0.67
0.93
6.50E−04
7.69E−03
endonuclease/exonuclease/




36341152






phosphatase family domain











containing 1


500
PPA1
chr10: 71962585-
104.60
166.05
0.67
1.26
5.00E−05
7.97E−04
pyrophosphatase (inorganic) 1




71993190


501
S100A16
chr1: 153579366-
274.09
434.63
0.67
1.14
5.00E−05
7.97E−04
S100 calcium binding protein A16




153585514


502
RIN1
chr11: 66099541-
4.90
7.76
0.66
0.90
2.15E−03
2.06E−02
Ras and Rab interactor 1




66104000


503
IFI44
chr1: 79115476-
3.07
4.85
0.66
0.77
6.40E−03
4.97E−02
interferon-induced protein 44




79129763


504
ECT2
chr3: 172468474-
8.05
12.74
0.66
1.18
5.00E−05
7.97E−04
epithelial cell transforming 2




172539264


505
RNASE4
chr14: 21152335-
59.94
94.78
0.66
1.04
5.00E−05
7.97E−04
ribonuclease, RNase A family, 4




21168761


506
CD247
chr1: 167399876-
3.79
5.99
0.66
0.75
5.20E−03
4.20E−02
CD247 molecule




167487847


507
AGR3
chr7: 16899029-
132.11
208.74
0.66
1.24
5.00E−05
7.97E−04
anterior gradient 3, protein




16921613






disulphide isomerase family











member


508
KDSR
chr18: 60994970-
6.40
10.11
0.66
1.19
5.00E−05
7.97E−04
3-ketodihydrosphingosine




61034506






reductase


509
AP3S1
chr5: 115177618-
49.87
78.68
0.66
1.25
5.00E−05
7.97E−04
adaptor-related protein complex 3,




115249778






sigma 1 subunit


510
TMED9
chr5: 177019212-
115.33
181.81
0.66
1.18
5.00E−05
7.97E−04
transmembrane p24 trafficking




177023099






protein 9


511
SLC37A1
chr21: 43919741-
27.45
43.28
0.66
1.17
5.00E−05
7.97E−04
solute carrier family 37 (glucose-6-




44001550






phosphate transporter), member 1


512
NTHL1
chr16: 2089815-
11.06
17.41
0.66
0.84
2.90E−03
2.62E−02
nth-like DNA glycosylase 1




2097867


513
IFNLR1
chr1: 24480646-
4.41
6.94
0.65
1.02
2.50E−04
3.38E−03
interferon, lambda receptor 1




24513765


514
B4GALT6
chr18: 29202208-
1.46
2.30
0.65
0.85
3.85E−03
3.28E−02
UDP-Gal: betaGlcNAc beta 1,4-




29264686






galactosyltransferase, polypeptide











6


515
TFF3
chr21: 43731776-
685.72
1079.30
0.65
0.81
3.45E−03
3.01E−02
trefoil factor 3 (intestinal)




43735706


516
TC2N
chr14: 92246095-
17.32
27.25
0.65
1.27
5.00E−05
7.97E−04
tandem C2 domains, nuclear




92333880


517
CTNNAL1
chr9: 111704848-
5.08
7.99
0.65
1.01
3.50E−04
4.55E−03
catenin (cadherin-associated




111775874






protein), alpha-like 1


518
DNAJC10
chr2: 183580767-
17.97
28.23
0.65
1.19
5.00E−05
7.97E−04
DnaJ (Hsp40) homolog, subfamily




183644750






C, member 10


519
DEDD2
chr19: 42702744-
24.45
38.37
0.65
1.12
3.50E−04
4.55E−03
death effector domain containing 2




42724304


520
SH2D3A
chr19: 6752172-
18.47
28.99
0.65
1.16
1.00E−04
1.51E−03
SH2 domain containing 3A




6767523


521
SERAC1
chr6: 158530535-
2.77
4.34
0.65
0.87
1.40E−03
1.45E−02
serine active site containing 1




158589312


522
TMED3
chr15: 79603490-
51.61
80.91
0.65
1.16
5.00E−05
7.97E−04
transmembrane p24 trafficking




79615189






protein 3


523
THY1
chr11: 119252487-
6.57
10.30
0.65
0.90
2.30E−03
2.18E−02
Thy-1 cell surface antigen




119369944


524
TOR4A
chr9: 140172279-
22.28
34.93
0.65
1.22
1.00E−04
1.51E−03
torsin family 4, member A




140177093


525
GDA
chr9: 74729510-
18.87
29.56
0.65
1.19
5.00E−05
7.97E−04
guanine deaminase




74867140


526
HELZ2
chr20: 62189438-
4.77
7.47
0.65
1.09
2.50E−04
3.38E−03
helicase with zinc finger 2,




62205592






transcriptional coactivator


527
AHR
chr7: 17338275-
9.54
14.95
0.65
1.14
5.00E−05
7.97E−04
aryl hydrocarbon receptor




17385775


528
OCIAD2
chr4: 48887396-
131.44
205.76
0.65
1.17
5.00E−05
7.97E−04
OCIA domain containing 2




48908845


529
CCL5
chr17: 34198495-
15.82
24.76
0.65
0.98
1.50E−04
2.18E−03
chemokine (C-C motif) ligand 5




34207377


530
SEC14L1
chr17: 7508472
12.89
20.18
0.65
1.03
3.00E−04
3.97E−03
SEC14-like lipid binding 1




75213181


531
S100A14
chr1: 153586731-
370.73
579.89
0.65
1.02
1.00E−04
1.51E−03
S100 calcium binding protein A14




153588808


532
EMP1
chr12: 13349601-
171.36
267.93
0.64
0.94
7.50E−04
8.64E−03
epithelial membrane protein 1




13369708


533
SQLE
chr8: 126010719-
24.28
37.93
0.64
1.01
2.50E−04
3.38E−03
squalene epoxidase




126034525


534
ATG4A
chrX: 107334898-
12.72
19.85
0.64
1.14
1.00E−04
1.51E−03
autophagy related 4A, cysteine




107397901






peptidase


535
TNK2
chr3: 195590235-
10.38
16.18
0.64
1.16
5.00E−05
7.97E−04
tyrosine kinase, non-receptor, 2




195635880


536
KIAA0040
chr1: 175126122-
6.97
10.86
0.64
1.09
2.00E−04
2.80E−03
KIAA0040




175162229


537
FOXP4
chr6: 41514163-
8.28
12.91
0.64
1.13
2.00E−04
2.80E−03
forkhead box P4




41570122


538
HM13
chr20: 30102212-
69.16
107.78
0.64
1.15
1.00E−04
1.51E−03
histocompatibility (minor) 13




30161066


539
PMP22
chr17: 15133093-
27.45
42.76
0.64
1.11
1.00E−04
1.51E−03
peripheral myelin protein 22




15168674


540
KCNE3
chr11: 74165885-
9.33
14.53
0.64
1.09
5.00E−05
7.97E−04
potassium channel, voltage gated




74178600






subfamily E regulatory beta











subunit 3


541
TMEM2
chr9: 74298281-
19.87
30.91
0.64
1.14
5.00E−05
7.97E−04
transmembrane protein 2




74383800


542
SUCO
chr1: 172501488-
6.49
10.09
0.64
1.08
2.00E−04
2.80E−03
SUN domain containing




172580975






ossification factor


543
GPCPD1
chr20: 5525079-
9.60
14.93
0.64
1.20
5.00E−05
7.97E−04
glycerophosphocholine




5591672






phosphodiesterase 1


544
CDHR2
chr5: 175969511-
61.21
95.10
0.64
1.06
3.50E−04
4.55E−03
cadherin-related family member 2




176022769


545
LRCH1
chr13: 47127295-
3.75
5.82
0.63
0.99
4.00E−04
5.06E−03
leucine-rich repeats and calponin




47327175






homology (CH) domain containing











1


546
IFNGR1
chr6: 137518620-
59.23
91.94
0.63
1.20
5.00E−05
7.97E−04
interferon gamma receptor 1




137540567


547
ARRDC2
chr19: 18111940-
15.23
23.65
0.63
1.09
1.00E−04
1.51E−03
arrestin domain containing 2




18124911


548
MID1IP1
chrX: 38660500-
18.29
28.38
0.63
1.00
4.00E−04
5.06E−03
MIDI interacting protein 1




38665783


549
FA2H
chr16: 74746855-
28.66
44.45
0.63
1.14
5.00E−05
7.97E−04
fatty acid 2-hydroxylase




74808729


550
RIPK4
chr21: 43159528-
5.38
8.34
0.63
0.97
4.00E−04
5.06E−03
receptor-interacting serine-




43187249






threonine kinase 4


551
RHPN1
chr8: 144451024-
2.06
3.19
0.63
0.78
5.60E−03
4.46E−02
rhophilin, Rho GTPase binding




144466390






protein 1


552
RAB3D
chr19: 11406814-
5.49
8.50
0.63
1.00
4.00E−04
5.06E−03
RAB3D, member RAS oncogene




11450344






family


553
ALDH1A3
chr15: 101420008-
2.98
4.62
0.63
0.85
2.05E−03
1.98E−02
aldehyde dehydrogenase 1 family,




101456830






member A3


554
HLA-F
chr6_ssto_hap7:
64.83
100.33
0.63
1.10
5.00E−05
7.97E−04
major histocompatibility complex,




1028896-






class I, F




1054576


555
TCF12
chr15: 57210832-
12.44
19.24
0.63
1.10
1.50E−04
2.18E−03
transcription factor 12




57580714


556
B4GALT2
chr1: 44444873-
14.91
23.06
0.63
1.00
2.50E−04
3.38E−03
UDP-Gal: betaGlcNAc beta 1,4-




44456843






galactosyltransferase, polypeptide











2


557
STIM2
chr4: 26862312-
5.64
8.72
0.63
1.08
1.50E−04
2.18E−03
stromal interaction molecule 2




27027003


558
ALCAM
chr3: 105085556-
5.05
7.80
0.63
1.06
5.00E−05
7.97E−04
activated leukocyte cell adhesion




105295757






molecule


559
C6orf132
chr6: 42068856-
5.22
8.04
0.62
1.07
5.00E−05
7.97E−04
chromosome 6 open reading frame




42110715






132


560
BTNL3
chr5: 180415844-
45.84
70.52
0.62
1.06
1.50E−04
2.18E−03
butyrophilin-like 3




180433727


561
ANXA5
chr4: 122589151-
78.32
120.46
0.62
1.13
5.00E−05
7.97E−04
annexin A5




122618147


562
HYAL2
chr3: 50355220-
12.04
18.51
0.62
0.99
6.50E−04
7.69E−03
hyaluronoglucosaminidase 2




50360281


563
TRERF1
chr6: 42192668-
2.06
3.17
0.62
0.91
5.00E−04
6.13E−03
transcriptional regulating factor 1




42419783


564
P4HA1
chr10: 74766979-
12.34
18.96
0.62
1.09
1.00E−04
1.51E−03
prolyl 4-hydroxylase, alpha




74856732






polypeptide I


565
LATS2
chr13: 21547175-
2.10
3.22
0.62
0.84
2.05E−03
1.98E−02
large tumor suppressor kinase 2




21635722


566
UBE2L6
chr11: 57319127-
23.06
35.43
0.62
0.98
6.00E−04
7.22E−03
ubiquitin-conjugating enzyme E2L




57335803






6


567
SOWAHC
chr2: 110371910-
12.09
18.58
0.62
1.12
5.00E−05
7.97E−04
sosondowah ankyrin repeat




110376564






domain family member C


568
PALD1
chr10: 72238563-
1.98
3.03
0.62
0.82
3.80E−03
3.25E−02
phosphatase domain containing,




72328206






paladin 1


569
C4orf32
chr4: 113066552-
3.49
5.35
0.62
0.82
5.40E−03
4.34E−02
chromosome 4 open reading frame




113110237






32


570
UBA6
chr4: 68481478-
6.70
10.29
0.62
1.17
5.00E−05
7.97E−04
ubiquitin-like modifier activating




68566889






enzyme 6


571
PFKP
chr10: 3109711-
35.94
55.13
0.62
1.12
5.00E−05
7.97E−04
phosphofructokinase, platelet




3178997


572
OSGIN1
chr16: 83986826-
6.30
9.66
0.62
0.82
3.95E−03
3.35E−02
oxidative stress induced growth




83999937






inhibitor 1


573
TJP1
chr15: 29992356-
11.11
17.04
0.62
1.11
1.00E−04
1.51E−03
tight junction protein 1




30114706


574
TUBA4A
chr2: 220110191-
32.10
49.18
0.62
0.93
7.50E−04
8.64E−03
tubulin, alpha 4a




220136910


575
ZNFX1
chr20: 47862438-
9.19
14.08
0.61
0.88
1.60E−03
1.62E−02
zinc finger, NFX1-type




47905795






containing 1


576
ITGA1
chr5: 52083773-
5.29
8.09
0.61
0.88
2.65E−03
2.44E−02
integrin, alpha 1




52249485


577
IL20RA
chr6: 137321107-
5.72
8.75
0.61
0.98
9.00E−04
1.01E−02
interleukin 20 receptor, alpha




137366317


578
MARCKSL1
chr1: 32799429-
122.79
187.82
0.61
1.12
5.00E−05
7.97E−04
MARCKS-like 1




32801840


579
GALNT3
chr2: 166604312-
39.67
60.67
0.61
1.13
1.00E−04
1.51E−03
polypeptide N-




166650803






acetylgalactosaminyltransferase 3


580
F3
chr1: 94994731-
28.22
43.16
0.61
1.09
1.50E−04
2.18E−03
coagulation factor III




95007413






(thromboplastin, tissue factor)


581
PARD6B
chr20: 49348080-
3.14
4.80
0.61
0.90
1.55E−03
1.57E−02
par-6 family cell polarity regulator




49370278






beta


582
PPP2R2A
chr8: 26149006-
13.21
20.17
0.61
1.19
5.00E−05
7.97E−04
protein phosphatase 2, regulatory




26230195






subunit B, alpha


583
CASP10
chr2: 202047620-
10.18
15.54
0.61
1.08
1.50E−04
2.18E−03
caspase 10, apoptosis-related




202094129






cysteine peptidase


584
PIM3
chr22: 50354142-
26.30
40.16
0.61
1.10
5.00E−05
7.97E−04
Pim-3 proto-oncogene,




50357720






serine/threonine kinase


585
LAMB3
chr1: 209788217-
41.79
63.79
0.61
1.09
5.00E−05
7.97E−04
laminin, beta 3




209825820


586
SLC35C1
chr11: 45825622-
32.10
48.98
0.61
1.12
5.00E−05
7.97E−04
solute carrier family 35 (GDP-




45834567






fucose transporter), member C1


587
CCDC120
chrX: 48910960-
5.26
8.03
0.61
0.92
2.15E−03
2.06E−02
coiled-coil domain containing 120




48927510


588
DHRS7
chr14: 60611499-
59.83
91.23
0.61
1.10
2.00E−04
2.80E−03
dehydrogenase/reductase (SDR




60632211






family) member 7


589
HPSE
chr4: 84213613-
4.04
6.16
0.61
0.94
9.50E−04
1.05E−02
heparanase




84256306


590
ENPP4
chr6: 46097700-
9.04
13.78
0.61
1.15
5.00E−05
7.97E−04
ectonucleotide




46114436






pyrophosphatase/phosphodiesterase











4 (putative)


591
MAL2
chr8: 120220609-
153.69
234.21
0.61
1.01
3.50E−04
4.55E−03
mal, T-cell differentiation protein 2




120257914






(gene/pseudogene)


592
MAP4K3
chr2: 39476406-
7.34
11.19
0.61
1.06
3.50E−04
4.55E−03
mitogen-activated protein kinase




39664453






kinase kinase kinase 3


593
IFI27L2
chr14: 94594117-
46.92
71.47
0.61
0.81
2.45E−03
2.29E−02
interferon, alpha-inducible protein




94595957






27-like 2


594
MPG
chr16: 127017-
28.23
42.96
0.61
0.83
4.35E−03
3.63E−02
N-methylpurine DNA glycosylase




188697


595
SMAD3
chr15: 67358194-
14.15
21.52
0.61
1.07
5.00E−05
7.97E−04
SMAD family member 3




67487533


596
CCDC127
chr5: 204874-
6.07
9.22
0.60
0.75
6.15E−03
4.82E−02
coiled-coil domain containing 127




218297


597
ZNF37BP
chr10: 43008960-
1.52
2.30
0.60
0.93
4.00E−04
5.06E−03
zinc finger protein 37B,




43048318






pseudogene


598
THEM4
chr1: 151843342-
2.01
3.05
0.60
0.82
2.90E−03
2.62E−02
thioesterase superfamily member 4




151882361


599
TM9SF3
chr10: 98277866-
83.43
126.41
0.60
1.02
6.00E−04
7.22E−03
transmembrane 9 superfamily




98346809






member 3


600
ARHGAP12
chr10: 32094325-
12.11
18.34
0.60
1.12
5.00E−05
7.97E−04
Rho GTPase activating protein 12




32217804


601
ZNF706
chr8: 102209265-
29.25
44.30
0.60
1.21
1.50E−04
2.18E−03
zinc finger protein 706




102218292


602
PVRL2
chr19: 45349392-
35.79
54.20
0.60
1.08
5.00E−05
7.97E−04
poliovirus receptor-related 2




45392485






(herpesvirus entry mediator B)


603
RASSF6
chr4: 74437266-
10.28
15.55
0.60
1.10
2.00E−04
2.80E−03
Ras association (RalGDS/AF-6)




74486348






domain family member 6


604
YAE1D1
chr7: 39605974-
14.13
21.37
0.60
0.88
2.05E−03
1.98E−02
Yae1 domain containing 1




39651688


605
ARL14
chr3: 160394947-
37.06
56.02
0.60
1.08
2.00E−04
2.80E−03
ADP-ribosylation factor-like 14




160396235


606
JMJD1C
chr10: 64926980-
5.09
7.70
0.60
1.09
2.50E−04
3.38E−03
jumonji domain containing 1C




65226322


607
ZNF841
chr19: 52567718-
4.11
6.21
0.59
0.91
9.00E−04
1.01E−02
zinc finger protein 841




52599018


608
CAPRIN2
chr12: 30862485-
3.07
4.63
0.59
0.89
2.10E−03
2.02E−02
caprin family member 2




30907448


609
NMRK1
chr9: 77676115-
17.59
26.54
0.59
0.95
5.00E−04
6.13E−03
nicotinamide riboside kinase 1




77703133


610
TMC6
chr17: 76108998-
23.85
35.96
0.59
0.88
3.25E−03
2.86E−02
transmembrane channel-like 6




76139049


611
DNAJC3
chr13: 96329392-
20.29
30.58
0.59
1.08
1.50E−04
2.18E−03
DnaJ (Hsp40) homolog, subfamily




96447243






C, member 3


612
PRRG1
chrX: 37208527-
3.11
4.69
0.59
0.85
2.25E−03
2.14E−02
proline rich Gla




37316548






(G-carboxyglutamic acid) 1


613
SERPINB6
chr6: 2948392-
147.22
221.74
0.59
1.02
2.50E−04
3.38E−03
serpin peptidase inhibitor,




2972399






clade B (ovalbumin), member 6


614
DST
chr6: 56137688-
9.54
14.37
0.59
1.03
5.00E−04
6.13E−03
dystonin




56819426


615
PYCR1
chr17: 79890261-
32.64
49.11
0.59
1.06
2.50E−04
3.38E−03
pyrroline-5-carboxylate




79895204






reductase 1


616
OSBPL3
chr7: 24836155-
4.32
6.49
0.59
0.99
9.50E−04
1.05E−02
oxysterol binding protein-like 3




25019831


617
CHMP4C
chr8: 82644687-
14.92
22.42
0.59
1.00
6.00E−04
7.22E−03
charged multivesicular body




82671748






protein 4C


618
CERS2
chr1: 150937648-
53.63
80.50
0.59
1.06
1.00E−04
1.51E−03
ceramide synthase 2




150947479


619
TSPAN3
chr15: 77336359-
164.57
246.93
0.59
0.87
9.50E−04
1.05E−02
tetraspanin 3




77363570


620
KCTD21
chr11: 77850838-
3.64
5.46
0.58
0.82
3.20E−03
2.82E−02
potassium channel tetramerization




77899664






domain containing 21


621
GUK1
chr1: 228327784-
130.54
195.74
0.58
1.06
1.50E−04
2.18E−03
guanylate kinase 1




228336655


622
MRPL17
chr11: 6701615-
9.26
13.88
0.58
0.95
3.00E−04
3.97E−03
mitochondrial ribosomal protein




6704632






L17


623
PLEKHM1
chr17_ctg5_hap1:
8.99
13.47
0.58
1.06
2.50E−04
3.38E−03
pleckstrin homology domain




128327-






containing, family M (with RUN




183214






domain) member 1


624
CD58
chr1: 117057155-
20.54
30.79
0.58
0.97
7.50E−04
8.64E−03
CD58 molecule




117113715


625
NDEL1
chr17: 8339169-
15.87
23.79
0.58
1.01
3.00E−04
3.97E−03
nudE neurodevelopment protein 1-




8371495






like 1


626
GSTP1
chr11: 67351065-
304.06
455.64
0.58
1.03
3.00E−04
3.97E−03
glutathione S-transferase pi 1




67354124


627
FEM1C
chr5: 114856607-
11.81
17.70
0.58
1.10
5.00E−05
7.97E−04
fem-1 homolog c (C. elegans)




114880591


628
MAP1LC3B
chr16: 87425800-
29.29
43.86
0.58
1.08
1.00E−04
1.51E−03
microtubule-associated protein 1




87438380






light chain 3 beta


629
PSENEN
chr19: 36236477-
50.58
75.70
0.58
0.95
6.50E−04
7.69E−03
presenilin enhancer gamma




36238056






secretase subunit


630
PTPRR
chr12: 71031852-
16.69
24.96
0.58
1.05
3.00E−04
3.97E−03
protein tyrosine phosphatase,




71314584






receptor type, R


631
BFAR
chr16: 14726667-
16.41
24.54
0.58
1.04
2.50E−04
3.38E−03
bifunctional apoptosis regulator




14763093


632
GRB7
chr17: 37894161-
13.24
19.77
0.58
0.91
1.35E−03
1.41E−02
growth factor receptor-bound




37903538






protein 7


633
BTNL8
chr5: 180326076-
34.27
51.17
0.58
0.99
1.50E−04
2.18E−03
butyrophilin-like 8




180377906


634
TWF2
chr3: 52262625-
32.82
48.99
0.58
1.03
2.00E−04
2.80E−03
twinfilin actin binding protein 2




52273183


635
CD63
chr12: 56119226-
804.12
1200.00
0.58
0.85
1.85E−03
1.82E−02
CD63 molecule




56123457


636
RAP1B
chr12: 69004618-
95.48
142.33
0.58
1.06
5.00E−05
7.97E−04
RAP1B, member of RAS oncogene




69054385






family


637
TMEM62
chr15: 43425721-
12.84
19.14
0.58
1.00
5.00E−05
7.97E−04
transmembrane protein 62




43477341


638
FURIN
chr15: 91411821-
26.45
39.41
0.58
1.06
4.00E−04
5.06E−03
furin (paired basic amino acid




91426688






cleaving enzyme)


639
DIAPH1
chr5: 140894587-
22.87
34.07
0.58
1.02
3.00E−04
3.97E−03
diaphanous-related formin 1




140998622


640
HID1
chr17: 72946838-
19.28
28.71
0.57
1.02
2.50E−04
3.38E−03
HID1 domain containing




72971823


641
ZDHHC9
chrX: 128937263-
11.29
16.81
0.57
1.03
2.50E−04
3.38E−03
zinc finger, DHHC-type containing




128977910






9


642
PRKAG2
chr7: 151253200-
14.00
20.82
0.57
0.98
9.50E−04
1.05E−02
protein kinase, AMP-activated,




151576308






gamma 2 non-catalytic subunit


643
PLD2
chr17: 4710395-
7.56
11.24
0.57
0.94
5.50E−04
6.69E−03
phospholipase D2




4726727


644
NOP10
chr15: 34633916-
133.64
198.50
0.57
1.00
2.00E−04
2.80E−03
NOP 10 ribonucleoprotein




34635362


645
LCOR
chr10: 98592016-
8.56
12.72
0.57
1.04
4.00E−04
5.06E−03
ligand dependent nuclear receptor




98724198






corepressor


646
JAK2
chr9: 4985244-
3.57
5.30
0.57
0.92
8.00E−04
9.10E−03
Janus kinase 2




5128183


647
ZNF468
chr19: 53341784-
4.75
7.04
0.57
0.91
1.75E−03
1.74E−02
zinc finger protein 468




53360902


648
DLL4
chr15: 41221530-
4.73
7.02
0.57
0.82
2.40E−03
2.25E−02
delta-like 4 (Drosophila)




41231258


649
TTC39A
chr1: 51752929-
24.82
36.76
0.57
1.02
3.00E−04
3.97E−03
tetratricopeptide repeat domain




51810785






39A


650
MIA3
chr1: 222791443-
9.37
13.86
0.56
1.07
2.00E−04
2.80E−03
melanoma inhibitory activity




222841351






family, member 3


651
PSMA5
chr1: 109941652-
25.78
38.12
0.56
1.15
5.00E−05
7.97E−04
proteasome subunit alpha 5




109969108


652
GRINA
chr8: 145064225-
35.27
52.15
0.56
1.00
3.00E−04
3.97E−03
glutamate receptor, ionotropic, N-




145067583






methyl D-aspartate-associated











protein 1 (glutamate binding)


653
MVD
chr16: 88718347-
39.02
57.69
0.56
1.00
5.00E−04
6.13E−03
mevalonate (diphospho)




88729495






decarboxylase


654
PIK3IP1
chr22: 31677578-
13.51
19.96
0.56
0.95
9.50E−04
1.05E−02
phosphoinositide-3-kinase




31688520






interacting protein 1


655
MTHFD2
chr2: 74425689-
15.35
22.68
0.56
0.98
6.50E−04
7.69E−03
methylenetetrahydrofolate




74442424






dehydrogenase (NADP +











dependent) 2,











methenyltetrahydrofolate











cyclohydrolase


656
RAP2B
chr3: 152880000-
3.97
5.87
0.56
1.01
2.50E−04
3.38E−03
RAP2B, member of RAS oncogene




152888413






family


657
MORF4L2
chrX: 102930425-
68.30
100.82
0.56
1.03
8.50E−04
9.59E−03
mortality factor 4 like 2




102947484


658
CCDC64
chr12: 120427647-
5.33
7.86
0.56
0.85
2.35E−03
2.22E−02
coiled-coil domain containing 64




120532299


659
HDAC9
chr7: 18126571-
2.54
3.74
0.56
0.77
6.45E−03
5.00E−02
histone deacetylase 9




19036992


660
HERC6
chr4: 89299890-
3.60
5.30
0.56
0.85
2.50E−03
2.33E−02
HECT and RLD domain containing




89364249






E3 ubiquitin protein ligase family











member 6


661
FAM83H
chr8: 144806102-
21.29
31.33
0.56
1.08
1.00E−04
1.51E−03
family with sequence similarity 83,




144815914






member H


662
H2AFJ
chr12: 14927269-
14.87
21.86
0.56
0.98
4.50E−04
5.61E−03
H2A histone family, member J




14930936


663
CLOCK
chr4: 56294067-
3.23
4.75
0.56
1.00
5.00E−04
6.13E−03
clock circadian regulator




56413076


664
YIPF3
chr6: 43479564-
69.02
101.42
0.56
1.01
3.00E−04
3.97E−03
Yip1 domain family, member 3




43484728


665
SDCBP
chr8: 59465727-
93.98
138.10
0.56
1.04
4.00E−04
5.06E−03
syndecan binding protein




59495419






(syntenin)


666
RABAC1
chr19: 42460832-
107.53
157.92
0.55
0.98
2.50E−04
3.38E−03
Rab acceptor 1 (prenylated)




42463528


667
MAGED2
chrX: 54834031-
25.06
36.80
0.55
0.99
1.00E−04
1.51E−03
melanoma antigen family D2




54842448


668
PTTG1IP
chr21: 46269499-
133.45
195.94
0.55
0.91
6.50E−04
7.69E−03
pituitary tumor-transforming 1




46293818






interacting protein


669
CIR1
chr2: 175212877-
12.13
17.81
0.55
0.99
4.50E−04
5.61E−03
corepressor interacting with RBPJ,




175260443






1


670
TBC1D1
chr4: 37892704-
10.37
15.22
0.55
0.88
9.50E−04
1.05E−02
TBC1 (tre-2/USP6, BUB2, cdc16)




38140796






domain family, member 1


671
YIPF4
chr2: 32502957-
26.02
38.18
0.55
1.03
2.50E−04
3.38E−03
Yip1 domain family, member 4




32531658


672
RDH11
chr14: 68143518-
22.47
32.95
0.55
1.00
2.00E−04
2.80E−03
retinol dehydrogenase 11 (all-




68162510






trans/9-cis/11-cis)


673
SEC24A
chr5: 133984474-
10.28
15.07
0.55
0.97
4.50E−04
5.61E−03
SEC24 homolog A, COPII coat




134063601






complex component


674
VIMP
chr15: 101811113-
92.90
136.12
0.55
1.02
4.00E−04
5.06E−03
VCP-interacting membrane




101817725






selenoprotein


675
CCNYL1
chr2: 208576263-
19.95
29.22
0.55
1.01
4.00E−04
5.06E−03
cyclin Y-like 1




208620896


676
SAT1
chrX: 23801274-
361.01
528.26
0.55
0.93
1.20E−03
1.28E−02
spermidine/spermine N1-




23804327






acetyltransferase 1


677
SLC29A1
chr6: 44187241-
8.91
13.04
0.55
0.82
3.90E−03
3.32E−02
solute carrier family 29




44201888






(equilibrative nucleoside











transporter), member 1


678
C19orf33
chr19: 38794199-
356.92
522.09
0.55
0.83
2.80E−03
2.55E−02
chromosome 19 open reading




38806606






frame 33


679
VILL
chr3: 38035077-
79.87
116.82
0.55
0.96
4.50E−04
5.61E−03
villin-like




38048676


680
RB1CC1
chr8: 53535017-
5.94
8.68
0.55
1.03
7.50E−04
8.64E−03
RB1-inducible coiled-coil 1




53627026


681
SLC1A1
chr9: 4490426-
20.15
29.47
0.55
1.00
1.50E−04
2.18E−03
solute carrier family 1




4587469






(neuronal/epithelial high affinity











glutamate transporter, system











Xag), member 1


682
PLEKHA1
chr10: 124134093-
16.40
23.97
0.55
1.02
5.00E−04
6.13E−03
pleckstrin homology domain




124191871






containing, family A











(phosphoinositide binding specific)











member 1


683
GCC2
chr2: 1090655761
8.24
12.04
0.55
1.03
3.50E−04
4.55E−03
GRIP and coiled-coil domain




109125854






containing 2


684
PTMS
chr12: 6875540-
58.23
85.01
0.55
0.99
3.50E−04
4.55E−03
parathymosin




6880118


685
NSDHL
chrX: 151999510-
16.25
23.71
0.55
0.87
1.45E−03
1.49E−02
NAD(P) dependent steroid




152037907






dehydrogenase-like


686
DAP
chr5: 10679341-
50.35
73.47
0.55
0.98
2.50E−04
3.38E−03
death-associated protein




10761387


687
STX7
chr6: 132778662-
15.81
23.07
0.55
1.04
2.00E−04
2.80E−03
syntaxin 7




132834337


688
AGAP3
chr7: 150782917-
13.79
20.11
0.55
0.93
1.75E−03
1.74E−02
ArfGAP with GTPase domain,




150841523






ankyrin repeat and PH domain 3


689
LRRC42
chr1: 54411998-
9.72
14.18
0.54
0.83
2.10E−03
2.02E−02
leucine rich repeat containing 42




54433841


690
NMD3
chr3: 160939098-
9.79
14.28
0.54
0.96
2.50E−04
3.38E−03
NMD3 ribosome export adaptor




160969795


691
ARL8A
chr1: 202102531-
12.72
18.55
0.54
0.84
2.80E−03
2.55E−02
ADP-ribosylation factor-like 8A




202113871


692
UBE2H
chr7: 129470572-
17.51
25.53
0.54
1.00
3.00E−04
3.97E−03
ubiquitin-conjugating enzyme E2H




129592800


693
AGFG1
chr2: 228336847-
8.08
11.78
0.54
1.06
4.50E−04
5.61E−03
ArfGAP with FG repeats 1




228425938


694
SWAP70
chr11: 9685627-
8.38
12.20
0.54
0.95
8.50E−04
9.59E−03
SWAP switching B-cell complex




9774507






70 kDa subunit


695
AGA
chr4: 178351928-
7.75
11.28
0.54
0.85
3.20E−03
2.82E−02
aspartylglucosaminidase




178363657


696
SLK
chr10: 105727469-
13.07
19.01
0.54
1.01
3.00E−04
3.97E−03
STE20-like kinase




105787342


697
USO1
chr4: 76649705-
24.81
36.06
0.54
1.02
1.50E−04
2.18E−03
USO1 vesicle transport factor




76735442


698
SLC6A6
chr3: 14444075-
3.28
4.77
0.54
0.76
3.40E−03
2.97E−02
solute carrier family 6




14581850






(neurotransmitter transporter),











member 6


699
PDIA4
chr7: 148700153-
91.30
132.58
0.54
0.91
4.00E−04
5.06E−03
protein disulfide isomerase family




148725782






A, member 4


700
TIPARP
chr3: 156390959-
7.14
10.36
0.54
0.87
1.80E−03
1.78E−02
TCDD-inducible poly(ADP-ribose)




156424557






polymerase


701
ODC1
chr2: 10580496-
49.06
71.17
0.54
0.97
5.50E−04
6.69E−03
ornithine decarboxylase 1




10588680


702
CLSTN3
chr12: 7282966-
5.67
8.22
0.54
0.85
2.15E−03
2.06E−02
calsyntenin 3




7311530


703
OSBPL5
chr11: 3108345-
11.35
16.44
0.54
0.98
8.00E−04
9.10E−03
oxysterol binding protein-like 5




3186582


704
GSKIP
chr14: 96829788-
73.03
105.83
0.54
1.01
7.50E−04
8.64E−03
GSK3B interacting protein




96853627


705
TMBIM1
chr2: 219135114-
164.53
238.40
0.54
0.76
5.65E−03
4.49E−02
transmembrane BAX inhibitor




219211516






motif containing 1


706
RAB22A
chr20: 56884770-
7.20
10.43
0.53
1.01
2.50E−04
3.38E−03
RAB22A, member RAS oncogene




56942563






family


707
PLOD1
chr1: 11994723-
18.69
27.05
0.53
0.95
2.00E−04
2.80E−03
procollagen-lysine, 2-oxoglutarate




12035599






5-dioxygenase 1


708
CLTB
chr5: 175819455-
177.54
256.76
0.53
0.94
1.15E−03
1.24E−02
clathrin, light chain B




175843570


709
VEZT
chr12: 95611521-
9.90
14.30
0.53
0.99
7.50E−04
8.64E−03
vezatin, adherens junctions




95696566






transmembrane protein


710
STAT1
chr2: 191833761-
26.71
38.59
0.53
0.92
1.40E−03
1.45E−02
signal transducer and activator of




191878976






transcription 1, 91 kDa


711
TSSC1
chr2: 3192740-
11.64
16.81
0.53
0.83
2.80E−03
2.55E−02
tumor suppressing subtransferable




3381653






candidate 1


712
SH3BP2
chr4: 2794749-
12.60
18.19
0.53
0.94
8.00E−04
9.10E−03
SH3-domain binding protein 2




2842823


713
IDI1
chr10: 1064846-
60.42
87.18
0.53
0.90
1.75E−03
1.74E−02
isopentenyl-diphosphate delta




1095061






isomerase 1


714
RNF8
chr6: 37321747-
2.24
3.23
0.53
0.77
5.55E−03
4.44E−02
ring finger protein 8, E3 ubiquitin




37362514






protein ligase


715
FAM114A1
chr4: 38869353-
17.15
24.71
0.53
0.96
7.50E−04
8.64E−03
family with sequence similarity




38947365






114, member A1


716
RHOC
chr1: 113243748-
337.22
485.78
0.53
0.86
2.35E−03
2.22E−02
ras homolog family member C




113250025


717
SREK1IP1
chr5: 63986134-
3.42
4.92
0.53
0.93
1.75E−03
1.74E−02
SREK1-interacting protein 1




64064496


718
CTTN
chr11: 70244611-
85.89
123.71
0.53
0.91
1.40E−03
1.45E−02
cortactin




70282690


719
TXN
chr9: 113006091-
402.08
578.79
0.53
0.89
1.65E−03
1.66E−02
thioredoxin




113018920


720
ITGB1
chr10: 33189245-
107.84
155.19
0.53
0.86
2.55E−03
2.37E−02
integrin, beta 1 (fibronectin




33247293






receptor, beta polypeptide, antigen











CD29 includes MDF2, MSK12)


721
SLC35F5
chr2: 114470368-
20.78
29.89
0.52
0.99
9.00E−04
1.01E−02
solute carrier family 35, member




114514400






F5


722
CD68
chr17: 7482804-
92.32
132.65
0.52
0.92
6.50E−04
7.69E−03
CD68 molecule




7485429


723
SLC38A5
chrX: 48316919-
12.07
17.33
0.52
0.81
3.50E−03
3.04E−02
solute carrier family 38, member 5




48328644


724
GPR180
chr13: 95254103-
1.76
2.53
0.52
0.79
3.05E−03
2.72E−02
G protein-coupled receptor 180




95286899


725
PRKAB2
chr1: 146626684-
9.96
14.29
0.52
0.95
6.50E−04
7.69E−03
protein kinase, AMP-activated,




146644168






beta 2 non-catalytic subunit


726
ATP6V1G1
chr9: 117349993-
47.11
67.58
0.52
0.97
5.00E−04
6.13E−03
ATPase, H+ transporting,




117361152






lysosomal 13 kDa, V1 subunit G1


727
FGL2
chr7: 76751933-
22.62
32.43
0.52
0.94
1.80E−03
1.78E−02
fibrinogen-like 2




76924521


728
POLD4
chr11: 67085309-
103.01
147.68
0.52
0.89
1.95E−03
1.91E−02
polymerase (DNA-directed), delta




67159158






4, accessory subunit


729
MLKL
chr16: 74705752-
9.50
13.62
0.52
0.86
2.10E−03
2.02E−02
mixed lineage kinase domain-like




74734789


730
TRAM1
chr8: 71485452-
60.50
86.70
0.52
0.97
9.00E−04
1.01E−02
translocation associated




71520694






membrane protein 1


731
ERI1
chr8: 8860313-
3.47
4.97
0.52
0.80
4.55E−03
3.75E−02
exoribonuclease 1




8890849


732
PLAC8
chr4: 84011210-
321.83
460.37
0.52
0.87
2.45E−03
2.29E−02
placenta-specific 8




84035911


733
C14orf1
chr14: 76117232-
32.02
45.78
0.52
0.88
8.00E−04
9.10E−03
chromosome 14 open reading




76127538






frame 1


734
LPIN2
chr18: 2916991-
14.18
20.27
0.52
0.93
5.00E−05
7.97E−04
lipin 2




3011945


735
POMP
chr13: 29233140-
68.08
97.26
0.51
1.02
5.00E−04
6.13E−03
proteasome maturation protein




29253093


736
PLA2G4F
chr15: 42433331-
12.51
17.87
0.51
0.92
6.50E−04
7.69E−03
phospholipase A2, group IVF




42448839


737
SDC4
chr20: 43953928-
51.59
73.67
0.51
0.95
2.00E−04
2.80E−03
syndecan 4




43977064


738
BTF3
chr5: 72794249-
310.90
443.90
0.51
0.90
1.35E−03
1.41E−02
basic transcription factor 3




72801448


739
GBA
chr1: 155204238-
25.44
36.33
0.51
0.90
1.00E−03
1.10E−02
glucosidase, beta, acid




155214653


740
OSTC
chr4: 109571740-
88.50
126.30
0.51
0.98
5.50E−04
6.69E−03
oligosaccharyltransferase complex




109588978






subunit (non-catalytic)


741
TAX1BP1
chr7: 27778991-
37.91
54.10
0.51
0.99
7.00E−04
8.19E−03
Taxi (human T-cell leukemia virus




27869386






type 1) binding protein 1


742
ARHGAP5
chr14: 32546494-
9.74
13.90
0.51
0.98
1.15E−03
1.24E−02
Rho GTPase activating protein 5




32628934


743
TMEM173
chr5: 138855112-
19.23
27.43
0.51
0.88
1.00E−03
1.10E−02
transmembrane protein 173




138862343


744
NFKB2
chr10: 104153866-
11.74
16.74
0.51
0.88
1.95E−03
1.91E−02
nuclear factor of kappa light




104162286






polypeptide gene enhancer in B-











cells 2 (p49/p100)


745
FRMD8
chr11: 65154040-
15.26
21.75
0.51
0.90
1.15E−03
1.24E−02
FERM domain containing 8




65180995


746
JAGN1
chr3: 9932270-
25.51
36.33
0.51
0.88
1.20E−03
1.28E−02
jagunal homolog 1




9936031


747
PLEK2
chr14: 67853699-
37.15
52.88
0.51
0.91
6.00E−04
7.22E−03
pleckstrin 2




67878828


748
ERLEC1
chr2: 53897116-
29.35
41.74
0.51
0.86
2.05E−03
1.98E−02
endoplasmic reticulum lectin 1




54087170


749
COPB1
chr11: 14479048-
44.05
62.65
0.51
0.95
1.05E−03
1.15E−02
coatomer protein complex, subunit




14521441






beta 1


750
SBNO2
chr19: 1107632-
17.39
24.72
0.51
0.97
8.00E−04
9.10E−03
strawberry notch homolog 2




1174282






(Drosophila)


751
PSMB9
chr6_ssto_hap7:
30.29
43.06
0.51
0.79
2.45E−03
2.29E−02
proteasome subunit beta 9




4252710-




4258398


752
RALGPS2
chr1: 178694281-
8.34
11.85
0.51
0.95
1.15E−03
1.24E−02
Rai GEF with PH domain and SH3




178890977






binding motif 2


753
NAPG
chr18: 10525872-
13.16
18.69
0.51
0.93
1.10E−03
1.20E−02
N-ethylmaleimide-sensitive factor




10552766






attachment protein, gamma


754
WHAMM
chr15: 83478379-
5.58
7.92
0.51
0.81
2.60E−03
2.41E−02
WAS protein homolog associated




83503613






with actin, golgi membranes and











microtubules


755
FAM109A
chr12: 111798454-
12.97
18.42
0.51
0.89
2.05E−03
1.98E−02
family with sequence similarity




111806925






109, member A


756
IL17RE
chr3: 9944295-
31.04
44.08
0.51
0.90
1.00E−03
1.10E−02
interleukin 17 receptor E




9958084


757
MYO7B
chr2: 128293377-
44.94
63.78
0.51
0.87
1.45E−03
1.49E−02
myosin VIIB




128395303


758
10-Sep
chr2: 110300373-
19.30
27.38
0.50
0.94
7.00E−04
8.19E−03
septin 10




110371783


759
TMEM106B
chr7: 12250847-
11.77
16.71
0.50
1.00
1.50E−03
1.53E−02
transmembrane protein 106B




12276890


760
EFNA2
chr19: 1286152-
18.89
26.79
0.50
0.82
3.00E−03
2.69E−02
ephrin-A2




1301429


761
CHIC1
chrX: 72782983-
2.18
3.08
0.50
0.79
5.60E−03
4.46E−02
cysteine-rich hydrophobic domain




72906937






1


762
EHBP1L1
chr11: 65343508-
27.59
39.07
0.50
0.95
7.00E−04
8.19E−03
EH domain binding protein 1-like




65360116






1


763
SERPING1
chr11: 57365026-
19.79
28.01
0.50
0.84
2.35E−03
2.22E−02
serpin peptidase inhibitor, clade




57382326






G (C1 inhibitor), member 1


764
LMAN1
chr18: 56995055-
23.57
33.34
0.50
0.95
7.00E−04
8.19E−03
lectin, mannose-binding, 1




57026508


765
CXCL12
chr10: 44865600-
25.41
17.95
−0.50
−0.74
3.50E−03
3.04E−02
chemokine (C-X-C motif) ligand




44880545






12


766
SLC9A2
chr2: 103236165-
22.28
15.73
−0.50
−0.89
1.35E−03
1.41E−02
solute carrier family 9, subfamily




103327809






A (NHE2, cation proton antiporter











2), member 2


767
SFXN1
chr5: 174905513-
38.66
27.29
−0.50
−0.92
7.50E−04
8.64E−03
sideroflexin 1




174955621


768
GRAMD3
chr5: 125695787-
30.37
21.41
−0.50
−0.93
7.00E−04
8.19E−03
GRAM domain containing 3




125829853


769
HMOX1
chr22: 35777059-
62.11
43.78
−0.50
−0.86
1.35E−03
1.41E−02
heme oxygenase 1




35790207


770
HNF1B
chr17: 36046433-
16.35
11.52
−0.51
−0.84
2.55E−03
2.37E−02
HNF1 homeobox B




36105096


771
UQCRFS1
chr19: 29698166-
243.33
171.33
−0.51
−0.88
6.00E−04
7.22E−03
ubiquinol-cytochrome c reductase,




29704136






Rieske iron-sulfur polypeptide 1


772
G0LGA2P5
chr12: 100550174-
12.14
8.55
−0.51
−0.79
3.60E−03
3.10E−02
golgin A2 pseudogene 5




100567121


773
ABCA1
chr9: 107543283-
4.46
3.14
−0.51
−0.83
2.65E−03
2.44E−02
ATP-binding cassette, sub-family




107690527






A (ABC1), member 1


774
PPTC7
chr12: 110972236-
13.84
9.73
−0.51
−0.84
2.15E−03
2.06E−02
PTC7 protein phosphatase




111021064






homolog


775
NDUFV1
chr11: 67374322-
164.54
115.65
−0.51
−0.83
3.40E−03
2.97E−02
NADH dehydrogenase




67380012






(ubiquinone) flavoprotein 1,











51 kDa


776
PWWP2A
chr5: 159502891-
14.18
9.96
−0.51
−0.88
1.75E−03
1.74E−02
PWWP domain containing 2A




159546452


777
PAPD5
chr16: 50186828-
3.62
2.53
−0.51
−0.83
3.90E−03
3.32E−02
PAP associated domain containing




50269219






5


778
CECR1
chr22: 17659679-
15.97
11.18
−0.51
−0.86
1.75E−03
1.74E−02
cat eye syndrome chromosome




17702744






region, candidate 1


779
FLVCR2
chr14: 76041246-
12.44
8.68
−0.52
−0.82
2.95E−03
2.66E−02
feline leukemia virus subgroup C




76114512






cellular receptor family,











member 2


780
CC2D1A
chr19: 14016955-
39.58
27.56
−0.52
−0.97
5.50E−04
6.69E−03
coiled-coil and C2 domain




14041693






containing 1A


781
DDC
chr7: 50526133-
48.89
34.04
−0.52
−0.92
6.50E−04
7.69E−03
dopa decarboxylase (aromatic L-




50633154






amino acid decarboxylase)


782
CPOX
chr3: 98298289-
12.79
8.90
−0.52
−0.85
1.55E−03
1.57E−02
coproporphyrinogen oxidase




98312455


783
ABAT
chr16: 8768443-
10.03
6.97
−0.52
−0.89
1.40E−03
1.45E−02
4-aminobutyrate aminotransferase




8878432


784
MYBL2
chr20: 42295658-
9.16
6.36
−0.53
−0.77
4.95E−03
4.02E−02
v-myb avian myeloblastosis viral




42345136






oncogene homolog-like 2


785
TRPM4
chr19: 49661015-
109.31
75.95
−0.53
−0.93
1.40E−03
1.45E−02
transient receptor potential cation




49715098






channel, subfamily M, member 4


786
GAB2
chr11: 77926335-
7.49
5.20
−0.53
−0.93
9.50E−04
1.05E−02
GRB2-associated binding protein 2




78128868


787
RRM2B
chr8: 103216728-
8.75
6.07
−0.53
−0.91
2.50E−03
2.33E−02
ribonucleotide reductase M2 B




103251346






(TP53 inducible)


788
LYRM7
chr5: 130506640-
5.03
3.49
−0.53
−0.88
2.10E−03
2.02E−02
LYR motif containing 7




130541119


789
ABO
chr9: 136130562-
37.30
25.84
−0.53
−0.94
8.00E−04
9.10E−03
ABO blood group (transferase A,




136150630






alpha 1-3-N-











acetylgalactosaminyltransferase;











transferase B, alpha 1-3-











galactosyltransferase)


790
ACOX1
chr17: 73937588-
47.96
33.17
−0.53
−0.83
2.60E−03
2.41E−02
acyl-CoA oxidase 1, palmitoyl




74002080


791
CAAP1
chr9: 26840682-
19.24
13.28
−0.53
−0.96
1.20E−03
1.28E−02
caspase activity and apoptosis




26892826






inhibitor 1


792
MAMDC4
chr9: 139746818-
12.27
8.45
−0.54
−0.90
8.50E−04
9.59E−03
MAM domain containing 4




139755251


793
FGFR3
chr4: 1795038-
24.26
16.72
−0.54
−1.00
3.00E−04
3.97E−03
fibroblast growth factor




1810599






receptor 3


794
ALDH1B1
chr9: 38392660-
25.85
17.81
−0.54
−0.93
9.00E−04
1.01E−02
aldehyde dehydrogenase 1 family,




38398662






member B1


795
DPYD
chr1: 97543299-
4.34
2.99
−0.54
−0.75
5.20E−03
4.20E−02
dihydropyrimidine dehydrogenase




98386615


796
SNX30
chr9: 115513133-
10.39
7.15
−0.54
−0.95
3.50E−04
4.55E−03
sorting nexin family member 30




115637267


797
ACSF3
chr16: 89160216-
10.15
6.98
−0.54
−0.85
2.55E−03
2.37E−02
acyl-CoA synthetase family




89222254






member 3


798
SGK2
chr20: 42187634-
66.68
45.87
−0.54
−0.97
4.00E−04
5.06E−03
serum/glucocorticoid regulated




42214273






kinase 2


799
KDM4A
chr1: 44115796-
20.94
14.39
−0.54
−0.97
5.00E−04
6.13E−03
lysine (K)-specific demethylase




44173012






4A


800
SLC17A4
chr6: 25754926-
41.09
28.22
−0.54
−0.98
3.50E−04
4.55E−03
solute carrier family 17,




25781403






member 4


801
SEC31B
chr10: 102246402-
7.55
5.18
−0.54
−0.89
1.10E−03
1.20E−02
SEC31 homolog B, COPII coat




102279595






complex component


802
SEPHS2
chr16: 30454945-
113.79
78.03
−0.54
−0.98
1.50E−04
2.18E−03
selenophosphate synthetase 2




30457296


803
LPCAT3
chr12: 7085346-
71.15
48.77
−0.54
−0.99
3.00E−04
3.97E−03
lysophosphatidylcholine




7125842






acyltransferase 3


804
DEPDC5
chr22: 32149936-
6.48
4.43
−0.55
−0.88
1.55E−03
1.57E−02
DEP domain containing 5




32303020


805
PDK4
chr7: 95212808-
23.85
16.30
−0.55
−0.97
4.00E−04
5.06E−03
pyruvate dehydrogenase kinase,




95225925






isozyme 4


806
MEST
chr7: 130126015-
23.02
15.73
−0.55
−0.82
4.15E−03
3.50E−02
mesoderm specific transcript




130371406


807
ZNF704
chr8: 81540685-
3.21
2.19
−0.55
−0.95
4.00E−04
5.06E−03
zinc finger protein 704




81787016


808
ZNF462
chr9: 109625377-
2.19
1.49
−0.55
−0.80
3.00E−03
2.69E−02
zinc finger protein 462




109848716


809
SGPP1
chr14: 64150934-
15.01
10.22
−0.55
−0.95
4.50E−04
5.61E−03
sphingosine-1 -phosphate




64194756






phosphatase 1


810
COL14A1
chr8: 121137346-
6.24
4.24
−0.56
−0.94
6.00E−04
7.22E−03
collagen, type XIV, alpha 1




121384273


811
IGSF9
chr1: 159896828-
34.14
23.21
−0.56
−1.03
4.00E−04
5.06E−03
immunoglobulin superfamily,




159915386






member 9


812
NIPSNAP3A
chr9: 107509968-
41.39
28.12
−0.56
−0.99
4.50E−04
5.61E−03
nipsnap homolog 3A




107522403






(C. elegans)


813
FN3K
chr17: 80693451-
20.04
13.61
−0.56
−0.79
4.85E−03
3.96E−02
fructosamine 3 kinase




80709073


814
TRIM24
chr7: 138145078-
8.23
5.59
−0.56
−0.92
9.50E−04
1.05E−02
tripartite motif containing 24




138270332


815
SNHG18
chr5: 9546311-
19.52
13.23
−0.56
−0.83
2.30E−03
2.18E−02
small nucleolar RNA host gene 18




9550409


816
HOXA3
chr7: 27145808-
8.58
5.81
−0.56
−0.83
3.05E−03
2.72E−02
homeobox A3




27166639


817
TLE3
chr15: 70340129-
14.77
9.99
−0.56
−0.97
8.50E−04
9.59E−03
transducin-like enhancer of




70390256






split 3


818
ADH6
chr4: 100010007-
13.20
8.93
−0.56
−0.83
5.10E−03
4.13E−02
alcohol dehydrogenase 6 (class V)




100222513


819
PLCD1
chr3: 38048986-
33.01
22.31
−0.57
−0.94
1.45E−03
1.49E−02
phospholipase C, delta 1




38071154


820
PAPSS2
chr10: 89419475-
132.95
89.82
−0.57
−0.93
4.00E−04
5.06E−03
3′-phosphoadenosine 5′-




89507462






phosphosulfate synthase 2


821
LRRC19
chr9: 26903367-
57.59
38.91
−0.57
−0.91
2.35E−03
2.22E−02
leucine rich repeat containing




27062931






19


822
MAGI1
chr3: 65339905-
7.17
4.84
−0.57
−0.98
7.50E−04
8.64E−03
membrane associated guanylate




66024509






kinase, WW and PDZ domain











containing 1


823
DNAH1
chr3: 52350334-
3.18
2.14
−0.57
−0.99
3.00E−04
3.97E−03
dynein, axonemal, heavy chain 1




52434513


824
ARHGAP33
chr19: 36266416-
5.23
3.51
−0.57
−0.82
5.10E−03
4.13E−02
Rho GTPase activating protein 33




36279724


825
PRR5L
chr11: 36317724-
30.51
20.49
−0.57
−1.02
4.00E−04
5.06E−03
proline rich 5 like




36486754


826
P2RY1
chr3: 152552735-
7.86
5.28
−0.57
−0.82
1.80E−03
1.78E−02
purinergic receptor P2Y,




152555843






G-protein coupled, 1


827
MAVS
chr20: 3827445-
34.18
22.95
−0.57
−1.00
4.50E−04
5.61E−03
mitochondrial antiviral signaling




3856770






protein


828
MIR600HG
chr9: 125871772-
4.72
3.17
−0.57
−0.89
1.30E−03
1.37E−02
MIR600 host gene




125877756


829
TPRN
chr9: 140086068-
68.40
45.91
−0.58
−1.00
1.10E−03
1.20E−02
taperin




140095163


830
NXPE4
chr11: 114441312-
84.23
56.49
−0.58
−1.02
6.50E−04
7.69E−03
neurexophilin and PC-esterase




114466484






domain family, member 4


831
LETM1
chr4: 1813205-
39.16
26.20
−0.58
−1.06
1.50E−04
2.18E−03
leucine zipper-EF-hand containing




1857974






transmembrane protein 1


832
CBFA2T3
chr16: 88941262-
4.20
2.81
−0.58
−0.77
6.45E−03
5.00E−02
core-binding factor, runt domain,




89043504






alpha subunit 2; translocated











to, 3


833
GPR160
chr3: 169755734-
74.24
49.55
−0.58
−1.08
5.00E−05
7.97E−04
G protein-coupled receptor 160




169803183


834
SCO1
chr17: 10583648-
36.47
24.32
−0.58
−1.04
1.00E−04
1.51E−03
SCO1 cytochrome c oxidase




10600885






assembly protein


835
ENGASE
chr17: 77071018-
34.01
22.67
−0.59
−1.07
5.00E−05
7.97E−04
endo-beta-N-




77084685






acetylglucosaminidase


836
PDXP
chr22: 38054736-
26.96
17.93
−0.59
−0.97
4.50E−04
5.61E−03
pyridoxal (pyridoxine, vitamin




38062939






B6) phosphatase


837
BDH1
chr3: 197236653-
59.31
39.30
−0.59
−1.03
2.00E−04
2.80E−03
3-hydroxybutyrate dehydrogenase,




197300194






type 1


838
TFRC
chr3: 195776154-
79.84
52.86
−0.60
−0.89
1.75E−03
1.74E−02
transferrin receptor




195809032


839
PDK2
chr17: 48172100-
35.38
23.41
−0.60
−0.95
1.05E−03
1.15E−02
pyruvate dehydrogenase kinase,




48207246






isozyme 2


840
GNA11
chr19: 3094407-
116.16
76.65
−0.60
−1.07
1.50E−04
2.18E−03
guanine nucleotide binding protein




3124000






(G protein), alpha 11 (Gq class)


841
GOLGA8A
chr15: 34671269-
6.89
4.54
−0.60
−0.93
7.00E−04
8.19E−03
golgin A8 family, member A




34729667


842
KIFC2
chr8: 145691737-
30.52
20.11
−0.60
−0.97
1.05E−03
1.15E−02
kinesin family member C2




145701718


843
C15orf52
chr15: 40623652-
14.06
9.23
−0.61
−1.09
3.00E−04
3.97E−03
chromosome 15 open reading




40633168






frame 52


844
CDH24
chr14: 23516269-
4.16
2.72
−0.61
−0.80
6.00E−03
4.72E−02
cadherin 24, type 2




23526747


845
CPA3
chr3: 148583042-
25.76
16.81
−0.62
−0.79
3.65E−03
3.14E−02
carboxypeptidase A3 (mast cell)




148614872


846
LOX
chr5: 121398889-
2.94
1.92
−0.62
−0.83
4.50E−03
3.72E−02
lysyl oxidase




121414055


847
ZDHHC2
chr8: 17013835-
10.15
6.62
−0.62
−1.03
1.50E−04
2.18E−03
zinc finger, DHHC-type containing




17080241






2


848
FOXD2-AS1
chr1: 47897806-
10.58
6.90
−0.62
−0.86
1.95E−03
1.91E−02
FOXD2 antisense RNA 1 (head to




47900313






head)


849
MYO1D
chr17: 30819627-
163.85
106.54
−0.62
−0.93
3.50E−04
4.55E−03
myosin ID




31203902


850
CLUH
chr17: 2592679-
45.24
29.39
−0.62
−1.17
5.00E−05
7.97E−04
clustered mitochondria




2614927






(cluA/CLU1) homolog


851
ACADS
chr12: 121163570-
132.93
86.33
−0.62
−1.02
1.00E−04
1.51E−03
acyl-CoA dehydrogenase, C-2 to




121177811






C-3 short chain


852
BCL2
chr18: 60790578-
4.52
2.93
−0.63
−0.83
4.50E−04
5.61E−03
B-cell CLU/lymphoma 2




60986613


853
B3GNT6
chr11: 76745384-
35.42
22.93
−0.63
−1.16
1.00E−04
1.51E−03
UDP-GlcNAc: betaGal beta-1,3-N-




767530054-






acetylglucosaminyltransferase 6


854
ZNF764
chr16: 30565084-
6.17
3.99
−0.63
−0.86
2.25E−03
2.14E−02
zinc finger protein 764




30569642


855
ACAT1
chr11: 107992257-
65.08
42.01
−0.63
−1.14
5.00E−05
7.97E−04
acetyl-CoA acetyltransferase 1




108018891


856
TMEM8B
chr9: 35829221-
8.77
5.66
−0.63
−0.91
2.45E−03
2.29E−02
transmembrane protein 8B




35854844


857
GADD45B
chr19: 2476122-
14.41
9.29
−0.63
−0.84
3.75E−03
3.22E−02
growth arrest and DNA-damage-




2478257






inducible, beta


858
NRARP
chr9: 140194082-
88.57
57.08
−0.63
−1.15
5.00E−05
7.97E−04
NOTCH-regulated ankyrin repeat




140196703






protein


859
RCN3
chr19: 50030874-
34.55
22.26
−0.63
−0.94
1.10E−03
1.20E−02
reticulocalbin 3, EF-hand calcium




50046890






binding domain


860
NHSL1
chr6: 138743180-
21.09
13.58
−0.64
−1.14
1.00E−04
1.51E−03
NHS-like 1




138893668


861
LAPTM4B
chr8: 98787808-
31.25
20.09
−0.64
−1.11
5.00E−05
7.97E−04
lysosomal protein transmembrane




98864830






4 beta


862
KCNK10
chr14: 88646451-
1.20
0.77
−0.64
−0.75
5.90E−03
4.65E−02
potassium channel, two pore




88793256






domain subfamily K, member 10


863
NR6A1
chr9: 127279553-
2.46
1.58
−0.64
−0.87
1.45E−03
1.49E−02
nuclear receptor subfamily 6,




127533589






group A, member 1


864
AHCYL2
chr7: 128864854-
141.01
90.52
−0.64
−0.96
6.50E−04
7.69E−03
adenosylhomocysteinase-like 2




129070052


865
GLIPR2
chr9: 36136532-
19.21
12.33
−0.64
−0.95
7.00E−04
8.19E−03
GLI pathogenesis-related 2




36163910


866
DMD
chrX: 31137344-
2.86
1.83
−0.64
−0.81
5.30E−03
4.27E−02
dystrophin




33357726


867
PKIG
chr20: 43160421-
40.24
25.79
−0.64
−1.04
2.50E−04
3.38E−03
protein kinase (cAMP-dependent,




43247678






catalytic) inhibitor gamma


868
GCSHP3
chr2: 206980296-
16.68
10.69
−0.64
−0.85
2.70E−03
2.48E−02
glycine cleavage system protein H




206981296






(aminomethyl carrier) pseudogene











3


869
E2F8
chr11: 19245609-
4.10
2.63
−0.64
−0.87
1.60E−03
1.62E−02
E2F transcription factor 8




19263202


870
SCARA5
chr8: 27727398-
14.59
9.33
−0.64
−1.11
1.00E−04
1.51E−03
scavenger receptor class A,




27850369






member 5


871
MAP2K6
chr17: 67410837-
16.77
10.72
−0.65
−1.02
2.50E−04
3.38E−03
mitogen-activated protein kinase




67538470






kinase 6


872
ARHGEF9
chrX: 62854847-
8.54
5.45
−0.65
−1.08
2.00E−04
2.80E−03
Cdc42 guanine nucleotide




63005426






exchange factor (GEF) 9


873
SSTR1
chr14: 38677203-
4.43
2.82
−0.65
−0.84
3.00E−03
2.69E−02
somatostatin receptor 1




38682268


874
FAM43A
chr3: 194406621-
8.47
5.39
−0.65
−0.93
1.55E−03
1.57E−02
family with sequence similarity




194409766






43, member A


875
BRINP3
chr1: 190066796-
3.28
2.08
−0.65
−0.75
3.70E−03
3.18E−02
bone morphogenetic




190446759






protein/retinoic acid inducible











neural-specific 3


876
PLCG2
chr16: 81812862-
5.66
3.59
−0.66
−1.05
5.00E−05
7.97E−04
phospholipase C, gamma 2




81996298






(phosphatidylinositol-specific)


877
FABP5
chr8: 82192717-
255.22
161.88
−0.66
−1.14
5.00E−05
7.97E−04
fatty acid binding protein 5




82197012






(psoriasis-associated)


878
TTC30A
chr2: 178479025-
2.18
1.38
−0.66
−0.81
5.30E−03
4.27E−02
tetratricopeptide repeat domain




178483694






30A


879
1-Mar
chr1: 220960038-
18.60
11.74
−0.66
−1.06
2.00E−04
2.80E−03
mitochondrial amidoxime reducing




220987741






component 1


880
ME2
chr18: 48405431-
31.18
19.68
−0.66
−1.22
5.00E−05
7.97E−04
malic enzyme 2, NAD(+)-




48476162






dependent, mitochondrial


881
MEGF8
chr19: 42829760-
5.71
3.60
−0.66
−1.21
1.00E−04
1.51E−03
multiple EGF-like-domains 8




42882921


882
FRRS1
chr1: 100111430-
5.79
3.65
−0.66
−0.81
5.70E−03
4.52E−02
ferric-chelate reductase 1




100231349


883
SFXN5
chr2: 73169164-
11.09
6.99
−0.67
−1.10
5.00E−05
7.97E−04
sideroflexin 5




73298965


884
LINC01004
chr7: 104622193-
6.51
4.10
−0.67
−1.20
5.00E−05
7.97E−04
long intergenic non-protein coding




104631612






RNA 1004


885
GIPC2
chr1: 78511588-
19.87
12.52
−0.67
−1.19
5.00E−05
7.97E−04
GIPC PDZ domain containing




78603112






family, member 2


886
ALDH5A1
chr6: 24495196-
8.33
5.24
−0.67
−1.09
1.50E−04
2.18E−03
aldehyde dehydrogenase 5 family,




24537435






member A1


887
PTGDR
chr14: 52734430-
7.62
4.79
−0.67
−0.95
1.40E−03
1.45E−02
prostaglandin D2 receptor (DP)




52743442


888
PDE8A
chr15: 85523743-
39.74
24.98
−0.67
−1.21
5.00E−05
7.97E−04
phosphodiesterase 8A




85682376


889
PIGZ
chr3: 196673214-
54.26
34.10
−0.67
−1.12
1.00E−04
1.51E−03
phosphatidylinositol glycan anchor




196695742






biosynthesis, class Z


890
ENTPD5
chr14: 74433180-
73.01
45.71
−0.68
−1.17
5.00E−05
7.97E−04
ectonucleoside triphosphate




74486026






diphosphohydrolase 5


891
KREMEN1
chr22: 29469065-
13.91
8.70
−0.68
−1.19
5.00E−05
7.97E−04
kringle containing transmembrane




29564321






protein 1


892
PGAP3
chr17: 37827374-
38.45
23.97
−0.68
−1.16
1.00E−04
1.51E−03
post-GPI attachment to proteins 3




37844323


893
NRG1
chr8: 31497267-
3.11
1.94
−0.68
−0.73
6.25E−03
4.88E−02
neuregulin 1




32622558


894
HADH
chr4: 108910869-
116.76
72.02
−0.70
−1.22
5.00E−05
7.97E−04
hydroxyacyl-CoA dehydrogenase




108956331


895
ARHGEF37
chr5: 148961134-
10.02
6.18
−0.70
−1.20
5.00E−05
7.97E−04
Rho guanine nucleotide exchange




149014527






factor (GEF) 37


896
PBX1
chr1: 164528596-
9.57
5.90
−0.70
−1.13
5.00E−05
7.97E−04
pre-B-cell leukemia homeobox 1




164821060


897
MAOA
chrX: 43514154-
103.83
63.98
−0.70
−1.11
5.00E−05
7.97E−04
monoamine oxidase A




43606071


898
CAMK1D
chr10: 12875132-
11.95
7.34
−0.70
−1.01
5.00E−04
6.13E−03




12877545


899
BAHCC1
chr17: 79373520-
2.84
1.75
−0.70
−1.11
2.00E−04
2.80E−03
BAH domain and coiled-coil




79433358






containing 1


900
MAN1A1
chr6: 119498365-
36.51
22.41
−0.70
−1.24
5.00E−05
7.97E−04
mannosidase, alpha, class 1A,




119670931






member 1


901
KIT
chr4: 55524094-
6.51
3.99
−0.70
−1.05
2.00E−04
2.80E−03
v-kit Hardy-Zuckerman 4 feline




55606881






sarcoma viral oncogene homolog


902
MEIS3P1
chr17: 15690163-
4.60
2.82
−0.71
−0.91
1.05E−03
1.15E−02
Meis homeobox 3 pseudogene 1




15693019


903
HAPLN1
chr5: 82934016-
4.46
2.72
−0.71
−1.06
4.50E−04
5.61E−03
hyaluronan and proteoglycan link




83016896






protein 1


904
SDR42E1
chr16: 82031250-
5.65
3.45
−0.71
−0.92
1.20E−03
1.28E−02
short chain




82045093






dehydrogenase/reductase family











42E, member 1


905
WNK2
chr9: 95947211-
13.74
8.38
−0.71
−1.26
5.00E−05
7.97E−04
WNK lysine deficient protein




96108696






kinase 2


906
PLOD2
chr3: 145787227-
41.40
25.25
−0.71
−1.33
1.00E−04
1.51E−03
procollagen-lysine, 2-oxoglutarate




145879282






5-dioxygenase 2


907
IL6R
chr1: 154377668-
20.00
12.20
−0.71
−1.27
5.00E−05
7.97E−04
interleukin 6 receptor




154441926


908
PCSK5
chr9: 78505559-
10.92
6.66
−0.71
−1.25
5.00E−05
7.97E−04
proprotein convertase




78977255






subtilisin/kexin type 5


909
TMEM209
chr7: 129804554-
9.41
5.73
−0.71
−1.16
5.00E−05
7.97E−04
transmembrane protein 209




129845338


910
MOGAT2
chr11: 75428933-
48.08
29.26
−0.72
−1.17
5.00E−05
7.97E−04
monoacylglycerol O-




75442331






acyltransferase 2


911
SLC4A7
chr3: 27414211-
4.69
2.85
−0.72
−1.16
5.00E−05
7.97E−04
solute carrier family 4, sodium




27525911






bicarbonate cotransporter, member











7


912
ZNF132
chr19: 58944180-
1.44
0.87
−0.72
−0.71
6.40E−03
4.97E−02
zinc finger protein 132




58951589


913
C7orf31
chr7: 25174315-
4.99
3.03
−0.72
−1.03
1.50E−04
2.18E−03
chromosome 7 open reading frame




25219817






31


914
ZBTB10
chr8: 81397853-
3.27
1.98
−0.72
−1.13
4.00E−04
5.06E−03
zinc finger and BTB domain




81438500






containing 10


915
FLJ22763
chr3: 108855560-
8.70
5.26
−0.73
−0.95
2.55E−03
2.37E−02
uncharacterized LOC401081




108868951


916
SCAP
chr3: 47455183-
43.81
26.48
−0.73
−1.35
5.00E−05
7.97E−04
SREBF chaperone




47517445


917
MTSS1
chr8: 125563010-
8.18
4.95
−0.73
−1.19
5.00E−05
7.97E−04
metastasis suppressor 1




125740748


918
CES3
chr16: 66995131-
53.33
31.98
−0.74
−1.27
5.00E−05
7.97E−04
carboxylesterase 3




67009052


919
ACACB
chr12: 109577201-
7.25
4.33
−0.74
−1.30
5.00E−05
7.97E−04
acetyl-CoA carboxylase beta




109706030


920
ZNF813
chr19: 53970988-
1.20
0.72
−0.75
−0.75
5.15E−03
4.16E−02
zinc finger protein 813




53997546


921
CLDN15
chr7: 100875372-
26.77
15.95
−0.75
−1.13
5.00E−05
7.97E−04
claudin 15




100882101


922
DLL1
chr6: 170591293-
9.55
5.67
−0.75
−1.15
5.00E−05
7.97E−04
delta-like 1 (Drosophila)




170599697


923
NCAM1
chr11: 112830002-
1.83
1.08
−0.75
−0.91
1.25E−03
1.33E−02
neural cell adhesion molecule 1




113149158


924
LRP12
chr8: 105501458-
3.70
2.19
−0.76
−1.00
6.00E−04
7.22E−03
low density lipoprotein receptor-




105601252






related protein 12


925
ATOH1
chr4: 94750077-
21.83
12.89
−0.76
−1.07
4.00E−04
5.06E−03
atonal bHLH transcription factor 1




94751142


926
FOXD2
chr1: 47901688-
10.10
5.95
−0.76
−1.25
5.00E−05
7.97E−04
forkhead box D2




47906363


927
ID3
chr1: 23884420-
105.85
62.35
−0.76
−1.27
5.00E−05
7.97E−04
inhibitor of DNA binding 3,




23886285






dominant negative helix-loop-helix











protein


928
SLC35G1
chr10: 95653729-
10.01
5.90
−0.76
−1.04
2.00E−04
2.80E−03
solute carrier family 35, member




95662491






G1


929
HPGDS
chr4: 95219706-
5.71
3.35
−0.77
−0.89
3.65E−03
3.14E−02
hematopoietic prostaglandin D




95264027






synthase


930
NOTCH1
chr9: 139388895-
13.34
7.78
−0.78
−1.49
5.00E−05
7.97E−04
notch 1




139440238


931
CPT1A
chr11: 68522087-
93.66
54.51
−0.78
−1.31
5.00E−05
7.97E−04
carnitine palmitoyltransferase 1A




68609399






(liver)


932
HR
chr8: 21971931-
19.15
11.13
−0.78
−1.46
5.00E−05
7.97E−04
hair growth associated




21988565


933
KRT12
chr17: 39017429-
4.53
2.63
−0.78
−0.88
6.50E−04
7.69E−03
keratin 12, type I




39023462


934
KITLG
chr12: 88886569-
13.52
7.86
−0.78
−1.38
5.00E−05
7.97E−04
KIT ligand




88974250


935
SLC39A5
chr12: 56623819-
107.72
62.56
−0.78
−0.93
4.00E−03
3.39E−02
solute carrier family 39 (zinc




56652143






transporter), member 5


936
E2F2
chr1: 23832919-
7.97
4.62
−0.79
−1.26
5.00E−05
7.97E−04
E2F transcription factor 2




23857712


937
TBC1D9
chr4: 141541935-
6.23
3.60
−0.79
−1.24
5.00E−05
7.97E−04
TBC1 domain family, member 9




141677471






(with GRAM domain)


938
CDX2
chr13: 28536204-
154.63
89.40
−0.79
−1.31
5.00E−05
7.97E−04
caudal type homeobox 2




28543505


939
ACSF2
chr17: 48503518-
51.16
29.40
−0.80
−0.91
4.25E−03
3.56E−02
acyl-CoA synthetase family




48552206






member 2


940
ZFP3
chr17: 4981753-
5.11
2.94
−0.80
−1.20
5.00E−05
7.97E−04
ZFP3 zinc finger protein




4999669


941
TSPAN7
chrX: 38420730-
64.64
37.09
−0.80
−1.37
5.00E−05
7.97E−04
tetraspanin 7




38548172


942
KCNJ2
chr17: 68165675-
3.48
2.00
−0.80
−1.09
1.00E−04
1.51E−03
potassium channel, inwardly




68176183






rectifying subfamily J, member 2


943
PPP1R14C
chr6: 150464187-
19.38
11.10
−0.80
−1.28
5.00E−05
7.97E−04
protein phosphatase 1, regulatory




150571528






(inhibitor) subunit 14C


944
WDR78
chr1: 67278571-
5.47
3.13
−0.80
−1.17
2.50E−04
3.38E−03
WD repeat domain 78




67390570


945
SATB2
chr2: 200134222-
40.25
23.04
−0.81
−1.14
5.00E−05
7.97E−04
SATB homeobox 2




200337481


946
AIFM3
chr22: 21319417-
41.52
23.75
−0.81
−1.17
5.00E−05
7.97E−04
apoptosis-inducing factor,




21335649






mitochondrion-associated, 3


947
SCAMP5
chr15: 75287875-
7.90
4.51
−0.81
−1.07
2.50E−04
3.38E−03
secretory carrier membrane protein




75313836






5


948
ZNF606
chr19: 58488440-
2.16
1.23
−0.81
−0.88
3.00E−03
2.69E−02
zinc finger protein 606




58518574


949
C10orf99
chr10: 85933553-
314.00
178.88
−0.81
−1.13
5.00E−05
7.97E−04
chromosome 10 open reading




85945050






frame 99


950
RNLS
chr10: 90033620-
4.75
2.71
−0.81
−1.01
1.40E−03
1.45E−02
renalase, FAD-dependent amine




90343082






oxidase


951
HRCT1
chr9: 35906188-
58.04
32.98
−0.82
−1.25
5.00E−05
7.97E−04
histidine rich carboxyl terminus 1




35907138


952
SYNM
chr15: 99645285-
1.62
0.91
−0.83
−0.98
3.00E−04
3.97E−03
synemin, intermediate filament




99675800






protein


953
USP32P2
chr17: 18414575-
0.97
0.55
−0.83
−0.77
3.80E−03
3.25E−02
ubiquitin specific peptidase 32




18424566






pseudogene 2


954
SYNPO
chr5: 149980641-
30.81
17.30
−0.83
−1.54
5.00E−05
7.97E−04
synaptopodin




150038792


955
CYCS
chr7: 25158269-
114.56
64.22
−0.84
−1.30
5.00E−05
7.97E−04
cytochrome c, somatic




25164980


956
HOXD4
chr2: 177016112-
5.77
3.23
−0.84
−0.86
1.50E−03
1.53E−02
homeobox D4




177017949


957
PAQR5
chr15: 69591293-
18.45
10.33
−0.84
−1.48
5.00E−05
7.97E−04
progestin and adipoQ receptor




69699976






family member V


958
SLC4A4
chr4: 72053002-
43.20
24.14
−0.84
−1.33
5.00E−05
7.97E−04
solute carrier family 4 (sodium




72437804






bicarbonate cotransporter),











member 4


959
LRRC26
chr9: 140033608-
50.87
28.28
−0.85
−1.12
8.00E−04
9.10E−03
leucine rich repeat containing 26




140064491


960
GDPD1
chr17: 57297827-
2.58
1.43
−0.85
−0.82
5.75E−03
4.55E−02
glycerophosphodiester




57353330






phosphodiesterase domain











containing 1


961
DHRS11
chr17: 34948225-
158.57
87.93
−0.85
−1.39
5.00E−05
7.97E−04
dehydrogenase/reductase (SDR




349572339






family) member 11


962
LGI4
chr19: 35615416-
6.00
3.32
−0.85
−0.94
6.50E−04
7.69E−03
leucine-rich repeat LGI family,




35626178






member 4


963
INPP5J
chr22: 31518908-
18.03
9.99
−0.85
−1.37
5.00E−05
7.97E−04
inositol polyphosphate-5-




31530683






phosphatase J


964
AMOT
chrX: 112018104-
4.18
2.32
−0.85
−1.25
5.00E−05
7.97E−04
angiomotin




112084043


965
BCL2L15
chr1: 114356432-
40.09
22.19
−0.85
−1.29
5.00E−05
7.97E−04
BCL2-like 15




114447741


966
PDE4C
chr19: 18318770-
2.98
1.65
−0.86
−1.06
2.00E−04
2.80E−03
phosphodiesterase 4C, cAMP-




18359010






specific


967
CYP27A1
chr2: 219646471-
27.19
14.98
−0.86
−1.39
5.00E−05
7.97E−04
cytochrome P450, family 27,




219680016






subfamily A, polypeptide 1


968
SLC19A3
chr2: 228549925-
4.07
2.23
−0.87
−1.05
2.50E−04
3.38E−03
solute carrier family 19 (thiamine




228582745






transporter), member 3


969
SEMA5A
chr5: 9035137-
6.75
3.70
−0.87
−1.45
5.00E−05
7.97E−04
sema domain, seven




9546233






thrombospondin repeats











(type 1 and type 1-like),











transmembrane domain











(TM) and short cytoplasmic











domain, (semaphorin) 5A


970
SH3BP1
chr22: 38035683-
36.87
20.12
−0.87
−1.41
5.00E−05
7.97E−04
SH3-domain binding protein 1




38054384


971
TTPA
chr8: 63972047-
3.44
1.88
−0.87
−0.98
1.00E−03
1.10E−02
tocopherol (alpha) transfer




63998612






protein


972
GLIS3
chr9: 3824127-
1.43
0.78
−0.88
−0.95
5.00E−04
6.13E−03
GLIS family zinc finger 3




4300035


973
RPS6KA6
chrX: 83313353-
3.55
1.93
−0.88
−1.43
5.00E−05
7.97E−04
ribosomal protein S6 kinase,




83442943






90 kDa, polypeptide 6


974
ZNF518B
chr4: 10441503-
2.13
1.15
−0.88
−1.18
5.00E−05
7.97E−04
zinc finger protein 518B




10459032


975
EFNA5
chr5: 106712589-
2.23
1.21
−0.88
−1.06
5.00E−05
7.97E−04
ephrin-A5




107006596


976
MIPOL1
chr14: 37667117-
3.04
1.64
−0.89
−1.30
5.00E−05
7.97E−04
mirror-image polydactyly 1




38020464


977
CNN3
chr1: 95362504-
68.19
36.78
−0.89
−1.62
5.00E−05
7.97E−04
calponin 3, acidic




95392779


978
PHLPP2
chr16: 71678828-
21.57
11.62
−0.89
−1.58
5.00E−05
7.97E−04
PH domain and leucine rich repeat




71758604






protein phosphatase 2


979
PPP2R3A
chr3: 135684514-
5.34
2.88
−0.89
−1.27
1.00E−04
1.51E−03
protein phosphatase 2, regulatory




135866752






subunit B″, alpha


980
NCKAP5
chr2: 133429371-
1.00
0.54
−0.90
−0.85
3.40E−03
2.97E−02
NCK-associated protein 5




134326031


981
SH2D7
chr15: 78384926-
3.31
1.78
−0.90
−0.89
3.20E−03
2.82E−02
SH2 domain containing 7




78396393


982
RNF157
chr17: 74132414-
7.83
4.19
−0.90
−1.30
5.00E−05
7.97E−04
ring finger protein 157




74236390


983
CAMK1D
chr10: 12391582-
7.03
3.76
−0.90
−1.09
4.00E−04
5.06E−03
calcium/calmodulin-dependent




12871733






protein kinase ID


984
TMEM171
chr5: 72416387-
87.05
46.45
−0.91
−1.58
5.00E−05
7.97E−04
transmembrane protein 171




72427644


985
GPM6B
chrX: 13789061-
2.91
1.55
−0.91
−0.78
6.20E−03
4.85E−02
glycoprotein M6B




13956831


986
SLC51B
chr15: 65337707-
108.87
57.67
−0.92
−1.45
5.00E−05
7.97E−04
solute carrier family 51, beta




65360388






subunit


987
PLAGL1
chr6: 144261436-
19.36
10.24
−0.92
−1.52
5.00E−05
7.97E−04
pleiomorphic adenoma gene-like 1




144385736


988
ACVR1C
chr2: 158383278-
2.12
1.12
−0.92
−1.29
5.00E−05
7.97E−04
activin A receptor, type IC




158485399


989
SEMA6D
chr15: 47476402-
12.04
6.34
−0.93
−1.52
5.00E−05
7.97E−04
sema domain, transmembrane




48066420






domain (TM), and cytoplasmic











domain, (semaphorin) 6D


990
ANO7
chr2: 242127923-
24.00
12.62
−0.93
−1.39
5.00E−05
7.97E−04
anoctamin 7




242164791


991
GAREML
chr2: 26395959-
2.92
1.53
−0.93
−1.02
8.00E−04
9.10E−03
GRB2 associated, regulator of




26412532






MAPK1-like


992
PROM2
chr2: 95940200-
19.61
10.29
−0.93
−1.63
5.00E−05
7.97E−04
prominin 2




95957055


993
TMEM38B
chr9: 108456805-
9.34
4.90
−0.93
−1.45
5.00E−05
7.97E−04
transmembrane protein 38B




108538892


994
RMDN2
chr2: 38152461-
13.93
7.29
−0.93
−1.44
5.00E−05
7.97E−04
regulator of microtubule dynamics




38294285






2


995
SLC22A5
chr5: 131630144-
35.37
18.48
−0.94
−1.53
5.00E−05
7.97E−04
solute carrier family 22 (organic




131731306






cation/carnitine transporter),











member 5


996
HDC
chr15: 50534145-
3.33
1.73
−0.95
−0.97
2.00E−04
2.80E−03
histidine decarboxylase




50558162


997
SOWAHA
chr5: 132149015-
17.81
9.13
−0.96
−1.63
5.00E−05
7.97E−04
sosondowah ankyrin repeat




132152489






domain family member A


998
PPFIA3
chr19: 49622645-
6.16
3.16
−0.97
−1.40
5.00E−05
7.97E−04
protein tyrosine phosphatase,




49654287






receptor type, f polypeptide











(PTPRF), interacting protein











(liprin), alpha 3


999
CA2
chr8: 86376130-
1265.25
647.13
−0.97
−1.11
5.00E−05
7.97E−04
carbonic anhydrase II




86393721


1000
BEST2
chr19: 12863406-
40.64
20.75
−0.97
−1.20
2.50E−04
3.38E−03
bestrophin 2




12869271


1001
ADTRP
chr6: 11713887-
94.06
48.00
−0.97
−1.65
5.00E−05
7.97E−04
androgen-dependent TFPI-




11779280






regulating protein


1002
HSD11B2
chr16: 67465035-
445.70
226.79
−0.97
−1.03
9.00E−04
1.01E−02
hydroxysteroid (11-beta)




67471454






dehydrogenase 2


1003
MPP7
chr10: 28339922-
12.28
6.22
−0.98
−1.72
5.00E−05
7.97E−04
membrane protein, palmitoylated 7




28571067






(MAGUK p55 subfamily member











7)


1004
ADAMTSL1
chr9: 18474078-
1.83
0.93
−0.98
−1.19
5.00E−05
7.97E−04
ADAMTS-like 1




18910947


1005
ZNF575
chr19: 44037339-
12.36
6.25
−0.98
−1.24
5.00E−05
7.97E−04
zinc finger protein 575




44040284


1006
MPV17L
chr16: 15489610-
4.08
2.05
−0.99
−1.06
3.00E−04
3.97E−03
MPV17 mitochondrial membrane




15503543






protein-like


1007
CEACAM7
chr19: 42177234-
1097.39
550.57
−1.00
−1.01
8.50E−04
9.59E−03
carcinoembryonic antigen-related




42192206






cell adhesion molecule 7


1008
METTL7A
chr12: 51318533-
67.39
33.59
−1.00
−1.79
5.00E−05
7.97E−04
methyltransferase like 7A




51326300


1009
MPZ
chr1: 161274524-
2.83
1.41
−1.01
−0.90
1.70E−03
1.71E−02
myelin protein zero




161279762


1010
CNTN4
chr3: 2140549-
3.10
1.53
−1.02
−1.26
5.00E−05
7.97E−04
contactin 4




3099645


1011
CHRNA1
chr2: 175612322-
1.70
0.84
−1.02
−0.84
4.55E−03
3.75E−02
cholinergic receptor, nicotinic,




175629200






alpha 1 (muscle)


1012
PKIB
chr6: 122793061-
120.04
59.26
−1.02
−1.80
5.00E−05
7.97E−04
protein kinase (cAMP-dependent,




123047518






catalytic) inhibitor beta


1013
NLRP2
chr19: 55476651-
5.55
2.74
−1.02
−1.26
5.00E−05
7.97E−04
NLR family, pyrin domain




55512510






containing 2


1014
AZIN2
chr1: 33546713-
5.22
2.57
−1.02
−1.09
2.50E−04
3.38E−03
antizyme inhibitor 2




33585995


1015
PBLD
chr10: 70042416-
46.52
22.90
−1.02
−0.94
1.65E−03
1.66E−02
phenazine biosynthesis-like protein




70167051






domain containing


1016
SCN7A
chr2: 167260082-
1.12
0.55
−1.03
−1.13
2.00E−04
2.80E−03
sodium channel, voltage gated,




167343481






type VII alpha subunit


1017
ARHGAP44
chr17: 12569206-
21.26
10.42
−1.03
−1.11
1.15E−03
1.24E−02
Rho GTPase activating protein 44




12921381


1018
NPY1R
chr4: 164245116-
6.45
3.15
−1.03
−1.36
5.00E−05
7.97E−04
neuropeptide Y receptor Y1




164253947


1019
SLC2A5
chr1: 9097004-
5.15
2.51
−1.04
−1.14
1.00E−04
1.51E−03
solute carrier family 2 (facilitated




9129887






glucose/fructose transporter),











member 5


1020
APOBEC3B
chr22: 39353526-
15.42
7.46
−1.05
−1.18
1.00E−04
1.51E−03
apolipoprotein B mRNA editing




39394225






enzyme, catalytic polypeptide-like











3B


1021
TINCR
chr19: 5558177-
2.98
1.44
−1.05
−1.14
2.00E−04
2.80E−03
tissue differentiation-inducing non-




5568005






protein coding RNA


1022
PCDH20
chr13: 61983818-
3.32
1.58
−1.07
−1.24
5.00E−05
7.97E−04
protocadherin 20




61989655


1023
KLK3
chr19: 51358170-
2.92
1.39
−1.07
−0.96
2.20E−03
2.11E−02
kallikrein-related peptidase 3




51364020


1024
PPARGC1B
chr5: 149109814-
7.44
3.53
−1.08
−1.85
5.00E−05
7.97E−04
peroxisome proliferator-activated




149234585






receptor gamma, coactivator 1











beta


1025
TMEM56
chr1: 95558072-
20.12
9.49
−1.08
−1.68
5.00E−05
7.97E−04
transmembrane protein 56




95712781


1026
LOC102723344
chr15: 63682428-
4.67
2.20
−1.08
−1.02
5.00E−04
6.13E−03
uncharacterized LOC102723344




63729735


1027
FAM189A1
chr15: 29412454-
3.64
1.70
−1.10
−1.10
1.30E−03
1.37E−02
family with sequence similarity




29862927






189, member A1


1028
CWH43
chr4: 48988264-
20.77
9.72
−1.10
−1.63
5.00E−05
7.97E−04
cell wall biogenesis 43 C-terminal




49064095






homolog


1029
PDE6A
chr5: 149237518-
2.51
1.17
−1.10
−1.34
5.00E−05
7.97E−04
phosphodiesterase 6A, cGMP-




149324356






specific, rod, alpha


1030
PTGDR2
chr11: 60609428-
8.13
3.77
−1.11
−1.15
3.50E−04
4.55E−03
prostaglandin D2 receptor 2




60623444


1031
MESP2
chr15: 90319588-
1.76
0.80
−1.14
−0.88
2.50E−03
2.33E−02
mesoderm posterior bHLH




90321982






transcription factor 2


1032
CNTN3
chr3: 74311721-
2.70
1.22
−1.15
−1.43
5.00E−05
7.97E−04
contactin 3 (plasmacytoma




74570343






associated)


1033
CHP2
chr16: 23765947-
211.39
94.76
−1.16
−1.71
5.00E−05
7.97E−04
calcineurin-like EF-hand




23770272






protein 2


1034
AQP8
chr16: 25228284-
1108.72
496.18
−1.16
−0.70
2.05E−03
1.98E−02
aquaporin 8




25240253


1035
NEURL1B
chr5: 172068275-
32.47
14.49
−1.16
−2.03
5.00E−05
7.97E−04
neuralized E3 ubiquitin protein




172118533






ligase 1B


1036
HOXD3
chr2: 177028804-
1.23
0.55
−1.16
−0.89
3.20E−03
2.82E−02
homeobox D3




177037826


1037
DRAIC
chr15: 69854058-
2.07
0.92
−1.17
−1.04
2.50E−04
3.38E−03
downregulated RNA in cancer,




69863779






inhibitor of cell invasion and











migration


1038
ASPG
chr14: 104552022-
7.31
3.23
−1.18
−1.00
1.95E−03
1.91E−02
asparaginase




104579046


1039
VSTM1
chr19: 54544079-
1.61
0.71
−1.18
−0.74
2.75E−03
2.52E−02
V-set and transmembrane domain




54567207






containing 1


1040
SYP
chrX: 49044264-
4.51
1.99
−1.18
−1.24
5.00E−05
7.97E−04
synaptophysin




49058913


1041
CLCA1
chr1: 86934525-
905.45
397.19
−1.19
−0.94
4.00E−04
5.06E−03
chloride channel accessory 1




86965974


1042
KCNG1
chr20: 49620192-
3.48
1.48
−1.23
−1.06
1.30E−03
1.37E−02
potassium channel, voltage gated




49639675






modifier subfamily G, member 1


1043
SLC26A2
chr5: 149340299-
264.43
111.38
−1.25
−1.23
5.00E−05
7.97E−04
solute carrier family 26 (anion




149366963






exchanger), member 2


1044
EPB41L3
chr18: 5392379-
22.76
9.32
−1.29
−2.15
5.00E−05
7.97E−04
erythrocyte membrane protein




5628990






band 4.1-like 3


1045
MSI1
chr12: 120779132-
1.27
0.52
−1.29
−1.04
1.15E−03
1.24E−02
musashi RNA-binding protein 1




120806983


1046
SOX10
chr22: 38368318-
1.56
0.63
−1.30
−1.13
1.25E−03
1.33E−02
SRY (sex determining region Y)-




38380539






box 10


1047
SUGCT
chr7: 40174574-
7.67
3.05
−1.33
−1.47
5.00E−05
7.97E−04
succinyl-CoA: glutarate-CoA




40900366






transferase


1048
GFRA3
chr5: 137588068-
1.51
0.59
−1.37
−1.06
4.00E−04
5.06E−03
GDNF family receptor alpha 3




137610253


1049
TMEM236
chr10: 17851341-
0.95
0.36
−1.41
−1.18
1.00E−04
1.51E−03
transmembrane protein 236




18200091


1050
UGT2A3
chr4_ctg9_hap1:
46.59
17.22
−1.44
−2.28
5.00E−05
7.97E−04
UDP glucuronosyltransferase 2




506427-






family, polypeptide A3




529760


1051
OTUD7A
chr15: 31775328-
1.37
0.47
−1.54
−1.30
5.00E−05
7.97E−04
OTU deubiquitinase 7A




31947542


1052
IL13RA2
chrX: 114238537-
1.20
0.40
−1.59
−1.00
3.00E−03
2.69E−02
interleukin 13 receptor, alpha 2




114252207


1053
HAVCR1
chr5: 156456530-
2.55
0.84
−1.59
−1.11
6.10E−03
4.79E−02
hepatitis A virus cellular




156485970






receptor 1


1054
HTR4
chr5: 147830594-
4.13
1.29
−1.68
−1.43
1.00E−03
1.10E−02
5-hydroxytryptamine (serotonin)




148034090






receptor 4, G protein-coupled


1055
GPR143
chrX: 9693452-
1.59
0.43
−1.87
−1.34
5.00E−05
7.97E−04
G protein-coupled receptor 143




9734005


1056
TRIM9
chr14: 51441980-
1.49
0.40
−1.91
−1.59
1.50E−04
2.18E−03
tripartite motif containing 9




51562422


1057
MIR6506
chr16: 15688225-
22.14
0.00
−Inf
NA
1.70E−03
1.71E−02
microRNA 6506




15737023


1058
MIR6739
chr1: 201617449-
107.57
0.00
−Inf
NA
3.50E−04
4.55E−03
microRNA 6739




201853422
















TABLE 7





Differentially expressed genes in three comparisons. In Cuffdiff2, samples are normalized for


differences in library sizes relative to each other and therefore the normalized expression is affected by


which samples are included in the comparison. For this reason mean expression of a gene under one


phenotype can appear slightly different in different comparisons.
























HP versus SSA/P


















gene
locus
mean_HP
mean_SSA/P
log2FC
p_value
padj





 1
ABTB2
chr11:34172533-34379555
8.75
5.20
−0.75
5.00E−05
2.53E−03


 2
ADRA2A
chr10:112836789-112840662
6.22
15.15
1.28
5.00E−05
2.53E−03


 3
ALDH1A1
chr9:75515577-75568233
25.81
52.32
1.02
5.00E−05
2.53E−03


 4
ALDH1L1
chr3:125822403-125929011
11.68
44.11
1.92
5.00E−05
2.53E−03


 5
ALDOB
chr9:104182841-104198062
40.96
111.78
1.45
2.00E−04
8.55E−03


 6
ALDOC
chr17:26900132-26903951
28.45
17.11
−0.73
1.50E−04
6.74E−03


 7
APOBEC1
chr12:7801995-7818502
4.06
24.17
2.57
5.00E−05
2.53E−03


 8
ARSJ
chr4:114821439-114900878
3.88
1.74
−1.15
5.00E−05
2.53E−03


 9
ATF3
chr1:212738675-212794119
41.76
13.43
−1.64
5.00E−05
2.53E−03


 10
B3GNT7
chr2:232260334-232265875
114.58
15.38
−2.90
5.00E−05
2.53E−03


 11
B4GALNT2
chr17:47209821-47247351
8.12
22.20
1.45
5.00E−05
2.53E−03


 12
C12orf75
chr12:105724413-105765296
87.70
56.94
−0.62
1.00E−04
4.83E−03


 13
B3GALT5-AS1
chr21:40969074-40984749
15.21
2.81
−2.44
5.00E−05
2.53E−03


 14
C4BPB
chr1:207262211-207273337
7.74
24.18
1.64
5.00E−05
2.53E−03


 15
CCL13
chr17:32683470-32685629
7.16
21.01
1.55
5.00E−05
2.53E−03


 16
CD55
chr1:207494816-207534311
93.25
188.00
1.01
1.00E−04
4.83E−03


 17
CDA
chr1:20915443-20945400
87.05
55.46
−0.65
1.00E−04
4.83E−03


 18
CHGB
chr20:5891973-5906005
9.53
2.88
−1.73
5.00E−05
2.53E−03


 19
CHST5
chr16:75562427-75569068
67.08
36.24
−0.89
5.00E−05
2.53E−03


 20
CLC
chr19:40221892-40228669
3.48
11.71
1.75
5.00E−05
2.53E−03


 21
CLDN8
chr21:31586323-31588469
35.70
3.80
−3.23
5.00E−05
2.53E−03


 22
CNNM2
chr10:104678074-104838344
7.99
4.63
−0.79
6.00E−04
1.99E−02


 23
COL18A1
chr21:46825096-46933634
7.26
14.11
0.96
5.00E−05
2.53E−03


 24
COL5A3
chr19:10070236-10121147
1.50
2.51
0.74
6.50E−04
2.11E−02


 25
CPB1
chr3:148545587-148577972
25.47
1.31
−4.28
5.00E−05
2.53E−03


 26
CPNE8
chr12:39046001-39299420
9.30
4.27
−1.12
5.00E−05
2.53E−03


 27
CTGF
chr6:132269316-132272518
30.53
17.58
−0.80
5.00E−05
2.53E−03


 28
CYP2C18
chr10:96443250-96495947
5.42
9.35
0.79
4.00E−04
1.49E−02


 29
CYP2C9
chr10:96698414-96749148
2.20
5.77
1.39
5.00E−05
2.53E−03


 30
CYP2W1
chr7:1022834-1029276
3.99
1.22
−1.71
5.00E−05
2.53E−03


 31
CYP3A5
chr7:99245811-99277649
86.67
134.53
0.63
1.70E−03
4.44E−02


 32
EFNA3
chr1:155051347-155060014
13.94
5.42
−1.36
5.00E−05
2.53E−03


 33
EGR1
chr5:137801180-137805004
38.90
12.69
−1.62
5.00E−05
2.53E−03


 34
ETNK1
chr12:22778075-22843608
21.99
48.21
1.13
5.00E−05
2.53E−03


 35
FAM213A
chr10:82167584-82192753
31.10
47.73
0.62
1.10E−03
3.22E−02


 36
FAM3D
chr3:58619669-58652561
559.43
349.35
−0.68
6.50E−04
2.11E−02


 37
FER1L4
chr20:34146506-34195484
3.98
7.26
0.87
5.00E−05
2.53E−03


 38
FFAR4
chr10:95326421-95349829
34.44
14.86
−1.21
5.00E−05
2.53E−03


 39
FOS
chr14:75745480-75748937
188.02
46.34
−2.02
5.00E−05
2.53E−03


 40
FOSB
chr19:45971252-45978437
9.39
1.96
−2.26
5.00E−05
2.53E−03


 41
FOXA2
chr20:22561641-22566101
13.89
7.52
−0.88
5.00E−05
2.53E−03


 42
FOXQ1
chr6:1312674-1314993
2.47
12.74
2.37
5.00E−05
2.53E−03


 43
FREM1
chr9:14734663-14910993
0.31
2.68
3.14
5.00E−05
2.53E−03


 44
FRMD3
chr9:85857904-86153348
10.47
5.49
−0.93
5.00E−05
2.53E−03


 45
FSCN1
chr7:5632435-5646287
5.43
20.43
1.91
5.00E−05
2.53E−03


 46
GBA3
chr4:22694536-22821195
3.97
7.33
0.88
1.25E−03
3.53E−02


 47
GBP5
chr1:89724633-89738544
1.41
3.01
1.09
5.00E−05
2.53E−03


 48
GDF15
chr19:18496967-18499986
28.32
14.08
−1.01
5.00E−05
2.53E−03


 49
GPC3
chrX:132669775-133119673
0.34
2.89
3.08
5.00E−05
2.53E−03


 50
ADGRF1
chr6:46967812-47010082
2.99
7.66
1.35
5.00E−05
2.53E−03


 51
H19
chr11:2016405-2019065
0.95
2.94
1.63
5.00E−05
2.53E−03


 52
HOXB13
chr17:46802126-46806111
71.01
11.46
−2.63
5.00E−05
2.53E−03


 53
HSD3B2
chr1:119957553-119965662
0.82
4.19
2.36
5.00E−04
1.75E−02


 54
HSPA2
chr14:65007185-65009954
11.23
5.77
−0.96
5.00E−05
2.53E−03


 55
IGFBP2
chr2:217498126-217529158
46.82
82.33
0.81
5.00E−05
2.53E−03


 56
IGFBP5
chr2:217536827-217560272
5.58
8.61
0.62
4.00E−04
1.49E−02


 57
INSL5
chr1:67263423-67266942
335.40
9.96
−5.07
5.00E−05
2.53E−03


 58
JUN
chr1:59246462-59249785
62.51
38.23
−0.71
5.00E−04
1.75E−02


 59
KLF8
chrX:56258821-56314322
0.76
1.61
1.08
3.50E−04
1.32E−02


 60
L1TD1
chr1:62660473-62678001
2.01
6.07
1.59
5.00E−05
2.53E−03


 61
LINC00261
chr20:22541191-22559280
18.71
12.55
−0.58
8.00E−04
2.53E−02


 62
LOC283177
chr11:134306375-134375555
1.38
3.09
1.16
6.00E−04
1.99E−02


 63
LOC284454
chr19:13945329-13947173
22.05
12.85
−0.78
3.00E−04
1.18E−02


 64
LOC389602
chr7:155755325-155759037
5.80
10.59
0.87
1.50E−04
6.74E−03


 65
MFAP5
chr12:8798539-8815433
3.98
1.85
−1.11
5.00E−05
2.53E−03


 66
MFSD4
chr1:205538111-205572046
22.34
9.75
−1.20
5.00E−05
2.53E−03


 67
MROH6
chr8:144648362-144654928
7.36
11.87
0.69
3.50E−04
1.32E−02


 68
MS4A12
chr11:60260250-60274901
328.68
160.33
−1.04
5.00E−05
2.53E−03


 69
MUC12
chr7:100612903-100662230
75.53
21.34
−1.82
5.00E−05
2.53E−03


 70
MUC17
chr7:100663363-100702140
22.05
71.19
1.69
5.00E−05
2.53E−03


 71
NOX1
chrX:100098312-100129334
61.82
40.86
−0.60
3.00E−04
1.18E−02


 72
NPY6R
chr5:137136881-137146439
1.27
3.15
1.31
1.10E−03
3.22E−02


 73
NQO1
chr16:69743303-69760571
76.50
144.60
0.92
5.00E−05
2.53E−03


 74
NR1H4
chr12:100867550-100957645
2.59
6.41
1.31
2.50E−04
1.03E−02


 75
NR4A1
chr12:52416615-52453291
56.79
8.93
−2.67
5.00E−05
2.53E−03


 76
NR4A2
chr2:157180943-157189287
10.30
2.09
−2.30
5.00E−05
2.53E−03


 77
NT5DC3
chr12:104166080-104234975
3.62
2.27
−0.67
9.50E−04
2.87E−02


 78
PCSK1
chr5:95726039-95768985
3.08
1.18
−1.39
5.00E−05
2.53E−03


 79
PDE3A
chr12:20522178-20837041
7.57
3.95
−0.94
5.00E−05
2.53E−03


 80
PDZK1IP1
chr1:47649260-47655771
106.93
266.07
1.32
5.00E−05
2.53E−03


 81
PITX2
chr4:111538579-111563279
1.46
12.53
3.10
5.00E−05
2.53E−03


 82
PLLP
chr16:57290008-57318584
57.05
33.66
−0.76
5.00E−05
2.53E−03


 83
PP7080
chr5:470624-473080
92.49
199.57
1.11
5.00E−05
2.53E−03


 84
PPP1R12B
chr1:202317829-202557697
15.60
10.54
−0.57
1.05E−03
3.10E−02


 85
PPP1R15A
chr19:49375648-49379319
36.17
21.95
−0.72
1.00E−04
4.83E−03


 86
PRAC1
chr17:46799081-46799882
152.89
31.74
−2.27
5.00E−05
2.53E−03


 87
PTGDS
chr9:139871955-139876194
8.40
16.79
1.00
2.00E−04
8.55E−03


 88
RBP4
chr10:95351592-95360993
23.68
9.91
−1.26
5.00E−05
2.53E−03


 89
RGS1
chr1:192544856-192549159
14.62
7.62
−0.94
5.00E−05
2.53E−03


 90
RHBDL2
chr1:39351478-39407456
32.16
19.88
−0.69
1.50E−04
6.74E−03


 91
SCG2
chr2:224461657-224467217
10.83
2.68
−2.01
5.00E−05
2.53E−03


 92
SDR16C5
chr8:57212569-57233241
23.24
35.78
0.62
1.50E−03
4.05E−02


 93
SIDT1
chr3:113251217-113348422
14.17
8.96
−0.66
1.50E−04
6.74E−03


 94
SIK4
chr21:44834397-44847002
16.20
3.98
−2.03
5.00E−05
2.53E−03


 95
SLC14A2
chr18:42792946-43263060
0.13
2.42
4.22
5.00E−05
2.53E−03


 96
SLC15A1
chr13:99336054-99404929
16.00
7.95
−1.01
5.00E−05
2.53E−03


 97
SLC37A2
chr11:124933012-124960412
7.36
37.13
2.34
5.00E−05
2.53E−03


 98
SLC51A
chr3:195943382-195960301
13.44
28.16
1.07
1.35E−03
3.76E−02


 99
SLC9A3
chr5:473333-524549
49.72
114.65
1.21
5.00E−05
2.53E−03


100
SPINK5
chr5:147443534-147516925
15.59
5.13
−1.60
5.00E−05
2.53E−03


101
SPON1
chr11:13984183-14289679
43.37
20.70
−1.07
5.00E−05
2.53E−03


102
ST3GAL4
chr11:126225539-126284536
162.38
66.72
−1.28
5.00E−05
2.53E−03


103
ST6GALNAC6
chr9:130647599-130667627
276.43
116.79
−1.24
5.00E−05
2.53E−03


104
STOM
chr9:124101265-124132582
19.56
48.34
1.31
5.00E−05
2.53E−03


105
SULT1C2
chr2:108905094-108926371
11.22
30.35
1.44
5.00E−05
2.53E−03


106
SULT2B1
chr19:49055428-49102684
2.64
6.07
1.20
5.00E−05
2.53E−03


107
TBX10
chr11:67398773-67407031
18.20
8.82
−1.05
5.00E−05
2.53E−03


108
TFCP2L1
chr2:121974163-122042778
28.31
15.57
−0.86
5.00E−05
2.53E−03


109
THRB
chr3:24158644-24541502
5.39
2.79
−0.95
5.00E−05
2.53E−03


110
TM4SF20
chr2:228226873-228244022
5.69
33.22
2.54
5.00E−05
2.53E−03


111
TMC5
chr16:19422056-19510434
20.27
30.20
0.58
1.20E−03
3.40E−02


112
TMEM200A
chr6:130687425-130764210
11.88
3.93
−1.60
5.00E−05
2.53E−03


113
TMEM231
chr16:75572014-75590184
9.16
4.54
−1.01
5.00E−05
2.53E−03


114
TMIGD1
chr17:28643365-28661065
71.95
38.40
−0.91
5.00E−05
2.53E−03


115
TNNC1
chr3:52485106-52488057
10.03
1.09
−3.20
5.00E−05
2.53E−03


116
TPH1
chr11:18042083-18062335
6.70
1.81
−1.89
5.00E−05
2.53E−03


117
TUSC3
chr8:15397595-15624158
7.52
2.23
−1.75
5.00E−05
2.53E−03


118
UGT2B7
chr4:69962192-69978705
2.31
5.90
1.35
5.00E−05
2.53E−03


119
VNN1
chr6:133001996-133035194
3.75
14.48
1.95
5.00E−05
2.53E−03


120
VWA2
chr10:115999012-116054259
1.17
2.78
1.25
5.00E−05
2.53E−03


121
WFDC2
chr20:44098393-44110172
249.52
62.76
−1.99
5.00E−05
2.53E−03



















CR versus SSA/P


















gene
locus
mean_CR
mean_SSA/P
log2FC
p_value
padj





 1
ABTB2
chr11:34172533-34379555
2.83
5.36
0.92
5.00E−05
7.97E−04


 2
ADRA2A
chr10:112836789-112840662
28.80
15.54
−0.89
5.00E−05
7.97E−04


 3
ALDH1A1
chr9:75515577-75568233
78.28
54.36
−0.53
2.50E−04
3.38E−03


 4
ALDH1L1
chr3:125822403-125929011
17.54
45.47
1.37
5.00E−05
7.97E−04


 5
ALDOB
chr9:104182841-104198062
14.59
116.11
2.99
5.00E−05
7.97E−04


 6
ALDOC
chr17:26900132-26903951
7.60
17.67
1.22
5.00E−05
7.97E−04


 7
APOBEC1
chr12:7801995-7818502
8.30
25.07
1.59
5.00E−05
7.97E−04


 8
ARSJ
chr4:114821439-114900878
0.66
1.81
1.45
5.00E−05
7.97E−04


 9
ATF3
chr1:212738675-212794119
4.84
13.90
1.52
5.00E−05
7.97E−04


 10
B3GNT7
chr2:232260334-232265875
7.50
15.87
1.08
5.00E−05
7.97E−04


 11
B4GALNT2
chr17:47209821-47247351
88.58
22.95
−1.95
5.00E−05
7.97E−04


 12
C12orf 75
chr12:105724413-105765296
25.83
58.39
1.18
5.00E−05
7.97E−04


 13
B3GALT5-AS1
chr21:40969074-40984749
0.54
2.90
2.42
5.00E−05
7.97E−04


 14
C4BPB
chr1:207262211-207273337
5.55
25.05
2.18
5.00E−05
7.97E−04


 15
CCL13
chr17:32683470-32685629
42.01
21.58
−0.96
5.00E−05
7.97E−04


 16
CD55
chr1:207494816-207534311
25.68
194.65
2.92
5.00E−05
7.97E−04


 17
CDA
chr1:20915443-20945400
21.65
57.17
1.40
5.00E−05
7.97E−04


 18
CHGB
chr20:5891973-5906005
8.07
2.99
−1.43
5.00E−05
7.97E−04


 19
CHST5
chr16:75562427-75569068
12.57
37.20
1.56
5.00E−05
7.97E−04


 20
CLC
chr19:40221892-40228669
21.80
12.10
−0.85
1.50E−04
2.18E−03


 21
CLDN8
chr21:31586323-31588469
1.70
3.93
1.21
5.50E−04
6.69E−03


 22
CNNM2
chr10:104678074-104838344
7.37
4.80
−0.62
4.40E−03
3.65E−02


 23
COL18A1
chr21:46825096-46933634
23.26
14.53
−0.68
1.00E−04
1.51E−03


 24
COL5A3
chr19:10070236-10121147
4.06
2.57
−0.66
7.50E−04
8.64E−03


 25
CPB1
chr3:148545587-148577972
0.10
1.36
3.79
5.00E−05
7.97E−04


 26
CPNE8
chr12:39046001-39299420
6.68
4.44
−0.59
2.45E−03
2.29E−02


 27
CTGF
chr6:132269316-132272518
10.99
18.12
0.72
5.00E−05
7.97E−04


 28
CYP2C18
chr10:96443250-96495947
17.00
9.69
−0.81
5.00E−05
7.97E−04


 29
CYP2C9
chr10:96698414-96749148
11.44
5.96
−0.94
5.00E−05
7.97E−04


 30
CYP2W1
chr7:1022834-1029276
0.44
1.25
1.50
5.00E−05
7.97E−04


 31
CYP3A5
chr7:99245811-99277649
39.96
139.97
1.81
5.00E−05
7.97E−04


 32
EFNA3
chr1:155051347-155060014
3.36
5.57
0.73
5.45E−03
4.37E−02


 33
EGR1
chr5:137801180-137805004
4.44
13.08
1.56
5.00E−05
7.97E−04


 34
ETNK1
chr12:22778075-22843608
134.13
49.89
−1.43
5.00E−05
7.97E−04


 35
FAM213A
chr10:82167584-82192753
70.97
49.42
−0.52
1.15E−03
1.24E−02


 36
FAM3D
chr3:58619669-58652561
251.01
361.22
0.53
1.65E−03
1.66E−02


 37
FER1L4
chr20:34146506-34195484
4.42
7.45
0.75
5.00E−05
7.97E−04


 38
FFAR4
chr10:95326421-95349829
6.41
15.32
1.26
5.00E−05
7.97E−04


 39
FOS
chr14:75745480-75748937
15.58
47.68
1.61
5.00E−05
7.97E−04


 40
FOSB
chr19:45971252-45978437
0.41
2.01
2.31
5.00E−05
7.97E−04


 41
FOXA2
chr20:22561641-22566101
3.75
7.77
1.05
5.00E−05
7.97E−04


 42
FOXQ1
chr6:1312674-1314993
1.83
13.06
2.84
5.00E−05
7.97E−04


 43
FREM1
chr9:14734663-14910993
1.02
2.81
1.47
5.00E−05
7.97E−04


 44
FRMD3
chr9:85857904-86153348
3.51
5.74
0.71
5.00E−05
7.97E−04


 45
FSCN1
chr7:5632435-5646287
7.00
20.88
1.58
5.00E−05
7.97E−04


 46
GBA3
chr4:22694536-22821195
21.87
7.54
−1.54
5.00E−05
7.97E−04


 47
GBP5
chr1:89724633-89738544
1.95
3.12
0.68
4.35E−03
3.63E−02


 48
GDF15
chr19:18496967-18499986
6.15
14.54
1.24
5.00E−05
7.97E−04


 49
GPC3
chrX:132669775-133119673
9.40
2.99
−1.65
5.00E−05
7.97E−04


 50
ADGRF1
chr6:46967812-47010082
1.19
8.02
2.75
5.00E−05
7.97E−04


 51
H19
chr11:2016405-2019065
1.28
3.02
1.24
1.50E−03
1.53E−02


 52
HOXB13
chr17:46802126-46806111
0.34
11.83
5.11
5.00E−05
7.97E−04


 53
HSD3B2
chr1:119957553-119965662
18.40
4.32
−2.09
5.00E−05
7.97E−04


 54
HSPA2
chr14:65007185-65009954
10.07
5.99
−0.75
5.00E−05
7.97E−04


 55
IGFBP2
chr2:217498126-217529158
170.45
84.99
−1.00
5.00E−05
7.97E−04


 56
IGFBP5
chr2:217536827-217560272
17.50
8.84
−0.99
5.00E−05
7.97E−04


 57
INSL5
chr1:67263423-67266942
1.29
10.37
3.00
5.00E−05
7.97E−04


 58
JUN
chr1:59246462-59249785
25.77
39.35
0.61
5.00E−05
7.97E−04


 59
KLF8
chrX:56258821-56314322
3.36
1.66
−1.02
5.00E−05
7.97E−04


 60
L1TD1
chr1:62660473-62678001
10.17
6.32
−0.69
5.00E−04
6.13E−03


 61
LINC00261
chr20:22541191-22559280
4.53
13.04
1.53
5.00E−05
7.97E−04


 62
LOC283177
chr11:134306375-134375555
5.05
3.19
−0.66
1.70E−03
1.71E−02


 63
LOC284454
chr19:13945329-13947173
7.45
13.21
0.83
1.00E−04
1.51E−03


 64
LOC389602
chr7:155755325-155759037
1.88
10.94
2.54
5.00E−05
7.97E−04


 65
MFAP5
chr12:8798539-8815433
0.62
1.94
1.65
5.00E−05
7.97E−04


 66
MFSD4
chr1:205538111-205572046
6.56
10.06
0.62
3.00E−04
3.97E−03


 67
MROH6
chr8:144648362-144654928
6.94
12.23
0.82
5.00E−05
7.97E−04


 68
MS4A12
chr11:60260250-60274901
267.62
164.87
−0.70
4.00E−04
5.06E−03


 69
MUC12
chr7:100612903-100662230
12.37
22.10
0.84
1.00E−04
1.51E−03


 70
MUC17
chr7:100663363-100702140
2.42
74.14
4.94
5.00E−05
7.97E−04


 71
NOX1
chrX:100098312-100129334
24.05
42.36
0.82
5.00E−05
7.97E−04


 72
NPY6R
chr5:137136881-137146439
4.98
3.25
−0.61
3.55E−03
3.07E−02


 73
NQO1
chr16:69743303-69760571
92.08
149.67
0.70
5.00E−05
7.97E−04


 74
NR1H4
chr12:100867550-100957645
17.72
6.62
−1.42
5.00E−05
7.97E−04


 75
NR4A1
chr12:52416615-52453291
4.22
9.19
1.12
5.00E−05
7.97E−04


 76
NR4A2
chr2:157180943-157189287
0.85
2.16
1.35
5.00E−05
7.97E−04


 77
NT5DC3
chr12:104166080-104234975
1.04
2.35
1.17
5.00E−05
7.97E−04


 78
PCSK1
chr5:95726039-95768985
0.58
1.22
1.08
1.00E−04
1.51E−03


 79
PDE3A
chr12:20522178-20837041
8.66
4.08
−1.09
5.00E−05
7.97E−04


 80
PDZK1IP1
chr1:47649260-47655771
21.40
273.29
3.67
5.00E−05
7.97E−04


 81
PITX2
chr4:111538579-111563279
45.04
12.98
−1.80
5.00E−05
7.97E−04


 82
PLLP
chr16:57290008-57318584
7.25
34.68
2.26
5.00E−05
7.97E−04


 83
PP7080
chr5:470624-473080
564.44
206.58
−1.45
5.00E−05
7.97E−04


 84
PPP1R12B
chr1:202317829-202557697
6.15
10.90
0.83
5.00E−05
7.97E−04


 85
PPP1R15A
chr19:49375648-49379319
12.71
22.53
0.83
5.00E−05
7.97E−04


 86
PRAC1
chr17:46799081-46799882
1.53
32.82
4.43
5.00E−05
7.97E−04


 87
PTGDS
chr9:139871955-139876194
31.17
17.27
−0.85
2.00E−04
2.80E−03


 88
RBP4
chr10:95351592-95360993
4.66
10.05
1.11
5.00E−05
7.97E−04


 89
RGS1
chr1:192544856-192549159
5.04
7.98
0.66
2.70E−03
2.48E−02


 90
RHBDL2
chr1:39351478-39407456
11.06
20.55
0.89
5.00E−05
7.97E−04


 91
SCG2
chr2:224461657-224467217
1.29
2.79
1.12
1.55E−03
1.57E−02


 92
SDR16C5
chr8:57212569-57233241
2.46
37.01
3.91
5.00E−05
7.97E−04


 93
SIDT1
chr3:113251217-113348422
5.95
9.23
0.63
5.00E−05
7.97E−04


 94
SIK1
chr21 :44834397-44847002
1.75
4.09
1.22
5.00E−05
7.97E−04


 95
SLC14A2
chr18:42792946-43263060
10.40
2.51
−2.05
5.00E−05
7.97E−04


 96
SLC15A1
chr13:99336054-99404929
1.88
8.23
2.13
5.00E−05
7.97E−04


 97
SLC37A2
chr11:124933012-124960412
196.43
38.34
−2.36
5.00E−05
7.97E−04


 98
SLC51A
chr3:195943382-195960301
96.90
28.78
−1.75
5.00E−05
7.97E−04


 99
SLC9A3
chr5:473333-524549
398.94
120.06
−1.73
5.00E−05
7.97E−04


100
SPINK5
chr5:147443534-147516925
1.87
5.36
1.52
5.00E−05
7.97E−04


101
SPON1
chr11:13984183-14289679
14.15
21.35
0.59
1.50E−04
2.18E−03


102
ST3GAL4
chr11:126225539-126284536
5.42
68.82
3.67
5.00E−05
7.97E−04


103
ST6GALNAC6
chr9:130647599-130667627
32.74
120.19
1.88
5.00E−05
7.97E−04


104
STOM
chr9:124101265-124132582
33.99
50.37
0.57
1.30E−03
1.37E−02


105
SULT1C2
chr2:108905094-108926371
0.58
31.49
5.77
5.00E−05
7.97E−04


106
SULT2B1
chr19:49055428-49102684
3.47
6.23
0.84
1.30E−03
1.37E−02


107
TBX10
chr11:67398773-67407031
3.73
9.04
1.28
5.00E−05
7.97E−04


108
TFCP2L1
chr2:121974163-122042778
23.00
16.01
−0.52
6.50E−04
7.69E−03


109
THRB
chr3:24158644-24541502
0.93
2.88
1.63
5.00E−05
7.97E−04


110
TM4SF20
chr2:228226873-228244022
3.33
34.74
3.38
5.00E−05
7.97E−04


111
TMC5
chr16:19422056-19510434
13.73
31.35
1.19
5.00E−05
7.97E−04


112
TMEM200A
chr6:130687425-130764210
2.33
4.06
0.80
1.30E−03
1.37E−02


113
TMEM231
chr16:75572014-75590184
2.63
4.67
0.83
2.50E−04
3.38E−03


114
TMIGD1
chr17:28643365-28661065
80.33
39.78
−1.01
5.00E−05
7.97E−04


115
TNNC1
chr3:52485106-52488057
0.24
1.13
2.23
1.55E−03
1.57E−02


116
TPH1
chr11:18042083-18062335
3.84
1.86
−1.04
2.50E−04
3.38E−03


117
TUSC3
chr8:15397595-15624158
1.39
2.30
0.73
4.40E−03
3.65E−02


118
UGT2B7
chr4:69962192-69978705
1.61
6.19
1.94
5.00E−05
7.97E−04


119
VNN1
chr6:133001996-133035194
0.39
15.17
5.27
5.00E−05
7.97E−04


120
VWA2
chr10:115999012-116054259
1.18
2.85
1.27
5.00E−05
7.97E−04


121
WFDC2
chr20:44098393-44110172
29.07
64.83
1.16
5.00E−05
7.97E−04



















CR versus CL


















gene
locus
mean_CR
mean_CL
log2FC
p_value
padj





 1
ABTB2
chr11:34172533-34379555
2.92
6.12
1.07
5.00E−05
1.05E−03


 2
ADRA2A
chr10:112836789-112840662
29.66
8.07
−1.88
5.00E−05
1.05E−03


 3
ALDH1A1
chr9:75515577-75568233
80.57
52.01
−0.63
5.00E−05
1.05E−03


 4
ALDH1L1
chr3:125822403-125929011
18.09
6.30
−1.52
5.00E−05
1.05E−03


 5
ALDOB
chr9:104182841-104198062
15.05
2.93
−2.36
5.00E−05
1.05E−03


 6
ALDOC
chr17:26900132-26903951
7.84
21.10
1.43
5.00E−05
1.05E−03


 7
APOBEC1
chr12:7801995-7818502
8.55
3.02
−1.50
5.00E−05
1.05E−03


 8
ARSJ
chr4:114821439-114900878
0.68
1.59
1.22
5.00E−05
1.05E−03


 9
ATF3
chr1:212738675-212794119
5.00
20.46
2.03
5.00E−05
1.05E−03


 10
B3GNT7
chr2:232260334-232265875
7.72
73.01
3.24
5.00E−05
1.05E−03


 11
B4GALNT2
chr17:47209821-47247351
91.30
32.24
−1.50
5.00E−05
1.05E−03


 12
C12orf75
chr12:105724413-105765296
26.58
71.16
1.42
5.00E−05
1.05E−03


 13
B3GALT5-AS1
chr21:40969074-40984749
0.56
12.47
4.48
5.00E−05
1.05E−03


 14
C4BPB
chr1:207262211-207273337
5.71
3.25
−0.82
2.75E−03
3.13E−02


 15
CCL13
chr17:32683470-32685629
43.28
22.80
−0.92
5.00E−05
1.05E−03


 16
CD55
chr1:207494816-207534311
26.49
15.08
−0.81
5.00E−05
1.05E−03


 17
CDA
chr1:20915443-20945400
22.30
51.39
1.20
5.00E−05
1.05E−03


 18
CHGB
chr20:5891973-5906005
8.32
4.84
−0.78
5.00E−05
1.05E−03


 19
CHST5
chr16:75562427-75569068
12.95
44.11
1.77
5.00E−05
1.05E−03


 20
CLC
chr19:40221892-40228669
22.51
8.72
−1.37
5.00E−05
1.05E−03


 21
CLDN8
chr21:31586323-31588469
1.75
50.41
4.85
5.00E−05
1.05E−03


 22
CNNM2
chr10:104678074-104838344
7.59
11.76
0.63
1.50E−04
2.76E−03


 23
COL18A1
chr21:46825096-46933634
23.98
10.17
−1.24
5.00E−05
1.05E−03


 24
COL5A3
chr19:10070236-10121147
4.19
1.49
−1.50
5.00E−05
1.05E−03


 25
CPB1
chr3:148545587-148577972
0.10
1.54
3.93
5.00E−05
1.05E−03


 26
CPNE8
chr12:39046001-39299420
6.87
10.99
0.68
5.00E−05
1.05E−03


 27
CTGF
chr6:132269316-132272518
11.32
18.80
0.73
5.00E−05
1.05E−03


 28
CYP2C18
chr10:96443250-96495947
17.49
5.79
−1.60
5.00E−05
1.05E−03


 29
CYP2C9
chr10:96698414-96749148
11.77
2.07
−2.50
5.00E−05
1.05E−03


 30
CYP2W1
chr7:1022834-1029276
0.45
2.27
2.32
5.00E−05
1.05E−03


 31
CYP3A5
chr7:99245811-99277649
41.12
67.62
0.72
5.00E−05
1.05E−03


 32
EFNA3
chr1:155051347-155060014
3.46
7.52
1.12
5.00E−05
1.05E−03


 33
EGR1
chr5:137801180-137805004
4.57
15.96
1.80
5.00E−05
1.05E−03


 34
ETNK1
chr12:22778075-22843608
137.99
35.89
−1.94
5.00E−05
1.05E−03


 35
FAM213A
chr10:82167584-82192753
73.04
50.96
−0.52
5.00E−05
1.05E−03


 36
FAM3D
chr3:58619669-58652561
258.54
409.90
0.66
5.00E−05
1.05E−03


 37
FER1L4
chr20:34146506-34195484
4.56
2.13
−1.10
5.00E−05
1.05E−03


 38
FFAR4
chr10:95326421-95349829
6.61
20.46
1.63
5.00E−05
1.05E−03


 39
FOS
chr14:75745480-75748937
16.05
75.85
2.24
5.00E−05
1.05E−03


 40
FOSB
chr19:45971252-45978437
0.42
5.31
3.67
5.00E−05
1.05E−03


 41
FOXA2
chr20:22561641-22566101
3.87
10.61
1.46
5.00E−05
1.05E−03


 42
FOXQ1
chr6:1312674-1314993
1.88
0.31
−2.59
5.00E−05
1.05E−03


 43
FREM1
chr9:14734663-14910993
1.05
0.22
−2.27
5.00E−05
1.05E−03


 44
FRMD3
chr9:85857904-86153348
3.61
7.20
0.99
5.00E−05
1.05E−03


 45
FSCN1
chr7:5632435-5646287
7.21
4.41
−0.71
2.00E−04
3.55E−03


 46
GBA3
chr4:22694536-22821195
22.49
8.51
−1.40
5.00E−05
1.05E−03


 47
GBP5
chr1:89724633-89738544
2.01
1.26
−0.68
2.00E−03
2.43E−02


 48
GDF15
chr19:18496967-18499986
6.34
11.32
0.84
2.50E−04
4.29E−03


 49
GPC3
chrX:132669775-133119673
9.68
0.57
−4.08
5.00E−05
1.05E−03


 50
ADGRF1
chr6:46967812-47010082
1.23
0.65
−0.92
1.60E−03
2.03E−02


 51
H19
chr11:2016405-2019065
1.32
0.45
−1.54
1.00E−04
1.95E−03


 52
HOXB13
chr17:46802126-46806111
0.35
54.89
7.28
5.00E−05
1.05E−03


 53
HSD3B2
chr1:119957553-119965662
19.01
1.65
−3.53
5.00E−05
1.05E−03


 54
HSPA2
chr14:65007185-65009954
10.38
15.10
0.54
2.00E−04
3.55E−03


 55
IGFBP2
chr2:217498126-217529158
175.71
60.48
−1.54
5.00E−05
1.05E−03


 56
IGFBP5
chr2:217536827-217560272
18.02
9.16
−0.98
5.00E−05
1.05E−03


 57
INSL5
chr1:67263423-67266942
1.33
77.20
5.86
5.00E−05
1.05E−03


 58
JUN
chr1:59246462-59249785
26.56
45.42
0.77
5.00E−05
1.05E−03


 59
KLF8
chrX:56258821-56314322
3.46
1.10
−1.66
5.00E−05
1.05E−03


 60
L1TD1
chr1:62660473-62678001
10.49
2.06
−2.34
5.00E−05
1.05E−03


 61
LINC00261
chr20:22541191-22559280
4.66
13.47
1.53
5.00E−05
1.05E−03


 62
LOC283177
chr11:134306375-134375555
5.19
3.50
−0.57
1.85E−03
2.29E−02


 63
LOC284454
chr19:13945329-13947173
7.67
12.73
0.73
5.00E−05
1.05E−03


 64
LOC389602
chr7:155755325-155759037
1.95
3.35
0.78
2.20E−03
2.63E−02


 65
MFAP5
chr12:8798539-8815433
0.64
2.70
2.09
5.00E−05
1.05E−03


 66
MFSD4
chr1:205538111-205572046
6.75
22.34
1.73
5.00E−05
1.05E−03


 67
MROH6
chr8:144648362-144654928
7.15
5.05
−0.50
4.75E−03
4.76E−02


 68
MS4A12
chr11:60260250-60274901
275.22
460.74
0.74
5.00E−05
1.05E−03


 69
MUC12
chr7:100612903-100662230
12.73
47.67
1.91
5.00E−05
1.05E−03


 70
MUC17
chr7:100663363-100702140
2.49
6.86
1.46
5.00E−05
1.05E−03


 71
NOX1
chrX:100098312-100129334
24.77
61.03
1.30
5.00E−05
1.05E−03


 72
NPY6R
chr5:137136881-137146439
5.12
2.61
−0.97
5.00E−05
1.05E−03


 73
NQO1
chr16:69743303-69760571
94.80
58.34
−0.70
5.00E−05
1.05E−03


 74
NR1H4
chr12:100867550-100957645
18.23
5.09
−1.84
5.00E−05
1.05E−03


 75
NR4A1
chr12:52416615-52453291
4.34
8.55
0.98
5.00E−05
1.05E−03


 76
NR4A2
chr2:157180943-157189287
0.87
1.62
0.89
4.50E−04
6.98E−03


 77
NT5DC3
chr12:104166080-104234975
1.08
2.19
1.02
5.00E−05
1.05E−03


 78
PCSK1
chr5:95726039-95768985
0.59
1.29
1.12
5.00E−05
1.05E−03


 79
PDE3A
chr12:20522178-20837041
8.91
14.93
0.75
5.00E−05
1.05E−03


 80
PDZK1IP1
chr1:47649260-47655771
22.03
35.74
0.70
5.00E−05
1.05E−03


 81
PITX2
chr4:111538579-11I563279
46.39
0.92
−5.66
5.00E−05
1.05E−03


 82
PLLP
chr16:57290008-57318584
7.47
14.23
0.93
5.00E−05
1.05E−03


 83
PP7080
chr5:470624-473080
581.11
130.86
−2.15
5.00E−05
1.05E−03


 84
PPP1R12B
chr1:202317829-202557697
6.35
13.73
1.11
5.00E−05
1.05E−03


 85
PPP1R15A
chr19:49375648-49379319
13.12
20.35
0.63
5.00E−05
1.05E−03


 86
PRAC1
chr17:46799081-46799882
1.57
198.20
6.98
5.00E−05
1.05E−03


 87
PTGDS
chr9:139871955-139876194
32.14
10.87
−1.56
5.00E−05
1.05E−03


 88
RBP4
chr10:95351592-95360993
4.80
16.22
1.76
5.00E−05
1.05E−03


 89
RGS1
chr1:192544856-192549159
5.19
8.46
0.71
2.50E−04
4.29E−03


 90
RHBDL2
chr1:39351478-39407456
11.40
21.90
0.94
5.00E−05
1.05E−03


 91
SCG2
chr2:224461657-224467217
1.32
3.78
1.52
5.00E−05
1.05E−03


 92
SDR16C5
chr8:57212569-57233241
2.53
5.28
1.06
5.00E−05
1.05E−03


 93
SIDT1
chr3:113251217-113348422
6.13
11.75
0.94
5.00E−05
1.05E−03


 94
SIK1
chr21:44834397-44847002
1.80
2.80
0.63
4.95E−03
4.91E−02


 95
SLC14A2
chr18:42792946-43263060
10.71
0.12
−6.51
5.00E−05
1.05E−03


 96
SLC15A1
chr13:99336054-99404929
1.94
10.44
2.43
5.00E−05
1.05E−03


 97
SLC37A2
chr11:124933012-124960412
202.30
5.51
−5.20
5.00E−05
1.05E−03


 98
SLC51A
chr3:195943382-195960301
99.86
27.31
−1.87
5.00E−05
1.05E−03


 99
SLC9A3
chr5:473333-524549
411.65
94.88
−2.12
5.00E−05
1.05E−03


100
SPINK5
chr5:147443534-147516925
1.93
5.69
1.56
5.00E−05
1.05E−03


101
SPON1
chr11:13984183-14289679
14.58
36.49
1.32
5.00E−05
1.05E−03


102
ST3GAL4
chr11:126225539-126284536
5.58
99.06
4.15
5.00E−05
1.05E−03


103
ST6GALNAC6
chr9:130647599-130667627
33.72
176.77
2.39
5.00E−05
1.05E−03


104
STOM
chr9:124101265-124132582
34.99
22.70
−0.62
5.00E−05
1.05E−03


105
SULT1C2
chr2:108905094-108926371
0.59
2.21
1.90
5.00E−05
1.05E−03


106
SULT2B1
chr19:49055428-49102684
3.57
1.44
−1.31
5.00E−05
1.05E−03


107
TBX10
chr11:67398773-67407031
3.85
10.01
1.38
5.00E−05
1.05E−03


108
TFCP2L1
chr2:121974163-122042778
23.68
38.09
0.69
5.00E−05
1.05E−03


109
THRB
chr3:24158644-24541502
0.96
6.97
2.86
5.00E−05
1.05E−03


110
TM4SF20
chr2:228226873-228244022
3.44
6.33
0.88
5.00E−05
1.05E−03


111
TMC5
chr16:19422056-19510434
14.13
20.66
0.55
5.00E−05
1.05E−03


112
TMEM200A
chr6:130687425-130764210
2.41
13.64
2.50
5.00E−05
1.05E−03


113
TMEM231
chr16:75572014-75590184
2.71
5.24
0.95
5.00E−05
1.05E−03


114
TMIGD1
chr17:28643365-28661065
82.69
160.65
0.96
5.00E−05
1.05E−03


115
TNNC1
chr3:52485106-52488057
0.25
1.96
2.98
1.60E−03
2.03E−02


116
TPH1
chr11:18042083-18062335
3.95
7.71
0.96
5.00E−05
1.05E−03


117
TUSC3
chr8:15397595-15624158
1.43
4.25
1.57
5.00E−05
1.05E−03


118
UGT2B7
chr4:69962192-69978705
1.65
4.15
1.33
5.00E−05
1.05E−03


119
VNN1
chr6:133001996-133035194
0.40
1.19
1.56
5.00E−05
1.05E−03


120
VWA2
chr10:115999012-116054259
1.22
0.40
−1.63
5.00E−05
1.05E−03


121
WFDC2
chr20:44098393-44110172
29.90
246.61
3.04
5.00E−05
1.05E−03
















TABLE 8







Number of common genes between 3 different platforms (there


are 16849 genes common in all the 3 platforms).












Illumina
Affymetrix


platform
RNA-seq
(IlluminaHumanWGDASLv4)
(hgu133plus2)





RNA-seq
25268
19181
18989


Illumina
19181
19463
17004


(IlluminaHumanWGDASLv4)


Affymetrix (hgu133plus2)
18989
17004
20388
















TABLE 9





Class probabilties assigned using empirical approach, normal approximation, shrunken centroid


classifier (independent of the summary metric), and the Cantelli's inequality lower bound when the 18-


gene signature from Table 2 is used.





















Sample
True.class
SM.standardized
Empirical.HP
Empirical.SSA/P
Normal.HP
Normal.SSA/P





GSM1072010
HP
−3.76
9.91E−01
9.50E−03
1.00E+00
8.40E−05


GSM1072011
HP
−4.79
9.97E−01
2.65E−03
1.00E+00
8.46E−07


GSM1072012
HP
−5.26
9.99E−01
1.22E−03
1.00E+00
7.02E−08


GSM1072013
HP
−5.75
9.99E−01
6.67E−04
1.00E+00
4.38E−09


GSM1072014
HP
−5.54
9.99E−01
9.00E−04
1.00E+00
1.54E−08


GSM1072015
HP
−6.97
1.00E+00
1.25E−04
1.00E+00
1.56E−12


GSM1072016
SSA/P
  3.50
8.42E−04
9.99E−01
2.32E−04
1.00E+00


GSM1072017
SSA/P
  7.39
0.00E+00
1.00E+00
7.39E−14
1.00E+00


GSM1072018
SSA/P
  5.97
1.67E−05
1.00E+00
1.19E−09
1.00E+00


GSM1072019
SSA/P
  7.70
0.00E+00
1.00E+00
6.77E−15
1.00E+00


GSM1072020
SSA/P
  7.29
0.00E+00
1.00E+00
1.54E−13
1.00E+00


GSM1072021
SSA/P
  2.48
5.48E−03
9.95E−01
6.56E−03
9.93E−01





Sample
CLB.HP
CLB.SSA/P
CLB.decision
SCC.HP
SCC.SSA/P
SCC.decision





GSM1072010
9.34E−01
0.00E+00
HP
8.34E−01
1.66E−01
HP


GSM1072011
9.58E−01
0.00E+00
HP
9.32E−01
6.78E−02
HP


GSM1072012
9.65E−01
0.00E+00
HP
9.62E−01
3.75E−02
HP


GSM1072013
9.71E−01
0.00E+00
HP
9.61E−01
3.86E−02
HP


GSM1072014
9.68E−01
0.00E+00
HP
9.64E−01
3.62E−02
HP


GSM1072015
9.80E−01
0.00E+00
HP
9.88E−01
1.16E−02
HP


GSM1072016
0.00E+00
9.25E−01
SSA/P
1.10E−02
9.89E−01
SSA/P


GSM1072017
0.00E+00
9.82E−01
SSA/P
6.09E−04
9.99E−01
SSA/P


GSM1072018
0.00E+00
9.73E−01
SSA/P
2.00E−03
9.98E−01
SSA/P


GSM1072019
0.00E+00
9.83E−01
SSA/P
4.53E−04
1.00E+00
SSA/P


GSM1072020
0.00E+00
9.82E−01
SSA/P
6.30E−04
9.99E−01
SSA/P


GSM1072021
0.00E+00
8.60E−01
SSA/P
2.60E−02
9.74E−01
SSA/P
















TABLE 10





Class probabilties assigned using empirical approach, normal approximation, shrunken centroid


classifier (independent of the summary metric), and the Cantelli's inequality lower bound when the 16-


gene signature from Table 2 is used.





















Sample
True.class
SM.standardized
Empirical.HP
Empirical.SSA/P
Normal.HP
Normal.SSA/P





G5M270797.CEL
HP
0.38
3.33E−01
6.67E−01
3.52E−01
6.48E−01


G5M270798.CEL
HP
−4.70
9.97E−01
3.03E−03
1.00E+00
1.27E−06


G5M270799.CEL
HP
−5.12
9.98E−01
1.53E−03
1.00E+00
1.54E−07


G5M270800.CEL
HP
−5.79
9.99E−01
6.50E−04
1.00E+00
3.50E−09


G5M270801.CEL
HP
−5.44
9.99E−01
1.00E−03
1.00E+00
2.73E−08


G5M270802.CEL
HP
−0.76
8.50E−01
1.50E−01
7.75E−01
2.25E−01


G5M270803.CEL
HP
−5.40
9.99E−01
1.03E−03
1.00E+00
3.26E−08


G5M270804.CEL
HP
−4.16
9.94E−01
6.05E−03
1.00E+00
1.62E−05


G5M270805.CEL
HP
−3.26
9.85E−01
1.53E−02
9.99E−01
5.49E−04


G5M270806.CEL
HP
−2.35
9.72E−01
2.77E−02
9.91E−01
9.44E−03


G5M270807.CEL
HP
  4.35
2.00E−04
1.00E+00
6.89E−06
1.00E+00


G5M1100490_EXT_417.CEL
SSA/P
  7.82
0.00E+00
1.00E+00
2.60E−15
1.00E+00


G5M1100491_EXT_418.CEL
SSA/P
  9.36
0.00E+00
1.00E+00
3.85E−21
1.00E+00


G5M1100492_EXT_419.CEL
SSA/P
  6.42
0.00E+00
1.00E+00
6.64E−11
1.00E+00


GSM1100493_EXT_420.CEL
SSA/P
  5.44
1.67E−05
1.00E+00
2.62E−08
1.00E+00


G5M1100494_EXT_421.CEL
SSA/P
  7.35
0.00E+00
1.00E+00
9.64E−14
1.00E+00


G5M1100495_EXT_422.CEL
SSA/P
  7.75
0.00E+00
1.00E+00
4.55E−15
1.00E+00





Sample
CLB.HP
CLBSSA/P
SCC.decision
SCC.HP
SCC.SSA/P
SCC.decision





G5M270797.CEL
0.00E+00
1.26E−01
uncertain
5.35E−02
9.46E−01
SSA/P


G5M270798.CEL
9.57E−01
0.00E+00
HP
9.71E−01
2.93E−02
HP


G5M270799.CEL
9.63E−01
0.00E+00
HP
9.93E−01
6.80E−03
HP


G5M270800.CEL
9.71E−01
0.00E+00
HP
9.95E−01
5.45E−03
HP


G5M270801.CEL
9.67E−01
0.00E+00
HP
9.91E−01
8.82E−03
HP


G5M270802.CEL
3.63E−01
0.00E+00
uncertain
2.42E−01
7.58E−01
SSA/P


G5M270803.CEL
9.67E−01
0.00E+00
HP
9.88E−01
1.24E−02
HP


G5M270804.CEL
9.45E−01
0.00E+00
HP
9.75E−01
2.52E−02
HP


G5M270805.CEL
9.14E−01
0.00E+00
HP
8.30E−01
1.70E−01
HP


G5M270806.CEL
8.46E−01
0.00E+00
HP
7.97E−01
2.03E−01
HP


G5M270807.CEL
0.00E+00
9.50E−01
SSA/P
8.33E−04
9.99E−01
SSA/P


GSM1100490_EXT_417.CEL
0.00E+00
9.84E−01
SSA/P
1.56E−05
1.00E+00
SSA/P


G5M1100491_EXT_418.CEL
0.00E+00
9.89E−01
SSA/P
2.91E−06
1.00E+00
SSA/P


G5M1100492_EXT_419.CEL
0.00E+00
9.76E−01
SSA/P
1.21E−04
1.00E+00
SSA/P


GSM1100493_EXT_420.CEL
0.00E+00
9.67E−01
SSA/P
2.68E−04
1.00E+00
SSA/P


GSM1100494_EXT_421.CEL
0.00E+00
9.82E−01
SSA/P
2.97E−05
1.00E+00
SSA/P


GSM1100495_EXT_422.CEL
0.00E+00
9.84E−01
SSA/P
1.94E−05
1.00E+00
SSA/P
















TABLE 11





Class probabilties assigned using empirical approach, normal approximation, shrunken centroid


classifier (independent of the summary metric), and the Cantelli's inequality lower bound when the 13-


gene signature from Table 2 is used.







Illumina samples













Sample
True.class
SM.standardized
Empirical.HP
Empirical.SSA/P
Normal.HP
Normal.SSA/P





G5M1072010
HP
−3.01
9.82E−01
1.84E−02
9.99E−01
1.30E−03


G5M1072011
HP
−4.54
9.96E−01
3.74E−03
1.00E+00
2.84E−06


G5M1072012
HP
−4.35
9.95E−01
4.77E−03
1.00E+00
6.72E−06


G5M1072013
HP
−5.28
9.99E−01
1.17E−03
1.00E+00
6.34E−08


G5M1072014
HP
−3.60
9.89E−01
1.13E−02
1.00E+00
1.59E−04


G5M1072015
HP
−5.02
9.98E−01
1.87E−03
1.00E+00
2.52E−07


G5M1072016
SSA/P
  3.79
5.50E−04
9.99E−01
7.69E−05
1.00E+00


G5M1072017
SSA/P
  7.28
0.00E+00
1.00E+00
1.70E−13
1.00E+00


G5M1072018
SSA/P
  5.73
1.67E−05
1.00E+00
5.04E−09
1.00E+00


G5M1072019
SSA/P
  6.92
0.00E+00
1.00E+00
2.21E−12
1.00E+00


G5M1072020
SSA/P
  6.94
0.00E+00
1.00E+00
1.93E−12
1.00E+00


G5M1072021
SSA/P
  2.12
1.11E−02
9.89E−01
1.70E−02
9.83E−01










Affymetrix samples













Sample
True.class
SM.standardized
Empirical.HP
Empirical.SSA/P
Normal.HP
Normal.SSA/P





G5M270797.CEL
HP
  2.12
1.11E−02
9.89E−01
1.71E−02
9.83E−01


G5M270798.CEL
HP
−4.31
9.95E−01
4.97E−03
1.00E+00
8.07E−06


G5M270799.CEL
HP
−6.04
1.00E+00
4.50E−04
1.00E+00
7.69E−10


G5M270800.CEL
HP
−5.42
9.99E−01
1.01E−03
1.00E+00
2.96E−08


G5M270801.CEL
HP
−5.00
9.98E−01
1.92E−03
1.00E+00
2.82E−07


G5M270802.CEL
HP
−0.50
7.74E−01
2.26E−01
6.91E−01
3.09E−01


G5M270803.CEL
HP
−5.39
9.99E−01
1.06E−03
1.00E+00
3.61E−08


G5M270804.CEL
HP
−5.12
9.98E−01
1.53E−03
1.00E+00
1.53E−07


G5M270805.CEL
HP
−2.91
9.80E−01
1.98E−02
9.98E−01
1.82E−03


G5M270806.CEL
HP
−2.95
9.81E−01
1.91E−02
9.98E−01
1.57E−03


G5M270807.CEL
HP
  4.33
2.00E−04
1.00E+00
7.36E−06
1.00E+00


G5M1100490_EXT_417.CEL
SSA/P
  6.69
0.00E+00
1.00E+00
1.15E−11
1.00E+00


G5M1100491_EXT_418.CEL
SSA/P
  9.11
0.00E+00
1.00E+00
4.02E−20
1.00E+00


G5M1100492_EXT_419.CEL
SSA/P
  4.72
9.17E−05
1.00E+00
1.20E−06
1.00E+00


G5M1100493_EXT_420.CEL
SSA/P
  5.20
2.50E−05
1.00E+00
1.01E−07
1.00E+00


G5M1100494_EXT_421.CEL
SSA/P
  4.83
7.50E−05
1.00E+00
6.99E−07
1.00E+00


G5M1100495_EXT_422.CEL
SSA/P
  6.04
8.33E−06
1.00E+00
7.64E−10
1.00E+00










IIlumina samples













Sample
CLB.HP
CLB.SSA/P
CLB.decision
SCC.HP
SCC.SSA/P
SCC.decision





G5M1072010
9.01E−01
0.00E+00
HP
5.54E−01
4.46E−01
HP


G5M1072011
9.54E−01
0.00E+00
HP
8.74E−01
1.26E−01
HP


G5M1072012
9.50E−01
0.00E+00
HP
8.15E−01
1.85E−01
HP


G5M1072013
9.65E−01
0.00E+00
HP
8.77E−01
1.23E−01
HP


G5M1072014
9.28E−01
0.00E+00
HP
8.03E−01
1.97E−01
HP


G5M1072015
9.62E−01
0.00E+00
HP
8.79E−01
1.21E−01
HP


G5M1072016
0.00E+00
9.35E−01
SSA/P
2.39E−02
9.76E−01
SSA/P


G5M1072017
0.00E+00
9.81E−01
SSA/P
2.28E−03
9.98E−01
SSA/P


G5M1072018
0.00E+00
9.70E−01
SSA/P
5.74E−03
9.94E−01
SSA/P


G5M1072019
0.00E+00
9.80E−01
SSA/P
3.38E−03
9.97E−01
SSA/P


G5M1072020
0.00E+00
9.80E−01
SSA/P
3.16E−03
9.97E−01
SSA/P


G5M1072021
0.00E+00
8.18E−01
SSA/P
6.93E−02
9.31E−01
SSA/P










Affymetrix samples













Sample
CLB.HP
CLB.SSA.P
CLB.decision
SCC.HP
SCC.SSA/P
SCC.decision





G5M270797.CEL
0.00E+00
8.18E−01
SSA/P
5.26E−02
9.47E−01
SSA/P


G5M270798.CEL
9.49E−01
0.00E+00
HP
8.41E−01
1.59E−01
HP


G5M270799.CEL
9.73E−01
0.00E+00
HP
9.63E−01
3.74E−02
HP


G5M270800.CEL
9.67E−01
0.00E+00
HP
9.19E−01
8.13E−02
HP


G5M270801.CEL
9.62E−01
0.00E+00
HP
8.90E−01
1.10E−01
HP


G5M270802.CEL
2.00E−01
0.00E+00
uncertain
2.79E−01
7.21E−01
SSA/P


G5M270803.CEL
9.67E−01
0.00E+00
HP
8.85E−01
1.15E−01
HP


G5M270804.CEL
9.63E−01
0.00E+00
HP
9.32E−01
6.84E−02
HP


G5M270805.CEL
8.94E−01
0.00E+00
HP
6.52E−01
3.48E−01
HP


G5M270806.CEL
8.97E−01
0.00E+00
HP
7.36E−01
2.64E−01
HP


G5M270807.CEL
0.00E+00
9.49E−01
SSA/P
7.19E−03
9.93E−01
SSA/P


G5M1100490_EXT_417.CEL
0.00E+00
9.78E−01
SSA/P
1.42E−03
9.99E−01
SSA/P


G5M1100491_EXT_418.CEL
0.00E+00
9.88E−01
SSA/P
4.49E−04
1.00E+00
SSA/P


G5M1100492_EXT_419.CEL
0.00E+00
9.57E−01
SSA/P
1.63E−02
9.84E−01
SSA/P


GSM1100493_EXT_420.CEL
0.00E+00
9.64E−01
SSA/P
9.54E−03
9.90E−01
SSA/P


G5M1100494_EXT_421.CEL
0.00E+00
9.59E−01
SSA/P
5.76E−03
9.94E−01
SSA/P


G5M1100495_EXT_422.CEL
0.00E+00
9.73E−01
SSA/P
1.76E−03
9.98E−01
SSA/P
















TABLE 12





Normalized expression levels (median and MAD) obtained by qPCR from 45 independent


FFPE samples and the classification result obtained using the summary metric (SM) of the 13 genes


molecular signature with different sample normalizations.























sample name
class
SPIRE1
KIZ
MEGF6
SLC7A9
PLA2G16
NTRK2
CHFR





HP1
HP
−0.79
0.00
1.28
0.51
−0.02
1.61
1.73


HP2
HP
−0.48
−0.75
−0.09
−0.02
0.06
−1.77
−0.02


HP3
HP
−0.79
−1.08
0.39
0.48
2.48
0.90
1.66


HP4
HP
0.08
0.56
−1.28
−0.63
−0.12
0.74
0.38


HP5
HP
0.01
0.64
−0.85
0.49
−0.54
0.42
0.68


HP6
HP
0.36
1.37
−1.05
−0.40
−0.45
2.06
0.57


HP7
HP
−0.79
0.87
−1.87
−1.54
0.10
2.09
1.18


HP8
HP
1.80
−2.13
0.07
−0.30
−0.65
0.42
1.15


HP9
HP
−0.44
−1.16
−3.80
−1.13
−0.73
0.46
−0.28


HP10
HP
−0.17
0.31
−2.32
−1.41
−0.12
0.63
0.49


HP11
HP
1.25
0.93
−0.22
0.55
−0.12
2.28
2.19


HP12
HP
0.86
0.56
−0.98
−0.17
−0.12
2.42
2.02


HP13
HP
0.89
0.96
−0.83
−0.27
−0.20
1.21
1.35


HP14
HP
0.97
1.66
0.00
2.44
−0.12
2.99
2.39


HP15
HP
0.70
0.87
−0.43
0.60
−0.38
1.42
1.57


HP16
HP
0.23
−0.13
−2.80
−1.43
−1.23
2.35
0.68


HP17
HP
0.90
1.30
0.35
0.00
−0.12
1.24
1.38


HP18
HP
−0.12
0.60
−2.30
−0.70
−0.12
1.71
−0.62


HP19
HP
0.17
−0.31
−2.58
−1.03
0.24
−1.89
−0.28


HP20
HP
0.64
−0.40
0.40
0.11
0.00
0.16
2.04


HP21
HP
1.00
1.29
0.58
2.12
0.24
0.00
1.80


HP22
HP
−0.70
−1.79
−3.23
−4.21
0.06
0.00
−0.28


HP23
HP
1.41
1.49
−0.41
0.86
−0.37
2.00
1.87


HP24
HP
0.92
1.33
−0.06
0.59
−0.12
0.06
1.89


SSA/P1
SSP
−0.79
−1.10
0.70
1.74
0.77
−2.48
−0.97


SSA/P2
SSP
−0.68
−0.26
−0.36
1.05
0.03
−2.28
0.00


SSA/P3
SSP
−1.14
−0.49
0.07
−0.09
0.50
−2.92
−0.23


SSA/P4
SSP
−0.79
−0.62
0.72
−0.11
0.14
−0.72
0.29


SSA/P5
SSP
−0.42
−0.75
0.19
−1.49
0.58
−1.49
−0.01


SSA/P6
SSP
−1.51
−1.17
−1.40
1.57
−0.12
−1.58
−1.69


SSA/P7
SSP
−1.12
0.51
1.62
−0.37
1.43
−4.25
−2.40


SSA/P8
SSP
−1.17
−0.64
1.56
0.75
1.39
−3.74
−1.27


SSA/P9
SSP
−0.14
0.14
0.27
0.01
−0.77
−0.60
−0.12


SSA/P10
SSP
−0.77
−0.14
0.41
0.00
−1.33
−1.26
−0.67


SSA/P11
SSP
0.00
−0.09
1.73
−0.55
0.70
−4.78
−1.93


SSA/P12
SSP
−0.58
0.99
0.24
2.42
1.93
−3.01
−0.92


SSA/P13
SSP
0.42
0.41
0.60
−0.10
−0.26
0.82
0.15


SSA/P14
SSP
0.03
−0.38
−0.01
1.83
0.63
−1.48
−1.21


SSA/P15
SSP
0.07
0.55
5.39
2.40
1.51
−3.51
−1.00


SSA/P16
SSP
−0.79
−1.18
2.29
1.32
0.22
−3.46
−2.31


SSA/P17
SSP
1.24
3.15
4.63
1.31
2.04
−1.40
−0.94


SSA/P18
SSP
−0.34
1.73
1.99
−0.96
1.03
−1.26
0.16


SSA/P19
SSP
0.74
−1.42
1.13
−0.54
−0.12
−2.60
−0.28


SSA/P20
SSP
−0.21
−0.58
−1.93
−0.81
0.15
−2.30
−0.65


SSA/P21
SSP
0.13
−0.40
−0.80
1.14
0.06
−2.26
−0.74




























SM with









SM with
SM with
geometric









median and
mean and
mean and









MAD
MAD
MAD









normal-
normal-
normal-


sample name
CHGA
PTAFR
CLDN1
TACSTD2
SEMG1
SBSPON
ization
ization
ization





HP1
2.05
−0.12
−0.75
−0.67
−0.43
1.60
−0.37
−0.72
−0.70


HP2
0.00
0.22
−2.20
0.25
−1.04
1.08
−0.09
0.00
0.04


HP3
0.84
−0.17
−0.16
−2.14
−3.07
1.89
−0.43
−0.58
−0.58


HP4
1.22
−0.02
0.01
−2.00
−0.91
−1.04
−0.59
−0.57
−0.61


HP5
1.17
0.83
−0.32
−0.90
1.19
−0.19
−0.15
−0.36
−0.35


HP6
2.90
0.71
−0.32
−0.14
−0.96
−1.11
−0.58
−0.83
−0.93


HP7
2.37
0.07
−2.90
−1.55
0.93
−0.85
−1.01
−1.04
−1.11


HP8
2.28
0.20
0.23
−1.28
2.07
1.95
−0.15
−0.49
−0.49


HP9
1.00
0.04
0.01
−0.15
−2.35
−4.50
−1.19
−0.75
−0.84


HP10
0.68
0.19
−0.59
−1.60
−1.58
0.05
−0.70
−0.57
−0.59


HP11
3.32
1.24
−0.60
−0.88
−1.34
0.33
−0.51
−0.99
−1.05


HP12
1.55
−0.15
0.41
−0.78
−0.30
−3.26
−0.76
−0.95
−1.01


HP13
2.32
0.00
−1.61
0.86
−3.56
−1.03
−0.75
−0.85
−0.92


HP14
2.55
1.18
−1.43
−0.77
−1.46
−0.99
−0.50
−0.99
−1.05


HP15
1.65
1.15
−0.32
−1.18
1.48
1.72
−0.03
−0.50
−0.48


HP16
0.77
0.00
0.72
−1.82
−0.36
−2.12
−0.98
−0.87
−0.92


HP17
2.46
0.46
−0.65
−2.08
−0.61
0.54
−0.38
−0.70
−0.74


HP18
0.68
0.24
0.47
−2.25
0.56
−0.06
−0.42
−0.45
−0.46


HP19
0.93
1.45
1.71
−0.41
1.71
−2.10
0.01
0.00
−0.02


HP20
1.91
0.00
−3.56
−0.36
−1.23
0.39
−0.62
−0.73
−0.74


HP21
2.28
0.86
−0.32
−0.71
−1.31
2.68
0.18
−0.36
−0.34


HP22
−0.84
−0.11
0.40
0.13
−1.57
−3.05
−1.00
−0.47
−0.50


HP23
1.85
0.66
−0.32
−1.24
0.72
0.95
−0.15
−0.65
−0.66


HP24
3.77
1.09
−2.15
−0.35
−0.65
1.67
−0.27
−0.70
−0.75


SSA/P1
−4.26
0.52
0.24
0.47
1.61
1.91
1.06
1.02
1.10


SSA/P2
−2.20
−0.07
−0.32
1.48
−0.28
0.00
0.39
0.45
0.49


SSA/P3
−1.77
0.00
0.00
2.28
1.50
0.81
0.64
0.60
0.64


SSA/P4
−2.20
−0.68
−0.07
0.25
−0.92
−2.56
−0.15
0.04
0.07


SSA/P5
−0.80
0.00
−0.13
0.00
0.00
−1.75
−0.11
0.03
0.05


SSA/P6
−3.21
0.18
0.05
0.38
2.77
−1.88
0.41
0.62
0.67


SSA/P7
−3.25
−0.42
1.56
2.43
3.42
0.69
1.51
1.41
1.43


SSA/P8
−2.19
0.00
−0.15
1.33
0.77
−0.53
0.81
0.87
0.91


SSA/P9
−1.05
−0.35
0.86
0.79
2.09
−0.56
0.32
0.19
0.23


SSA/P10
−1.11
0.00
0.16
2.06
2.11
−1.38
0.32
0.30
0.33


SSA/P11
−4.12
−0.02
0.34
2.32
2.09
0.30
1.36
1.42
1.44


SSA/P12
−4.28
−0.14
−0.32
1.19
2.84
5.32
1.70
1.36
1.41


SSA/P13
−0.65
−0.71
1.16
−0.10
1.43
−0.19
0.18
−0.05
0.00


SSA/P14
−2.76
0.00
1.06
2.01
1.12
0.44
0.94
0.78
0.84


SSA/P15
−4.76
0.00
1.29
3.55
1.35
3.03
2.19
1.67
1.68


SSA/P16
−3.85
0.15
0.56
0.64
−0.09
−2.61
0.78
1.05
1.08


SSA/P17
−5.16
0.64
1.60
0.25
1.27
0.92
1.89
1.39
1.38


SSA/P18
−2.23
−0.14
−0.69
0.25
0.70
0.50
0.57
0.44
0.46


SSA/P19
−5.99
−0.11
0.44
2.95
−2.17
0.28
0.77
0.99
1.01


SSA/P20
−2.01
0.00
0.72
0.94
−1.08
−1.73
0.03
0.32
0.34


SSA/P21
−3.25
0.37
1.44
2.57
0.89
−1.07
0.81
0.79
0.83
















TABLE 13





Raw expression levels of 13 genes in the molecular signature obtained by qPCR


from 45 independent FFPE samples.






















sample name
class
SPIRE1
KIZ
MEGF6
SLC7A9
PLA2G16
NTRK2





HP1
HP
16.77
14.64
16.1
19.44
16.67
15.16


HP2
HP
15.94
14.87
16.94
19.44
16.06
18.01


HP3
HP
16.4
15.35
16.61
19.09
13.8
15.5


HP4
HP
11.41
9.59
14.16
16.08
12.28
11.54


HP5
HP
13.33
11.37
15.59
16.81
14.55
13.71


HP6
HP
11.11
8.76
13.92
15.84
12.59
10.2


HP7
HP
13.91
10.91
16.39
18.62
13.68
11.81


HP8
HP
11.69
14.27
14.81
17.75
14.8
13.85


HP9
HP
11.68
11.07
16.44
16.34
12.64
11.57


HP10
HP
13.1
11.29
16.65
18.31
13.73
13.1


HP11
HP
12.75
11.74
15.62
17.42
14.79
12.51


HP12
HP
13.04
12.01
16.27
18.04
14.69
12.27


HP13
HP
12.97
11.56
16.08
18.09
14.72
13.43


HP14
HP
13.05
11.01
15.41
15.55
14.81
11.82


HP15
HP
14.59
13.09
17.12
18.66
16.34
14.66


HP16
HP
12.17
11.19
16.59
17.79
14.29
10.84


HP17
HP
12.72
10.98
14.66
17.58
14.41
13.17


HP18
HP
13
10.93
16.57
17.54
13.67
11.96


HP19
HP
13.75
12.89
17.9
18.91
14.35
16.6


HP20
HP
14.4
14.1
16.04
18.9
15.71
15.67


HP21
HP
15.55
13.92
17.37
18.4
16.98
17.34


HP22
HP
14.2
13.96
18.14
21.68
14.12
14.3


HP23
HP
12.66
11.24
15.88
17.18
15.11
12.86


HP24
HP
14.44
12.69
16.82
18.73
16.15
16.09


SSA/P1
SSA/P
12.28
11.25
12.19
13.72
11.39
14.76


SSA/P2
SSA/P
11.57
9.81
12.65
13.81
11.54
13.96


SSA/P3
SSA/P
12.13
10.14
12.32
15.05
11.16
14.7


SSA/P4
SSA/P
12.83
11.32
12.71
16.12
12.57
13.55


SSA/P5
SSA/P
12.65
11.64
13.43
17.69
12.32
14.51


SSA/P6
SSA/P
12.69
11
13.97
13.57
11.96
13.55


SSA/P7
SSA/P
15.63
12.65
14.28
18.83
13.74
19.55


SSA/P8
SSA/P
15.16
13.29
13.83
17.2
13.27
18.52


SSA/P9
SSA/P
14.75
13.13
15.74
18.57
16.05
16


SSA/P10
SSA/P
15.7
13.74
15.91
18.9
16.93
16.98


SSA/P11
SSA/P
14.09
12.84
13.75
18.61
14.07
19.67


SSA/P12
SSA/P
13.25
10.34
13.83
14.21
11.41
16.47


SSA/P13
SSA/P
15.13
13.8
16.34
19.62
16.48
15.52


SSA/P14
SSA/P
14.22
13.29
15.66
16.38
14.29
16.53


SSA/P15
SSA/P
15.06
13.24
11.14
16.7
14.29
19.43


SSA/P16
SSA/P
14.22
13.28
12.54
16.08
13.88
17.69


SSA/P17
SSA/P
13.19
9.94
11.2
17.09
13.06
16.62


SSA/P18
SSA/P
14.12
10.72
13.19
18.71
13.43
15.84


SSA/P19
SSA/P
13.7
14.52
14.7
18.95
15.23
17.83


SSA/P20
SSA/P
14.13
13.17
17.25
18.7
14.45
17.01


SSA/P21
SSA/P
13.63
12.82
15.95
16.58
14.36
16.81





sample name
CHFR
CHGA
PTAFR
CLDN1
TACSTD2
SEMG1
SBSPON





HP1
14.76
11.47
16.89
17.2
17.69
19.29
18.44


HP2
15.98
13
16.03
18.13
16.25
19.37
18.43


HP3
14.46
12.31
16.56
16.24
18.79
21.55
17.77


HP4
11.61
7.81
12.3
11.95
14.53
15.27
16.58


HP5
13.16
9.71
13.3
14.13
15.28
15.03
17.59


HP6
11.4
6.11
11.55
12.26
12.65
15.31
16.64


HP7
12.44
8.28
13.83
16.49
15.71
15.06
18.02


HP8
12.84
8.74
14.07
13.72
15.81
14.29
15.59


HP9
12.03
7.78
11.99
11.71
12.44
16.47
19.8


HP10
12.96
9.8
13.54
14
15.58
17.4
16.95


HP11
12.32
8.22
13.55
15.08
15.93
18.22
17.73


HP12
12.39
9.9
14.84
13.97
15.73
17.08
21.21


HP13
13.01
9.07
14.65
15.94
14.04
20.29
18.94


HP14
12.14
9.01
13.62
15.92
15.83
18.36
19.06


HP15
14.23
11.18
14.93
16.08
17.52
16.7
17.62


HP16
12.22
9.17
13.19
12.15
15.26
15.63
18.57


HP17
12.74
8.7
13.95
14.74
16.74
17.1
17.13


HP18
14
9.73
13.43
12.88
16.17
15.2
16.99


HP19
14.71
10.52
13.26
12.69
15.38
15.09
20.07


HP20
13.51
10.68
15.83
19.08
16.44
19.15
18.71


HP21
15.25
11.82
16.48
17.34
18.31
20.74
17.93


HP22
14.29
11.89
14.41
13.58
14.42
17.96
20.61


HP23
12.7
9.76
14.2
14.86
16.36
16.23
17.18


HP24
13.97
9.13
15.06
17.99
16.76
18.89
17.75


SSA/P1
12.97
13.29
11.76
11.73
12.07
12.76
13.64


SSA/P2
11.4
10.63
11.75
11.68
10.46
14.05
14.95


SSA/P3
11.72
10.31
11.78
11.46
9.75
12.37
14.24


SSA/P4
12.26
11.79
13.51
12.59
12.84
15.84
18.66


SSA/P5
12.74
10.57
13.02
12.84
13.27
15.11
18.03


SSA/P6
13.37
11.92
11.78
11.59
11.84
11.29
17.11


SSA/P7
17.41
15.29
15.71
13.41
13.11
13.96
17.86


SSA/P8
15.77
13.72
14.78
14.61
13.71
16.1
18.58


SSA/P9
15.24
13.21
15.75
14.23
14.87
15.4
19.23


SSA/P10
16.11
13.58
15.72
15.24
13.91
15.7
20.37


SSA/P11
16.53
15.76
14.91
14.22
12.81
14.88
17.85


SSA/P12
14.1
14.49
13.6
13.46
12.52
12.71
11.41


SSA/P13
15.91
13.74
17.05
14.86
16.7
17
19.79


SSA/P14
15.96
14.55
15.04
13.67
13.28
16.01
17.87


SSA/P15
16.64
17.43
15.92
14.31
12.62
16.66
16.15


SSA/P16
16.25
14.83
14.07
13.35
13.84
16.4
20.1


SSA/P17
15.87
17.14
14.58
13.31
15.22
16.04
17.57


SSA/P18
14.14
13.56
14.71
14.95
14.58
15.97
17.34


SSA/P19
15.23
17.97
15.34
14.47
12.54
19.49
18.21


SSA/P20
15.08
13.48
14.72
13.68
14.03
17.88
19.71


SSA/P21
15
14.55
14.18
12.79
12.23
15.74
18.88








Claims
  • 1. A method of detecting a sessile serrated adenoma/polyp (SSA/P) in a subject, the method comprising: a. determining the level of expression of nucleic acids in a molecular signature in a biological sample obtained from the subject, wherein the molecular signature consists of CHFR, CHGA, CLDN1, KIZ, MEGF6, NTRK2, PLA2G16, PTAFR, SBSPON, SMEG1, SLC7A9, SPIRE1, and TACTD2, and optionally includes one or more of FOXD1, PIK3R3, PRUNE2, TPD52L1, TRIB2, C4BPA, CPE, DPP10, GRAMD1B, GRIN2D, KLK7, MYNC, TM4SF4 and a one or more nucleic acid used as a normalization control;b. comparing the level of expression of each nucleic acid in the molecular signature to a reference value;c. detecting a SSA/P in the subject based on the level of expression of each nucleic acid in the molecular signature relative to the reference value, wherein SSA/P is detected when CHFR, CHGA, and NTRK2 are decreased relative to the reference value, and when CLDN1, KIZ, MEGF6, PLA2G16, PTAFR, SBSPON, SMEG1, SLC7A0, SPIRE1, and TACSTD2 are increased relative to the reference value, and the reference value is the level of expression of each nucleic acid in the molecular signature in a non-diseased sample or hyperplastic polyp sample; andd. removing the SSA/P by a method selected from polypectomy, endoscopic resection and surgical resection.
  • 2. The method of claim 1, wherein the one or more nucleic acids used as a normalization control are selected from the group consisting of GAPDH, ACTB, B2M, TUBA, G6PD, LDHA, HPRT, ALDOA, PFKP, PGK1, PGAM1, VIM and UBC.
  • 3. The method of claim 1, wherein the method to determine the level of expression of the nucleic acids in the molecular signature is microarray, RNA-seq or real-time qPCR.
  • 4. The method of claim 1, wherein the biological sample is a tissue biopsy.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of International application number PCT/US2018/020517, filed Mar. 1, 2018, which claims the benefit of U.S. Provisional Application No. 62/465,588, filed Mar. 1, 2017, the disclosures of which are hereby incorporated by reference in their entirety.

GOVERNMENTAL RIGHTS

This invention was made with government support under CA176130 awarded by the National Institutes of Health. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/020517 3/1/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2018/160880 9/7/2018 WO A
US Referenced Citations (6)
Number Name Date Kind
6566495 Fodor et al. May 2003 B1
20110287957 Rosenthal et al. Nov 2011 A1
20120315216 Clarke et al. Dec 2012 A1
20130065228 Hinoue et al. Mar 2013 A1
20130345077 Kalady et al. Dec 2013 A1
20150275307 Hagedorn et al. Oct 2015 A1
Foreign Referenced Citations (3)
Number Date Country
2016183487 Nov 2016 WO
WO-2016183487 Nov 2016 WO
2018160880 Sep 2018 WO
Non-Patent Literature Citations (102)
Entry
Gonzalo et al. J Pathol 2013; 230: 420-429.
Liberzon, A. et al., “Molecular signatures database (MSigDB) 3.0,” Bioinformatics, 2011, pp. 1739-1740, vol. 27, No. 12.
Lieberman, D. et al., “Use of Colonoscopy to Screen Asymptomatic Adults for Colorectal Cancer,” N. Engl. J. Med., Jul. 2000, pp. 162-168, vol. 343, No. 3.
Limketkai, B. et al., “The cutting edge of serrated polyps: a practical guide to approaching and managing serrated colon polyps,” Gastrointest. Endosc., 2013, pp. 360-375, vol. 77, No. 3.
Manning, S. et al., “The Role of Gut Hormone Peptide YY in Energy and Glucose Homeostasis: Twelve Years on,” Annu. Rev. Physiol., 2014, pp. 11.1-11.24, vol. 76.
Marioni, J. et al., “RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays,” Genome Res., 2008, pp. 1509-1517, vol. 18, Cold Spring Harbor Laboratory Press.
McVey, M. et al., “MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings,” Trends Genet., 2008, pp. 529-538, vol. 24, No. 11.
Mestdagh, P. et al., “A novel and universal method for microRNA RT-qPCR data normalization,” Genome Biol., 2009, pp. R64.1-R64.10, vol. 10, No. 6, Article R64.
Opitz, C. et al., “The Indoleamine-2,3-Dioxygenase (IDO) Inhibitor 1-Methyl-D-tryptophan Upregulates IDO1 in Human Cancer Cells,” PLoS One, May 2011, pp. 1-11, vol. 6, No. 5, e19823.
Oshimori, N. et al., “The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity,” Nat. Cell Biol., Oct. 2006, pp. 1095-1101, vol. 8, No. 10, with Supplementary Information, pp. 1-4.
Owens, S. et al., “Selective expression of gastric mucin MUC6 in colonic sessile serrated adenoma but not in hyperplastic polyp aids in morphological diagnosis of serrated polyps,” Mod. Pathol., 2008, pp. 660-669, vol. 21.
Paveliiz, T. et al., “MRE11-deficiency associated with improved long-term disease free survival and overall survival in a subset of stage III colon cancer patients in randomized CALGB 89803 trial,” PLoS One, Oct. 2014, pp. 1-10, vol. 9, No. 10, e108483.
Payne, S. et al., “Endoscopic Detection of Proximal Serrated Lesions and Pathologic Identification of Sessile Serrated Adenomas/Polyps Vary on the Basis of Center,” Clin. Gastroenterol. Hepatol., 2014, pp. 1119-1126, vol. 12, No. 7.
Pope, J. et al., “Claudin-1 overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis,” Mol. Cancer, 2014, pp. 1-13, vol. 13, No. 167.
Prendergast, G. et al., “Towards a Genetic Definition of Cancer-Associated Inflammation: Role of the IDO Pathway,” Am. J. Pathol., May 2010, pp. 2082-2087, vol. 176, No. 5.
Prendergast, G. et al., “Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer,” Cancer Immunol. Immunother., 2014, pp. 721-735, vol. 63.
Quintero, E. et al., “Colonoscopy versus Fecal Immunochemical Testing in Colorectal-Cancer Screening,” N. Engl. J. Med., Feb. 2012, pp. 697-706, vol. 366, No. 8, with Correction, May 2016, pp. 1898, vol. 374, No. 19.
Rahmatallah, Y. et al., “Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets,” Bioinformatics, 2014, pp. 360-368, vol. 30, No. 3.
Rahmatallah, Y. et al., “Platform-independent gene expression signature differentiates sessile serrated adenomas/polyps and hyperplastic polyps of the colon,” BMC Med. Genomics, 2017, pp. 1-18, vol. 10, No. 81.
Rex, D. et al., “Serrated Lesions of the Colorectum: Review and Recommendations From an Expert Panel,” NIH Public Access Author Manuscript, Sep. 1, 2013, pp. 1-39, published in final edited form as: Am. J. Gastroenterol., Sep. 2012, pp. 1315-1330, vol. 107, No. 9.
Rockett, J. et al., “DNA arrays: technology, options and toxicological applications,” Xenobiotica, 2000, pp. 155-177, vol. 30, No. 2, Taylor & Francis Ltd.
Saeys, Y. et al., “A review of feature selection techniques in bioinformatics,” Bioinformatics, 2007, pp. 2507-2517, vol. 23, No. 19.
Salazar, R. et al., “Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer,” J. Clin. Oncol., Jan. 2011, pp. 17-24, vol. 29, No. 1.
Samarajiwa, S. et al., “INTERFEROME: the database of interferon regulated genes,” Nucleic Acids Res., 2009, pp. D852-D857, vol. 37, Database Issue.
Savage, R., “Probability Inequalities of the Tchebycheff Type,” J. Res. National Bureau of Standards—B. Mathematics and Mathematical Physics, Jul.-Sep. 1961, pp. 211-226, vol. 65B, No. 3.
Scolnick, D. et al., “Chfr defines a mitotic stress checkpoint that delays entry into metaphase,” Nature, Jul. 2000, pp. 430-435, vol. 406.
Shalka, N. et al., “Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway,” NIH Public Access Author Manuscript, Jun. 7, 2013, pp. 1-20, published in final edited form as: Oncogene, Jun. 6, 2013, pp. 2836-2847, vol. 32, No. 23.
Shan, Z-Z. et al., “Overexpression of Tbx3 is correlated with Epithelial-Mesenchymal Transition phenotype and predicts poor prognosis of colorectal cancer,” Am. J. Cancer Res., 2015, pp. 344-353, vol. 5, No. 1.
Shi, W. et al., “Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes,” Pharmacogenomics J., 2010, pp. 310-323, vol. 10.
Shon, W-J. et al., “Severity of DSS-induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks,” Sci. Rep., 2015, pp. 1-12, vol. 5, No. 17305.
Simon, R., “Roadmap for Developing and Validating Therapeutically Relevant Genomic Classifiers,” J. Clin. Oncol., Oct. 2005, pp. 7332-7341, vol. 23, No. 29.
Starodub, A. et al., “First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors,” Clin. Cancer Res., 2015, pp. 3870-3878, vol. 21, No. 17.
Su, Z. et al., “An investigation of biomarkers derived from legacy microarray data for their utility in the RNA-seq era,” Genome Biol., 2014, pp. 1-25, vol. 15, No. 523.
Tarca, A. et al., “Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge,” Bioinformatics, 2013, pp. 2892-2899, vol. 29, No. 22.
Tibshirani, R. et al., “Diagnosis of multiple cancer types by shrunken centroids of gene expression,” PNAS, May 2002, pp. 6567-6572, vol. 99, No. 10.
Tinmouth, J. et al., “Sessile Serrated Polyps at Screening Colonoscopy: Have They Been Under Diagnosed?,” Am. J. Gastroenterol., Jul. 2014, advance online publication, pp. 1-7.
Torlakovic, E. et al., “Serrated Adenomatous Polyposis in Humans,” Gastroenterol., Mar. 1996, pp. 748-755, vol. 110, No. 3.
Torlakovic, E. et al., “Morphologic Reappraisal of Serrated Colorectal Polyps,” Am. J. Surg. Pathol., 2003, pp. 65-81, vol. 27, No. 1, Lippincott Williams & Wilkins, Inc.
Torlakovic, E. et al., “Sessile Serrated Adenoma (SSA) vs. Traditional Serrated Adenoma (TSA),” Am. J. Surg. Pathol., Jan. 2008, pp. 21-29, vol. 32, No. 1, Lippincott Williams & Wilkins.
Trapnell, C. et al., “Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks,” Nat. Protoc., 2012, pp. 562-578, vol. 7, No. 3.
Trapnell, C. et al., “Differential analysis of gene regulation at transcript resolution with RNA-seq,” Nat. Biotechnol., Jan. 2013, pp. 46-53, vol. 31, No. 1, with Online Methods, 1 pg.
Uyttenhove, C. et al., “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nat. Med., Oct. 2003, pp. 1269-1274, vol. 9, No. 10.
Wang, G. et al., “PIK3R3 Induces Epithelial-to-Mesenchymal Transition and Promotes Metastasis in Colorectal Cancer,” Mol. Cancer Ther., 2014, pp. 1837-1847, vol. 13, No. 7.
Wang, C. et al., “The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance,” Nat. Biotechnol., Sep. 2014, pp. 926-932, vol. 32, No. 9, with Online Methods, 3 pgs.
Weiss, A. et al., “The TGFbeta Superfamily Signaling Pathway,” WIREs Dev. Biol., Jan./Feb. 2013, pp. 47-63, vol. 2, Wiley Periodicals, Inc.
Wu, D. et al., “ROAST: rotation gene set tests for complex microarray experiments,” Bioinformatics, 2010, pp. 2176-2182, vol. 26, No. 17.
Xiong, S. et al., “Pla2g16 phospholipase mediates gain-of-function activities of mutant p53,” PNAS, Jul. 2014, pp. 11145-11150, vol. 111, No. 30.
Yamanami, H. et al., “Down-regulation of sialidase NEU4 may contribute to invasive properties of human colon cancers,” Cancer Sci., Mar. 2007, pp. 299-307, vol. 98, No. 3.
Yu, X. et al., “Chfr is required for tumor suppression and Aurora A regulation,” Nat. Genet., Apr. 2005, pp. 401-406, vol. 37, No. 4.
Zauber, A. et al., “Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths,” N. Engl. J. Med., Feb. 2012, pp. 687-696, vol. 366, No. 8.
Zhang, J-X. et al., “Overexpression of the secretory small GTPase Rab27B in human breast cancer correlates closely with lymph node metastasis and predicts poor prognosis,” J. Transl. Med., 2012, pp. 1-10, vol. 10, No. 242.
Alizadeh, A. et al., “Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,” Nature, Feb. 3, 2000, pp. 503-511, vol. 403.
Ambroise, C. et al., “Selection bias in gene extraction on the basis of microarray gene-expression data,” PNAS, May 14, 2002, pp. 6562-6566, vol. 99, No. 10.
Ashburner, M. et al., “Gene Ontology: tool for the unification of biology,” Nat. Genet., May 2000, pp. 25-29, vol. 25.
Ball, H. et al., “Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway,” Int. J. Biochem. Cell Biol., 2009, pp. 467-471, vol. 41, No. 3, Elsevier Ltd.
Bao, J. et al., “Rab27b Is a Potential Predictor for Metastasis and Prognosis in Colorectal Cancer,” Gastroenterol. Res. Pract., 2014, pp. 1-7, vol. 2014, No. 913106.
Baron, K. et al., “Recruitment and activation of SLK at the leading edge of migrating cells requires Src family kinase activity and the LIM-only protein 4,” Biochim. Biophys. Acta, 2015, pp. 1683-1692, vol. 1853.
Bartley, A. et al., “Expression of Gastric Pyloric Mucin MUC6 in Colorectal Serrated Polyps,” NIH Public Access Author Manuscript, Aug. 1, 2010, pp. 1-14, published in final edited form as: Mod. Pathol., Feb. 2010, pp. 169-176, vol. 23, No. 2.
Beggs, A. et al., “Loss of Expression and Promoter Methylation of SLIT2 Are Associated with Sessile Serrated Adenoma Formation,” PLOS Genet., May 2013, pp. 1-10, vol. 9, No. 5, e1003488.
Bettington, M. et al., “The serrated pathway to colorectal carcinoma: current concepts and challenges,” Histopathology, 2013, pp. 367-386, vol. 62.
Byrne, J. et al., “Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene?,” Tumour Biol., 2014, pp. 7369-7382, vol. 35.
Carrega, P. et al., “The Yin and Yang of Innate Lymphoid Cells in Cancer,” Immunol. Lett., 2016, pp. 29-35, vol. 179.
Caruso, M. et al., “Over-expression of cathepsin E and trefoil factor 1 in sessile serrated adenomas of the colorectum identified by gene expression analysis,” Virchows Arch., 2009, pp. 291-302, vol. 454.
Castaldi, P. et al., “An empirical assessment of validation practices for molecular classifiers,” Brief. Bioinform., 2011, pp. 189-202, vol. 12, No. 3.
Chang, C. et al., “An overview of recommendations and translational milestones for genomic tests in cancer,” Genet. Med., Oct. 2014, pp. 1-10, vol. 17, No. 6.
Chen, J. et al., “Feed-Forward Reciprocal Activation of PAFR and STAT3 Regulates Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer,” Cancer Res., Oct. 2015, pp. 4198-4210, vol. 75, No. 19.
Chibon, F., “Cancer gene expression signatures—The rise and fall?,” Eur. J. Cancer, 2013, pp. 2000-2009, vol. 49.
Cleven, A. et al., “CHFR Promoter Methylation Indicates Poor Prognosis in Stage II Microsatellite Stable Colorectal Cancer,” Clin. Cancer Res., 2014, pp. 3261-3271, vol. 20, No. 12.
Dave, S. et al., “Prediction of Survival in Follicular Lymphoma Based on Molecular Features of Tumor-Infiltrating Immune Cells,” N. Engl. J. Med., Nov. 2004, pp. 2159-2169, vol. 351, No. 21.
De Sousa, F. “Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions,” Nat. Med, 2013, pp. 614-618, vol. 19, No. 5.
De Veer, M. et al., “Functional classification of interferon-stimulated genes identified using microarrays,” J. Leukoc. Biol., Jun. 2001, pp. 912-920, vol. 69.
Delker, D. et al., “RNA Sequencing of Sessile Serrated Colon Polyps Identifies Differentially Expressed Genes and Immunohistochemical Markers,” PLoS One, Feb. 2014, pp. 1-12, vol. 9, No. 2, e88367.
El-Salhy, M. et al., “The role of peptide YY in gastrointestinal diseases and disorders (Review),” Int. J. Mol. Med., 2013, pp. 275-282, vol. 31.
Fallarino, F. et al., “T Cell Apoptosis by Kynurenines,” In: Allegri et al. (eds), Developments in Tryptophan and Serotonin Metabolism, Adv. Exp. Med. Biol., 2003, pp. 183-190, vol. 527, Kluwer Academic/Plenum Publishers.
Fang, Y. et al., “Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer,” Int. J. Colorectal Dis., 2009, pp. 875-884, vol. 24.
Fumagalli, D. et al., “Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology,” BMC Genomics, 2014, pp. 1-12, vol. 15, No. 1008.
Galamb, O. et al., “Diagnostic mRNA expression patterns of inflamed, benign,and malignant colorectal biopsy specimen and their correlation with peripheral blood results,” Cancer Epidemiol Biomarkers Prev., 2008, pp. 2835-2845, vol. 17, No. 10.
Gibson, J. et al., “MUC Expression in Hyperplastic and Serrated Colonic Polyps: Lack of Specificity of MUC6,” Am. J. Surg. Pathol., May 2011, pp. 742-749, vol. 35, No. 5, Lippincott Williams & Wilkins.
Glebov, O. et al., “Distinguishing Right from Left Colon by the Pattern of Gene Expression,” Cancer Epidemiol Biomarkers Prev, Aug. 2003, pp. 755-762, vol. 12.
Gonzalo, D. et al., “Gene expression profiling of serrated polyps identifies annexin A10 as a marker of a sessile serrated adenoma/polyp,” J. Pathol., 2013, pp. 420-429, vol. 230.
Gray, R. et al., “Validation Study of a Quantitative Multigene Reverse Transcriptase-Polymerase Chain Reaction Assay for Assessment of Recurrence Risk in Patients With Stage II Colon Cancer,” J. Clin. Oncol., Dec. 2011, pp. 1611-4619, vol. 29, No. 35.
Hamada, S. et al., “Regulators of epithelial mesenchymal transition in pancreatic cancer,” Front. Physiol., Jul. 2012, pp. 1-5, vol. 3, No. 254.
Hanahan, D. et al., “Hallmarks of Cancer: The Next Generation,” Cell, Mar. 2011, pp. 646-674, vol. 144.
Hendrix, A. et al., “Effect of the Secretory Small GTPase Rab27B on Breast Cancer Growth, Invasion, and Metastasis,” J. Natl. Cancer Inst., Jun. 2010, pp. 866-880, vol. 102, No. 12.
Hewish, M. et al., “Mismatch repair deficient colorectal cancer in the era of personalized treatment,” Nat. Rev. Clin. Oncol., Apr. 2010, pp. 197-208, vol. 7.
Higuchi, T. et al., “My approach to serrated polyps of the colorectum,” J. Clin. Pathol., 2004, pp. 682-686, vol. 57.
Iansante, V. et al., “PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation,” Nat. Commun., 2015, pp. 1-15, vol. 6, No. 7882.
International Search Report and Written Opinion dated Jun. 18, 2018 from related Patent Application No. PCT/US2018/020517; 14 pgs.
Irizarry, R. et al., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data,” Biostatistics, 2003, pp. 249-264, vol. 4, No. 2, Oxford University Press, Great Britain.
Ishigooka, S. et al., “Evaluation of magnifying colonoscopy in the diagnosis of serrated polyps,” World J. Gastroenterol., Aug. 2012, pp. 4308-4316, vol. 18, No. 32.
Kahi, C. et al., “Prevalence and Variable Detection of Proximal Colon Serrated Polyps During Screening Colonoscopy,” Clin Gastroenterol. Hepatol., Jan. 2011, pp. 42-46, vol. 9, No. 1.
Kahi, C. et al., “High colonoscopic prevalence of proximal colon serrated polyps in average-risk men and women,” Gastrointest. Endosc., Mar. 2012, pp. 515-520, vol. 75, No. 3.
Kanth, P. et al., “Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype,” HHS Public Access Author Manuscript, Jun. 1, 2017, pp. 1-24, published in final edited form as: Cancer Prev. Res., Jun. 2016, pp. 456-465, vol. 9, No. 6.
Kim, J. et al., “Complex Behavior of ALDH1A1 and IGFBP1 in Liver Metastasis from a Colorectal Cancer,” PLoS One, May 2016, pp. 1-15, vol. 11, No. 5, e0155160.
Lagal, V. et al., “Spire-1 contributes to the invadosome and its associated invasive properties,” J. Cell Sci., 2014, pp. 328-340, vol. 127.
Langmead, B. et al., “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biol., 2009, pp. 1-10, vol. 10, No. 3, Article R25.
Lascorz, J. et al., “Consensus Pathways Implicated in Prognosis of Colorectal Cancer Identified Through Systematic Enrichment Analysis of Gene Expression Profiling Studies,” PLoS One, Apr. 2011, pp. 1-9, vol. 6, No. 4, e18867.
Lash, R. et al., “Sessile serrated adenomas: prevalence of dysplasia and carcinoma in 2139 patients,” J. Clin. Pathol., 2010, pp. 681-686, vol. 63.
Levin, B. et al., “Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline From the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology,” Gastroenterology, May 2008, pp. 1570-1595, vol. 134, No. 5.
Li, H. et al., “Basic helix-loop-helix transcription factors and enteroendocrine cell differentiation,” Diabetes Obes. Metab., 2011, pp. 5-12, vol. 13, Suppl. 1, Blackwell Publishing Ltd.
Li, J. et al., “The oncogenic TBX3 is a downstream target and mediator of the TGF-beta1 signaling pathway,” Mol. Biol. Cell, Nov. 15, 2013, pp. 3569-3576, vol. 24.
Zhao, P. et al., “Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer,” Mol. Med. Rep., 2015, pp. 4364-4369, vol. 12.
Related Publications (1)
Number Date Country
20200131583 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62465588 Mar 2017 US