COMPOSITIONS AND METHODS FOR DRUG SENSITIZATION OF PARASITES

Information

  • Patent Application
  • 20200138796
  • Publication Number
    20200138796
  • Date Filed
    December 19, 2019
    5 years ago
  • Date Published
    May 07, 2020
    4 years ago
Abstract
Compositions and methods for inhibiting and/or sensitizing or re-sensitizing a parasite to an antiparasitic drug are provided. The compositions can comprise a an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, one or more substituted quinols, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, or a combination thereof in an amount and formulation sufficient to sensitize the parasite to the drug, treating infection of a patient by a parasite with a drug, or to prevent symptomatic infection of a patient by a parasite with a drug.
Description
TECHNICAL FIELD

The present disclosure relates to compositions for parasite inhibition and/or sensitization or re-sensitization of a parasite to another drug or combination of drugs. In particular, it relates to compositions including one or more arylphenoxypropionate derivatives, such as, but not limited to, quizalofop, fenoxaprop, proquizalofop, and haloxyfop, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, and one or more substituted quinols, and combinations thereof. The present disclosure also relates to methods of parasite inhibition and/or sensitizing or re-sensitizing a parasite to another drug or combination of drugs by applying more arylphenoxypropionate derivatives to the parasite.


BACKGROUND

Parasitic infection is treated, or prevented, by the administration of a drug or drugs, such as xenobiotic chemotherapeutic drugs, to a susceptible or infected host organism. Effective treatment of parasitic infection by drug administration is frequently impaired, however, due to resistance of the parasite to the drug. Such resistance can be “inherent” to the parasite in the sense that the susceptibility of the parasite to the drug has not increased due to widespread use of the drug. Commonly, however, drug resistance of infectious parasites is observed due to evolved resistance associated with widespread treatment with the drug and associated selection pressure for resistant phenotypes. Currently, many infectious parasites are completely or highly resistant to available drugs and drug combinations, and parasites still susceptible to available drugs require treatment with greater doses than previously required, such that complete or effectively complete resistance is foreseeable.


For example, chloroquine resistance in certain species of malaria-causing Plasmodium parasites is so widespread that alternative or combination anti-malarial therapies are now required, and many parasitic species, including malaria-causing Plasmodium species, are now multi-drug resistant. As a further example, the incidence of parasite resistance to avermectins, a widely used class of nematicides, acaridices and insecticides in veterinary and human medicine and plant protection, is increasing.


Resistance of infectious parasites to anti-parasitic drugs can be avoided or lessened by rendering the parasites more sensitive to one or more drugs. The calcium channel blocker Verapramil, for example, has been evaluated for its effect on sensitization of parasites to xenobiotics. However, safe, economical, and effective methods for sensitizing parasites in such a manner are lacking.


SUMMARY

Compositions and methods for inhibiting and/or sensitizing or re-sensitizing a parasite to an antiparasitic drug are provided. The compositions can comprise a an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, one or more substituted quinols, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, or a combination thereof in an amount and formulation sufficient to sensitize the parasite to the drug, treating infection of a patient by a parasite with a drug, or to prevent symptomatic infection of a patient by a parasite with a drug.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, which depict embodiments of the present disclosure, and in which like numbers refer to similar components, and in which:



FIG. 1 is a graph of oocyst numbers vs. days post infection in mice with Cryptosporodosis treated with a control or test compounds;



FIG. 2 is a graph of fecal volume vs. days post infection in calves with Cryptosporodosis treated with a control or test compound;



FIG. 3 is a graph of urine volume vs. days post infection in calves with Cryptosporodosis treated with a control or test compound;



FIG. 4 is a graph of overall clinical evaluation vs. days post infection in calves with Cryptosporodosis treated with a control or test compound;



FIG. 5 is a graph of fecal consistency vs. days post infection in calves with Cryptosporodosis treated with a control or test compound;



FIG. 6 is a graph of percent weight change over a trial period in calves with Cryptosporodosis treated with a control or test compound; and



FIG. 7 is a graph of lesion scores for duodenal lesions in broiler chicks with coccidiosis that were untreated or treated with a control or test compound.





DETAILED DESCRIPTION

The present disclosure relates to compositions and methods for inhibition and/or drug-sensitization of a parasite. These compositions and methods are described in further detail below.


Unless otherwise indicated by the specific context of this specification, a parasite can include any type of parasite, or any part thereof. Furthermore, it can include a parasite in a host organism, or outside a host organism, such as in the environment occupied by an organism susceptible to infection by the parasite. The organism or host organism can be any animal. By way of example, and not limitation, the organism or host organism can be a mammal, such as a human, a pet mammal such as a dog or cat, an agricultural mammal, such as a horse, cow, pig, sheep, or goat, or a zoo mammal.


Although many embodiments herein are described with reference to a single parasite, the present disclosure is not so limited. The present disclosure encompasses, for example, infections of a single host animal with a plurality of parasites of the same species and with a plurality of parasites of different species, concurrently or otherwise. These embodiments and others will be readily apparent to one of ordinary skill in the art in view of the present disclosure.


Drug-sensitization, unless otherwise indicated by the specific context of this specification, can include increased sensitivity to a drug, decreased resistance to a drug, or potentiation of a drug's activity or efficacy. Any effect can be measured using any methods accepted in the art. In certain embodiments, drug-sensitization can be determined by an increased ability of the drug to inhibit a parasite. Parasitic inhibition can include killing the parasite, rendering the parasite more susceptible to the immune system of a host organism, arresting the parasite in a phase of its life cycle that is relatively benign with respect to the host organism, reducing the rate of propagation of the parasite in the host organism, or otherwise negatively affecting a parasite. An increased ability of the drug to inhibit a parasite can be demonstrated by, for example, an ability to inhibit the cell with a reduced amount of drug or in a shorter period of time than in the absence of drug-sensitization. In the case of drug-resistant parasites, which include parasites with inherent or acquired resistance, drug-sensitization can result in a renewed, restored, restored or newly acquired ability of the drug to inhibit a parasite or type of parasite.


Administration to a parasite, unless otherwise indicated by the specific context of this specification, can include administration directly to a parasite or indirect administration to a parasite, such as by direct or indirect administration to a host organism infected by the parasite or by prophylactic administration to an organism susceptible to infection by the parasite, or such as by administration to the environment of the parasite, such as by administration to an environment of the parasite. By way of example and not limitation, administration to a parasite can include, in addition to directly contacting the parasite with the composition administered, oral, enteral, and parenteral administration to an infected or susceptible host, as well as administration of the compound to a body of or source of water, for example, in which the parasite resides or will reside, as well as administration of the compound to a substrate or fomite upon which the parasite resides or will reside, or upon which another host or susceptible host organism resides or will reside, such as, for example, a mosquito netting, a portion of a plant such as a leaf, or a consumer product that can come into close contact with the skin of a human or animal, such as a bedsheet, a protective athletic garment, or a harness. By way of further example, the compositions of the present disclosure can be administered to a susceptible animal or infected host in the form of aerosolized particles, e.g., by way of aerosolizer, nebulizer or other like device, or transdermally, or transbucally, or sublingually, or by subcutaneous administration, or any other method of drug delivery, and any combination thereof.


Compositions


The present disclosure includes parasite drug-sensitization compositions, including one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof; or combinations thereof.


In certain embodiments, the present disclosure provides arylphenoxypropionate derivatives according to one of the following structures:




embedded image


haloxyfop (IUPAC name: (RS)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid);




embedded image


quizalofop-p (IUPAC name: (R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionic acid);




embedded image


quizalofop-p-ethyl (IUPAC name: ethyl (2R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate);




embedded image


fenoxaprop-p (IUPAC name: (R)-2-[4-(6-chlorobenzoxazol-2-yloxy)phenoxy]propionic acid;




embedded image


fenoxaprop-p-ethyl (IUPAC name: ethyl (R)-2-[4-(6-chlorobenzoxazol-2-yloxy)phenoxy]propionate); or




embedded image


proquizafop (IUPAC name: 2-isopropylideneaminooxyethyl (R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate); and enantiomers of the general structures.


In certain embodiments, the present disclosure provides aryloxyphenoxyacetate derivatives according to the following structure:




embedded image


wherein R1 is selected from —OR5, —NR6R7 and —NH—SO2—R groups; R2 and R3 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and heteroaryl groups; or R2 and R3 together are a cycloalkyl group; R4 is selected from the group consisting of aryl, heteroaryl, bicycloaryl, and bicycloheteroaryl groups optionally additionally substituted with from zero to four substitutions selected independently from halogen, hydroxyl, alkyl, alkoxy, nitril, nitro, amino, alkylamino, dialkylamino, dialkylaminoalkyl, carboxy, acyl, carboxamido, alkylsulfoxide, acylamino, phenyl, benzyl, phenoxy, and benzyloxy groups; R5 is selected from hydrogen or an alkyl, aryl, or benzyl group that is optionally additionally substituted with an alkyloxy, alkylamino, dialkylamino, or acylamino group; R6 and R7 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and alkoxy groups; or R6 and R7 together are a cycloalkyl or heterocycloalkyl group; and R8 is an alkyl or aryl group optionally substituted with halogen.


In certain embodiments, the present disclosure provides aryloxyphenylacetate derivatives according to the following structure:




embedded image


wherein R1 is selected from —OR5, —NR6R7 and —NH—SO2—R8 groups; R2 and R3 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and heteroaryl groups; or R2 and R3 together are a cycloalkyl group; R4 is selected from the group consisting of aryl, heteroaryl, bicycloaryl, and bicycloheteroaryl groups optionally additionally substituted with from zero to four substitutions selected independently from halogen, hydroxyl, alkyl, alkoxy, nitril, nitro, amino, alkylamino, dialkylamino, dialkylaminoalkyl, carboxy, acyl, carboxamido, alkylsulfoxide, acylamino, phenyl, benzyl, phenoxy, and benzyloxy groups; R5 is selected from hydrogen or an alkyl, aryl, or benzyl group that is optionally additionally substituted with an alkyloxy, alkylamino, dialkylamino, or acylamino group; R6 and R7 are independently selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and alkoxy groups; or R6 and R7 together are a cycloalkyl or heterocycloalkyl group; and R8 is an alkyl or aryl group optionally substituted with halogen.


In certain embodiments, the present disclosure provides substituted quinols according to the following structure:




embedded image


wherein R9 is selected from nitril, hydroxyl, heterocycloaryl and alkyloxy groups; and R4 is selected from the group consisting of aryl, heteroaryl, bicycloaryl, and bicycloheteroaryl groups optionally additionally substituted with from zero to four substitutions chosen independently from the group consisting of halogen, hydroxyl, alkyl, alkyloxy, nitril, nitro, amino, alkylamino, dialkylamino, dialkylaminoalkyl, carboxy, acyl, carboxamido, alkylsulfoxide, acylamino, phenyl, benzyl, phenoxy, and benzyloxy groups.


Specific compounds of the invention include those named in Table 1 and characterized in the examples herein.









TABLE 1





Arylphenoxypropionate Derivatives

















WuXi-N8


embedded image


1-{5-[(6-chloro-1,3-benzothiazol-2- yl)oxy]pyridin-2-yl}-3-(propan-2-yl)urea





WuXi-N7


embedded image


1-{6-[(6-chloro-1,3-benzothiazol-2- yl)oxy]pyridazin-3-yl}-3-(propan-2-yl)urea





WuXi-N6


embedded image


1-{6-[(6-chloro-1,3-benzothiazol-2- yl)oxy]pyridin-3-yl}-3-(propan-2-yl)urea





WUXI-N5


embedded image


3-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]piperidin-1-yl}-N-methoxypropanamide





WUXI-N4


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]piperidin-1-yl}-N-methoxyacetamide





quizalofop-p- ethyl


embedded image


ethyl (2R)-2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}propanoate





quizalofop-p


embedded image


(2R)-2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}propanoic acid





propaquizafop


embedded image


2-{[(propan-2-ylidene)amino]oxy}ethyl 2-{4-[(6- chloroquinoxalin-2-yl)oxy]phenoxy}propanoate





NZ-578


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(2- methanesulfonylethyl)propanamide





NZ-577


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(oxetan-3-yl)acetamide





NZ-576


embedded image


4-(2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}acetyl)-1λ6,4-thiomorpholine-1,1- dione





NZ-575


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(morpholin-4-yl)ethan-1-one





NZ-574


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(oxetan-3-yl)urea





NZ-573


embedded image


N-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1,1-dioxo-1λ6,4-thiomorpholine- 4-carboxamide





NZ-572


embedded image


N-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}morpholine-4-carboxamide





NZ-564


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(oxetan-3-yl)cyclopropane-1- carboxamide





NZ-563


embedded image


4-(1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}cyclopropanecarbonyl)-1λ6,4- thiomorpholine-1,1-dione





NZ-562


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(5-oxopyrrolidin-3- yl)propanamide





NZ-561


embedded image


6-chloro-2-{4-[1-(morpholine-4- carbonyl)cyclopropyl]phenoxy}-1,3- benzothiazole





NZ-560


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(3- hydroxycyclobutyl)propanamide





NZ-559


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N,N-bis(2- hydroxyethy)propanamide





NZ-558


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-[2-(hydroxymethyl)morpholin- 4-yl]propan-1-one





NZ-557


embedded image


N-{2-[bis(2-hydroxyethyl)amino]ethyl}-2-{4-[(6- chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanamide





NZ-556


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-{2-[(2- hydroxyethyl)(methyl)amino]ethyl}propanamide





NZ-555


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-[3-(hydroxymethyl)morpholin- 4-yl]propan-1-one





NZ-554


embedded image


4-(2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoyl)morpholine-2- carboxamide





NZ-553


embedded image


4-(2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoyl)-1λ6,4-thiomorpholine- 1,1-dione





NZ-550


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N-[2- (methylamino)ethyl]propanamide





NZ-548


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-[2- (methylamino)ethyl]propanamide





NZ-547


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-[2-(dimethylamino)ethyl]-N- methylpropanamide





NZ-546


embedded image


N-[2-(dimethylamino)ethyl]-2,2-difluoro-2-{4- [(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-545


embedded image


2,2-difluoro-2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1-yl)ethan- 1-one





N-544


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(oxolan-3-yl)propanamide





NZ-543


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(oxetan-3-yl)propanamide





NZ-542


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(1,3-dimethoxypropan-2- yl)propanamide





NZ-541


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl]-N-(2-methoxyethyl)propanamide





NZ-539


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-cyclobutylpropanamide





NZ-538


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-cyclopropylpropanamide





NZ-537


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-1- (piperazin-1-yl)propan-1-one





NZ-536


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N- (1,3-dihydroxypropan-2-yl)propanamide





NZ-535


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl-N-[2- (dimethylamino)ethyl]propanamide





NZ-534


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N- (2,3-dihydroxypropyl)propanamide





NZ-533


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N-(2- hydroxyethyl)propanamide





NZ-532


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N- (propan-2-yl)propanamide





NZ-531


embedded image


2-{4-([6-chloroquinoxalin-2-yl)oxy]phenyl}-N- methylpropanamide





NZ-530


embedded image


2-{4-([6-chloroquinoxalin-2-yl)oxy]phenyl}-N,N- dimethylpropanamide





NZ-529


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-1- (morpholin-4-yl)propan-1-one





NZ-522


embedded image


6-chloro-2-{4-[1-(4-methylpiperazine-1- carbonyl)cyclopropyl]phenoxy}-1,3- benzothiazole





NZ-521


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylcyclopropane-1- carboxamide





NZ-518


embedded image


N-(2-aminoethyl)-2-{4-([6-chloro-1,3- benzothiazol-2-yl)oxy]phenyl}propanamide





NZ-516


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-[2- (dimethylamino)ethyl]propanamide





NZ-513


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-[4-(oxetan-3-yl)piperazin-1- yl]propan-1-one





NZ-512


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl-1-[4-(2,2,2- trifluoroethyl)piperazin-1-yl]propan-1-one





NZ-511


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-cyclopropylpiperazin-1- yl)propan-1-one





NZ-510


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-[4-(propan-2-yl]piperazin-1- yl]propan-1-one





NZ-509


embedded image


N-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}piperazine-1-carboxamide





NZ-506


embedded image


4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]phenyl 4-methylpiperazine-1-carboxylate





NZ-505


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-500


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2- fluorophenyl}acetamide





NZ-496


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]-2- fluorophenyl}acetamide





NZ-490


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(pyrrolidin-1-yl)ethan-1-one





NZ-489


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperazin-1-yl)propan-1-one





NZ-485


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-484


embedded image


2-{2-fluoro-4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-481


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperidin-1-yl)ethan-1-one





NZ-479


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperazin-1-yl)ethan-1-one





NZ-477


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperazin-1-yl)propan-1-one





NZ-476


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1-yl)ethan- 1-one





NZ-475


embedded image


N-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-4-methylpiperazine-1- carboxamide





NZ-472


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperazin-1-yl)ethan-1-one





NZ-471


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperidin-1-yl)ethan-1-one





NZ-469


embedded image


tert-butyl 4-(2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetyl)piperazine-1-carboxylate





NZ-467


embedded image


2-{2-fluoro-4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1-yl)ethan- 1-one





NZ-466


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1- yl)propan-1-one





NZ-465


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1- yl)propan-1-one





NZ-464


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1-yl)ethan- 1-one





NZ-460


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]-2,6- difluorophenyl}-N-methylacetamide





NZ-459


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2,6- difluorophenyl}-N-methylacetamide





NZ-458


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2,6- difluorophenyl}acetic acid





NZ-450


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]- 2,6-difluorophenyl}-N-methylacetamide





NZ-446


embedded image


N-cyclopropyl-2-{2-fluoro-4-[(6-fluoro-1,3- benzothiazol-2-yl)oxy]phenyl}acetamide





NZ-440


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]-2- fluorophenyl}acetic acid





NZ-438


embedded image


N-(carbamoylmethyl)-2-{4-[(6-fluoro-1,3- benzothiazol-2-yl)oxy]phenyl}acetamide





NZ-433


embedded image


2-{2,6-difluoro-4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylacetamide





NZ-427


embedded image


N-(2-aminoethyl)-2-{4-[(6-fluoro-1,3- benzothiazol-2-yl)oxy]phenyl}acetamide





NZ-426


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(2-hydroxyethyl)acetamide





NZ-425


embedded image


N-[2-(dimethylamino)ethyl]-2-{4-[(6-fluoro-1,3- benzothiazol-2-yl)oxy]phenyl}acetamide





NZ-420


embedded image


N-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-419


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-2- oxo-1,2-dihydropyridin-1-yl}-N- methylacetamide





NZ-418


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-2- oxo-1,2-dihydropyridin-1-yl}acetic acid





NZ-417


embedded image


2-amino-N-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetamide





NZ-416


embedded image


3-amino-N-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}propanamide





NZ-415


embedded image


tert-butyl N-[({4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}carbamoyl)methyl]carbamate





NZ-414


embedded image


tert-butyl N-[2-({4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}carbamoyl)ethyl]carbamate





NZ-413


embedded image


4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]aniline





NZ-412


embedded image


tert-butyl N-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}carbamate





NZ-411


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]-2- fluorophenyl}-N-methylacetamide





NZ-410


embedded image


2-{2-fluoro-4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylacetamide





NZ-409


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1-yl)ethan- 1-one





NZ-408


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-methylpropanamide





NZ-407


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-(propan-2-yl)acetamide





NZ-406


embedded image


2-{2-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-4- hydroxyphenyl}-N-(propan-2-yl)acetamide





NZ-405


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-(propan-2-yl)acetamide





NZ-404


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2- oxo-1,2-dihydropyridin-1-yl}-N-(propan-2- yl)acetamide





NZ-403


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl)-N-(propan-2-yl)acetamide





NZ-402


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]-2- hydroxyphenyl}-N-methylacetamide





NZ-401


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-methylacetamide





NZ-400


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylacetamide





NZ-399


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetic acid





NZ-398


embedded image


methyl 2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetate





NZ-397


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2- oxo-1,2-dihydropyridin-1-yl}acetic acid





NZ-396


embedded image


methyl 2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]-2-oxo-1,2-dihydropyridin-1-yl}acetate





NZ-395


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-methylacetamide





NZ-394


embedded image


2-{4-[(5,6-dichloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylpropanamide





NZ-393


embedded image


1-{4-[(5,6-dichloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-392


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2- methoxyphenyl}-N-methylacetamide





NZ-391


embedded image


1-{5-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-1- oxo-1λ5-pyridin-2-yl}-3-(propan-2-yl)urea





NZ-390


embedded image


2-{2-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-4- hydroxyphenyl}-N-methylacetamide





NZ-389


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]-2- hydroxyphenyl}-N-methylacetamide





NZ-388


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-methyl-3-(propan-2-yl)urea





NZ-387


embedded image


2-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylpropanamide





NZ-386


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylpropanamide





NZ-385


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylacetamide





NZ-383


embedded image


2-4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylacetamide





NZ-382


embedded image


1-{4-[(5,6-difluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-381


embedded image


1-(4-{[6-(hydroxymethyl)-1,3-benzothiazol-2- yl]oxy}phenyl)-3-(propan-2-yl)urea





NZ-380


embedded image


1-{4-[(6-methanesulfonyl-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-379


embedded image


3-(propan-2-yl)-1-(4-{[6-(trifluoromethyl)-1,3- benzothiazol-2-yl]oxy}phenyl)urea





NZ-378


embedded image


ethyl 2-(4-{[(propan-2- yl)carbamoyl]amino}phenoxy)-1,3- benzothiazole-6-carboxylate





NZ-377


embedded image


1-{4-[(6-cyano-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-376


embedded image


1-{4-[(5-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-374


embedded image


1-{4-[(4-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-373


embedded image


1-{4-[(5-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-372


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(2,3- dihydroxypropyl)propanamide





NZ-371


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(1,3-dihydroxypropan-2- yl)propanamide





NZ-370


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(2-hydroxyethyl)propanamide





NZ-369


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methylpropanamide





NZ-368


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N,N-dimethylpropanamide





NZ-366


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(4-methylpiperazin-1- yl)propan-1-one





NZ-365


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(morpholin-4-yl)propan-1-one





NZ-364


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-1-(piperazin-1-yl)propan-1-one





NZ-363


embedded image


1-{4-[(6-nitro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-362


embedded image


1-{4-[(6-hydroxy-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-361


embedded image


1-{4-[(6-methoxy-1,3-benzathiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-360


embedded image


1-{4-(1,3-benzothiazol-2-yloxy)phenyl]-3- (propan-2-yl)urea





NZ-359


embedded image


1-{4-[(6-bromo-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-358


embedded image


1-{4-[(6-methyl-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-357


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N,2-dimethoxyacetamide





NZ-356


embedded image


2-4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-2-methoxyacetic acid





NZ-355


embedded image


methyl 2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-2-methoxyacetate





NZ-354


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3,3-dimethylurea





NZ-353


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-methylurea





NZ-352


embedded image


4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]aniline





NZ-351


embedded image


tert-butyl N-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}carbamate





NZ-350


embedded image


1-({4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}methyl)-3-methylurea





NZ-349


embedded image


1-({4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}methyl)-3,3-dimethylurea





NZ-348


embedded image


{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}methanamine





NZ-347


embedded image


tert-butyl N-({4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}methyl)carbamate





NZ-346


embedded image


1-{4-[(6-chloroquinolin-2-yl)oxy]phenyl}-3- (propan-2-yl)urea





NZ-345


embedded image


1-{4-[(6-fluoroquinoxalin-2-yl)oxy]phenyl}-3- (propan-2-yl)urea





NZ-344


embedded image


1-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-3- methoxyurea





NZ-343


embedded image


1-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-3,3- dimethylurea





NZ-342


embedded image


1-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-3- methylurea





NZ-341


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}imidazolidin-2-one





NZ-338


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-2-hydroxy-N-methoxyacetamide





NZ-337


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-2-hydroxyacetic acid





NZ-336


embedded image


methyl 2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-2-hydroxyacetate





NZ-335


embedded image


N-methoxy-2-{4-[(6-methoxy-1,3-benzothiazol- 2-yl)oxy]phenyl}propanamide





NZ-334


embedded image


2-{4--methoxy-1,3-benzothiazol-2- yl)oxy]phenyl}propanoic acid





NZ-333


embedded image


methyl 2-{4-[(6-methoxy-1,3-benzothiazol-2- yl)oxy]phenyl}propanoate





NZ-332


embedded image


1-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-331


embedded image


1-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-3-(propan-2-yl)urea





NZ-330


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methoxypropanamide





NZ-329


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoic acid





NZ-328


embedded image


methyl 2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoate





NZ-327


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-(propan-2-yl)propanamide





NZ-326


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- (propan-2-yloxy)acetamide





NZ-325


embedded image


(Z)-2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}-N- methoxyethenecarbonimidoyl chloride





NZ-323


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- (cyclopropylmethoxy)acetamide





NZ-322


embedded image


1-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-3- (propan-2-yl)urea





NZ-321


embedded image


tert-butyl N-{4-[(6-chloroquinoxalin-2- yl)oxy]phenyl}carbamate





NZ-320


embedded image


N-methoxy-2-oxo-7-phenoxy-2H-chromene-3- carboxamide





NZ-319


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenoxy}-N-methoxy-2- methylpropanamide





NZ-318


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenoxy}-2-methylpropanoic acid





NZ-317


embedded image


methyl 2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenoxy}-2-methylpropanoate





NZ-316


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- methoxy-2-methylpropanamide





NZ-315


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-2- methylpropanoic acid





NZ-314


embedded image


methyl 2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}-2-methylpropanoate





NZ-313


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methoxypropanamide





NZ-312


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoic acid





NZ-311


embedded image


methyl 2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoate





NZ-310


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N- methoxypropanamide





NZ-309


embedded image


2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenyl}propanoic acid





NZ-308


embedded image


methyl 2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenyl}propanoate





NZ-307


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- (propan-2-yl)acetamide





NZ-306


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- ethylacetamide





NZ-305


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}-N-methoxyacetamide





NZ-304


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}acetic acid





NZ-303


embedded image


methyl 2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}acetate





NZ-302


embedded image


methyl 2-{4-[(6-chloro-1,3-benzoxazol-2- yl)oxy]phenyl}acetate





NZ-301


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}-N- methoxyacetamide





NZ-300


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methoxyacetamide





NZ-299


embedded image


2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetic acid





NZ-298


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenyl}acetic acid





NZ-297


embedded image


methyl 2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenyl}acetate





NZ-296


embedded image


(2R)-2-{4-[(6-chloro-1,3-benzoxazol-2- yl)oxy]phenoxy}-N-methoxypropanamide





NZ-295


embedded image


(2R)-2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}-N-methoxypropanamide





NZ-294


embedded image


methyl 2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenyl}acetate





NZ-293


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}-N-methoxyacetamide





NZ-292


embedded image


6-chloro-2-phenoxy-1,3-benzothiazole





NZ-291


embedded image


6-chloro-2-(3-methylphenoxy)-1,3- benzothiazole





NZ-290


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- methoxy-N-methylacetamide





NZ-289


embedded image


(2R)-2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}-N-methoxypropanamide





NZ-288


embedded image


4-[(6-chloro-1,3-benzothiazol-2-yl)oxy]benzoic acid





NZ-287


embedded image


2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}acetic acid





NZ-286


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- hydroxyacetamide





NZ-285


embedded image


methyl 4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]benzoate





NZ-284


embedded image


methyl 2-{4-([6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}acetate





NZ-283


embedded image


(2E)-3-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}prop-2-enoic acid





NZ-282


embedded image


3-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoic acid





NZ-281


embedded image


methyl (2E)-3-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}prop-2-enoate





NZ-280


embedded image


methyl 3-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenyl}propanoate





NZ-279


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- hydroxy-N-methylacetamide





NZ-278


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-1- (4-methylpiperazin-1-yl)ethan-1-one





NZ-277


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-1- (piperazin-1-yl)ethan-1-one





NZ-276


embedded image


N-(benzenesulfonyl)-2-{4-[(6-chloroquinoxalin- 2-yl)oxy]phenoxy}acetamide





NZ-275


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- trifluoromethanesulfonylacetamide





NZ-274


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- methoxyacetamide





NZ-273


embedded image


6-chloro-2-[4-(1H-imidazol-2- ylmethoxy)phenoxy]quinoxaline





NZ-272


embedded image


6-chloro-2-[4-(2,2- diethoxyethoxy)phenoxy]quinoxaline





NZ-271


embedded image


6-chloro-2-[4-(1,3-oxazol-2- ylmethoxy)phenoxy]quinoxaline





NZ-270


embedded image


6-chloro-2-{4-[(1-methyl-1H-1,2,3,4-tetrazol-5- yl)methoxy]phenoxy}quinoxaline





NZ-269


embedded image


6-chloro-2-{4-[(2-methyl-2H-1,23,4-tetrazol-5- yl)methoxy]phenoxy}quinoxaline





NZ-268


embedded image


6-chloro-2-[4-(1H-1,2,3,4-tetrazol-5- ylmethoxy)phenoxy]quinoxaline





NZ-267


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- methylacetamide





NZ-266


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-1- (morpholin-4-yl)ethan-1-one





NZ-265


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-1- (piperidin-1-yl)ethan-1-one





NZ-264


embedded image


1-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}propan-2-ol





NZ-263


embedded image


2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}acetonitrile





NZ-262


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}- N,N-dimethylacetamide





NZ-261


embedded image


(2R)-2-{4-[(6-nitro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoic acid





NZ-260


embedded image


ethyl (2R)-2-{4-[(6-nitro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoate





NZ-259


embedded image


2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}-N- methanesulfonylacetamide





NZ-258


embedded image


2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}acetamide





NZ-257


embedded image


2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}acetic acid





NZ-256


embedded image


methyl 2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}acetate





NZ-255


embedded image


(2R)-2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoic acid





NZ-254


embedded image


(2R)-2-[4-(1,3-benzothiazol-2- yloxy)phenoxy]propanoic acid





NZ-253


embedded image


(2R)-2-{4-[(6-bromo-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoic acid





NZ-252


embedded image


ethyl (2R)-2-[4-(1,3-benzothiazol-2- yloxy)phenoxy]propanoate





NZ-251


embedded image


ethyl (2R)-2-{4-[(6-fluoro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoate





NZ-250


embedded image


ethyl (2R)-2-{4-[(6-bromo-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoate





NZ-247


embedded image


(2R)-2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoic acid





NZ-246


embedded image


ethyl (2R)-2-{4-[(6-chloro-1,3-benzothiazol-2- yl)oxy]phenoxy}propanoate





fenoxaprop-p- ethyl


embedded image


ethyl (2R)-2-{4-[(6-chloro-1,3-benzoxazol-2- yl)oxy]phenoxy}propanoate





fenoxaprop-p


embedded image


2-{4-[(6-chloro-1,3-benzoxazol-2- yl)oxy]phenoxy}propanoic acid









The present disclosure also includes pharmaceutically acceptable salts, hydrates, prodrugs, and mixtures of any of the above compositions. The term “pharmaceutically acceptable salt” refers to salts whose counter ion derives from pharmaceutically acceptable non-toxic acids and bases.


The arylphenoxypropionate derivatives, aryloxyphenoxyacetate derivatives, aryloxyphenylacetate derivatives, and substituted quinols which contain a basic moiety, such as, but not limited to an amine or a pyridine or imidazole ring, may form salts with a variety of organic and inorganic acids. Suitable pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) base addition salts for the compounds of the present invention include inorganic acids and organic acids. Examples include acetate, adipate, alginates, ascorbates, aspartates, benzenesulfonate (besylate), benzoate, bicarbonate, bisulfate, borates, butyrates, carbonate, camphorsulfonate, citrate, digluconates, dodecylsulfates, ethanesulfonate, fumarate, gluconate, glutamate, glycerophosphates, hemisulfates, heptanoates, hexanoates, hydrobromides, hydrochloride, hydroiodides, 2-hydroxyethanesulfonates, isethionate, lactate, maleate, malate, mandelate, methanesulfonate, 2-naphthalenesulfonates, nicotinates, mucate, nitrate, oxalates, pectinates, persulfates, 3-phenylpropionates, picrates, pivalates, propionates, pamoate, pantothenate, phosphate, salicylates, succinate, sulfate, sulfonates, tartrate, p-toluenesulfonate, and the like.


The arylphenoxypropionate derivatives, aryloxyphenoxyacetate derivatives, aryloxyphenylacetate derivatives, and substituted quinols which contain an acidic moiety, such as, but not limited to a carboxylic acid, may form salts with variety of organic and inorganic bases. Suitable pharmaceutically acceptable base addition salts for the compounds of the present invention include, but are not limited to, ammonium salts, metallic salts made from calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N-dialkyl amino acid derivatives (e.g. N,N-dimethylglycine, piperidine-1-acetic acid and morpholine-4-acetic acid), N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), t-butylamine, dicyclohexylamine, hydrabamine, and procaine.


The arylphenoxypropionate derivatives, aryloxyphenoxyacetate derivatives, aryloxyphenylacetate derivatives, and substituted quinols, and salts thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention.


The compounds described herein may contain asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms. Each chiral center may be defined, in terms of absolute stereochemistry, as (R)- or (S)-. The present invention is meant to include all such possible isomers, as well as, their racemic and optically pure forms. Optically active (R)- and (S)-, or (D)- and (L)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.


Compositions of the present disclosure may also include a pharmaceutically acceptable carrier, in particular a carrier suitable for the intended mode of administration, or salts, buffers, or preservatives. Certain of the compounds disclosed herein are poorly soluble in water. Accordingly, aqueous compositions of the present disclosure may include solubility enhancers. Compositions for oral use may include components to enhance intestinal absorption. The overall formulation of the compositions may be based on the intended mode of administration. For instance, the composition may be formulated as a pill or capsule for oral ingestion. In other examples, the composition may be encapsulated, such as in a liposome or nanoparticle.


Compositions of the present disclosure may contain a sufficient amount of one or more one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof; or combinations thereof, to cause inhibition of a mycobacterium to occur when the composition is administered to the mycobacterium. The amount can vary depending on other components of the composition and their effects on drug availability in a patient, the amount of otherwise required to inhibit the mycobacterium, the intended mode of administration, the intended schedule for administration, any drug toxicity concerns, drug-drug interactions, such as interactions with other medications used by the patient, or the individual response of a patient. Many compositions may contain an amount well below levels at which toxicity to the patient becomes a concern.


The amount of arylphenoxypropionate derivative, aryloxyphenoxyacetate derivative, aryloxyphenylacetate derivative, substituted quinol, or pharmaceutically acceptable salt, hydrate, or prodrug thereof; or combination thereof, present in a composition may be measured in any of a number of ways. The amount may, for example, express concentration or total amount. Concentration may be for example, weight/weight, weight/volume, moles/weight, or moles/volume. Total amount may be total weight, total volume, or total moles. Typically, the amount may be expressed in a manner standard for the type of formulation or dosing regimen used.


Parasite Drug Sensitization and Inhibition Methods


The present disclosure also includes drug-sensitization and/or inhibition methods in which a composition comprising one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, or combinations thereof, is administered to a parasite in order to sensitize the parasite to another drug or combination of drugs and/or to inhibit the parasite. The composition can be any composition described above. In certain embodiments, the composition can be administered with any other drug or drugs which can alternatively be present in a pharmaceutical composition as described herein. For example, the other drug can include ivermectin.


In methods in which a parasite is sensitized to a drug or drugs, the drug or drugs can be any drug or drugs for which rifamycin or a rifamycin derivative, such as rifabutin or a rifabutin derivative, or rifampicin or a rifampicin derivative, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof; or a combination thereon one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof; or combinations thereof, increase sensitivity in a parasite. In certain embodiments, the drug or drugs can include an antiparasitic drug. Example types of suitable antiparasitic drugs and drug combinations include antinematodic drugs, anticestodic drugs, antitrematodic drugs, antiamamoebic drugs, antiprotazoal drugs, antihelminthic drugs, tiniacides, antiprotozoic drugs, and other drugs. Example classes of suitable antiparasitic drugs include benzimidazoles, avermectins, milbemycins, piperazines, octadepsipeptides, thiophenes, pamoates, spiroindoles, imadazothiazoles, quinines, biguanides, sulfonamides, tetracyclines, lincomycins, alkaloids, carbamates, formamidines, organophosphates, Rifampin, Amphotericin B, Melarsoprol, Eflornithine, Miltefosine, Metronidazole, Tinadadazole, Quinine-pyrithamine-sulfadiazine, Trimethoprin-sulfa methoxazole, Piperazine, Praziquantel Triclabendazole, Octadepsipeptides, Amino Acetonitrile derivatives and derivatives thereof.


Exemplary suitable antiparasitic drugs for use with the compositions and methods of the present disclosure include, without limitation, ivermectin, selamectin, doramectin, abamectin, albendazole, mebendazole, thiabendazole, fenbendazole, triclabendazole, flubendazole, diethylcarbazamine, niclosamide, suramin, pyrantel pamoate, levamisole, praziquantel, emodepside, monepantel, derquantel, rifoxanide, artemether, quinine, quinidine, chloroquine, amodiaquine, pyrimethamine, proguanil, sulfadozine, mefloquine, atovaquone, primaquine, artemisinin, doxycycline, clindamycin, sulfadoxine-pyrimethamine, moxidectin, permethrin, hexylresorcinol, and combinations thereof.


Accordingly, in certain embodiments, the antiparasitic drug or drugs to which sensitivity is increased in a parasite by the one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, or combinations thereof can include, without limitation, one or more of the antiparasitic drugs listed in Table 2 below, or any class or type referred to therein, or any antiparasitic drug referred to herein.









TABLE 2







Antiparasitic Drugs









Antiparasitic Drug
Class/Type
Mechanism/Target





Trimethoprim
Anti-folate
Dihydrofolate reductase (“DHFR”)


Pyrimethamine (Daraprim)

deoxyhypusine synthase (“DHPS”)


Proguanil (Paludrine)




Sulfamethoxazole




Sulfadiazine




Sulfadoxine




Atovaquone (Mepron)
Ubiquinone Analog
Perturbs Mitochondrial Electron Transpot


Spiramycin (Rovmycin)-
Antibiotic
Ketolide Protein Synthesis Inhibitor


Azithromycin Zithromax)-

Macrolide Protein Synthesis Inhibitor


Paromomycin Humatin)-

Aminoglycoside Protein Synthesis Inhibitor


Clindamycin (Cleocin)-

Lincosamide Protein Synthesis Inhibitor


Tetracycline (Sumycin)-

Polyketide Protein Synthesis Inhibitor


Doxycycline (Vibramycin)-

Polyketide Protein Synthesis Inhibitor


Metronidazole (Flagyl)
Nitroimidazole
PFOR-Dependent RNS Generation


Tinidazole (Tindamax)




Nitazoxanide (Alinia)
Nitrothiazole



Iodoquinol (Yodoxin)
Quinoline
Iron chelation


Chloroquine

Hemozoin Inhibitor


Primaquine




Mefloquine




Quinine




Quinidine




Praziquantel (Biltride)1,2

Paralytic


Oxaminquine (Vansil)1




Triclabendazole (Egaten)1
Benzimidazole
Prevents tubulin polymerization


Niridazole1
Thiazole
Paralytic Phosphofructokinase Inhibitor


Stibophen1
Arylsulfonate



Trichlorfon1
Organophosphate
Paralytic ACE Inhibitor


Mebendazole (Vermox)2,3
Benzimidazole
Prevents tublin polymerization


Albendazole (Albenza)2,3




Niclosamide2
Salicylanilide
Decouples Oxidative Phosphorylation


Ivermectin (Stromectol,
Macroyclic Lactone
Paralytic GABA Agonist


Mectizan)3,4




Doxycycline (Vibramycin)3
Antibiotic
Targets Symbiotic Bacteria in Parasite Gut


Diethylcarbamazine (DEC)3
Piperazine
Perturbs Arachidonic Acid Metabilism


Pyrantel Pamoate (Helmex)3
Tetrahydropyrimidine
Paralytic


Permethrin (Elimite, Nix)4
Pyrethroid
Neurotoxin via Na-Channel Binding


Tiabendazole3,5
Nitrothiazole
Fumarate reductase


Levamisole3,5
Imidazothiazole
Paralytic Ach agonist


Mibemycin3
Macrolide
Glutamate sensitive chloride channels






1Anti-trematodal;




2Anti-cestodal;




3Anti-nematodal;




4Anti-ectoparasitic;




5Anti-helminthic







In methods of the current disclosure, the parasite can be sensitized to a drug or drugs already known to inhibit the parasite, or it can be sensitized to a drug or drugs not previously used with that type of parasite. If the parasite is a drug-resistant parasite that has acquired or evolved a resistance to a drug, it can be sensitized to a drug that previously exhibited a decreased ability to inhibit the parasite. In certain embodiments, sensitization of the parasite to the drug occurs at least in part by P-gp inhibition.


In certain embodiments, the composition can directly inhibit the parasite instead of or in addition to causing drug-sensitization.


The parasite that undergoes drug-sensitization or inhibition can be any type of parasite. It may, for instance, be a helminth, such as a nematode, a trematode, or a cestode, a protozoa, or an arthropod (i.e., an ectoparasite). The parasite can be a parasite of any animal or plant. By way of example and not limitation, the parasite that undergoes drug-sensitization or inhibition can be a species of the genus Plasmodium, such as Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax, a species of the genus Ascaris, such as Ascaris lumbricoides, a species of the genus Enterobius, such as Enterobius vermicularis, a species of the genus Trichinella, such as Trichinella spiralis, a species of the genus Haemonchus, such as Haemonchus contortus, a species of the genera Aphelenchoides, Ditylenchus, Globodera, Heterodera, Longidorus, Meloidogyne, Nacobbus, Pratylenchus, Trichodorus, and Xiphinema, a species of the genus Bursaphelenchus, such as Bursaphelenchus xylophilus, a species of the genus Fasciola, such as Fasciola hepatica, a species of the genus Coccidoides, or a species of the genus Onchocerca, such as Onchocerca volvulus.


The parasite that undergoes drug-sensitization or inhibition can be any parasite. The parasite can be, for example, any parasite commonly referred to or known as a flea, a tick, a worm, a hookworm, a roundworm, a heartworm, a fluke, a mite, a spider, a beetle, a mosquito, a fly, or a bed bug.


Accordingly, in certain embodiments, the parasite that undergoes drug-sensitization or inhibition can be a protozoan parasite, such as, for example, the protozoan parasites of Table 3 below. In certain embodiments, the parasite that undergoes drug sensitization or inhibition can be a helminthic parasite (parasitic worm) such as, for example, the helminthic parasites of Table 4 below. In certain embodiments, the parasite that undergoes drug sensitization or inhibition can be an ectoparasite, such as, for example, the helminthic parasites of Table 5 below. In certain embodiments, multiple parasites of different species, genera, class, or other category can simultaneously undergo drug sensitization or inhibition in a single host harboring the multiple parasites.









TABLE 3







Representative Protozoan Parasites










Parasite
Disease
Symptoms (humans)
Current Drug Regimen






Cryptosporidium

Cryptosporidiasis
Diarrhea-causing parasites
Uncomplicated: Nitazoxanide



hominis, parvum


(typically asymptomatic) but
(Alinia)




deadly in susceptible pop.
AIDS: Paromomycin (Humatin) w/




(AIDS, Children, etc.)
Azithromycin (Zithromax)





Questionable Efficacy for both





regimes.



Isosporiasis belli

Isosporiasis
Diarrhea-causing parasites
#1: Trimethoprim-Sulfamethoxazole




(typically asymptomatic) but
w/ folinic acid (Leucovorin)




deadly in susceptible pop.
#2: Pyrimethamine (Daraprim) w/




(AIDS, Children, etc.)
folinic acid (Leucovorin)



Cyclospora

Cycosporiasis
Diarrhea-causing parasites
Uncomplicated: No Recognized



cayetanesis


(typically asymptomatic) but
Effective Treatment




deadly in susceptible pop.
AIDS: Trimethoprim-




(AIDS, Children, etc.)
Sulfamethoxazole w/ folinic acid





(Leucovorin) considered effective at





reducing severity. Control HIV





infection to resolve parasite





infestation.



Toxoplasma

Toxoplasmosis
Usually asymptomatic but
Uncomplicated: Pyrimethamine



gondii


causes fatal encephalitis in
(Daraprim) +




AIDS/Immunocompromised
sulfadiazine/clindamycin (Cleocin)/




Patients. TORCH Pathogen
azithromycin (Zithromax)




associated with transplacental
Pregnancy: Uncomplicated +




infection.
Spiramycin (Rovamycin)





AIDS: Pyrimethamine (Daraprim) +





sulfadiazine/clindamycin (Cleocin)/





azithromycin (Zithromax). Treat





patient indefinitely once Dx.





*** All regimes require folinic acid





(Leucovorin)***



Balantidium coil

Balantidiasis
Diarrhea, Constiption. Can
#1: Tetracycline (Sumycin)




mimick inflammatory bowel
#2: Metronidazole (Flagyl)




conditions.
#3: Iodoquinol (Yodoxin)



Entamoeba

Amebiasis
Typically asymptomatic but
Asymptomatic: Luminal Agents



histolytica, dispar


can cause wide range of
Iodoquinol (Yodoxin) or




symptoms ranging from mild
paromomycin (Humatin)




diarrhea to severe dysentery
Symptomatic: Colitis & Hepatic




with mucoid, bloody
Abscess Metronidazole (Flagyl) +




diarrhea. May cause ameobic
Luminal Agents.




liver abscesses w/ or w/o





intestinal disease.




Giardia lamblia

Giardiasis
2/3 Asymptomatic. Others
Metronidazole (Flagyl)




experience diarrhea varying





in severity, sulfurous





gas/belches, weight loss,





cramping, pain, etc.





Traveler’s Diarrhea.




Trichmonas

Trichomoniasis
Very common STI that is
#1 Metronidazole (Flagyl)



vaginalis


usually asymtomatic but can
#2 Tinidazole (Tindamax)




cause vaginits, urethritis, etc.




Dientamoeba

Dientamoebiasis
Traveler’s diarrhea, chronic
Prophylaxis: Paromomycin



fragilis


diarrhea/abdominal pain,
(Humatin)




failure to thrive.
Symptomatic: Iodouinol (Yodoxin),





Paromornycin (Humatin),





Tetracycline (Sumycin),





Metronidazole (Flagyl) combination





of any two.



Biastocystis

Blastocystosis
Typically nonsymptomatic
Metronidazole (Flagyl) now



hominis


and colonization transient.
considered ineffective. Nitazoxanide




Nonspecific GI symptoms
(Alinia) possible replacement (trials




including diarrhea,
ongoing)




flatulence, pain, etc.




Plasmodium

Malaria
Classical paroxysm (cyclic
Hemozoin Inhibitors: Chloroquine



falciparum, vivax.


fevers) w/ headache, joint
(I), Primaquine (II), Mefloquine (I),



ovale, malariea


pain, vomiting, hemolytic
Quinine (I), Quinidine Gluconate (I).




anemia, jaundice, and
Antifolates: sulfadoxine (I),




convulsions. Neurological
sulfamethoxypyrazine (1) + proguanil




signs in severe cases.
(II) or pyrimethamine (I).




Presents 1-3 weeks post
Sesquiterpene Lactones:




infection w/o prophylaxis.
Artemether, Artesunate,





Dihyroartemisin, Artemotil,





Artemisin (II) None FDA Approved.





Naphthoquinonones: Atovaquone





(II) Adjuncts:





Tetracycline/Doxycycline,





Clindamycin (Lincosamides). Proven





Schizoticides. Use when indicated for





Severe Disease.



Babesia

Babesiosis
Typically asymptomatic
Mild/Moderate: Atovaquone



divergens,


(>50%) with others
(Mepron) w/ Azithromycin



microfti, other


developing malaria-like
(Zithromax)




illness w/ hemolytic anemia,
Severe: Quinine Sulfate w/




cyclic fevers,
Clindamycin (Cleocin)




thrombocytopenia, and





possible organ failure 1-4





weeks post infection.




Trypanosoma

African
Hemolymphatic phase with
No CNS T.b. rhodesiense: Suramin



brucei

Trypanosomiasis
fever, headache, pains, and
No CNS T.b. gambiense:



(Sleeping Sickness)
fever followed by CNS
Pentamidine




involvement. Fatal if not
CNS T.b. rhodesiense: Melarsoprol




treated promptly.
(Mel B, Arsobal)





CNS T.b. gambiense: Eflornithine





(DFMO, Ordinyl)



Trypanosoma

American
Acute disease usually
#1: Nifurtimox (Lampit)



cruzi

Trypanosomiasis
asymptomatic but
#2: Benzidazole (Rohagan)



(Chaga's Disease)
cagoma/Romana’s Sign may
Both drugs can effect radical cure in




be present. Chronic infection
acute phase but become less effecitve




destroys myenteric complex
in chronic patients (especially those




causing megaesophaug,
who have been infected for longer




colon, other dilations and
periods of time)




dilated cardiomyopathy.




Leishomania

Leishmaniasis
Cutaneous, mucocutaneous,
Classical Tx: Sodium Stibogluconate +



mexicana,


difffuse cutaneous, and
pentavalent antimony (Pentostam)



aethiopica, tropic,


viseral (Kala Azar)
w/ meglumine antimonate



braziliensis,


Presentations
(Glucontime). Retired due to tox &



donovani,



resistance.



infantum.



Cutaneous Local: Topical





paromomycin + gentamicin





formulation.





Oral Systemic: Miltefosine





(Impavido) w/ azoles ketoconazole,





itraconazole, fluconazole





IV Systemic: Amphotericin B





(Ambisome)
















TABLE 4







Representative Helminthic Parasites










Parasite
Disease
Symptoms (humans)
Current Drug Regimen






Schistosoma

Schistosomiasis
Direct skin penetration in
Praziquantel (Biltride)



mansoni,


aquatic soils, etc. with




japonicum,


infected fresh-water snails




haemotobium


resulting in prolonged





colonization of the





intestines/urinary tract





dependent on species. Causes





malnutiriton, organ damage,





and associated with bladder





cancer.




Trichobilharzia

Swimmer’s Itch
Direct skin penetration in
Antihistamines



regenti


aquatic soils, etc. with
No specific treatment




infected fresh-water snails.





Mild w/ localized skin





irritation.




Clonorchis

Clonorchiasis
Following ingestion of raw
#1: Praziquantel (Biltride)



simensis


fish, colonize biliary tract.
#2: Albendazole




Associated with





cholangiocarcinoma, liver





damage, etc.




Fasciola hepatica,

Fascioliasis
Liver dysfunction, pain
Triclabendazole (Egaten)



gigantica


following colonization of the





liver and biliary tract




Opisthorchis

Opisthorchiasis
Following ingestion of raw
#1: Praziquantel (Biltride)



viverrinil


fish, colonize biliary tract.
#2: Albendazole




Associated with





cholangiocarcinoma, liver





damage, etc.




Paragonimus

Paragonimiasis
Liver, Lung dysfunction w/
#1: Praziquantel (Biltride)



westermani,


pulmonary manifestations in
#2: Triclabendazole (Egaten)



kellicotti


chronic infections.




Fasciolopsis buski

Fasciolopisiasis
Typically asymptomatic but
Praziquantel (Biltride)




can include diarrhea,





abdominal pain, obstruction.




Metagonimus

Metagonimiasis
Diarrhea, colic, obstruction.
Praziquantel (Biltride)



yokagawai







Heterophyes

Heterophyiasis
Diarrhea, colic, obstruction.
Praziquantel (Biltride)



heterophyes







Echinococcus

Echinocccosis
Typically asymptomatic with
Cystic: Albendazole (Albenza) w/



granulosus,


formation of large cysts
Surgical resection of cysts. Add



multilocularis


containing parasites. Rupture
Praziquantel (Biltride) if cyst spillage




results in allergic
occurs during surgery.




reaction/anaphylaxis. Can
Alveolar: Albendazole (Albenza) or




behave like slow-growing
Mebendazole (Vermox)




destructive tumors.




Taenia saginata,

Taeniasis
Tapeworms acquired from
Praziquantel (Biltride)



solium, asiatica


eating undercooked beef and





pork. Adult worms reside in





intestines and reach large





sizes causing malnutrition,





obstruction, etc.




Taenia solium,

Cysticerosis
Occur following infection
Praziquantel (Biltride) w/ prednisone



asiatica


with pork tapeworms. All





tissues susceptible to cyst





infestation. CNS/CVS most





dangerous.




Hymenolpeis

Hymenolepiasis
Asymptomatic dwarf
#1: Praziquantel



nana, diminuta


tapeworm. Extremely
#2: Niclosamide




common.
#3: Nitazoxanide



Diphyllobotrium

Diphyllobothriasis
Freshwater fish tapeworm.
Praziquantel



latum,


Largest of all tapeworms and




mansonoides


can cause obstruction, B12





def. w/ megaloblastic anemia.




Spirometra

Sparganosis
Asymptomatic unless woms
No drug treatment. Surgical removal



erinaceieuropaei


migrate to CNS. Typically
of worms required.




nonspecific skin irritation as





worms migrate.




Dracunculus

Dracunculiasis
Guinea Worms. Enough said.
No drug treatment. “Stick Therapy”



medinensis



to remove erupting worms from





lower extremities.



Onchocerca

Onchocerciasis
River Blindess
Ivermectin (Stromectol) &



volvulus



Doxycycline (Vibramycin)



Loa loa

Loiasis
Asymptomatic Eye Worm
Diethylcarbamazine



Mansonella

Mansonellosis
Swelling, nonspecific skin
#1: Mebendazole (Vermox) or



perstans, ozzardi,


symptoms, rashes, typically
Albendazole (Albenza)



streptocera


asymptomatic.
#2: Ivermectin (Stromectol)





*** Include doxycycline





(Vibramycin) w/ #1 or #2 ***



Wucheria

Lymphatic
Typically asymtomatic but
Ivermectin (Stromectol) w/



bancrofti, Brugia

Filariasis
some develop profound
Deithylcarbamazine (DEC) Typically



malayi, timori


lymphatic obstruction and
responds poorly to drugs once




lymphadema (Elephantiasis)
lymphedema sets in.




w/ episodes of febrile/afebrile





lymphangitis and





lymphadenitis. Nocturnal





cough associated with





migrating worms.




Gnathostoma

Gnathostomiasis
Painful, intermittent, itchy
#1: Ivermectin (Stromectol)



spinigerum,


swellings caused by
#2: Albendazole (Albenza)



hispidium


migrating worms. Possible





VLM organism.




Ancylostoma

Ancylostomiasis
Signs of iron-deficiency




duodenale,

and Cutaneous
anemia, malnutrition, and




brazilienes

Larva Migrans
skin manifestations following
#1: Albendazole (Albenza)




infection by penetration of
#2: Mebendazole (Vermox)




intact skin from infected soil.
#3: Pyrantel Pamoate (Helmex)




(Hookworms)




Necator

Necatoriasis
Signs of iron-deficiency
#1: Albendazole (Albenza)



americanus


anemia, malnutrition, and
#2: Mebendazole (Vermox)




skin manifestations following
#3: Pyrantel Pamoate (Helmex)




infection by penetration of





intact skin from infected soil.





(Hookworms)




Angiostrongylus

Angiostrongyliasis
Abdominal disease and
#1: Albendazole (Albenza)



cantonensis


eosinophilic meningitis
#2: Mebendazole (Vermox)




presentations possible.
*** w/ prednisolone ***



Ascaris

Ascariasis
Typically asymptomatic w/
#1: Abendazole (Albenza)



lumbricoides


nonspecific respiratory
#2: Mebendazole (Vermox)




symptoms during pulmonary
#3: Ivermectin (Stromectol)




stage followed by adominal





pain and possible obstrcution





of biliary tract and/or





intestines.




Toxocara canis,

Toxocariasis and
Typically asymptomatic.
#1: Ivermectin (Stromectol)



cati

Visceral Larva
VLM very serious depending
#2: Albendazole (Albenza)



Migrans
on what organ is invaded.





Non-VLM show generalized





signs of worm infestations.




Strongyloides

Strongyloidiasis
Typically asymptomatic w/
#1: Mebendazole (Vermox)



stercoralis


mild GI symptoms including
#2: Albendazole (Albenza)




pain and diarrhea. May





present with rashes.




Enterobius

Enterobiasis
Typically asymptomatic w/
#1: Albendazole (Albenza)



vermicularis


pruitic perianal region and
#2: Mebendazole (Vermox)




possible superinfections.
#3: Pyrantel Pamoate (Helmex)



Trichinella

Trichinellosis
Acquired from undercooked
#1: Mebendazole (Vermox)



spiralis


pork resulting in tissue
#2: Albendazole (Albenza)




infestation following actue





GI symptoms. Larval





encystments cause organ-





specific symptoms.




Trichuris trichiura

Trichuriasis
Typically asymptomatic but
#1: Mebendazole (Vermox) or




heavy infections may cause
#2: Albendazole (Albenza)




GI symptoms.
#3: Ivermectin (Stromectol)
















TABLE 5







Representative Ectoparasites










Parasite
Disease
Symptoms (humans)
Current Drug Regimen






Pedicululs

Pediculosis
Head lice, body lice spread
Permethrin (Elimite, Nix, Acticin,



humanus capitus,


by direct contact with either
etc.) OTC any 1% formulation



humanus


infected persons or infested
topical only.




bedding, clothing, hats, etc.




Phthiriasis pubis

Phthiriasis
Pubic lice or “Crabs” spread
Permethrin (Elimite, Nix, Acticin,




by direct contact (sexual).
etc.) OTC any 1% formulation





topical only.



Sarcoptes scabiei

Scabies
Mite infests stratum corneum
#1: Rx Permethrin (Elimite, Lyclear,




with resulting immune
Nix) Any 5% formulation.




reaction forming itchy
#2: Crotamiton (Eurax, Crotan)




blisters/lesions.
#3: Lindane 1%





#4: Ivermectin (Stromectol) for





Norwegian variant.









The organism may also be Eimeria vermiformis.


The composition can be delivered to the parasite in a host organism by delivering the composition to the host organism, such as by administering, feeding, injecting, topical application, attachment, or providing for inhalation. In certain embodiments, the composition contacts the parasite by diffusion throughout the host organism after administration. Additionally or alternatively, the composition can be delivered to a recipient prophylactically, i.e., prior to recipient infection, or contact with, or exposure to, the parasite. The mode of delivery can be selected based on a number of factors, including metabolism of one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, or combinations thereof, or another drug in the composition, the mode of administration of other drugs to the host organism, such as the drug to which the parasite is sensitized, the location and type of parasite to be drug-sensitized, the health of the host organism, the ability or inability to use particular dosing forms or schedules with the host organism, preferred dosing schedule, including any adjustment to dosing schedules due to side effects of other drugs, and ease of administration. In certain embodiments, the mode of administration can be enteral, such as orally or by introduction into a feeding tube. In certain embodiments, the mode of administration can be parenteral, such as intravenously. In certain embodiments, the mode of administration is transcutaneous. In certain embodiments, the mode of administration is topical. In certain embodiments, the mode of administration is by affixing a dosage form to the to body of an infected or susceptible animal, such as a collar or tag.


The dosage amounts of the and administration schedule of the one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof; or combinations thereof, can vary depending on other components of the composition and their effects on drug availability in a recipient, the type of drug or drugs to which the parasite is sensitized, the intended mode of administration, the intended schedule for administration, when other drugs are administered, any drug toxicity concerns, and the recipient's response to the drug. In certain embodiments, the amount and frequency of delivery of one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof, or combinations thereof, can be such that levels in the recipient remain well below levels at which toxicity to the recipient becomes a concern. However the amount and frequency can also be such that the levels of one or more arylphenoxypropionate derivatives, one or more aryloxyphenoxyacetate derivatives, one or more aryloxyphenylacetate derivatives, one or more substituted quinols, or pharmaceutically acceptable salts, hydrates, or prodrugs thereof; or combinations thereof, in the recipient remain continuously at a level sufficient to induce drug-sensitization or are at a level sufficient to induce drug sensitization when or shortly after the drug to which the parasite is sensitized is delivered to it. Accordingly, the composition can be taken on a regular basis during treatment with the drug to which the parasite is sensitized or it can be taken only a set time before, at the same time, or a set time after the drug to which the parasite is sensitized.


In certain embodiments, the administration of the arylphenoxypropionate derivative, aryloxyphenoxyacetate derivative, aryloxyphenylacetate derivative, substituted quinol, or pharmaceutically acceptable salt, hydrate, or prodrug thereof, or combination thereof; is calibrated to reach a threshold concentration in the plasma or tissue of a patient. Such calibration can take into consideration experimentally derived bioavailability, such as the exemplary study data provided below, as well as the mass of the patient. In certain embodiments, the threshold concentration is a proportion of the minimum inhibitory concentration (MIC50).


In certain embodiments, and based on one or more of the considerations discussed, the unit dosage of the arylphenoxypropionate derivative, aryloxyphenoxyacetate derivative, aryloxyphenylacetate derivative, substituted quinol, or pharmaceutically acceptable salt, hydrate, or prodrug thereof, or combination thereof, is between about 1 mg/kg body weight to about 500 mg/kg body weight. In certain embodiments, the unit dosage is between about 5 mg/kg to about 350 mg/kg. In certain embodiments, the unit dosage is between about 10 mg/kg and about 200 mg/kg body weight.


The present disclosure further includes methods of identifying whether an arylphenoxypropionate derivative, aryloxyphenoxyacetate derivative, aryloxyphenylacetate derivative, substituted quinol, or pharmaceutically acceptable salt, hydrate, or prodrug thereof, or combination thereof, is able to inhibit a parasite. Such methods include preparing or obtaining such a derivative, applying it to the parasite, and identifying that the derivative inhibits the parasite.


Representative MIC50 data for certain arylphenoxypropionate derivatives in Cryptosporidium parvum (CP) are provided below. In certain embodiments, the arylphenoxypropionate derivative, aryloxyphenoxyacetate derivative, aryloxyphenylacetate derivative, substituted quinol, or pharmaceutically acceptable salt, hydrate, or prodrug thereof, or combination thereof, has an MIC50 value against CP of about 0.01 μM to about 20 μM, or about 0.1 μM to about 15 μM, or about 0.5 μM to about 12.5 μM, or about 1 μM to about 10 μM.


EXAMPLES

The following examples are provided to further illustrate certain embodiments of the disclosure. They are not intended to disclose or describe each and every aspect of the disclosure in complete detail and should be not be so interpreted. Unless otherwise specified, designations of cells lines and compositions are used consistently throughout these examples.


Example 1—Synthesis of Aryloxyphenoxyacetate Derivatives

Aryloxyphenoxyacetate derivatives can be prepared according the following scheme:




embedded image


The compounds (3) are synthesized by condensation of hydroquinone (1) with chloro- or bromo-substituted acetate (2) at a temperature range from 5° C. to 120° C. in water, or organic solvent, such as DMF, DMSO, ethanol, in the presence of base, such as NaOH, K2CO3, or NaH. Substitution of compounds (3) with aromatic chloride or bromide (R4-X) in organic solvent, such as DMF, DMSO, dioxane, acetonitril, ethanol in the presence or absence of a catalyst, such as CuI, at a temperature range from 25° C. to 150° C. in the presence of base, such as K2CO3. Li2CO3, LiOH, KOH, produces ester (4). Hydrolysis of ester (4) will give acid (5). Coupling of acid (5) with amine in the presence of coupling reagents, such as EDCI, CDIor via acyl chloride in organic solvent, such as DCM, THF, DMF, produces amide (6).


Other aryloxyphenoxy or aryloxyphenyl-acetate, -acetyl amide, -acyl sulfonamide can be prepared by similar methods. It is apparent to one skilled in art that other sequence of the reactions, and alternative reagents can be used for the synthesis of compounds of the present disclosure. These alternatives for the synthesis of the derivatives are within the scope of this invention.


Aryloxyphenyl urea or cabamate derivatives can be prepared according the following schemes:




embedded image


The compound (8) are synthesized by reaction of aminophenol (7) with isocyanate in organic solvent, such as DMF, dioxane, acetonitril, ethanol, THF, methanol, ethyl acetate, dichloromethane, or toluene, in the presence or absence of base, such as K2CO3, NaHCO3, triethylamine at a temperature range from 5° C. to 120° C. Substitution of compounds (8) with aromatic chloride or bromide (R4-X) in organic solvent, such as DMF, DMSO, dioxane, acetonitril, ethanol in the presence or absence of a catalyst, such as CuI, at a temperature range from 25° C. to 150° C. in the presence of base, such as K2CO3. Li2CO3, LiOH, KOH, produces Aryloxyphenyl urea derivatives (9).


Example 2—Cryptosporidium Testing

Cell Culture Model of Cryptosporidium Parvum Infection


Fresh oocysts of CP (Iowa strain) were purchased from Bunch Grass Farm (Deary, Id.). Oocysts were further purified by a Percoll-based gradient centrifugation method and surface sterilized with 10% bleach for 7 min on ice, followed by washes with phosphate-buffered saline (PBS). An ileocecal colorectal adenocarcinoma cell line (HCT-8, ATCC #CCL-244) was used to host the growth of CP in vitro. One day before the inoculation, HCT-8 cells were seeded in 96-well plates (2.5×104/well) containing RPMI 1640 medium supplied with 10% fetal bovine serum (200 μL medium/well in all experiments) and allowed to grow overnight at 37° C. under 5% CO2 atmosphere until they reached ˜90% confluence. For drug testing, host cells were infected with 1.5×104 oocysts per well (ratio ˜1:3). After inoculation, parasite oocysts were allowed to undergo excystation and invasion into host cells for 3 h at 37° C. Free parasites and oocyst walls in the medium were removed from the plates by an exchange of the culture medium. Drugs at specified concentrations were added into the culture at this time point (immediately after the medium exchange). Parasite-infected cells were then incubated at 37° C. for additional 41 h (total 44 h infection time). At least two independent experiments were conducted for every experimental condition, each including two replicates drugs and eight replicates for negative controls.


Preparation of Cell Lysates


Plates containing HCT-8 cells infected with CP for 44 h were first centrifuged for 10 min at 1000×g to ensure that free merozoites in the medium were firmly settled on the bottom of the wells. Medium was removed, followed by two gentle washes with PBS. For extracting total RNA, 200 μL of ice-cold Bio-Rad iScript qRT-PCR sample preparation reagent (lysis buffer) (Bio-Rad Laboratories, Hercules, Calif.) was added into each well. Plates were sealed with heat sealing films and subjected to vortex for 20 min. Plates were then incubated at 75° C. for 15 min, followed by centrifugation (5 min, 2000×g) to settle down cell debris. Supernatants were used immediately in subsequent qRT-PCR reactions or the plates were stored at −80° C. until use.


Real-Time qRT-PCR Assay


The levels of 18S rRNA transcripts from CP and host cells (referred to as Cp18S and Hs18S) were detected by real-time qRT-PCR method using qScrip™ one-step SYBR green qRT-PCR kit (Quanta Biosciences, Gaithersburg, Md.). Cell lysates prepared as described above were diluted by 100 and 2000 folds for detecting Cp18S and Hs18S transcripts, respectively. Reactions were performed in hard-shell 384-well skirted PCR plates (Bio-Rad Laboratories, Hercules, Calif.) (10 μL/well) containing 3 μL diluted cell lysate, 5 μL one-step SYBR green master mix, 0.2 μl RT master mix and the following primers: Cp18S-1011F and Cp18S-1185R primer pair for Cp18S rRNA, and Hs18S-1F and Hs18S-1R primer pair for Hs18S rRNA. Hs18S levels were used as controls and for normalization.


Real-time qRT-PCR reactions were performed by a Bio-Rad CFX384 Touch Real-Time PCR Detection System. The reactions started with synthesizing cDNA at 50° C. for 20 min, followed by 5 min at 95° C. to denature RNA-cDNA hybrids and deactivate reverse transcriptase, and 40 two-temperature thermal cycles of PCR amplification at 95° C., 10 sec and 58° C., 30 sec. At the end of PCR amplification, melting curve analysis was performed between 65° C. to 95° C. At least 2 technical replicates were included in qRT-PCR reactions for each sample.


After qRT-PCR reactions were completed, amplification curves and melting peaks were examined to assess the quality and specificity of the reactions, followed by the computation of relative parasite loads based on the cycle threshold (CT) values of Cp18S and Hs18S transcripts as previously described. qRT-PCR was used to quantify parasite 18S rRNA and MIC50 was determined by the amount of compound resulting in 50% reduction of parasite growth compared to the control. The % inhibition (% inh @ (μM)) was calculated using a standard curve. No toxicity to the HCT-8 monolayers was observed.









TABLE 6







Cytyptosporidium inhibition Data









Compound
% inh @ (μM)
MIC50 (μM)












NZ-259
33% @10 uM  
>10


NZ-261
60% @10 uM  
~10


NZ-274
1.5% @10 uM  
NA


NZ-278

~0.25


NZ-289
88% @10 uM  



NZ-295
61% @10 uM  



NZ-302
60% @10 uM  
~10


NZ-310
83% @10 uM  



NZ-322
44% @0.9 uM 



NZ-327

0.007 to 0.022


NZ-331
36% @0.05 uM 



NZ-332

~2.5


NZ-364

0.12


NZ-365

0.025


NZ-366

0.05


NZ-366
85% @0.05 uM 
<0.05


(peak 1)




NZ-366
81% @0.05 uM 
<0.05


(peak 2)




NZ-368
63% @0.125 uM
<0.125


NZ-369

0.05 to 0.08


NZ-369

0.07


(peak 1)




NZ-369

~0.02


(peak 2)




NZ-370

0.05 to 0.06


NZ-371

0.15 to 0.23


NZ-372

0.085


NZ-386

0.05 to 0.3


NZ-387

~0.44


NZ-389

~1.1


NZ-395

~5


NZ-398
50% @10 uM   
~10


NZ-399

NA


NZ-400
67% @10 uM   
~10


NZ-401
3% @4 uM  
NA


NZ-403
63% @10 uM   
~10


NZ-409

~0.44


NZ-410
94% @10 uM   
2-10


NZ-411
75.7% @10 uM   



NZ-425

0.25 to 0.5


NZ-426

0.25 to 1


NZ-427
71% @0.25 uM 
<0.25


NZ-433

~2


NZ-438
43% @0.25 uM 
0.25 to 1


NZ-440
53% @10 uM  
~10


NZ-446

1-4


NZ-450

~2


NZ-458

NA


NZ-459

1


NZ-460
19% @5 uM   
NA


NZ-464

0.05 to 0.27


NZ-465
68% @0.25 uM 
<0.25


NZ-466

0.05 to 0.1


NZ-467

0.25-1


NZ-469
82% @0.25 uM 
<0.25


NZ-471
89% @4 uM   
1-4


NZ-472

~1


NZ-475

0.06


NZ-476

~0.5-1


NZ-477

0.05 to 0.17


NZ-479

~0.5-1


NZ-481

1-4


NZ-484

~1


NZ-485

1-4


NZ-489
68% @0.25 uM 
<0.25


NZ-490
60% @0.25 uM 
~0.25


NZ-496

0.25 to 1


NZ-500

~0.25


NZ-505

~0.25


NZ-516

0.016


NZ-518
32% @0.45 uM 
>0.45


NZ-521

0.25


NZ-522

0.022 to 0.045


NZ-528

0.45 to 0.9


NZ-529
42% @0.45 uM 
>0.45


NZ-530

~0.225


NZ-531




NZ-532

NA


NZ-533

NA


NZ-534

NA


NZ-535

0.225 to 0.45


NZ-536

NA


NZ-538

0.054


NZ-539

0.057


NZ-541

0.081


NZ-542

0.112


NZ-543

0.045


NZ-544

0.072


NZ-545

0.45


NZ-546
76% @0.225 uM
<0.225


NZ-547
96% @0.056 uM
<0.056


NZ-548
45% @0.112 uM
0.112 to 0.225


NZ-553

0.002


NZ-554

0.056 to 0.112


NZ-555
79% @0.056 uM
<0.056


NZ-556
64% @0.056 uM
~0.056


NZ-557

0.112 to 0.225


NZ-558

~0.056


NZ-561

0.04


NZ-562

~0.45


NZ-563

0.018


NZ-564

0.054


NZ-572

~0.5


NZ-573

~0.5


NZ-574

~1


NZ-575

~1


NZ-576

~0.03


NZ-577

~0.25


NZ-578

0.018





NA: not active






In general, compounds with a benzothiazole core inhibited CP better than those with a benzopyrazine core. In additions, benzothiazole cores substituted with 6-Cl inhibited CP better than benzothiazole cores with a 6-F or 5,6-di-f substitution. α-methyl substitution at phenyl acetic amides improved inhibition as compared to unsubstituted phenyl acetic amides, often decreasing MIC50 to less than 100 nM.


Example 3—Additional Crytosporidium, Toxicity, Dosing, and Other Testing

Cell Toxicity Testing



S. cerevisiae cytotoxicity and human fibroblast cytotoxicity testing was performed. The following compounds were not toxic at concentrations at or above 100 μM in both S. cerevisiae cytotoxicity and human fibroblast cytotoxicity testing: NZ-251, NZ-274, NZ-287, NZ-289, NZ-290, NZ-293, NZ-294, NZ-295, NZ-296, NZ-298, NZ-299, NZ-300, NZ-301, NZ-302, NZ-304, NZ-305, NZ-306, NZ-307, NZ-308, NZ-309, NZ-310, NZ-311, NZ-312, NZ-313, NZ-314, NZ-315, NZ-316, NZ-317, NZ-318, NZ-319, NZ-320, NZ-321, NZ-322, NZ-323, NZ-325, NZ-326, NZ-327, NZ-328, NZ-329, NZ-330, NZ-331, NZ-332, NZ-334, NZ-335, NZ-337. NZ-361, NZ-362, NZ-363, NZ-364, NZ-369, NZ-370, NZ-371. NZ-373, NZ-374, NZ-376, NZ-377, NZ-378, NZ-379, NZ-380, NZ-381, NZ-383, NZ-385, NZ-386, NZ-387, NZ-388, NZ-389, NZ-390, NZ-391, NZ-392, NZ-393, NZ-394, NZ-395, NZ-396, NZ-397, NZ-398, NZ-399, NZ-400, NZ-401, NZ-402, NZ-403, NZ-404, NZ405, NZ-406, NZ-407, NZ-408, NZ-409, NZ-410, NZ-411, NZ-412, NZ-413, NZ-414, NZ-415, NZ-416, NZ-417, NZ-418, NZ-419, NZ-420, NZ-421, NZ-422, NZ-423, NZ-424, NZ-425, NZ-426, NZ-427, NZ-428, NZ-429, NZ-430, NZ-431, NZ-432, NZ-433, NZ-534, NZ-435, NZ-436, NZ-437, NZ-438, NZ-439, NZ-440, NZ-441, NZ-442, NZ-443, NZ-444, NZ-445, NZ-446, NZ-447, NZ-448, NZ449, NZ-450, NZ-451, NZ-452, NZ-453, NZ-454, NZ-455, NZ-456, NZ-457, NZ-458, NZ-459, NZ-460, NZ-461, NZ-462, NZ-463, NZ-464, NZ-465, NZ-466, NZ-467, NZ-468, NZ-469, NZ-470, NZ-471, NZ-472, NZ-473, NZ-474, NZ-475, NZ-476, NZ-477, NZ-478, NZ-479, NZ-480, NZ-481, NZ-481, NZ-482, NZ-483, NZ-484, NZ-485, NZ-486, NZ-487, NZ-488, NZ-489, NZ-490, NZ-491, NZ-492, NZ-493, NZ-494, NZ-495, NZ-496, NZ-497, NZ-498, NZ-499, NZ-500, NZ-501, NZ-502, NZ-503, NZ-504, NZ-505, NZ-506, NZ-507, NZ-508, NZ-509, NZ-510, NZ-511, NZ-512, NZ-513, NZ-514, NZ-515, NZ-516, NZ-517-NZ 578.


The following compounds were not toxic at concentrations at or above 100 μM in S. cerevisiae cytotoxicity testing: NZ-347, NZ-349, NZ-350, NZ-351, NZ-353, NZ-355, NZ-356, NZ-357, NZ-358, NZ-359, NZ-360, NZ-372.


The following compounds were not toxic at concentrations at or above 100 μM in human fibroblast cytotoxicity testing: NZ-303, NZ-338, NZ-341, NZ-342, NZ-343, NZ-345, NZ-346, NZ-368, NZ-365, NZ-382, fenoxaprop-p, fenoxaprop-p-ethyl.


The following compounds were not toxic at concentrations at or above 25 μM and at or below 50 μM in S. cerevisiae cytotoxicity testing: NZ-348, NZ-352, NZ-366, NZ-368.


The following compound was not toxic at concentrations at or above 25 μM and at or below 50 μM in human fibroblast cytotoxicity testing: NZ-366.


The following compounds were not toxic at concentrations at or above 50 μM and at or below 100 μM in S. cerevisiae cytotoxicity testing: NZ-336, NZ-354, NZ-365, NZ-382.


The following compound was not toxic at concentrations at or above 50 μM and at or below 100 μM in human fibroblast cytotoxicity testing: NZ-336.


A group of compounds found to be promising were subjected to further tests. These tests included an IL-12 mouse model test to determine compound efficacy, verification of MIC50 for CP, cytotoxicity test for fibroblasts and yeast to determine potential toxic effects, a Human ether-a-go-go-related gene (hERG) test to determine potential cardiotoxicity, an AMES test tp determine mutagenic potential, a Safety Screen 44 test to determine common negative off-target drug interastion (Eurofins Cerep, SA, France), a cytochrome P450 (CYP) test to determine potential liver toxicity, a maximum tolerated dose, test, a Pharmacokinetics (PK) test to determine fate of the substance administered to a living organism tests for plasma stability in human and mouse, to measure the degradation of compound in plasma MClint and HClint test to determine in vitro intrinsic clearance for Mouse and Human, and kinetic solubility and plasma protein binding tests in mouse and human. Results are presented in Table 7.









TABLE 7







Basic Efficacy, Toxicity, and Dosing Test Results


















Fibroblast
Yeast

MCLint,





Mouse
MIC50
Cytotox
Cytotox
hERG
HCLint
Kinetic




Model
(nM)
(IC50)
(IC50)
(Abbvie)
(mL/min/g
Sol.



Compound
(Mead)
(CP)
(uM)
(uM)
(uM)
liver)
(uM)
PPB


















NZ-366
DPI7 = 59%
50
48
80
2.4
MLM = 41
62
98.1%



@50 mg/kg




HLM = 7.9

(mice)


NZ-369
DPI7 = 70%
80
>100
>100
>30
MLM = 3.3
86
98.5%



@100 mg/kg




HLM = 0.69

(mice)


NZ-516
DPI7 = 94%
16
5.6
>100
2.7
MLM = 4.1
100




@50 mg/kg




HLM = 0.54




NZ-370

50-60
>100
>100
30
MLM =
40









HLM =




NZ-365

25
>100
>100
12
MLM = 10
28









HLM = 4.8




NZ-327

 7-22
>100
>100

MLM = 3.7
33
98.4%








HLM = 1.3

(mice)


NZ-538

54
>100
>100
7.3
MLM = 3.9










HLM = 0.7




NZ-539

57
>100
>100
>30
MLM = 4.4










HLM = 1.8




NZ-541

81
>100
>100
27
MLM = 6.3










HLM = 2.0




NZ-543

45
>100
>100
24.0
MLM = 2










HLM = 1.2




NZ-544

72
>100
>100
11.0
MLM = 3.3










HLM = 2.6




NZ-553

2
40
>100
11.0
MLM = 1.28
100
  99%








HLM = 0.87

(mice)


NZ-578

<30
>100









83%










@31 uM









Example 4: Efficacy of NZ-366 and NZ-369 in an Acute Cryptosporodosis Mouse Model

To investigate the relationship between anticryptosporidial activity and systemic exposure the plasma pharmacokinetics for NZ-369 were measured. Compound NZ-369 had excellent systemic pharmacokinetics, with the greatest values of Cmax and t1,2, for an overall area under the curve (AUC).


The pharmacokinetics of NZ-369 following single intravenous (IV) and oral administration (PO) at 3 and 10 mg free base/kg respectively to the female Balb/c mouse. PK parameters are presented in Table 8.









TABLE 8







PK Parameters for NZ-369












IV
PO















Cmax (ng/mL)

  2159



Tmax (hr)

   2



T1/2 (hr)
3.4




AUC0-24 (mg-min/mL)
452102
1186472



Clb (mL/min/kg)
6.6




Vdss
1.7




F (%)
78.8










The anticryptosporidial activity of the in vitro inhibitors was assessed in the IL-12 knockout mouse model that resembles the acute human disease (Ehigiator H N, Romagnoli P, Borgelt K, Fernandez M, McNair N, Secor W E, Mead J R. 2005. Mucosal cytokine and antigen-specific responses to Cryptosporidium parvum in IL-12p40 KO mice. Parasite Immunol. 27: 17-28; Campbell L D, Stewart J N, Mead J R. 2002. Susceptibility to Cryptosporidium parvum infections in cytokine- and chemokine-receptor knockout mice. J. Parasitol. 88:1014-1016). The protocol was approved by the Institutional Animal Care and Use Committees of Emory University, the AtlantaVAMedical Center, and Brandeis University. Mice (6 to 10 per group) were inoculated with 1,000 purified CP oocysts (Iowa isolate, from cattle). Treatment by gavage began 4 h postinfection with either vehicle (5% dimethyl sulfoxide (DMSO) in canola oil), 50-100 mg/kg compound, or 2,000 mg/kg paromomycin. Compounds were given for 7 days, and mice were sacrificed on day 8 (peak infection). Parasite load was quantified by fluorescence-activated cell sorting (FACS) assays for the presence of the oocysts in the feces at days 0, 4, and 7. Fecal pellets from individual mice were routinely collected daily and homogenized in adjusted volumes of 2.5% potassium dichromate. Samples were processed individually. Aliquots (200 ul) of vortexed samples were processed over microscale sucrose gradients as previously described (Arrowood M J, Hurd M R, Mead J R. 1995. A new method for evaluating experimental cryptosporidial parasite loads using immunofluorescent flowcytometry. J. Parasitol. 81:404-409). The oocyst-containing fraction was collected, washed, and treated with monoclonal antibody (OW5O-FITC) for 20 min. Samples were adjusted to 600 ul, and a portion (100 ul) was assayed with a 102-s sampling interval using logical gating of forward/side scatter and OW5O-FITC fluorescence signal on a Becton, Dickinson FACScan flow cytometer. Flow cytometry data were evaluated by analysis of variance (KaleidaGraph (Synergy Software, Reading Pa.); Microsoft Excel (Microsoft Corporation, Redmond, Wash.)).


NZ-366 (50 mg/kg) and NZ-369 (100 mg/kg) were administered via gavage in a single daily dose to IL-12 knockout mice that were infected with 1,000 CP oocysts. Additional control groups included those treated with single daily doses of vehicle, and paromomycin (Prm) (2,000 mg/kg), by oral gavage. Fecal oocysts were counted on day 7 post infection and these results demonstrated that the two compounds, NZ-366 and NZ-369, have anticryptosporidial activity in the acute IL-12 knockout mouse model of disease. Results are presented in FIG. 1. NZ-366 and NZ-369 were more effective than paromomycin, a current leading drug used to combat the parasite, when administered after a single dose, and equally as effective as paromomycin over the course of the study. As expected there was no overt toxicity noted in the mice. NZ-516, NZ-364, NX-475, and NZ-372 have also been shown to be effective in the same type of test.


Example 5: In Vivo Toxicity Evaluation of NZ-369

Compound toxicity was evaluated at 200 mg/kg of body weight in uninfected mice treated for 7 days (5 mice/group). Toxicity was assessed by weight loss and signs of distress (e.g., ruffled fur, hunched shoulders, and decreased appetite). No overt signs of toxicity were observed for any of the compounds. No significant changes in weight were observed between treated and vehicle control mice


Example 6: Calf Studies of NZ-369

New born calves are susceptible to CP infection. They can develop severe diarrhea like humans. Calves were inoculated with 5×107 CP oocysts/calf on day 0. Calves had diarrhea in both the groups at onset of dosing. Treatment was started on day 3. Calves were given NZ-369 @ 8.5 mg/kg every 12 hrs for 5 days. Fecal volume, urine volume, daily clinical evaluation, fecal consistency scores and weight gains were evaluated. Results for fecal volume are presented in FIG. 2. The treatment and control calves had about the same fecal volume for the first two days of treatment, then the treatment calves treated with NZ-369 shoed a marked reduction in fecal volume through day 8 post infection as compared to the control.


Greater urine output was seen in calves treated with NZ-369 than in control calves except on day 4 post-infection as shown in FIG. 3. Calves receiving NZ-369 also had higher clinical evaluation scores and greater improvement post-infection as shown in FIG. 4.


A lower fecal consistency score, as shown in FIG. 5, was observed in the NZ-369 treated calved compared with control calves on days 4-7 post infection, which demonstrates decreased diarrhea with NZ-369 therapy.


As shown in FIG. 6, calves treated with NZ-369 maintained their weight over the trial period compared to the control calf. Treatment calves actually gained a slight amount of weight compared to the control calf.


Example 7. Eimeriosis Testing in Chickens

Eimeriosis, often also referred to as coccidiosis, is the disease caused by Eimeria parasites resulting in severe mucosal damage, weight loss and sometimes even death. The disease is widespread and many species are found in poultry, livestock and small animals. Infections with Eimeria sp. confined to the distal ileum and/or the large bowel can often result in intermittent diarrhoea or even be asymptomatic. Infections may often involve the pyloric region of the gastric mucosa. Parasite forms displace the microvillus border and eventually lead to the loss of the mature surface epithelium. The rapid loss of surface epithelium causes marked shortening and fusion of the villi and lengthening of the crypts due to acceleration of cell division to compensate for the loss of cells. The combined loss of microvillus border and villus height diminishes the absorptive intestinal surface and reduces uptake of fluids, electrolytes and nutrients from the gut lumen.


The pharmacokinetics of NZ-369 was first investigated in in broiler chickens. 9 male broiler chicks age 14-21 days were used in two studies, with triplicate time points. In the first study, chicks received 1-20 mg per animal (57 mg/kg) in 500 μL of 10% DMSO, 90% Canola oil by gavage. In the second study, chick received 2-40 mg per animal (117 mg/kg) in 500 μL of 10% DMSO, 90% Canola oil by gavage.


3 male broiler chicks age 14-21 days were used a a third study with triplicate time points. These chicks in the third study received 3-40 mg per animal (125 mg/kg) in a 240 mg NZ-369 plus 400 g blended bird feed for two days per cohort. These chicks consumed the feed without prejudice, with most of it being eaten on day 1 such that dosing at 24 hours was 0.9823 μg/mL and at 48 hours it was 0.3646 μg/mL.


All chicks tolerated the dose well without any obvious signs of distress, morbidity, or mortality.


To determine the effects of NZ-366 and NZ-369 on coccidiosis in broiler chicks, experimental animals were divided into 4 treatment groups: Unmedicated (UNM), those receiving the experimental compounds (366 and 369); and those receiving Salinomycin (SAL).


Compounds NZ-366 and NZ-369 were administered at a dose of 20 mg/bird by oral gavage daily beginning from 11 days post-hatching. Salinomycin was administered in-feed beginning from 10 days post-hatching. Broilers were administered a 1000× dose of coccidiosis vaccine by oral gavage at 13 days post-hatching.


Results for duodenal lesions, which result from coccidiosis, are presented in FIG. 7. Lesion scores in the duodenum were lower in broiler chicks administered NZ-369 as compared to unmedicated broilers and those administered NZ-366. Additionally, reduction of lesion scores by NZ-369 was comparable to broiler chicks administered Salinomycin. Treatment with NZ-369 appeared to reduce lesion scores in the duodenum of broiler chicks to a level comparable to treatment with Salinomycin. The reduction in lesion scores suggests the efficacy of NZ-369 and similar compounds as anticoccidials for use in broiler chickens. In FIG. 7, lesion scores expressed as the mean±SEM from 24 broilers per treatment. Different letters indicate significantly different means as determined using Duncan's multiple range test (P<0.05)


Although only exemplary embodiments of the invention are specifically described above, it will be appreciated that modifications and variations of these examples are possible without departing from the spirit and intended scope of the invention. For example, various specific formulations including components not listed herein and specific methods of administering such formulations can be developed using the ordinary skill in the art. Numeric amounts expressed herein will be understood by one of ordinary skill in the art to include amounts that are approximately or about those expressed. Furthermore, the term “or” as used herein is not intended to express exclusive options (either/or) unless the context specifically indicates that exclusivity is required; rather “or” is intended to be inclusive (and/or).

Claims
  • 1. A method of sensitizing a parasite to a drug comprising administering an arylphenoxypropionate derivative, an aryloxyphenoxyacetate derivative, an aryloxyphenylacetate derivative, one or more substituted quinols, or a pharmaceutically acceptable salt, hydrate, or prodrug thereof, or a combination thereof to the parasite in an amount and for a time sufficient to sensitize the parasite to the drug.
  • 2-33. (canceled)
Provisional Applications (1)
Number Date Country
62210224 Aug 2015 US
Continuations (1)
Number Date Country
Parent 15754244 Feb 2018 US
Child 16720160 US