Compositions and methods for improving the hydrothermal stability of mesostructured zeolites by rare earth ion exchange

Abstract
Compositions and methods for preparing mesostructured zeolites having improved hydrothermal stability. Such mesostructured zeolites can be prepared by subjecting a zeolite to rare earth ion exchange prior to and/or subsequent to introducing mesoporosity into the zeolite.
Description
BACKGROUND

1. Field


One or more embodiments of the invention relate to mesostructured zeolites containing rare earth elements and having improved hydrothermal stability.


2. Description of Related Art


The hydrothermal stability of zeolites is a major concern in some important refining operations, such as Fluid Catalytic Cracking (FCC) where the catalyst is exposed at severe steaming conditions in the regenerator. This treatment produces the uncontrolled dealumination of the zeolite causing a dramatic decrease of activity and selectivity towards the desired fractions.


SUMMARY

One embodiment of the invention concerns a material comprising at least one mesostructured zeolite one-phase hybrid single crystal having enhanced hydrothermal stability after regeneration, produced by the process of: (a) providing a non-mesoporous zeolite having long-range crystallinity and comprising rare earth elements; and (b) forming a plurality of mesopores within the non-mesoporous zeolite to thereby form the mesostructured zeolite.


Another embodiment of the invention concerns a method of forming a material comprising at least one mesostructured zeolite one-phase hybrid single crystal having long-range crystallinity and enhanced hydrothermal stability and microporosity retention after regeneration. The method of this embodiment comprises the steps of: (a) providing a non-mesoporous zeolite having long-range crystallinity; (b) adding rare earth elements to the zeolite; (c) acid washing the zeolite; and (d) forming a plurality of mesopores within the acid-washed zeolite to thereby form said mesostructured zeolite.


Yet another embodiment of the invention concerns a process for preparing a mesostructured zeolite comprising rare earth materials and a plurality of mesopores. The improvement of this process comprises: enhancing microporosity retention of a mesostructured zeolite after a hydrothermal regeneration by

    • (a) ion exchanging rare earth materials into an initial zeolite to thereby form a rare earth exchanged zeolite; and
    • (b) forming a plurality of mesopores in the rare earth exchanged zeolite to thereby form the mesostructured zeolite.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

Embodiments of the present invention are described herein with reference to the following drawing figures, wherein:



FIG. 1 is a graph depicting a typical correlation between framework alumina content and unit cell size of zeolites;



FIG. 2 is a process flow diagram depicting steps for preparing rare earth-containing mesostructured zeolites;



FIG. 3 is a graph depicting the expected activity and selectivity in the compromise between microporosity and mesoporosity in zeolite catalysts;



FIG. 4 is a graph depicting the loss of microporosity and mesoporosity in a steamed zeolite catalyst;



FIG. 5 is a graph depicting how both fresh and steamed porosities are not affected if the rare earth is exchanged on the CBV 500 zeolite after riving;



FIG. 6 is a graph depicting how both fresh and steamed porosities are improved if the rare earth is exchanged on the CBV 500 zeolite prior to riving; and



FIG. 7 is a graph showing how both fresh and steamed porosities are improved when Grace Davison's USY is used as the precursor.





DETAILED DESCRIPTION

There are at least two main causes for non-reversible deactivation of FCC catalysts in the hydrothermal environment of an FCC regenerator. The first is the dealumination of the zeolite framework. Aluminum atoms, which provide needed acidity in the zeolite for catalytic cracking, are actually ejected from the framework during regeneration. As this occurs, the zeolite's unit cell size (UCS) contracts. A typical correlation between framework alumina content and UCS is shown in FIG. 1.


Note that the Y-type zeolite used in FCC catalysts typically can have a UCS of 24.65-24.70 Angstroms as synthesized. It can be reduced down to 24.50-24.60 Angstroms in the manufacturing process (i.e., as the zeolite is transformed into ultrastable Y zeolite (using prior art processes)). This is called ultstrastabilization (USY) and is done by controlled hydrothermal calcination of the zeolite to carefully dealuminate it. Carefully bringing the UCS down in a controlled manner to ca. 24.55 Angstroms results in a more stable zeolite as it heads off to the harsh, uncontrolled hydrothermal environment in the fluid cracking catalyst unit (“FCCU”). FIG. 1.


Equilibrium catalysts (ecat), the circulating inventory in an FCCU, have a range of UCS's dependent upon the catalyst properties and the severity of the FCCU environment. About 90% of the world's FCCUs operate at an ecat UCS of 24.24-24.32A. FIG. 1.


There are trade-offs as UCS decreases. While activity is lessened (less active alumina sites), depending upon the objectives of the FCCU, selectivity can be improved. For example, customers who desire maximum gasoline octane and maximum olefins look to equilibrate at low UCS. Customers who desire more gasoline yield will look to equilibrate at higher UCS.


Exchange of FCC catalyst zeolites with rare earths is one of the main ways to control UCS. Rare earths retard the tendency to dealuminate, and hence can be used, for example, to favor gasoline production. Retarding dealumination also preserves the activity and change selectivity. FCC catalyst manufacturers incorporate a specific amount of rare earths on the zeolite dependent upon the FCCU objectives and constraints.


The second main cause for non-reversible deactivation of FCC catalysts in the hydrothermal environment of an FCC regenerator is sintering, or destruction, of the zeolite The harsh environment of an FCCU can cause the zeolite structure to collapse. This is especially likely as the vanadium level in the FCCU feedstock increases and is even more pronounced in the presence of sodium, either from the unit feedstock or from residual sodium on the zeolite. Rare earths probably do not play a major role in mitigating this aspect of deactivation. Rather, control of sodium level and vanadium “traps” are employed.


In addition to controlling UCS, rare earth ion exchange can be used to improve the hydrothermal stability of zeolites. Other methods can be used to improve the hydrothermal stability of zeolites including controlled steaming (ultrastable zeolite) and chemical Al extraction (dealuminated zeolites). However, rare earth ion exchange is especially beneficial because each rare-earth cation coordinates to three negatively-charged positions of the zeolite inhibiting the extraction of the aluminum from the framework (dealumination) during operating conditions. An additional benefit of the rare-earth ion exchange in zeolites is an increase in gasoline yield due to the preservation of a high concentration of Bronstead acid sites. However, rare-earth ion exchange favors the hydrogen transfer reactions during cracking, causing a decrease in octane and cetane indexes of the gasoline fraction and the olefin content in the Liquefied Petroleum Gas (LPG) fraction.


The hydrothermal stability of mesostructured zeolites can be controlled by tuning the amount of the mesoporosity introduced without significantly affecting their original activity and selectivity.


The incorporation of rare-earth cations in mesostructured zeolites by either (i) direct ion-exchange or by (ii) incorporation of mesoporosity into already rare-earth ion-exchanged zeolites (see FIG. 2) is an additional tool to further increase the hydrothermal stability of this novel family of materials. Introduction of rare earths into a zeolite prior to the riving step (the incorporation of mesoporosity into a zeolite) can improve the retention of microporosity, mesoporosity and crystallinity. In some cases, additional rare earths can still be applied to the zeolite after riving and ultrastabilization. As in the prior art, application of additional rare earths after riving can help to preserve the UCS targeted during the ultrastabilization step.


Since catalyst manufacturers want to typically reduce the UCS of the fresh zeolite to ca. 24.55 Angstroms, and because it is well known that rare earths retard UCS reduction, rare earths are normally applied in the catalyst manufacturing process after the ultrastabilization process. This allows ease of UCS reduction during manufacture and control of UCS reduction during end use. The rare earths can be applied either just before or even during the incorporation of the zeolite with the other ingredients that make up the composite catalyst formulation.


It is for this reason that most rare earths are added at the tail end of the zeolite processing. However, it was thought that incorporating rare earths upstream, before the riving process, might better position them in the desired location in the zeolite framework so as to better control UCS reduction of the final rived catalyst during regeneration in the FCCU. It was a pleasant surprise to see that doing so better preserved crystallinity (and hence acidity and activity) through the riving process, since preserving acidity is usually desired. As mentioned, this was not an expected result and is not a normal function of rare earths. The compromise is that the process of hydrothermal calcination/dealumination used during the ultrastabilization step must be adjusted to compensate for the presence of the rare earths. In addition a nominal amount of expensive rare earths can be removed in the riving step.


In the riving process, some of the zeolite's microporosity is sacrificed in order to introduce mesoporosity. This is done to obtain, at least for fluid catalytic cracking (FCC) applications, enhancement of the catalyst's selectivity (the yield of preferred products) at the likely sacrifice of catalyst activity. FIG. 3.


We expect this trade-off to occur because microporosity is to a large extent a measure of crystallinity, and how much crystallinity is preserved will in large part dictate activity, while mesoporosity implies improved accessibility, and therefore a better product slate (more transportation fuels, less coke, etc.)



FIG. 4 depicts a fresh unsteamed USY type zeolite and a steamed USY type zeolite. In the laboratory, steam deactivation of the zeolite is used to mimic the hydrothermal deactivation that occurs in an FCCU. As FIG. 4 shows, steaming results in the loss of microporosity and mesoporosity of the zeolite. Prior to riving, the processing of the zeolite is typically synthesis of the sodium form zeolite (NaY), exchange with an ammonium salt to reduce the sodium level, and hydrothermal calcination to produce the USY.


The reduction of the hydrogen transfer reactions observed when mesoporosity is introduced in zeolites (probably due the ready exits of the products from the interior of the mesostructured zeolite), described in U.S. Pat. No. 7,589,041, is likely to reduce the adverse effect that rare-earth ion exchange in zeolites produces in octane and cetane indexes of the gasoline and the olefin content in the LPG fraction.


Still referring to FIG. 4, moving the fresh, and more importantly the steamed, curves up and to the right, is always desirable. More microporosity can result in more activity and more mesoporosity can result in better selectivity.


As discussed above, most FCC catalyst manufacturers ion exchange rare earths on their zeolites at the tail end of zeolite processing to minimize the deactivation that occurs in the FCCU and to optimize selectivity. The mechanism by which the rare earth works, predominantly, is to inhibit dealumination of the zeolite framework in the hydrothermal environment of the FCCU regenerator.


More recently, the potential benefit of incorporating the rare earths prior to the riving step has been explored. One can incorporate the rare earth 1) prior to the ultrastabilization step, 2) after the ultrastabilization but prior to the acid treatment that precedes riving, or 3) after the ultrastabilization and acid treatment and just prior to riving.


The zeolite can be acid washed to increase the silicon to aluminum ratio of the zeolite. However, if the rare earths are added to the zeolite before the zeolite is acid washed, the acid washing can remove some of the expensive rare earth elements. Therefore, when the rare earths are added to the zeolite before the zeolite is acid washed, the acid washing can be adjusted so that it is strong enough to produce the desired silicon to aluminum ratio in the zeolite, but not so strong that it removes an excessive amount of expensive rare earths.



FIGS. 5-7 show microporosity and mesoporosity retention for zeolites that were rare earth ion-exchanged after the ultrastabilization but prior to acid washing. This sequence of steps was used with USY type zeolite made by Zeolyst (CBV-500) as well as similar USYs made by Grace Davison.



FIG. 5 shows how both fresh and steamed porosities are not affected if the rare earth is exchanged on the CBV 500 after riving.



FIG. 6 shows how both fresh and steamed porosities are improved if the rare earth is exchanged on the CBV 500 prior to riving.



FIG. 7 shows how both fresh and steamed porosities are improved when Grace Davison's USY is used as the precursor.


Referring to FIGS. 5-7, the data points for the RE-USY rivings are better positioned than those of the RE-free USY rivings. This is good but somewhat surprising. The mechanism by which rare earths traditionally work is preventing dealumination at severe (about 1100° F. or greater) hydrothermal conditions. Contrast this with improvements in microporosity (crystallinity) retention at the relatively mild conditions (about less that 200° F.) of riving. The practical importance can be higher activity per unit of zeolite, which can be used for added performance or to mitigate cost by reducing the amount of zeolite required.


EXAMPLES
Example 1

Ultrastable zeolite Y, produced by controlled steaming of an NH4NO3 ion-exchanged zeolite NaY, was ion-exchanged with RECl3 (RE indicating rare-earth elements in any ratio including but not limited to Lanthanum, Yttrium, and Neodymium) at room temperature and pH=4, and then calcined at 600° C. for 8 h.


This material was subsequently hydrothermally treated in the presence of a surfactant and pH controlling agent to introduce controlled mesoporosity as described elsewhere (U.S. Pat. No. 7,589,041.


Example 2

Ultrastable zeolite Y, produced by controlled steaming of an NH4NO3 ion-exchanged zeolite NaY, is hydrothermally treated in the presence of a surfactant and pH controlling agent to introduce controlled mesoporosity as described elsewhere (U.S. Pat. No. 7,589,041.


This mesostructured zeolite was subsequently ion-exchanged with RECl3 (RE indicating rare-earth elements in any ratio including but not limited to Lanthanum, Yttrium and Neodymium) at room temperature and pH=4, and then calcined at 600° C. for 8 h.


Note: NH4Y can be also first rare-earth ion-exchanged and then steamed to produce Re-USY.

Claims
  • 1. A method of forming a material comprising at least one mesostructured zeolite one-phase hybrid single crystal having long-range crystallinity and enhanced hydrothermal stability and microporosity retention after regeneration, comprising the steps of: (a) providing a fully-crystalline non-mesoporous zeolite having long-range crystallinity wherein said non-mesoporous zeolite comprises a faujasite;(b) adding rare earth elements to said non-mesoporous zeolite;(c) acid washing said non-mesoporous zeolite to thereby form an acid-washed zeolite, wherein said acid washing modifies the silicon to aluminum ratio in said non-mesoporous zeolite; and(d) forming a plurality of mesopores within said acid-washed zeolite to thereby form said mesostructured zeolite, wherein said forming occurs in the presence of at least one surfactant.
  • 2. The method of claim 1, further comprising subjecting at least a portion of said mesostructured zeolite to hydrothermal regeneration, wherein a microporosity of said mesostructured zeolite after said hydrothermal regeneration is at least about 85% of a microporosity of said mesostructured zeolite before said hydrothermal regeneration.
  • 3. The method of claim 1, further comprising subjecting at least a portion of said mesostructured zeolite to hydrothermal regeneration, wherein said mesostructured zeolite has substantially more microporosity after said hydrothermal regeneration than does a second fully-crystalline mesoporous zeolite of substantially the same structure and initial composition as said mesostructured zeolite, which is formed by steps (a), (c), and (d), without adding rare earth elements to the zeolite.
  • 4. The method of claim 1, wherein said non-mesoporous zeolite comprises said rare-earth elements following step (b) in a total concentration of 0.01-15 weight percent on the basis of RE2O3 present in said zeolite.
  • 5. The method of claim 1, wherein said non-mesoporous zeolite consists essentially of a type Y zeolite.
  • 6. The method of claim 1, further comprising: (e) stabilizing said non-mesoporous zeolite or said mesostructured zeolite by hydrothermal calcination.
  • 7. The method of claim 6, wherein step (e) is performed before step (c).
  • 8. The method of claim 6, wherein step (b) is performed after step (e).
  • 9. The method of claim 6, wherein step (e) results in said mesostructured zeolite having a unit cell size of about 24.50 to 24.60 Angstroms.
  • 10. The method of claim 1, further comprising subjecting at least a portion of said mesostructured zeolite to hydrothermal regeneration, wherein the microporosity of said mesostructured zeolite after said hydrothermal regeneration is enhanced compared to a third fully-crystalline mesoporous zeolite of substantially the same structure and initial composition as said mesostructured zeolite that is formed by steps (a) through (d), but wherein step (b) is performed after step (d).
  • 11. The method of claim 1, further comprising subjecting at least a portion of said mesostructured zeolite to hydrothermal regeneration, wherein the microporosity of said mesostructured zeolite after said hydrothermal regeneration is enhanced compared to a another fully crystalline mesoporous zeolite of substantially the same structure and initial composition as said mesostructured zeolite that is formed by steps (a) through (d), but wherein step (c) is not performed directly after step (b).
  • 12. The method of claim 1, wherein said rare earth elements are added to said non-mesoporous zeolite by ion exchange.
  • 13. The method of claim 1, wherein said surfactant comprises cetyltrimethylammonium bromide (“CTAB”).
RELATED APPLICATIONS

This application claims priority benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Patent Ser. No. 61/145,723 filed Jan. 19, 2009, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (175)
Number Name Date Kind
3709853 Karapinka Jan 1973 A
3864280 Schneider Feb 1975 A
4016218 Haag et al. Apr 1977 A
4088671 Kobylinski May 1978 A
4196182 Willermet et al. Apr 1980 A
4205055 Maire et al. May 1980 A
4263268 Knox et al. Apr 1981 A
4318824 Turner Mar 1982 A
4439349 Everett et al. Mar 1984 A
4564207 Russ et al. Jan 1986 A
4609972 Edeling et al. Sep 1986 A
4637623 Bubik Jan 1987 A
4689314 Martinez et al. Aug 1987 A
4704375 Martinez et al. Nov 1987 A
4761272 Hucke Aug 1988 A
4775655 Edwards et al. Oct 1988 A
4806689 Gier et al. Feb 1989 A
4816135 Martinez et al. Mar 1989 A
4836737 Holmes et al. Jun 1989 A
4857494 Martinez et al. Aug 1989 A
4891458 Innes et al. Jan 1990 A
4894215 Kawakubo et al. Jan 1990 A
4894354 Martinez et al. Jan 1990 A
4968405 Wachter Nov 1990 A
5013699 Vassilakis et al. May 1991 A
5051385 Wachter Sep 1991 A
5057296 Beck Oct 1991 A
5061147 Nespor Oct 1991 A
5095169 Skeels et al. Mar 1992 A
5102643 Kresge et al. Apr 1992 A
5116794 Skeels et al. May 1992 A
5134242 Le et al. Jul 1992 A
5134243 Bhore et al. Jul 1992 A
5160033 Vassilakis et al. Nov 1992 A
5200058 Beck et al. Apr 1993 A
5207892 Vassilakis et al. May 1993 A
5208197 Vassilakis et al. May 1993 A
5221648 Wachter Jun 1993 A
5232580 Le et al. Aug 1993 A
5254327 Martinez et al. Oct 1993 A
5256277 Del Rosi et al. Oct 1993 A
5258570 Skeels et al. Nov 1993 A
5260501 Bhore et al. Nov 1993 A
5288393 Jessup et al. Feb 1994 A
5308475 Degnan et al. May 1994 A
5344553 Shih Sep 1994 A
5347060 Hellring et al. Sep 1994 A
5360774 Martinez et al. Nov 1994 A
5391433 Kawakubo et al. Feb 1995 A
5393718 Skeels et al. Feb 1995 A
5401384 Martinez et al. Mar 1995 A
5458929 Earls et al. Oct 1995 A
5510431 Earls et al. Apr 1996 A
5538710 Guo et al. Jul 1996 A
5601798 Cooper et al. Feb 1997 A
5614453 Occelli Mar 1997 A
5628978 Tejada et al. May 1997 A
5636437 Kaschmitter et al. Jun 1997 A
5659099 Skeels et al. Aug 1997 A
5662965 Deguchi et al. Sep 1997 A
5672556 Pinnavaia et al. Sep 1997 A
5712402 Pinnavaia et al. Jan 1998 A
5744673 Skeels et al. Apr 1998 A
5770040 Tejada et al. Jun 1998 A
5785946 Pinnavaia et al. Jul 1998 A
5786294 Sachtler et al. Jul 1998 A
5795559 Pinnavaia et al. Aug 1998 A
5800800 Pinnavaia et al. Sep 1998 A
5800801 Tejada Sep 1998 A
5840264 Pinnavaia et al. Nov 1998 A
5840271 Carrazza et al. Nov 1998 A
5849258 Lujano et al. Dec 1998 A
5855864 Pinnavaia et al. Jan 1999 A
5858457 Brinker et al. Jan 1999 A
5892080 Alberti et al. Apr 1999 A
5902564 Lujano et al. May 1999 A
5952257 Tejada et al. Sep 1999 A
5958367 Ying et al. Sep 1999 A
5958624 Frech et al. Sep 1999 A
5961817 Wachter et al. Oct 1999 A
5985356 Schultz et al. Nov 1999 A
5993768 Zappelli et al. Nov 1999 A
6004617 Schultz et al. Dec 1999 A
6015485 Shukis et al. Jan 2000 A
6022471 Wachter et al. Feb 2000 A
6024899 Peng et al. Feb 2000 A
6027706 Pinavaia et al. Feb 2000 A
6087044 Iwase et al. Jul 2000 A
6096828 DePorter et al. Aug 2000 A
6106802 Lujano et al. Aug 2000 A
6139721 Baldiraghi et al. Oct 2000 A
6162414 Pinnavaia et al. Dec 2000 A
6193943 Pinnavaia et al. Feb 2001 B1
6204424 Yadav et al. Mar 2001 B1
6248691 Gadkaree et al. Jun 2001 B1
6297293 Bell et al. Oct 2001 B1
6299855 Lujano et al. Oct 2001 B1
6319872 Manzer et al. Nov 2001 B1
6334988 Gallis et al. Jan 2002 B1
6391278 Pinnavaia et al. May 2002 B1
6410473 Pinnavaia et al. Jun 2002 B1
6413489 Ying et al. Jul 2002 B1
6413902 Pinnavaia et al. Jul 2002 B1
6419820 Bogdan et al. Jul 2002 B1
6476085 Manzer et al. Nov 2002 B2
6476275 Schmidt et al. Nov 2002 B2
6485702 Lujano et al. Nov 2002 B1
6489168 Wang et al. Dec 2002 B1
6495487 Bogdan Dec 2002 B1
6515845 Oh et al. Feb 2003 B1
6524470 Kasztelan et al. Feb 2003 B1
6538169 Pittman et al. Mar 2003 B1
6541539 Yang et al. Apr 2003 B1
6544923 Ying et al. Apr 2003 B1
6548440 Pham et al. Apr 2003 B1
6558647 Lacombe et al. May 2003 B2
6580003 Deng et al. Jun 2003 B2
6583186 Moore, Jr. Jun 2003 B2
6585948 Ryoo Jul 2003 B1
6585952 Pinnavaia et al. Jul 2003 B1
6592764 Stucky et al. Jul 2003 B1
6620402 Jacobsen et al. Sep 2003 B2
6623967 Willson, III Sep 2003 B1
6649413 Schultz et al. Nov 2003 B1
6656443 Klett Dec 2003 B2
6669924 Kaliaguine et al. Dec 2003 B1
6689336 Kanno Feb 2004 B2
6702993 Pinnavaia et al. Mar 2004 B2
6706169 Pinnavaia et al. Mar 2004 B2
6706659 Gillespie et al. Mar 2004 B2
6710003 Jan et al. Mar 2004 B2
6746659 Pinnavaia et al. Jun 2004 B2
6756515 Rende et al. Jun 2004 B2
6762143 Shan et al. Jul 2004 B2
6770258 Pinnavaia et al. Aug 2004 B2
6793911 Koegler et al. Sep 2004 B2
6797153 Fukuyama et al. Sep 2004 B1
6797155 Chester et al. Sep 2004 B1
6800266 Pinnavaia et al. Oct 2004 B2
6809061 Bogdan et al. Oct 2004 B2
6811684 Mohr et al. Nov 2004 B2
6814943 Radcliffe et al. Nov 2004 B2
6818589 Gillespie Nov 2004 B1
6833012 Rogers Dec 2004 B2
6841143 Inagaki et al. Jan 2005 B2
6843906 Eng Jan 2005 B1
6843977 Pinnavaia et al. Jan 2005 B2
6846546 Kuroda et al. Jan 2005 B2
6866925 Chane-Ching Mar 2005 B1
6869906 Pinnavaia et al. Mar 2005 B2
6936234 Bilenko Aug 2005 B2
6998104 Tao et al. Feb 2006 B2
7084087 Shan et al. Aug 2006 B2
7589041 Ying et al. Sep 2009 B2
7807132 Garcia-Martinez Oct 2010 B2
7976696 Ying et al. Jul 2011 B2
8007663 Ying et al. Aug 2011 B2
8008223 Garcia-Martinez Aug 2011 B2
20010031241 Lacombe et al. Oct 2001 A1
20010042440 Miyazawa et al. Nov 2001 A1
20030054954 Chane-Ching et al. Mar 2003 A1
20040067842 Pinnavaia et al. Apr 2004 A1
20040138051 Shan et al. Jul 2004 A1
20040179996 Shan et al. Sep 2004 A1
20050074396 Takahashi et al. Apr 2005 A1
20050130827 Schunk et al. Jun 2005 A1
20050209093 Chester et al. Sep 2005 A1
20050214539 Ying et al. Sep 2005 A1
20050239634 Ying et al. Oct 2005 A1
20060078487 Endo et al. Apr 2006 A1
20070244347 Ying et al. Oct 2007 A1
20090110631 Garcia-Martinez Apr 2009 A1
20100196263 Garcia-Martinez Aug 2010 A1
20110118107 Garcia-Martinez May 2011 A1
20110171121 Senderov Jul 2011 A1
Foreign Referenced Citations (6)
Number Date Country
2004143026 May 2004 JP
0117901 Mar 2001 WO
0138223 May 2001 WO
2005102964 Nov 2005 WO
2006031259 Mar 2006 WO
2006038912 Apr 2006 WO
Non-Patent Literature Citations (51)
Entry
Scherzer et al., “Ion-Exchanged Ultrastable Y Zeolites. 3. Gas Oil Cracking over Rare Earth-Exchanged Ultrastable Y Zeolites”, Ind. Eng. Chem, Prod. Res. Dev., vol. 17, No. 3, 1978, pp. 219-223.
Al-Khattaf, S. et al., The Role of Diffusion in Alkyl-Benzenes Catalytic Cracking, Appl. Catal. A: Gen. 226; 139-153, (2002).
Bagri, R. et al.; Catalytic Pyrolysis of Polyethylene; Anal. Pyrolysis, 63:29-41 (2002).
Conway, B.E., Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 11-22, 51-63, 125-135, 183-219, 221-224, 255, 335-338, 337-415, 417-440, 598, 602, 615, and 649-666.
Corma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis, Chem. Rev., 97:2373-2419, (1997).
CSIC NM014-Method of Preparation of Mesoporous Alumina with High Thermal Stability, http://www.serina.es/escaparate/verproducto.cgi?idproducto=4980&refcompra=NULO, downloaded May 9, 2007, 2 pages.
Davis, M.E., Ordered Porous Materials for Emerging Applications, Nature, 417:813-821 (2002).
Davis, M.E., Zeolite and Molecular Sieve Synthesis, Chem. Mater., 4:756-768 (1992).
De Moor, P-P.E.A. et al., Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite, Chem. Eur. J., 5(7):2083-2088 (1999).
Degnan, T.F. et al., History of ZSM-5 Fluid Catalytic Cracking Additive Development at Mobile, Microporous Mesoporous Mater., 35-36:245-252 (2000).
De A.A. Soler-Illia, Galo, J. et al., Chemical Strategies to Design Textured Materials from Microporous and mesoporous Oxides to Nanonetworks and Hierarchial Structures, Chem. Rev. 102:4093-4138 (2002).
Galo, J. de A. A. et al., Chemical Strategies to Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chern. Rev., 2002, 102, 4093-4138.
Geidel, E. et al., Characterization of Mesoporous Materials by Vibrational Spectroscopic Techniques, Microporous and Mesoporous Mater., 65:31-42 (2003).
Gonzalez-Pena, V. et al., Thermally Stable Mesoporous Alumina Synthesized with Non-ionic Surfaces in teh Presence of Amines, Microporous and Mesoporous Materials, 44-45, pp. 203-210 (2001).
Goto, Y., Mesoporous Material from Zeolite, Journal of Porous Materials, 9, 2002, pp. 43-48.
Grieken, Rafael et al., Supercritical Fluid Extraction of a Nonionic Surfactant Template from SBA-15 Materials and Consequences on the Porous Structure, Langmuir 2003, 19, 3966-3973, American Chemical Society, Rey Juan Carlos University, Madrid, Spain, University of California, Santa Barbara, California.
Grudzien, Rafal M. et al., Effective Method for Removal of Polymeric Template from SBA-16 Silica Combining Extraction and Temperaure-controlled Calcination, The Royal Society of Chemistry, 2006, J. Mater. Chem., 2006, 16, 819-823.
Harding, R.H. et al., New Developments in FCC Catalyst Technology, Appl. Catal. A:Gen. 221:389-396 (2001).
Huang, L. et al., Investigation of Synthesizing MCM-41/ZSM Composites, J. Phys. Chem. B. 104:2817-2823 (2000).
Iijima, S., Carbon Nanotubes: Past, Present, and Future, Physica B: Condensed Matter, www.elsevier.com/locate/physb, 2002, 323, pp. 1-5.
International Search Report and Written Opinion dated Nov. 7, 2005 from International Patent Application No. PCT/US2005/05918, filed Feb. 25, 2005.
Joo, S.H., et al., Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles, Letters to Nature, www.nature.com, Macmillan Magazines Ltd., Nature, vol. 412, Jul. 12, 2001, pp. 169-172.
Karlsson A. et al., Composites of Micro- and Mesoporous Materials: Simultaneous Syntheses of MFI/MCM-41 Like Phases by a Mixed Template Approach, Microporous and mesoporous Mater, 27: 181-192 (1999).
Kloestra, K.R. et al., Mesoporous Material Containing Framework Tectosilicate by Pore-Wall Recrystallization, Chem. Commun., 23:2281-2282 (1997).
Kyotani, T., Control of Pore Structure in Carbon, Carbon, Institute for Chemical Reaction Science, Tohoku University, 2-1-1, Kaiahira, Sendai 980-8577, Japan, Jun. 1, 1999, ElSevier Science Ltd., pp. 269-286.
Lee, H. et al., Materials Science: On the Synthesis of Zeolites, ScienceWeek, downloaded from http://www.scienceweek.com/2003/sa031031-1.htm on Apr. 23, 2005, 5 pages.
Lin, C. et al., Carbonization and Activation of Sol-gel Derived Carbon Xerogels, Carbon, Department of Chemical Engineering, University of South Carolina, Colombia, SC, Aug. 2, 1999, Elsevier Science Ltd., pp. 849-861.
Linssen, T. et al., Mesoporous Templated Silicates: An Overview of Their Synthesis, Catalytic Activation and Evaluation of the Stability, Advances in Colloid and Interface Science, 103:121-147 (2003).
Liu, Y. et al., Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds, Angew. Chem. Int. Ed., 7:1255-1258 (2001).
Liu, Y. et al.,Aluminosilicate Mesostructures with Improved Acidity and Hydrothermal Stability, J. Mater. Chem., 12:3179-3190 (2002).
Lyons, D.M. et al., Preparation of Ordered Mesoporous Ceria with Enhanced Thermal Stability, The Journal of Materials Chemistry, vol. 12, pp. 1207-1212 (2002).
Mendes, M.F. et al., Optimization of the Process of Concentration of Vitamin E from DDSO using Supercritical CO2, Brazilian Journal of Chemical Engineering, vol. 22, No. 1, pp. 83-91, Jan.-Mar. 2005.
Moller, K. et al., Synthesis of Ordered Mesoporous Methacrylate Hybrid Systems: Hosts for Molecular Polymer Composites, Department of Chemistry, Purdue University, West Lafayette, IN, American Chemical Society, Dec. 28, 1998, pp. 665-673.
Ogura, M. et al., Formation of Uniform Mesopores in ZSM-5 Zeolite through Treatment in Alkaline Solution, Chemistry Letters 2000, pp. 882-883.
On, D.T. et al., Large-Pore Mesoporous Materials with Semi-Crystalline Zeolitic Frameworks, Angew. Chem. Int. Ed., 17:3248-3251 (2001).
Park, D.W. et al., Catalytic Degration of Polyethylene Over Solid Acid Catalysts, Polym. Degrad. Stabil., 65:193-198 (1999).
Patarin, J. et al., Mild Methods for Removing Organic Templates from Inorganic Host Materials, Highlights, Angew. Chem. Int. Ed. 2004, 43:3878-3880.
Prokesova, P. et al., Preparation of Nanosized Micro/Mesoporous Composites via Simultaneous Synthesis of Beta/MCM-48 Phases, Microporous and Mesoporous Materials 64 (2003) pp. 165-174.
Ryoo, R. et al., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, The Journal of Physical Chemistry B, vol. 103, No. 38, Sep. 16, 1999, pp. 7743-7746.
Scherzer, J. et al., Octane-Enhancing Zeolitic FCC Catalysts—Scientific and Technical Aspects, Marcel Dekker, Inc., 42 pages, (1990).
Storck, S. et al., Characterization of Micro- and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis, Applied Catalysts A: Gen. 17:137-146 (1998).
Tao et al., Mesopore-Modified Zeolites: Preparation, Characterization, and Applications, Chem. Rev., vol. 106, pp. 896-910 (2006).
Triantafyllidis K.S. et al., Gas-oil Cracking Activity of Hydrothermally Stable Aluminosilicate Mesostructures (MSU-S) Assembled from Zeolite Seeds: Effect of the Type of Framework Structure and Porosity, Catalyst Today, vol. 112, pp. 33-36 (2006).
Verhoef, M. J. et al., Partial Transformation of MCM-41 Material into Zeolites: Formation of Nanosized MFI Type Crystallites, Chemical Materials, 2001, vol. 13, pp. 683-687.
Yang, P. et al., Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks, Nature, vol. 396, Nov. 12, 1998, pp. 152-155; www.nature.com.
Ying, J. Y. et al., Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew. Chem. Int. Ed., 38:56-77 (1999).
Zhang, Z. et al, Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures, J. of the American Chem. Society, 2001, vol. 123, pp. 5014-5021.
Poladi, Raja H.P.R. et al., Synthesis, Characterization, and Catalytic Properties of a Microporous/Mesoporous Material, MMM-1, Journal of Solid State Chemistry, 2002, vol. 167, pp. 363-369.
Xia, Yongde et al., On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials, Journal of the Royal Society of Chemistry, 2004, pp. 863-870.
Guo et al., Characterization of Beta/MCM-41 Composite Molecular Sieve Compared with the Mechanical Mixture Microporous and Mesoporous Materials, vols. 44-45; pp. 427-434, (2001).
Tao et al., ZSM-5 Monolith of Uniform Mesoporous Channels, Material Sciences, Chiba University, J. Am. Chem. Soc., Japan 2003, pp. 6044-6045.
Related Publications (1)
Number Date Country
20100190632 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
61145723 Jan 2009 US