Compositions and methods for fumonisin detoxification

Abstract
Compositions and methods for the complete detoxification of fumonisin and fumonisin degradation products are provided. Particularly, nucleotide sequences corresponding to the detoxification enzymes are provided. The sequences find use in preparing expression cassettes for the transformation of a broad variety of host cells and organisms.
Description




FIELD OF THE INVENTION




The invention relates to compositions and methods for detoxification or degradation of fumonisins and related toxins. The method has broad application in agricultural biotechnology and crop agriculture and in the improvement of food grain quality.




BACKGROUND OF THE INVENTION




Fungal diseases are common problems in crop agriculture. Many strides have been made against plant diseases as exemplified by the use of hybrid plants, pesticides, and improved agricultural practices. However, as any grower or home gardener can attest, the problems of fungal plant disease continue to cause difficulties in plant cultivation. Thus, there is a continuing need for new methods and materials for solving the problems caused by fungal diseases of plants.




These problems can be met through a variety of approaches. For example, the infectious organisms can be controlled through the use of agents that are selectively biocidal for the pathogens. Another method is interference with the mechanism by which the pathogen invades the host crop plant. Yet another method, in the case of pathogens that cause crop losses, is interference with the mechanism by which the pathogen causes injury to the host crop plant. In the case of pathogens that produce toxins that are undesirable to mammals or other animals that feed on the crop plants, interference with toxin production, storage, or activity can be beneficial.




Since their discovery and structural elucidation in 1988 (Bezuidenhout et al. (1988)


Journal Chem. Soc., Chem. Commun.


1988:743-745), fumonisins have been recognized as a potentially serious problem in maize-fed livestock. They are linked to several animal toxicoses including leukoencephalomalacia (Marasas et al. (1988)


Onderstepoort J. Vet. Res.


55:197-204; Wilson et al. (1990)


American Association of Veterinary Laboratory Diagnosticians: Abstracts


33


rd Annual Meeting,


Denver, Colo., Madison, Wis., USA) and porcine pulmonary edema (Colvin et al. (1992)


Mycopathologia


117:79-82). Fumonisins are also suspected carcinogens (Geary et al. (1971)


Coord. Chem. Rev.


7:81; Gelderblom et al. (1991)


Carcinogenesis


12:1247-1251; Gelderblom et al. (1992)


Carcinogenesis


13:433-437). Fusarium isolates in section Liseola produce fumonisins in culture at levels from 2 to >4000 ppm (Leslie et al. (1992)


Phytopathology


82:341-345). Isolates from maize (predominantly mating population A) are among the highest producers of fumonisin (Leslie et al., supra). Fumonisin levels detected in field-grown maize have fluctuated widely depending on location and growing season, but both preharvest and post-harvest surveys of field maize have indicated that the potential for high levels of fumonisins exists (Murphy et al. (1993)


J. Agr. Food Chem.


41:263-266). Surveys of food and feed products have also detected fumonisin (Holcomb et al. (1993)


J. Agr. Food Chem.


41:764-767; Hopmans et al. (1993)


J. Agr. Food Chem.


41:1655-1658); Sydenham et al. (1991)


J. Agr. Food Chem.


39:2014-2018). The etiology of Fusarium ear mold is poorly understood, although physical damage to the ear and certain environmental conditions can contribute to its occurrence (Nelson et al. (1992)


Mycopathologia


117:29-36). Fusarium can be isolated from most field grown maize, even when no visible mold is present. The relationship between seedling infection and stalk and ear diseases caused by Fusarium is not clear. Genetic resistance to visible kernel mold has been identified (Gendloff et al. (1986)


Phytopathology


76:684-688; Holley et al. (1989)


Plant Dis.


73:578-580), but the relationship between visible mold and fumonisin production has yet to be elucidated.




Fumonisins have been shown in in vitro mammalian cell studies to inhibit sphingolipid biosynthesis through inhibition of the enzyme sphingosine N-acetyl transferase, resulting in the accumulation of the precursor sphinganine (Norred et al. (1992)


Mycopathologia


117:73-78; Wang et al. (1991)


Biol. Chem.


266:14486; Yoo et al. (1992)


Toxicol. Appl. Pharmacol.


114:9-15; Nelson et al. (1993)


Annu. Rev. Phytpathol.


31:233-252). It is likely that inhibition of this pathway accounts for at least some of fumonisin's toxicity, and support for this comes from measures of sphinganine:sphingosine ratios in animals fed purified fumonisin (Wang et al. (1992)


J. Nutr.


122:1706-1716). Fumonisins also affect plant cell growth (Abbas et al. (1992)


Weed Technol.


6:548-552; Van Asch et al. (1992)


Phytopathology


82:1330-1332; Vesonder et al. (1992)


Arch. Environ. Contam. Toxicol.


23:464-467). Kuti et al. (1993) (Abstract, Annual Meeting American Phytopathological Society, Memphis, Tenn.: APS Press) reported on the ability of exogenously added fumonisins to accelerate disease development and increase sporulation of


Fusarium moniliform


and


F. oxysporum


on tomato.




Enzymes that degrade the fungal toxin fumonisin to the compound AP1 have been identified in U.S. Pat. No. 5,716,820 and pending U.S. patent application Ser. Nos. 08/888,949 and 08/888,950, both filed Jul. 7, 1997, and hereby incorporated by reference. Plants expressing a fumonisin esterase enzyme, infected by fumonisin producing fungus, and tested for fumonisin and AP1 were found to have low levels of fumonisin but high levels of AP1. AP1 is less toxic than fumonisin to plants and probably also animals, but contamination with AP1 is still a concern. The best result would be complete detoxification of fumonisin to a non-toxic form. Therefore additional enzymes capable of degrading fumonisin and fumonisin catabolic products are necessary for the complete detoxification of fumonisin.




SUMMARY OF THE INVENTION




A fumonisin detoxification gene cluster is provided. Particularly, the nucleotide sequence for the cluster from Bacterium 2412.1 (American Type Culture Collection Deposit Number 55552) is provided. At least twelve structural genes and three regulatory gene are provided. The sequences represent a catabolic pathway for fumonisins and fumonisin-like compounds.




Compositions and methods for catabolism and detoxification of fumonisin, fumonisin-related toxins, and fumonisin-degradation products are provided. In particular, proteins involved in catabolism and transmembrane transport of fumonisin and fumonisin catabolic products are provided. Nucleotide sequences corresponding to the proteins are also included. The compositions are useful in the complete detoxification and degradation of fumonisin. The nucleotide sequences can be used in expression cassettes for transformation of host cells of interest. The compositions and methods of the invention provide a catabolic pathway for fumonisin. Thus, organisms can be genetically modified to provide for the complete catabolism and detoxification of fumonisin and fumonisin-related toxins.




In particular, expression cassettes for expression of the sequences in plants and other organisms are provided as well as transformed plants and other host cells.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

sets forth the proposed pathway for fumonisin degradation by Bacterium 2412.1.





FIG. 2

illustrates the overlap of the individual lambda clones and cosmids which were sequenced to reconstruct the fumonisin catabolic gene cluster.





FIG. 3

provides a map of the open reading frames in the fumonisin catabolic gene cluster of bacterium 2412.1





FIG. 4

schematically illustrates a plasmid vector comprising the gene for one of the fumonisin degradative enzymes of the invention operably linked to the ubiquitin promoter.











DETAILED DESCRIPTION OF THE INVENTION




A catabolic pathway for detoxification and degradation of fumonisin is provided. Particularly, enzymes involved in the degradation of fumonisin from Bacterium 2412.1 and nucleotide sequences encoding such enzymes are disclosed. Such enzymes and nucleotide sequences find use in the breakdown of fumonisin as well as fumonisin-degradation products. In this regard, enzymes can be synthesized and utilized or, alternatively, organisms can be transformed with the DNA sequences of the invention and used to detoxify fumonisin.




A proposed pathway for the degradation of fumonisin by Bacterium 2412.1 is provided in FIG.


1


. The present invention provides enzymes and nucleotide sequences encoding the enzymes involved in this degradation pathway for fumonisin. In particular, the present invention provides for isolated nucleic acid molecules comprising the fumonisin catabolic gene cluster for Bacterium 2412.1 set forth in SEQ ID NO: 1, or the DNA sequences obtained from the overlapping clones deposited with the American Type Culture Collection and assigned Accession Numbers PTA-296, PTA-297, and PTA-298. By “DNA sequence obtained from the overlapping clones” is intended that the DNA sequence of the catabolic gene cluster can be obtained by sequencing 18 individual clones which together comprise the entire fumonisin catabolic cluster.




Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid molecule set forth in SEQ ID NO:1, the nucleic acid molecule deposited as overlapping clones with the American Type Culture Collection and assigned Accession Numbers PTA-296, PTA-297, and PTA-298, and fragments and variants thereof.




Eighteen plasmids containing overlapping clones were deposited with the American Type Culture Collection, Manassas, Va., and assigned Accession Numbers PTA-298, PTA-296, and PTA-297 (strain designations SuperCos





8.5





1, BAM_PL1, and BAM_PL2, respectively). It is noted, however, that the 18 clones contain common sequences at the regions where they overlap. One of skill in the art by sequencing the clones and aligning the overlap may obtain the entire sequence of the fumonisin catabolic gene cluster. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. These deposits were made merely as a convenience for those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. § 112.




In addition, the present invention provides for isolated nucleic acid molecules comprising nucleotide sequences encoding the amino acid sequences of a regulatory protein (fccJ) (SEQ ID NO: 21); a carboxylesterase (fccA) (SEQ ID NO: 3), a flavin monooxygenase (fccC) (SEQ ID NO: 7); an aldehyde dehydrogenase (fccD) (SEQ ID NO: 9); an alcohol dehydrogenase (fccE) (SEQ ID NO: 11); a permease (fccI) (SEQ ID NO: 19); a CoA Ligase (fccF) (SEQ ID NO: 13); an acetohydroxyacid synthase (fccG) (SEQ ID NO: 15); a vitamin B12 transporter (fccH) (SEQ ID NO: 17); a citrate transport homolog (fccB) (SEQ ID NO: 5); a fumarate reductase (fccK) (SEQ ID NO: 23), a TonB dependent receptor (fccL) (SEQ ID NO: 25); a carbohydrate regulatory gene (fccO) (SEQ ID NO: 31); a citrate utilization B protein (fccN) (SEQ ID NO: 29); a possible flavoenzyme (fccP) (SEQ ID NO: 33); a leucine responsive regulatory protein (fccQ) (SEQ ID NO: 35); a possible N-methyl transferase (fccM) (SEQ ID NO: 27); fccR (SEQ ID NO: 37); fccS (SEQ ID NO: 39); and fccT (SEQ ID NO: 41).




Further provided are polypeptides having an amino acid sequence encoded by a nucleic acid molecule described herein, for example those set forth in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, and 40. The nucleotide sequences of the invention can be used to isolate related sequences that are also encompassed by the present invention.




The invention encompasses isolated or substantially purified nucleic acid or protein compositions. An “isolated” or “purified” nucleic acid molecule or protein, or biologically active portion thereof, is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Preferably, an “isolated” nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, 5%, (by dry weight) of contaminating protein. When the protein of the invention or biologically active portion thereof is recombinantly produced, preferably culture medium represents less than about 30%, 20%, 10%, or 5% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.




The isolated material optionally comprises material not found with the material in its natural environment or, if the material is in its natural environment, the material has been synthetically (non-naturally) altered by deliberate human intervention to a composition and/or placed at a locus in the cell (e.g., genome or subcellular organelle) not native to a material found in that environment. The alteration to yield the synthetic material can be performed on the material within or removed from its natural state. For example, a naturally occurring nucleic acid becomes an isolated nucleic acid if it is altered, or if it is transcribed from DNA that has been altered, by non-natural, synthetic (i.e., “man-made”) methods performed within the cell from which it originates. See, e.g., Compounds and Methods for Site Directed Mutagenesis in Eukaryotic Cells, Kmiec, U.S. Pat. No. 5,565,350; In vivo Homologous Sequence Targeting in Eukaryotic Cells; Zarling et al., PCT/US93/03868. Likewise, a naturally occurring nucleic acid (e.g., a promoter) becomes isolated if it is introduced by non-naturally occurring means to a locus of the genome not native to that nucleic acid. Nucleic acids that are “isolated” as defined herein are also referred to as “heterologous” nucleic acids.




A carboxylesterase and amine oxidase from


Exophiala spinifera


have been previously described in U.S. Pat. No. 5,716,820 and pending U.S. patent application Ser. Nos. 08/888,949 and 08/888,950. Such disclosures are herein incorporated by reference.




The sequences of the invention can be used in combination with those previously disclosed in U.S. provisional application numbers 60/092,936 and 60/135,391 herein incorporated by reference. The enzymes and nucleotide sequences of the present invention provide a means for catabolism of fumonisin and of the fumonisin-degradation products.




The practice of the present invention will employ, unless otherwise indicated, conventional techniques of botany, microbiology, tissue culture, molecular biology, chemistry, biochemistry, and recombinant DNA technology, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Langenheim and Thimann (1982)


Botany: Plant Biology and Its Relation to Human Affairs


(John Wiley); Vasil, ed. (1984)


Cell Culture and Somatic Cell Genetics of Plants,


Vol. 1; Stanier et al. (1986)


The Microbial World


(5th ed., Prentice-Hall); Dhringra and Sinclair (1985)


Basic Plant Pathology Methods


(CRC Press); Maniatis et al. (1982)


Molecular Cloning: A Laboratory Manual


(Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York); Glover, ed. (1985)


DNA Cloning, Vols. I and II;


Gait, ed. (1984)


Oligonucleotide Synthesis;


Hames and Higgins, eds. (1984)


Nucleic Acid Hybridization;


and the series


Methods in Enzymology


(Colowick and Kaplan, eds., Academic Press, Inc.).




In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.




By “microbe” is meant any microorganism (including both eukaryotic and prokaryotic microorganisms), such as fungi, yeast, bacteria, actinomycetes, algae, and protozoa, as well as other unicellular structures.




A “fumonisin-producing microbe” is any microbe capable of producing the mycotoxin fumonisin or analogues thereof. Such microbes are generally members of the fungal genus Fusarium, as well as recombinantly derived organisms that have been genetically altered to enable them to produce fumonisin or analogues thereof.




By “degrading or catabolizing fumonisin” is meant any modification to the fumonisin or AP1 molecule that causes a decrease or loss in its toxic activity. Such a change can comprise cleavage of any of the various bonds, oxidation, reduction, the addition or deletion of a chemical moiety, or any other change that affects the activity of the molecule. In a preferred embodiment, the modification includes hydrolysis of the two ester linkages in the molecule as a first step and then oxidative deamination. Furthermore, chemically altered fumonisin can be isolated from cultures of microbes that produce an enzyme of this invention, such as by growing the organisms in media containing radioactively-labeled fumonisin, tracing the label, and isolating the degraded toxin for further study. The degraded fumonisin can be compared to the active compound for its phytotoxicity or mammalian toxicity in known sensitive species, such as porcines and equines. Such toxicity assays are known in the art. For example, in plants a whole leaf bioassay can be used in which solutions of the active and inactive compound are applied to the leaves of sensitive plants. The leaves may be treated in situ or, alternatively, excised leaves may be used. The relative toxicity of the compounds can be estimated by grading the ensuing damage to the plant tissues and by measuring the size of lesions formed within a given time period. Other known assays can be performed at the cellular level, employing standard tissue culture methodologies e.g., using cell suspension cultures. For purposes of the invention, the fumonisin or fumonisin degradation products will be degraded to at least about 50% to about 10% or less of the original toxicity, preferably about 30% to about 5% or less, more preferably about 20% to about 1% or less.




By “fumonisin esterase” is meant any enzyme capable of hydrolysis of the ester linkages in fumonisin. Two examples of such enzymes are ESP1 and BEST1 found in U.S. Pat. No. 5,716,820 and pending U.S. application Ser. Nos. 08/888,949 and 08/888,950, both filed Jul. 7, 1997.




By “structurally related mycotoxin” is meant any mycotoxin having a chemical structure related to a fumonisin such as fumonisin B1, for example AAL toxin, fumonisin B2, fumonisin B3, fumonisin B4, fumonisin C1, fumonisin A1 and A2, and their analogues, as well as other mycotoxins having similar chemical structures that would be expected to be detoxified by activity of the fumonisin degradative enzymes elaborated by


Exophiala spinifera,


American Type Culture Collection Accession No. 74269,


Rhinocladiella atrovirens,


American Type Culture Collection Accession No. 74270, or the bacterium of American Type Culture Collection Accession No. 55552.




By “amplified” is meant the construction of multiple copies of a nucleic acid sequence or multiple copies complementary to the nucleic acid sequence using at least one of the nucleic acid sequences as a template. Amplification systems include the polymerase chain reaction (PCR) system, ligase chain reaction (LCR) system, nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario), Q-Beta Replicase systems, transcription-based amplification system (TAS), and strand displacement amplification (SDA). See, e.g., Persing et al., ed. (1993)


Diagnostic Molecular Microbiology: Principles and Applications,


(American Society for Microbiology, Washington, D.C.). The product of amplification is termed an amplicon.




Fragments and variants of the disclosed nucleotide sequences and proteins encoded thereby are also encompassed by the present invention. By “fragment” is intended a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence degrade or catabolize fumonisin. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes generally do not encode protein fragments retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence encoding the proteins of the invention.




A fragment of a fumonisin-degrading nucleotide sequence that encodes a biologically active portion of a fumonisin-degrading protein of the invention will encode at least 15, 20, 25, 30, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, or 950 contiguous amino acids, or up to the total number of amino acids present in a full-length fumonisin-degrading protein of the invention. By fragment it is also intended any nucleotide sequence of the fumonisin-catabolic gene cluster that encodes a biologically active portion of a fumonisin-degrading protein. Fragments of a fumonisin-degrading nucleotide sequence that are useful as hybridization probes for PCR primers generally need not encode a biologically active portion of a fumonisin-degrading protein.




Thus, a fragment of a fumonisin-degrading nucleotide sequence or a fragment of the fumonisin-catabolic gene cluster may encode a biologically active portion of a fumonisin-degrading protein or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of a fumonisin-degrading protein can be prepared by isolating a portion of one of the fumonisin-degrading nucleotide sequences or a portion of the fumonisin-catabolic gene cluster of the invention, expressing the encoded portion of the fumonisin-degrading protein (e.g., by recombinant expression in vitro), and assessing the activity of the encoded portion of the fumonisin-degrading protein. Nucleic acid molecules that are fragments of a fumonisin-degrading nucleotide sequence comprise at least 15, 20, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,100, 2,200, 2,300, 2,400, 2,500, 2,600, 2,700, 2,800 nucleotides, or up to the number of nucleotides present in a fumonisin-degrading nucleotide sequence or up to the number of nucleotides present in the full-length fumonisin catabolic gene cluster disclosed herein.




By “variants” is intended substantially similar sequences. For nucleotide sequences conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the fumonisin-degrading polypeptides of the invention. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis but which still encode a fumonisin-degrading protein of the invention. Generally, nucleotide sequence variants of the invention will have at least 40%, 50%, 60%, 70%, generally, 80%, preferably 85%, 90%, up to 95%, 98% sequence identity to its respective native nucleotide sequence.




By “variant” protein is intended a protein derived from the native protein by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result from, for example, genetic polymorphism or from human manipulation.




The proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the fumonisin-degrading proteins can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Pat. No. 4,873,192; Walker and Gaastra, eds. (1 983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferred.




Thus, the genes and nucleotide sequences of the invention include both the naturally occurring sequences as well as mutant forms. Likewise, the proteins of the invention encompass both naturally occurring proteins as well as variations and modified forms thereof. Such variants will continue to possess the desired ability to degrade fumonisin and fumonisin-like compounds. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of the reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444.




The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. That is, the activity can be evaluated by a decrease or loss in the toxic activity of fumonisin or AP1.




Variant nucleotide sequences and proteins also encompass sequences and proteins derived from a mutagenic and recombinogenic procedure such as DNA shuffling. With such a procedure, one or more different fumonisin-degrading protein coding sequences can be manipulated to create a new fumonisin-degrading protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the fumonisin-degrading genes of the invention and other known fumonisin-degrading genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased K


m


in the case of an enzyme. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458.




When the nucleic acid is prepared or altered synthetically, advantage can be taken of known codon preferences of the intended host where the nucleic acid is to be expressed. For example, although nucleic acid sequences of the present invention may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledonous plants or dicotyledonous plants as these preferences have been shown to differ (Murray et al. (1989)


Nucl. Acids Res.


17:477-498). Thus, the maize preferred codon for a particular amino acid may be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants are listed in Table 4 of Murray et al., supra.




As used herein, “heterologous” in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous structural gene is from a species different from that from which the structural gene was derived, or, if from the same species, one or both are substantially modified from their original form. A heterologous protein may originate from a foreign species or, if from the same species, is substantially modified from its original form by deliberate human intervention.




By “host cell” is meant a cell that contains a vector and supports the replication and/or expression of the expression vector. Host cells may be prokaryotic cells such as


E. coli,


or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells. Preferably, host cells are monocotyledonous or dicotyledonous plant cells, including but not limited to maize, sorghum, sunflower, soybean, wheat, alfalfa, rice, cotton, and tomato. A particularly preferred monocotyledonous host cell is a maize host cell.




The term “hybridization complex” includes reference to a duplex nucleic acid structure formed by two single-stranded nucleic acid sequences selectively hybridized with each other.




As used herein, “operably linked” includes reference to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame.




As used herein, “polynucleotide” includes reference to a deoxyribopolynucleotide, ribopolynucleotide, or analogues thereof that have the essential nature of a natural ribonucleotide in that they hybridize, under stringent hybridization conditions, to substantially the same nucleotide sequence as naturally occurring nucleotides and/or allow translation into the same amino acid(s) as the naturally occurring nucleotide(s). A polynucleotide can be full-length or a subsequence of a native or heterologous structural or regulatory gene. Unless otherwise indicated, the term includes reference to the specified sequence as well as the complementary sequence thereof. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides as the term is used herein. It will be appreciated that a great variety of modifications have been made to DNA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide as it is employed herein embraces such chemically, enzymatically, or metabolically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including inter alia, simple and complex cells.




As used herein, “promoter” includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria that comprise genes expressed in plant cells, such as Agrobacterium or Rhizobium. Examples are promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, seeds, fibers, xylem vessels, tracheids, or sclerenchyma. Such promoters are referred to as “tissue preferred”. A “cell type” specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An “inducible” promoter is a promoter that is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions or the presence of light. Another type of promoter is a developmentally regulated promoter. For example, a promoter that drives expression during pollen development. Tissue-preferred, cell type specific, developmentally regulated, and inducible promoters constitute the class of “non-constitutive” promoters. A “constitutive” promoter is a promoter that is active under most environmental conditions. Constitutive promoters are known in the art and include, for example, 35S promoter (Meyer et al. (1997)


J. Gen. Virol.


78:3147-3151); ubiquitin; as well as those disclosed in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142.




As used herein, “recombinant” includes reference to a cell or vector that has been modified by the introduction of a heterologous nucleic acid or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, underexpressed, or not expressed at all as a result of deliberate human intervention. The term “recombinant” as used herein does not encompass the alteration of the cell or vector by naturally occurring events (e.g., spontaneous mutation, natural transformation/transduction/transposition) such as those occurring without deliberate human intervention.




As used herein, a “recombinant expression cassette” is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus, or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid to be transcribed, and a promoter.




The term “selectively hybridizes” includes reference to hybridization, under stringent hybridization conditions, of a nucleic acid sequence to a specified nucleic acid target sequence to a detectably greater degree (e.g., at least 2-fold over background) than its hybridization to non-target nucleic acid sequences and to the substantial exclusion of non-target nucleic acids. Selectively hybridizing sequences typically have about at least 40 to 80% sequence identity, preferably 90% sequence identity, and most preferably 100% sequence identity (i.e., complementary) with each other.




The nucleotide sequences of the invention can be used to isolate corresponding sequences from other organisms. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire fumonisin-degrading coding sequences or to the catabolic gene cluster sequence set forth herein or to fragments thereof are encompassed by the present invention.




In a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989)


Molecular Cloning: A Laboratory Manual


(2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990)


PCR Protocols: A Guide to Methods and Applications


(Academic Press, New York); Innis and Gelfand, eds. (1995)


PCR Strategies


(Academic Press, New York); and Innis and Gelfand, eds. (1999)


PCR Methods Manual


(Academic Press, New York). Known methods of PCR include, but are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.




In hybridization techniques, all or part of a known nucleotide sequence is used as a probe that selectively hybridizes to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as


32


P, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the fumonisin-degrading coding sequences of the invention. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989)


Molecular Cloning: A Laboratory Manual


(2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).




For example, an entire fumonisin-degrading nucleotide sequence or the entire fumonisin catabolic gene cluster sequence disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding fumonisin-degrading sequences and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among fumonisin-degrading sequences and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes may be used to amplify corresponding fumonisin-degrading sequences from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired plant organism or as a diagnostic assay to determine the presence of coding sequences in a plant an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989)


Molecular Cloning: A Laboratory Manual


(2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).




Hybridization of such sequences may be carried out under stringent conditions. By “stringent conditions” or “stringent hybridization conditions” is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.




Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2× SSC (20× SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1× SSC at 55 to 60° C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1× SSC at 60 to 65° C.




Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA—DNA hybrids, the T


m


can be approximated from the equation of Meinkoth and Wahl (1984)


Anal. Biochem.


138:267-284: T


m


=81.5° C.+16.6 (log M)+0.41 (% GC)−0.61 (% form)−500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T


m


is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T


m


is reduced by about 1° C. for each 1% of mismatching; thus, T


m


, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with ≧90% identity are sought, the T


m


can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (T


m


) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4° C. lower than the thermal melting point (T


m


); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10° C. lower than the thermal melting point (T


m


); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20° C. lower than the thermal melting point (T


m


). Using the equation, hybridization and wash compositions, and desired T


m


, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T


m


of less than 45° C. (aqueous solution) or 32° C. (formamide solution), it is preferred to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993)


Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes,


Part I, Chapter 2 (Elsevier, N.Y.); and Ausubel et al., eds. (1995)


Current Protocols in Molecular Biology,


Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989)


Molecular Cloning: A Laboratory Manual


(2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.).




In general, sequences that encode for a fumonisin-degrading protein and hybridize to the fumonisin-degrading sequences or the sequences of the fumonisin catabolic gene cluster disclosed herein will be at least 40% to 50% homologous, about 60% to 70% homologous, and even about 80%, 85%, 90%, 95% to 98% homologous or more with the disclosed sequences. That is, the sequence similarity of sequences may range, sharing at least about 40% to 50%, about 60% to 70%, and even about 80%, 85%, 90%, 95% to 98% sequence similarity.




The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) “reference sequence”, (b) “comparison window”, (c) “sequence identity”, (d) “percentage of sequence identity”, and (e) “substantial identity”.




(a) As used herein, “reference sequence” is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.




(b) As used herein, “comparison window” makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.




Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith et al. (1981)


Adv. Appl. Math.


2:482; by the homology alignment algorithm of Needleman et al. ( 1970)


J. Mol. Biol.


48:443; by the search for similarity method of Pearson et al. (1988)


Proc. Natl. Acad. Sci.


85:2444; by computerized implementations of these algorithms, including, but not limited to: CLUSTAL in the PC/Gene program by Intelligenetics, Mountain View, Calif.; GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USA; the CLUSTAL program is well described by Higgins et al. (1988)


Gene


73:237-244 (1988); Higgins et al. (1989)


CABIOS


5:151-153; Corpet et al. (1988)


Nucleic Acids Res.


16:10881-90; Huang et al. (1992)


Computer Applications in the Biosciences


8:155-65, and Person et al. (1994)


Meth. Mol. Biol.


24:307-331; preferred computer alignment methods also include the BLASTP, BLASTN, and BLASTX algorithms (see Altschul et al. (1990)


J. Mol. Biol.


215:403-410). Alignment is also often performed by inspection and manual alignment.




(c) As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity”. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).




(d) As used herein, “percentage of sequence identity” means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.




(e)(i) The term “substantial identity” of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 60%, more preferably at least 70%, 80%, 90%, and most preferably at least 95%.




Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (T


m


) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1° C. to about 20° C., depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.




(e)(ii) The term “substantial identity” in the context of a peptide indicates that a peptide comprises a sequence with at least 70% sequence identity to a reference sequence, preferably 80%, more preferably 85%, most preferably at least 90% or 95% sequence identity to the reference sequence over a specified comparison window. Preferably, optimal alignment is conducted using the homology alignment algorithm of Needleman et al. (1970)


J. Mol. Biol.


48:443. An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Peptides that are “substantially similar” share sequences as noted above except that residue positions that are not identical may differ by conservative amino acid changes.




As indicated, the enzymes and nucleotide sequences encoding such enzymes are involved in the degradation of fumonisin and fumonisin-like compounds. Such enzymes and nucleotide sequences can be utilized alone or in combination to engineer microbes or other organisms to completely metabolize fumonisin and resist its toxic effects. That is, at least one of the genes of the invention can be used to transform a host cell of interest. Alternatively, the entire fumonisin catabolic cluster can be cloned into the host cell. Methods for cloning gene clusters into a plasmid, a cosmid or a Bac are known in the art. The cloned cluster can then be moved to the host cell of interest, generally another microorganism or yeast cell. Under suitable induction conditions, the pathway will be activated and fumonisin degraded. See, for example, Prieto et al. (1996)


J. Bacteriol.


178(1):111-120, herein incorporated by reference.




Fumonisin is produced in the intercellular spaces (apoplast) of Fusarium-infected maize cells. Thus, the apoplast is the preferred location for esterase and possibly other catabolic enzymes. It is possible that some fumonisin could diffuse or be transported into the maize cells before it is broken down by the apoplastic enzymes and may escape catabolism. Thus, it may be beneficial to express a fumonisin pump in such cells. In this manner, any fumonisin entering the cell will be pumped out and reexposed to catabolic enzymes. Similar toxin pumps exist in other toxin-producing fungi that show resistance to toxins or antibiotics.




The enzymes from Bacterium 2412.1 involved in the degradation of fumonisin are provided in Table 1. Additionally, they are discussed briefly below.

















TABLE 1












Predicted ORF








Gene




Nucleotides




Frame




Size




BLASTP Homology




Functional Class











fccA




13803 to 15389




+3




529 aa




Esterase




Metabolism






fccB




15627 to 16913




+3




429 aa




Citrate Transport




Transport






fccC




19074 to 20747




+3




558 aa




Flavin monoox




Metabolism






fccD




11698 to 10295




−3




468 aa




Aldehyde dehydrogenase




Metabolism






fccE




6435 to 7370




+3




312 aa




Alcohol dehydrogenase




Metabolism






fccF




7814 to 9187




+2




458 aa




Co-A Ligase




Metabolism






fccG




13474 to 11774




−2




567 aa




Acetohydroxy acid synthase




Metabolism






fccH




24222 to 21361




−3




954 aa




B12 Transport




Transport






fccI




17189 to 18487




−2




433 aa




Permease




Transport






fccJ




9317 to 10225




+2




303 aa




Cat Transcription Factor




Regulatory






fccK




3723 to 5111




+3




463 aa




Aspartae Oxidase (Fumarate




Metabolism










Reductase)






fccL




979 to 3381




+1




801 aa




TonB Dependent Receptor




Transport






fccM




15557 to 14394




−1




391 aa




N-methyl transferase




Metabolism






fccN




5104 to 6282




+1




393 aa




Cit-B homolog




Metabolism






fccO




10892 to 11368




+2




159 aa




Car 2 comp Regulatory Protein




Regulatory






fccE




3408 to 2353




−3




352 aa




Possible Flavoenzyme




Metabolism






fccQ




229 to 705




+1




159 aa




LRP Regulatory Protein




Regulatory






fccR




8926 to 7854




−2




358 aa




Unknown




?






fccS




2221 to 1660




−1




183 aa




Unknown




?






fccT




1590 to 1060




−1




177 aa




Unknown




?














fccA Esterase:




This esterase, also known as BacEst, was previously shown to hydrolyze the tricarballylate esters of fumonisins. This enzyme is the bacterial homolog of the


Exophiala spinifera


esterase, ESP1.




fccB Citrate/Tricarballylate Transport Protein:




This protein may be necessary to break down the tricarballylic acid resulting from hydrolysis of fumonisin by the esterase. The citrate/tricarballylate transporter can be used to transport the tricarballylic acid into the cell where it may be able to be broken down by endogenous enzymes. Additional enzymes that may be discovered could be used as well to effect the removal of tricarballylate once it is in the cell.




fccC Flavin Monooxygenase:




This enzyme has homology to monooxygnease that act on keto or quinone groups, oxidizing them to a carboxylate with carbon chain breakage. In our detoxification strategy, it may be necessary to provide more complete catabolism of fumonisin in transgenic maize or other transgenic organisms than can be provided by esterase and deaminase enzymes. If so, the monooxygenase activity of this clone is predicted to result in the oxidation of 2-OP to a compound that would lack a keto group, having instead a terminal aldehyde group, or possibly a carboxylate group. This is due to a type of enzymatic oxidation referred to as Baeyer-Villiger oxidation, in which monooxygen is inserted adjacent to a keto function, resulting in a lactone or ester linkage (Walsch & Chen, Angew. Chem. Int Ed. Engl 27 (1988) 333-343). The metabolism of trans-cyclohexane-1,2 diol by Acinetobacter provides a model for the activity of a Baeyer-Villiger monooxygenase on 2-OP (Davey & Trudgill, 1977, Eur. J. Biochem 74:115-127). This diol is first oxidized to ortho hydroxy cyclohexanone by a different enzyme, and then a monooxygen is inserted between the quione and hydroxy functions by the Baeyer-Villiger enzyme, cyclohexanone monooxygenase. This intermediate spontaneously rearranges to a linear aldehyde carboxylic acid. By analogy, for 2-OP we would predict insertion of oxygen between carbons 2 and 3 and then spontaneous cleavage to a C22 aldehyde and acetic acid. Further oxidation by an aldehyde dehydrogenase would convert this compound to a carboxylic acid; other transformations would also be possible given the high reactivity of the aldehyde group.




fccD Aldehyde Dehydrogenase:




One likely product of flavin monooxygenase oxidation of 2-OP is a C-20 aldehyde (see above); if so, we would predict that an aldehyde dehyrogenase would be available to oxidize the aldehyde to a carboxylate group, as a prerequisite to insertion into the beta-oxidation pathway for catabolism to acetyl co-A.




fccE Alcohol Dehydrogenase:




This gene shows homology to members of the short-chain dehydrogenase (SD) class of oxidoreductases, designated in Prosite as group PSO-00060. This class contains many NADP or NAD+ requiring alcohol dehydrogenases as well as anabolic enzymes that convert 2-keto Co-A acid esters to -corresponding alcohols. This enzyme may be responsible for oxidation of the C-5, alcohol of the carboxylate to a keto group, which would result in an alpha keto acid that could be further degraded by beta-oxidation. The enzyme could also oxidize hydroxyls at C13 and C14 to ketones, allowing a monooxygenase such as that described above to further oxidize and fragment the carbon chain. It is also possible that this enzyme attacks the C5 hydroxyl of AP1. Since the C-5 hydroxyl group of AP1 is considered important for toxicity, this enzyme may be useful in detoxification of AP1.




fccF CoA Ligase:




This enzyme may provide conjugation of a fumonisin-derived carboxylic acid with coenzyme A, prior to beta-oxidation.




fccG Acetohydroxyacid Synthase:




This gene may code for a protein that provides a pH stat when fumonisin metabolites are being metabolized.




fccH Vitamin B12 Receptor:




This receptor possibly plays a role in membrane transport of breakdown products or import of cofactors needed for enzymes in the pathway.




fccI Permease:




This protein is expected to have a role in the transport of metabolites into the cells, or exclusion of fumonisin.




fccJ Regulatory Protein:




Similar to LysR regulatory protein from


E. coli


, this protein probably functions to suppress transcription of pathway genes until the appropriate stimulus (i.e., fumonisin or AP1 or TCA) is present.




fccK Fumarte Reductase (Aspartate Oxidase):




This gene encodes a redox enzyme homolog that may oxidize the C-2 amine of AP1 and/or fumonisin.




fccL TonB Dependent Receptor:




This protein is involved in iron uptake.




FccM:




This protein has homology to an N-methyl transferase and may be involved in antibiotic resistance. In addition, it may also function in methylating FB1 or AP1 to reduce toxicity.




FccN:




The fccN gene encodes a citrate utilization B protein.




FccO Carbohydrate Regulatory Protein:




This protein may be involved in the regulation of carbohydrate pathways. It may also down-regulate genes for non-fumonisin catabolysis or may be involved in regulating gene expression in the fumonisin cluster.




FccP:




This gene is contained within the antisense strand of fccl and may encode a flavoenzyme. The protein may be an AP1/FB1 deaminating enzyme based on similarity to flavoenzymes which include amine oxidases.




FccQ Leucine Responsive Regulatory Protein:




This protein may be involved in regulation of catabolic gene expression.




FccR, FccS, FccT:




These proteins show no significant homology to other known proteins.




Compositions of the invention include the native nucleotide sequences for the catabolic genes, as well as variants and modifications thereof. It is recognized that having elucidated the pathway for fumonisin catabolism in Bacterium 2412.1, such DNA sequences can be inserted into expression cassettes and used to transform a variety of organisms. Enzymes produced recombinantly may be tested for their ability to modify fumonisin, fumonisin-related toxins, or a fumonisin byproduct using labeled starting material and appropriate buffer and cofactor conditions. For example, to test aldehyde dehydrogenase activity, the aldehyde dehydrogenase produced in a recombinant manner would be incubated with cofactors, NAD+ or NADP+, and


14


C-labeled 2-OP for various times and then an aliquot of the reaction mix spotted on TLC. Enzyme activity would be indicated by the appearance of a new radiolabeled spot at a different Rf on the TLC plate. Compositions of the invention include the native nucleotide sequences for the catabolic genes and the fumonisin gene cluster, as well as variants and modifications thereof. Particularly, the nucleotide sequences, or fragments thereof, of SEQ ID NOS: 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 and 40 can be utilized to isolate and/or synthesize full-length DNA sequences. Methods are known in the art for cloning of full-length cDNAs. Such techniques include, for example, RACE-PCR using oligonucleotide primers based on the known sequence, or cDNA library screening with labeled cDNA as probe, or by means of PCR of genomic DNA using a gene-specific probe and end-ligated primers (e.g., Genome Walker™ Clontech). It is recognized that having elucidated the pathway for fumonisin catabolism in Exophiala, such DNA sequences can be inserted into expression cassettes and used to transform a variety of organisms. Enzymes produced recombinantly may be tested for their ability to modify fumonisin or a fumonisin byproduct using labeled starting material and appropriate buffer and cofactor conditions. For example, to test aldehyde dehydrogenase activity, the aldehyde dehydrogenase produced in a recombinant manner would be incubated with cofactors, NAD+ or NADP, and


14


C -labeled 2-OP for various times and then an aliquot of the reaction mix spotted on TLC. Enzyme activity would be indicated by the appearance of a new radiolabeled spot at a different Rf on the TLC plate.




The sequences of the invention can be introduced into any host organism. The sequences to be introduced may be used in expression cassettes for expression in the host of interest where expression in the host is necessary for transcription.




One of skill would recognize that modifications can be made to a protein of the present invention without diminishing its biological activity. Some modifications may be made to facilitate the cloning, expression, or incorporation of the targeting molecule into a fusion protein. Such modifications are well known to those of skill in the art and include, for example, a methionine added at the amino terminus to provide an initiation site, or additional amino acids (e.g., poly His) placed on either terminus to create conveniently located restriction sites or termination codons or purification sequences.




Where expression cassettes are needed, such expression cassettes will comprise a transcriptional initiation region linked to the coding sequence or antisense sequence of the nucleotide of interest. Such an expression cassette is provided with a plurality of restriction sites for insertion of the sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.




The marker gene confers a selectable phenotype on the transformed cells. Usually, the selectable marker gene will encode antibiotic resistance, with suitable genes including genes coding for resistance to the antibiotic spectinomycin (e.g., the aada gene), the streptomycin phosphotransferase (SPT) gene coding for streptomycin resistance, the neomycin phosphotransferase (NPTII) gene encoding kanamycin or geneticin resistance; the hygromycin phosphotransferase (HPT) gene coding for hygromycin resistance, genes coding for resistance to herbicides which act to inhibit the action of acetolactate synthase (ALS), in particular the sulfonylurea-type herbicides (e.g, the acetolactate synthase (ALS) gene containing mutations leading to such resistance in particular the S4 and/or Hra mutations), genes coding for resistance to herbicides which act to inhibit action of glutamine synthase, such as phosphinothricin or basta (e.g., the bar gene), or other such genes known in the art. The bar gene encodes resistance to the herbicide basta, and the ALS gene encodes resistance to the herbicide chlorsulfuron.




The transcriptional initiation region, the promoter, may be native or analogous or foreign or heterologous to the host as well as to the coding sequence. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. By foreign it is intended that the transcriptional initiation region is not found in the native plant into which the transcriptional initiation region is introduced. As used herein a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence.




The transcriptional cassette will include in the 5′-to-3′ direction of transcription, a transcriptional and translational initiation region, a DNA sequence of interest, and a transcriptional and translational termination region functional in the host. The termination region may be native with the transcriptional initiation region, may be native with the DNA sequence of interest, or may be derived from another source. For use in plants or plant cells, convenient termination regions are available from the Ti-plasmid of


A. tumefaciens,


such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991)


Mol. Gen. Genet.


262:141-144; Proudfoot (1991)


Cell


64:671-674; Sanfacon et al. (1991)


Genes Dev.


5:141-149; Mogen et al. (1990)


Plant Cell.


2:1261-1272; Munroe et al. (1990)


Gene


91:151-158; Ballas et al. (1989)


Nucleic Acids Res.


17:7891-7903; Joshi et al. (1987)


Nucleic Acids Res.


15:9627-9639.




Nucleotide sequences of the invention are provided in expression cassettes for expression in the host cell of interest. The cassette will include 5′ and 3′ regulatory sequences operably linked to the sequence of interest. The cassette may additionally contain at least one additional sequence to be cotransformed into the organism. Alternatively, the additional sequence(s) can be provided on another expression cassette.




Where appropriate, the gene(s) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, 5,436,391, and Murray et al. (1989)


Nucleic Acids Res.


17:477-498, herein incorporated by reference.




Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.




The expression cassettes may additionally contain 5′ leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5′ noncoding region) (Elroy-Stein et al. (1989)


PNAS USA


86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al. (1986); MDMV leader (Maize Dwarf Mosaic Virus);


Virology


154:9-20), and human immunoglobulin heavy-chain binding protein (BiP), (Macejak et al. (1991)


Nature


353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987)


Nature


325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in


Molecular Biology of RNA,


ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991)


Virology


81:382-385). See also, Della-Cioppa et al. (1987)


Plant Physiol.


84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.




In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.




In the same manner, a plant can be transformed with the nucleotide sequences of the invention to provide complete detoxification of fumonisin in the transformed plant and plant products. Such plants include, for example, species from the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Ciahorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale, Triticum, Sorghum, Picea, Caco, and Populus.




As used herein, “transgenic plant” includes reference to a plant that comprises within its genome a heterologous polynucleotide. Generally, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. “Transgenic” is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic. The term “transgenic” as used herein does not encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods or by naturally occurring events such as random cross-fertilization, nonrecombinant viral infection, nonrecombinant bacterial transformation, nonrecombinant transposition, or spontaneous mutation.




The sequences of the present invention can be used to transform or transfect any plant. In this manner, genetically modified plants, plant cells, plant tissue, seed, and the like can be obtained. Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway et al. (1986)


Biotechniques


4:320-334), electroporation (Riggs et al. (1986)


Proc. Natl. Acad. Sci. USA


83:5602-5606, Agrobacterium-mediated transformation (Townsend et al., U.S. Pat. No. 5,563,055), direct gene transfer (Paszkowski et al. (1984)


EMBO J.


3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Pat. No. 4,945,050; Tomes et al. (1995) “Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment,” in


Plant Cell, Tissue, and Organ Culture: Fundamental Methods,


ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe et al. (1988)


Biotechnology


6:923-926). Also see Weissinger et al. (1988)


Ann. Rev. Genet.


22:421-477; Sanford et al. (1987)


Particulate Science and Technology


5:27-37 (onion); Christou et al. (1988)


Plant Physiol.


87:671-674 (soybean); McCabe et al. (1988)


Bio/Technology


6:923-926 (soybean); Finer and McMullen (1991)


In Vitro Cell Dev. Biol.


27P:175-182 (soybean); Singh et al. (1998)


Theor. Appl. Genet.


96:319-324 (soybean); Datta et al. (1990)


Biotechnology


8:736-740 (rice); Klein et al. (1988)


Proc. Natl. Acad. Sci. USA


85:4305-4309 (maize); Klein et al. (1988)


Biotechnology


6:559-563 (maize); Tomes, U.S. Pat. No. 5,240,855; Buising et al., U.S. Pat. Nos. 5,322,783 and 5,324,646; Tomes et al. (1995) “Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment,” in


Plant Cell, Tissue, and Organ Culture: Fundamental Methods,


ed. Gamborg (Springer-Verlag, Berlin) (maize); Klein et al. (1988)


Plant Physiol.


91:440-444 (maize); Fromm et al. (1990)


Biotechnology


8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984)


Nature


(


London


) 311:763-764; Bowen et al., U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. (1987)


Proc. Natl. Acad. Sci. USA


84:5345-5349 (Liliaceae); De Wet et al. (1985) in


The Experimental Manipulation of Ovule Tissues,


ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990)


Plant Cell Reports


9:415-418 and Kaeppler et al. (1992)


Theor. Appl. Genet.


84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992)


Plant Cell


4:1495-1505 (electroporation); Li et al. (1993)


Plant Cell Reports


12:250-255 and Christou and Ford (1995)


Annals of Botany


75 :407-413 (rice); Osjoda et al. (1996)


Nature Biotechnology


14:745-750 (maize via


Agrobacterium tumefaciens


); all of which are herein incorporated by reference.




The modified plant may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986)


Plant Cell. Reports


5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that the subject phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure the desired phenotype or other property has been achieved.




The degradative enzymes can be fermented in a bacterial host and the resulting bacteria processed and used as a microbial spray. Any suitable microorganism can be used for this purpose. See, for example, Gaertner et al. (1993) in


Advanced Engineered Pesticides,


Kim (Ed.).




The genes of the invention can be introduced into microorganisms that multiply in plants (epiphytes) to deliver enzymes to potential target crops. Epiphytes can be gram-positive or gram-negative bacteria, or fungi, for example.




The microorganisms that have been genetically altered to contain at least one degradative gene and protein may be used for protecting agricultural crops and products. In one aspect of the invention, whole, i.e., unlysed, cells of the transformed organism are treated with reagents that prolong the activity of the enzyme produced in the cell when the cell is applied to the environment of a target plant. A secretion signal sequence may be used in combination with the gene of interest such that the resulting enzyme is secreted outside the host cell for presentation to the target plant.




It may be preferable to provide for secretion of certain of the enzymes while providing for others to remain in the cytoplasm or targeted to organelles such as, for example, the chloroplast. Generally, the first two gene products, the carboxylesterase and the flavin amine oxidase will be secreted. Secretion leaders are known in the art. Plant signal sequences, including, but not limited to, signal-peptide encoding DNA/RNA sequences which target proteins to the extracellular matrix of the plant cell (Dratewka-Kos et al., (1989)


J. Biol. Chem.


264:4896-4900), the


Nicotiana plumbaginifolia


extension gene (DeLoose, et al. (1991)


Gene


99:95-100), signal peptides which target proteins to the vacuole like the sweet potato sporamin gene (Matsuka et al. (1991)


PNAS


88:834) and the barley lectin gene (Wilkins et al. (1990)


Plant Cell


2:301-313), signal peptides which cause proteins to be secreted such as that of PRIb (Lind et al. (1992)


Plant Mol. Biol.


18:47-53), or the barley alpha amylase (BAA) (Rahmatullah et al. (1989)


Plant Mol. Biol.


12:119) and hereby incorporated by reference, or from the present invention the signal peptide from the ESP1 or BEST1 gene, or signal peptides which target proteins to the plastids such as that of rapeseed enoyl-Acp reductase (Verwaert et al. (1994)


Plant Mol. Biol.


26:189-202) are useful in the invention. Such secretion signal sequences can be used in expression cassettes to provide for secretion of the protein of interest outside the cell.




The remaining gene products are provided in the cell. These enzymes include a flavin monooxygenase, an aldehyde dehydrogenase and an alcohol dehydrogenase. The expression cassettes for the corresponding genes may contain an organellar targeting sequence. In plants, for example, a chloroplast targeting sequence may be used.




In this manner, at least one of the genes encoding a fumonisin-degradation enzyme of the invention may be introduced via a suitable vector into a microbial host, and said transformed host applied to the environment or plants or animals. Microorganism hosts that are known to occupy the “phytosphere” (phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest may be selected for transformation. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, to provide for stable maintenance and expression of the gene expressing the polypeptide, and, desirably, to provide for improved protection of the enzymes of the invention from environmental degradation and inactivation.




Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., Saccharomyces, Pichia, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as


Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum,


Agrobacteria,


Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, Clavibacter xyli,


and


Azotobacter vinlandii;


and phytosphere yeast species such as


Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporobolomyces rosues, S. odorus, Kluyveromyces veronae,


and


Aureobasidium pullulans.






Illustrative prokaryotes, both Gram-negative and -positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus; Bacillaceae; Rhizobiaceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spiritlum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae; and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, Pichia and the like.




Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the protein gene into the host, availability of expression systems, efficiency of expression, stability of the protein in the host, and the presence of auxiliary genetic capabilities. Other considerations include ease of formulation and handling, economics, storage stability, fermentation suitability, and the like.




A number of ways are available for introducing a gene expressing the degradation enzyme into the microorganism host under conditions that allow for stable maintenance and expression of the gene. For example, expression cassettes can be constructed that include the DNA constructs of interest operably linked with the transcriptional and translational regulatory signals for expression of the DNA constructs, and a DNA sequence homologous with a sequence in the host organism, whereby integration will occur, and/or a replication system that is functional in the host, whereby integration or stable maintenance will occur.




Transcriptional and translational regulatory signals include but are not limited to promoter, transcriptional initiation start site, operators, activators, enhancers, other regulatory elements, ribosomal binding sites, an initiation codon, termination signals, and the like. See, for example, U.S. Pat. Nos. 5,039,523 and 4,853,331; EPO 0480762A2; Sambrook et al. supra; Maniatis et al., eds. (1982)


Molecular Cloning: A Laboratory Manual


(Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.); Davis et al., eds. (1980)


Advanced Bacterial Genetics


(Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.); and the references cited therein.




It is recognized that the construction of a catabolic pathway in a transformed organism is a complicated feat. Therefore, any means for assembling the enzymes of interest into an organism of interest is encompassed. For example, a single polynucleotide sequence encoding all of the desired enzymes or multiples thereof may be transformed into the host organism. When microorganisms are to be applied to the environment or to a plant, several microorganisms, each transformed with one, two, three, or more nucleotide sequences of the invention, may be utilized. In this manner, all of the enzymes necessary to bring about detoxification of fumonisin and related products may be presented to the environment or to the plant by applying a mixture of transformed organisms or a single organism capable of expressing the entire pathway or at least expressing enough of the pathway to detoxify fumonisin.




In plants, nucleotide sequences for an enzyme may be transformed into a plant and crossed with plants expressing a different enzyme. In this manner, progeny can be obtained having the entire sequence or enough of the sequence to detoxify fumonisin. Alternatively, a plant can be transformed with nucleotides encoding several enzymes at the same time. In some tissue culture systems it is possible to transform callus with one nucleotide sequence, establish a stable culture line, and then transform the callus a second time with a second nucleotide sequence. The process may be repeated to introduce additional sequences.




To facilitate the expression of more than one enzyme in a cell, e.g. a plant cell, fusion proteins may be created. Generally, a spacer region is included between the proteins. The spacer region may comprise a cleavage site for cleavage by an endogenous or introduced protease.




The present invention also relates to a method of detoxifying a fumonisin or a structurally related mycotoxin with the enzymes from Bacterium 2412.1 during the processing of grain for animal or human food consumption, during the processing of plant material for silage, or food crops contaminated with a toxin-producing microbe, such as but not limited to, tomato. Since the atmospheric ammoniation of corn has proven to be an ineffective method of detoxification (see Haumann (1995)


INFORM


6:248-257), such a methodology during processing is particularly critical where transgenic detoxification is not applicable.




In this embodiment, the fumonisin degradative enzymes found in Bacterium 2412.1, are presented to grain, plant material for silage, or a contaminated food crop, or during the processing procedure, at the appropriate stages of the procedure and in amounts effective for detoxification of fumonisins and structurally related mycotoxins. Detoxification by this method can occur not only during the processing, but also any time prior to or during the feeding of the grain or plant material to an animal or incorporation of the grain or food crop into a human food product, or before or during ingestion of the food crop.




The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds. These compounds can be both fertilizers or micronutrient donors or other preparations that influence plant growth. They can also be selective herbicides, insecticides, fungicides, bactericides, nematicides, mollusicides, or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants, or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g., natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders, or fertilizers.




The enzymes can be introduced during processing in appropriate manners, for example as a wash or spray, or in dried or lyophilized form or powered form, depending upon the nature of the milling process and/or the stage of processing at which the enzymatic treatment is carried out. See generally, Hoseney (1990)


Principles of Cereal Science and Technology


(American Association of Cereal Chemists, Inc.) especially Chapters 5, 6, and 7; Jones (1992)


Food Safety


(Eagan Press, St. Paul, Minn.) especially Chapters 7 and 9; and Jelen (1985)


Introduction to Food Processing


(Restan Publishing Company, Reston, Va.). Processed grain or silage to be used for animal feed can be treated with an effective amount of the enzymes in the form of an inoculant or probiotic additive, for example, or in any form recognized by those skilled in the art for use in animal feed. The enzymes of the present invention are expected to be particularly useful in detoxification during processing and/or in animal feed prior to its use, since the enzymes display relatively broad ranges of pH activity. The esterase enzymes from


Exophiala spinifera,


American Type Culture Collection Accession No. 74269, showed a range of activity from about pH 3 to about pH 7 (U.S. Pat. No. 5,716,820, supra). The APAO enzyme from


Exophiala spinifera,


American Type Culture Collection Accession No. 74269 has a pH range of activity from pH 5 to pH 10. While not limited thereto, it is expected that the enzymes of the present invention will exhibit similar activity.




In another embodiment, ruminal microorganisms can be genetically engineered to contain and express at least one of the fumonisin degradation enzymes of the invention. The genetic engineering of microorganisms is now an art-recognized technique, and ruminant microorganisms so engineered can be added to feed in any art recognized manner, for example as a probiotic or inoculant. In addition, microorganisms, plants, or other organisms or their cultured cells in vitro capable of functioning as bioreactors can be engineered so as to be capable of mass producing the fumonisin degrading enzymes of the invention. Cite use of Bacterium 2412.1 itself, engineered to express these enzymes constitutively by manipulating regulatory factors, e.g. fccJ (LysR homolog).




Another embodiment of the present invention is the use of the enzymes of the present invention as detection reagents for fumonisins and related compounds. The enzymes of the present invention can be used as detection reagents because of the high specificity of the esterase and deaminase enzymes, and the fact that hydrolysis followed by amine oxidation can be monitored by detection of hydrogen peroxide or ammonia using standard reagents (analogous to a glucose detection assay using glucose oxidase). Hydrogen peroxide is often measured by linking a hydrogen peroxide-dependent peroxidase reaction to a colored or otherwise detectable peroxidase product (e.g., Demmano et al. (1996)


European Journal of Biochemistry


238(3):785-789). Ammonia can be measured using ion-specific electrodes: Fritsche et al. (1991)


Analytica Chimica Acta


244(2):179-182; West et al. (1992)


Analytical Chemistry


64(5):533-540, and all herein incorporated by reference) or by GC or other chromatographic method.




For example, recombinant or non-recombinant, active fumonisin esterase, APAO, and proteins of the invention are added in catalytic amounts to a sample tube containing an unknown amount of fumonisins (FB1, FB2, FB3, FB4, or partial or complete hydrolysis products of these). The tube is incubated under pH and temperature conditions sufficient to convert any fumonisin in the sample to AP1, the AP1 to 2-OP, ammonia, and hydrogen peroxide, and to further degradation products. Then suitable reagents are added for quantification of the hydrogen peroxide or ammonia that were generated stoichiometrically from fumonisins. By comparison with control tubes that received no esterase or APAO enzyme, the amount of fumonisin present can be calculated in direct molar proportion to the hydrogen peroxide or ammonia detected, relative to a standard curve.




This invention can be better understood by reference to the following nonlimiting examples. It will be appreciated by those skilled in the art that other embodiments of the invention may be practiced without departing from the spirit and the scope of the invention as herein disclosed and claimed.




EXPERIMENTAL




EXAMPLE 1




Bacterial isolates




Bacterium 2412.1 isolates from maize were isolated as described in U.S. Pat. No. 5,716,820 and pending U.S. application Ser. Nos. 08/888,949 and 08/888,950, both filed Jul. 7, 1997, and herein incorporated by reference.




Alkaline hydrolysis of FB1 to AP1




FB1 or crude fumonisin C


8


material was suspended in water at 10-100 mg/ml and added to an equal volume of 4 N NaOH in a screw-cap tube. The tube was sealed and incubated at 60° C. for 1 hr. The hydrolysate was cooled to room temperature and mixed with an equal volume of ethyl acetate, centrifuged at 1000 RCF for 5 minute and the organic (upper) layer recovered. The pooled ethyl acetate layers from two successive extractions were dried under N


2


and resuspended in distilled H


2


O. The resulting material (the aminopentol of FB1 or “AP1” was analyzed by TLC.




Analysis of Fumonisins and Metabolism Products




Analytical thin-layer chromatography was carried out on 100% silanized C


18


silica plates (Sigma #T-7020; 10×10 cm; 0.1 mm thick) by a modification of the published method of Rottinghaus (Rottinghaus et al. (1992)


J. Vet. Diagn. Invest.


4:326, and herein incorporated by reference).




To analyze fumonisin esterase activity, sample lanes were pre-wet with methanol to facilitate sample application. After application of from 0.1 to 2 μl of aqueous sample, the plates were air-dried and developed in MeOH:4% KCl (3:2) or MeOH;0.2 M KOH (3:2) and then sprayed successively with 0.1 M sodium borate (pH 9.5) and fluorescamine (0.4 mg/ml in acetonitrile). Plates were air-dried and viewed under long-wave UV.




For analysis of APAO activity, an alternative method was used. Equal volumes of sample and


14


C-AP1 (1 mg/ml, 50 mM Na-phosphate pH 8) substrate were incubated at room temperature for six days. Analytical thin-layer chromatography was then carried out on C60 HPK silica gel plates (Whatman #4807-700; 10×10 cm; 0.2 mm thick). After application of from 0.1 to 2 μl of aqueous sample, the plates were air dried and developed in CHCl


3


:MeOH:CH


3


COOH:H


2


O (55:36:8:1). Plates were then air dried, and exposed to PhosphorImager screen or autoradiographic film. A Storm PhosphorImager was used to scan the image produced on the screen.




EXAMPLE 2




Isolation of Fumonisin-Catabolizing Gene Cluster




A FB1 catabolizing esterase was identified in the culture supernatant of Bacterium 2412.1, and a gene (BacEst) was cloned from this bacterium. The gene exhibited fumonisin esterase activity similar to that of the black yeast esterase ESP1. Since FB1 is catabolized to CO


2


in this bacterium, other proteins involved in the breakdown and transport of fumonisin would also be present in induced cells of Bacterium 2412.1.




The identification and isolation of a fumonisin detoxification cluster in Bacterium 2412.1 has been accomplished. The BacEst and CTP genes as well as other structural genes and at least 3 regulatory genes have been cloned. Sequence analysis indicates that these genes code for a set of proteins that are involved in the further catabolism and transmembrane transport of fumonisin and its catabolic products (see Table 1 and FIG.


1


). These proteins provide a catabolic pathway for the degradation of fumonisins, and could also be used to engineer a fumonisin-regulated gene transcription system.




In order to identify fumonisin catabolic genes other than bacterial esterase, it was noted that many bacterial pathway genes are clustered together on the bacterial chromosome often containing one or more operons. Both structural and regulatory genes that regulate transcription of individual pathway genes often are found in such clusters. A 4.3 kb genomic fragment from a lambda Zap II phage library, which contained a complete, functional fumonisin esterase gene (BacEst) and in addition a complete open reading frame coding for a citrate transport protein (CTP), predicted to be involved in transport of tricarballylate into the bacterium was cloned. Therefore, approximately 500 bp DNA subclones from the distal ends of this 4.3 kb fragment was used as


32


P-radiolabeled probes to identify additional lambda clones from this portion of the bacterial chromosome (i.e. chromosome “walking”). The probes were designated as P-BacEst (SEQ ID NO: 54) (at the 5′ end relative to BacEst direction of transcription), and P-CTP (SEQ ID NO: 55) (at the 3′ end). A genomic library used earlier to clone BacEst (Sau3A partially digested DNA from 2412.1, size selected for 4 to 10 kb insert size, cloned into lambda Zap II from Strategene) was used. A series of overlapping clones was identified by plaque hybridization using both P-BacEST and P-CTP probes together, and these clones were characterized by PCR using combinations of primers from probes and from the vector flanking regions. An overlapping series of clones representing various amounts of sequence extending out from the original 4.3 kb fragment was chosen based on a novel PCR screening method in which phage lysates were subjected to PCR with vector primers and probe-specific primers, in order to gauge the degree of overlap and extension. Phagemids chosen in this way were excised from lambda phage, plasmid DNA prepared from standard plasmid mini-preps and sequenced. For a second round of walking, distal probes (SEQ ID NOS: 56 and 57) were prepared from both ends of the longest 5′ and 3′ sequence obtained in the first round and library screening was repeated.




A 100 mL culture of bacterium 2412.1 was grown to saturation in LB broth and high molecular weight genomic DNA was isolated using standard methods (Short Protocols in Molecular Biology, 2


nd


Ed., pp.2-11). The genomic DNA was digested with BamHI and dephosphorylated with Shrimp Alkaline Phosphatase.




The SuperCos I Cosmid Vector Kit (Stratagene) was used for library construction. The SCosI vector was digested with XbaI, dephosphorylated with Shrimp Alkaline Phosphatase, then digested with BamHI. The genomic DNA was ligated into the SCosI vector then packaged into XLI-Blue MR


E. coli


cells. The primary cosmid library was titered at 50 cfu/uL with a total of 30,000 cfu's. Cosmid DNA was prepared from eight colonies and digested with NotI to excise the inserts to estimate insert size. Average insert size was 27 kb with a range of 17.5-35kb. The primary library was amplified and titered at 2×10


8


cfu/mL.




Probes were made from the ends of the current BAM gene cluster and designated SCos





5′ (SEQ ID NO: 58) and SCos





3′ (SEQ ID NO: 59). The library was screened with 50,000 cfu's/plate using the SCos





5′ probe and yielded 35 clones which hybridized to the SCos





5′ probe. Inserts from these clones were excised using NotI which also produced smaller fragments of DNA from each clone. The fragments were then subcloned into the pSPORTI vector (GibcoBRL) that was previously digested with NotI and dephosphorylated.




The pSPORTI fragments were transformed into


E. coli


DH5a cells, DNA was miniprepped and digested with NotI to verify subclones with the correct inserts. The subclones were then sequenced with M13F and M13R primers to obtain DNA sequence from the ends of each subclone. Primer-walking was then used to fully sequence each subclone. The 8.5 kb subclone contigged with the 5′end of the BAM gene cluster.




The individual lambda clones and cosmids were sequenced to the point of overlap, and a single large contig assembled from the various clones (FIG.


2


). Table II summarizes the American Type Culture Collection deposits made containing the overlapping clones of the fumonisin catabolic gene cluster. The strain designation and their corresponding plasmids are provided.














TABLE 2









STRAIN DESIGNATION




FRAGMENT




PLASMID











SuperCos_8.5_1




SCos 8.5




PSPORT1:








SuperCos_8.5_1






BAM_PL1




BAM 4.3




PBK-CMV:BAM 4.3







BAM 7.4




PBK-CMV:BAM 7.4







BAM 8.4




PBK-CMV:BAM 8.4







BAM 10.2




PBK-CMV:BAM 10.2







BAM 11.1




PBK-CMV:BAM 11.1







BAM 17.3




PBK-CMV:BAM 17.3







BAM 3.1




PBK-CMV:BAM 3.1.1






BAM_PL2




REG 6.3




PBK-CMV:REG 6.3.1







REG 14.3




PBK-CMV:REG 14.3.1







REG 14.1




PBK-CMV:REG 14.1.1







REG 8.2




PBK-CMV:REG 8.2.1







REG 3.1




PBK-CMV:REG 3.1.1







FMO 12.3




PBK-CMV:FMO 12.3.1







FMO 12.2




PBK-CMV:FMO 12.2.1







FMO 7.1




PBK-CMV:FMO 7.1.1







FMO 5.1




PBK-CMV:FMO 5.1.1







FMO 11.1




PBK-CMV:FMO 11.1.1














The contig represents 24.5 kb of chromosomal DNA, and contains twenty open reading frames including the fumonisin esterase and citrate transport homolog. Most of the genes in this region have homology to genes known to function in carbon catabolic pathways that involve functional groups that would be expected to be utilized for fumonisin. These have been given appropriate designations as fccA through fccT (fumonisin catabolic cluster) (Table 1). One open reading frame, fccJ, has homology to negative regulatory genes controlling lysine degradation pathway (LysR) and could be the regulator that prevents transcription of genes in this cluster in the absence of substrate. Other open reading frames in this region may be involved in other cellular functions needed for effective catabolism of fumonisin. A map of the open reading frames in the fumonisin catabolic gene cluster of Bacterium 2412.1 is shown in FIG.


3


.




Many of the gene functions deduced from ORFs in this cluster have also been identified among AP1-induced transcripts from


Exophiala spinifera


(see U.S. application Ser. Nos. 08/888,949; 08/888,950; and Table 2). These are, aside from the fumonisin esterase: flavin monooxygenase, aldehyde dehydrogenase, alcohol dehydrogenase, and transmembrane permease. A possible degradation pathway for fumonisins based on these enzyme activities is presented in FIG.


1


. The functional similarity of bacterial fcc cluster genes and AP1-induced Exophiala cDNAs increases the likelihood that these genes are involved in fumonisin breakdown in the respective organisms.




To identify an open reading frame corresponding to a deaminating enzyme such as the AP1-specific amine oxidase identified as an induced transcript in


E. spinifera


(APAO) cosmid clones corresponding to flanking regions of the fcc cluster have been obtained. It is anticipated such a gene will be found in this flanking DNA. However, identification of this gene is not crucial to this invention, as we have demonstrated AP1 deaminating activity of the


Exophiala spinifera


cDNA for APAO in a bacterial expression system, so it is possible to engineer the fungal gene along with bacterial genes in this cluster to engineer a complete pathway.




cDNA sequences for a citrate/tricarballylate transport protein (fccB) (SEQ ID NO: 4); a flavin monooxygenase (fccC) (SEQ ID NO: 6); an aldehyde dehydrogenase (fccD) (SEQ ID NO: 8); an alcohol dehydrogenase (fccE) (SEQ ID NO: 10); a CoA ligase (fccF) (SEQ ID NO: 12); an acetohydroxyacid synthase (fccG) (SEQ ID NO: 14); a vitamin B12 receptor (fccH) (SEQ ID NO: 16); a permease (fccI) (SEQ ID NO: 18); and a regulatory protein (fccJ) (SEQ ID NO: 20); a fumarate reductase/aspartate oxidase (fccK) (SEQ ID NO: 22); a TonB dependent receptor (fccL) (SEQ ID NO: 24); a protein with homology to N-methyl transferase (fccM) (SEQ ID NO: 26); a citrate utilization B (fccN) (SEQ ID NO: 28); a carbohydrate regulatory gene (fccO) (SEQ ID NO: 30); a possible flavoenzyme (fccP) (SEQ ID NO: 32); a leucine regulatory protein homolog (fccQ) (SEQ ID NO: 34); fccR (SEQ ID NO:36); fccS (SEQ ID NO: 38); fccT (SEQ ID NO: 40) have been isolated. Such sequences are provided. An esterase (fccA) also known as BacEst has previously been described.




The complete 24.5 kb contig of SEQ ID NO: 1 is likely to code for all the regulatory, transport, and catabolic machinery needed to catabolize FB1 to nontoxic metabolites. A single full-length cosmid clone that contains all of these genes together in order to test this hypothesis. This can readily be done by screening a cosmid library with probes generated from sequence on both ends of the contig, and selecting clones that hybridized under stringent conditions to both probes. The cosmid-containing


E. coli


strain would then be evaluated for its ability to break down fumonisin or AP1 added to the culture medium.




EXAMPLE 3




Pichia Expression of Degradative Enzymes




For cloning into


Pichia pastoris


expression vector, pPicZalphaA, oligonucleotide primers can be designed that contain a 22 bp overlap of the 5′ end (sense strand) and 3′ end (antisense strand), respectively of the open reading frame from Bacterium 2412.1, including the stop codon. In addition, each oligo has a 5′ extension with digestible restriction sites that allows cloning of the amplified insert in-frame both into EcoRI/Notl digested pPicZalphaA. pPicZalphaA is an


E. coli


compatible Pichia expression vector containing a functional yeast alpha factor secretion signal and peptide processing sites, allowing high efficiency, inducible secretion into the culture medium of Pichia.




Pichia can be transformed as described in Invitrogen Manual, Easy Select™ Pichia Expression Kit, Version B, #161219, with the enzyme polynucleotide of interest with either an intron added (negative control, no expression) or an intron not added (capable of making an active protein). The Pichia culture fluids and pellets are assayed for enzyme activity as described earlier.




The sample 50 UL cell pellets are resuspended in 150 UL cold 50 mM Na-phosphate, pH8.0 and divided into two fresh 500 UL tubes. One tube is kept on ice with no treatment, the pellet suspension, and one tube is used for lysis. An equal volume of 0.1 mm zirconia-silica beads is added to each tube. The tubes are BeadBeat™ for 15 seconds then cooled on ice 5 minutes. This is repeated three times. The crude lysate is then transferred to another tube for assay or lysate suspension.




The TLC assays are performed as follows:




samples:




1.) pellet suspensions (“PELL”); 10 uL




2.) lysate suspensions (“LYS”); 10 uL




3.) media controls-mixed 5 uL media with 5 uL crude bacterial enzyme (if available); 10 uL




4.) positive control-used crude bacterial enzyme (if available) undiluted; 10 uL




5.) substrate control-used 50 mM Na-phosphate, pH8.0; 10 uL




a cofactor (if required) is added to each reaction mixture




incubate 10 uL each sample+10 uL


14


C-substrate (fumonisin, metabolite, or other potential substrate) (1 mg/mL, pH8) at room temperature




spot 1.0 uL onto C18 and C60 TLC plates




develop C18 plates in MeOH:4% KCl (3:2)




develop C60 plates in CHCl


3


:MeOH:CH


3


COOH:H


2


O (55:36:8:1)




air-dry plates




expose plates to PhosphorScreen 2-3 days




use Storm Phosphorlmager (Molecular Dynamics) to develop images




EXAMPLE 4




Expression of Enzymes in


E. coli






The vector for expressing the enzyme of interest is a prokaryotic glutathione S-transferase (GST) fusion vector for inducible, high-level intracellular expression of genes or gene fragments as fusions with


Schistosoma japonicum


GST. GST gene fusion vectors include the following features: a lac promoter for inducible, high-level expression; an internal lac I


q


gene for use in any


E. coli


host; and the thrombin factor Xa or PreScission Protease recognition sites for cleaving the desired protein from the fusion product. The insert of interest may be cloned into the 5′ EcoRI site and a 3′ NotI site allowing in-frame expression of the fusion peptide. Generation of such an insert is described in the previous example.






E. coli


was transformed with the vector containing the coding sequence for the enzyme as described in BRL catalogue, Life Technologies, Inc., catalogue; Hanahan (1983)


J. Mol. Biol.


166:557; Jessee et al. (1984)


J. Focus


6:4; King et al. (1986)


Focus


8:1, and hereby incorporated by reference. The transformed


E. coli


may be induced by addition of IPTG (isopropyl b-D-thiogalactopyranoside) for expression of the polypeptide of interest.




EXAMPLE 5




Transformation and Regeneration of Transgenic Plants




Immature maize embryos from greenhouse donor plants are bombarded with a plasmid containing the fumonisin-degradation/transporter enzyme nucleotide sequences operably linked to a ubiquitin promoter (FIG.


4


). This plasmid also contains the selectable marker gene PAT (Wohlleben et al. (1988)


Gene


70:25-37) that confers resistance to the herbicide Bialaphos. The preferred construct for expression in maize is the nucleotide sequence of the degradative enzyme either fused to the barley alpha amylase signal sequence or organellar targeting sequence, or left intact for expression in the cytoplasm. Transformation is performed as follows. All media recipes are in the Appendix.




Preparation of Target Tissue




The ears are surface sterilized in 30% Chlorox bleach plus 0.5% Micro detergent for 20 minutes, and rinsed two times with sterile water. The immature embryos are excised and placed embryo axis side down (scutellum side up), 25 embryos per plate, on 560Y medium for 4 hours and then aligned within the 2.5-cm target zone in preparation for bombardment.




Preparation of DNA




A plasmid vector comprising the fumonisin-degradation/transporter enzyme operably linked to the ubiquitin promoter is made. This plasmid DNA also contains a PAT selectable marker. The plasmid is precipitated onto 1.1 μm (average diameter) tungsten pellets using a CaCl


2


precipitation procedure as follows:




100 μl prepared tungsten particles in water




10 μl (1 μg) DNA in TrisEDTA buffer (1 μg total)




100 μl 2.5 M CaCl


2






10 μl 0.1 M spermidine




Each reagent is added sequentially to the tungsten particle suspension, while maintained on the multitube vortexer. The final mixture is sonicated briefly and allowed to incubate under constant vortexing for 10 minutes. After the precipitation period, the tubes are centrifuged briefly, liquid removed, washed with 500 ml 100% ethanol, and centrifuged for 30 seconds. Again the liquid is removed, and 105 μl 100% ethanol is added to the final tungsten particle pellet. For particle gun bombardment, the tungsten/DNA particles are briefly sonicated and 10 μl spotted onto the center of each macrocarrier and allowed to dry about 2 minutes before bombardment.




Particle Gun Treatment




The sample plates are bombarded at level #4 in particle gun #HE34-1 or #HE34-2. All samples receive a single shot at 650 PSI, with a total of ten aliquots taken from each tube of prepared particles/DNA.




Subsequent Treatment




Following bombardment, the embryos are kept on 560Y medium for 2 days, then transferred to 560R selection medium containing 3 mg/liter Bialaphos, and subcultured every 2 weeks. After approximately 10 weeks of selection, selection-resistant callus clones are transferred to 288J medium to initiate plant regeneration. Following somatic embryo maturation (2-4 weeks), well-developed somatic embryos are transferred to medium for germination and transferred to the lighted culture room. Approximately 7-10 days later, developing plantlets are transferred to 272V hormone-free medium in tubes for 7-10 days until plantlets are well established. Plants are then transferred to inserts in flats (equivalent to 2.5″ pot) containing potting soil and grown for 1 week in a growth chamber, subsequently grown an additional 1-2 weeks in the greenhouse, then transferred to classic 600 pots (1.6 gallon) and grown to maturity. Plants are monitored for the expression of a fumonisin-degrading/transporter protein.




APPENDIX












APPENDIX











272 V















Ingredient




Amount




Unit



















D-I H


2


O




950.000




Ml







MS Salts (GIBCO 11117-074)




4.300




G







Myo-Inositol




0.100




G







MS Vitamins Stock Solution ##




5.000




Ml







Sucrose




40.000




G







Bacto-Agar @




6.000




G















Directions:




@=Add after bringing up to volume




Dissolve ingredients in polished D-I H


2


O in sequence




Adjust to pH 5.6




Bring up to volume with polished D-I H


2


O after adjusting pH




Sterilize and cool to 60° C.




##=Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H


2


O in sequence. Bring up to volume with polished D-I H


2


O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.




Total Volume (L)=1.00















288 J















Ingredient




Amount




Unit



















D-I H


2


O




950.000




Ml







MS Salts




4.300




g







Myo-Inositol




0.100




g







MS Vitamins Stock Solution ##




5.000




ml







Zeatin .5 mg/ml




1.000




ml







Sucrose




60.000




g







Gelrite @




3.000




g







Indoleacetic Acid 0.5 mg/ml #




2.000




ml







0.1 mM Abscisic Acid




1.000




ml







Bialaphos 1 mg/ml #




3.000




ml















Directions:




@=Add after bringing up to volume




Dissolve ingredients in polished D-I H


2


O in sequence




Adjust to pH 5.6




Bring up to volume with polished D-I H


2


O after adjusting pH




Sterilize and cool to 60° C.




Add 3.5g/L of Gelrite for cell biology.




##=Dissolve 0.100 g of Nicotinic Acid; 0.020 g of Thiamine.HCL; 0.100 g of Pyridoxine.HCL; and 0.400 g of Glycine in 875.00 ml of polished D-I H


2


O in sequence. Bring up to volume with polished D-I H


2


O. Make in 400 ml portions. Thiamine.HCL & Pyridoxine.HCL are in Dark Desiccator. Store for one month, unless contamination or precipitation occurs, then make fresh stock.




Total Volume (L)=1.00















560 R













Ingredient




Amount




Unit
















D-I Water, Filtered




950.000




ml






CHU (N6) Basal Salts (SIGMA C-1416)




4.000




g






Eriksson's Vitamin Mix (1000X SIGMA-1511)




1.000




ml






Thiamine.HCL 0.4 mg/ml




1.250




ml






Sucrose




30.000




g






2,4-D 0.5 mg/ml




4.000




ml






Gelrite @




3.000




g






Silver Nitrate 2 mg/ml #




0.425




ml






Bialaphos 1 mg/ml #




3.000




ml














Directions:




@=Add after bringing up to volume




#=Add after sterilizing and cooling to temp.




Dissolve ingredients in D-I H


2


O in sequence




Adjust to pH 5.8 with KOH




Bring up to volume with D-I H


2


O




Sterilize and cool to room temp.




Total Volume (L)=1.00















560 Y













Ingredient




Amount




Unit
















D-I Water, Filtered




950.000




ml






CHU (N6) Basal Salts (SIGMA C-1416)




4.000




g






Eriksson's Vitamin Mix (1000X SIGMA-1511)




1.000




ml






Thiamine.HCL 0.4 mg/ml




1.250




ml






Sucrose




120.000




g






2,4-D 0.5 mg/ml




2.000




ml






L-Proline




2.880




g






Gelrite @




2.000




g






Silver Nitrate 2 mg/ml #




4.250




ml














Directions:




@=Add after bringing up to volume




#=Add after sterilizing and cooling to temp.




Dissolve ingredients in D-I H


2


O in sequence




Adjust to pH 5.8 with KOH




Bring up to volume with D-I H


2


O




Sterilize and cool to room temp.




**Autoclave less time because of increased sucrose**




Total Volume (L)=1.00




All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.




Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.







59




1


24494


DNA


Bacterium 2412.1




Fumonisin Catabolic Gene Cluster





1
ggccgcaatt aaccctcact aaagggatct tattggccat acggcgatag ttagcggcga 60
gcgcgcccag gtcgacgcgc aggtggccgc ccgccatgtc cgaagtcgtg tcgttcacca 120
tcgtccagcc cccgcttttc gcgctcgctg aagcctaggt gtgacttgtt cgaatatcag 180
gcctatctat cgcttagtct gcggatttat ccgcactact aaaatataat gctgaggtta 240
cgccacatga tgccagcgct ggacgcgatc gaccgcaaga tcattggcct gcttcgggtc 300
aatggccgca tgcccaacaa tgagttggcg cagaaggtag ggctttcgcc ttccgcctgt 360
ctgcgacgcg tcaagttgct cgagtcgaac ggggtgatcc gagggtattg tgcattggtt 420
gccgagcagt cgttggacgc cagcgtggtg gcgatcgtcc ggataacctt ggacaagcag 480
accgaggact atctgaatcg gttcgaggag gccgttcggc ggcatcccga gatcgctgag 540
tgctttctga tgaccggcga cgcagactac atccttcggg ctaccgcgcc gagcacggcc 600
gcctacgagc aaatccacaa ggaagtcctt tctcggcttc ccggggtggc gcgcatccat 660
tcgagcttcg ccatccgcag cgtgctgtcg tcggtcgcaa ggccctagag ctagccgcgt 720
tcggccacgg cggctcgacg agctcgagac ctaatgcacg attaatatcg aatatcccac 780
tctgccgctc gaccgacgcg gcggcgtcgc agctcgcgcg cagcgcaggc ccggctgggt 840
gcacattatt caagcacggg tgcgtcacct gaatggcgtc gcggcacgat tcaagaggtg 900
aactcgataa atattgaata aggcgccggt ctgccggagc atgggagtgc aaagacactg 960
gcagcagggg atctgaccat gcctagggat acgacaccga atttcgctcc ggtcaccacg 1020
gcaaaagagg gccgccgaca ccgaggcagc accgccttac gaaggctcat gctgacggcg 1080
gccggcagcg ccctggtgct gggtcttgcg cccaaggcgc tcgcgcaggt ggcggttccg 1140
ccggctggtc acgaggcgtc gcaggaggtg caggagatcg tcgtcaccgc gcagcgccgc 1200
agcgagaaca ttcagaatgt gccggtctcg gtgcaggcgc tgtcggcagc gcagctcgag 1260
cgcgaaggga tcaaacagac cagcgatatc gcccgagtga cgcccaacgt caccatcgcc 1320
atgcccaacg gcgaaggcaa ccagccggcg gtgacgatcc gcggcatcgg cctcaacgac 1380
ttcaattcca acaacgccgg cccgaacgcg atctatgtcg acgatgtcta tatcagcgcc 1440
ccgtcggccc agaccttcgg aatcttcgac atcaaccaga tccaggttct caaaggaccg 1500
caaggtacgc tctatgggcg caactccagc ggtggggcct tggtgttcac gtccagagcg 1560
ccgagccaag acttcgccgc ggacgcccat ttcgattacg gcagctacaa cacctatcaa 1620
ctgcaagccg gcgtcggcgg ccctctgagc gatcagctaa gcgcccgcct ggccttcgtc 1680
gtcaaccact ccgacgggtt catgcacaac acgctgacgg gcggttcggc gtcgggcacg 1740
gacaatcagg ccgtcaggct gcaactgctc taccgaccta atgacaggct gaaagtactt 1800
ctcagttcgg cctatggtca tgtcaactcg ccgatcgtcc agtaccgaca cttgggcgcc 1860
ttcgcggcag gaacccaatc cagcgccagc ccgactctct gcagccccga gcaggtccgc 1920
gccggaggtt gcgtcaacgt gttcggcgca ggcacgccga gcggcttcta cgacggttcc 1980
agcgatcgcg gtgaacgctt gcgcgtggaa aacttcctgc agcaggcccg cgccgactat 2040
gaggtcggtc cggtgaccct gacatcgatc agcgccttca cgcacagcaa aaagagcggc 2100
cccgacgacg ccgacgggac gtctgacagt ctgctccacg cgacctacgg cgttcgctcc 2160
gacacctgga cccaagagtt ccgcgccgcc tattccggcc agcgcctgca ttgggtggcg 2220
ggcgcctact atctcgacga gaccctcaag caaaatcagc cacttagcat cttctacgat 2280
ggagatcgct tcggcggcct gggcatcccg gccagggcgg gagccttcga cggcatcgcg 2340
caaaagagct taagccaaaa cactcagaaa acacggtcga tagccgcctt cggccaagcc 2400
gactatacct tggaccggtt caccctgacc ttgggcggtc gttacaccca tgaacgcaag 2460
acgttcgatc acttcagcgc gacccaggtc caagcaggag gccttgggaa atacggtcct 2520
ctcggcaaga tcgtctcgct gagcgaagcg ttcaaggctt ccgatccgac ctggcgcgcc 2580
gcgctttcct accgtcccgc cgagcgtgtt atggtctacg gcagcgtcgc caccggcttt 2640
aagggcggcg ccttcaacgg cgggttcctg agcagcaacc ccaacaaagc cctcgccgcg 2700
gtcaaacccg tcgcaccgga gaaggtgacc acctacgaac tgggcttcaa gtcgagcctg 2760
ttcgagcgtc gcctggtggt caacggcgcg gctttctaca acagctacga caacgagcag 2820
atcctggcca acacggccgt cgtcgtggat accgtgaccg gccctgttac cgtgacgacg 2880
aacgtcctga ccaacgcccg aaaggcccac tcccagggcg tggaattgga agtaaaggcc 2940
gtcccgatcc cggatctcgt cctcagcctg cagccggcct ggctgcgaac gcggctggac 3000
gaggcgggct tctccggggg aacgtcgctg gaaggcaagc aactggccaa tgcgccgaag 3060
ttctcgctct acgccgcggc ggactacacc ttccatcttg ccgacgacga cagcgtcaac 3120
gtcgccttca cctcggccta caagtcgcac cagttcttcg attcgacgaa cgccccctat 3180
acccagcagg agggctactg ggtgcacaac gccagcctga ccttcaactc cagaaaccac 3240
tgggatgtcg ggttcaatgt ccgaaacctg acgggcacga agtactacaa ctatctgttc 3300
gacgaggggg cgacgttcgg cttcatcaac ggcgtcgtgg ccgcgccgcg gacctacagc 3360
gtgcaattca acctgcatct ctaggcgcgc agaaggaggc gccgccatgc gcggcgcctc 3420
ccgctatcgg actgaaacgt taggtcctct tccccgcttc ggcgcgcggc gtcgccgcgc 3480
gccgtctctc tttgcaaccg tccgcggcga cccttgctgt cgcctagcag cgcggcgcgc 3540
tccatccatg cgccatgcgc aatgaatgcg acgatcgttg catttgatgg aggtttcgga 3600
ggccgctagt tctgctgcga gggggctccc gaccatgggc gccgtagccg cggctggcgc 3660
ggttcgcccc ctcgactgtc ccgacgtcgt cggcgcggac cgtagcgatc cgatcggaag 3720
gaatgggtgc gaagttgaag tatgacgtgg tggtggtcgg gggcggcaat gcggcgatga 3780
cggcggccgt caccgcgcgg gaagccggcg cgacggtgct ggtgcttgag catgcgcccc 3840
ggtcgatgcg cggcggcaac agccgccata cgcgcaacat gcgcacgatg cacgaggcgc 3900
cacttgcggt cttgaccggg caatattccg aagacgaata ctggaacgac ctgaagcggg 3960
tcacgggcgg ggaaaccgac gaggccctgg cccgtctggt gatccgcagc acgacggacg 4020
ccatcccctt catgctccgg tgcggcgtgc gcttccagcc atcgctgtcg ggcaccttga 4080
gcctgtcgcg gaccaacgcg ttcttcctgg ggggcggcaa ggctctggtg aacgcctact 4140
acgcgaccgc cgagcgcctg ggcgtcgaca tcctctatga cagcgaagtc accgagatcg 4200
tgctcgaagg cggccgggtc cggcgtctgg tggtccgcag ccaggggttc cccatcgagg 4260
tggaggcgcg cgcggtgatc gcctcgtcgg gcggcttcca ggccaacctg caatggctgg 4320
cgaacgcctg gggcccggcg gcgtcgaatt tcatcgtacg cgggacgccc tacgcgacgg 4380
gcacggtgct gcgcaacctg ctcgaccagg gcgtggcctc ggtgggcgat ccgacccagt 4440
gccatgctgt cgccatcgac gggcgcgcgc ccaagtacga cggggggatc gtcacccgac 4500
tggactgcgt gccgttctcg atcgtggtca atcgcgacgg ccaacgcttc tacgacgagg 4560
gcgaggacat ctggcccaag cgatatgcga tctgggggcg tctgaccgcg caacagcccg 4620
atcagatcgc ctacagcatc atcgacagcc gatccgaacg acttttcatg ccgtcggtgt 4680
ttcccccgat caaagccgac tcgatttccg aactcgcggc caagctcggg ctggagccgg 4740
cgacgctcgc gcagaccatc gagacgttca atcgcgcctg ccaacccggt cgcttcgatc 4800
cgcaggatct tgacggggtc cgcaccgagg ggatcacgcc gtgcaagtcc aattgggccc 4860
ggccgatcac cgagccgccg ttcagcgcat atcccctgcg gcccggcatc accttcacct 4920
acctcggcgt caaggtcgat gaacgcgcca gggtgatcct ggcctccggc cagccgacag 4980
agaacctgtt cgcgtctggc gagatcatgg ccgggagcat tcttgggcgc ggttacctgg 5040
cgggcttcgg catggcgatc gggaccgtct tcggacgcat tgcgggccgg gaggccgcat 5100
atcatgcagc ataatgtcct ggatttcgtg accaagacgc gcacgggcga gccgcgcccg 5160
gccgaaacgc ccgcgatcat cgaagcgcgc cggaccatgg aggtttgcaa cgcctgtcgc 5220
tattgcgaag gctactgcgc ggtctttccg gccatgaccc tcaagcggga gttcgaggaa 5280
gccgatctca cctacctggc caatctctgt cactcgtgcc gcggctgtta ctacgcttgc 5340
caatacgcgc cgccccatga gttcgggatc aacgtgccca aggtgctggc cgaggtccgc 5400
accgaaagct accaggccca tgcctggccg caggccgtcg ccgtcgcctt cgagcgtaac 5460
ggtctggtgg tgtccctgag cgctgcactc gcgatcgttg tcgtgctgct gggaacggcc 5520
ttcttcaatg gatcggcgat gttccaggcg cacgcctcga cgcccggcgc aggcttctac 5580
aaggccgtgc cctatgcggt catggtgagc gtcgccggcg cgatcttcgc ctatgccgcc 5640
ttggcgatgt tcatcggcct tatccggttt tggaagaccg tgggccttgg cttgcgcgac 5700
gccgtcgaac cgcgaacctt gttccaggcg ctgaaggatg cggcgaccct gcgctatctc 5760
ggcgggggcg gcgatggctg caacgacgtc gacgctagct tctcgacctc acgccgacgt 5820
ttccatcacg ccatggccta cggcttcctg ctctgttttg cctccacctc caccggtacg 5880
gtctacgacc acctcctggg ctggcccgcg ccctatccct tcttcagcct gccggtgctg 5940
ctgggaacgg tcggcggaat tgggatcgtc atcggcacgc tcggactgct ctggctgaag 6000
ctggtcggcg accaggagcc taggtcgaag gcgcaattgg gcgccgacac cgcgctgctg 6060
gtgctgctgt tcctgatcag cgtgacgggg ctgttgctgc tggcgcttcg gacgacggcg 6120
gccatgggcg tgatcctgac cgtgcacctt ggactggtct tctcgttctt cgcgacgatg 6180
ccgtacagca agttcgtgca cggactctat cgaaccgtcg ccttggttcg ttacgccgtc 6240
gagcgcaagg cgctggcctc cgggacgacg gaggaagcgt cttgatcttg gccnacgctt 6300
tggacgccgc aggccgcgcc cgccgctcag ccgaggggcg cctgggcctt gatcgcgcat 6360
cgaggggcct tggcccttgt tccgaccaat gtgtcggcgc ccgcaccgcc gtggccgaag 6420
acaggagaca atgaatgaaa gcggccattt accggcgcgg ggagatcgtt gtcgataccg 6480
ttcccgatcc ggttccagga ccaggccagg ttctcgtccg gagccttgtt tgcggggtat 6540
gtggttcgga tctgcattac cgacatcacg cacaccggtt cgtcgatctg gccttgcgct 6600
cgggcgcgcc cgccctggcc gccgatttgg atcgcgatat cgtccttggt cacgaattca 6660
gcgctcaagt cgtcgactac gggcctaaga ccgagcgtct cctgaagtcg ggaacggtcg 6720
tctgctcgcc ccccgtcgcg ttcggggcca gcggcatgcg cgccgttggc tactccgacg 6780
aattaccggg cgggtttggc cagtacatgg tcttgaatga ggcgttcctg atgccggccc 6840
caaacggact ggatccggct cgcgcggcgc tcaccgagcc gatggcggtg gggtggcacg 6900
cggtgaagct ggccggtccc ggacgcgacc atatcccgct cgtgatcggc tgcgggcccg 6960
tgggcatggc ggtcatcgcc gcgctccggg gtctgggcgt cggaccgatc atcgcggccg 7020
acttcaatcc ggcgcgtcgg agcctggcgg cgcgcatggg cgccgatatt gtcatcgacc 7080
cggcggagcg gtccccctac gacgaatggc gggataccgc ggcggcgtca ggcctggccg 7140
gactggcggg ggcgccagcg tcgctgcgga cctgtctggt cttcgagtgt gtcggcctgc 7200
caggaatgct gcgtcagatc atggaaggcg ccccggcgga gtcggagatc atcgtcgtcg 7260
gggcctgcat ggagcccgat agcctcgagc cgatgatggc gatgcataag gctctgacgc 7320
tgaattttcg cgaacctaca cgatcgagga gttcgccgag gtccttcgga tgatcggtga 7380
gggcgagctc cacgtcgagc cgttgctcag ccaacccatc ggcctggaag accttccggg 7440
ggtcttcgac naagcgcccg ggagggccgg gggcgccaag gtcctcgtcg acccctggcg 7500
ctgacgccgc cgaaaaccaa cgacagaaaa caacgggcgg gaggaacaat tgggtagcga 7560
tgagcaagac gatcctctcg tcggcggcgg tcgtcagttg cttctcaagc aatgtctgct 7620
caacgtcgtt gaccaggcgg ggagcaacga gatcgtctat caaggccggc tgaggttcag 7680
ctacgccgac ctgctttctc ggatttcgcg actggccgat gctttgacgg gcttgggcgt 7740
caagccgggc gacaccgtgg cggttctgga gtgggacagt caccggtacc tggaatgctt 7800
cttcgccatt cccatgcttg gcgccgtcat ccagacggtg aacatccgac tagcccgaga 7860
cgacctgcgc tacacgctcg agcatgcggg cgccaccctg gcgctgagcc acaccgattt 7920
cctgccgatc ctcgaggagg tgatcgacca attgcccagc ctgcgcgggg tcgtccatct 7980
gaaggacgac gaggcggaag ccgcccatcc ctgggtgctg ggggagtatg aggccctgat 8040
ggcggccgcg cgccctcggt tcgacttccc ggacttcgac gagaacacgc gggcgacgac 8100
cttctacacc agcggcacga ccgggcgtcc gaagggcgtc tactattcgc atcgtcagct 8160
ggtgctgcac accctggcgg tgatggcgac gctggccctt ggagacggtt acgccaggct 8220
ggggcgcgat acggtctaca tgccgatcac cccgatgttc catgctcatg cgtggggaat 8280
gcccttcgtg gcgacgatgg tcggctgcaa gcaagtctac ccagggcgct atgttcccga 8340
gcaactggtg gagcttcagc gcgcggagaa ggtgaccttc tctcattgcg tgcccacact 8400
tttgcagatg atgctcaatt cgccttcggg ccagacggcg gatttcaccg gatggcaggt 8460
gctcgtcggc ggagcggcgc tgccccgcgg cctggctctt caggccgcgg ggcgcggcat 8520
cgtcctgacc accggatacg gaatgtccga aaccgggccg ctggtcagct tcacgcgcat 8580
taggaccgaa gcaatggctc cagctcagga ggaggtcgcc attcgcacca aggtcggaca 8640
agctatcgcg ctggtcgacc tccgggtcgt ggatgagtcc atggcggatg tgccccgcga 8700
cggcctctcc gcgggcgaga tcgtgttgcg tgcgccttgg ctgacggctg ggtaccatcg 8760
cgatctggcc gcctcgcgcg agctttggcg cggaggaagc cttcatacgc aggatttcgg 8820
ccggattgac gcggagggct acctgcagat cagcgaccgc ctccagggag tcatcaagac 8880
ggtggggatg ggttctcctg agctgggaga tctcgtcagc cgccatccgg cggtgctgga 8940
gagcgccgcg atcgctgtcg ccgacgagcg ttggggagag cgcccagcga tggtcgtcgt 9000
gctcaggccg ggcatgagcg cgaccacggc ggacatccga gaccaccttt catcgtatgt 9060
cgcgaccggc gaaatacctc gctacgccgt gcccgagcag atctggttcg tcgaggagct 9120
cgaccgaacg agcgtgggca aggtcgacaa gcgggcgctt cgttccaggt tcgccgaagc 9180
ggcgtcctga gatggcgcat gaccgaacgg gaccaaatgg cgtcggcgtt ggttggctct 9240
ttccaaccct gttacggtcg ggtctgatga tggcgacgcg gtggtcgaac cgcgggaatg 9300
ggatcgtgta gccgggatgt tgaactgcga tctattggat ctgcgcgcct tcgtcgcggt 9360
ccacgaaacc cgcagcttca tccgcgcggc gcatctgctc ggcctttccc agcccgcgct 9420
cagtcgccgg atccaacgct tggagggact ggtcggcggc gctctcttcg accgaaccag 9480
ccggaccatg accgagaccg cgcttggcaa ggagctgctg ccggtggccc gccgaacgct 9540
tgagtttctg gacaattcgc tgttcgcctc gcccaagctg cgcgaaccgc gctggaccga 9600
catcagcatt ttttgcgtgc agaccgccgc gttccgcgtt ctgccgcgcg cggcccggcg 9660
cttcatggat gaaaatcccc gactgcgcct gaggatcatc gatgttccgg ctgtcgaagg 9720
cgcggaactg gtggcgcgag gggaagcgga gttcggtatc agcatcgaga gcctgcttcc 9780
gtccggcctg cgtttcgagg ctcttcacga ggacccgttt ggcttggcgt gccatcggag 9840
ccatcgcctg gcgcaaagcg acgtcatcga atggtccgcg ctccgcggcg aaaatcttgt 9900
cgccgtccac cgggccagtc gcaaccggac cctgctcgac gccgagctca agcagcatgc 9960
gatctccctg gactggcgtt acgaggtcgg tcacttgacg accgcgctgg ggctgatcga 10020
gtccgaggtc ggcgtggccg tcatgccgcg gatggtgatg ccccaatcag gccgctcaga 10080
actggtctgg gttcccttgg tcgccccggt cgtgaggcgc acgatcggca tcgtgcagcg 10140
ccgggtgggc gcgatgcatc ccgccgccgc ccaactgctc gagcggttgc gggaggaatg 10200
gccgaccggc gcgcccgcgg acgagtagac cgccaagatt cgaggtccgt gcgggcgcgc 10260
ggcggctggc cggtcgtcac cgcggccccg tcaccgcgtc atattcagca cctgcacttg 10320
ggtgaactcg tgcagccctt cctcgcctaa ctccgagccc atccccgaga acttggcgcc 10380
gccgagcggg agatcgggct gcacgtcggc gtgcttgttc acccagaccg agccggcctc 10440
catatcggcg gccaggctcc acgcgcggac gacgttgcgg gaccagatgg atccccccag 10500
accatagggc gaggcgttgg cgcggcgcac ggcgtcgacg gggtcggagt accggatcac 10560
cggcatcacc gggccaaact gctcttcgtc gacgagctga gcgccttcgg cgatgtcgcg 10620
tacgatggtg ggctcgatga aatagccctt gtcgcccttg cggcggccgc cggcgatgat 10680
gcggccgtcc gtcctcgcac gctcgattag accaagaacc ttctcgaact ggcgccggtt 10740
ctgcagcggc cccatctgaa cgccctgttc gagtccatcg cccacgaccg tgcgggccgc 10800
caactgcgcg aactcctcgc acatggcctc atagaggctc tcatggacgt aaatccgttt 10860
ggcggcgatg cacacctgac cggcgttttg catggccgcg gcgaacaccc tgggagcgac 10920
ttccttgggg tcgacgtcat ccaggacgat cagagcgtcg tttccgccca actcaagcga 10980
tatacgtttg aggccttcgg ccgcgccggc catgaccttt tttccggtct gggtcgatcc 11040
ggtgaagctg attttgcgaa tgccaggatg gcgggtcatt tccgcgccga gatcgtcggc 11100
gtcggtgatg atgttaatga cgcccggtgg gacgatatcc ttgaccaagg cgccaaaccg 11160
aagcgccgtc agaggcgtcg tcgccgccgg cttgaggatg accgtgttgc cggccagcag 11220
ggccgccggg atcttgaacg ccatcaacag catcgggaaa ttccagggga cgatgcagcc 11280
caccacgcct agggggcgtc tatgcacctc tacgcggccc gtcgcgtcgt ctctgaccac 11340
gcgaggcggc agatcgagcg aggtgaagta gcggaagaag gccgcggagg cgtagatctc 11400
gcccatcgcg tctgcgagcg gcttgccctg ttcctgcgtc agcaaacgcg ccagcgccga 11460
ctggtcggct tcaattgcgt cggcgatggc gttgagcgtg gccctgcgct gctcgagcgt 11520
ggttgcccgc cagctctgaa aggcgcgttc cgcggcggcg acggcttcgt ccagttggtc 11580
gcggtcggcc ctggggcaat cgatcaccag cggcgtttca gtcgcgggat tgattacgga 11640
catcgtcgtt gcgccggcga ccaggcggcc gtcgatcagc agcttgtact ctagcatgtt 11700
ggctccgatg gtcggctgat cgagccgccg gtttgcatgc ggcgctcgat cacgggattg 11760
gagatcgact tcaaccggtc aggccctgat agccctcgtg gaagcgcatg gcgatcgacg 11820
ggggaaaggc caggttcgca gccctatctg tccggacccg cacaagggcc ggtccgagcg 11880
catcgcgcgc cgcgctcaga gcgggccgca gatccggcgc ggtctcggcc ttgaagccga 11940
agcatcccag gctttcggcc aacctttccc agaggacggg gcccatctcg gtgccgaagg 12000
tcctgccgta gcgcgcctgc tcattcggga cctccatcga ccacgaccct tcggccagga 12060
cgacgacggt caccttgacg tcctcgcgga cggcggactg cagttccata caatggaagc 12120
cggccgcgcc gtcgccagta acgcagacga tctggcgatc cgggcttccg agacccgcgc 12180
cgatcgcaga cggtatgccg gtgcccagca tccccatctc aagaatgttc aggtacgagc 12240
gcggtctggt cgagggcaac ataaagtgag cccaaaggct cgtgaaaccg ccatcggcga 12300
cgtacaccgc atcgggaccg aaaacctctc ccaccgtctg cataacctca gccgggtgag 12360
gacttggacc gccatgggcc tcgatatgag cgaactcgga acgccgccat tcggcgtcca 12420
tttggcgata gcgcgtgagg tcgacgtccg cgcccgagcg cgtgggcgcg ttctcgaggg 12480
cctcgaggag gccttccacg aggctgcccg cgtccgaaac gatgcctagc gtcaacggac 12540
gtgaggcgcc caaattgcgg gggtcgatat cgacctggat cagcttgtgc ccctccgatg 12600
agccccaata gcggtcgaag ggcgtgtcga tgtttcccag gcgcgtgccc agcgccagga 12660
tgacgtcggc ttcgcgtcgc gcctgatcag cgccggcgcc ataggcgtgc aggtggaggg 12720
ggtgatcttg agggacggcc gaccggcccg ccaggctggc gatgacgccg caacccagct 12780
tgtcggctag gcgcagcaca gcctcgcccg cgccagctcg gtcgaccccg gagccgacca 12840
tgatcagcgg acgagtcgcg gcggccagca attgggcggc ggcgttgatt tgcgagccgc 12900
cggctgaagg agggggcgcc cgataggcga tcggatcgag caggccagcc cgggactcgt 12960
cggtcatgtc gtacatcact gggctcggaa catcgatctg gaccgggccg ggacgccccg 13020
cccacatctc ccggaacgcc atgcgcgtaa cctcgccgat gcgttgccag gtatgaatgg 13080
gcgcgcccca tttgaccgcc gggcgcagga gttccaattg gtcggcgccc tggaacgtgc 13140
tgggcgtcgc gggatagacg accccgccat gatgctgcgc ggtgatggcg atcatcggca 13200
cgccctcatg cttggcggtc accaagccgg gcagcaggtt tgccgtaccg ggtcctgggt 13260
ttgtcacggt ggcggcgact tggcctgtcg tcttgtagag accctcggcc atataggccg 13320
cagccgcctc atgccgcacg gggatgaagc ggatgccgtt gtcgtcgagc gccgccagca 13380
gcggatcaac ctccggcgac atcaagccga aaacaaaccg cacgccttcg cgcgctaggc 13440
actgcgcaag taatgcgccc ccggtgatcg ccatttgttt ctccctgcgt acgacggcgc 13500
atggaacacc gccgcgtctg gtcgttgtcc gaccacgttg ccgacttttc gaactatcag 13560
tcgataatta tcgaaacagc aaccggtctc gtttgcaata cgagccgtag gccgccattc 13620
tgatcgatga gaaacgaagt ggcgcgatgc ggttcaaacg cttgttttat ggggcgtttc 13680
gccatcgcga catgcgttcg gcgcattgat cgccccgatc attgcattgg ctggcggact 13740
ggcgcgccga tagtcgttgc gatggtcgcg agaataagcg tgcgaagtgg gaggatgtga 13800
agatgggggc caggagtatg tgtgcgggac ggttcggacg cttctgcatt ggcttggctt 13860
catcggttgc cgtgactcta gggggagcct ccgccgccgg cgcggcaacc gcgacggatt 13920
ttccggtccg caggaccgat ctgggccagg ttcagggact ggccggggac gtgatgagct 13980
ttcgcggaat accctatgca gcgccgccgg tgggcgggct gcgttggaag ccgccccaac 14040
acgcccggcc ctgggcgggc gttcgccccg ccacccaatt tggctccgac tgcttcggcg 14100
cggcctatct tcgcaaaggc agcctcgccc ccggcgtgag cgaggactgt ctttacctca 14160
acgtatgggc gccgtcaggc gctaaacccg gccagtaccc cgtcatggtc tgggtctacg 14220
gcggcggctt cgccggcggc acggccgcca tgccctacta cgacggcgag gcgcttgcgc 14280
gacagggcgt cgtcgtggtg acgtttaact atcggacgaa catcctgggc tttttcgccc 14340
atcctggtct ctcgcgcgag agccccaccg gaacttcggg caactacggc ctactcgaca 14400
ttctcgccgc tcttcggtgg gtgcagagca acgcccgcgc cttcggaggg gaccccggcc 14460
gagtgacggt ctttggtgaa tcggccggag cgagcgcgat cggacttctg ctcacctcgc 14520
cgctgagcaa gggtctcttc cgtggcgcta tcctcgaaag tccagggctg acgcgaccgc 14580
tcgcgacgct cgccgacagc gccgcctcgg gcgagcgcct cgacgccgat ctttcgcgac 14640
tgcgctcgac cgacccagcc accctgatgg cgcgcgccga cgcggcccgc ccggcatcgc 14700
gggacctgcg caggccgcgt ccgaccggac cgatcgtcga tggccatgtg ctgccgcaga 14760
ccgacagcgc ggcgatcgcg gcggggcagc tggcgccggt tcgggtcctg atcggaacca 14820
atgccgacga aggccgcgcc ttcctcgggc gcgcgccgat ggagacgcca gcggactacc 14880
aagcctatct ggaggcgcag tttggcgacc aagccgccgc cgtggcggcg tgctatcccc 14940
tcgacggccg ggccacgccc aaggaaatgg tcgcgcgcat cttcggcgac aatcagttca 15000
atcggggggt ctcggccttc tcggaagcgc ttgtgcgcca gggcgcgccc gtgtggcgtt 15060
atcagttcaa cggtaatacc gagggtggaa gagcgccggc tacccacgga gccgaaattc 15120
cctacgtttt cggggtgttc aagctcgacg agttgggtct gttcgattgg ccgcccgagg 15180
ggcccacgcc cgccgaccgt gcgctgggcc aactgatgtc ctccgcctgg gtccggttcg 15240
ccaagaatgg cgaccccgcc ggggacgccc ttacctggcc tgcctattct acgggcaagt 15300
cgaccatgac attcggtccc gagggccgcg cggcggtggt gtcgcccgga ccttccatcc 15360
ccccttgcgc ggatggcgcc aaggcggggt gacgccgtcg acgatggcgt gacgacggtc 15420
gaggcgatgt tctcgatctg gagtccgcgc cgcctcgatt tgcgtcgtct ccggcgctca 15480
gacgaacgcc ccagttccat ccacacagtc actttcccga gccgagctgt cggcggtggg 15540
acgaaagaga agccgatgcg agccataccg attcaaagcc gacccgttcc atccgatcgc 15600
caagccccgg ctcgcggggt gacgcaatga cggccgcgga ggagcgccgc gggcatttgg 15660
gtaagatcct gcgcgtggcg agcggcaact tcctcgagca gtacgacttc ttcatctacg 15720
gctactacgc gacctacatc gcccaggtgt tctttccatc gggcgacgag acgacgtcgt 15780
tgatgctctc cctggccacc tttggcgtcg ggttcctgat gcggccgcta ggggcgatca 15840
ttctcggatc ctacatagat cgcgtcggcc gccggcaggg cttgatcgtc acgttgggga 15900
tcatggcgat cggcacgctc accatcgccc tgacgccggg ttacagcgcc atcgggatcg 15960
ccgcgccgct catcgtcgtc gccggtaggc tcttgcaggg cttctccgcc ggagccgaac 16020
tcggcggcgt ctcgatctac ctggcggaaa tcgcaaagcc tggtcgacgg ggcttctaca 16080
cctcctggca gtcggccagc cagcaggtcg cggtgatggc ggccgcgctt gtcggtctaa 16140
gcctcggcgc aacattgacg cccgaccaaa tgcaccagtg gggctggcgc gttccgttgc 16200
tgctcggctg tgcgatcgtc cccgtcatcc tgtggctccg ccgatcgctc gacgagaccg 16260
aggcctataa acacattcat cacaaggccc attccctatt gggctcgctg gcccagttgg 16320
ggggcagctg gaggccgatc ttggccggca tggcgatctc ggtcctgacc accacgacct 16380
tctatatgat caccgcctac acgccgacct tcggaaagca ggctctcggt ttggacgccc 16440
aggacgtcct cgtcgtcacc atgctggtcg gcgcctcgaa ctttatatgg ctgccggtcg 16500
gcggcgcgct ctccgactgg attgggcgca cgccggtgct cctctctgtg cccctggtgg 16560
tccttgtcgc ggcctacccg ctgatcgcct ggctggtggg cgcgccatcg ttcttcgcgt 16620
tcgcgacggc gctgctggcc ttgtcggtct gctttggcct ctataacggc gcgatgatcg 16680
cacgactgac cgaactgatg ccgcctgcgg cacggacgct ggggttttcc ctggcgttca 16740
gtctggccac gtcgctgttc ggaggcttca cgccgctggt cagcacttat ctgatcagcg 16800
cgaccggtaa caaggccgca cccgcgctgt ggctgtgctt cgccgcgatg atcagcctga 16860
tcggggtatt ggcttcacgc aggatggggg ccgaccccga tcgatccatg gcttgaaggc 16920
gctcgccgcc gacggcctcc cgtacccaga tcctatcggc ggagccagcc ggcctgcgga 16980
tccccgacac gggcgttccg caggccggtt ttcttgttcg tggggaggag gttggcctgc 17040
ggcgctcgat ctcgcgagcc atgggccgcc cccaatcttt cggctgggcc gtgcggcgtt 17100
gggcgcgccg gccatttcga cggcggcttg cgccgccatc gacacgtcgt tcaggccggg 17160
gctttggtgt tcgcatgtcg ggactttaaa gtagccgccc gccgccaggg gccggccacg 17220
acgtagagcg ccgccgccgc aacgaggagc cggccgaaac ctggaatgcg cctcccaccc 17280
gattatcgtc aatgacgaac gaggccgcca acggaccggc gctgaagccc accaacgcga 17340
gaggggcgag cagtacggcg gcggtcctgc tgggctccaa ggcgatcacg tccgccacca 17400
gaaacggctg cagcgccagc cagaacaggc caaagccaca agcgcttgcg atgagcgcga 17460
cgggcgtgcc ggcgtgaagc aggccgatga caagaccggc ctgcagcact gcgccggcgg 17520
ccagaaccgt acgggcgtgc acgcgcgcac cgagccagga tgctgcaaga gcacccgcca 17580
cctggaaggc caggctgccc gcgatcgcgg cgccgaccgt ggccggggcg aaatggtgtt 17640
gcgcggccag gcgctccagg tagttccatg ccgccccgat gccggcgttt tgaagaaacg 17700
ccgcgagcgc cacgaccatc agggccggag agacgactac gcgaccatgg tgcgatcccg 17760
taggagcagg cacgtggtcg acgatcgccg gcgcaacgag gcaggaggcc atcgcaacgc 17820
ccgccaagac cgcgaacccg gcatccacgc caaaccgcgg gatcacccag atcggcagca 17880
aataggccgc gatcacctgg gggatcgtgg aaagaccgag cagcagcccg ctcatgcgct 17940
caggccggtc gttgtgggta aggatggcgc cggccgcgcc cagcaatagc ccttccagca 18000
acccggccgc gccgcgttgg accaggatcg tggccgggga tgcggcccag tagatggcga 18060
ggttgatgat cgcaaggagc agggaggcag cggccacctt ggcgcgcatg tggccgaggt 18120
tcatcaggaa cggacccgcc gtcgagcctg cggccagggc gaagacttcg atcatggcgg 18180
cctgacctac gcccgcctcg ctgatccgcc cggcgttggc gagacccccg agcaggatgg 18240
gttcgacgcc catcaccagc atcgaggccg tgccgatcag catagtggcc gatacgacgg 18300
acacggcctg gtgatggcga ggtccggtat tccggggcag ggtcagggac ataggctcca 18360
actgtcgtcg agaaggtgaa gggaattcgc atctgtgggg gagcggctgc gctccacaca 18420
cccagcaaat atcgataata gtttgagagc aattctgaca tcgtccgcga tttacgaaaa 18480
cacgcatatt ttaattgcct gccgctggat taagcagata aatatcgagt taagcctccg 18540
gtgcgttttc gatcccgaag ttggtgatca tcggaccgcc gatagtcagg gcgcacgaaa 18600
ccagggaggt gagcatgccg gatggtgagg ctatcagcgg cgtcggccag tggttggcgg 18660
ctttcgagag cgcgctgaaa cgcgacgatc tggcggcggc ggtcgaccta tttgtcgagg 18720
acgtcttttg gcgagacatc gtcgccttca cctgggatat ccgcacgctc gaggggcgcg 18780
gggcgatcca agagcttcta ggagccgcct cggggctcgc aaggtccgcg tcctggtcga 18840
cgacgtcggc cgatcatgat caggaaggcg tcgtcagctt tgaaaccgac ctggggcgag 18900
gccatggtta ccttcgcctc cgggggggac gctgctcgac attgctgacc tgtctggaag 18960
aactcacggg acatgaggag acacgcggcc ctcgccgtcc gcgcggggcg agcgtaggcc 19020
cggcggaccc tgacgaaaat tggaagaatc gtctcgaggc ggaaagccgg gcgatggggc 19080
gtgagaccca gccgttcgtg cttatcgtcg gcggcggtca aggcggtcta gcgcttggcg 19140
cgcgcctccg tcagctccag gtcccgactc tgatcgtcga tcagcaccca cgggtggggg 19200
accaatggcg atcgcggtac gcatcgctct gcctgcacga tccagtctgg tacgaccacc 19260
ttccttacct gccgtttccc gatacttggc cggtttatac gcccaaggac aagatcggcg 19320
attggctcga agcttatgcg caggcgatgg agctgctggt ctggtgttcg accagatgcg 19380
tgtccgccgt ctatgacgcc gaagccgggc gatggaccgt caccctgcgc cgaggcgagg 19440
agaccagcgt catccgcccc gcgcatctgg tcctggcgac gggcaacgcc ggcaagccgc 19500
gcgttccgcg cttcaagggc caagcgcagt tcgaaggtcc gatcctgcac tcgagcgcct 19560
atcggagcgg ggctgatttc aaaggacggc gcgtggccgt gatcggatcg aacaattcgg 19620
cccacgacat ctgcgcagac ctcgtggccc acggcgttga cgtcaccatg atccagcgca 19680
gttcgaccca tgtcgtccgt tccgaaacgg tcatgcggac catgctcgcg ccgctttatt 19740
cagaggaggc cttggcggcc ggcataggca cggagctggc cgacctgctt gtggcttcca 19800
tgccgttacg cctgcaggcc gaaggctatc gcgccctcca cgtcgcgatc gccgagcagg 19860
acgcagcgtt ctacgccgcg ctcgaggcga tcggcttcat gcatgacttc ggcgaggacg 19920
gcaccggcat gccgctgaag tatcttcgtc gcgcgtcggg gtactatatc gacgtcggcg 19980
catccgaact cctggccagc ggggccataa agctgcgctc ccgcgtcgag atcgatcact 20040
tcgacaccga cggcctggcc ctctcggacg gcagcaaggt cgacgccgac gccgtcatct 20100
gcgcaaccgg tttcggctcc atggacgagt gggcggccga attgatttcc cccgaggtcg 20160
cggccaaggt cggaagggtc tggggctatg ggtccggcac ccgaggcgat ccgggcccct 20220
gggagggcga acttcggaac atgtggaagc ccacccgcca gcagggcttg tggttccagg 20280
gcggaaacct ggcgcaaacc cgcttctact ccagagcgct cgctctgcag ttgaagcccg 20340
acatgctgat tgccgtgagt ctacgttcgt caccgactag gcggcggcga agctcactga 20400
tcttgctccg cggcgtccca gaggctcacg ctcgcctctc cctggtctat tgcttcgcga 20460
atttgcggcc gcagctcgag atgttcgggc aagaacgtcc tgcaataggc gacgctcacg 20520
gtcagggcct cttcgtagta gtcctcggtg atcgcaccgt tttggacaaa cgagatcgcc 20580
agaaccgcat cgacgatctg gatgttcgtg tgaaacttct tctgcggatc gcgcagaaaa 20640
ggcatgtgga agatgcggtc aaggcgctga taggccgcgc gagcgacggc ttccacatat 20700
tcgcgatcgg cctgccgtgt ctcgagcccg ccaaatccac ccaggaatag cttcgaagcc 20760
ggcgagttgg cgttgtagta atccacgcca ttgcgcaggt cccacgccgt cagcgcctgc 20820
caactactga gactcttcac cggaatgggc cggcgggtga gttgctcgaa acctttcagg 20880
tgcctttgcg ccagcgccag gaaggcggcc tccttggtcg ggaagaagtg atagaccgag 20940
gcgggtggaa cgccggcccg ctcggcgatc tgatagaggc cgacggcggc ggggttctcg 21000
tcctgtagca gcgcctcggt cgcatccagc agggccgtgt agcgagtcag cgacgtgctg 21060
cgggacggcg cgcgcgggcg aaccttcttc ccggatgcgt tccgcgggtg atggggcctg 21120
agtcgtctcc atgaacgaga gtagcggcgc ggcgagcctt ggatatcggc aatgatggcg 21180
ccgggttgct ctatgacgag ccgaatggcg gcgctcggcg caagtgtgcg atgtaaaaaa 21240
tgtgccgcgg acgtgacgtc cgcggcacac aaccgggcga tggctagagt tgctcgtatc 21300
ctacagccac ctcccggtgg acgccgccag ggaggaatgg gcgtccgggg aggggagtca 21360
gtagcggaag cggagcccga cgttgaaata cctgccgcgc ggatcgtagg ctgcgctcgt 21420
cgggaccgag aagctggacg gattgaccgt cgccaccggt ggatcacggt cgaagaggtt 21480
gtttaccgaa gcaaaaacct gctgcttatg cccgaatgaa tcgaagctgt aggtcaccgt 21540
ggcgtcagtg taccagactg cgccggtgtg gttcaggttg gtgtcgacac cttcgacgtt 21600
ttcagcgtca aagaccgagc gagagatgaa gcgctcttgc aggaacagcg accatgcggc 21660
gcgctcgtaa cgcgcctgca gattgagcag ccatttgggg gcggtgggtt cgccgagcga 21720
ttgtaggggc gccgagccca gggcggtgac ggatgcggcc gtgcggtggt tggccaaggc 21780
ccgcaggttc agagatccgc ccgcgacgtt gcgcacgtag gacgcctcca aatcgacacc 21840
cgccgccttc tgcaccgcaa ggttcaggtt ggggccgatg acggtcagcg tgttgtccgc 21900
attccgggtg atcaaggcgc acatggactg gttgcccgcg gcgcagaggt cgatctcctg 21960
ctggggcagg aggtagtcga tggcgtcttt gagatcgatg atatagcggt ccgccgaaag 22020
ctgaagcccc ggggcgaagg ccggccgcaa cacgacgccg aaggtcaggg tatcggcgcg 22080
ctcggggcga agatccgggt tgccggcggt gaagaagcgg gtctgcaacg tctggccctg 22140
atagacagag ttcagggtag cctgacggcc ggggtcgtag agttccacca ggctggcgcc 22200
gcggatgtcg cgcgagcgag tcaggcgaaa ccgcagtcca tcgacgggct cgtagtcgcc 22260
gccgaccttc caggtcgtga cgccgcccga gacgctatag tcggcatacc ggaccgcgcc 22320
gttgaggttg agcgctcgac caagcgcgct gtccttgagc accggaaccc cgacctcaag 22380
ataagcctcc ttgatgttgt agctcccgct gaagggaaga gggttgtaga ggttgaaacc 22440
accaggccgg ttgctctgag aggccggcgc tccacgcagt ccggcggtcg acgtgatcgc 22500
ctgcgagatg gcgtcggtgg tctggttggc tttctcctca cgatattcgc cgcccgcggc 22560
gatcgagatc ggcccggcgc ccagcgaaaa cgcctggcca aggtcgccga cgaggttcag 22620
gcccgcgacg acctgttcca gtttcaggtt cgccaccccg tcgtcgagga catagtcgat 22680
cgcggcggca cttggcgcgc cggcgccgaa aatgttgagc ggcacgcagc ccgcgtcgag 22740
acccgaaagg gtcgaacggc agacgatctt tcccgtcggg tccttcacgg cgtcgaccgc 22800
tgcatagaga ttgcggttga tcgacaggtt gttttcgcga agctccaggt tcgtgcggcc 22860
gtaggagatc gaaccgtcga gcttccaggt gtcgttgagg tccgcccgga agccggcagc 22920
tccgcgacgc accttggcgt aggactcgat ctcgaccagc gggaactcgc cggcgaaccg 22980
gccgacggaa accgacgtca gccggttggt gtccatcagt gcgccgagtg cggtcgggag 23040
gaacgcgttg tcgcggaaga tcgtgaaggc gttcgcgctg ccgacaaact ggttgacgaa 23100
ggcgccgagg ttggtgtggc tataggcata ggtgccttcc gcatagagct tgacgcgttc 23160
tgaggcctcg aactcgccgc ggaggaagcc attgtagcgc cgctggtccg gagcgaagcc 23220
gagattgacg cgcggaccgt cgccgccgct ctggaaggaa ctgctggtaa agcttccgta 23280
gttaaaggtc gcaagcgtac cgccgggaag aaaggtgacg cccttcagcg gacccgatgt 23340
gatcaggccg ccgtaggcgc cgcgcgagct tcggatgtcg ggaaccaccg tgacgcccgt 23400
cggggcgccg ggcacgggat attgccccgc cgcgcgatca taccacgccc gatcggtggc 23460
ctgatcggcg cgaatgccgt cctcgtgata gtattcgacc gcggcaagga gatgtgcgcg 23520
cccttgggca aacgacttgc cggccgccag cgatccgccc accgaggcca gatcgttgcg 23580
gctcgagacg ccggtctgga cgttcgcctt taggccctcg aaatcctcgt cgaggacgaa 23640
gttgattacg ccggatacgg catcggatcc gtaggcggcc gaagcgccgc cggtcaccac 23700
gtcgacccgc ttgacgagag cctggggcaa cacattgacg tccaccgatc cggtgtagtt 23760
ggtggcgacg aagcggttgc cgttgagcag aacgaggttt cggttcgcgc ccaggccgcg 23820
caggctcagg agattctggc cgctgttgcc ggtgcccggc gtcgtgccgg ggttcgacgt 23880
tttcagacta ttattgaaga ccggaagttg gttgaggcca tcggcgatgt tggttggagc 23940
cgccgccttg agctgatcgc agacgccgcg gtcacgggag tcggtgcgct gaatccgctc 24000
tggaggcggc tgcccgtgac gacgatttcg ctgacttcct ggcgtcctgg gccgagggtt 24060
ttcgacaggt gcttgctgcg cccggccgag gcttggggct agaagcacgg acgtcgccgc 24120
tgcgcccagc aggctaaggc ggaaagtgct cttctgattg gttgctgctt ggctcatggc 24180
taatccctcc ctctctttgt gacggcgagg gggggacggc atggcggaac gccgcacgcg 24240
aaaatgtccc ggttcctcct cgattgggcg atgtgcctcg cccttccgct atgagtaacg 24300
agggcttttg ggcccatcaa atgcaatgat cggcgggctc tattcgcccg gcgcatggat 24360
cttttcgatc tgccggattg gcaattcagg gttgaaaata cgataattat cgaattgagt 24420
tagtgggggc tctcgtttct cgagcagaat tgatcggtgg cgtagtgagg ctgaccatgc 24480
aggttgacgg gatc 24494




2


1590


DNA


Bacterium 2412.1




fccA Fumonisin Esterase





2
atg ggg gcc agg agt atg tgt gcg gga cgg ttc gga cgc ttc tgc att 48
Met Gly Ala Arg Ser Met Cys Ala Gly Arg Phe Gly Arg Phe Cys Ile
1 5 10 15
ggc ttg gct tca tcg gtt gcc gtg act cta ggg gga gcc tcc gcc gcc 96
Gly Leu Ala Ser Ser Val Ala Val Thr Leu Gly Gly Ala Ser Ala Ala
20 25 30
ggc gcg gca acc gcg acg gat ttt ccg gtc cgc agg acc gat ctg ggc 144
Gly Ala Ala Thr Ala Thr Asp Phe Pro Val Arg Arg Thr Asp Leu Gly
35 40 45
cag gtt cag gga ctg gcc ggg gac gtg atg agc ttt cgc gga ata ccc 192
Gln Val Gln Gly Leu Ala Gly Asp Val Met Ser Phe Arg Gly Ile Pro
50 55 60
tat gca gcg ccg ccg gtg ggc ggg ctg cgt tgg aag ccg ccc caa cac 240
Tyr Ala Ala Pro Pro Val Gly Gly Leu Arg Trp Lys Pro Pro Gln His
65 70 75 80
gcc cgg ccc tgg gcg ggc gtt cgc ccc gcc acc caa ttt ggc tcc gac 288
Ala Arg Pro Trp Ala Gly Val Arg Pro Ala Thr Gln Phe Gly Ser Asp
85 90 95
tgc ttc ggc gcg gcc tat ctt cgc aaa ggc agc ctc gcc ccc ggc gtg 336
Cys Phe Gly Ala Ala Tyr Leu Arg Lys Gly Ser Leu Ala Pro Gly Val
100 105 110
agc gag gac tgt ctt tac ctc aac gta tgg gcg ccg tca ggc gct aaa 384
Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ala Pro Ser Gly Ala Lys
115 120 125
ccc ggc cag tac ccc gtc atg gtc tgg gtc tac ggc ggc ggc ttc gcc 432
Pro Gly Gln Tyr Pro Val Met Val Trp Val Tyr Gly Gly Gly Phe Ala
130 135 140
ggc ggc acg gcc gcc atg ccc tac tac gac ggc gag gcg ctt gcg cga 480
Gly Gly Thr Ala Ala Met Pro Tyr Tyr Asp Gly Glu Ala Leu Ala Arg
145 150 155 160
cag ggc gtc gtc gtg gtg acg ttt aac tat cgg acg aac atc ctg ggc 528
Gln Gly Val Val Val Val Thr Phe Asn Tyr Arg Thr Asn Ile Leu Gly
165 170 175
ttt ttc gcc cat cct ggt ctc tcg cgc gag agc ccc acc gga act tcg 576
Phe Phe Ala His Pro Gly Leu Ser Arg Glu Ser Pro Thr Gly Thr Ser
180 185 190
ggc aac tac ggc cta ctc gac att ctc gcc gct ctt cgg tgg gtg cag 624
Gly Asn Tyr Gly Leu Leu Asp Ile Leu Ala Ala Leu Arg Trp Val Gln
195 200 205
agc aac gcc cgc gcc ttc gga ggg gac ccc ggc cga gtg acg gtc ttt 672
Ser Asn Ala Arg Ala Phe Gly Gly Asp Pro Gly Arg Val Thr Val Phe
210 215 220
ggt gaa tcg gcc gga gcg agc gcg atc gga ctt ctg ctc acc tcg ccg 720
Gly Glu Ser Ala Gly Ala Ser Ala Ile Gly Leu Leu Leu Thr Ser Pro
225 230 235 240
ctg agc aag ggt ctc ttc cgt ggc gct atc ctc gaa agt cca ggg ctg 768
Leu Ser Lys Gly Leu Phe Arg Gly Ala Ile Leu Glu Ser Pro Gly Leu
245 250 255
acg cga ccg ctc gcg acg ctc gcc gac agc gcc gcc tcg ggc gag cgc 816
Thr Arg Pro Leu Ala Thr Leu Ala Asp Ser Ala Ala Ser Gly Glu Arg
260 265 270
ctc gac gcc gat ctt tcg cga ctg cgc tcg acc gac cca gcc acc ctg 864
Leu Asp Ala Asp Leu Ser Arg Leu Arg Ser Thr Asp Pro Ala Thr Leu
275 280 285
atg gcg cgc gcc gac gcg gcc cgc ccg gca tcg cgg gac ctg cgc agg 912
Met Ala Arg Ala Asp Ala Ala Arg Pro Ala Ser Arg Asp Leu Arg Arg
290 295 300
ccg cgt ccg acc gga ccg atc gtc gat ggc cat gtg ctg ccg cag acc 960
Pro Arg Pro Thr Gly Pro Ile Val Asp Gly His Val Leu Pro Gln Thr
305 310 315 320
gac agc gcg gcg atc gcg gcg ggg cag ctg gcg ccg gtt cgg gtc ctg 1008
Asp Ser Ala Ala Ile Ala Ala Gly Gln Leu Ala Pro Val Arg Val Leu
325 330 335
atc gga acc aat gcc gac gaa ggc cgc gcc ttc ctc ggg cgc gcg ccg 1056
Ile Gly Thr Asn Ala Asp Glu Gly Arg Ala Phe Leu Gly Arg Ala Pro
340 345 350
atg gag acg cca gcg gac tac caa gcc tat ctg gag gcg cag ttt ggc 1104
Met Glu Thr Pro Ala Asp Tyr Gln Ala Tyr Leu Glu Ala Gln Phe Gly
355 360 365
gac caa gcc gcc gcc gtg gcg gcg tgc tat ccc ctc gac ggc cgg gcc 1152
Asp Gln Ala Ala Ala Val Ala Ala Cys Tyr Pro Leu Asp Gly Arg Ala
370 375 380
acg ccc aag gaa atg gtc gcg cgc atc ttc ggc gac aat cag ttc aat 1200
Thr Pro Lys Glu Met Val Ala Arg Ile Phe Gly Asp Asn Gln Phe Asn
385 390 395 400
cgg ggg gtc tcg gcc ttc tcg gaa gcg ctt gtg cgc cag ggc gcg ccc 1248
Arg Gly Val Ser Ala Phe Ser Glu Ala Leu Val Arg Gln Gly Ala Pro
405 410 415
gtg tgg cgt tat cag ttc aac ggt aat acc gag ggt gga aga gcg ccg 1296
Val Trp Arg Tyr Gln Phe Asn Gly Asn Thr Glu Gly Gly Arg Ala Pro
420 425 430
gct acc cac gga gcc gaa att ccc tac gtt ttc ggg gtg ttc aag ctc 1344
Ala Thr His Gly Ala Glu Ile Pro Tyr Val Phe Gly Val Phe Lys Leu
435 440 445
gac gag ttg ggt ctg ttc gat tgg ccg ccc gag ggg ccc acg ccc gcc 1392
Asp Glu Leu Gly Leu Phe Asp Trp Pro Pro Glu Gly Pro Thr Pro Ala
450 455 460
gac cgt gcg ctg ggc caa ctg atg tcc tcc gcc tgg gtc cgg ttc gcc 1440
Asp Arg Ala Leu Gly Gln Leu Met Ser Ser Ala Trp Val Arg Phe Ala
465 470 475 480
aag aat ggc gac ccc gcc ggg gac gcc ctt acc tgg cct gcc tat tct 1488
Lys Asn Gly Asp Pro Ala Gly Asp Ala Leu Thr Trp Pro Ala Tyr Ser
485 490 495
acg ggc aag tcg acc atg aca ttc ggt ccc gag ggc cgc gcg gcg gtg 1536
Thr Gly Lys Ser Thr Met Thr Phe Gly Pro Glu Gly Arg Ala Ala Val
500 505 510
gtg tcg ccc gga cct tcc atc ccc cct tgc gcg gat ggc gcc aag gcg 1584
Val Ser Pro Gly Pro Ser Ile Pro Pro Cys Ala Asp Gly Ala Lys Ala
515 520 525
ggg tga 1590
Gly




3


529


PRT


Bacterium 2412.1



3
Met Gly Ala Arg Ser Met Cys Ala Gly Arg Phe Gly Arg Phe Cys Ile
1 5 10 15
Gly Leu Ala Ser Ser Val Ala Val Thr Leu Gly Gly Ala Ser Ala Ala
20 25 30
Gly Ala Ala Thr Ala Thr Asp Phe Pro Val Arg Arg Thr Asp Leu Gly
35 40 45
Gln Val Gln Gly Leu Ala Gly Asp Val Met Ser Phe Arg Gly Ile Pro
50 55 60
Tyr Ala Ala Pro Pro Val Gly Gly Leu Arg Trp Lys Pro Pro Gln His
65 70 75 80
Ala Arg Pro Trp Ala Gly Val Arg Pro Ala Thr Gln Phe Gly Ser Asp
85 90 95
Cys Phe Gly Ala Ala Tyr Leu Arg Lys Gly Ser Leu Ala Pro Gly Val
100 105 110
Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ala Pro Ser Gly Ala Lys
115 120 125
Pro Gly Gln Tyr Pro Val Met Val Trp Val Tyr Gly Gly Gly Phe Ala
130 135 140
Gly Gly Thr Ala Ala Met Pro Tyr Tyr Asp Gly Glu Ala Leu Ala Arg
145 150 155 160
Gln Gly Val Val Val Val Thr Phe Asn Tyr Arg Thr Asn Ile Leu Gly
165 170 175
Phe Phe Ala His Pro Gly Leu Ser Arg Glu Ser Pro Thr Gly Thr Ser
180 185 190
Gly Asn Tyr Gly Leu Leu Asp Ile Leu Ala Ala Leu Arg Trp Val Gln
195 200 205
Ser Asn Ala Arg Ala Phe Gly Gly Asp Pro Gly Arg Val Thr Val Phe
210 215 220
Gly Glu Ser Ala Gly Ala Ser Ala Ile Gly Leu Leu Leu Thr Ser Pro
225 230 235 240
Leu Ser Lys Gly Leu Phe Arg Gly Ala Ile Leu Glu Ser Pro Gly Leu
245 250 255
Thr Arg Pro Leu Ala Thr Leu Ala Asp Ser Ala Ala Ser Gly Glu Arg
260 265 270
Leu Asp Ala Asp Leu Ser Arg Leu Arg Ser Thr Asp Pro Ala Thr Leu
275 280 285
Met Ala Arg Ala Asp Ala Ala Arg Pro Ala Ser Arg Asp Leu Arg Arg
290 295 300
Pro Arg Pro Thr Gly Pro Ile Val Asp Gly His Val Leu Pro Gln Thr
305 310 315 320
Asp Ser Ala Ala Ile Ala Ala Gly Gln Leu Ala Pro Val Arg Val Leu
325 330 335
Ile Gly Thr Asn Ala Asp Glu Gly Arg Ala Phe Leu Gly Arg Ala Pro
340 345 350
Met Glu Thr Pro Ala Asp Tyr Gln Ala Tyr Leu Glu Ala Gln Phe Gly
355 360 365
Asp Gln Ala Ala Ala Val Ala Ala Cys Tyr Pro Leu Asp Gly Arg Ala
370 375 380
Thr Pro Lys Glu Met Val Ala Arg Ile Phe Gly Asp Asn Gln Phe Asn
385 390 395 400
Arg Gly Val Ser Ala Phe Ser Glu Ala Leu Val Arg Gln Gly Ala Pro
405 410 415
Val Trp Arg Tyr Gln Phe Asn Gly Asn Thr Glu Gly Gly Arg Ala Pro
420 425 430
Ala Thr His Gly Ala Glu Ile Pro Tyr Val Phe Gly Val Phe Lys Leu
435 440 445
Asp Glu Leu Gly Leu Phe Asp Trp Pro Pro Glu Gly Pro Thr Pro Ala
450 455 460
Asp Arg Ala Leu Gly Gln Leu Met Ser Ser Ala Trp Val Arg Phe Ala
465 470 475 480
Lys Asn Gly Asp Pro Ala Gly Asp Ala Leu Thr Trp Pro Ala Tyr Ser
485 490 495
Thr Gly Lys Ser Thr Met Thr Phe Gly Pro Glu Gly Arg Ala Ala Val
500 505 510
Val Ser Pro Gly Pro Ser Ile Pro Pro Cys Ala Asp Gly Ala Lys Ala
515 520 525
Gly




4


1290


DNA


Bacterium 2412.1




fccB Citrate Transport nucleotide





4
atg acg gcc gcg gag gag cgc cgc ggg cat ttg ggt aag atc ctg cgc 48
Met Thr Ala Ala Glu Glu Arg Arg Gly His Leu Gly Lys Ile Leu Arg
1 5 10 15
gtg gcg agc ggc aac ttc ctc gag cag tac gac ttc ttc atc tac ggc 96
Val Ala Ser Gly Asn Phe Leu Glu Gln Tyr Asp Phe Phe Ile Tyr Gly
20 25 30
tac tac gcg acc tac atc gcc cag gtg ttc ttt cca tcg ggc gac gag 144
Tyr Tyr Ala Thr Tyr Ile Ala Gln Val Phe Phe Pro Ser Gly Asp Glu
35 40 45
acg acg tcg ttg atg ctc tcc ctg gcc acc ttt ggc gtc ggg ttc ctg 192
Thr Thr Ser Leu Met Leu Ser Leu Ala Thr Phe Gly Val Gly Phe Leu
50 55 60
atg cgg ccg cta ggg gcg atc att ctc gga tcc tac ata gat cgc gtc 240
Met Arg Pro Leu Gly Ala Ile Ile Leu Gly Ser Tyr Ile Asp Arg Val
65 70 75 80
ggc cgc cgg cag ggc ttg atc gtc acg ttg ggg atc atg gcg atc ggc 288
Gly Arg Arg Gln Gly Leu Ile Val Thr Leu Gly Ile Met Ala Ile Gly
85 90 95
acg ctc acc atc gcc ctg acg ccg ggt tac agc gcc atc ggg atc gcc 336
Thr Leu Thr Ile Ala Leu Thr Pro Gly Tyr Ser Ala Ile Gly Ile Ala
100 105 110
gcg ccg ctc atc gtc gtc gcc ggt agg ctc ttg cag ggc ttc tcc gcc 384
Ala Pro Leu Ile Val Val Ala Gly Arg Leu Leu Gln Gly Phe Ser Ala
115 120 125
gga gcc gaa ctc ggc ggc gtc tcg atc tac ctg gcg gaa atc gca aag 432
Gly Ala Glu Leu Gly Gly Val Ser Ile Tyr Leu Ala Glu Ile Ala Lys
130 135 140
cct ggt cga cgg ggc ttc tac acc tcc tgg cag tcg gcc agc cag cag 480
Pro Gly Arg Arg Gly Phe Tyr Thr Ser Trp Gln Ser Ala Ser Gln Gln
145 150 155 160
gtc gcg gtg atg gcg gcc gcg ctt gtc ggt cta agc ctc ggc gca aca 528
Val Ala Val Met Ala Ala Ala Leu Val Gly Leu Ser Leu Gly Ala Thr
165 170 175
ttg acg ccc gac caa atg cac cag tgg ggc tgg cgc gtt ccg ttg ctg 576
Leu Thr Pro Asp Gln Met His Gln Trp Gly Trp Arg Val Pro Leu Leu
180 185 190
ctc ggc tgt gcg atc gtc ccc gtc atc ctg tgg ctc cgc cga tcg ctc 624
Leu Gly Cys Ala Ile Val Pro Val Ile Leu Trp Leu Arg Arg Ser Leu
195 200 205
gac gag acc gag gcc tat aaa cac att cat cac aag gcc cat tcc cta 672
Asp Glu Thr Glu Ala Tyr Lys His Ile His His Lys Ala His Ser Leu
210 215 220
ttg ggc tcg ctg gcc cag ttg ggg ggc agc tgg agg ccg atc ttg gcc 720
Leu Gly Ser Leu Ala Gln Leu Gly Gly Ser Trp Arg Pro Ile Leu Ala
225 230 235 240
ggc atg gcg atc tcg gtc ctg acc acc acg acc ttc tat atg atc acc 768
Gly Met Ala Ile Ser Val Leu Thr Thr Thr Thr Phe Tyr Met Ile Thr
245 250 255
gcc tac acg ccg acc ttc gga aag cag gct ctc ggt ttg gac gcc cag 816
Ala Tyr Thr Pro Thr Phe Gly Lys Gln Ala Leu Gly Leu Asp Ala Gln
260 265 270
gac gtc ctc gtc gtc acc atg ctg gtc ggc gcc tcg aac ttt ata tgg 864
Asp Val Leu Val Val Thr Met Leu Val Gly Ala Ser Asn Phe Ile Trp
275 280 285
ctg ccg gtc ggc ggc gcg ctc tcc gac tgg att ggg cgc acg ccg gtg 912
Leu Pro Val Gly Gly Ala Leu Ser Asp Trp Ile Gly Arg Thr Pro Val
290 295 300
ctc ctc tct gtg ccc ctg gtg gtc ctt gtc gcg gcc tac ccg ctg atc 960
Leu Leu Ser Val Pro Leu Val Val Leu Val Ala Ala Tyr Pro Leu Ile
305 310 315 320
gcc tgg ctg gtg ggc gcg cca tcg ttc ttc gcg ttc gcg acg gcg ctg 1008
Ala Trp Leu Val Gly Ala Pro Ser Phe Phe Ala Phe Ala Thr Ala Leu
325 330 335
ctg gcc ttg tcg gtc tgc ttt ggc ctc tat aac ggc gcg atg atc gca 1056
Leu Ala Leu Ser Val Cys Phe Gly Leu Tyr Asn Gly Ala Met Ile Ala
340 345 350
cga ctg acc gaa ctg atg ccg cct gcg gca cgg acg ctg ggg ttt tcc 1104
Arg Leu Thr Glu Leu Met Pro Pro Ala Ala Arg Thr Leu Gly Phe Ser
355 360 365
ctg gcg ttc agt ctg gcc acg tcg ctg ttc gga ggc ttc acg ccg ctg 1152
Leu Ala Phe Ser Leu Ala Thr Ser Leu Phe Gly Gly Phe Thr Pro Leu
370 375 380
gtc agc act tat ctg atc agc gcg acc ggt aac aag gcc gca ccc gcg 1200
Val Ser Thr Tyr Leu Ile Ser Ala Thr Gly Asn Lys Ala Ala Pro Ala
385 390 395 400
ctg tgg ctg tgc ttc gcc gcg atg atc agc ctg atc ggg gta ttg gct 1248
Leu Trp Leu Cys Phe Ala Ala Met Ile Ser Leu Ile Gly Val Leu Ala
405 410 415
tca cgc agg atg ggg gcc gac ccc gat cga tcc atg gct tga 1290
Ser Arg Arg Met Gly Ala Asp Pro Asp Arg Ser Met Ala
420 425




5


429


PRT


Bacterium 2412.1



5
Met Thr Ala Ala Glu Glu Arg Arg Gly His Leu Gly Lys Ile Leu Arg
1 5 10 15
Val Ala Ser Gly Asn Phe Leu Glu Gln Tyr Asp Phe Phe Ile Tyr Gly
20 25 30
Tyr Tyr Ala Thr Tyr Ile Ala Gln Val Phe Phe Pro Ser Gly Asp Glu
35 40 45
Thr Thr Ser Leu Met Leu Ser Leu Ala Thr Phe Gly Val Gly Phe Leu
50 55 60
Met Arg Pro Leu Gly Ala Ile Ile Leu Gly Ser Tyr Ile Asp Arg Val
65 70 75 80
Gly Arg Arg Gln Gly Leu Ile Val Thr Leu Gly Ile Met Ala Ile Gly
85 90 95
Thr Leu Thr Ile Ala Leu Thr Pro Gly Tyr Ser Ala Ile Gly Ile Ala
100 105 110
Ala Pro Leu Ile Val Val Ala Gly Arg Leu Leu Gln Gly Phe Ser Ala
115 120 125
Gly Ala Glu Leu Gly Gly Val Ser Ile Tyr Leu Ala Glu Ile Ala Lys
130 135 140
Pro Gly Arg Arg Gly Phe Tyr Thr Ser Trp Gln Ser Ala Ser Gln Gln
145 150 155 160
Val Ala Val Met Ala Ala Ala Leu Val Gly Leu Ser Leu Gly Ala Thr
165 170 175
Leu Thr Pro Asp Gln Met His Gln Trp Gly Trp Arg Val Pro Leu Leu
180 185 190
Leu Gly Cys Ala Ile Val Pro Val Ile Leu Trp Leu Arg Arg Ser Leu
195 200 205
Asp Glu Thr Glu Ala Tyr Lys His Ile His His Lys Ala His Ser Leu
210 215 220
Leu Gly Ser Leu Ala Gln Leu Gly Gly Ser Trp Arg Pro Ile Leu Ala
225 230 235 240
Gly Met Ala Ile Ser Val Leu Thr Thr Thr Thr Phe Tyr Met Ile Thr
245 250 255
Ala Tyr Thr Pro Thr Phe Gly Lys Gln Ala Leu Gly Leu Asp Ala Gln
260 265 270
Asp Val Leu Val Val Thr Met Leu Val Gly Ala Ser Asn Phe Ile Trp
275 280 285
Leu Pro Val Gly Gly Ala Leu Ser Asp Trp Ile Gly Arg Thr Pro Val
290 295 300
Leu Leu Ser Val Pro Leu Val Val Leu Val Ala Ala Tyr Pro Leu Ile
305 310 315 320
Ala Trp Leu Val Gly Ala Pro Ser Phe Phe Ala Phe Ala Thr Ala Leu
325 330 335
Leu Ala Leu Ser Val Cys Phe Gly Leu Tyr Asn Gly Ala Met Ile Ala
340 345 350
Arg Leu Thr Glu Leu Met Pro Pro Ala Ala Arg Thr Leu Gly Phe Ser
355 360 365
Leu Ala Phe Ser Leu Ala Thr Ser Leu Phe Gly Gly Phe Thr Pro Leu
370 375 380
Val Ser Thr Tyr Leu Ile Ser Ala Thr Gly Asn Lys Ala Ala Pro Ala
385 390 395 400
Leu Trp Leu Cys Phe Ala Ala Met Ile Ser Leu Ile Gly Val Leu Ala
405 410 415
Ser Arg Arg Met Gly Ala Asp Pro Asp Arg Ser Met Ala
420 425




6


1677


DNA


Bacterium 2412.1




fccC Flavin Monooxygenase





6
atg ggg cgt gag acc cag ccg ttc gtg ctt atc gtc ggc ggc ggt caa 48
Met Gly Arg Glu Thr Gln Pro Phe Val Leu Ile Val Gly Gly Gly Gln
1 5 10 15
ggc ggt cta gcg ctt ggc gcg cgc ctc cgt cag ctc cag gtc ccg act 96
Gly Gly Leu Ala Leu Gly Ala Arg Leu Arg Gln Leu Gln Val Pro Thr
20 25 30
ctg atc gtc gat cag cac cca cgg gtg ggg gac caa tgg cga tcg cgg 144
Leu Ile Val Asp Gln His Pro Arg Val Gly Asp Gln Trp Arg Ser Arg
35 40 45
tac gca tcg ctc tgc ctg cac gat cca gtc tgg tac gac cac ctt cct 192
Tyr Ala Ser Leu Cys Leu His Asp Pro Val Trp Tyr Asp His Leu Pro
50 55 60
tac ctg ccg ttt ccc gat act tgg ccg gtt tat acg ccc aag gac aag 240
Tyr Leu Pro Phe Pro Asp Thr Trp Pro Val Tyr Thr Pro Lys Asp Lys
65 70 75 80
atc ggc gat tgg ctc gaa gct tat gcg cag gcg atg gag ctg ctg gtc 288
Ile Gly Asp Trp Leu Glu Ala Tyr Ala Gln Ala Met Glu Leu Leu Val
85 90 95
tgg tgt tcg acc aga tgc gtg tcc gcc gtc tat gac gcc gaa gcc ggg 336
Trp Cys Ser Thr Arg Cys Val Ser Ala Val Tyr Asp Ala Glu Ala Gly
100 105 110
cga tgg acc gtc acc ctg cgc cga ggc gag gag acc agc gtc atc cgc 384
Arg Trp Thr Val Thr Leu Arg Arg Gly Glu Glu Thr Ser Val Ile Arg
115 120 125
ccc gcg cat ctg gtc ctg gcg acg ggc aac gcc ggc aag ccg cgc gtt 432
Pro Ala His Leu Val Leu Ala Thr Gly Asn Ala Gly Lys Pro Arg Val
130 135 140
ccg cgc ttc aag ggc caa gcg cag ttc gaa ggt ccg atc ctg cac tcg 480
Pro Arg Phe Lys Gly Gln Ala Gln Phe Glu Gly Pro Ile Leu His Ser
145 150 155 160
agc gcc tat cgg agc ggg gct gat ttc aaa gga cgg cgc gtg gcc gtg 528
Ser Ala Tyr Arg Ser Gly Ala Asp Phe Lys Gly Arg Arg Val Ala Val
165 170 175
atc gga tcg aac aat tcg gcc cac gac atc tgc gca gac ctc gtg gcc 576
Ile Gly Ser Asn Asn Ser Ala His Asp Ile Cys Ala Asp Leu Val Ala
180 185 190
cac ggc gtt gac gtc acc atg atc cag cgc agt tcg acc cat gtc gtc 624
His Gly Val Asp Val Thr Met Ile Gln Arg Ser Ser Thr His Val Val
195 200 205
cgt tcc gaa acg gtc atg cgg acc atg ctc gcg ccg ctt tat tca gag 672
Arg Ser Glu Thr Val Met Arg Thr Met Leu Ala Pro Leu Tyr Ser Glu
210 215 220
gag gcc ttg gcg gcc ggc ata ggc acg gag ctg gcc gac ctg ctt gtg 720
Glu Ala Leu Ala Ala Gly Ile Gly Thr Glu Leu Ala Asp Leu Leu Val
225 230 235 240
gct tcc atg ccg tta cgc ctg cag gcc gaa ggc tat cgc gcc ctc cac 768
Ala Ser Met Pro Leu Arg Leu Gln Ala Glu Gly Tyr Arg Ala Leu His
245 250 255
gtc gcg atc gcc gag cag gac gca gcg ttc tac gcc gcg ctc gag gcg 816
Val Ala Ile Ala Glu Gln Asp Ala Ala Phe Tyr Ala Ala Leu Glu Ala
260 265 270
atc ggc ttc atg cat gac ttc ggc gag gac ggc acc ggc atg ccg ctg 864
Ile Gly Phe Met His Asp Phe Gly Glu Asp Gly Thr Gly Met Pro Leu
275 280 285
aag tat ctt cgt cgc gcg tcg ggg tac tat atc gac gtc ggc gca tcc 912
Lys Tyr Leu Arg Arg Ala Ser Gly Tyr Tyr Ile Asp Val Gly Ala Ser
290 295 300
gaa ctc ctg gcc agc ggg gcc ata aag ctg cgc tcc cgc gtc gag atc 960
Glu Leu Leu Ala Ser Gly Ala Ile Lys Leu Arg Ser Arg Val Glu Ile
305 310 315 320
gat cac ttc gac acc gac ggc ctg gcc ctc tcg gac ggc agc aag gtc 1008
Asp His Phe Asp Thr Asp Gly Leu Ala Leu Ser Asp Gly Ser Lys Val
325 330 335
gac gcc gac gcc gtc atc tgc gca acc ggt ttc ggc tcc atg gac gag 1056
Asp Ala Asp Ala Val Ile Cys Ala Thr Gly Phe Gly Ser Met Asp Glu
340 345 350
tgg gcg gcc gaa ttg att tcc ccc gag gtc gcg gcc aag gtc gga agg 1104
Trp Ala Ala Glu Leu Ile Ser Pro Glu Val Ala Ala Lys Val Gly Arg
355 360 365
gtc tgg ggc tat ggg tcc ggc acc cga ggc gat ccg ggc ccc tgg gag 1152
Val Trp Gly Tyr Gly Ser Gly Thr Arg Gly Asp Pro Gly Pro Trp Glu
370 375 380
ggc gaa ctt cgg aac atg tgg aag ccc acc cgc cag cag ggc ttg tgg 1200
Gly Glu Leu Arg Asn Met Trp Lys Pro Thr Arg Gln Gln Gly Leu Trp
385 390 395 400
ttc cag ggc gga aac ctg gcg caa acc cgc ttc tac tcc aga gcg ctc 1248
Phe Gln Gly Gly Asn Leu Ala Gln Thr Arg Phe Tyr Ser Arg Ala Leu
405 410 415
gct ctg cag ttg aag ccc gac atg ctg att gcc gtg agt cta cgt tcg 1296
Ala Leu Gln Leu Lys Pro Asp Met Leu Ile Ala Val Ser Leu Arg Ser
420 425 430
tca ccg act agg cgg cgg cga agc tca ctg atc ttg ctc cgc ggc gtc 1344
Ser Pro Thr Arg Arg Arg Arg Ser Ser Leu Ile Leu Leu Arg Gly Val
435 440 445
cca gag gct cac gct cgc ctc tcc ctg gtc tat tgc ttc gcg aat ttg 1392
Pro Glu Ala His Ala Arg Leu Ser Leu Val Tyr Cys Phe Ala Asn Leu
450 455 460
cgg ccg cag ctc gag atg ttc ggg caa gaa cgt cct gca ata ggc gac 1440
Arg Pro Gln Leu Glu Met Phe Gly Gln Glu Arg Pro Ala Ile Gly Asp
465 470 475 480
gct cac ggt cag ggc ctc ttc gta gta gtc ctc ggt gat cgc acc gtt 1488
Ala His Gly Gln Gly Leu Phe Val Val Val Leu Gly Asp Arg Thr Val
485 490 495
ttg gac aaa cga gat cgc cag aac cgc atc gac gat ctg gat gtt cgt 1536
Leu Asp Lys Arg Asp Arg Gln Asn Arg Ile Asp Asp Leu Asp Val Arg
500 505 510
gtg aaa ctt ctt ctg cgg atc gcg cag aaa agg cat gtg gaa gat gcg 1584
Val Lys Leu Leu Leu Arg Ile Ala Gln Lys Arg His Val Glu Asp Ala
515 520 525
gtc aag gcg ctg ata ggc cgc gcg agc gac ggc ttc cac ata ttc gcg 1632
Val Lys Ala Leu Ile Gly Arg Ala Ser Asp Gly Phe His Ile Phe Ala
530 535 540
atc ggc ctg ccg tgt ctc gag ccc gcc aaa tcc acc cag gaa tag 1677
Ile Gly Leu Pro Cys Leu Glu Pro Ala Lys Ser Thr Gln Glu
545 550 555




7


558


PRT


Bacterium 2412.1



7
Met Gly Arg Glu Thr Gln Pro Phe Val Leu Ile Val Gly Gly Gly Gln
1 5 10 15
Gly Gly Leu Ala Leu Gly Ala Arg Leu Arg Gln Leu Gln Val Pro Thr
20 25 30
Leu Ile Val Asp Gln His Pro Arg Val Gly Asp Gln Trp Arg Ser Arg
35 40 45
Tyr Ala Ser Leu Cys Leu His Asp Pro Val Trp Tyr Asp His Leu Pro
50 55 60
Tyr Leu Pro Phe Pro Asp Thr Trp Pro Val Tyr Thr Pro Lys Asp Lys
65 70 75 80
Ile Gly Asp Trp Leu Glu Ala Tyr Ala Gln Ala Met Glu Leu Leu Val
85 90 95
Trp Cys Ser Thr Arg Cys Val Ser Ala Val Tyr Asp Ala Glu Ala Gly
100 105 110
Arg Trp Thr Val Thr Leu Arg Arg Gly Glu Glu Thr Ser Val Ile Arg
115 120 125
Pro Ala His Leu Val Leu Ala Thr Gly Asn Ala Gly Lys Pro Arg Val
130 135 140
Pro Arg Phe Lys Gly Gln Ala Gln Phe Glu Gly Pro Ile Leu His Ser
145 150 155 160
Ser Ala Tyr Arg Ser Gly Ala Asp Phe Lys Gly Arg Arg Val Ala Val
165 170 175
Ile Gly Ser Asn Asn Ser Ala His Asp Ile Cys Ala Asp Leu Val Ala
180 185 190
His Gly Val Asp Val Thr Met Ile Gln Arg Ser Ser Thr His Val Val
195 200 205
Arg Ser Glu Thr Val Met Arg Thr Met Leu Ala Pro Leu Tyr Ser Glu
210 215 220
Glu Ala Leu Ala Ala Gly Ile Gly Thr Glu Leu Ala Asp Leu Leu Val
225 230 235 240
Ala Ser Met Pro Leu Arg Leu Gln Ala Glu Gly Tyr Arg Ala Leu His
245 250 255
Val Ala Ile Ala Glu Gln Asp Ala Ala Phe Tyr Ala Ala Leu Glu Ala
260 265 270
Ile Gly Phe Met His Asp Phe Gly Glu Asp Gly Thr Gly Met Pro Leu
275 280 285
Lys Tyr Leu Arg Arg Ala Ser Gly Tyr Tyr Ile Asp Val Gly Ala Ser
290 295 300
Glu Leu Leu Ala Ser Gly Ala Ile Lys Leu Arg Ser Arg Val Glu Ile
305 310 315 320
Asp His Phe Asp Thr Asp Gly Leu Ala Leu Ser Asp Gly Ser Lys Val
325 330 335
Asp Ala Asp Ala Val Ile Cys Ala Thr Gly Phe Gly Ser Met Asp Glu
340 345 350
Trp Ala Ala Glu Leu Ile Ser Pro Glu Val Ala Ala Lys Val Gly Arg
355 360 365
Val Trp Gly Tyr Gly Ser Gly Thr Arg Gly Asp Pro Gly Pro Trp Glu
370 375 380
Gly Glu Leu Arg Asn Met Trp Lys Pro Thr Arg Gln Gln Gly Leu Trp
385 390 395 400
Phe Gln Gly Gly Asn Leu Ala Gln Thr Arg Phe Tyr Ser Arg Ala Leu
405 410 415
Ala Leu Gln Leu Lys Pro Asp Met Leu Ile Ala Val Ser Leu Arg Ser
420 425 430
Ser Pro Thr Arg Arg Arg Arg Ser Ser Leu Ile Leu Leu Arg Gly Val
435 440 445
Pro Glu Ala His Ala Arg Leu Ser Leu Val Tyr Cys Phe Ala Asn Leu
450 455 460
Arg Pro Gln Leu Glu Met Phe Gly Gln Glu Arg Pro Ala Ile Gly Asp
465 470 475 480
Ala His Gly Gln Gly Leu Phe Val Val Val Leu Gly Asp Arg Thr Val
485 490 495
Leu Asp Lys Arg Asp Arg Gln Asn Arg Ile Asp Asp Leu Asp Val Arg
500 505 510
Val Lys Leu Leu Leu Arg Ile Ala Gln Lys Arg His Val Glu Asp Ala
515 520 525
Val Lys Ala Leu Ile Gly Arg Ala Ser Asp Gly Phe His Ile Phe Ala
530 535 540
Ile Gly Leu Pro Cys Leu Glu Pro Ala Lys Ser Thr Gln Glu
545 550 555




8


1407


DNA


Bacterium 2412.1




fccD Aldehyde Dehydrogenase





8
atg cta gag tac aag ctg ctg atc gac ggc cgc ctg gtc gcc ggc gca 48
Met Leu Glu Tyr Lys Leu Leu Ile Asp Gly Arg Leu Val Ala Gly Ala
1 5 10 15
acg acg atg tcc gta atc aat ccc gcg act gaa acg ccg ctg gtg atc 96
Thr Thr Met Ser Val Ile Asn Pro Ala Thr Glu Thr Pro Leu Val Ile
20 25 30
gat tgc ccc agg gcc gac cgc gac caa ctg gac gaa gcc gtc gcc gcc 144
Asp Cys Pro Arg Ala Asp Arg Asp Gln Leu Asp Glu Ala Val Ala Ala
35 40 45
gcg gaa cgc gcc ttt cag agc tgg cgg gca acc acg ctc gag cag cgc 192
Ala Glu Arg Ala Phe Gln Ser Trp Arg Ala Thr Thr Leu Glu Gln Arg
50 55 60
agg gcc acg ctc aac gcc atc gcc gac gca att gaa gcc gac cag tcg 240
Arg Ala Thr Leu Asn Ala Ile Ala Asp Ala Ile Glu Ala Asp Gln Ser
65 70 75 80
gcg ctg gcg cgt ttg ctg acg cag gaa cag ggc aag ccg ctc gca gac 288
Ala Leu Ala Arg Leu Leu Thr Gln Glu Gln Gly Lys Pro Leu Ala Asp
85 90 95
gcg atg ggc gag atc tac gcc tcc gcg gcc ttc ttc cgc tac ttc acc 336
Ala Met Gly Glu Ile Tyr Ala Ser Ala Ala Phe Phe Arg Tyr Phe Thr
100 105 110
tcg ctc gat ctg ccg cct cgc gtg gtc aga gac gac gcg acg ggc cgc 384
Ser Leu Asp Leu Pro Pro Arg Val Val Arg Asp Asp Ala Thr Gly Arg
115 120 125
gta gag gtg cat aga cgc ccc cta ggc gtg gtg ggc tgc atc gtc ccc 432
Val Glu Val His Arg Arg Pro Leu Gly Val Val Gly Cys Ile Val Pro
130 135 140
tgg aat ttc ccg atg ctg ttg atg gcg ttc aag atc ccg gcg gcc ctg 480
Trp Asn Phe Pro Met Leu Leu Met Ala Phe Lys Ile Pro Ala Ala Leu
145 150 155 160
ctg gcc ggc aac acg gtc atc ctc aag ccg gcg gcg acg acg cct ctg 528
Leu Ala Gly Asn Thr Val Ile Leu Lys Pro Ala Ala Thr Thr Pro Leu
165 170 175
acg gcg ctt cgg ttt ggc gcc ttg gtc aag gat atc gtc cca ccg ggc 576
Thr Ala Leu Arg Phe Gly Ala Leu Val Lys Asp Ile Val Pro Pro Gly
180 185 190
gtc att aac atc atc acc gac gcc gac gat ctc ggc gcg gaa atg acc 624
Val Ile Asn Ile Ile Thr Asp Ala Asp Asp Leu Gly Ala Glu Met Thr
195 200 205
cgc cat cct ggc att cgc aaa atc agc ttc acc gga tcg acc cag acc 672
Arg His Pro Gly Ile Arg Lys Ile Ser Phe Thr Gly Ser Thr Gln Thr
210 215 220
gga aaa aag gtc atg gcc ggc gcg gcc gaa ggc ctc aaa cgt ata tcg 720
Gly Lys Lys Val Met Ala Gly Ala Ala Glu Gly Leu Lys Arg Ile Ser
225 230 235 240
ctt gag ttg ggc gga aac gac gct ctg atc gtc ctg gat gac gtc gac 768
Leu Glu Leu Gly Gly Asn Asp Ala Leu Ile Val Leu Asp Asp Val Asp
245 250 255
ccc aag gaa gtc gct ccc agg gtg ttc gcc gcg gcc atg caa aac gcc 816
Pro Lys Glu Val Ala Pro Arg Val Phe Ala Ala Ala Met Gln Asn Ala
260 265 270
ggt cag gtg tgc atc gcc gcc aaa cgg att tac gtc cat gag agc ctc 864
Gly Gln Val Cys Ile Ala Ala Lys Arg Ile Tyr Val His Glu Ser Leu
275 280 285
tat gag gcc atg tgc gag gag ttc gcg cag ttg gcg gcc cgc acg gtc 912
Tyr Glu Ala Met Cys Glu Glu Phe Ala Gln Leu Ala Ala Arg Thr Val
290 295 300
gtg ggc gat gga ctc gaa cag ggc gtt cag atg ggg ccg ctg cag aac 960
Val Gly Asp Gly Leu Glu Gln Gly Val Gln Met Gly Pro Leu Gln Asn
305 310 315 320
cgg cgc cag ttc gag aag gtt ctt ggt cta atc gag cgt gcg agg acg 1008
Arg Arg Gln Phe Glu Lys Val Leu Gly Leu Ile Glu Arg Ala Arg Thr
325 330 335
gac ggc cgc atc atc gcc ggc ggc cgc cgc aag ggc gac aag ggc tat 1056
Asp Gly Arg Ile Ile Ala Gly Gly Arg Arg Lys Gly Asp Lys Gly Tyr
340 345 350
ttc atc gag ccc acc atc gta cgc gac atc gcc gaa ggc gct cag ctc 1104
Phe Ile Glu Pro Thr Ile Val Arg Asp Ile Ala Glu Gly Ala Gln Leu
355 360 365
gtc gac gaa gag cag ttt ggc ccg gtg atg ccg gtg atc cgg tac tcc 1152
Val Asp Glu Glu Gln Phe Gly Pro Val Met Pro Val Ile Arg Tyr Ser
370 375 380
gac ccc gtc gac gcc gtg cgc cgc gcc aac gcc tcg ccc tat ggt ctg 1200
Asp Pro Val Asp Ala Val Arg Arg Ala Asn Ala Ser Pro Tyr Gly Leu
385 390 395 400
ggg gga tcc atc tgg tcc cgc aac gtc gtc cgc gcg tgg agc ctg gcc 1248
Gly Gly Ser Ile Trp Ser Arg Asn Val Val Arg Ala Trp Ser Leu Ala
405 410 415
gcc gat atg gag gcc ggc tcg gtc tgg gtg aac aag cac gcc gac gtg 1296
Ala Asp Met Glu Ala Gly Ser Val Trp Val Asn Lys His Ala Asp Val
420 425 430
cag ccc gat ctc ccg ctc ggc ggc gcc aag ttc tcg ggg atg ggc tcg 1344
Gln Pro Asp Leu Pro Leu Gly Gly Ala Lys Phe Ser Gly Met Gly Ser
435 440 445
gag tta ggc gag gaa ggg ctg cac gag ttc acc caa gtg cag gtg ctg 1392
Glu Leu Gly Glu Glu Gly Leu His Glu Phe Thr Gln Val Gln Val Leu
450 455 460
aat atg acg cgg tga 1407
Asn Met Thr Arg
465




9


468


PRT


Bacterium 2412.1



9
Met Leu Glu Tyr Lys Leu Leu Ile Asp Gly Arg Leu Val Ala Gly Ala
1 5 10 15
Thr Thr Met Ser Val Ile Asn Pro Ala Thr Glu Thr Pro Leu Val Ile
20 25 30
Asp Cys Pro Arg Ala Asp Arg Asp Gln Leu Asp Glu Ala Val Ala Ala
35 40 45
Ala Glu Arg Ala Phe Gln Ser Trp Arg Ala Thr Thr Leu Glu Gln Arg
50 55 60
Arg Ala Thr Leu Asn Ala Ile Ala Asp Ala Ile Glu Ala Asp Gln Ser
65 70 75 80
Ala Leu Ala Arg Leu Leu Thr Gln Glu Gln Gly Lys Pro Leu Ala Asp
85 90 95
Ala Met Gly Glu Ile Tyr Ala Ser Ala Ala Phe Phe Arg Tyr Phe Thr
100 105 110
Ser Leu Asp Leu Pro Pro Arg Val Val Arg Asp Asp Ala Thr Gly Arg
115 120 125
Val Glu Val His Arg Arg Pro Leu Gly Val Val Gly Cys Ile Val Pro
130 135 140
Trp Asn Phe Pro Met Leu Leu Met Ala Phe Lys Ile Pro Ala Ala Leu
145 150 155 160
Leu Ala Gly Asn Thr Val Ile Leu Lys Pro Ala Ala Thr Thr Pro Leu
165 170 175
Thr Ala Leu Arg Phe Gly Ala Leu Val Lys Asp Ile Val Pro Pro Gly
180 185 190
Val Ile Asn Ile Ile Thr Asp Ala Asp Asp Leu Gly Ala Glu Met Thr
195 200 205
Arg His Pro Gly Ile Arg Lys Ile Ser Phe Thr Gly Ser Thr Gln Thr
210 215 220
Gly Lys Lys Val Met Ala Gly Ala Ala Glu Gly Leu Lys Arg Ile Ser
225 230 235 240
Leu Glu Leu Gly Gly Asn Asp Ala Leu Ile Val Leu Asp Asp Val Asp
245 250 255
Pro Lys Glu Val Ala Pro Arg Val Phe Ala Ala Ala Met Gln Asn Ala
260 265 270
Gly Gln Val Cys Ile Ala Ala Lys Arg Ile Tyr Val His Glu Ser Leu
275 280 285
Tyr Glu Ala Met Cys Glu Glu Phe Ala Gln Leu Ala Ala Arg Thr Val
290 295 300
Val Gly Asp Gly Leu Glu Gln Gly Val Gln Met Gly Pro Leu Gln Asn
305 310 315 320
Arg Arg Gln Phe Glu Lys Val Leu Gly Leu Ile Glu Arg Ala Arg Thr
325 330 335
Asp Gly Arg Ile Ile Ala Gly Gly Arg Arg Lys Gly Asp Lys Gly Tyr
340 345 350
Phe Ile Glu Pro Thr Ile Val Arg Asp Ile Ala Glu Gly Ala Gln Leu
355 360 365
Val Asp Glu Glu Gln Phe Gly Pro Val Met Pro Val Ile Arg Tyr Ser
370 375 380
Asp Pro Val Asp Ala Val Arg Arg Ala Asn Ala Ser Pro Tyr Gly Leu
385 390 395 400
Gly Gly Ser Ile Trp Ser Arg Asn Val Val Arg Ala Trp Ser Leu Ala
405 410 415
Ala Asp Met Glu Ala Gly Ser Val Trp Val Asn Lys His Ala Asp Val
420 425 430
Gln Pro Asp Leu Pro Leu Gly Gly Ala Lys Phe Ser Gly Met Gly Ser
435 440 445
Glu Leu Gly Glu Glu Gly Leu His Glu Phe Thr Gln Val Gln Val Leu
450 455 460
Asn Met Thr Arg
465




10


939


DNA


Bacterium 2412.1




fccE Alcohol Dehydrogenase





10
atg aaa gcg gcc att tac cgg cgc ggg gag atc gtt gtc gat acc gtt 48
Met Lys Ala Ala Ile Tyr Arg Arg Gly Glu Ile Val Val Asp Thr Val
1 5 10 15
ccc gat ccg gtt cca gga cca ggc cag gtt ctc gtc cgg agc ctt gtt 96
Pro Asp Pro Val Pro Gly Pro Gly Gln Val Leu Val Arg Ser Leu Val
20 25 30
tgc ggg gta tgt ggt tcg gat ctg cat tac cga cat cac gca cac cgg 144
Cys Gly Val Cys Gly Ser Asp Leu His Tyr Arg His His Ala His Arg
35 40 45
ttc gtc gat ctg gcc ttg cgc tcg ggc gcg ccc gcc ctg gcc gcc gat 192
Phe Val Asp Leu Ala Leu Arg Ser Gly Ala Pro Ala Leu Ala Ala Asp
50 55 60
ttg gat cgc gat atc gtc ctt ggt cac gaa ttc agc gct caa gtc gtc 240
Leu Asp Arg Asp Ile Val Leu Gly His Glu Phe Ser Ala Gln Val Val
65 70 75 80
gac tac ggg cct aag acc gag cgt ctc ctg aag tcg gga acg gtc gtc 288
Asp Tyr Gly Pro Lys Thr Glu Arg Leu Leu Lys Ser Gly Thr Val Val
85 90 95
tgc tcg ccc ccc gtc gcg ttc ggg gcc agc ggc atg cgc gcc gtt ggc 336
Cys Ser Pro Pro Val Ala Phe Gly Ala Ser Gly Met Arg Ala Val Gly
100 105 110
tac tcc gac gaa tta ccg ggc ggg ttt ggc cag tac atg gtc ttg aat 384
Tyr Ser Asp Glu Leu Pro Gly Gly Phe Gly Gln Tyr Met Val Leu Asn
115 120 125
gag gcg ttc ctg atg ccg gcc cca aac gga ctg gat ccg gct cgc gcg 432
Glu Ala Phe Leu Met Pro Ala Pro Asn Gly Leu Asp Pro Ala Arg Ala
130 135 140
gcg ctc acc gag ccg atg gcg gtg ggg tgg cac gcg gtg aag ctg gcc 480
Ala Leu Thr Glu Pro Met Ala Val Gly Trp His Ala Val Lys Leu Ala
145 150 155 160
ggt ccc gga cgc gac cat atc ccg ctc gtg atc ggc tgc ggg ccc gtg 528
Gly Pro Gly Arg Asp His Ile Pro Leu Val Ile Gly Cys Gly Pro Val
165 170 175
ggc atg gcg gtc atc gcc gcg ctc cgg ggt ctg ggc gtc gga ccg atc 576
Gly Met Ala Val Ile Ala Ala Leu Arg Gly Leu Gly Val Gly Pro Ile
180 185 190
atc gcg gcc gac ttc aat ccg gcg cgt cgg agc ctg gcg gcg cgc atg 624
Ile Ala Ala Asp Phe Asn Pro Ala Arg Arg Ser Leu Ala Ala Arg Met
195 200 205
ggc gcc gat att gtc atc gac ccg gcg gag cgg tcc ccc tac gac gaa 672
Gly Ala Asp Ile Val Ile Asp Pro Ala Glu Arg Ser Pro Tyr Asp Glu
210 215 220
tgg cgg gat acc gcg gcg gcg tca ggc ctg gcc gga ctg gcg ggg gcg 720
Trp Arg Asp Thr Ala Ala Ala Ser Gly Leu Ala Gly Leu Ala Gly Ala
225 230 235 240
cca gcg tcg ctg cgg acc tgt ctg gtc ttc gag tgt gtc ggc ctg cca 768
Pro Ala Ser Leu Arg Thr Cys Leu Val Phe Glu Cys Val Gly Leu Pro
245 250 255
gga atg ctg cgt cag atc atg gaa ggc gcc ccg gcg gag tcg gag atc 816
Gly Met Leu Arg Gln Ile Met Glu Gly Ala Pro Ala Glu Ser Glu Ile
260 265 270
atc gtc gtc ggg gcc tgc atg gag ccc gat agc ctc gag ccg atg atg 864
Ile Val Val Gly Ala Cys Met Glu Pro Asp Ser Leu Glu Pro Met Met
275 280 285
gcg atg cat aag gct ctg acg ctg aat ttt cgc gaa cct aca cga tcg 912
Ala Met His Lys Ala Leu Thr Leu Asn Phe Arg Glu Pro Thr Arg Ser
290 295 300
agg agt tcg ccg agg tcc ttc gga tga 939
Arg Ser Ser Pro Arg Ser Phe Gly
305 310




11


312


PRT


Bacterium 2412.1



11
Met Lys Ala Ala Ile Tyr Arg Arg Gly Glu Ile Val Val Asp Thr Val
1 5 10 15
Pro Asp Pro Val Pro Gly Pro Gly Gln Val Leu Val Arg Ser Leu Val
20 25 30
Cys Gly Val Cys Gly Ser Asp Leu His Tyr Arg His His Ala His Arg
35 40 45
Phe Val Asp Leu Ala Leu Arg Ser Gly Ala Pro Ala Leu Ala Ala Asp
50 55 60
Leu Asp Arg Asp Ile Val Leu Gly His Glu Phe Ser Ala Gln Val Val
65 70 75 80
Asp Tyr Gly Pro Lys Thr Glu Arg Leu Leu Lys Ser Gly Thr Val Val
85 90 95
Cys Ser Pro Pro Val Ala Phe Gly Ala Ser Gly Met Arg Ala Val Gly
100 105 110
Tyr Ser Asp Glu Leu Pro Gly Gly Phe Gly Gln Tyr Met Val Leu Asn
115 120 125
Glu Ala Phe Leu Met Pro Ala Pro Asn Gly Leu Asp Pro Ala Arg Ala
130 135 140
Ala Leu Thr Glu Pro Met Ala Val Gly Trp His Ala Val Lys Leu Ala
145 150 155 160
Gly Pro Gly Arg Asp His Ile Pro Leu Val Ile Gly Cys Gly Pro Val
165 170 175
Gly Met Ala Val Ile Ala Ala Leu Arg Gly Leu Gly Val Gly Pro Ile
180 185 190
Ile Ala Ala Asp Phe Asn Pro Ala Arg Arg Ser Leu Ala Ala Arg Met
195 200 205
Gly Ala Asp Ile Val Ile Asp Pro Ala Glu Arg Ser Pro Tyr Asp Glu
210 215 220
Trp Arg Asp Thr Ala Ala Ala Ser Gly Leu Ala Gly Leu Ala Gly Ala
225 230 235 240
Pro Ala Ser Leu Arg Thr Cys Leu Val Phe Glu Cys Val Gly Leu Pro
245 250 255
Gly Met Leu Arg Gln Ile Met Glu Gly Ala Pro Ala Glu Ser Glu Ile
260 265 270
Ile Val Val Gly Ala Cys Met Glu Pro Asp Ser Leu Glu Pro Met Met
275 280 285
Ala Met His Lys Ala Leu Thr Leu Asn Phe Arg Glu Pro Thr Arg Ser
290 295 300
Arg Ser Ser Pro Arg Ser Phe Gly
305 310




12


1377


DNA


Bacterium 2412.1




fccF CoA Ligase





12
atg ctt ggc gcc gtc atc cag acg gtg aac atc cga cta gcc cga gac 48
Met Leu Gly Ala Val Ile Gln Thr Val Asn Ile Arg Leu Ala Arg Asp
1 5 10 15
gac ctg cgc tac acg ctc gag cat gcg ggc gcc acc ctg gcg ctg agc 96
Asp Leu Arg Tyr Thr Leu Glu His Ala Gly Ala Thr Leu Ala Leu Ser
20 25 30
cac acc gat ttc ctg ccg atc ctc gag gag gtg atc gac caa ttg ccc 144
His Thr Asp Phe Leu Pro Ile Leu Glu Glu Val Ile Asp Gln Leu Pro
35 40 45
agc ctg cgc ggg gtc gtc cat ctg aag gac gac gag gcg gaa gcc gcc 192
Ser Leu Arg Gly Val Val His Leu Lys Asp Asp Glu Ala Glu Ala Ala
50 55 60
cat ccc tgg gtg ctg ggg gag tat gag gcc ctg atg gcg gcc gcg cgc 240
His Pro Trp Val Leu Gly Glu Tyr Glu Ala Leu Met Ala Ala Ala Arg
65 70 75 80
cct cgg ttc gac ttc ccg gac ttc gac gag aac acg cgg gcg acg acc 288
Pro Arg Phe Asp Phe Pro Asp Phe Asp Glu Asn Thr Arg Ala Thr Thr
85 90 95
ttc tac acc agc ggc acg acc ggg cgt ccg aag ggc gtc tac tat tcg 336
Phe Tyr Thr Ser Gly Thr Thr Gly Arg Pro Lys Gly Val Tyr Tyr Ser
100 105 110
cat cgt cag ctg gtg ctg cac acc ctg gcg gtg atg gcg acg ctg gcc 384
His Arg Gln Leu Val Leu His Thr Leu Ala Val Met Ala Thr Leu Ala
115 120 125
ctt gga gac ggt tac gcc agg ctg ggg cgc gat acg gtc tac atg ccg 432
Leu Gly Asp Gly Tyr Ala Arg Leu Gly Arg Asp Thr Val Tyr Met Pro
130 135 140
atc acc ccg atg ttc cat gct cat gcg tgg gga atg ccc ttc gtg gcg 480
Ile Thr Pro Met Phe His Ala His Ala Trp Gly Met Pro Phe Val Ala
145 150 155 160
acg atg gtc ggc tgc aag caa gtc tac cca ggg cgc tat gtt ccc gag 528
Thr Met Val Gly Cys Lys Gln Val Tyr Pro Gly Arg Tyr Val Pro Glu
165 170 175
caa ctg gtg gag ctt cag cgc gcg gag aag gtg acc ttc tct cat tgc 576
Gln Leu Val Glu Leu Gln Arg Ala Glu Lys Val Thr Phe Ser His Cys
180 185 190
gtg ccc aca ctt ttg cag atg atg ctc aat tcg cct tcg ggc cag acg 624
Val Pro Thr Leu Leu Gln Met Met Leu Asn Ser Pro Ser Gly Gln Thr
195 200 205
gcg gat ttc acc gga tgg cag gtg ctc gtc ggc gga gcg gcg ctg ccc 672
Ala Asp Phe Thr Gly Trp Gln Val Leu Val Gly Gly Ala Ala Leu Pro
210 215 220
cgc ggc ctg gct ctt cag gcc gcg ggg cgc ggc atc gtc ctg acc acc 720
Arg Gly Leu Ala Leu Gln Ala Ala Gly Arg Gly Ile Val Leu Thr Thr
225 230 235 240
gga tac gga atg tcc gaa acc ggg ccg ctg gtc agc ttc acg cgc att 768
Gly Tyr Gly Met Ser Glu Thr Gly Pro Leu Val Ser Phe Thr Arg Ile
245 250 255
agg acc gaa gca atg gct cca gct cag gag gag gtc gcc att cgc acc 816
Arg Thr Glu Ala Met Ala Pro Ala Gln Glu Glu Val Ala Ile Arg Thr
260 265 270
aag gtc gga caa gct atc gcg ctg gtc gac ctc cgg gtc gtg gat gag 864
Lys Val Gly Gln Ala Ile Ala Leu Val Asp Leu Arg Val Val Asp Glu
275 280 285
tcc atg gcg gat gtg ccc cgc gac ggc ctc tcc gcg ggc gag atc gtg 912
Ser Met Ala Asp Val Pro Arg Asp Gly Leu Ser Ala Gly Glu Ile Val
290 295 300
ttg cgt gcg cct tgg ctg acg gct ggg tac cat cgc gat ctg gcc gcc 960
Leu Arg Ala Pro Trp Leu Thr Ala Gly Tyr His Arg Asp Leu Ala Ala
305 310 315 320
tcg cgc gag ctt tgg cgc gga gga agc ctt cat acg cag gat ttc ggc 1008
Ser Arg Glu Leu Trp Arg Gly Gly Ser Leu His Thr Gln Asp Phe Gly
325 330 335
cgg att gac gcg gag ggc tac ctg cag atc agc gac cgc ctc cag gga 1056
Arg Ile Asp Ala Glu Gly Tyr Leu Gln Ile Ser Asp Arg Leu Gln Gly
340 345 350
gtc atc aag acg gtg ggg atg ggt tct cct gag ctg gga gat ctc gtc 1104
Val Ile Lys Thr Val Gly Met Gly Ser Pro Glu Leu Gly Asp Leu Val
355 360 365
agc cgc cat ccg gcg gtg ctg gag agc gcc gcg atc gct gtc gcc gac 1152
Ser Arg His Pro Ala Val Leu Glu Ser Ala Ala Ile Ala Val Ala Asp
370 375 380
gag cgt tgg gga gag cgc cca gcg atg gtc gtc gtg ctc agg ccg ggc 1200
Glu Arg Trp Gly Glu Arg Pro Ala Met Val Val Val Leu Arg Pro Gly
385 390 395 400
atg agc gcg acc acg gcg gac atc cga gac cac ctt tca tcg tat gtc 1248
Met Ser Ala Thr Thr Ala Asp Ile Arg Asp His Leu Ser Ser Tyr Val
405 410 415
gcg acc ggc gaa ata cct cgc tac gcc gtg ccc gag cag atc tgg ttc 1296
Ala Thr Gly Glu Ile Pro Arg Tyr Ala Val Pro Glu Gln Ile Trp Phe
420 425 430
gtc gag gag ctc gac cga acg agc gtg ggc aag gtc gac aag cgg gcg 1344
Val Glu Glu Leu Asp Arg Thr Ser Val Gly Lys Val Asp Lys Arg Ala
435 440 445
ctt cgt tcc agg ttc gcc gaa gcg gcg tcc tga 1377
Leu Arg Ser Arg Phe Ala Glu Ala Ala Ser
450 455




13


458


PRT


Bacterium 2412.1



13
Met Leu Gly Ala Val Ile Gln Thr Val Asn Ile Arg Leu Ala Arg Asp
1 5 10 15
Asp Leu Arg Tyr Thr Leu Glu His Ala Gly Ala Thr Leu Ala Leu Ser
20 25 30
His Thr Asp Phe Leu Pro Ile Leu Glu Glu Val Ile Asp Gln Leu Pro
35 40 45
Ser Leu Arg Gly Val Val His Leu Lys Asp Asp Glu Ala Glu Ala Ala
50 55 60
His Pro Trp Val Leu Gly Glu Tyr Glu Ala Leu Met Ala Ala Ala Arg
65 70 75 80
Pro Arg Phe Asp Phe Pro Asp Phe Asp Glu Asn Thr Arg Ala Thr Thr
85 90 95
Phe Tyr Thr Ser Gly Thr Thr Gly Arg Pro Lys Gly Val Tyr Tyr Ser
100 105 110
His Arg Gln Leu Val Leu His Thr Leu Ala Val Met Ala Thr Leu Ala
115 120 125
Leu Gly Asp Gly Tyr Ala Arg Leu Gly Arg Asp Thr Val Tyr Met Pro
130 135 140
Ile Thr Pro Met Phe His Ala His Ala Trp Gly Met Pro Phe Val Ala
145 150 155 160
Thr Met Val Gly Cys Lys Gln Val Tyr Pro Gly Arg Tyr Val Pro Glu
165 170 175
Gln Leu Val Glu Leu Gln Arg Ala Glu Lys Val Thr Phe Ser His Cys
180 185 190
Val Pro Thr Leu Leu Gln Met Met Leu Asn Ser Pro Ser Gly Gln Thr
195 200 205
Ala Asp Phe Thr Gly Trp Gln Val Leu Val Gly Gly Ala Ala Leu Pro
210 215 220
Arg Gly Leu Ala Leu Gln Ala Ala Gly Arg Gly Ile Val Leu Thr Thr
225 230 235 240
Gly Tyr Gly Met Ser Glu Thr Gly Pro Leu Val Ser Phe Thr Arg Ile
245 250 255
Arg Thr Glu Ala Met Ala Pro Ala Gln Glu Glu Val Ala Ile Arg Thr
260 265 270
Lys Val Gly Gln Ala Ile Ala Leu Val Asp Leu Arg Val Val Asp Glu
275 280 285
Ser Met Ala Asp Val Pro Arg Asp Gly Leu Ser Ala Gly Glu Ile Val
290 295 300
Leu Arg Ala Pro Trp Leu Thr Ala Gly Tyr His Arg Asp Leu Ala Ala
305 310 315 320
Ser Arg Glu Leu Trp Arg Gly Gly Ser Leu His Thr Gln Asp Phe Gly
325 330 335
Arg Ile Asp Ala Glu Gly Tyr Leu Gln Ile Ser Asp Arg Leu Gln Gly
340 345 350
Val Ile Lys Thr Val Gly Met Gly Ser Pro Glu Leu Gly Asp Leu Val
355 360 365
Ser Arg His Pro Ala Val Leu Glu Ser Ala Ala Ile Ala Val Ala Asp
370 375 380
Glu Arg Trp Gly Glu Arg Pro Ala Met Val Val Val Leu Arg Pro Gly
385 390 395 400
Met Ser Ala Thr Thr Ala Asp Ile Arg Asp His Leu Ser Ser Tyr Val
405 410 415
Ala Thr Gly Glu Ile Pro Arg Tyr Ala Val Pro Glu Gln Ile Trp Phe
420 425 430
Val Glu Glu Leu Asp Arg Thr Ser Val Gly Lys Val Asp Lys Arg Ala
435 440 445
Leu Arg Ser Arg Phe Ala Glu Ala Ala Ser
450 455




14


1632


DNA


Bacterium 2412.1




fccG Acetohydroxyacid synthase





14
atg tcg ccg gag gtt gat ccg ctg ctg gcg gcg ctc gac gac aac ggc 48
Met Ser Pro Glu Val Asp Pro Leu Leu Ala Ala Leu Asp Asp Asn Gly
1 5 10 15
atc cgc ttc atc ccc gtg cgg cat gag gcg gct gcg gcc tat atg gcc 96
Ile Arg Phe Ile Pro Val Arg His Glu Ala Ala Ala Ala Tyr Met Ala
20 25 30
gag ggt ctc tac aag acg aca ggc caa gtc gcc gcc acc gtg aca aac 144
Glu Gly Leu Tyr Lys Thr Thr Gly Gln Val Ala Ala Thr Val Thr Asn
35 40 45
cca gga ccc ggt acg gca aac ctg ctg ccc ggc ttg gtg acc gcc aag 192
Pro Gly Pro Gly Thr Ala Asn Leu Leu Pro Gly Leu Val Thr Ala Lys
50 55 60
cat gag ggc gtg ccg atg atc gcc atc acc gcg cag cat cat ggc ggg 240
His Glu Gly Val Pro Met Ile Ala Ile Thr Ala Gln His His Gly Gly
65 70 75 80
gtc gtc tat ccc gcg acg ccc agc acg ttc cag ggc gcc gac caa ttg 288
Val Val Tyr Pro Ala Thr Pro Ser Thr Phe Gln Gly Ala Asp Gln Leu
85 90 95
gaa ctc ctg cgc ccg gcg gtc aaa tgg ggc gcg ccc att cat acc tgg 336
Glu Leu Leu Arg Pro Ala Val Lys Trp Gly Ala Pro Ile His Thr Trp
100 105 110
caa cgc atc ggc gag gtt acg cgc atg gcg ttc cgg gag atg tgg gcg 384
Gln Arg Ile Gly Glu Val Thr Arg Met Ala Phe Arg Glu Met Trp Ala
115 120 125
ggg cgt ccc ggc ccg gtc cag atc gat gtt ccg agc cca gtg atg tac 432
Gly Arg Pro Gly Pro Val Gln Ile Asp Val Pro Ser Pro Val Met Tyr
130 135 140
gac atg acc gac gag tcc cgg gct ggc ctg ctc gat ccg atc gcc tat 480
Asp Met Thr Asp Glu Ser Arg Ala Gly Leu Leu Asp Pro Ile Ala Tyr
145 150 155 160
cgg gcg ccc cct cct tca gcc ggc ggc tcg caa atc aac gcc gcc gcc 528
Arg Ala Pro Pro Pro Ser Ala Gly Gly Ser Gln Ile Asn Ala Ala Ala
165 170 175
caa ttg ctg gcc gcc gcg act cgt ccg ctg atc atg gtc ggc tcc ggg 576
Gln Leu Leu Ala Ala Ala Thr Arg Pro Leu Ile Met Val Gly Ser Gly
180 185 190
gtc gac cga gct ggc gcg ggc gag gct gtg ctg cgc cta gcc gac aag 624
Val Asp Arg Ala Gly Ala Gly Glu Ala Val Leu Arg Leu Ala Asp Lys
195 200 205
ctg ggt tgc ggc gtc atc gcc agc ctg gcg ggc cgg tcg gcc gtc cct 672
Leu Gly Cys Gly Val Ile Ala Ser Leu Ala Gly Arg Ser Ala Val Pro
210 215 220
caa gat cac ccc ctc cac ctg cac gcc tat ggc gcc ggc gct gat cag 720
Gln Asp His Pro Leu His Leu His Ala Tyr Gly Ala Gly Ala Asp Gln
225 230 235 240
gcg cga cgc gaa gcc gac gtc atc ctg gcg ctg ggc acg cgc ctg gga 768
Ala Arg Arg Glu Ala Asp Val Ile Leu Ala Leu Gly Thr Arg Leu Gly
245 250 255
aac atc gac acg ccc ttc gac cgc tat tgg ggc tca tcg gag ggg cac 816
Asn Ile Asp Thr Pro Phe Asp Arg Tyr Trp Gly Ser Ser Glu Gly His
260 265 270
aag ctg atc cag gtc gat atc gac ccc cgc aat ttg ggc gcc tca cgt 864
Lys Leu Ile Gln Val Asp Ile Asp Pro Arg Asn Leu Gly Ala Ser Arg
275 280 285
ccg ttg acg cta ggc atc gtt tcg gac gcg ggc agc ctc gtg gaa ggc 912
Pro Leu Thr Leu Gly Ile Val Ser Asp Ala Gly Ser Leu Val Glu Gly
290 295 300
ctc ctc gag gcc ctc gag aac gcg ccc acg cgc tcg ggc gcg gac gtc 960
Leu Leu Glu Ala Leu Glu Asn Ala Pro Thr Arg Ser Gly Ala Asp Val
305 310 315 320
gac ctc acg cgc tat cgc caa atg gac gcc gaa tgg cgg cgt tcc gag 1008
Asp Leu Thr Arg Tyr Arg Gln Met Asp Ala Glu Trp Arg Arg Ser Glu
325 330 335
ttc gct cat atc gag gcc cat ggc ggt cca agt cct cac ccg gct gag 1056
Phe Ala His Ile Glu Ala His Gly Gly Pro Ser Pro His Pro Ala Glu
340 345 350
gtt atg cag acg gtg gga gag gtt ttc ggt ccc gat gcg gtg tac gtc 1104
Val Met Gln Thr Val Gly Glu Val Phe Gly Pro Asp Ala Val Tyr Val
355 360 365
gcc gat ggc ggt ttc acg agc ctt tgg gct cac ttt atg ttg ccc tcg 1152
Ala Asp Gly Gly Phe Thr Ser Leu Trp Ala His Phe Met Leu Pro Ser
370 375 380
acc aga ccg cgc tcg tac ctg aac att ctt gag atg ggg atg ctg ggc 1200
Thr Arg Pro Arg Ser Tyr Leu Asn Ile Leu Glu Met Gly Met Leu Gly
385 390 395 400
acc ggc ata ccg tct gcg atc ggc gcg ggt ctc gga agc ccg gat cgc 1248
Thr Gly Ile Pro Ser Ala Ile Gly Ala Gly Leu Gly Ser Pro Asp Arg
405 410 415
cag atc gtc tgc gtt act ggc gac ggc gcg gcc ggc ttc cat tgt atg 1296
Gln Ile Val Cys Val Thr Gly Asp Gly Ala Ala Gly Phe His Cys Met
420 425 430
gaa ctg cag tcc gcc gtc cgc gag gac gtc aag gtg acc gtc gtc gtc 1344
Glu Leu Gln Ser Ala Val Arg Glu Asp Val Lys Val Thr Val Val Val
435 440 445
ctg gcc gaa ggg tcg tgg tcg atg gag gtc ccg aat gag cag gcg cgc 1392
Leu Ala Glu Gly Ser Trp Ser Met Glu Val Pro Asn Glu Gln Ala Arg
450 455 460
tac ggc agg acc ttc ggc acc gag atg ggc ccc gtc ctc tgg gaa agg 1440
Tyr Gly Arg Thr Phe Gly Thr Glu Met Gly Pro Val Leu Trp Glu Arg
465 470 475 480
ttg gcc gaa agc ctg gga tgc ttc ggc ttc aag gcc gag acc gcg ccg 1488
Leu Ala Glu Ser Leu Gly Cys Phe Gly Phe Lys Ala Glu Thr Ala Pro
485 490 495
gat ctg cgg ccc gct ctg agc gcg gcg cgc gat gcg ctc gga ccg gcc 1536
Asp Leu Arg Pro Ala Leu Ser Ala Ala Arg Asp Ala Leu Gly Pro Ala
500 505 510
ctt gtg cgg gtc cgg aca gat agg gct gcg aac ctg gcc ttt ccc ccg 1584
Leu Val Arg Val Arg Thr Asp Arg Ala Ala Asn Leu Ala Phe Pro Pro
515 520 525
tcg atc gcc atg cgc ttc cac gag ggc tat cag ggc ctg acc ggt tga 1632
Ser Ile Ala Met Arg Phe His Glu Gly Tyr Gln Gly Leu Thr Gly
530 535 540




15


543


PRT


Bacterium 2412.1



15
Met Ser Pro Glu Val Asp Pro Leu Leu Ala Ala Leu Asp Asp Asn Gly
1 5 10 15
Ile Arg Phe Ile Pro Val Arg His Glu Ala Ala Ala Ala Tyr Met Ala
20 25 30
Glu Gly Leu Tyr Lys Thr Thr Gly Gln Val Ala Ala Thr Val Thr Asn
35 40 45
Pro Gly Pro Gly Thr Ala Asn Leu Leu Pro Gly Leu Val Thr Ala Lys
50 55 60
His Glu Gly Val Pro Met Ile Ala Ile Thr Ala Gln His His Gly Gly
65 70 75 80
Val Val Tyr Pro Ala Thr Pro Ser Thr Phe Gln Gly Ala Asp Gln Leu
85 90 95
Glu Leu Leu Arg Pro Ala Val Lys Trp Gly Ala Pro Ile His Thr Trp
100 105 110
Gln Arg Ile Gly Glu Val Thr Arg Met Ala Phe Arg Glu Met Trp Ala
115 120 125
Gly Arg Pro Gly Pro Val Gln Ile Asp Val Pro Ser Pro Val Met Tyr
130 135 140
Asp Met Thr Asp Glu Ser Arg Ala Gly Leu Leu Asp Pro Ile Ala Tyr
145 150 155 160
Arg Ala Pro Pro Pro Ser Ala Gly Gly Ser Gln Ile Asn Ala Ala Ala
165 170 175
Gln Leu Leu Ala Ala Ala Thr Arg Pro Leu Ile Met Val Gly Ser Gly
180 185 190
Val Asp Arg Ala Gly Ala Gly Glu Ala Val Leu Arg Leu Ala Asp Lys
195 200 205
Leu Gly Cys Gly Val Ile Ala Ser Leu Ala Gly Arg Ser Ala Val Pro
210 215 220
Gln Asp His Pro Leu His Leu His Ala Tyr Gly Ala Gly Ala Asp Gln
225 230 235 240
Ala Arg Arg Glu Ala Asp Val Ile Leu Ala Leu Gly Thr Arg Leu Gly
245 250 255
Asn Ile Asp Thr Pro Phe Asp Arg Tyr Trp Gly Ser Ser Glu Gly His
260 265 270
Lys Leu Ile Gln Val Asp Ile Asp Pro Arg Asn Leu Gly Ala Ser Arg
275 280 285
Pro Leu Thr Leu Gly Ile Val Ser Asp Ala Gly Ser Leu Val Glu Gly
290 295 300
Leu Leu Glu Ala Leu Glu Asn Ala Pro Thr Arg Ser Gly Ala Asp Val
305 310 315 320
Asp Leu Thr Arg Tyr Arg Gln Met Asp Ala Glu Trp Arg Arg Ser Glu
325 330 335
Phe Ala His Ile Glu Ala His Gly Gly Pro Ser Pro His Pro Ala Glu
340 345 350
Val Met Gln Thr Val Gly Glu Val Phe Gly Pro Asp Ala Val Tyr Val
355 360 365
Ala Asp Gly Gly Phe Thr Ser Leu Trp Ala His Phe Met Leu Pro Ser
370 375 380
Thr Arg Pro Arg Ser Tyr Leu Asn Ile Leu Glu Met Gly Met Leu Gly
385 390 395 400
Thr Gly Ile Pro Ser Ala Ile Gly Ala Gly Leu Gly Ser Pro Asp Arg
405 410 415
Gln Ile Val Cys Val Thr Gly Asp Gly Ala Ala Gly Phe His Cys Met
420 425 430
Glu Leu Gln Ser Ala Val Arg Glu Asp Val Lys Val Thr Val Val Val
435 440 445
Leu Ala Glu Gly Ser Trp Ser Met Glu Val Pro Asn Glu Gln Ala Arg
450 455 460
Tyr Gly Arg Thr Phe Gly Thr Glu Met Gly Pro Val Leu Trp Glu Arg
465 470 475 480
Leu Ala Glu Ser Leu Gly Cys Phe Gly Phe Lys Ala Glu Thr Ala Pro
485 490 495
Asp Leu Arg Pro Ala Leu Ser Ala Ala Arg Asp Ala Leu Gly Pro Ala
500 505 510
Leu Val Arg Val Arg Thr Asp Arg Ala Ala Asn Leu Ala Phe Pro Pro
515 520 525
Ser Ile Ala Met Arg Phe His Glu Gly Tyr Gln Gly Leu Thr Gly
530 535 540




16


2865


DNA


Bacterium 2412.1




fccH Vitamin B12 Receptor





16
atg ccg tcc ccc cct cgc cgt cac aaa gag agg gag gga tta gcc atg 48
Met Pro Ser Pro Pro Arg Arg His Lys Glu Arg Glu Gly Leu Ala Met
1 5 10 15
agc caa gca gca acc aat cag aag agc act ttc cgc ctt agc ctg ctg 96
Ser Gln Ala Ala Thr Asn Gln Lys Ser Thr Phe Arg Leu Ser Leu Leu
20 25 30
ggc gca gcg gcg acg tcc gtg ctt cta gcc cca agc ctc ggc cgg gcg 144
Gly Ala Ala Ala Thr Ser Val Leu Leu Ala Pro Ser Leu Gly Arg Ala
35 40 45
cag caa gca cct gtc gaa aac cct cgg ccc agg acg cca gga agt cag 192
Gln Gln Ala Pro Val Glu Asn Pro Arg Pro Arg Thr Pro Gly Ser Gln
50 55 60
cga aat cgt cgt cac ggg cag ccg cct cca gag cgg att cag cgc acc 240
Arg Asn Arg Arg His Gly Gln Pro Pro Pro Glu Arg Ile Gln Arg Thr
65 70 75 80
gac tcc cgt gac cgc ggc gtc tgc gat cag ctc aag gcg gcg gct cca 288
Asp Ser Arg Asp Arg Gly Val Cys Asp Gln Leu Lys Ala Ala Ala Pro
85 90 95
acc aac atc gcc gat ggc ctc aac caa ctt ccg gtc ttc aat aat agt 336
Thr Asn Ile Ala Asp Gly Leu Asn Gln Leu Pro Val Phe Asn Asn Ser
100 105 110
ctg aaa acg tcg aac ccc ggc acg acg ccg ggc acc ggc aac agc ggc 384
Leu Lys Thr Ser Asn Pro Gly Thr Thr Pro Gly Thr Gly Asn Ser Gly
115 120 125
cag aat ctc ctg agc ctg cgc ggc ctg ggc gcg aac cga aac ctc gtt 432
Gln Asn Leu Leu Ser Leu Arg Gly Leu Gly Ala Asn Arg Asn Leu Val
130 135 140
ctg ctc aac ggc aac cgc ttc gtc gcc acc aac tac acc gga tcg gtg 480
Leu Leu Asn Gly Asn Arg Phe Val Ala Thr Asn Tyr Thr Gly Ser Val
145 150 155 160
gac gtc aat gtg ttg ccc cag gct ctc gtc aag cgg gtc gac gtg gtg 528
Asp Val Asn Val Leu Pro Gln Ala Leu Val Lys Arg Val Asp Val Val
165 170 175
acc ggc ggc gct tcg gcc gcc tac gga tcc gat gcc gta tcc ggc gta 576
Thr Gly Gly Ala Ser Ala Ala Tyr Gly Ser Asp Ala Val Ser Gly Val
180 185 190
atc aac ttc gtc ctc gac gag gat ttc gag ggc cta aag gcg aac gtc 624
Ile Asn Phe Val Leu Asp Glu Asp Phe Glu Gly Leu Lys Ala Asn Val
195 200 205
cag acc ggc gtc tcg agc cgc aac gat ctg gcc tcg gtg ggc gga tcg 672
Gln Thr Gly Val Ser Ser Arg Asn Asp Leu Ala Ser Val Gly Gly Ser
210 215 220
ctg gcg gcc ggc aag tcg ttt gcc caa ggg cgc gca cat ctc ctt gcc 720
Leu Ala Ala Gly Lys Ser Phe Ala Gln Gly Arg Ala His Leu Leu Ala
225 230 235 240
gcg gtc gaa tac tat cac gag gac ggc att cgc gcc gat cag gcc acc 768
Ala Val Glu Tyr Tyr His Glu Asp Gly Ile Arg Ala Asp Gln Ala Thr
245 250 255
gat cgg gcg tgg tat gat cgc gcg gcg ggg caa tat ccc gtg ccc ggc 816
Asp Arg Ala Trp Tyr Asp Arg Ala Ala Gly Gln Tyr Pro Val Pro Gly
260 265 270
gcc ccg acg ggc gtc acg gtg gtt ccc gac atc cga agc tcg cgc ggc 864
Ala Pro Thr Gly Val Thr Val Val Pro Asp Ile Arg Ser Ser Arg Gly
275 280 285
gcc tac ggc ggc ctg atc aca tcg ggt ccg ctg aag ggc gtc acc ttt 912
Ala Tyr Gly Gly Leu Ile Thr Ser Gly Pro Leu Lys Gly Val Thr Phe
290 295 300
ctt ccc ggc ggt acg ctt gcg acc ttt aac tac gga agc ttt acc agc 960
Leu Pro Gly Gly Thr Leu Ala Thr Phe Asn Tyr Gly Ser Phe Thr Ser
305 310 315 320
agt tcc ttc cag agc ggc ggc gac ggt ccg cgc gtc aat ctc ggc ttc 1008
Ser Ser Phe Gln Ser Gly Gly Asp Gly Pro Arg Val Asn Leu Gly Phe
325 330 335
gct ccg gac cag cgg cgc tac aat ggc ttc ctc cgc ggc gag ttc gag 1056
Ala Pro Asp Gln Arg Arg Tyr Asn Gly Phe Leu Arg Gly Glu Phe Glu
340 345 350
gcc tca gaa cgc gtc aag ctc tat gcg gaa ggc acc tat gcc tat agc 1104
Ala Ser Glu Arg Val Lys Leu Tyr Ala Glu Gly Thr Tyr Ala Tyr Ser
355 360 365
cac acc aac ctc ggc gcc ttc gtc aac cag ttt gtc ggc agc gcg aac 1152
His Thr Asn Leu Gly Ala Phe Val Asn Gln Phe Val Gly Ser Ala Asn
370 375 380
gcc ttc acg atc ttc cgc gac aac gcg ttc ctc ccg acc gca ctc ggc 1200
Ala Phe Thr Ile Phe Arg Asp Asn Ala Phe Leu Pro Thr Ala Leu Gly
385 390 395 400
gca ctg atg gac acc aac cgg ctg acg tcg gtt tcc gtc ggc cgg ttc 1248
Ala Leu Met Asp Thr Asn Arg Leu Thr Ser Val Ser Val Gly Arg Phe
405 410 415
gcc ggc gag ttc ccg ctg gtc gag atc gag tcc tac gcc aag gtg cgt 1296
Ala Gly Glu Phe Pro Leu Val Glu Ile Glu Ser Tyr Ala Lys Val Arg
420 425 430
cgc gga gct gcc ggc ttc cgg gcg gac ctc aac gac acc tgg aag ctc 1344
Arg Gly Ala Ala Gly Phe Arg Ala Asp Leu Asn Asp Thr Trp Lys Leu
435 440 445
gac ggt tcg atc tcc tac ggc cgc acg aac ctg gag ctt cgc gaa aac 1392
Asp Gly Ser Ile Ser Tyr Gly Arg Thr Asn Leu Glu Leu Arg Glu Asn
450 455 460
aac ctg tcg atc aac cgc aat ctc tat gca gcg gtc gac gcc gtg aag 1440
Asn Leu Ser Ile Asn Arg Asn Leu Tyr Ala Ala Val Asp Ala Val Lys
465 470 475 480
gac ccg acg gga aag atc gtc tgc cgt tcg acc ctt tcg ggt ctc gac 1488
Asp Pro Thr Gly Lys Ile Val Cys Arg Ser Thr Leu Ser Gly Leu Asp
485 490 495
gcg ggc tgc gtg ccg ctc aac att ttc ggc gcc ggc gcg cca agt gcc 1536
Ala Gly Cys Val Pro Leu Asn Ile Phe Gly Ala Gly Ala Pro Ser Ala
500 505 510
gcc gcg atc gac tat gtc ctc gac gac ggg gtg gcg aac ctg aaa ctg 1584
Ala Ala Ile Asp Tyr Val Leu Asp Asp Gly Val Ala Asn Leu Lys Leu
515 520 525
gaa cag gtc gtc gcg ggc ctg aac ctc gtc ggc gac ctt ggc cag gcg 1632
Glu Gln Val Val Ala Gly Leu Asn Leu Val Gly Asp Leu Gly Gln Ala
530 535 540
ttt tcg ctg ggc gcc ggg ccg atc tcg atc gcc gcg ggc ggc gaa tat 1680
Phe Ser Leu Gly Ala Gly Pro Ile Ser Ile Ala Ala Gly Gly Glu Tyr
545 550 555 560
cgt gag gag aaa gcc aac cag acc acc gac gcc atc tcg cag gcg atc 1728
Arg Glu Glu Lys Ala Asn Gln Thr Thr Asp Ala Ile Ser Gln Ala Ile
565 570 575
acg tcg acc gcc gga ctg cgt gga gcg ccg gcc tct cag agc aac cgg 1776
Thr Ser Thr Ala Gly Leu Arg Gly Ala Pro Ala Ser Gln Ser Asn Arg
580 585 590
cct ggt ggt ttc aac ctc tac aac cct ctt ccc ttc agc ggg agc tac 1824
Pro Gly Gly Phe Asn Leu Tyr Asn Pro Leu Pro Phe Ser Gly Ser Tyr
595 600 605
aac atc aag gag gct tat ctt gag gtc ggg gtt ccg gtg ctc aag gac 1872
Asn Ile Lys Glu Ala Tyr Leu Glu Val Gly Val Pro Val Leu Lys Asp
610 615 620
agc gcg ctt ggt cga gcg ctc aac ctc aac ggc gcg gtc cgg tat gcc 1920
Ser Ala Leu Gly Arg Ala Leu Asn Leu Asn Gly Ala Val Arg Tyr Ala
625 630 635 640
gac tat agc gtc tcg ggc ggc gtc acg acc tgg aag gtc ggc ggc gac 1968
Asp Tyr Ser Val Ser Gly Gly Val Thr Thr Trp Lys Val Gly Gly Asp
645 650 655
tac gag ccc gtc gat gga ctg cgg ttt cgc ctg act cgc tcg cgc gac 2016
Tyr Glu Pro Val Asp Gly Leu Arg Phe Arg Leu Thr Arg Ser Arg Asp
660 665 670
atc cgc ggc gcc agc ctg gtg gaa ctc tac gac ccc ggc cgt cag gct 2064
Ile Arg Gly Ala Ser Leu Val Glu Leu Tyr Asp Pro Gly Arg Gln Ala
675 680 685
acc ctg aac tct gtc tat cag ggc cag acg ttg cag acc cgc ttc ttc 2112
Thr Leu Asn Ser Val Tyr Gln Gly Gln Thr Leu Gln Thr Arg Phe Phe
690 695 700
acc gcc ggc aac ccg gat ctt cgc ccc gag cgc gcc gat acc ctg acc 2160
Thr Ala Gly Asn Pro Asp Leu Arg Pro Glu Arg Ala Asp Thr Leu Thr
705 710 715 720
ttc ggc gtc gtg ttg cgg ccg gcc ttc gcc ccg ggg ctt cag ctt tcg 2208
Phe Gly Val Val Leu Arg Pro Ala Phe Ala Pro Gly Leu Gln Leu Ser
725 730 735
gcg gac cgc tat atc atc gat ctc aaa gac gcc atc gac tac ctc ctg 2256
Ala Asp Arg Tyr Ile Ile Asp Leu Lys Asp Ala Ile Asp Tyr Leu Leu
740 745 750
ccc cag cag gag atc gac ctc tgc gcc gcg ggc aac cag tcc atg tgc 2304
Pro Gln Gln Glu Ile Asp Leu Cys Ala Ala Gly Asn Gln Ser Met Cys
755 760 765
gcc ttg atc acc cgg aat gcg gac aac acg ctg acc gtc atc ggc ccc 2352
Ala Leu Ile Thr Arg Asn Ala Asp Asn Thr Leu Thr Val Ile Gly Pro
770 775 780
aac ctg aac ctt gcg gtg cag aag gcg gcg ggt gtc gat ttg gag gcg 2400
Asn Leu Asn Leu Ala Val Gln Lys Ala Ala Gly Val Asp Leu Glu Ala
785 790 795 800
tcc tac gtg cgc aac gtc gcg ggc gga tct ctg aac ctg cgg gcc ttg 2448
Ser Tyr Val Arg Asn Val Ala Gly Gly Ser Leu Asn Leu Arg Ala Leu
805 810 815
gcc aac cac cgc acg gcc gca tcc gtc acc gcc ctg ggc tcg gcg ccc 2496
Ala Asn His Arg Thr Ala Ala Ser Val Thr Ala Leu Gly Ser Ala Pro
820 825 830
cta caa tcg ctc ggc gaa ccc acc gcc ccc aaa tgg ctg ctc aat ctg 2544
Leu Gln Ser Leu Gly Glu Pro Thr Ala Pro Lys Trp Leu Leu Asn Leu
835 840 845
cag gcg cgt tac gag cgc gcc gca tgg tcg ctg ttc ctg caa gag cgc 2592
Gln Ala Arg Tyr Glu Arg Ala Ala Trp Ser Leu Phe Leu Gln Glu Arg
850 855 860
ttc atc tct cgc tcg gtc ttt gac gct gaa aac gtc gaa ggt gtc gac 2640
Phe Ile Ser Arg Ser Val Phe Asp Ala Glu Asn Val Glu Gly Val Asp
865 870 875 880
acc aac ctg aac cac acc ggc gca gtc tgg tac act gac gcc acg gtg 2688
Thr Asn Leu Asn His Thr Gly Ala Val Trp Tyr Thr Asp Ala Thr Val
885 890 895
acc tac agc ttc gat tca ttc ggg cat aag cag cag gtt ttt gct tcg 2736
Thr Tyr Ser Phe Asp Ser Phe Gly His Lys Gln Gln Val Phe Ala Ser
900 905 910
gta aac aac ctc ttc gac cgt gat cca ccg gtg gcg acg gtc aat ccg 2784
Val Asn Asn Leu Phe Asp Arg Asp Pro Pro Val Ala Thr Val Asn Pro
915 920 925
tcc agc ttc tcg gtc ccg acg agc gca gcc tac gat ccg cgc ggc agg 2832
Ser Ser Phe Ser Val Pro Thr Ser Ala Ala Tyr Asp Pro Arg Gly Arg
930 935 940
tat ttc aac gtc ggg ctc cgc ttc cgc tac tga 2865
Tyr Phe Asn Val Gly Leu Arg Phe Arg Tyr
945 950




17


954


PRT


Bacterium 2412.1



17
Met Pro Ser Pro Pro Arg Arg His Lys Glu Arg Glu Gly Leu Ala Met
1 5 10 15
Ser Gln Ala Ala Thr Asn Gln Lys Ser Thr Phe Arg Leu Ser Leu Leu
20 25 30
Gly Ala Ala Ala Thr Ser Val Leu Leu Ala Pro Ser Leu Gly Arg Ala
35 40 45
Gln Gln Ala Pro Val Glu Asn Pro Arg Pro Arg Thr Pro Gly Ser Gln
50 55 60
Arg Asn Arg Arg His Gly Gln Pro Pro Pro Glu Arg Ile Gln Arg Thr
65 70 75 80
Asp Ser Arg Asp Arg Gly Val Cys Asp Gln Leu Lys Ala Ala Ala Pro
85 90 95
Thr Asn Ile Ala Asp Gly Leu Asn Gln Leu Pro Val Phe Asn Asn Ser
100 105 110
Leu Lys Thr Ser Asn Pro Gly Thr Thr Pro Gly Thr Gly Asn Ser Gly
115 120 125
Gln Asn Leu Leu Ser Leu Arg Gly Leu Gly Ala Asn Arg Asn Leu Val
130 135 140
Leu Leu Asn Gly Asn Arg Phe Val Ala Thr Asn Tyr Thr Gly Ser Val
145 150 155 160
Asp Val Asn Val Leu Pro Gln Ala Leu Val Lys Arg Val Asp Val Val
165 170 175
Thr Gly Gly Ala Ser Ala Ala Tyr Gly Ser Asp Ala Val Ser Gly Val
180 185 190
Ile Asn Phe Val Leu Asp Glu Asp Phe Glu Gly Leu Lys Ala Asn Val
195 200 205
Gln Thr Gly Val Ser Ser Arg Asn Asp Leu Ala Ser Val Gly Gly Ser
210 215 220
Leu Ala Ala Gly Lys Ser Phe Ala Gln Gly Arg Ala His Leu Leu Ala
225 230 235 240
Ala Val Glu Tyr Tyr His Glu Asp Gly Ile Arg Ala Asp Gln Ala Thr
245 250 255
Asp Arg Ala Trp Tyr Asp Arg Ala Ala Gly Gln Tyr Pro Val Pro Gly
260 265 270
Ala Pro Thr Gly Val Thr Val Val Pro Asp Ile Arg Ser Ser Arg Gly
275 280 285
Ala Tyr Gly Gly Leu Ile Thr Ser Gly Pro Leu Lys Gly Val Thr Phe
290 295 300
Leu Pro Gly Gly Thr Leu Ala Thr Phe Asn Tyr Gly Ser Phe Thr Ser
305 310 315 320
Ser Ser Phe Gln Ser Gly Gly Asp Gly Pro Arg Val Asn Leu Gly Phe
325 330 335
Ala Pro Asp Gln Arg Arg Tyr Asn Gly Phe Leu Arg Gly Glu Phe Glu
340 345 350
Ala Ser Glu Arg Val Lys Leu Tyr Ala Glu Gly Thr Tyr Ala Tyr Ser
355 360 365
His Thr Asn Leu Gly Ala Phe Val Asn Gln Phe Val Gly Ser Ala Asn
370 375 380
Ala Phe Thr Ile Phe Arg Asp Asn Ala Phe Leu Pro Thr Ala Leu Gly
385 390 395 400
Ala Leu Met Asp Thr Asn Arg Leu Thr Ser Val Ser Val Gly Arg Phe
405 410 415
Ala Gly Glu Phe Pro Leu Val Glu Ile Glu Ser Tyr Ala Lys Val Arg
420 425 430
Arg Gly Ala Ala Gly Phe Arg Ala Asp Leu Asn Asp Thr Trp Lys Leu
435 440 445
Asp Gly Ser Ile Ser Tyr Gly Arg Thr Asn Leu Glu Leu Arg Glu Asn
450 455 460
Asn Leu Ser Ile Asn Arg Asn Leu Tyr Ala Ala Val Asp Ala Val Lys
465 470 475 480
Asp Pro Thr Gly Lys Ile Val Cys Arg Ser Thr Leu Ser Gly Leu Asp
485 490 495
Ala Gly Cys Val Pro Leu Asn Ile Phe Gly Ala Gly Ala Pro Ser Ala
500 505 510
Ala Ala Ile Asp Tyr Val Leu Asp Asp Gly Val Ala Asn Leu Lys Leu
515 520 525
Glu Gln Val Val Ala Gly Leu Asn Leu Val Gly Asp Leu Gly Gln Ala
530 535 540
Phe Ser Leu Gly Ala Gly Pro Ile Ser Ile Ala Ala Gly Gly Glu Tyr
545 550 555 560
Arg Glu Glu Lys Ala Asn Gln Thr Thr Asp Ala Ile Ser Gln Ala Ile
565 570 575
Thr Ser Thr Ala Gly Leu Arg Gly Ala Pro Ala Ser Gln Ser Asn Arg
580 585 590
Pro Gly Gly Phe Asn Leu Tyr Asn Pro Leu Pro Phe Ser Gly Ser Tyr
595 600 605
Asn Ile Lys Glu Ala Tyr Leu Glu Val Gly Val Pro Val Leu Lys Asp
610 615 620
Ser Ala Leu Gly Arg Ala Leu Asn Leu Asn Gly Ala Val Arg Tyr Ala
625 630 635 640
Asp Tyr Ser Val Ser Gly Gly Val Thr Thr Trp Lys Val Gly Gly Asp
645 650 655
Tyr Glu Pro Val Asp Gly Leu Arg Phe Arg Leu Thr Arg Ser Arg Asp
660 665 670
Ile Arg Gly Ala Ser Leu Val Glu Leu Tyr Asp Pro Gly Arg Gln Ala
675 680 685
Thr Leu Asn Ser Val Tyr Gln Gly Gln Thr Leu Gln Thr Arg Phe Phe
690 695 700
Thr Ala Gly Asn Pro Asp Leu Arg Pro Glu Arg Ala Asp Thr Leu Thr
705 710 715 720
Phe Gly Val Val Leu Arg Pro Ala Phe Ala Pro Gly Leu Gln Leu Ser
725 730 735
Ala Asp Arg Tyr Ile Ile Asp Leu Lys Asp Ala Ile Asp Tyr Leu Leu
740 745 750
Pro Gln Gln Glu Ile Asp Leu Cys Ala Ala Gly Asn Gln Ser Met Cys
755 760 765
Ala Leu Ile Thr Arg Asn Ala Asp Asn Thr Leu Thr Val Ile Gly Pro
770 775 780
Asn Leu Asn Leu Ala Val Gln Lys Ala Ala Gly Val Asp Leu Glu Ala
785 790 795 800
Ser Tyr Val Arg Asn Val Ala Gly Gly Ser Leu Asn Leu Arg Ala Leu
805 810 815
Ala Asn His Arg Thr Ala Ala Ser Val Thr Ala Leu Gly Ser Ala Pro
820 825 830
Leu Gln Ser Leu Gly Glu Pro Thr Ala Pro Lys Trp Leu Leu Asn Leu
835 840 845
Gln Ala Arg Tyr Glu Arg Ala Ala Trp Ser Leu Phe Leu Gln Glu Arg
850 855 860
Phe Ile Ser Arg Ser Val Phe Asp Ala Glu Asn Val Glu Gly Val Asp
865 870 875 880
Thr Asn Leu Asn His Thr Gly Ala Val Trp Tyr Thr Asp Ala Thr Val
885 890 895
Thr Tyr Ser Phe Asp Ser Phe Gly His Lys Gln Gln Val Phe Ala Ser
900 905 910
Val Asn Asn Leu Phe Asp Arg Asp Pro Pro Val Ala Thr Val Asn Pro
915 920 925
Ser Ser Phe Ser Val Pro Thr Ser Ala Ala Tyr Asp Pro Arg Gly Arg
930 935 940
Tyr Phe Asn Val Gly Leu Arg Phe Arg Tyr
945 950




18


1302


DNA


Bacterium 2412.1




fccI Permease





18
atg cgt gtt ttc gta aat cgc gga cga tgt cag aat tgc tct caa act 48
Met Arg Val Phe Val Asn Arg Gly Arg Cys Gln Asn Cys Ser Gln Thr
1 5 10 15
att atc gat att tgc tgg gtg tgt gga gcg cag ccg ctc ccc cac aga 96
Ile Ile Asp Ile Cys Trp Val Cys Gly Ala Gln Pro Leu Pro His Arg
20 25 30
tgc gaa ttc cct tca cct tct cga cga cag ttg gag cct atg tcc ctg 144
Cys Glu Phe Pro Ser Pro Ser Arg Arg Gln Leu Glu Pro Met Ser Leu
35 40 45
acc ctg ccc cgg aat acc gga cct cgc cat cac cag gcc gtg tcc gtc 192
Thr Leu Pro Arg Asn Thr Gly Pro Arg His His Gln Ala Val Ser Val
50 55 60
gta tcg gcc act atg ctg atc ggc acg gcc tcg atg ctg gtg atg ggc 240
Val Ser Ala Thr Met Leu Ile Gly Thr Ala Ser Met Leu Val Met Gly
65 70 75 80
gtc gaa ccc atc ctg ctc ggg ggt ctc gcc aac gcc ggg cgg atc agc 288
Val Glu Pro Ile Leu Leu Gly Gly Leu Ala Asn Ala Gly Arg Ile Ser
85 90 95
gag gcg ggc gta ggt cag gcc gcc atg atc gaa gtc ttc gcc ctg gcc 336
Glu Ala Gly Val Gly Gln Ala Ala Met Ile Glu Val Phe Ala Leu Ala
100 105 110
gca ggc tcg acg gcg ggt ccg ttc ctg atg aac ctc ggc cac atg cgc 384
Ala Gly Ser Thr Ala Gly Pro Phe Leu Met Asn Leu Gly His Met Arg
115 120 125
gcc aag gtg gcc gct gcc tcc ctg ctc ctt gcg atc atc aac ctc gcc 432
Ala Lys Val Ala Ala Ala Ser Leu Leu Leu Ala Ile Ile Asn Leu Ala
130 135 140
atc tac tgg gcc gca tcc ccg gcc acg atc ctg gtc caa cgc ggc gcg 480
Ile Tyr Trp Ala Ala Ser Pro Ala Thr Ile Leu Val Gln Arg Gly Ala
145 150 155 160
gcc ggg ttg ctg gaa ggg cta ttg ctg ggc gcg gcc ggc gcc atc ctt 528
Ala Gly Leu Leu Glu Gly Leu Leu Leu Gly Ala Ala Gly Ala Ile Leu
165 170 175
acc cac aac gac cgg cct gag cgc atg agc ggg ctg ctg ctc ggt ctt 576
Thr His Asn Asp Arg Pro Glu Arg Met Ser Gly Leu Leu Leu Gly Leu
180 185 190
tcc acg atc ccc cag gtg atc gcg gcc tat ttg ctg ccg atc tgg gtg 624
Ser Thr Ile Pro Gln Val Ile Ala Ala Tyr Leu Leu Pro Ile Trp Val
195 200 205
atc ccg cgg ttt ggc gtg gat gcc ggg ttc gcg gtc ttg gcg ggc gtt 672
Ile Pro Arg Phe Gly Val Asp Ala Gly Phe Ala Val Leu Ala Gly Val
210 215 220
gcg atg gcc tcc tgc ctc gtt gcg ccg gcg atc gtc gac cac gtg cct 720
Ala Met Ala Ser Cys Leu Val Ala Pro Ala Ile Val Asp His Val Pro
225 230 235 240
gct cct acg gga tcg cac cat ggt cgc gta gtc gtc tct ccg gcc ctg 768
Ala Pro Thr Gly Ser His His Gly Arg Val Val Val Ser Pro Ala Leu
245 250 255
atg gtc gtg gcg ctc gcg gcg ttt ctt caa aac gcc ggc atc ggg gcg 816
Met Val Val Ala Leu Ala Ala Phe Leu Gln Asn Ala Gly Ile Gly Ala
260 265 270
gca tgg aac tac ctg gag cgc ctg gcc gcg caa cac cat ttc gcc ccg 864
Ala Trp Asn Tyr Leu Glu Arg Leu Ala Ala Gln His His Phe Ala Pro
275 280 285
gcc acg gtc ggc gcc gcg atc gcg ggc agc ctg gcc ttc cag gtg gcg 912
Ala Thr Val Gly Ala Ala Ile Ala Gly Ser Leu Ala Phe Gln Val Ala
290 295 300
ggt gct ctt gca gca tcc tgg ctc ggt gcg cgc gtg cac gcc cgt acg 960
Gly Ala Leu Ala Ala Ser Trp Leu Gly Ala Arg Val His Ala Arg Thr
305 310 315 320
gtt ctg gcc gcc ggc gca gtg ctg cag gcc ggt ctt gtc atc ggc ctg 1008
Val Leu Ala Ala Gly Ala Val Leu Gln Ala Gly Leu Val Ile Gly Leu
325 330 335
ctt cac gcc ggc acg ccc gtc gcg ctc atc gca agc gct tgt ggc ttt 1056
Leu His Ala Gly Thr Pro Val Ala Leu Ile Ala Ser Ala Cys Gly Phe
340 345 350
ggc ctg ttc tgg ctg gcg ctg cag ccg ttt ctg gtg gcg gac gtg atc 1104
Gly Leu Phe Trp Leu Ala Leu Gln Pro Phe Leu Val Ala Asp Val Ile
355 360 365
gcc ttg gag ccc agc agg acc gcc gcc gta ctg ctc gcc cct ctc gcg 1152
Ala Leu Glu Pro Ser Arg Thr Ala Ala Val Leu Leu Ala Pro Leu Ala
370 375 380
ttg gtg ggc ttc agc gcc ggt ccg ttg gcg gcc tcg ttc gtc att gac 1200
Leu Val Gly Phe Ser Ala Gly Pro Leu Ala Ala Ser Phe Val Ile Asp
385 390 395 400
gat aat cgg gtg gga ggc gca ttc cag gtt tcg gcc ggc tcc tcg ttg 1248
Asp Asn Arg Val Gly Gly Ala Phe Gln Val Ser Ala Gly Ser Ser Leu
405 410 415
cgg cgg cgg cgc tct acg tcg tgg ccg gcc cct ggc ggc ggg cgg cta 1296
Arg Arg Arg Arg Ser Thr Ser Trp Pro Ala Pro Gly Gly Gly Arg Leu
420 425 430
ctt taa 1302
Leu




19


433


PRT


Bacterium 2412.1



19
Met Arg Val Phe Val Asn Arg Gly Arg Cys Gln Asn Cys Ser Gln Thr
1 5 10 15
Ile Ile Asp Ile Cys Trp Val Cys Gly Ala Gln Pro Leu Pro His Arg
20 25 30
Cys Glu Phe Pro Ser Pro Ser Arg Arg Gln Leu Glu Pro Met Ser Leu
35 40 45
Thr Leu Pro Arg Asn Thr Gly Pro Arg His His Gln Ala Val Ser Val
50 55 60
Val Ser Ala Thr Met Leu Ile Gly Thr Ala Ser Met Leu Val Met Gly
65 70 75 80
Val Glu Pro Ile Leu Leu Gly Gly Leu Ala Asn Ala Gly Arg Ile Ser
85 90 95
Glu Ala Gly Val Gly Gln Ala Ala Met Ile Glu Val Phe Ala Leu Ala
100 105 110
Ala Gly Ser Thr Ala Gly Pro Phe Leu Met Asn Leu Gly His Met Arg
115 120 125
Ala Lys Val Ala Ala Ala Ser Leu Leu Leu Ala Ile Ile Asn Leu Ala
130 135 140
Ile Tyr Trp Ala Ala Ser Pro Ala Thr Ile Leu Val Gln Arg Gly Ala
145 150 155 160
Ala Gly Leu Leu Glu Gly Leu Leu Leu Gly Ala Ala Gly Ala Ile Leu
165 170 175
Thr His Asn Asp Arg Pro Glu Arg Met Ser Gly Leu Leu Leu Gly Leu
180 185 190
Ser Thr Ile Pro Gln Val Ile Ala Ala Tyr Leu Leu Pro Ile Trp Val
195 200 205
Ile Pro Arg Phe Gly Val Asp Ala Gly Phe Ala Val Leu Ala Gly Val
210 215 220
Ala Met Ala Ser Cys Leu Val Ala Pro Ala Ile Val Asp His Val Pro
225 230 235 240
Ala Pro Thr Gly Ser His His Gly Arg Val Val Val Ser Pro Ala Leu
245 250 255
Met Val Val Ala Leu Ala Ala Phe Leu Gln Asn Ala Gly Ile Gly Ala
260 265 270
Ala Trp Asn Tyr Leu Glu Arg Leu Ala Ala Gln His His Phe Ala Pro
275 280 285
Ala Thr Val Gly Ala Ala Ile Ala Gly Ser Leu Ala Phe Gln Val Ala
290 295 300
Gly Ala Leu Ala Ala Ser Trp Leu Gly Ala Arg Val His Ala Arg Thr
305 310 315 320
Val Leu Ala Ala Gly Ala Val Leu Gln Ala Gly Leu Val Ile Gly Leu
325 330 335
Leu His Ala Gly Thr Pro Val Ala Leu Ile Ala Ser Ala Cys Gly Phe
340 345 350
Gly Leu Phe Trp Leu Ala Leu Gln Pro Phe Leu Val Ala Asp Val Ile
355 360 365
Ala Leu Glu Pro Ser Arg Thr Ala Ala Val Leu Leu Ala Pro Leu Ala
370 375 380
Leu Val Gly Phe Ser Ala Gly Pro Leu Ala Ala Ser Phe Val Ile Asp
385 390 395 400
Asp Asn Arg Val Gly Gly Ala Phe Gln Val Ser Ala Gly Ser Ser Leu
405 410 415
Arg Arg Arg Arg Ser Thr Ser Trp Pro Ala Pro Gly Gly Gly Arg Leu
420 425 430
Leu




20


912


DNA


Bacterium 2412.1




fccJ Regulatory Protein





20
atg ttg aac tgc gat cta ttg gat ctg cgc gcc ttc gtc gcg gtc cac 48
Met Leu Asn Cys Asp Leu Leu Asp Leu Arg Ala Phe Val Ala Val His
1 5 10 15
gaa acc cgc agc ttc atc cgc gcg gcg cat ctg ctc ggc ctt tcc cag 96
Glu Thr Arg Ser Phe Ile Arg Ala Ala His Leu Leu Gly Leu Ser Gln
20 25 30
ccc gcg ctc agt cgc cgg atc caa cgc ttg gag gga ctg gtc ggc ggc 144
Pro Ala Leu Ser Arg Arg Ile Gln Arg Leu Glu Gly Leu Val Gly Gly
35 40 45
gct ctc ttc gac cga acc agc cgg acc atg acc gag acc gcg ctt ggc 192
Ala Leu Phe Asp Arg Thr Ser Arg Thr Met Thr Glu Thr Ala Leu Gly
50 55 60
aag gag ctg ctg ccg gtg gcc cgc cga acg ctt gag ttt ctg gac aat 240
Lys Glu Leu Leu Pro Val Ala Arg Arg Thr Leu Glu Phe Leu Asp Asn
65 70 75 80
tcg ctg ttc gcc tcg ccc aag ctg cgc gaa ccg cgc tgg acc gac atc 288
Ser Leu Phe Ala Ser Pro Lys Leu Arg Glu Pro Arg Trp Thr Asp Ile
85 90 95
agc att ttt tgc gtg cag acc gcc gcg ttc cgc gtt ctg ccg cgc gcg 336
Ser Ile Phe Cys Val Gln Thr Ala Ala Phe Arg Val Leu Pro Arg Ala
100 105 110
gcc cgg cgc ttc atg gat gaa aat ccc cga ctg cgc ctg agg atc atc 384
Ala Arg Arg Phe Met Asp Glu Asn Pro Arg Leu Arg Leu Arg Ile Ile
115 120 125
gat gtt ccg gct gtc gaa ggc gcg gaa ctg gtg gcg cga ggg gaa gcg 432
Asp Val Pro Ala Val Glu Gly Ala Glu Leu Val Ala Arg Gly Glu Ala
130 135 140
gag ttc ggt atc agc atc gag agc ctg ctt ccg tcc ggc ctg cgt ttc 480
Glu Phe Gly Ile Ser Ile Glu Ser Leu Leu Pro Ser Gly Leu Arg Phe
145 150 155 160
gag gct ctt cac gag gac ccg ttt ggc ttg gcg tgc cat cgg agc cat 528
Glu Ala Leu His Glu Asp Pro Phe Gly Leu Ala Cys His Arg Ser His
165 170 175
cgc ctg gcg caa agc gac gtc atc gaa tgg tcc gcg ctc cgc ggc gaa 576
Arg Leu Ala Gln Ser Asp Val Ile Glu Trp Ser Ala Leu Arg Gly Glu
180 185 190
aat ctt gtc gcc gtc cac cgg gcc agt cgc aac cgg acc ctg ctc gac 624
Asn Leu Val Ala Val His Arg Ala Ser Arg Asn Arg Thr Leu Leu Asp
195 200 205
gcc gag ctc aag cag cat gcg atc tcc ctg gac tgg cgt tac gag gtc 672
Ala Glu Leu Lys Gln His Ala Ile Ser Leu Asp Trp Arg Tyr Glu Val
210 215 220
ggt cac ttg acg acc gcg ctg ggg ctg atc gag tcc gag gtc ggc gtg 720
Gly His Leu Thr Thr Ala Leu Gly Leu Ile Glu Ser Glu Val Gly Val
225 230 235 240
gcc gtc atg ccg cgg atg gtg atg ccc caa tca ggc cgc tca gaa ctg 768
Ala Val Met Pro Arg Met Val Met Pro Gln Ser Gly Arg Ser Glu Leu
245 250 255
gtc tgg gtt ccc ttg gtc gcc ccg gtc gtg agg cgc acg atc ggc atc 816
Val Trp Val Pro Leu Val Ala Pro Val Val Arg Arg Thr Ile Gly Ile
260 265 270
gtg cag cgc cgg gtg ggc gcg atg cat ccc gcc gcc gcc caa ctg ctc 864
Val Gln Arg Arg Val Gly Ala Met His Pro Ala Ala Ala Gln Leu Leu
275 280 285
gag cgg ttg cgg gag gaa tgg ccg acc ggc gcg ccc gcg gac gag tag 912
Glu Arg Leu Arg Glu Glu Trp Pro Thr Gly Ala Pro Ala Asp Glu
290 295 300




21


303


PRT


Bacterium 2412.1



21
Met Leu Asn Cys Asp Leu Leu Asp Leu Arg Ala Phe Val Ala Val His
1 5 10 15
Glu Thr Arg Ser Phe Ile Arg Ala Ala His Leu Leu Gly Leu Ser Gln
20 25 30
Pro Ala Leu Ser Arg Arg Ile Gln Arg Leu Glu Gly Leu Val Gly Gly
35 40 45
Ala Leu Phe Asp Arg Thr Ser Arg Thr Met Thr Glu Thr Ala Leu Gly
50 55 60
Lys Glu Leu Leu Pro Val Ala Arg Arg Thr Leu Glu Phe Leu Asp Asn
65 70 75 80
Ser Leu Phe Ala Ser Pro Lys Leu Arg Glu Pro Arg Trp Thr Asp Ile
85 90 95
Ser Ile Phe Cys Val Gln Thr Ala Ala Phe Arg Val Leu Pro Arg Ala
100 105 110
Ala Arg Arg Phe Met Asp Glu Asn Pro Arg Leu Arg Leu Arg Ile Ile
115 120 125
Asp Val Pro Ala Val Glu Gly Ala Glu Leu Val Ala Arg Gly Glu Ala
130 135 140
Glu Phe Gly Ile Ser Ile Glu Ser Leu Leu Pro Ser Gly Leu Arg Phe
145 150 155 160
Glu Ala Leu His Glu Asp Pro Phe Gly Leu Ala Cys His Arg Ser His
165 170 175
Arg Leu Ala Gln Ser Asp Val Ile Glu Trp Ser Ala Leu Arg Gly Glu
180 185 190
Asn Leu Val Ala Val His Arg Ala Ser Arg Asn Arg Thr Leu Leu Asp
195 200 205
Ala Glu Leu Lys Gln His Ala Ile Ser Leu Asp Trp Arg Tyr Glu Val
210 215 220
Gly His Leu Thr Thr Ala Leu Gly Leu Ile Glu Ser Glu Val Gly Val
225 230 235 240
Ala Val Met Pro Arg Met Val Met Pro Gln Ser Gly Arg Ser Glu Leu
245 250 255
Val Trp Val Pro Leu Val Ala Pro Val Val Arg Arg Thr Ile Gly Ile
260 265 270
Val Gln Arg Arg Val Gly Ala Met His Pro Ala Ala Ala Gln Leu Leu
275 280 285
Glu Arg Leu Arg Glu Glu Trp Pro Thr Gly Ala Pro Ala Asp Glu
290 295 300




22


1389


DNA


Bacterium 2412.1




fccK Fumarate Reductase/Aspartate oxidase





22
atg ggt gcg aag ttg aag tat gac gtg gtg gtg gtc ggg ggc ggc aat 48
Met Gly Ala Lys Leu Lys Tyr Asp Val Val Val Val Gly Gly Gly Asn
1 5 10 15
gcg gcg atg acg gcg gcc gtc acc gcg cgg gaa gcc ggc gcg acg gtg 96
Ala Ala Met Thr Ala Ala Val Thr Ala Arg Glu Ala Gly Ala Thr Val
20 25 30
ctg gtg ctt gag cat gcg ccc cgg tcg atg cgc ggc ggc aac agc cgc 144
Leu Val Leu Glu His Ala Pro Arg Ser Met Arg Gly Gly Asn Ser Arg
35 40 45
cat acg cgc aac atg cgc acg atg cac gag gcg cca ctt gcg gtc ttg 192
His Thr Arg Asn Met Arg Thr Met His Glu Ala Pro Leu Ala Val Leu
50 55 60
acc ggg caa tat tcc gaa gac gaa tac tgg aac gac ctg aag cgg gtc 240
Thr Gly Gln Tyr Ser Glu Asp Glu Tyr Trp Asn Asp Leu Lys Arg Val
65 70 75 80
acg ggc ggg gaa acc gac gag gcc ctg gcc cgt ctg gtg atc cgc agc 288
Thr Gly Gly Glu Thr Asp Glu Ala Leu Ala Arg Leu Val Ile Arg Ser
85 90 95
acg acg gac gcc atc ccc ttc atg ctc cgg tgc ggc gtg cgc ttc cag 336
Thr Thr Asp Ala Ile Pro Phe Met Leu Arg Cys Gly Val Arg Phe Gln
100 105 110
cca tcg ctg tcg ggc acc ttg agc ctg tcg cgg acc aac gcg ttc ttc 384
Pro Ser Leu Ser Gly Thr Leu Ser Leu Ser Arg Thr Asn Ala Phe Phe
115 120 125
ctg ggg ggc ggc aag gct ctg gtg aac gcc tac tac gcg acc gcc gag 432
Leu Gly Gly Gly Lys Ala Leu Val Asn Ala Tyr Tyr Ala Thr Ala Glu
130 135 140
cgc ctg ggc gtc gac atc ctc tat gac agc gaa gtc acc gag atc gtg 480
Arg Leu Gly Val Asp Ile Leu Tyr Asp Ser Glu Val Thr Glu Ile Val
145 150 155 160
ctc gaa ggc ggc cgg gtc cgg cgt ctg gtg gtc cgc agc cag ggg ttc 528
Leu Glu Gly Gly Arg Val Arg Arg Leu Val Val Arg Ser Gln Gly Phe
165 170 175
ccc atc gag gtg gag gcg cgc gcg gtg atc gcc tcg tcg ggc ggc ttc 576
Pro Ile Glu Val Glu Ala Arg Ala Val Ile Ala Ser Ser Gly Gly Phe
180 185 190
cag gcc aac ctg caa tgg ctg gcg aac gcc tgg ggc ccg gcg gcg tcg 624
Gln Ala Asn Leu Gln Trp Leu Ala Asn Ala Trp Gly Pro Ala Ala Ser
195 200 205
aat ttc atc gta cgc ggg acg ccc tac gcg acg ggc acg gtg ctg cgc 672
Asn Phe Ile Val Arg Gly Thr Pro Tyr Ala Thr Gly Thr Val Leu Arg
210 215 220
aac ctg ctc gac cag ggc gtg gcc tcg gtg ggc gat ccg acc cag tgc 720
Asn Leu Leu Asp Gln Gly Val Ala Ser Val Gly Asp Pro Thr Gln Cys
225 230 235 240
cat gct gtc gcc atc gac ggg cgc gcg ccc aag tac gac ggg ggg atc 768
His Ala Val Ala Ile Asp Gly Arg Ala Pro Lys Tyr Asp Gly Gly Ile
245 250 255
gtc acc cga ctg gac tgc gtg ccg ttc tcg atc gtg gtc aat cgc gac 816
Val Thr Arg Leu Asp Cys Val Pro Phe Ser Ile Val Val Asn Arg Asp
260 265 270
ggc caa cgc ttc tac gac gag ggc gag gac atc tgg ccc aag cga tat 864
Gly Gln Arg Phe Tyr Asp Glu Gly Glu Asp Ile Trp Pro Lys Arg Tyr
275 280 285
gcg atc tgg ggg cgt ctg acc gcg caa cag ccc gat cag atc gcc tac 912
Ala Ile Trp Gly Arg Leu Thr Ala Gln Gln Pro Asp Gln Ile Ala Tyr
290 295 300
agc atc atc gac agc cga tcc gaa cga ctt ttc atg ccg tcg gtg ttt 960
Ser Ile Ile Asp Ser Arg Ser Glu Arg Leu Phe Met Pro Ser Val Phe
305 310 315 320
ccc ccg atc aaa gcc gac tcg att tcc gaa ctc gcg gcc aag ctc ggg 1008
Pro Pro Ile Lys Ala Asp Ser Ile Ser Glu Leu Ala Ala Lys Leu Gly
325 330 335
ctg gag ccg gcg acg ctc gcg cag acc atc gag acg ttc aat cgc gcc 1056
Leu Glu Pro Ala Thr Leu Ala Gln Thr Ile Glu Thr Phe Asn Arg Ala
340 345 350
tgc caa ccc ggt cgc ttc gat ccg cag gat ctt gac ggg gtc cgc acc 1104
Cys Gln Pro Gly Arg Phe Asp Pro Gln Asp Leu Asp Gly Val Arg Thr
355 360 365
gag ggg atc acg ccg tgc aag tcc aat tgg gcc cgg ccg atc acc gag 1152
Glu Gly Ile Thr Pro Cys Lys Ser Asn Trp Ala Arg Pro Ile Thr Glu
370 375 380
ccg ccg ttc agc gca tat ccc ctg cgg ccc ggc atc acc ttc acc tac 1200
Pro Pro Phe Ser Ala Tyr Pro Leu Arg Pro Gly Ile Thr Phe Thr Tyr
385 390 395 400
ctc ggc gtc aag gtc gat gaa cgc gcc agg gtg atc ctg gcc tcc ggc 1248
Leu Gly Val Lys Val Asp Glu Arg Ala Arg Val Ile Leu Ala Ser Gly
405 410 415
cag ccg aca gag aac ctg ttc gcg tct ggc gag atc atg gcc ggg agc 1296
Gln Pro Thr Glu Asn Leu Phe Ala Ser Gly Glu Ile Met Ala Gly Ser
420 425 430
att ctt ggg cgc ggt tac ctg gcg ggc ttc ggc atg gcg atc ggg acc 1344
Ile Leu Gly Arg Gly Tyr Leu Ala Gly Phe Gly Met Ala Ile Gly Thr
435 440 445
gtc ttc gga cgc att gcg ggc cgg gag gcc gca tat cat gca gca 1389
Val Phe Gly Arg Ile Ala Gly Arg Glu Ala Ala Tyr His Ala Ala
450 455 460




23


463


PRT


Bacterium 2412.1



23
Met Gly Ala Lys Leu Lys Tyr Asp Val Val Val Val Gly Gly Gly Asn
1 5 10 15
Ala Ala Met Thr Ala Ala Val Thr Ala Arg Glu Ala Gly Ala Thr Val
20 25 30
Leu Val Leu Glu His Ala Pro Arg Ser Met Arg Gly Gly Asn Ser Arg
35 40 45
His Thr Arg Asn Met Arg Thr Met His Glu Ala Pro Leu Ala Val Leu
50 55 60
Thr Gly Gln Tyr Ser Glu Asp Glu Tyr Trp Asn Asp Leu Lys Arg Val
65 70 75 80
Thr Gly Gly Glu Thr Asp Glu Ala Leu Ala Arg Leu Val Ile Arg Ser
85 90 95
Thr Thr Asp Ala Ile Pro Phe Met Leu Arg Cys Gly Val Arg Phe Gln
100 105 110
Pro Ser Leu Ser Gly Thr Leu Ser Leu Ser Arg Thr Asn Ala Phe Phe
115 120 125
Leu Gly Gly Gly Lys Ala Leu Val Asn Ala Tyr Tyr Ala Thr Ala Glu
130 135 140
Arg Leu Gly Val Asp Ile Leu Tyr Asp Ser Glu Val Thr Glu Ile Val
145 150 155 160
Leu Glu Gly Gly Arg Val Arg Arg Leu Val Val Arg Ser Gln Gly Phe
165 170 175
Pro Ile Glu Val Glu Ala Arg Ala Val Ile Ala Ser Ser Gly Gly Phe
180 185 190
Gln Ala Asn Leu Gln Trp Leu Ala Asn Ala Trp Gly Pro Ala Ala Ser
195 200 205
Asn Phe Ile Val Arg Gly Thr Pro Tyr Ala Thr Gly Thr Val Leu Arg
210 215 220
Asn Leu Leu Asp Gln Gly Val Ala Ser Val Gly Asp Pro Thr Gln Cys
225 230 235 240
His Ala Val Ala Ile Asp Gly Arg Ala Pro Lys Tyr Asp Gly Gly Ile
245 250 255
Val Thr Arg Leu Asp Cys Val Pro Phe Ser Ile Val Val Asn Arg Asp
260 265 270
Gly Gln Arg Phe Tyr Asp Glu Gly Glu Asp Ile Trp Pro Lys Arg Tyr
275 280 285
Ala Ile Trp Gly Arg Leu Thr Ala Gln Gln Pro Asp Gln Ile Ala Tyr
290 295 300
Ser Ile Ile Asp Ser Arg Ser Glu Arg Leu Phe Met Pro Ser Val Phe
305 310 315 320
Pro Pro Ile Lys Ala Asp Ser Ile Ser Glu Leu Ala Ala Lys Leu Gly
325 330 335
Leu Glu Pro Ala Thr Leu Ala Gln Thr Ile Glu Thr Phe Asn Arg Ala
340 345 350
Cys Gln Pro Gly Arg Phe Asp Pro Gln Asp Leu Asp Gly Val Arg Thr
355 360 365
Glu Gly Ile Thr Pro Cys Lys Ser Asn Trp Ala Arg Pro Ile Thr Glu
370 375 380
Pro Pro Phe Ser Ala Tyr Pro Leu Arg Pro Gly Ile Thr Phe Thr Tyr
385 390 395 400
Leu Gly Val Lys Val Asp Glu Arg Ala Arg Val Ile Leu Ala Ser Gly
405 410 415
Gln Pro Thr Glu Asn Leu Phe Ala Ser Gly Glu Ile Met Ala Gly Ser
420 425 430
Ile Leu Gly Arg Gly Tyr Leu Ala Gly Phe Gly Met Ala Ile Gly Thr
435 440 445
Val Phe Gly Arg Ile Ala Gly Arg Glu Ala Ala Tyr His Ala Ala
450 455 460




24


2403


DNA


Bacterium 2412.1




fccL TonB-dependent Receptor





24
atg cct agg gat acg aca ccg aat ttc gct ccg gtc acc acg gca aaa 48
Met Pro Arg Asp Thr Thr Pro Asn Phe Ala Pro Val Thr Thr Ala Lys
1 5 10 15
gag ggc cgc cga cac cga ggc agc acc gcc tta cga agg ctc atg ctg 96
Glu Gly Arg Arg His Arg Gly Ser Thr Ala Leu Arg Arg Leu Met Leu
20 25 30
acg gcg gcc ggc agc gcc ctg gtg ctg ggt ctt gcg ccc aag gcg ctc 144
Thr Ala Ala Gly Ser Ala Leu Val Leu Gly Leu Ala Pro Lys Ala Leu
35 40 45
gcg cag gtg gcg gtt ccg ccg gct ggt cac gag gcg tcg cag gag gtg 192
Ala Gln Val Ala Val Pro Pro Ala Gly His Glu Ala Ser Gln Glu Val
50 55 60
cag gag atc gtc gtc acc gcg cag cgc cgc agc gag aac att cag aat 240
Gln Glu Ile Val Val Thr Ala Gln Arg Arg Ser Glu Asn Ile Gln Asn
65 70 75 80
gtg ccg gtc tcg gtg cag gcg ctg tcg gca gcg cag ctc gag cgc gaa 288
Val Pro Val Ser Val Gln Ala Leu Ser Ala Ala Gln Leu Glu Arg Glu
85 90 95
ggg atc aaa cag acc agc gat atc gcc cga gtg acg ccc aac gtc acc 336
Gly Ile Lys Gln Thr Ser Asp Ile Ala Arg Val Thr Pro Asn Val Thr
100 105 110
atc gcc atg ccc aac ggc gaa ggc aac cag ccg gcg gtg acg atc cgc 384
Ile Ala Met Pro Asn Gly Glu Gly Asn Gln Pro Ala Val Thr Ile Arg
115 120 125
ggc atc ggc ctc aac gac ttc aat tcc aac aac gcc ggc ccg aac gcg 432
Gly Ile Gly Leu Asn Asp Phe Asn Ser Asn Asn Ala Gly Pro Asn Ala
130 135 140
atc tat gtc gac gat gtc tat atc agc gcc ccg tcg gcc cag acc ttc 480
Ile Tyr Val Asp Asp Val Tyr Ile Ser Ala Pro Ser Ala Gln Thr Phe
145 150 155 160
gga atc ttc gac atc aac cag atc cag gtt ctc aaa gga ccg caa ggt 528
Gly Ile Phe Asp Ile Asn Gln Ile Gln Val Leu Lys Gly Pro Gln Gly
165 170 175
acg ctc tat ggg cgc aac tcc agc ggt ggg gcc ttg gtg ttc acg tcc 576
Thr Leu Tyr Gly Arg Asn Ser Ser Gly Gly Ala Leu Val Phe Thr Ser
180 185 190
aga gcg ccg agc caa gac ttc gcc gcg gac gcc cat ttc gat tac ggc 624
Arg Ala Pro Ser Gln Asp Phe Ala Ala Asp Ala His Phe Asp Tyr Gly
195 200 205
agc tac aac acc tat caa ctg caa gcc ggc gtc ggc ggc cct ctg agc 672
Ser Tyr Asn Thr Tyr Gln Leu Gln Ala Gly Val Gly Gly Pro Leu Ser
210 215 220
gat cag cta agc gcc cgc ctg gcc ttc gtc gtc aac cac tcc gac ggg 720
Asp Gln Leu Ser Ala Arg Leu Ala Phe Val Val Asn His Ser Asp Gly
225 230 235 240
ttc atg cac aac acg ctg acg ggc ggt tcg gcg tcg ggc acg gac aat 768
Phe Met His Asn Thr Leu Thr Gly Gly Ser Ala Ser Gly Thr Asp Asn
245 250 255
cag gcc gtc agg ctg caa ctg ctc tac cga cct aat gac agg ctg aaa 816
Gln Ala Val Arg Leu Gln Leu Leu Tyr Arg Pro Asn Asp Arg Leu Lys
260 265 270
gta ctt ctc agt tcg gcc tat ggt cat gtc aac tcg ccg atc gtc cag 864
Val Leu Leu Ser Ser Ala Tyr Gly His Val Asn Ser Pro Ile Val Gln
275 280 285
tac cga cac ttg ggc gcc ttc gcg gca gga acc caa tcc agc gcc agc 912
Tyr Arg His Leu Gly Ala Phe Ala Ala Gly Thr Gln Ser Ser Ala Ser
290 295 300
ccg act ctc tgc agc ccc gag cag gtc cgc gcc gga ggt tgc gtc aac 960
Pro Thr Leu Cys Ser Pro Glu Gln Val Arg Ala Gly Gly Cys Val Asn
305 310 315 320
gtg ttc ggc gca ggc acg ccg agc ggc ttc tac gac ggt tcc agc gat 1008
Val Phe Gly Ala Gly Thr Pro Ser Gly Phe Tyr Asp Gly Ser Ser Asp
325 330 335
cgc ggt gaa cgc ttg cgc gtg gaa aac ttc ctg cag cag gcc cgc gcc 1056
Arg Gly Glu Arg Leu Arg Val Glu Asn Phe Leu Gln Gln Ala Arg Ala
340 345 350
gac tat gag gtc ggt ccg gtg acc ctg aca tcg atc agc gcc ttc acg 1104
Asp Tyr Glu Val Gly Pro Val Thr Leu Thr Ser Ile Ser Ala Phe Thr
355 360 365
cac agc aaa aag agc ggc ccc gac gac gcc gac ggg acg tct gac agt 1152
His Ser Lys Lys Ser Gly Pro Asp Asp Ala Asp Gly Thr Ser Asp Ser
370 375 380
ctg ctc cac gcg acc tac ggc gtt cgc tcc gac acc tgg acc caa gag 1200
Leu Leu His Ala Thr Tyr Gly Val Arg Ser Asp Thr Trp Thr Gln Glu
385 390 395 400
ttc cgc gcc gcc tat tcc ggc cag cgc ctg cat tgg gtg gcg ggc gcc 1248
Phe Arg Ala Ala Tyr Ser Gly Gln Arg Leu His Trp Val Ala Gly Ala
405 410 415
tac tat ctc gac gag acc ctc aag caa aat cag cca ctt agc atc ttc 1296
Tyr Tyr Leu Asp Glu Thr Leu Lys Gln Asn Gln Pro Leu Ser Ile Phe
420 425 430
tac gat gga gat cgc ttc ggc ggc ctg ggc atc ccg gcc agg gcg gga 1344
Tyr Asp Gly Asp Arg Phe Gly Gly Leu Gly Ile Pro Ala Arg Ala Gly
435 440 445
gcc ttc gac ggc atc gcg caa aag agc tta agc caa aac act cag aaa 1392
Ala Phe Asp Gly Ile Ala Gln Lys Ser Leu Ser Gln Asn Thr Gln Lys
450 455 460
aca cgg tcg ata gcc gcc ttc ggc caa gcc gac tat acc ttg gac cgg 1440
Thr Arg Ser Ile Ala Ala Phe Gly Gln Ala Asp Tyr Thr Leu Asp Arg
465 470 475 480
ttc acc ctg acc ttg ggc ggt cgt tac acc cat gaa cgc aag acg ttc 1488
Phe Thr Leu Thr Leu Gly Gly Arg Tyr Thr His Glu Arg Lys Thr Phe
485 490 495
gat cac ttc agc gcg acc cag gtc caa gca gga ggc ctt ggg aaa tac 1536
Asp His Phe Ser Ala Thr Gln Val Gln Ala Gly Gly Leu Gly Lys Tyr
500 505 510
ggt cct ctc ggc aag atc gtc tcg ctg agc gaa gcg ttc aag gct tcc 1584
Gly Pro Leu Gly Lys Ile Val Ser Leu Ser Glu Ala Phe Lys Ala Ser
515 520 525
gat ccg acc tgg cgc gcc gcg ctt tcc tac cgt ccc gcc gag cgt gtt 1632
Asp Pro Thr Trp Arg Ala Ala Leu Ser Tyr Arg Pro Ala Glu Arg Val
530 535 540
atg gtc tac ggc agc gtc gcc acc ggc ttt aag ggc ggc gcc ttc aac 1680
Met Val Tyr Gly Ser Val Ala Thr Gly Phe Lys Gly Gly Ala Phe Asn
545 550 555 560
ggc ggg ttc ctg agc agc aac ccc aac aaa gcc ctc gcc gcg gtc aaa 1728
Gly Gly Phe Leu Ser Ser Asn Pro Asn Lys Ala Leu Ala Ala Val Lys
565 570 575
ccc gtc gca ccg gag aag gtg acc acc tac gaa ctg ggc ttc aag tcg 1776
Pro Val Ala Pro Glu Lys Val Thr Thr Tyr Glu Leu Gly Phe Lys Ser
580 585 590
agc ctg ttc gag cgt cgc ctg gtg gtc aac ggc gcg gct ttc tac aac 1824
Ser Leu Phe Glu Arg Arg Leu Val Val Asn Gly Ala Ala Phe Tyr Asn
595 600 605
agc tac gac aac gag cag atc ctg gcc aac acg gcc gtc gtc gtg gat 1872
Ser Tyr Asp Asn Glu Gln Ile Leu Ala Asn Thr Ala Val Val Val Asp
610 615 620
acc gtg acc ggc cct gtt acc gtg acg acg aac gtc ctg acc aac gcc 1920
Thr Val Thr Gly Pro Val Thr Val Thr Thr Asn Val Leu Thr Asn Ala
625 630 635 640
cga aag gcc cac tcc cag ggc gtg gaa ttg gaa gta aag gcc gtc ccg 1968
Arg Lys Ala His Ser Gln Gly Val Glu Leu Glu Val Lys Ala Val Pro
645 650 655
atc ccg gat ctc gtc ctc agc ctg cag ccg gcc tgg ctg cga acg cgg 2016
Ile Pro Asp Leu Val Leu Ser Leu Gln Pro Ala Trp Leu Arg Thr Arg
660 665 670
ctg gac gag gcg ggc ttc tcc ggg gga acg tcg ctg gaa ggc aag caa 2064
Leu Asp Glu Ala Gly Phe Ser Gly Gly Thr Ser Leu Glu Gly Lys Gln
675 680 685
ctg gcc aat gcg ccg aag ttc tcg ctc tac gcc gcg gcg gac tac acc 2112
Leu Ala Asn Ala Pro Lys Phe Ser Leu Tyr Ala Ala Ala Asp Tyr Thr
690 695 700
ttc cat ctt gcc gac gac gac agc gtc aac gtc gcc ttc acc tcg gcc 2160
Phe His Leu Ala Asp Asp Asp Ser Val Asn Val Ala Phe Thr Ser Ala
705 710 715 720
tac aag tcg cac cag ttc ttc gat tcg acg aac gcc ccc tat acc cag 2208
Tyr Lys Ser His Gln Phe Phe Asp Ser Thr Asn Ala Pro Tyr Thr Gln
725 730 735
cag gag ggc tac tgg gtg cac aac gcc agc ctg acc ttc aac tcc aga 2256
Gln Glu Gly Tyr Trp Val His Asn Ala Ser Leu Thr Phe Asn Ser Arg
740 745 750
aac cac tgg gat gtc ggg ttc aat gtc cga aac ctg acg ggc acg aag 2304
Asn His Trp Asp Val Gly Phe Asn Val Arg Asn Leu Thr Gly Thr Lys
755 760 765
tac tac aac tat ctg ttc gac gag ggg gcg acg ttc ggc ttc atc aac 2352
Tyr Tyr Asn Tyr Leu Phe Asp Glu Gly Ala Thr Phe Gly Phe Ile Asn
770 775 780
ggc gtc gtg gcc gcg ccg cgg acc tac agc gtg caa ttc aac ctg cat 2400
Gly Val Val Ala Ala Pro Arg Thr Tyr Ser Val Gln Phe Asn Leu His
785 790 795 800
ctc 2403
Leu




25


801


PRT


Bacterium 2412.1



25
Met Pro Arg Asp Thr Thr Pro Asn Phe Ala Pro Val Thr Thr Ala Lys
1 5 10 15
Glu Gly Arg Arg His Arg Gly Ser Thr Ala Leu Arg Arg Leu Met Leu
20 25 30
Thr Ala Ala Gly Ser Ala Leu Val Leu Gly Leu Ala Pro Lys Ala Leu
35 40 45
Ala Gln Val Ala Val Pro Pro Ala Gly His Glu Ala Ser Gln Glu Val
50 55 60
Gln Glu Ile Val Val Thr Ala Gln Arg Arg Ser Glu Asn Ile Gln Asn
65 70 75 80
Val Pro Val Ser Val Gln Ala Leu Ser Ala Ala Gln Leu Glu Arg Glu
85 90 95
Gly Ile Lys Gln Thr Ser Asp Ile Ala Arg Val Thr Pro Asn Val Thr
100 105 110
Ile Ala Met Pro Asn Gly Glu Gly Asn Gln Pro Ala Val Thr Ile Arg
115 120 125
Gly Ile Gly Leu Asn Asp Phe Asn Ser Asn Asn Ala Gly Pro Asn Ala
130 135 140
Ile Tyr Val Asp Asp Val Tyr Ile Ser Ala Pro Ser Ala Gln Thr Phe
145 150 155 160
Gly Ile Phe Asp Ile Asn Gln Ile Gln Val Leu Lys Gly Pro Gln Gly
165 170 175
Thr Leu Tyr Gly Arg Asn Ser Ser Gly Gly Ala Leu Val Phe Thr Ser
180 185 190
Arg Ala Pro Ser Gln Asp Phe Ala Ala Asp Ala His Phe Asp Tyr Gly
195 200 205
Ser Tyr Asn Thr Tyr Gln Leu Gln Ala Gly Val Gly Gly Pro Leu Ser
210 215 220
Asp Gln Leu Ser Ala Arg Leu Ala Phe Val Val Asn His Ser Asp Gly
225 230 235 240
Phe Met His Asn Thr Leu Thr Gly Gly Ser Ala Ser Gly Thr Asp Asn
245 250 255
Gln Ala Val Arg Leu Gln Leu Leu Tyr Arg Pro Asn Asp Arg Leu Lys
260 265 270
Val Leu Leu Ser Ser Ala Tyr Gly His Val Asn Ser Pro Ile Val Gln
275 280 285
Tyr Arg His Leu Gly Ala Phe Ala Ala Gly Thr Gln Ser Ser Ala Ser
290 295 300
Pro Thr Leu Cys Ser Pro Glu Gln Val Arg Ala Gly Gly Cys Val Asn
305 310 315 320
Val Phe Gly Ala Gly Thr Pro Ser Gly Phe Tyr Asp Gly Ser Ser Asp
325 330 335
Arg Gly Glu Arg Leu Arg Val Glu Asn Phe Leu Gln Gln Ala Arg Ala
340 345 350
Asp Tyr Glu Val Gly Pro Val Thr Leu Thr Ser Ile Ser Ala Phe Thr
355 360 365
His Ser Lys Lys Ser Gly Pro Asp Asp Ala Asp Gly Thr Ser Asp Ser
370 375 380
Leu Leu His Ala Thr Tyr Gly Val Arg Ser Asp Thr Trp Thr Gln Glu
385 390 395 400
Phe Arg Ala Ala Tyr Ser Gly Gln Arg Leu His Trp Val Ala Gly Ala
405 410 415
Tyr Tyr Leu Asp Glu Thr Leu Lys Gln Asn Gln Pro Leu Ser Ile Phe
420 425 430
Tyr Asp Gly Asp Arg Phe Gly Gly Leu Gly Ile Pro Ala Arg Ala Gly
435 440 445
Ala Phe Asp Gly Ile Ala Gln Lys Ser Leu Ser Gln Asn Thr Gln Lys
450 455 460
Thr Arg Ser Ile Ala Ala Phe Gly Gln Ala Asp Tyr Thr Leu Asp Arg
465 470 475 480
Phe Thr Leu Thr Leu Gly Gly Arg Tyr Thr His Glu Arg Lys Thr Phe
485 490 495
Asp His Phe Ser Ala Thr Gln Val Gln Ala Gly Gly Leu Gly Lys Tyr
500 505 510
Gly Pro Leu Gly Lys Ile Val Ser Leu Ser Glu Ala Phe Lys Ala Ser
515 520 525
Asp Pro Thr Trp Arg Ala Ala Leu Ser Tyr Arg Pro Ala Glu Arg Val
530 535 540
Met Val Tyr Gly Ser Val Ala Thr Gly Phe Lys Gly Gly Ala Phe Asn
545 550 555 560
Gly Gly Phe Leu Ser Ser Asn Pro Asn Lys Ala Leu Ala Ala Val Lys
565 570 575
Pro Val Ala Pro Glu Lys Val Thr Thr Tyr Glu Leu Gly Phe Lys Ser
580 585 590
Ser Leu Phe Glu Arg Arg Leu Val Val Asn Gly Ala Ala Phe Tyr Asn
595 600 605
Ser Tyr Asp Asn Glu Gln Ile Leu Ala Asn Thr Ala Val Val Val Asp
610 615 620
Thr Val Thr Gly Pro Val Thr Val Thr Thr Asn Val Leu Thr Asn Ala
625 630 635 640
Arg Lys Ala His Ser Gln Gly Val Glu Leu Glu Val Lys Ala Val Pro
645 650 655
Ile Pro Asp Leu Val Leu Ser Leu Gln Pro Ala Trp Leu Arg Thr Arg
660 665 670
Leu Asp Glu Ala Gly Phe Ser Gly Gly Thr Ser Leu Glu Gly Lys Gln
675 680 685
Leu Ala Asn Ala Pro Lys Phe Ser Leu Tyr Ala Ala Ala Asp Tyr Thr
690 695 700
Phe His Leu Ala Asp Asp Asp Ser Val Asn Val Ala Phe Thr Ser Ala
705 710 715 720
Tyr Lys Ser His Gln Phe Phe Asp Ser Thr Asn Ala Pro Tyr Thr Gln
725 730 735
Gln Glu Gly Tyr Trp Val His Asn Ala Ser Leu Thr Phe Asn Ser Arg
740 745 750
Asn His Trp Asp Val Gly Phe Asn Val Arg Asn Leu Thr Gly Thr Lys
755 760 765
Tyr Tyr Asn Tyr Leu Phe Asp Glu Gly Ala Thr Phe Gly Phe Ile Asn
770 775 780
Gly Val Val Ala Ala Pro Arg Thr Tyr Ser Val Gln Phe Asn Leu His
785 790 795 800
Leu




26


1173


DNA


Bacterium 2412.1




fccM





26
atg gct cgc atc ggc ttc tct ttc gtc cca ccg ccg aca gct cgg ctc 48
Met Ala Arg Ile Gly Phe Ser Phe Val Pro Pro Pro Thr Ala Arg Leu
1 5 10 15
ggg aaa gtg act gtg tgg atg gaa ctg ggg cgt tcg tct gag cgc cgg 96
Gly Lys Val Thr Val Trp Met Glu Leu Gly Arg Ser Ser Glu Arg Arg
20 25 30
aga cga cgc aaa tcg agg cgg cgc gga ctc cag atc gag aac atc gcc 144
Arg Arg Arg Lys Ser Arg Arg Arg Gly Leu Gln Ile Glu Asn Ile Ala
35 40 45
tcg acc gtc gtc acg cca tcg tcg acg gcg tca ccc cgc ctt ggc gcc 192
Ser Thr Val Val Thr Pro Ser Ser Thr Ala Ser Pro Arg Leu Gly Ala
50 55 60
atc cgc gca agg ggg gat gga agg tcc ggg cga cac cac cgc cgc gcg 240
Ile Arg Ala Arg Gly Asp Gly Arg Ser Gly Arg His His Arg Arg Ala
65 70 75 80
gcc ctc ggg acc gaa tgt cat ggt cga ctt gcc cgt aga ata ggc agg 288
Ala Leu Gly Thr Glu Cys His Gly Arg Leu Ala Arg Arg Ile Gly Arg
85 90 95
cca ggt aag ggc gtc ccc ggc ggg gtc gcc att ctt ggc gaa ccg gac 336
Pro Gly Lys Gly Val Pro Gly Gly Val Ala Ile Leu Gly Glu Pro Asp
100 105 110
cca ggc gga gga cat cag ttg gcc cag cgc acg gtc ggc ggg cgt ggg 384
Pro Gly Gly Gly His Gln Leu Ala Gln Arg Thr Val Gly Gly Arg Gly
115 120 125
ccc ctc ggg cgg cca atc gaa cag acc caa ctc gtc gag ctt gaa cac 432
Pro Leu Gly Arg Pro Ile Glu Gln Thr Gln Leu Val Glu Leu Glu His
130 135 140
ccc gaa aac gta ggg aat ttc ggc tcc gtg ggt agc cgg cgc tct tcc 480
Pro Glu Asn Val Gly Asn Phe Gly Ser Val Gly Ser Arg Arg Ser Ser
145 150 155 160
acc ctc ggt att acc gtt gaa ctg ata acg cca cac ggg cgc gcc ctg 528
Thr Leu Gly Ile Thr Val Glu Leu Ile Thr Pro His Gly Arg Ala Leu
165 170 175
gcg cac aag cgc ttc cga gaa ggc cga gac ccc ccg att gaa ctg att 576
Ala His Lys Arg Phe Arg Glu Gly Arg Asp Pro Pro Ile Glu Leu Ile
180 185 190
gtc gcc gaa gat gcg cgc gac cat ttc ctt ggg cgt ggc ccg gcc gtc 624
Val Ala Glu Asp Ala Arg Asp His Phe Leu Gly Arg Gly Pro Ala Val
195 200 205
gag ggg ata gca cgc cgc cac ggc ggc ggc ttg gtc gcc aaa ctg cgc 672
Glu Gly Ile Ala Arg Arg His Gly Gly Gly Leu Val Ala Lys Leu Arg
210 215 220
ctc cag ata ggc ttg gta gtc cgc tgg cgt ctc cat cgg cgc gcg ccc 720
Leu Gln Ile Gly Leu Val Val Arg Trp Arg Leu His Arg Arg Ala Pro
225 230 235 240
gag gaa ggc gcg gcc ttc gtc ggc att ggt tcc gat cag gac ccg aac 768
Glu Glu Gly Ala Ala Phe Val Gly Ile Gly Ser Asp Gln Asp Pro Asn
245 250 255
cgg cgc cag ctg ccc cgc cgc gat cgc cgc gct gtc ggt ctg cgg cag 816
Arg Arg Gln Leu Pro Arg Arg Asp Arg Arg Ala Val Gly Leu Arg Gln
260 265 270
cac atg gcc atc gac gat cgg tcc ggt cgg acg cgg cct gcg cag gtc 864
His Met Ala Ile Asp Asp Arg Ser Gly Arg Thr Arg Pro Ala Gln Val
275 280 285
ccg cga tgc cgg gcg ggc cgc gtc ggc gcg cgc cat cag ggt ggc tgg 912
Pro Arg Cys Arg Ala Gly Arg Val Gly Ala Arg His Gln Gly Gly Trp
290 295 300
gtc ggt cga gcg cag tcg cga aag atc ggc gtc gag gcg ctc gcc cga 960
Val Gly Arg Ala Gln Ser Arg Lys Ile Gly Val Glu Ala Leu Ala Arg
305 310 315 320
ggc ggc gct gtc ggc gag cgt cgc gag cgg tcg cgt cag ccc tgg act 1008
Gly Gly Ala Val Gly Glu Arg Arg Glu Arg Ser Arg Gln Pro Trp Thr
325 330 335
ttc gag gat agc gcc acg gaa gag acc ctt gct cag cgg cga ggt gag 1056
Phe Glu Asp Ser Ala Thr Glu Glu Thr Leu Ala Gln Arg Arg Gly Glu
340 345 350
cag aag tcc gat cgc gct cgc tcc ggc cga ttc acc aaa gac cgt cac 1104
Gln Lys Ser Asp Arg Ala Arg Ser Gly Arg Phe Thr Lys Asp Arg His
355 360 365
tcg gcc ggg gtc ccc tcc gaa ggc gcg ggc gtt gct ctg cac cca ccg 1152
Ser Ala Gly Val Pro Ser Glu Gly Ala Gly Val Ala Leu His Pro Pro
370 375 380
aag agc ggc gag aat gtc gag 1173
Lys Ser Gly Glu Asn Val Glu
385 390




27


391


PRT


Bacterium 2412.1



27
Met Ala Arg Ile Gly Phe Ser Phe Val Pro Pro Pro Thr Ala Arg Leu
1 5 10 15
Gly Lys Val Thr Val Trp Met Glu Leu Gly Arg Ser Ser Glu Arg Arg
20 25 30
Arg Arg Arg Lys Ser Arg Arg Arg Gly Leu Gln Ile Glu Asn Ile Ala
35 40 45
Ser Thr Val Val Thr Pro Ser Ser Thr Ala Ser Pro Arg Leu Gly Ala
50 55 60
Ile Arg Ala Arg Gly Asp Gly Arg Ser Gly Arg His His Arg Arg Ala
65 70 75 80
Ala Leu Gly Thr Glu Cys His Gly Arg Leu Ala Arg Arg Ile Gly Arg
85 90 95
Pro Gly Lys Gly Val Pro Gly Gly Val Ala Ile Leu Gly Glu Pro Asp
100 105 110
Pro Gly Gly Gly His Gln Leu Ala Gln Arg Thr Val Gly Gly Arg Gly
115 120 125
Pro Leu Gly Arg Pro Ile Glu Gln Thr Gln Leu Val Glu Leu Glu His
130 135 140
Pro Glu Asn Val Gly Asn Phe Gly Ser Val Gly Ser Arg Arg Ser Ser
145 150 155 160
Thr Leu Gly Ile Thr Val Glu Leu Ile Thr Pro His Gly Arg Ala Leu
165 170 175
Ala His Lys Arg Phe Arg Glu Gly Arg Asp Pro Pro Ile Glu Leu Ile
180 185 190
Val Ala Glu Asp Ala Arg Asp His Phe Leu Gly Arg Gly Pro Ala Val
195 200 205
Glu Gly Ile Ala Arg Arg His Gly Gly Gly Leu Val Ala Lys Leu Arg
210 215 220
Leu Gln Ile Gly Leu Val Val Arg Trp Arg Leu His Arg Arg Ala Pro
225 230 235 240
Glu Glu Gly Ala Ala Phe Val Gly Ile Gly Ser Asp Gln Asp Pro Asn
245 250 255
Arg Arg Gln Leu Pro Arg Arg Asp Arg Arg Ala Val Gly Leu Arg Gln
260 265 270
His Met Ala Ile Asp Asp Arg Ser Gly Arg Thr Arg Pro Ala Gln Val
275 280 285
Pro Arg Cys Arg Ala Gly Arg Val Gly Ala Arg His Gln Gly Gly Trp
290 295 300
Val Gly Arg Ala Gln Ser Arg Lys Ile Gly Val Glu Ala Leu Ala Arg
305 310 315 320
Gly Gly Ala Val Gly Glu Arg Arg Glu Arg Ser Arg Gln Pro Trp Thr
325 330 335
Phe Glu Asp Ser Ala Thr Glu Glu Thr Leu Ala Gln Arg Arg Gly Glu
340 345 350
Gln Lys Ser Asp Arg Ala Arg Ser Gly Arg Phe Thr Lys Asp Arg His
355 360 365
Ser Ala Gly Val Pro Ser Glu Gly Ala Gly Val Ala Leu His Pro Pro
370 375 380
Lys Ser Gly Glu Asn Val Glu
385 390




28


1179


DNA


Bacterium 2412.1




fccN Citrate Utilization B





28
atg cag cat aat gtc ctg gat ttc gtg acc aag acg cgc acg ggc gag 48
Met Gln His Asn Val Leu Asp Phe Val Thr Lys Thr Arg Thr Gly Glu
1 5 10 15
ccg cgc ccg gcc gaa acg ccc gcg atc atc gaa gcg cgc cgg acc atg 96
Pro Arg Pro Ala Glu Thr Pro Ala Ile Ile Glu Ala Arg Arg Thr Met
20 25 30
gag gtt tgc aac gcc tgt cgc tat tgc gaa ggc tac tgc gcg gtc ttt 144
Glu Val Cys Asn Ala Cys Arg Tyr Cys Glu Gly Tyr Cys Ala Val Phe
35 40 45
ccg gcc atg acc ctc aag cgg gag ttc gag gaa gcc gat ctc acc tac 192
Pro Ala Met Thr Leu Lys Arg Glu Phe Glu Glu Ala Asp Leu Thr Tyr
50 55 60
ctg gcc aat ctc tgt cac tcg tgc cgc ggc tgt tac tac gct tgc caa 240
Leu Ala Asn Leu Cys His Ser Cys Arg Gly Cys Tyr Tyr Ala Cys Gln
65 70 75 80
tac gcg ccg ccc cat gag ttc ggg atc aac gtg ccc aag gtg ctg gcc 288
Tyr Ala Pro Pro His Glu Phe Gly Ile Asn Val Pro Lys Val Leu Ala
85 90 95
gag gtc cgc acc gaa agc tac cag gcc cat gcc tgg ccg cag gcc gtc 336
Glu Val Arg Thr Glu Ser Tyr Gln Ala His Ala Trp Pro Gln Ala Val
100 105 110
gcc gtc gcc ttc gag cgt aac ggt ctg gtg gtg tcc ctg agc gct gca 384
Ala Val Ala Phe Glu Arg Asn Gly Leu Val Val Ser Leu Ser Ala Ala
115 120 125
ctc gcg atc gtt gtc gtg ctg ctg gga acg gcc ttc ttc aat gga tcg 432
Leu Ala Ile Val Val Val Leu Leu Gly Thr Ala Phe Phe Asn Gly Ser
130 135 140
gcg atg ttc cag gcg cac gcc tcg acg ccc ggc gca ggc ttc tac aag 480
Ala Met Phe Gln Ala His Ala Ser Thr Pro Gly Ala Gly Phe Tyr Lys
145 150 155 160
gcc gtg ccc tat gcg gtc atg gtg agc gtc gcc ggc gcg atc ttc gcc 528
Ala Val Pro Tyr Ala Val Met Val Ser Val Ala Gly Ala Ile Phe Ala
165 170 175
tat gcc gcc ttg gcg atg ttc atc ggc ctt atc cgg ttt tgg aag acc 576
Tyr Ala Ala Leu Ala Met Phe Ile Gly Leu Ile Arg Phe Trp Lys Thr
180 185 190
gtg ggc ctt ggc ttg cgc gac gcc gtc gaa ccg cga acc ttg ttc cag 624
Val Gly Leu Gly Leu Arg Asp Ala Val Glu Pro Arg Thr Leu Phe Gln
195 200 205
gcg ctg aag gat gcg gcg acc ctg cgc tat ctc ggc ggg ggc ggc gat 672
Ala Leu Lys Asp Ala Ala Thr Leu Arg Tyr Leu Gly Gly Gly Gly Asp
210 215 220
ggc tgc aac gac gtc gac gct agc ttc tcg acc tca cgc cga cgt ttc 720
Gly Cys Asn Asp Val Asp Ala Ser Phe Ser Thr Ser Arg Arg Arg Phe
225 230 235 240
cat cac gcc atg gcc tac ggc ttc ctg ctc tgt ttt gcc tcc acc tcc 768
His His Ala Met Ala Tyr Gly Phe Leu Leu Cys Phe Ala Ser Thr Ser
245 250 255
acc ggt acg gtc tac gac cac ctc ctg ggc tgg ccc gcg ccc tat ccc 816
Thr Gly Thr Val Tyr Asp His Leu Leu Gly Trp Pro Ala Pro Tyr Pro
260 265 270
ttc ttc agc ctg ccg gtg ctg ctg gga acg gtc ggc gga att ggg atc 864
Phe Phe Ser Leu Pro Val Leu Leu Gly Thr Val Gly Gly Ile Gly Ile
275 280 285
gtc atc ggc acg ctc gga ctg ctc tgg ctg aag ctg gtc ggc gac cag 912
Val Ile Gly Thr Leu Gly Leu Leu Trp Leu Lys Leu Val Gly Asp Gln
290 295 300
gag cct agg tcg aag gcg caa ttg ggc gcc gac acc gcg ctg ctg gtg 960
Glu Pro Arg Ser Lys Ala Gln Leu Gly Ala Asp Thr Ala Leu Leu Val
305 310 315 320
ctg ctg ttc ctg atc agc gtg acg ggg ctg ttg ctg ctg gcg ctt cgg 1008
Leu Leu Phe Leu Ile Ser Val Thr Gly Leu Leu Leu Leu Ala Leu Arg
325 330 335
acg acg gcg gcc atg ggc gtg atc ctg acc gtg cac ctt gga ctg gtc 1056
Thr Thr Ala Ala Met Gly Val Ile Leu Thr Val His Leu Gly Leu Val
340 345 350
ttc tcg ttc ttc gcg acg atg ccg tac agc aag ttc gtg cac gga ctc 1104
Phe Ser Phe Phe Ala Thr Met Pro Tyr Ser Lys Phe Val His Gly Leu
355 360 365
tat cga acc gtc gcc ttg gtt cgt tac gcc gtc gag cgc aag gcg ctg 1152
Tyr Arg Thr Val Ala Leu Val Arg Tyr Ala Val Glu Arg Lys Ala Leu
370 375 380
gcc tcc ggg acg acg gag gaa gcg tct 1179
Ala Ser Gly Thr Thr Glu Glu Ala Ser
385 390




29


393


PRT


Bacterium 2412.1



29
Met Gln His Asn Val Leu Asp Phe Val Thr Lys Thr Arg Thr Gly Glu
1 5 10 15
Pro Arg Pro Ala Glu Thr Pro Ala Ile Ile Glu Ala Arg Arg Thr Met
20 25 30
Glu Val Cys Asn Ala Cys Arg Tyr Cys Glu Gly Tyr Cys Ala Val Phe
35 40 45
Pro Ala Met Thr Leu Lys Arg Glu Phe Glu Glu Ala Asp Leu Thr Tyr
50 55 60
Leu Ala Asn Leu Cys His Ser Cys Arg Gly Cys Tyr Tyr Ala Cys Gln
65 70 75 80
Tyr Ala Pro Pro His Glu Phe Gly Ile Asn Val Pro Lys Val Leu Ala
85 90 95
Glu Val Arg Thr Glu Ser Tyr Gln Ala His Ala Trp Pro Gln Ala Val
100 105 110
Ala Val Ala Phe Glu Arg Asn Gly Leu Val Val Ser Leu Ser Ala Ala
115 120 125
Leu Ala Ile Val Val Val Leu Leu Gly Thr Ala Phe Phe Asn Gly Ser
130 135 140
Ala Met Phe Gln Ala His Ala Ser Thr Pro Gly Ala Gly Phe Tyr Lys
145 150 155 160
Ala Val Pro Tyr Ala Val Met Val Ser Val Ala Gly Ala Ile Phe Ala
165 170 175
Tyr Ala Ala Leu Ala Met Phe Ile Gly Leu Ile Arg Phe Trp Lys Thr
180 185 190
Val Gly Leu Gly Leu Arg Asp Ala Val Glu Pro Arg Thr Leu Phe Gln
195 200 205
Ala Leu Lys Asp Ala Ala Thr Leu Arg Tyr Leu Gly Gly Gly Gly Asp
210 215 220
Gly Cys Asn Asp Val Asp Ala Ser Phe Ser Thr Ser Arg Arg Arg Phe
225 230 235 240
His His Ala Met Ala Tyr Gly Phe Leu Leu Cys Phe Ala Ser Thr Ser
245 250 255
Thr Gly Thr Val Tyr Asp His Leu Leu Gly Trp Pro Ala Pro Tyr Pro
260 265 270
Phe Phe Ser Leu Pro Val Leu Leu Gly Thr Val Gly Gly Ile Gly Ile
275 280 285
Val Ile Gly Thr Leu Gly Leu Leu Trp Leu Lys Leu Val Gly Asp Gln
290 295 300
Glu Pro Arg Ser Lys Ala Gln Leu Gly Ala Asp Thr Ala Leu Leu Val
305 310 315 320
Leu Leu Phe Leu Ile Ser Val Thr Gly Leu Leu Leu Leu Ala Leu Arg
325 330 335
Thr Thr Ala Ala Met Gly Val Ile Leu Thr Val His Leu Gly Leu Val
340 345 350
Phe Ser Phe Phe Ala Thr Met Pro Tyr Ser Lys Phe Val His Gly Leu
355 360 365
Tyr Arg Thr Val Ala Leu Val Arg Tyr Ala Val Glu Arg Lys Ala Leu
370 375 380
Ala Ser Gly Thr Thr Glu Glu Ala Ser
385 390




30


477


DNA


Bacterium 2412.1




fccO Regulatory protein





30
atg gcc gcg gcg aac acc ctg gga gcg act tcc ttg ggg tcg acg tca 48
Met Ala Ala Ala Asn Thr Leu Gly Ala Thr Ser Leu Gly Ser Thr Ser
1 5 10 15
tcc agg acg atc aga gcg tcg ttt ccg ccc aac tca agc gat ata cgt 96
Ser Arg Thr Ile Arg Ala Ser Phe Pro Pro Asn Ser Ser Asp Ile Arg
20 25 30
ttg agg cct tcg gcc gcg ccg gcc atg acc ttt ttt ccg gtc tgg gtc 144
Leu Arg Pro Ser Ala Ala Pro Ala Met Thr Phe Phe Pro Val Trp Val
35 40 45
gat ccg gtg aag ctg att ttg cga atg cca gga tgg cgg gtc att tcc 192
Asp Pro Val Lys Leu Ile Leu Arg Met Pro Gly Trp Arg Val Ile Ser
50 55 60
gcg ccg aga tcg tcg gcg tcg gtg atg atg tta atg acg ccc ggt ggg 240
Ala Pro Arg Ser Ser Ala Ser Val Met Met Leu Met Thr Pro Gly Gly
65 70 75 80
acg ata tcc ttg acc aag gcg cca aac cga agc gcc gtc aga ggc gtc 288
Thr Ile Ser Leu Thr Lys Ala Pro Asn Arg Ser Ala Val Arg Gly Val
85 90 95
gtc gcc gcc ggc ttg agg atg acc gtg ttg ccg gcc agc agg gcc gcc 336
Val Ala Ala Gly Leu Arg Met Thr Val Leu Pro Ala Ser Arg Ala Ala
100 105 110
ggg atc ttg aac gcc atc aac agc atc ggg aaa ttc cag ggg acg atg 384
Gly Ile Leu Asn Ala Ile Asn Ser Ile Gly Lys Phe Gln Gly Thr Met
115 120 125
cag ccc acc acg cct agg ggg cgt cta tgc acc tct acg cgg ccc gtc 432
Gln Pro Thr Thr Pro Arg Gly Arg Leu Cys Thr Ser Thr Arg Pro Val
130 135 140
gcg tcg tct ctg acc acg cga ggc ggc aga tcg agc gag gtg aag 477
Ala Ser Ser Leu Thr Thr Arg Gly Gly Arg Ser Ser Glu Val Lys
145 150 155




31


159


PRT


Bacterium 2412.1



31
Met Ala Ala Ala Asn Thr Leu Gly Ala Thr Ser Leu Gly Ser Thr Ser
1 5 10 15
Ser Arg Thr Ile Arg Ala Ser Phe Pro Pro Asn Ser Ser Asp Ile Arg
20 25 30
Leu Arg Pro Ser Ala Ala Pro Ala Met Thr Phe Phe Pro Val Trp Val
35 40 45
Asp Pro Val Lys Leu Ile Leu Arg Met Pro Gly Trp Arg Val Ile Ser
50 55 60
Ala Pro Arg Ser Ser Ala Ser Val Met Met Leu Met Thr Pro Gly Gly
65 70 75 80
Thr Ile Ser Leu Thr Lys Ala Pro Asn Arg Ser Ala Val Arg Gly Val
85 90 95
Val Ala Ala Gly Leu Arg Met Thr Val Leu Pro Ala Ser Arg Ala Ala
100 105 110
Gly Ile Leu Asn Ala Ile Asn Ser Ile Gly Lys Phe Gln Gly Thr Met
115 120 125
Gln Pro Thr Thr Pro Arg Gly Arg Leu Cys Thr Ser Thr Arg Pro Val
130 135 140
Ala Ser Ser Leu Thr Thr Arg Gly Gly Arg Ser Ser Glu Val Lys
145 150 155




32


1056


DNA


Bacterium 2412.1




fccP





32
atg gcg gcg cct cct tct gcg cgc cta gag atg cag gtt gaa ttg cac 48
Met Ala Ala Pro Pro Ser Ala Arg Leu Glu Met Gln Val Glu Leu His
1 5 10 15
gct gta ggt ccg cgg cgc ggc cac gac gcc gtt gat gaa gcc gaa cgt 96
Ala Val Gly Pro Arg Arg Gly His Asp Ala Val Asp Glu Ala Glu Arg
20 25 30
cgc ccc ctc gtc gaa cag ata gtt gta gta ctt cgt gcc cgt cag gtt 144
Arg Pro Leu Val Glu Gln Ile Val Val Val Leu Arg Ala Arg Gln Val
35 40 45
tcg gac att gaa ccc gac atc cca gtg gtt tct gga gtt gaa ggt cag 192
Ser Asp Ile Glu Pro Asp Ile Pro Val Val Ser Gly Val Glu Gly Gln
50 55 60
gct ggc gtt gtg cac cca gta gcc ctc ctg ctg ggt ata ggg ggc gtt 240
Ala Gly Val Val His Pro Val Ala Leu Leu Leu Gly Ile Gly Gly Val
65 70 75 80
cgt cga atc gaa gaa ctg gtg cga ctt gta ggc cga ggt gaa ggc gac 288
Arg Arg Ile Glu Glu Leu Val Arg Leu Val Gly Arg Gly Glu Gly Asp
85 90 95
gtt gac gct gtc gtc gtc ggc aag atg gaa ggt gta gtc cgc cgc ggc 336
Val Asp Ala Val Val Val Gly Lys Met Glu Gly Val Val Arg Arg Gly
100 105 110
gta gag cga gaa ctt cgg cgc att ggc cag ttg ctt gcc ttc cag cga 384
Val Glu Arg Glu Leu Arg Arg Ile Gly Gln Leu Leu Ala Phe Gln Arg
115 120 125
cgt tcc ccc gga gaa gcc cgc ctc gtc cag ccg cgt tcg cag cca ggc 432
Arg Ser Pro Gly Glu Ala Arg Leu Val Gln Pro Arg Ser Gln Pro Gly
130 135 140
cgg ctg cag gct gag gac gag atc cgg gat cgg gac ggc ctt tac ttc 480
Arg Leu Gln Ala Glu Asp Glu Ile Arg Asp Arg Asp Gly Leu Tyr Phe
145 150 155 160
caa ttc cac gcc ctg gga gtg ggc ctt tcg ggc gtt ggt cag gac gtt 528
Gln Phe His Ala Leu Gly Val Gly Leu Ser Gly Val Gly Gln Asp Val
165 170 175
cgt cgt cac ggt aac agg gcc ggt cac ggt atc cac gac gac ggc cgt 576
Arg Arg His Gly Asn Arg Ala Gly His Gly Ile His Asp Asp Gly Arg
180 185 190
gtt ggc cag gat ctg ctc gtt gtc gta gct gtt gta gaa agc cgc gcc 624
Val Gly Gln Asp Leu Leu Val Val Val Ala Val Val Glu Ser Arg Ala
195 200 205
gtt gac cac cag gcg acg ctc gaa cag gct cga ctt gaa gcc cag ttc 672
Val Asp His Gln Ala Thr Leu Glu Gln Ala Arg Leu Glu Ala Gln Phe
210 215 220
gta ggt ggt cac ctt ctc cgg tgc gac ggg ttt gac cgc ggc gag ggc 720
Val Gly Gly His Leu Leu Arg Cys Asp Gly Phe Asp Arg Gly Glu Gly
225 230 235 240
ttt gtt ggg gtt gct gct cag gaa ccc gcc gtt gaa ggc gcc gcc ctt 768
Phe Val Gly Val Ala Ala Gln Glu Pro Ala Val Glu Gly Ala Ala Leu
245 250 255
aaa gcc ggt ggc gac gct gcc gta gac cat aac acg ctc ggc ggg acg 816
Lys Ala Gly Gly Asp Ala Ala Val Asp His Asn Thr Leu Gly Gly Thr
260 265 270
gta gga aag cgc ggc gcg cca ggt cgg atc gga agc ctt gaa cgc ttc 864
Val Gly Lys Arg Gly Ala Pro Gly Arg Ile Gly Ser Leu Glu Arg Phe
275 280 285
gct cag cga gac gat ctt gcc gag agg acc gta ttt ccc aag gcc tcc 912
Ala Gln Arg Asp Asp Leu Ala Glu Arg Thr Val Phe Pro Lys Ala Ser
290 295 300
tgc ttg gac ctg ggt cgc gct gaa gtg atc gaa cgt ctt gcg ttc atg 960
Cys Leu Asp Leu Gly Arg Ala Glu Val Ile Glu Arg Leu Ala Phe Met
305 310 315 320
ggt gta acg acc gcc caa ggt cag ggt gaa ccg gtc caa ggt ata gtc 1008
Gly Val Thr Thr Ala Gln Gly Gln Gly Glu Pro Val Gln Gly Ile Val
325 330 335
ggc ttg gcc gaa ggc ggc tat cga ccg tgt ttt ctg agt gtt ttg gct 1056
Gly Leu Ala Glu Gly Gly Tyr Arg Pro Cys Phe Leu Ser Val Leu Ala
340 345 350




33


352


PRT


Bacterium 2412.1



33
Met Ala Ala Pro Pro Ser Ala Arg Leu Glu Met Gln Val Glu Leu His
1 5 10 15
Ala Val Gly Pro Arg Arg Gly His Asp Ala Val Asp Glu Ala Glu Arg
20 25 30
Arg Pro Leu Val Glu Gln Ile Val Val Val Leu Arg Ala Arg Gln Val
35 40 45
Ser Asp Ile Glu Pro Asp Ile Pro Val Val Ser Gly Val Glu Gly Gln
50 55 60
Ala Gly Val Val His Pro Val Ala Leu Leu Leu Gly Ile Gly Gly Val
65 70 75 80
Arg Arg Ile Glu Glu Leu Val Arg Leu Val Gly Arg Gly Glu Gly Asp
85 90 95
Val Asp Ala Val Val Val Gly Lys Met Glu Gly Val Val Arg Arg Gly
100 105 110
Val Glu Arg Glu Leu Arg Arg Ile Gly Gln Leu Leu Ala Phe Gln Arg
115 120 125
Arg Ser Pro Gly Glu Ala Arg Leu Val Gln Pro Arg Ser Gln Pro Gly
130 135 140
Arg Leu Gln Ala Glu Asp Glu Ile Arg Asp Arg Asp Gly Leu Tyr Phe
145 150 155 160
Gln Phe His Ala Leu Gly Val Gly Leu Ser Gly Val Gly Gln Asp Val
165 170 175
Arg Arg His Gly Asn Arg Ala Gly His Gly Ile His Asp Asp Gly Arg
180 185 190
Val Gly Gln Asp Leu Leu Val Val Val Ala Val Val Glu Ser Arg Ala
195 200 205
Val Asp His Gln Ala Thr Leu Glu Gln Ala Arg Leu Glu Ala Gln Phe
210 215 220
Val Gly Gly His Leu Leu Arg Cys Asp Gly Phe Asp Arg Gly Glu Gly
225 230 235 240
Phe Val Gly Val Ala Ala Gln Glu Pro Ala Val Glu Gly Ala Ala Leu
245 250 255
Lys Ala Gly Gly Asp Ala Ala Val Asp His Asn Thr Leu Gly Gly Thr
260 265 270
Val Gly Lys Arg Gly Ala Pro Gly Arg Ile Gly Ser Leu Glu Arg Phe
275 280 285
Ala Gln Arg Asp Asp Leu Ala Glu Arg Thr Val Phe Pro Lys Ala Ser
290 295 300
Cys Leu Asp Leu Gly Arg Ala Glu Val Ile Glu Arg Leu Ala Phe Met
305 310 315 320
Gly Val Thr Thr Ala Gln Gly Gln Gly Glu Pro Val Gln Gly Ile Val
325 330 335
Gly Leu Ala Glu Gly Gly Tyr Arg Pro Cys Phe Leu Ser Val Leu Ala
340 345 350




34


477


DNA


Bacterium 2412.1




fccQ Leucine Regulatory Protein Homolog





34
atg ctg agg tta cgc cac atg atg cca gcg ctg gac gcg atc gac cgc 48
Met Leu Arg Leu Arg His Met Met Pro Ala Leu Asp Ala Ile Asp Arg
1 5 10 15
aag atc att ggc ctg ctt cgg gtc aat ggc cgc atg ccc aac aat gag 96
Lys Ile Ile Gly Leu Leu Arg Val Asn Gly Arg Met Pro Asn Asn Glu
20 25 30
ttg gcg cag aag gta ggg ctt tcg cct tcc gcc tgt ctg cga cgc gtc 144
Leu Ala Gln Lys Val Gly Leu Ser Pro Ser Ala Cys Leu Arg Arg Val
35 40 45
aag ttg ctc gag tcg aac ggg gtg atc cga ggg tat tgt gca ttg gtt 192
Lys Leu Leu Glu Ser Asn Gly Val Ile Arg Gly Tyr Cys Ala Leu Val
50 55 60
gcc gag cag tcg ttg gac gcc agc gtg gtg gcg atc gtc cgg ata acc 240
Ala Glu Gln Ser Leu Asp Ala Ser Val Val Ala Ile Val Arg Ile Thr
65 70 75 80
ttg gac aag cag acc gag gac tat ctg aat cgg ttc gag gag gcc gtt 288
Leu Asp Lys Gln Thr Glu Asp Tyr Leu Asn Arg Phe Glu Glu Ala Val
85 90 95
cgg cgg cat ccc gag atc gct gag tgc ttt ctg atg acc ggc gac gca 336
Arg Arg His Pro Glu Ile Ala Glu Cys Phe Leu Met Thr Gly Asp Ala
100 105 110
gac tac atc ctt cgg gct acc gcg ccg agc acg gcc gcc tac gag caa 384
Asp Tyr Ile Leu Arg Ala Thr Ala Pro Ser Thr Ala Ala Tyr Glu Gln
115 120 125
atc cac aag gaa gtc ctt tct cgg ctt ccc ggg gtg gcg cgc atc cat 432
Ile His Lys Glu Val Leu Ser Arg Leu Pro Gly Val Ala Arg Ile His
130 135 140
tcg agc ttc gcc atc cgc agc gtg ctg tcg tcg gtc gca agg ccc 477
Ser Ser Phe Ala Ile Arg Ser Val Leu Ser Ser Val Ala Arg Pro
145 150 155




35


159


PRT


Bacterium 2412.1



35
Met Leu Arg Leu Arg His Met Met Pro Ala Leu Asp Ala Ile Asp Arg
1 5 10 15
Lys Ile Ile Gly Leu Leu Arg Val Asn Gly Arg Met Pro Asn Asn Glu
20 25 30
Leu Ala Gln Lys Val Gly Leu Ser Pro Ser Ala Cys Leu Arg Arg Val
35 40 45
Lys Leu Leu Glu Ser Asn Gly Val Ile Arg Gly Tyr Cys Ala Leu Val
50 55 60
Ala Glu Gln Ser Leu Asp Ala Ser Val Val Ala Ile Val Arg Ile Thr
65 70 75 80
Leu Asp Lys Gln Thr Glu Asp Tyr Leu Asn Arg Phe Glu Glu Ala Val
85 90 95
Arg Arg His Pro Glu Ile Ala Glu Cys Phe Leu Met Thr Gly Asp Ala
100 105 110
Asp Tyr Ile Leu Arg Ala Thr Ala Pro Ser Thr Ala Ala Tyr Glu Gln
115 120 125
Ile His Lys Glu Val Leu Ser Arg Leu Pro Gly Val Ala Arg Ile His
130 135 140
Ser Ser Phe Ala Ile Arg Ser Val Leu Ser Ser Val Ala Arg Pro
145 150 155




36


1074


DNA


Bacterium 2412.1




fccR





36
atg gcg gct gac gag atc tcc cag ctc agg aga acc cat ccc cac cgt 48
Met Ala Ala Asp Glu Ile Ser Gln Leu Arg Arg Thr His Pro His Arg
1 5 10 15
ctt gat gac tcc ctg gag gcg gtc gct gat ctg cag gta gcc ctc cgc 96
Leu Asp Asp Ser Leu Glu Ala Val Ala Asp Leu Gln Val Ala Leu Arg
20 25 30
gtc aat ccg gcc gaa atc ctg cgt atg aag gct tcc tcc gcg cca aag 144
Val Asn Pro Ala Glu Ile Leu Arg Met Lys Ala Ser Ser Ala Pro Lys
35 40 45
ctc gcg cga ggc ggc cag atc gcg atg gta ccc agc cgt cag cca agg 192
Leu Ala Arg Gly Gly Gln Ile Ala Met Val Pro Ser Arg Gln Pro Arg
50 55 60
cgc acg caa cac gat ctc gcc cgc gga gag gcc gtc gcg ggg cac atc 240
Arg Thr Gln His Asp Leu Ala Arg Gly Glu Ala Val Ala Gly His Ile
65 70 75 80
cgc cat gga ctc atc cac gac ccg gag gtc gac cag cgc gat agc ttg 288
Arg His Gly Leu Ile His Asp Pro Glu Val Asp Gln Arg Asp Ser Leu
85 90 95
tcc gac ctt ggt gcg aat ggc gac ctc ctc ctg agc tgg agc cat tgc 336
Ser Asp Leu Gly Ala Asn Gly Asp Leu Leu Leu Ser Trp Ser His Cys
100 105 110
ttc ggt cct aat gcg cgt gaa gct gac cag cgg ccc ggt ttc gga cat 384
Phe Gly Pro Asn Ala Arg Glu Ala Asp Gln Arg Pro Gly Phe Gly His
115 120 125
tcc gta tcc ggt ggt cag gac gat gcc gcg ccc cgc ggc ctg aag agc 432
Ser Val Ser Gly Gly Gln Asp Asp Ala Ala Pro Arg Gly Leu Lys Ser
130 135 140
cag gcc gcg ggg cag cgc cgc tcc gcc gac gag cac ctg cca tcc ggt 480
Gln Ala Ala Gly Gln Arg Arg Ser Ala Asp Glu His Leu Pro Ser Gly
145 150 155 160
gaa atc cgc cgt ctg gcc cga agg cga att gag cat cat ctg caa aag 528
Glu Ile Arg Arg Leu Ala Arg Arg Arg Ile Glu His His Leu Gln Lys
165 170 175
tgt ggg cac gca atg aga gaa ggt cac ctt ctc cgc gcg ctg aag ctc 576
Cys Gly His Ala Met Arg Glu Gly His Leu Leu Arg Ala Leu Lys Leu
180 185 190
cac cag ttg ctc ggg aac ata gcg ccc tgg gta gac ttg ctt gca gcc 624
His Gln Leu Leu Gly Asn Ile Ala Pro Trp Val Asp Leu Leu Ala Ala
195 200 205
gac cat cgt cgc cac gaa ggg cat tcc cca cgc atg agc atg gaa cat 672
Asp His Arg Arg His Glu Gly His Ser Pro Arg Met Ser Met Glu His
210 215 220
cgg ggt gat cgg cat gta gac cgt atc gcg ccc cag cct ggc gta acc 720
Arg Gly Asp Arg His Val Asp Arg Ile Ala Pro Gln Pro Gly Val Thr
225 230 235 240
gtc tcc aag ggc cag cgt cgc cat cac cgc cag ggt gtg cag cac cag 768
Val Ser Lys Gly Gln Arg Arg His His Arg Gln Gly Val Gln His Gln
245 250 255
ctg acg atg cga ata gta gac gcc ctt cgg acg ccc ggt cgt gcc gct 816
Leu Thr Met Arg Ile Val Asp Ala Leu Arg Thr Pro Gly Arg Ala Ala
260 265 270
ggt gta gaa ggt cgt cgc ccg cgt gtt ctc gtc gaa gtc cgg gaa gtc 864
Gly Val Glu Gly Arg Arg Pro Arg Val Leu Val Glu Val Arg Glu Val
275 280 285
gaa ccg agg gcg cgc ggc cgc cat cag ggc ctc ata ctc ccc cag cac 912
Glu Pro Arg Ala Arg Gly Arg His Gln Gly Leu Ile Leu Pro Gln His
290 295 300
cca ggg atg ggc ggc ttc cgc ctc gtc gtc ctt cag atg gac gac ccc 960
Pro Gly Met Gly Gly Phe Arg Leu Val Val Leu Gln Met Asp Asp Pro
305 310 315 320
gcg cag gct ggg caa ttg gtc gat cac ctc ctc gag gat cgg cag gaa 1008
Ala Gln Ala Gly Gln Leu Val Asp His Leu Leu Glu Asp Arg Gln Glu
325 330 335
atc ggt gtg gct cag cgc cag ggt ggc gcc cgc atg ctc gag cgt gta 1056
Ile Gly Val Ala Gln Arg Gln Gly Gly Ala Arg Met Leu Glu Arg Val
340 345 350
gcg cag gtc gtc tcg ggc 1074
Ala Gln Val Val Ser Gly
355




37


358


PRT


Bacterium 2412.1



37
Met Ala Ala Asp Glu Ile Ser Gln Leu Arg Arg Thr His Pro His Arg
1 5 10 15
Leu Asp Asp Ser Leu Glu Ala Val Ala Asp Leu Gln Val Ala Leu Arg
20 25 30
Val Asn Pro Ala Glu Ile Leu Arg Met Lys Ala Ser Ser Ala Pro Lys
35 40 45
Leu Ala Arg Gly Gly Gln Ile Ala Met Val Pro Ser Arg Gln Pro Arg
50 55 60
Arg Thr Gln His Asp Leu Ala Arg Gly Glu Ala Val Ala Gly His Ile
65 70 75 80
Arg His Gly Leu Ile His Asp Pro Glu Val Asp Gln Arg Asp Ser Leu
85 90 95
Ser Asp Leu Gly Ala Asn Gly Asp Leu Leu Leu Ser Trp Ser His Cys
100 105 110
Phe Gly Pro Asn Ala Arg Glu Ala Asp Gln Arg Pro Gly Phe Gly His
115 120 125
Ser Val Ser Gly Gly Gln Asp Asp Ala Ala Pro Arg Gly Leu Lys Ser
130 135 140
Gln Ala Ala Gly Gln Arg Arg Ser Ala Asp Glu His Leu Pro Ser Gly
145 150 155 160
Glu Ile Arg Arg Leu Ala Arg Arg Arg Ile Glu His His Leu Gln Lys
165 170 175
Cys Gly His Ala Met Arg Glu Gly His Leu Leu Arg Ala Leu Lys Leu
180 185 190
His Gln Leu Leu Gly Asn Ile Ala Pro Trp Val Asp Leu Leu Ala Ala
195 200 205
Asp His Arg Arg His Glu Gly His Ser Pro Arg Met Ser Met Glu His
210 215 220
Arg Gly Asp Arg His Val Asp Arg Ile Ala Pro Gln Pro Gly Val Thr
225 230 235 240
Val Ser Lys Gly Gln Arg Arg His His Arg Gln Gly Val Gln His Gln
245 250 255
Leu Thr Met Arg Ile Val Asp Ala Leu Arg Thr Pro Gly Arg Ala Ala
260 265 270
Gly Val Glu Gly Arg Arg Pro Arg Val Leu Val Glu Val Arg Glu Val
275 280 285
Glu Pro Arg Ala Arg Gly Arg His Gln Gly Leu Ile Leu Pro Gln His
290 295 300
Pro Gly Met Gly Gly Phe Arg Leu Val Val Leu Gln Met Asp Asp Pro
305 310 315 320
Ala Gln Ala Gly Gln Leu Val Asp His Leu Leu Glu Asp Arg Gln Glu
325 330 335
Ile Gly Val Ala Gln Arg Gln Gly Gly Ala Arg Met Leu Glu Arg Val
340 345 350
Ala Gln Val Val Ser Gly
355




38


552


DNA


Bacterium 2412.1




fccS





38
atg cag gcg ctg gcc gga ata ggc ggc gcg gaa ctc ttg ggt cca ggt 48
Met Gln Ala Leu Ala Gly Ile Gly Gly Ala Glu Leu Leu Gly Pro Gly
1 5 10 15
gtc gga gcg aac gcc gta ggt cgc gtg gag cag act gtc aga cgt ccc 96
Val Gly Ala Asn Ala Val Gly Arg Val Glu Gln Thr Val Arg Arg Pro
20 25 30
gtc ggc gtc gtc ggg gcc gct ctt ttt gct gtg cgt gaa ggc gct gat 144
Val Gly Val Val Gly Ala Ala Leu Phe Ala Val Arg Glu Gly Ala Asp
35 40 45
cga tgt cag ggt cac cgg acc gac ctc ata gtc ggc gcg ggc ctg ctg 192
Arg Cys Gln Gly His Arg Thr Asp Leu Ile Val Gly Ala Gly Leu Leu
50 55 60
cag gaa gtt ttc cac gcg caa gcg ttc acc gcg atc gct gga acc gtc 240
Gln Glu Val Phe His Ala Gln Ala Phe Thr Ala Ile Ala Gly Thr Val
65 70 75 80
gta gaa gcc gct cgg cgt gcc tgc gcc gaa cac gtt gac gca acc tcc 288
Val Glu Ala Ala Arg Arg Ala Cys Ala Glu His Val Asp Ala Thr Ser
85 90 95
ggc gcg gac ctg ctc ggg gct gca gag agt cgg gct ggc gct gga ttg 336
Gly Ala Asp Leu Leu Gly Ala Ala Glu Ser Arg Ala Gly Ala Gly Leu
100 105 110
ggt tcc tgc cgc gaa ggc gcc caa gtg tcg gta ctg gac gat cgg cga 384
Gly Ser Cys Arg Glu Gly Ala Gln Val Ser Val Leu Asp Asp Arg Arg
115 120 125
gtt gac atg acc ata ggc cga act gag aag tac ttt cag cct gtc att 432
Val Asp Met Thr Ile Gly Arg Thr Glu Lys Tyr Phe Gln Pro Val Ile
130 135 140
agg tcg gta gag cag ttg cag cct gac ggc ctg att gtc cgt gcc cga 480
Arg Ser Val Glu Gln Leu Gln Pro Asp Gly Leu Ile Val Arg Ala Arg
145 150 155 160
cgc cga acc gcc cgt cag cgt gtt gtg cat gaa ccc gtc gga gtg gtt 528
Arg Arg Thr Ala Arg Gln Arg Val Val His Glu Pro Val Gly Val Val
165 170 175
gac gac gaa ggc cag gcg ggc gct 552
Asp Asp Glu Gly Gln Ala Gly Ala
180




39


184


PRT


Bacterium 2412.1



39
Met Gln Ala Leu Ala Gly Ile Gly Gly Ala Glu Leu Leu Gly Pro Gly
1 5 10 15
Val Gly Ala Asn Ala Val Gly Arg Val Glu Gln Thr Val Arg Arg Pro
20 25 30
Val Gly Val Val Gly Ala Ala Leu Phe Ala Val Arg Glu Gly Ala Asp
35 40 45
Arg Cys Gln Gly His Arg Thr Asp Leu Ile Val Gly Ala Gly Leu Leu
50 55 60
Gln Glu Val Phe His Ala Gln Ala Phe Thr Ala Ile Ala Gly Thr Val
65 70 75 80
Val Glu Ala Ala Arg Arg Ala Cys Ala Glu His Val Asp Ala Thr Ser
85 90 95
Gly Ala Asp Leu Leu Gly Ala Ala Glu Ser Arg Ala Gly Ala Gly Leu
100 105 110
Gly Ser Cys Arg Glu Gly Ala Gln Val Ser Val Leu Asp Asp Arg Arg
115 120 125
Val Asp Met Thr Ile Gly Arg Thr Glu Lys Tyr Phe Gln Pro Val Ile
130 135 140
Arg Ser Val Glu Gln Leu Gln Pro Asp Gly Leu Ile Val Arg Ala Arg
145 150 155 160
Arg Arg Thr Ala Arg Gln Arg Val Val His Glu Pro Val Gly Val Val
165 170 175
Asp Asp Glu Gly Gln Ala Gly Ala
180




40


531


DNA


Bacterium 2412.1




fccT





40
atg ggc gtc cgc ggc gaa gtc ttg gct cgg cgc tct gga cgt gaa cac 48
Met Gly Val Arg Gly Glu Val Leu Ala Arg Arg Ser Gly Arg Glu His
1 5 10 15
caa ggc ccc acc gct gga gtt gcg ccc ata gag cgt acc ttg cgg tcc 96
Gln Gly Pro Thr Ala Gly Val Ala Pro Ile Glu Arg Thr Leu Arg Ser
20 25 30
ttt gag aac ctg gat ctg gtt gat gtc gaa gat tcc gaa ggt ctg ggc 144
Phe Glu Asn Leu Asp Leu Val Asp Val Glu Asp Ser Glu Gly Leu Gly
35 40 45
cga cgg ggc gct gat ata gac atc gtc gac ata gat cgc gtt cgg gcc 192
Arg Arg Gly Ala Asp Ile Asp Ile Val Asp Ile Asp Arg Val Arg Ala
50 55 60
ggc gtt gtt gga att gaa gtc gtt gag gcc gat gcc gcg gat cgt cac 240
Gly Val Val Gly Ile Glu Val Val Glu Ala Asp Ala Ala Asp Arg His
65 70 75 80
cgc cgg ctg gtt gcc ttc gcc gtt ggg cat ggc gat ggt gac gtt ggg 288
Arg Arg Leu Val Ala Phe Ala Val Gly His Gly Asp Gly Asp Val Gly
85 90 95
cgt cac tcg ggc gat atc gct ggt ctg ttt gat ccc ttc gcg ctc gag 336
Arg His Ser Gly Asp Ile Ala Gly Leu Phe Asp Pro Phe Ala Leu Glu
100 105 110
ctg cgc tgc cga cag cgc ctg cac cga gac cgg cac att ctg aat gtt 384
Leu Arg Cys Arg Gln Arg Leu His Arg Asp Arg His Ile Leu Asn Val
115 120 125
ctc gct gcg gcg ctg cgc ggt gac gac gat ctc ctg cac ctc ctg cga 432
Leu Ala Ala Ala Leu Arg Gly Asp Asp Asp Leu Leu His Leu Leu Arg
130 135 140
cgc ctc gtg acc agc cgg cgg aac cgc cac ctg cgc gag cgc ctt ggg 480
Arg Leu Val Thr Ser Arg Arg Asn Arg His Leu Arg Glu Arg Leu Gly
145 150 155 160
cgc aag acc cag cac cag ggc gct gcc ggc cgc cgt cag cat gag cct 528
Arg Lys Thr Gln His Gln Gly Ala Ala Gly Arg Arg Gln His Glu Pro
165 170 175
tcg 531
Ser




41


177


PRT


Bacterium 2412.1



41
Met Gly Val Arg Gly Glu Val Leu Ala Arg Arg Ser Gly Arg Glu His
1 5 10 15
Gln Gly Pro Thr Ala Gly Val Ala Pro Ile Glu Arg Thr Leu Arg Ser
20 25 30
Phe Glu Asn Leu Asp Leu Val Asp Val Glu Asp Ser Glu Gly Leu Gly
35 40 45
Arg Arg Gly Ala Asp Ile Asp Ile Val Asp Ile Asp Arg Val Arg Ala
50 55 60
Gly Val Val Gly Ile Glu Val Val Glu Ala Asp Ala Ala Asp Arg His
65 70 75 80
Arg Arg Leu Val Ala Phe Ala Val Gly His Gly Asp Gly Asp Val Gly
85 90 95
Arg His Ser Gly Asp Ile Ala Gly Leu Phe Asp Pro Phe Ala Leu Glu
100 105 110
Leu Arg Cys Arg Gln Arg Leu His Arg Asp Arg His Ile Leu Asn Val
115 120 125
Leu Ala Ala Ala Leu Arg Gly Asp Asp Asp Leu Leu His Leu Leu Arg
130 135 140
Arg Leu Val Thr Ser Arg Arg Asn Arg His Leu Arg Glu Arg Leu Gly
145 150 155 160
Arg Lys Thr Gln His Gln Gly Ala Ala Gly Arg Arg Gln His Glu Pro
165 170 175
Ser




42


26


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






42
gttgcgatgg tcgcgagaat aagcgt 26




43


25


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






43
agtaggccgt agttgcccga agttc 25




44


28


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
nucleotide






44
acccgattat cgtcaatgac gaacgagg 28




45


24


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






45
accatggtcg cgtagtcgtc tctc 24




46


23


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






46
gatccaacgc ttggagggac tgg 23




47


25


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






47
gaccattcga tgacgtcgct ttgcg 25




48


26


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






48
aattgttcga tccgatcacg gccacg 26




49


24


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






49
tgagacccac cgtcgtgcta tcgt 24




50


24


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






50
acgcgaccat atcccgctcg tgat 24




51


27


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






51
cctggtcaac gacgttgagc agacatt 27




52


25


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






52
gacgaggatt tcgagggcct aaagg 25




53


23


DNA


Artificial Sequence




Description of Artificial Sequence synthetic
oligonucleotide






53
tcgatctcga ccagcgggaa ctc 23




54


640


DNA


Bacterium 2412.1



54
gttgcgatgg tcgcgagaat aagcgtgcga agtgggagga tgtgaagatg ggggccagga 60
gtatgtgtgc gggacggttc ggacgcttct gcattggctt ggcttcatcg gttgccgtga 120
ctctaggggg agcctccgcc gccggcgcgg caaccgcgac ggattttccg gtccgcagga 180
ccgatctggg ccaggttcag ggactggccg gggacgtgat gagctttcgc ggaataccct 240
atgcagcgcc gccggtgggc gggctgcgtt ggaagccgcc ccaacacgcc cggccctggg 300
cgggcgttcg ccccgccacc caatttggct ccgactgctt cggcgcggcc tatcttcgca 360
aaggcagcct cgcccccggc gtgagcgagg actgtcttta cctcaacgta tgggcgccgt 420
caggcgctaa acccggccag taccccgtca tggtctgggt ctacggcggc ggcttcgccg 480
gcggcacggc cgccatgccc tactacgacg gcgaggcgct tgcgcgacag ggcgtcgtcg 540
tggtgacgtt taactatcgg acgaacatcc tgggcttttt cgcccatcct ggtctctcgc 600
gcgagagccc caccggaact tcgggcaact acggcctact 640




55


475


DNA


Bacterium 2412.1



55
acccgattat cgtcaatgac gaacgaggcc gccaacggac cggcgctgaa gcccaccaac 60
gcgagagggg cgagcagtac ggcggcggtc ctgctgggct ccaaggcgat cacgtccgcc 120
accagaaacg gctgcagcgc cagccagaac aggccaaagc cacaagcgct tgcgatgagc 180
gcgacgggcg tgccggcgtg aagcaggccg atgacaagac cggcctgcag cactgcgccg 240
gcggccagaa ccgtacgggc gtgcacgcgc gcaccgagcc aggatgctgc aagagcaccc 300
gccacctgga aggccaggct gcccgcgatc gcggcgccga ccgtggccgg ggcgaaatgg 360
tgttgcgcgg ccaggcgctc caggtagttc catgccgccc cgatgccggc gttttgaaga 420
aacgccgcga gcgccacgac catcagggcc ggagagacga ctacgcgacc atggt 475




56


447


DNA


Bacterium 2412.1



56
gatccaacgc ttggagggac tggtcggcgg cgctctcttc gaccgaacca gccggaccat 60
gaccgagacc gcgcttggca aggagctgct gccggtggcc cgccgaacgc ttgagtttct 120
ggacaattcg ctgttcgcct cgcccaagct gcgcgaaccg cgctggaccg acatcagcat 180
tttttgcgtg cagaccgccg cgttccgcgt tctgccgcgc gcggcccggc gcttcatgga 240
tgaaaatccc cgactgcgcc tgaggatcat cgatgttccg gctgtcgaag gcgcggaact 300
ggtggcgcga ggggaagcgg agttcggtat cagcatcgag agcctgcttc cgtccggcct 360
gcgtttcgag gctcttcacg aggacccgtt tggcttggcg tgccatcgga gccatcgcct 420
ggcgcaaagc gacgtcatcg aatggtc 447




57


536


DNA


Bacterium 2412.1



57
tgagacccag ccgttcgtgc ttatcgtcgg cggcggtcaa ggcggtctag cgcttggcgc 60
gcgcctccgt cagctccagg tcccgactct gatcgtcgat cagcacccac gggtggggga 120
ccaatggcga tcgcggtacg catcgctctg cctgcacgat ccagtctggt acgaccacct 180
tccttacctg ccgtttcccg atacttggcc ggtttatacg cccaaggaca agatcggcga 240
ttggctcgaa gcttatgcgc aggcgatgga gctgctggtc tggtgttcga ccagatgcgt 300
gtccgccgtc tatgacgccg aagccgggcg atggaccgtc accctgcgcc gaggcgagga 360
gaccagcgtc atccgccccg cgcatctggt cctggcgacg ggcaacgccg gcaagccgcg 420
cgttccgcgc ttcaagggcc aagcgcagtt cgaaggtccg atcctgcact cgagcgccta 480
tcggagcggg gctgatttca aaggacggcg cgtggccgtg atcggatcga acaatt 536




58


715


DNA


Bacterium 2412.1



58
acgcgaccat atcccgctcg tgatcggctg cgggcccgtg ggcatggcgg tcatcgccgc 60
gctccggggt ctgggcgtcg gaccgatcat cgcggccgac ttcaatccgg cgcgtcggag 120
cctggcggcg cgcatgggcg ccgatattgt catcgacccg gcggagcggt ccccctacga 180
cgaatggcgg gataccgcgg cggcgtcagg cctggccgga ctggcggggg cgccagcgtc 240
gctgcggacc tgtctggtct tcgagtgtgt cggcctgcca ggaatgctgc gtcagatcat 300
ggaaggcgcc ccggcggagt cggagatcat cgtcgtcggg gcctgcatgg agcccgatag 360
cctcgagccg atgatggcga tgcataaggc tctgacgctg aattttcgcg aacctacacg 420
atcgaggagt tcgccgaggt ccttcggatg atcggtgagg gcgagctcca cgtcgagccg 480
ttgctcagcc aacccatcgg cctggaagac cttccggggg tcttcgacaa agcgcccggg 540
agggccgggg gcgccaaggt cctcgtcgac ccctggcgct gacgccgccg aaaaccaacg 600
acagaaaaca acgggcggga ggaacaattg ggtagcgatg agcaagacga tcctctcgtc 660
ggcggcggtc gtcagttgct tctcaagcaa tgtctgctca acgtcgttga ccagg 715




59


686


DNA


Bacterium 2412.1



59
tcgatctcga ccagcgggaa ctcgccggcg aaccggccga cggaaaccga cgtcagccgg 60
ttggtgtcca tcagtgcgcc gagtgcggtc gggaggaacg cgttgtcgcg gaagatcgtg 120
aaggcgttcg cgctgccgac aaactggttg acgaaggcgc cgaggttggt gtggctatag 180
gcataggtgc cttccgcata gagcttgacg cgttctgagg cctcgaactc gccgcggagg 240
aagccattgt agcgccgctg gtccggagcg aagccgagat tgacgcgcgg accgtcgccg 300
ccgctctgga aggaactgct ggtaaagctt ccgtagttaa aggtcgcaag cgtaccgccg 360
ggaagaaagg tgacgccctt cagcggaccc gatgtgatca ggccgccgta ggcgccgcgc 420
gagcttcgga tgtcgggaac caccgtgacg cccgtcgggg cgccgggcac gggatattgc 480
cccgccgcgc gatcatacca cgcccgatcg gtggcctgat cggcgcgaat gccgtcctcg 540
tgatagtatt cgaccgcggc aaggagatgt gcgcgccctt gggcaaacga cttgccggcc 600
gccagcgatc cgcccaccga ggccagatcg ttgcggctcg agacgccggt ctggacgttc 660
gcctttaggc cctcgaaatc ctcgtc 686






Claims
  • 1. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes a fumonisin degradative enzyme, wherein said nucleotide sequence is selected from the group consisting of:a) a nucleotide sequence that encodes a polypeptide having the amino acid sequence set forth in SEQ ID NO: 7; and b) the nucleotide sequence set forth in SEQ ID NO:6.
  • 2. An expression cassette comprising a nucleic acid molecule of claim 1, wherein said nucleic acid molecule is operably linked to a promoter that drives expression in a plant cell.
  • 3. The expression cassette of claim 2, wherein said promoter is a constitutive promoter.
  • 4. An expression cassette comprising a nucleic acid molecule of claim 1, wherein said nucleic acid molecule is operably linked to a promoter that drives expression in a microorganism.
  • 5. The expression cassette of claim 4, wherein said promoter is a constitutive promoter.
  • 6. A vector for delivery of a nucleic acid molecule to a host cell, wherein said vector comprises a nucleic acid molecule of claim 1.
  • 7. A host cell containing the vector of claim 6.
  • 8. A host cell comprising in its genome at least one nucleic acid molecule of claim 1.
  • 9. The host cell of claim 8, wherein said host cell is a cell of a plant selected from the group consisting of maize, sorghum, wheat, tomato, soybean, alfalfa, sunflower, Brassica, cotton, and rice.
  • 10. A transformed plant cell having incorporated into its genome at least one nucleic acid molecule of claim 1.
  • 11. A transformed plant having incorporated into its genome at least one nucleic acid molecule of claim 1.
  • 12. Transformed seed of the plant of claim 11.
  • 13. A plant having stably incorporated within its genome a nucleotide sequence encoding a fumonisin degradative enzyme, wherein said nucleotide sequence is selected from the group consisting of:a) a nucleotide sequence that encodes a polypeptide having the amino acid sequence set forth in SEQ ID NO: 7; and b) the nucleotide sequence set forth in SEQ ID NO:6.
  • 14. A plant capable of degrading fumonisin, said plant having stably incorporated within its genome at least one nucleotide sequence encoding a fumonisin degradative enzyme from Bacterium 2412.1 operably linked to a plant promoter, wherein said nucleotide sequence is selected from the group consisting of:a) a nucleotide sequence that encodes a polypeptide having the amino acid sequence set forth in SEQ ID NO: 7; and b) the nucleotide sequence set forth in SEQ ID NO:6.
  • 15. The plant of claim 14, wherein said plant is selected from the group consisting of maize, sorghum, wheat, tomato, soybean, alfalfa, sunflower, Brassica, cotton, and rice.
  • 16. A method of making an enzyme useful in degrading fumonisin, said method comprising:a) expressing a nucleic acid molecule of claim 1 in a recombinantly engineered cell; and b) purifying said enzyme.
  • 17. A method of making an enzyme useful in degrading fumonisin, said method comprising:a) expressing a nucleic acid molecule of claim 1 in a plant; and b) purfying said enzyme from the plant seed or other plant parts.
  • 18. A genetically engineered ruminal microorganism comprising at least one nucleic acid molecule of claim 1.
  • 19. A probiotic composition comprising the genetically engineered ruminal microorganism of claim 18.
  • 20. A feed inoculant composition comprising the genetically engineered ruminal microorganism of claim 18.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/092,953, filed Jul. 15, 1998.

US Referenced Citations (5)
Number Name Date Kind
5178863 Toyoda et al. Jan 1993 A
5639949 Ligon et al. Jun 1997 A
5716820 Duvick et al. Feb 1998 A
5792931 Duvick et al. Aug 1998 A
5877273 Hance et al. Mar 1999 A
Foreign Referenced Citations (9)
Number Date Country
0712932 May 1996 EP
9506121 Mar 1995 WO
9506128 Mar 1995 WO
9606175 Feb 1996 WO
9612414 May 1996 WO
9620595 Jul 1996 WO
9902703 Jan 1999 WO
9910514 Mar 1999 WO
9932505 Jul 1999 WO
Non-Patent Literature Citations (88)
Entry
James A. Wells, Additivity of Mutational Effects in Proteins, BIOCHEMISTRY, vol. 29, No. 37, Sep. 18, 1990.*
Rakin et al. (1994) “The Pesticin Receptor of Yersinia enterocolitica: A Novel Virulence Factor With Dual Function”, Molecular Microbiology 132):253-263.
Schmidt et al. (1990) “Cloning and Nucleotide Sequence Of The crtI Gene Encoding Phytoene Dehydrogenase From The Cyanobacterium Aphanocapsa PCC6714”, Gene 91(9):113-117.
Murakami et al. (Jan. 21, 1999) “Cloning And Sequence Analysis Of Two Catechol-Degrading Gene Clusters From The Aniline-Assimilating Bacterium Frateuria Species ANA-18”, Gene 226(2):189-198.
Chattopadhyay et al. (1994) “Molecular Cloning And Sequencing Of An Operon, carRS Of Azospirillum brasilense, That Codes For A Novel Two-Component Regulatory System: Demonstration Of A Positive Regulatory Role Of carR For Global Control Of Carbohydrate Catabolism”, Journal of Bacteriology 176(24):7484-7490.
Willins et al. (1991) “Characterization Of Lrp, an Escherichia coli Regulatory Protein That Mediates A Global Response To Leucine”, The Journal of Biological Chemistry 266(17):10768-10774.
BLAST Searches in SwissProt, GenBank, DBest and Patents Databases.
Chen et al. (Jul. 16, 1988) “Acinetobacter sp. Cyclohexanone monooxygenase gene, completecds”, EMBL Accession No.:M19029, XP002133308.
Chen et al. (Oct. 1, 1989) “Cyclohexanone Monooxygenase (EC 1.14.13.22)”, SWISSPROT Accession No.:P12015, XP002133309.
Chen et al. (Oct. 1, 1989) “Flavin-binding monooxygenase-like”, PFAM Accession No.:PF00743, XP002133310.
Itagaki et al. (Jan. 22, 1998) “Rhodococcus rhodochrous gene for steroidmonooxygenase, complete cds”, EMBL Accession No.:AB010439, XP002133311.
Morii et al. (Jun. 1, 1998) “SteroidMonooxygenase”, SWISSPROT Accession No.:050641, XP002133312.
Morii et al. Jun. 1, 1998) “Flavin-binding monooxygenase-like” PFAM Accession No.:PF00743, XP002133310.
Armengaud (Sep. 17, 1998) “Sphingomonas sp. ORFs G1, G3 to G8 and EDO2 gene”, EMBL Accession No.:AJ223219, XP002133317, seents 3310-4600.
Armengaud (Nov. 1, 1998) “PutativeMonooxygenase”, SWISSPROT Accession No.:086908, XP002133318.
Armengaud (Nov. 1, 1998) “Flavin-binding monooxygenase-like”, PFRAM Accession No.:PF00743, XP002133310.
Duvick et al. (1998) “Detoxification OfMycotoxins In Planta As A Strategy For Improving Grain Quality And Disease Resistance: Identification Of Fumonisin-Degrading Microbes From Maize”,Molecular Genetics of Host-Specific Toxins In Plant Disease, Proceedings of the 3rd Tottori International SymposiumDaisen, Tottori, Japan Aug. 24-29, 1997, pp. 369-381, ISBN: 0-7923-4981-4, 1998, XP002121275.
Blackwell et al. (1999) “Oxidative Deamination of Hydrolyzed Fumonisin B1 (AP1) by Cultures of Exophiala spinifera”, Natural Toxins 7(1):31-38, ISSN: 1056-9014, XP002121276.
Anzai et al. (1989) “Transgenic Tobacco Resistant To A Bacterial Disease By The Detoxification Of A Pathogenic Toxin”,Mol Gen Genet 219:492-494, ISSN: 0026-3924, XP002083624.
Linthorst et al. (1989) “Constitutive Expression of Pathogenesis-Related Proteins PR-1, GRP, and PR-S in Tobacco Has No Effect on Virus Infection”, The Plant Cell 1:285-291.
Bennetzen et al. (1992) “Approaches and Progress in the Molecular Cloning of Plant Disease Resistance Genes”, Genetic Engineering 14:99-124.
Ishihara et al. , AB#006450.
Chen et al. (Apr. 2, 1988), “Homo Sapiens P-Glycoprotein (PGY1) mRNA, Complete cds.,” EMBL Accession No. M14758, XP002138295 and SWISSPROT Accession No. P08183 (Aug. 1, 1988).
Cox et al. (1996), “Styrene Metabolism in Exophiala Jeanselmei and Involvement of a Cytochrome P-450-Dependent Styrene Monooxygenase,” Database Accession No. PREV199698822892, XP002138296, Applied and Environmental Microbiology 62(4):1471-1474.
Nikawa et al. (Nov. 21, 1990), “Saccharocyces Cerevisiae Choline Transport Protein Gene, Complete cds.,”EMBL Accession No. J05603, XP002138294 and SWISSPROT Accession No. P19807 (Jul. 15, 1998).
Schaap et al. (Jul. 24, 1998), “Agaricus Bisporus aldA and echA Genes,” EMBL Accession No. Y17825, XP002138292.
Wang et al. May 15, 1996), “Pseudomonas Putida P-Cymene Catabolism (CYM) and P-Cumate Catabolism (CMT) Operons and ENOL-Coenzyme, A Hydratase Gene, Complete eds.,” EMBL Accession No. U24215, XP002138293 and SPTREMBL Accession No. 033455 (Jan. 1, 1995).
Bergeron et al. (Jan. 19, 1998) “Cloning, sequence and expression of a linearplasmid-based and a chromosomal homolog of chloroacetaldehyde dehydrogenase-encoding genes inXanthobacter autorophicus GJ10” Gene 207:9-18, XP002121100.
Perret et al. (Aug. 4, 1993) “Rhizobium sp. ORF-1 and ORF-2”, EMBL Accession NoX74314, XP002121101, sequence 463-852.
Freiberg et al. (Oct. 1, 1996) “Putative transcriptional regulator Y4SM (ORF-1)”, Swissprot Accession No:P50337, XP002121106, the whole document.
Madhusudhan et al. (Jul. 24, 1991) Pseudomonas putida branched-chain keto acid dehydrogenase operon (bkdA1, bkdA1 and bkdA2),transacylase E2 (bkdB), bkdR and lipoamide dehydrogenase (lpdV) genes, complete cds, EMBL Accession No:M57613, XP002121102, see reverse complement of sequence 1405-1010.
Madhusudhan et al. (Nov. 1, 1995) Bkd operon transcriptional regulator, SWISSPROT Accession No:P42179, XP002121107, the whole document.
Van Der Rest (Apr. 4, 1990) “Klebsiella pneumoniae cit(+) gene for citrate carrier protein”, EMBL Accession No:X51479, XP002130931, the whole document.
Iimura(May 31, 1995) “Msx-2 homolog [human, dental pulp-derived cells,mRNA, 2065 nt]”, EMBL Accession No:S75361, XP002130932, the whole document.
Seeger (Jul. 2, 1998) “Streptomyces coelicolor cosmid 8A6”, EMBL Accession NαAL031013, XP002130933, the whole document.
Heller et al. (Nov. 18, 1996) “E. coli btuB gene for the vitamin B12 receptor protein BtuB”, EMBL Accession No:M10112, XP002130934, the whole document and SWISSPROT Accession No:P06129, (Jan. 1, 1998).
Peng et al. (Jul. 1998) “Cloning of aSphingomonas paucimobilis SYK-6 Gene Encoding a Novel Oxygenase That Cleaves Lignin-Related Biphenyl and Characterization of the Enzyme”,Applied and Environmental Microbiology 64(7):2520-2527, XP002130935.
Cole et al. (Feb. 22, 1998) “Mycobacterium tuberculosis H37Rv complete genome; segment 33/162”, EMBL Accession No:AL021943, XP002130936, the whole document.
Plunkett et al. (Dec. 30, 1994) “Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes”, EMBL Accession No:U18997, XP002130937, the whole document.
Murphy et al. (Jan. 26, 1998) “Streptomyces coelicolor cosmid 10A5”, EMBL Accession NαAL021529, XP002121096, see reverse complement of 20673-20430.
Du (Dec. 15, 1996) “Mycobacterium tuberculosis sequence from clone Y175”, EMBL Accession No:AD000015, XP002121097, see sequence 6027-6064.
Cole et al. (Nov. 9, 1997) “Mycobacterium tuberculosis H37Rv compelete genome; segment 125-162”, EMBL Accession No:AL008883, XP002121098, see sequence 1434-1843.
Bergeron et al. (Dec. 4, 1997) “Xanthobacter autotrophicus transcriptional activator AldR (aldR) gene, partial cds; and NAD-dependent chloroacetaldehyde dehydrogenase (aldB) gene, complete cds”, EMBL Accession No:AF029734, XP002121099, see reverse complement of sequence 2447-2066.
Oliver et al. (May 27, 1998) “Streptomyces cosmid IC3”, EMBL Accession NαAL023702, XP002130938, the whole document.
Martinez-Salazar et al. (Apr. 1996) “Characterization of the Genes Coding for the Putative Sigma FactorAlgU and Its Regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and Evaluation of Their Roles in Alginate Biosynthesis”,Journal of Bacteriology 178(7):1800-1808, XP002130939.
Cole et al. (Feb 22, 1998) “Mycobacterium tuberculosis H37Rv complete genome; segment 29/162”, EMBL Accession No:AL021942, XP002130940, the whole document.
Coulton et al. (Nov. 18, 1996) “E. coli fhuA, fhuC and fhuD genes encoding the ferrichrome-iron receptor and two ferric aerobactin and ferric coprogen transport proteins, completecds.”, EMBL Accession No:M12486, XP002130941, the whole document.
Coulton et al. (Apr. 1, 1988) “Ferrichrome-Iron Receptor Precursor (Ferric Hydroxamate Uptake)”, SWISSPORT Accession No:P06971, XP002130942.
Seebacher et al. (Oct. 17, 1996) “R. norvegicus mRNA for laminin chain, 765bp”, EMBL Accession No:Y08882, XP002130943, the whole document.
Cole et al. (Jan. 15, 1998) “Mycobacterium tuberculosis H37Rv complete genome; segment 132/162”, EMBL Accession No:AL021287, XP002130944, the whole document and TREMBL Accession No:053294, (Jun. 1, 1998).
Cole et al. (May 10, 1996) “Mycobacterium tuberculosis H37Rv complete genome; segment 41/162”, EMBL Accession No:Z73101, XP002130945, the whole document and “ProbableMonooxygenase RV0892 (EC 1.14.13.*),” SWISSPROT Accession No:Q10532 (Oct. 1, 1996).
Peterson et al. (1992) “Cytochrome P-450terp. Isolation and Purification of the Protein and Cloning and Sequencing of Its Operon”, Journal of Biological Chemistry 267 (20):14193-14203, XP002130946 figures 4, 8 and EMBL Accession No:M91440 (Apr. 17, 1992), and “Probablealdehyde dehydrogenase (EC 1.2.1.3)” SWISSPROT Accession No:P33008 (Oct. 1, 1993).
Cole et al. (Mar. 12, 1998) “Mycobacterium tuberculosis H37Rv complete genome; segment 155/162”, EMBL Accession No:AL022121, XP002130947, the whole document.
Klenk et al. ( Dec. 1, 1997) “Archaeoglobus fulgidus section 144 of 172 of the complete genome”, EMBL Accession No:AE000963, XP002130948, the whole document.
Bowen et al. (May 5, 1997) “Cloning and Phylogenetic Analysis of the Genes EncodingAcetohydroxyacid Synthase from the Archaeon methanococcus aeolicus”, Gene 188:77-84, XP002130949 figure 2 and EMBL Accession No:U35458 (May 5, 1997).
Vlcek et al. (May 13, 1998), “Rhodobacter capsulatus strain SB1003, partial genome”, EMBL Accession No:AF010496, XP002130950, the whole document.
Pealing et al. (Nov. 3, 1992) “Shewanella putrefaciens flavocytochrome c gene, complete cds.”, EMBL Accession No:L04283, XP002130951, the whole document.
Walczak et al. (Jul. 14, 1998) “Streptomyces griseus subsp. Griseus nonactin biosynthesis gene cluster, partial sequence”, EBML Accession No:AF074603, XP002130952, the whole document.
Ishiguro et al. (Apr. 22, 1989) “Transposon Tn4311 (from E. coli K-12) citrate utilization protein citA and citB genes, complete cds.”, EMBL Accession No:M22041, XP002130953, the whole document.
Chudhary et al. (Jun 6, 1998) “483PLA2Cosmid library of chromosome IIRhodobacter sphaeroides genomic clone 483PLA2, genomic survey sequence”, EMBL Accession NoαAQ012082, XP002130954, the whole document.
Molnar et al. (Oct. 29, 1992) “Streptomyces sp. Genes for hypothetic proteins”, EMBL Accession No:D13457, XP002130955 the whole document.
Bedzyk et al. (Jun. 15, 1993) “Paracoccus denitrificans electron transfer flavoprotein alpha and beta subunit genes, complete cds's.”, EMBL Accession No:L14864, XP002130956 the whole document.
Duvick et al. (1988) “Detoxification ofmycotoxins in planta as a strategy for improving grain quality and disease resistance: identification of fumonisin-degrading enzymes from maize”,Molecular Genetics of Host-Specific Toxins In Plant Disease, pp. 369-381, Proceedings of the 3rdTottori International Symposium Daisen, Tottori, Japan, Aug. 24-29, 1997, Kluwer Academic Publishers, Dordrecht, ISBN: 0-7923-4981-4, XP002121275.
Anzai et al. (Jan. 1, 1989) “Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin”, Molecular and General Genetics 219:492-494, XP002083624, ISSN: 0026-3925 the whole document.
Blattner et al. (Jan. 29, 1997) “Escherichia coli K-12 MG1655 section 69 of 400 of the complete genome”, EMBL Accesion No:AE000179, XP002122134 see complement (4647..5663).
Blattner et al. (Oct. 1, 1996) “Hypotheticaltranscriptional regulator in MODC-BIOA intergenic region”, SWISSPROT Accession No:p52696, xp002121103 the whole document.
Kim et al. (Feb. 4, 1998) “Organization and transcriptional characterization of the cat1 gene cluster in Acinetobacter iwoffii K24”, Biochemical and Biophysical Research Communications 243:289-294, XP002121104 see fig. 2 and fig. 3 ORFR1.
Ghosh et al. (Jan. 30, 1995) “A.brasilense carR gene”, EMBL Accession No:X70360, XP002122135 the whole document and Chattophadhyay et al. (Nov. 1, 1996) “CarR Gene”, TREMBL Accession NO:Q43901, XP002121105 the whole document.
Willins et al. (Aug. 4, 1990) “E. coli leucine-responsive-regulatory protein (Lrp) gene, complete cds.”, EMBL Accession No:M35869, XP002122136 see sequence 1..495 and Willins et al. (Feb. 1, 1991) “Leucine-responsive regulatory protein”, SWISSPROT Accession No:P19494, XP002121108 the whole document.
PCT Notification of Transmittal of the International Search Report of the Declaration mailed Mar. 20, 2000, International Application No. PCT/US99/15837, International Filing Date Jul. 14, 1999.
Murphy et al. (Jan. 26, 1998) “Streptomyces Coelicolor Cosmid 10A5”, EMBL Accession No. AL021529, XP002121096, see reverse complement of 20673-20430.
Du (1996) “Mycobacterium Tuberculosis Sequence From Clone y175”, EMBL Accession No. AD000015, XP002121097, see sequence 6027-6064.
Cole et al. (1997) “Mycobacterium Tuberculosis H37Rv Complete Genome; segment 125-162”, EMBL Accession No. AL008883, XP002121098, see sequence 1434-1843.
Bergeron et al. (1997) “Xanthobacter Autotrophicus Trnascriptional Activator AldR (aldR) Gene, Partial cds.; and NAD-dependent Chloroacetaldehyde Dehydrogenase (aldB) Gene, Complete cds”, EMBL Accession No. AF029734, XP002121099, see reverse complement of sequence 2447-2066.
Bergeron et al. (Jan. 19, 1998) “Cloning, Sequence and Expression of a Linear Plasmid-Based and Chromosomal Homolog of Chloracetaldehyde Dehydrogenase-Encoding Genes in Xanthobacter autotrophicus GJ10”, Gene 207:9-18, XP002121100.
Perret et al. (1993) “Rhizobium sp. ORF-1 and ORF-2”, EMBL Accession No. X74314, XP002121101,sequence 463-852.
Freiberg et al. (1996) “Putative Transcriptional Regulator Y4SM (ORF-1)”, SWISSPROT Accession No. P50337, XP002121106, the whole document.
Madhusudhan et al. (1991) “Pseudomonas Putida Branched-Chain Keto Acid Dehydrogenase Operon (bkdA1, bkdA1 and bkdA2), Transacylase E2 (bkdB), bkdR and Lipoamide Dehydrogenase (1pdV) Genes, Complete cds”, EMBL Accession No. M57613, XP002121102, see reverse complement of sequence 1405-1010.
Madhusudhan et al. (1995) “Bkd Operon Transcriptional Regulator”, SWISSPROT Accession No. P42179, XP002121107 the whole document.
Duvick et al. (Aug. 1997) “Detoxification of Mycotoxins In Planta As A Strategy For Improving Grain Quality and Disease Resistance: Identification of Fumonisin-Degrading Microbes From Maize”, Molecular Genetics of Host-Specific Toxins In Plant Disease, Proceedings of the 3rd Tottori International Symposium Daisen, Tottori, Japan, Kluwer Academic Publishers, Dordrecht, ISBN: 0-7923-4981-4, XP002121275, pp. 369-381.
Anzai et al. (1989) “Transgenic Tobacco Resistant To A Bacterial Disease By The Detoxification Of A Pathogenic Toxin”, Mol. Gen. Genet 219:492-494, XP-002083624.
Blattner et al. (1997) “Escherichia coli K-12, MG1655 Section 69 of 400 of the Complete Genome”, EMBL Accession No. AE000179, XP002122134, see complement (4647-5663).
Blattner et al. (1996) “Hypothetical Transcriptional Regulator in MODC-BIOA Intergenic Region”, SWISSPROT Accession No. P52696, XP002121103.
Kim et al. (Feb. 4, 1998) “Organization and Transcriptional Characterization of the cat1 Gene Cluster in Acinetobacter Iwoffii K24”, Biochemical and Biophysical Research Communications 243:289-294, XP002121104.
Ghosh et al. (1995) “A. Brasilense carR Gene”, EMBL Accession No. X70360, XP002122135.
Chattopadhyay et al. (1996) “CarR Gene”, TREMBL Accession No. Q43901, XP002121105.
Willins et al. (1990) “E. coli Leucine-Responsive-Regulatory Protein (Lrp) Gene, Complete cds.”, EMBL Accession No. M35869, XP002122136, see sequence 1-495.
Willins et al. (1991) “Leucine-Responsive Regulatory Protein”, SWISSPROT Accession No P19494, XP002121108.
Provisional Applications (1)
Number Date Country
60/092953 Jul 1998 US