COMPOSITIONS AND METHODS FOR INCREASING THE EFFICIENCY OF CELL CULTURES USED FOR FOOD PRODUCTION

Information

  • Patent Application
  • 20220411824
  • Publication Number
    20220411824
  • Date Filed
    September 02, 2022
    a year ago
  • Date Published
    December 29, 2022
    a year ago
Abstract
Provided herein are compositions and methods to make and use engineered cells, for the purpose of increasing the cell density of a culture comprising metazoan cells and for the production of a cultured edible product.
Description
REFERENCE TO SEQUENCE LISTING

The instant application contains a Sequence Listing with 58 sequences, which has been submitted in XML format and is hereby incorporated herein by reference in its entirety. Said XML copy, created on Sep. 2, 2022, is named 39028-53373-Sequence-Listing.xml, and is 125 kilobytes (KB) in size.


BACKGROUND OF THE INVENTION

The mass production of cells for biomass production remains limited by several factors, thus limiting final yields. Examples of such factors include (1) accumulation of extracellular metabolic waste products such as ammonia/ammonium hydroxide, in the cell culture medium to toxic levels, (2) depletion of necessary nutrients, such as glutamine, in the cell culture medium, requiring a constant supply and supplementation of such nutrients, incurring both expense and additional manipulation of the cells, and the (3) requirement for supplemented proteins, such as growth factors, which support the productivity of a cultivation process.


Provided herein are compositions and methods that address this need.


BRIEF SUMMARY OF THE INVENTION

Provided herein are compositions and methods to make and use modified cells, for the purpose of increasing the efficiency of cell cultures, increasing the cell density of metazoan cell cultures, and for making a cultured edible product for human or non-human consumption.


In one aspect, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising: (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), and albumin; and (b) culturing the cells in a cultivation infrastructure.


In another aspect, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising: (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and (b) culturing the cells in a cultivation infrastructure.


In yet another aspect, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising: (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; (b) introducing into the cells a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT); and (c) culturing the cells in a cultivation infrastructure.


In one aspect provided herein is a method of decreasing the concentration of ammonia and/or ammonium hydroxide in the medium of cells in culture comprising increasing the expression of glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of ammonia (i.e. ammonium hydroxide) in the medium is decreased by at least 2.5%.


In another aspect, provided herein is a method of increasing the production of glutamine in cells comprising increasing the expression of glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of glutamine in the cells is increased by at least 2.5%.


In another aspect, provided herein, is a method of increasing the concentration of Insulin-like growth factor (IGF) in the medium of cells in culture comprising increasing the expression of IGF protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of IGF in the medium is increased by at least 2.5% or is increased to at least 0.001 ng/mL.


In another aspect, provided herein is a method of increasing the concentration of albumin in the medium of cells in culture comprising increasing the expression of albumin in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of albumin in the medium is increased at least 2.5% or is increased to at least 0.1 μg/mL.


In one aspect, provided herein is an in vitro method for producing a cultured edible product, the method comprising: (a) introducing one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof into myogenic cells; (b) optionally introducing a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT) into the cells; (c) inducing myogenic differentiation of the cells expressing GS, IGF, albumin or combinations thereof and optionally TERT, wherein the differentiated cells form myocytes and multinucleated myotubes; and (d) culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product.


In another aspect, provided herein is an in vitro method for producing a cultured edible product, the method comprising: (a) overexpressing GS, IGF, albumin, or a combination thereof in a self-renewing cell line, wherein the cell line is a myogenic transcription factor-modified cell line, and wherein the cell line is of a livestock, poultry, game or aquatic animal species; (b) inducing myogenic differentiation of the cell line, wherein the differentiated cell line forms myocytes and multinucleated myotubes; and (c) culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product. In another aspect provided herein is a cultured edible product produced by the in vitro method.


In one aspect, provided herein is a method for increasing the secretion of glutamine by cells into a culture medium, the method comprising increasing the expression of a glutamine synthetase (GS) protein in the cells, wherein the cells are from livestock, poultry, game or aquatic animal species, and wherein the concentration of glutamine secreted into the culture medium is increased by at least 2.5%.


In one aspect, provided herein is a method for increasing the rate of proliferation of cells in a cultivation infrastructure, comprising: (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and (b) culturing the cells in a cultivation infrastructure, wherein the cells are from livestock, poultry, game or aquatic animal species.


In another aspect, provided herein is a method for decreasing death of cells in a cultivation infrastructure, comprising: (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and (b) culturing the cells in a cultivation infrastructure, wherein the cells are from livestock, poultry, game or aquatic animal species.


In another aspect, provided herein is a method for increasing protein production in cells in a cultivation infrastructure, comprising: (a) introducing into the cells a polynucleotide sequence encoding insulin-like growth factor (IGF); and (b) culturing the cells in a cultivation infrastructure, wherein the cells are from livestock, poultry, game or aquatic animal species.


In another aspect provided herein is a cultured edible product comprising cells having increased expression of GS, increased expression of IGF, increased expression of albumin, increased expression of telomerase reverse transcriptase (TERT), loss-of-function mutations in cyclin-dependent kinase inhibitor (CKI) proteins, increased expression of YAP, increased expression of TAZ, and/or increased expression of myogenic transcription factors.


In another aspect provided herein is a construct comprising any one of the sequences selected from Tables 1A and 1B.


In another aspect provided herein is an expression vector comprising any one of the sequences selected from Tables 1A and 1B.


In another aspect provided herein is a cell comprising an expression vector comprising any one of the sequences selected from Tables 1A and 1B. In some embodiments, the cell is from a livestock, poultry, game, or aquatic species.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a spontaneous increase in ammonia concentration in various cell culture media.



FIGS. 2A-D show morphology of wild type duck fibroblast cells following transfection with a glutamine synthetase (GS) gene. FIG. 2A shows fibroblasts transfected with vehicle-only and grown in media with supplemented glutamine. FIG. 2B shows fibroblasts transfected with mouse GS and grown in media with supplemented glutamine. FIG. 2C shows fibroblasts transfected with vehicle-only and grown in media without supplemented glutamine.



FIG. 2D shows fibroblasts transfected with a mouse GS gene and grown in media without supplemented glutamine.



FIG. 3 demonstrates quantification of ammonia levels in media following transfection of wild type duck fibroblast cells with a GS gene.



FIG. 4 shows an increase in glutamine in culture media from duck fibroblast cell cultures normalized to culture medium in which no cells were present.



FIGS. 5A-D show morphology of wild-type duck myoblast cells following transfection with GS. FIG. 5A shows myoblasts transfected with vehicle-only and grown in medium with supplemented glutamine. FIG. 5B shows myoblasts transfected with mouse GS and grown in media with supplemented glutamine. FIG. 5C shows myoblasts transfected with vehicle-only and grown in media without supplemented glutamine. FIG. 5D shows myoblasts transfected with a mouse GS gene and grown in media without supplemented glutamine.



FIG. 6 demonstrates quantification of ammonia levels in media following transfection of wild type duck myoblast cells with a GS gene.



FIG. 7 shows an increase in glutamine in in culture media from myoblast cultures normalized to culture medium in which no cells were present.



FIG. 8 shows a comparison of normalized ammonia levels between culture media from myoblast cultures and culture media from fibroblast cultures.



FIG. 9 depicts predicted extension of growth period before media reaches growth-limiting ammonia concentration.



FIGS. 10A-D show morphology of wild type duck fibroblast cells following transfection with IGF-1, mouse albumin, or human albumin genes. FIG. 10A shows fibroblasts transfected with vehicle-only. FIG. 10B shows fibroblasts transfected with a human IGF-1 gene.



FIG. 10C Fibroblasts transfected with a mouse albumin gene. FIG. 10D shows fibroblasts transfected with a human albumin gene.



FIGS. 11A-D show morphology of duck myoblasts following transfection with IGF-1, mouse albumin, or human albumin genes. FIG. 11A shows myoblasts transfected with vehicle-only. FIG. 11B shows myoblasts transfected with a human IGF-1 gene. FIG. 11C shows myoblasts transfected with a mouse albumin gene. FIG. 11D shows myoblasts transfected with human albumin gene.



FIG. 12 shows IGF-1 levels secreted in myoblast cell culture media.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein are compositions and methods to make and use engineered cells, for the purpose of increasing the efficiency of cell cultures. Specifically, provided herein are exemplary methods of increasing culture density (e.g. cell density of metazoan cells in culture) and methods for producing cultured edible product. Also provided are methods of making and using cells with reduced requirements for glutamine supplementation, and reduced supplementation with certain animal-cell secreted components such as insulin-like growth factor (IGF) and albumin.


Before describing certain embodiments in detail, it is to be understood that this invention is not limited to particular compositions or biological systems, which can vary. It is also to be understood that the terminology used herein is for the purpose of describing particular illustrative embodiments only, and is not intended to be limiting. The terms used in this specification generally have their ordinary meaning in the art, within the context of this invention and in the specific context where each term is used. Certain terms are discussed below or elsewhere in the specification, to provide additional guidance to the practitioner in describing the compositions and methods of the invention and how to make and use them. The scope and meaning of any use of a term will be apparent from the specific context in which the term is used. As such, the definitions set forth herein are intended to provide illustrative guidance in ascertaining particular embodiments of the invention, without limitation to particular compositions or biological systems.


As used in the present disclosure and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the content clearly dictates otherwise.


Throughout the present disclosure and the appended claims, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element or group of elements but not the exclusion of any other element or group of elements.


Standard techniques may be used for recombinant DNA, oligonucleotide synthesis, and tissue culture and transduction (e.g., electroporation, transfection). Enzymatic reactions and purification techniques may be performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. These and related techniques and procedures may be generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. Unless specific definitions are provided, the nomenclature utilized in connection with, and the laboratory procedures and techniques of, molecular biology, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques may be used for recombinant technology, molecular biological, microbiological, chemical syntheses, chemical analyses, pharmaceutical preparation, production, and delivery.


Cells

Provided herein are methods for modifying cells to overexpress and/or inhibit certain gene products, for the purpose of achieving increased cell density and in some embodiments, for the purpose of providing a cultured edible product. For example, in certain aspects, cells modified as described herein may be cultivated for food production, e.g. production of cultured chicken, cultured beef, and cultured fish.


The cells used in the methods of the present disclosure can be primary cells, or cell lines. The methods provided herein are applicable to any metazoan cell in culture. In various embodiments, methods of the present disclosure may use any one of the cell populations described herein.


In some embodiments, the cells are harvested for the production of cell-based food products, such as cultured edible product from an animal (e.g. cultured poultry, cultured livestock, cultured game, cultured fish). Thus in some embodiments, the methods utilize cells with the potential to differentiate into skeletal muscle. In certain embodiments, the cells are from livestock such as domestic cattle, pigs, sheep, goats, camels, water buffalo, rabbits and the like. In certain embodiments, the cells are from poultry such as domestic chicken, turkeys, ducks, geese, pigeons and the like. In certain embodiments, the cells are from game species such as wild deer, gallinaceous fowl, waterfowl, hare and the like. In certain embodiments, the cells are from aquatic species or semi-aquatic species harvested commercially from wild fisheries or aquaculture operations, or for sport, including certain fish, crustaceans, mollusks, cephalopods, cetaceans, crocodilians, turtles, frogs and the like. In certain embodiments, the cells are from exotic, conserved or extinct animal species. In certain embodiments, the cells are from any metazoan species demonstrating the capacity for skeletal muscle tissue specification. In certain embodiments, the cells are modifiable by a genetic switch to induce rapid and efficient conversion of the cells to skeletal muscle for cultured food production (e.g. cultured poultry, cultured livestock, cultured game, and cultured fish).


In some embodiments, the cells are from Gallus gallus, Bos taurus, Sous scrofa, Meleagris gallopavo, Anas platyrynchos, Salmo solar, Thunnus thynnus, Ovis aries, Coturnix coturnix, Capra aegagrus hircus, or Homarus americanus.


In some embodiments, the cells are from any animal species intended for human or non-human dietary consumption.


In some embodiments, the cells are from livestock, poultry, game, or aquatic species. In other embodiments, the cells are from humans, primates (e.g. monkeys), rodents, including rats and mice, and companion animals such as dogs, cats, horses, and the like.


In some embodiments, the cells are self-renewing stem cell lines.


In some embodiments, the cells are satellite cells, myoblasts, myocytes, fibroblasts, induced pluripotent stem cells, hepatocytes, vascular endothelial cells, pericytes, embryonic stem cells, mesenchymal stem cells, extraembryonic cell lines, somatic cell lines, adipocytes, embryonic stem cells or chondrocytes.


In some embodiments, the cells are myogenic cells. In some embodiments, the myogenic cells are natively myogenic (e.g. are myogenic cells that are cultured in the cultivation infrastructure). Natively myogenic cells include, but are not limited to, myoblasts, myocytes, satellite cells, side population cells, muscle derived stem cells, mesenchymal stem cells, myogenic pericytes, or mesoangioblasts. In other embodiments, the myogenic cells are not natively myogenic (e.g. are non-myogenic cells that are specified to become myogenic cells in the cultivation infrastructure). In some embodiments, non-myogenic cells include embryonic stem cells, induced pluripotent stem cells, extraembryonic cell lines, and somatic cells other than muscle cells.


In some embodiments, non-myogenic cells are modified to become myogenic cells through the expression of one or more myogenic transcription factors. In exemplary embodiments, the myogenic transcription factor is MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof.


In some embodiments, cells are modified to extend their renewal capacity through inactivation of cyclin-dependent kinase inhibitor (CKI) proteins and/or activation of Telomerase reverse transcriptase (TERT). Accordingly, in some embodiments, cells used in the methods of the present disclosure comprise a polynucleotide sequence expressing TERT. In some embodiments, cells used in the methods of the present disclosure comprise one or more loss-of-function mutations in the endogenous genes encoding CKI proteins. In some embodiments, cells comprise loss-of-function mutations in CKI proteins p15, p16, paralogs, orthologs, or genetic variants thereof. In some embodiments, cells used in the methods of the present disclosure comprise a polynucleotide sequence expressing TERT and one or more loss-of-function mutations in the endogenous genes encoding CKI proteins. The loss-of-function mutation may partially or completely inhibit the activity of CKI proteins.


In some embodiments, the process of extending the renewal capacity of the cells comprises activating Telomerase reverse transcriptase (TERT) activity in the cells and/or inactivating CKI proteins.


In some embodiments, the process of extending the renewal capacity of the cells comprises ectopic expression of TERT. In some embodiments, the process of extending the renewal capacity of the cells comprises introducing targeted mutations in the TERT promoter. In some embodiments, the process of extending the renewal capacity of the cells comprises activating endogenous TERT expression by an engineered transcriptional activator. In some embodiments, the process of extending the renewal capacity of the cells comprises transient transfection of TERT mRNA. In some embodiments, induction of endogenous pluripotency-associated telomerase activity in stem cells such as ESC and iPSC supports extended and indefinite cell renewal. In some embodiments, maintenance endogenous pluripotency-associated telomerase activity in stem cells such as ESC and iPSC supports extended and indefinite cell renewal.


In some embodiments, the process of extending the renewal capacity of the cells comprises inactivating one or more CKI proteins. In some embodiments, inactivating CKI proteins comprises introducing loss-of-function mutations in one or more genes encoding CKI proteins. In some embodiments, the loss-of-function mutation partially inhibits the activity of one or more CKI proteins. In some embodiments, the loss-of-function mutation completely inhibits the activity of one or more CKI proteins.


In some embodiments, the inactivation of CKI proteins and/or activation of TERT in the cells extend their renewal capacity for at least 25 population-doublings, at least 50 population-doublings, at least 60 population-doublings, at least 70 population-doublings, at least 80 population-doublings, at least 90 population-doublings, at least 100 population-doublings, at least 110 population-doublings, at least 120 population-doublings, at least 130 population-doublings, at least 140 population-doublings, at least 150 population-doublings, at least 160 population-doublings, at least 170 population-doublings, at least 180 population-doublings, at least 190 population-doublings, or at least 200 population-doublings. In some exemplary embodiments, the cells are primary myoblasts of a livestock, game, aquatic, or poultry species, whose renewal capacity is further extended.


In some embodiments, the cells are modified to inhibit HIPPO signaling, for example, by activating Yes-Associated Protein 1 (YAP1), Transcriptional co-Activator with PDZ-binding motif (TAZ), or a combination thereof in the cells.


In some embodiments, the cells are somatic cells. In some embodiments, the cells are not somatic cells.


In some embodiments, the cells are anchorage-dependent cells and are cultivated in on a substrate. In some embodiments, the cells are anchorage independent cells and are cultivated in a suspension culture. In some embodiments, the cells are cultivated in a suspension culture and form a self-adherent aggregate.


It is noted that the cells can be cultivated for any downstream application, not just limited to food production.


Cellular Modifications

Provided herein are compositions and methods to modify any one of the cells provided herein with a gene of interest in order to increase cell density of metazoan cells in a culture medium, decrease waste products, such as ammonia or ammonium hydroxide, decrease dependency on exogenous addition of factors such as glutamine, albumin, and IGF to the media and to provide a cultured edible product.


Glutamine Synthetase (GS)


Provided herein are cells that overexpress a GS protein.


Provided herein is a method of increasing the production of glutamine in cells or by cells, increasing glutamine secretion into culture medium, and/or decreasing the concentration of extracellular ammonia (to be used interchangeably with ammonium hydroxide where ammonium hydroxide is the form of ammonia present in an aqueous solution) in the medium of cells in culture, comprising increasing the expression of a glutamine synthetase (GS) protein in cells. Also provided herein is a method of increasing the cell density of metazoan cell in culture, comprising increasing the expression of GS in the cells in combination with other modifications described herein and culturing the cells in a cultivation infrastructure. Also provided is an in vitro method for producing a cultured edible product comprising increasing the expression of GS in the cells in combination with other modifications described herein.


In some embodiments, the cells are modified to overexpress a gene encoding a GS protein. In some embodiments, cells ectopically express a GS gene. In some embodiments, the cells are genetically modified and carry stable integrations of one or more copies of a GS gene. In some embodiments, the cells overexpress the gene encoding the GS protein at levels sufficient to decrease the ammonia production, increase the production of glutamine, or any combination thereof. In some embodiments, methods described herein to overexpress GS comprise introducing into the cells a polynucleotide sequence from Table 1B comprising a GS gene.


Increase of GS expression may be achieved using different approaches. In some embodiments, the expression is inducible. In some embodiments, the method comprises expressing nucleotides that encode the GS gene. In some embodiments, the nucleotides are ectopically expressed from constructs that are introduced into the cells, for example expressed from a plasmid, or other expression vector. In some embodiments, the constructs are integrated into the cell's genome, and the expression is driven in that manner (e.g. homologous recombination, introduction mediated by CRISPR-based technology). In some embodiments, expression of the GS gene involves electroporating a DNA, delivering a DNA complexed with a transfection vehicle, using a viral vector (e.g. retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus), and the like, or combinations thereof. In some embodiments, the expression is constitutive. In some embodiments, the expression is conditional, e.g. inducible, e.g. under the control of an inducible promoter, e.g. an inducible Tet construct. In some embodiments, the expression of GS is constitutive, but the expression of additional genes of interest is inducible. In some embodiments, the expression of GS is inducible, but the expression of additional genes of interest is constitutive.


In the methods described herein, a polynucleotide sequence encoding the GS gene may encode any homolog of GS, including GS paralogs, or a GS protein translated from any splice variants of a GS gene, or may comprise any mutations in the GS gene sequence including, but not limited to nucleotide deletions, truncations, fusions, or substitutions. Mutations may be synthetic or naturally occurring.


The GS gene can be from of any organism. The GS gene can be from bacteria, plants, fungi, and archaea. The GS gene can be from any animal, such as vertebrate and invertebrate animal species. The GS gene can be from any vertebrate animal species such as mammals, reptiles, birds, amphibians, and the like. The GS gene can be from any mammalian species such as a human, murine, bovine, porcine, and the like.


In some embodiments, the cells are of a livestock, poultry, game or aquatic animal species. In an exemplary embodiment, the renewal capacity of the primary duck myoblasts are extended, and the myoblasts are engineered to stably overexpress GS. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts are extended, and the myoblasts are engineered to transiently overexpress GS. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts are extended and are engineered to ectopically overexpress GS.


In some embodiments, the synthesis of glutamine by the cells is increased by at least 2.5%, by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 160%, at least 170%, at least 180%, at least 190%, at least 200%, at least 225%, at least 250%, at least 275%, at least 300%, at least 325%, at least 350%, at least 375% at least 400%, at least, 425%, at least 450%, at least 475%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950% at least 1,000%, at least 1,100%, at least 1,200%, at least 1,300%, at least 1,400%, at least 1,500%, at least 1,600%, at least 1,700%, at least 1,800%, at least 1,900%, at least 2,000%, at least 2,250%, at least 2,500%, at least 2,750%, at least 3,000%, at least 3,500%, at least 4,000%, at least 4,500%, at least 5,000%, at least 6,000%, at least 7,000%, at least 8,000%, at least 9,000%, or even by at least 10,000%, including values and ranges therebetween, compared to cultures of cells in which glutamine synthesis is not increased by expression of GS as described herein.


In some embodiments, increased expression of GS using the methods described herein increases the concentration of glutamine in the culture medium to at least 0.001 mM, to at least 0.0025 mM, to at least 0.005 mM, to at least 0.0075 mM, to at least 0.01 mM, to at least 0.025 mM, to at least 0.05 mM, to at least 0.075 mM, to at least 0.1 mM, at least 0.25 mM, to at least 0.50 mM, to at least 0.75 mM, to at least 1.0 mM, to at least 1.5 mM, to at least 2.0 mM, to at least 3.0 mM, to at least 5.0 mM, to at least 10 mM, or even to at least 20 mM, including values and ranges therebetween, compared to cultures of cells in which the expression of GS is not increased.


Methods to measure the increase in the concentration of intracellular glutamine production include, but are not limited to assessment of the glutamine concentration in lysates of cell biomass or the ambient culture medium by HPLC (Chorili et. al., 2012. Validation of a HPLC Method for Determination of Glutamine in Food Additives Using Post-Column Derivatization, AJAC Vol. 3 No. 2) commercially available kits for absolute glutamine determination kits (Sigma-Aldrich #GLN1 and #GLN2), and trace-labeled (H3 radiolabeled) glutamine monitoring.


In some embodiments, the protein synthesis in the cells is increased by at least 2.5%, by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or even by at least 95%.


In some embodiments, the concentration of ammonia is decreased by at least 2.5%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or even at least 95%. Methods to measure the decrease of extracellular ammonia concentrations in the cell media include, but are not limited to commercially available absolute ammonia detection kits such as (Sigma-Aldrich #AA0100), diffuse reflectance-based fiberoptic ammonia sensors (Non-enzymatic reversible colorimetric method such as diffuse reflectance-based fiberoptics (Spear, S. K., Rhiel, M., Murhammer, D. W. et al. Appl Biochem Biotechnol (1998) 75: 175), and use of a biochemistry analyzer (e.g. YSI Biochemistry Analyzer 2700).


In some embodiments, there is a delay in time for the cells to reach the ammonia concentration of otherwise not manipulated cultures (the wild-type cell ammonia concentration). For example, cells overexpressing GS may demonstrate at least a 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, 40-fold, or even at least a 50-fold delay in time to achieve the wild type cell ammonia concentration.


In some embodiments, provided herein is a method of increasing the cell density of a culture comprising metazoan cells, comprising increasing the expression of glutamine synthetase (GS) protein by the cells, wherein the cells are of livestock, poultry, game or aquatic animal species. The culture density of cells may reach about 105 cells/mL, about 106 cells/mL, about 107 cells/mL, about 108 cells/mL, about 109 cells/mL, or about 1010 cells/mL (cells in the cellular biomass/mL of cultivation infrastructure), including values and ranges therebetween.


In some embodiments, provided herein is a method of decreasing cell death comprising increasing the expression of glutamine synthetase in the cells. In some embodiments, the decrease in cell death is about 2.5%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 100%, including values and ranges therebetween, compared to the methods where the expression of GS is not increased.


Insulin-Like Growth Factor (IGF)


Provided herein are cells that overexpress an IGF protein.


Provided herein is a method of increasing the production and secretion of IGF by cells comprising increasing the expression of an IGF protein in cells. Also provided herein is a method of increasing the cell density of a culture comprising metazoan cells comprising increasing the expression of IGF in the cells in combination with other modifications described herein and culturing the cells in a cultivation infrastructure. Also provided is an in vitro method for producing a cultured edible product comprising increasing the expression of GS in the cells in combination with other modifications described herein.


In some embodiments, the cells are modified to overexpress the gene encoding an IGF protein. In some embodiments, cells ectopically express the IGF gene. In some embodiments, the cells are genetically modified and carry stable integrations of one or more copies of an IGF gene. In some embodiments, the cells overexpress the gene encoding the IGF protein at levels sufficient to increase production and/or secretion of IGF into the cell medium. The IGF gene can be of any metazoan species.


Increase of IGF expression may be achieved using different approaches. In some embodiments, the expression is inducible. In some embodiments, the method comprises expressing nucleotides that encode the IGF gene. In some embodiments, the nucleotides are ectopically expressed from constructs that are introduced into the cells, for example expressed from a plasmid, or other expression vector. In some embodiments, the constructs are integrated into the cell's genome, and the expression is driven in that manner (e.g. homologous recombination, introduction mediated by CRISPR-based technology). In some embodiments the expression of the IGF gene involves electroporating a DNA, delivering a DNA complexed with a transfection vehicle, using a viral vector (e.g. retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus), and the like, or combinations thereof. In some embodiments, the expression is constitutive. In some embodiments, the expression is conditional, e.g. inducible, e.g. under the control of an inducible promoter, e.g. an inducible Tet construct. In some embodiments, the expression of IGF is constitutive, but the expression of additional genes of interest is inducible. In some embodiments, the expression of IGF is inducible, but the expression of additional genes of interest is constitutive.


The IGF gene can be from any animal, such as vertebrate and invertebrate animal species. The IGF gene can be from any vertebrate animal species such as mammals, reptiles, birds, amphibians, and the like. The IGF gene can be from any mammalian species such as a human, murine, bovine, porcine, poultry, and the like.


In the methods described herein, a polynucleotide sequence encoding the IGF gene may encode any homolog of IGF, including IGF paralogs, such as IGF-1, IGF-2 or any other IGF paralogs, or an IGF protein translated from any splice variants of an IGF gene, or may comprise any mutations in the IGF gene sequence including, but not limited to nucleotide deletions, truncations, fusions, or substitutions. Mutations may be synthetic or naturally occurring. In one embodiment, the methods described herein comprise introducing into the cells a polynucleotide sequence encoding IGF-1. In another embodiment, the methods described herein comprise introducing into the cells a polynucleotide sequence encoding IGF-2. In some embodiments, methods described herein to overexpress IGF comprise introducing into the cells a polynucleotide sequence from Table 1B comprising an IGF gene.


In some embodiments, the cells are of a livestock, poultry, game or aquatic animal species. In an exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to stably overexpress IGF. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to transiently overexpress IGF. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to ectopically overexpress IGF.


In some embodiments, the concentration of IGF in the cell culture medium is increased by at least 0.001%, 0.005%, 0.01%, at least 0.02%, at least 0.03%, at least 0.04%, at least 0.05%, at least 0.075%, at least 0.1%, at least 0.5%, at least 0.75%, at least 1%, at least 1.25%, at least 1.5%, at least 1.75%, at least 2%, at least 2.5%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 160%, at least 170%, at least 180%, at least 190%, at least 200%, at least 225%, at least 250%, at least 275%, at least 300%, at least 325%, at least 350%, at least 375% at least 400%, at least, 425%, at least 450%, at least 475%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950% at least 1,000%, at least 1,100%, at least 1,200%, at least 1,300%, at least 1,400%, at least 1,500%, at least 1,600%, at least 1,700%, at least 1,800%, at least 1,900%, at least 2,000%, at least 2,250%, at least 2,500%, at least 2,750%, at least 3,000%, at least 3,500%, at least 4,000%, at least 4,500%, at least 5,000%, at least 6,000%, at least 7,000%, at least 8,000%, at least 9,000%, or even by at least 10,000% including values and ranges therebetween, compared to cultures of cells in which the expression of IGF is not increased as described herein.


In some embodiments, increased expression of IGF using the methods described herein increases the concentration of IGF in the culture medium by at least 0.00001 ng/mL, to at least 0.000025 ng/mL, to at least 0.000075 ng/mL, to at least 0.0005 ng/mL, to at least 0.001 ng/mL, to at least 0.0025 ng/mL, to at least 0.005 ng/mL, to at least 0.0075 ng/mL, to at least 0.01 ng/mL, to at least 0.025 ng/mL, to at least 0.05 ng/mL, to at least 0.1 ng/mL, to at least 0.25 ng/mL, to at least 0.5 ng/mL, to at least 1 ng/mL, to at least 2.5 ng/mL, to at least 5 ng/mL, to at least 7.5 ng/mL, to at least 10 ng/mL, to at least 25 ng/mL, to at least 50 ng/mL, to at least 75 ng/mL, to at least 125 ng/mL, to at least 250 ng/mL, to at least 500 ng/mL, to at least 750 ng/mL, to at least 1,000 ng/mL, to at least 1,500 ng/mL, to at least 2,000 ng/mL, to at least 2,500 ng/mL, to at least 3,000 ng/mL, to at least 3,500 ng/mL, to at least 4,000 ng/mL, to at least 4,500 ng/mL, to at least 5,000 ng/mL to at least 6,000 ng/mL, to at least 7,000 ng/mL, to at least 8,000 ng/mL, to at least 9,000 ng/mL, or even to at least 10,000 ng/mL including values and ranges therebetween, compared to cultures of cells in which the expression of IGF is not increased as described herein.


Methods to measure the increase in the concentration of IGF include, but are not limited to, antibody-based methods such as immunoprecipitation, co-immunoprecipitation, Western blotting, Enzyme-linked immunosorbent assay (ELISA), and amino-acid based tagging, isolation, and separation (e.g., FLAG, GST, GFP, etc.).


In some embodiments, the rate of synthesis of IGF by cells is increased by about 0.000001 μg/106 cells/day, by about 0.00001 μg/106 cells/day, by about 0.0001 μg/106 cells/day, 0.001 μg/106 cells/day, by about 0.01 μg/106 cells/day, by about 0.1 μg/106 cells/day, by about 1.0 μg/106 cells/day, by about 10 μg/106 cells/day, by about 100 μg/106 cells/day, by about 10 μg/106 cells/day, by about 100 μg/106 cells/day, by about 1,000 μg/106 cells/day, or by even about 10,000 μg/106 cells/day, including values and ranges therebetween, compared to cells wherein the rate of IGF synthesis is not increased as described herein.


In some embodiments, provided herein is a method of increasing the proliferation rate of cells comprising increasing the expression of Insulin-like Growth Factor (IGF) protein by the cells, wherein the cells are of livestock, poultry, game or aquatic animal species. In some embodiments, the population doubling time of the cells is decreased by about by about 5%, by about 10%, by about 15%, by about 20%, by about 25%, by about 30%, by about 35%, by about 40%, by about 45%, by about 50%, by about 55%, by about 60%, by about 65%, by about 70%, by about 75%, by about 80%, by about 85%, by about 90%, by about 95%, or by more than 95%, including values and ranges therebetween, compared to cells wherein the expression of IGF is not increased.


In some embodiments, provided herein is a method of increasing protein production in the cells comprising increasing the expression of Insulin-like Growth Factor (IGF) protein by the cells, wherein the cells are of livestock, poultry, game or aquatic animal species. In some embodiments, the protein produced by the cells in culture is measured as total cell protein per cell nucleus. In some embodiments, the total cell protein per nucleus is increased by about 5%, by about 10%, by about 15%, by about 20%, by about 25%, by about 30%, by about 35%, by about 40%, by about 45%, by about 50%, by about 55%, by about 60%, by about 65%, by about 70%, by about 75%, by about 80%, by about 85%, by about 90%, by about 95%, by about 100%, by about 110%, by about 120%, by about 130%, by about 140%, by about 150%, by about 160%, by about 170%, by about 180%, by about 190%, by about 200%, by about 225%, by about 250%, by about 275%, by about 300%, by about 350%, by about 400%, by about 450%, by about 500%, by about 550%, by about 600%, by about 650%, by about 700%, by about 750%, by about 800%, by about 850%, by about 900%, by about 950%, by about 1,000%, by about 1,100%, by about 1,200%, by about 1,300%, by about 1,400%, by about 1,500%, by about 1,600%, by about, 1,700%, by about 1,800%, by about 1,900%, by about 2,000%, by about 2,100%, by about 2,200%, by about 2,300%, by about 2,400%, by about 2,500%, by more than 2,500%, including values and ranges therebetween, compared to the total cell protein production where the expression of IGF is not increased.


In some embodiments, the total cell protein per nucleus is increased by about 5 pg/nucleus; by about 10 pg/nucleus; by about 15 pg/nucleus; by about 20 pg/nucleus; by about 25 pg/nucleus; by about 30 pg/nucleus; by about 35 pg/nucleus; by about 40 pg/nucleus; by about 45 pg/nucleus, by about 50 pg/nucleus; by about 55 pg/nucleus, by about 60 pg/nucleus, by about 65 pg/nucleus, by about 70 pg/nucleus, by about 75 pg/nucleus, by about 80 pg/nucleus, by about 85 pg/nucleus, by about 90 pg/nucleus, by about 95 pg/nucleus, by about 100 pg/nucleus, by about 110 pg/nucleus, by about 120 pg/nucleus, by about 130 pg/nucleus, by about 140 pg/nucleus, by about by about 150 pg/nucleus, by about, by about 160 pg/nucleus, by about 170 pg/nucleus, by about 180 pg/nucleus, by about 190 pg/nucleus, by about 200 pg/nucleus, by about 225 pg/nucleus, by about 250 pg/nucleus, by about 275 pg/nucleus, by about 280 pg/nucleus, by about 290 pg/nucleus, by about 300 pg/nucleus, by about 350 pg/nucleus, by about 400 pg/nucleus, by about 450 pg/nucleus, by about 500 pg/nucleus, by about 550 pg/nucleus, by about 600 pg/nucleus, by about 650 pg/nucleus, by about 700 pg/nucleus, by about 750 pg/nucleus, by about 800 pg/nucleus, by about 850 pg/nucleus, by about 900 pg/nucleus, by about 950 pg/nucleus, by about 1000 pg/nucleus, by about 1,100 pg/nucleus, by about 1,200 pg/nucleus, by about 1,300 pg/nucleus, by about 1,400 pg/nucleus, by about 1,500 pg/nucleus, by about 1,600 pg/nucleus, by about 1,700 pg/nucleus, by about 1,800 pg/nucleus, by about 1,900 pg/nucleus, by about 2,000 pg/nucleus, by about 2,100 pg/nucleus, by about 2,200 pg/nucleus, by about 2,300 pg/nucleus, by about 2,400 pg/nucleus, by about 2,500 pg/nucleus, by more than 2,500 pg/nucleus, including values and ranges therebetween.


In some embodiments, provided herein is a method for increasing the rate of proliferation of cells in a cultivation infrastructure, comprising increasing the expression of Insulin-like Growth Factor (IGF) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species. In some embodiments, increasing the expression of IGF comprises introducing a polynucleotide sequence encoding IGF into the cells. In some embodiments, the polynucleotide sequence encodes IGF1. In some embodiments, the polynucleotide sequence encodes IGF2. In some embodiments, the polynucleotide sequence comprises an IGF coding sequence from Tables 1A and 1B.


Albumin


Provided herein are cells that overexpress an albumin protein.


Provided herein is a method of increasing the production and secretion of albumin by cells comprising increasing the expression of an albumin protein in the cells. Also provided herein is a method of increasing the cell density of a culture comprising metazoan cells, comprising increasing the expression of albumin in the cells in combination with other modifications described herein and culturing the cells in a cultivation infrastructure. Also provided is an in vitro method for producing a cultured edible product comprising increasing the expression of albumin in the cells in combination with other modifications described herein.


In some embodiments, the cells are modified to overexpress the gene encoding albumin. In some embodiments, cells ectopically express the albumin gene. In some embodiments, the cells are genetically modified and carry stable integrations of one or more copies of the albumin gene. In some embodiments, the cells overexpress the gene encoding the albumin protein at levels sufficient to increase production and/or secretion of albumin into the cell culture medium.


Increase of albumin expression may be achieved using different approaches. In some embodiments, the expression is inducible. In some embodiments, the method comprises expressing nucleotides that encode the albumin gene. In some embodiments, the nucleotides are ectopically expressed from constructs that are introduced into the cells, for example expressed from a plasmid, or other expression vector. In some embodiments, the constructs are integrated into the cell's genome, and the expression is driven in that manner (e.g. homologous recombination, introduction mediated by CRISPR-based technology). In some embodiments, expression of the albumin gene involves electroporating a DNA, delivering a DNA complexed with a transfection vehicle, using a viral vector (e.g. retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus), and the like, or combinations thereof. In some embodiments, the expression is constitutive. In some embodiments, the expression is conditional, e.g. inducible, e.g. under the control of an inducible promoter, e.g. an inducible Tet construct. In some embodiments, the expression of albumin is constitutive, but the expression of additional genes of interest is inducible. In some embodiments, the expression of albumin is inducible, but the expression of additional genes of interest is constitutive.


The albumin gene can be from any animal, such as vertebrate and invertebrate animal species. In some embodiments, the albumin gene can be from any vertebrate animal species such as mammals, reptiles, birds, amphibians, and the like. In some embodiments, the albumin gene can be from any mammalian species, such as a human, murine, bovine, porcine, livestock, and the like.


In the methods described herein, a polynucleotide sequence encoding the albumin gene may encode any homolog of albumin, including any albumin paralogs, or an albumin protein translated from any splice variants of an albumin gene, or may comprise any mutations in the albumin gene sequence including, but not limited to nucleotide deletions, truncations, fusions, or substitutions. Mutations may be synthetic or naturally occurring. In some embodiments, methods described herein to overexpress albumin comprise introducing into the cells a polynucleotide sequence from Table 1B comprising an albumin gene.


In some embodiments, the cells are of a livestock, poultry, game or aquatic animal species. In an exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to stably overexpress albumin. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to transiently overexpress albumin. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to ectopically overexpress albumin.


In some embodiments, an increased expression of albumin using the methods described herein increases the concentration of albumin in the culture medium by at least 0.001%, 0.005%, 0.01%, at least 0.02%, at least 0.03%, at least 0.04%, at least 0.05%, at least 0.075%, at least 0.1%, at least 0.5%, at least 0.75%, at least 1%, at least 1.25%, at least 1.5%, at least 1.75%, at least 2%, at least 2.5%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 110%, at least 120%, at least 130%, at least 140%, at least 150%, at least 160%, at least 170%, at least 180%, at least 190%, at least 200%, at least 225%, at least 250%, at least 275%, at least 300%, at least 325%, at least 350%, at least 375% at least 400%, at least, 425%, at least 450%, at least 475%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950% at least 1,000%, at least 1,100%, at least 1,200%, at least 1,300%, at least 1,400%, at least 1,500%, at least 1,600%, at least 1,700%, at least 1,800%, at least 1,900%, at least 2,000%, at least 2,250%, at least 2,500%, at least 2,750%, at least 3,000%, at least 3,500%, at least 4,000%, at least 4,500%, at least 5,000%, at least 6,000%, at least 7,000%, at least 8,000%, at least 9,000%, or even by at least 10,000% including values and ranges therebetween, compared to cultures of cells in which the albumin expression is not increased as described herein.


In some embodiments, an increased expression of albumin using the methods described herein increases the concentration of albumin in the culture medium to at least 0.0001 mg/mL, to at least 0.0002 mg/mL, to at least 0.0004 mg/mL, to at least 0.0005 mg/mL, to at least 0.0006 mg/mL, to at least 0.0007 mg/mL, to at least 0.0008 mg/mL, to at least 0.0009 mg/mL, to at least 0.001 mg/mL, to at least 0.002 mg/mL, to at least 0.003 mg/mL, to at least 0.004 mg/mL, to at least 0.005 mg/mL, to at least 0.006 mg/mL, to at least 0.007 mg/mL, to at least 0.008 mg/mL, to at least 0.009 mg/mL, to at least 0.01 mg/mL, to at least 0.05 mg/mL, to at least 0.075 mg/mL, to at least 0.1 mg/mL, to at least 0.25 mg/mL, to at least 0.5 mg/mL, to at least 0.75 mg/mL, to at least 1 mg/mL, to at least 1.25 mg/mL, to at least 1.5 mg/mL, to at least 1.75 mg/mL, to at least 2 mg/mL, to at least 3 mg/mL, to at least 5 mg/mL, to at least 10 mg/mL, to at least 20 mg/mL, to at least 25 mg/mL, to at least 50 mg/mL, to at least 75 mg/mL, or even to at least 100 mg/mL, including values and ranges therebetween, compared to cultures of cells in which the albumin expression is not increased as described herein.


Methods to measure the increase in the concentration of albumin include commercial kits, such as the BCG Albumin Assay Kit (Sigma-Aldrich #MAK124), BCP Albumin Assay Kit (Sigma-Aldrich #MAK125), and antibody-based methods, such as immunoprecipitation, co-immunoprecipitation, Western blotting, Enzyme-linked immunosorbent assay (ELISA), and amino-acid based tagging, isolation, and separation (e.g., FLAG, GST, GFP, etc.).


In some embodiments, provided herein is a method of increasing the rate of proliferation of cells in a cultivation infrastructure, comprising increasing the expression of albumin in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species. In some embodiments, the population doubling time of the cells is decreased by about 10%, by about 15%, by about 20%, by about 25%, by about 30%, by about 35%, by about 40%, by about 45%, by about 50%, by about 55%, by about 60%, by about 65%, by about 70%, by about 75%, by about 80%, by about 85%, by about 90%, by about 95%, by more than 95%, including values and ranges therebetween, compared to cells in which the expression of albumin is not increased.


In one embodiment, provided herein is a method of decreasing cell death comprising increasing the expression of albumin in the cells. In some embodiments, the decrease in cell death provided is about 2.5%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or about 100%, including values and ranges therebetween, compared to the methods wherein the expression of albumin is not increased.


In some embodiments, provided herein are cells that overexpress any combination of GS, IGF, and albumin. For example, in one embodiment, provided herein are cells that overexpress a GS protein and an IGF protein. In one embodiment, provided herein are cells that overexpress an albumin protein and a GS protein. In one embodiment, provided herein are cells that overexpress an albumin protein and an IGF protein. In one embodiment, provided herein are cells that overexpress an albumin protein, a GS protein, and an IGF protein.


TERT and CKI Proteins


Provided herein are cells whose renewal capacity is extended, for e.g., by overexpressing a TERT protein and/or by inhibiting the activity of CKI proteins. Exemplary methods to overexpress TERT and inhibit the activity of CKI proteins are disclosed in U.S. Provisional Application No. 62/278,869, filed on Jan. 14, 2016, and 62/361,867, filed on Jul. 13, 2016, and a PCT Application No. PCT/US2017/013782, filed on Jan. 17, 2017, all of which are incorporated herein by reference in their entirety.


In some embodiments, provided herein is a method for increasing the density of cells in a culture or an in vitro method for producing a cultured edible product comprising increasing the expression of a TERT protein in the cells in combination with increasing the expression of GS, IGF, albumin, or a combination thereof. In some embodiments, provided herein is a method for increasing the density of cells in a culture or an in vitro method for producing a cultured edible product comprising inhibiting the activity of CKI proteins in the cells in combination with increasing the expression of GS, IGF, albumin, or a combination thereof. In some embodiments, provided herein is a method for increasing the density of cells in a culture or an in vitro method for producing a cultured edible product comprising increasing the expression of a TERT protein in the cells, inhibiting the activity of CKI proteins in the cells, and increasing the expression of GS, IGF, albumin, or a combination thereof.


In some embodiments, the cells are modified to overexpress a polynucleotide sequence encoding TERT. In some embodiments, cells ectopically express the TERT polynucleotide. In some embodiments, the cells are genetically modified and carry stable integrations of one or more copies of the TERT polynucleotide.


Increased expression of TERT may be achieved using different approaches. In some embodiments, increased expression of TERT may be achieved by ectopically expressing TERT. In some embodiments, increased expression of TERT may be achieved by introducing targeted mutations in the TERT promoter. In some embodiments, increased expression of TERT may be achieved by activating endogenous TERT expression by an engineered transcriptional activator. In some embodiments, increased expression of TERT may be achieved by transiently transfecting TERT mRNA.


In some embodiments, the expression of TERT is inducible. In some embodiments, the method comprises expressing nucleotides that encode the TERT protein. In some embodiments, the nucleotides are ectopically expressed from constructs that are introduced into the cells, for example expressed from a plasmid, or other expression vector. In some embodiments, the constructs are integrated into the cell's genome, and the expression is driven in that manner (e.g. homologous recombination, introduction mediated by CRISPR-based technology). In some embodiments, the expression of the TERT gene involves electroporating a DNA, delivering a DNA complexed with a transfection vehicle, using a viral vector (e.g. retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus), and the like, or combinations thereof. In some embodiments, the expression is constitutive. In some embodiments, the expression is conditional, e.g. inducible, e.g. under the control of an inducible promoter, e.g. an inducible Tet construct. In some embodiments, the expression of TERT is constitutive, but the expression of additional genes of interest is inducible. In some embodiments, the expression of TERT is inducible, but the expression of additional genes of interest is constitutive.


The polynucleotide encoding TERT can be from of any organism. The TERT polynucleotide can be from bacteria, plants, fungi, and archaea. The TERT polynucleotide can be from any animal, such as vertebrate and invertebrate animal species. The TERT polynucleotide can be from any vertebrate animal species such as mammals, reptiles, birds, amphibians, and the like. The TERT polynucleotide can be from any mammalian species, such as a human, murine, bovine, porcine, and the like.


In some embodiments, the methods of inhibiting CKI proteins comprise introducing loss-of-function mutations, e.g., INDEL (insertion or deletion) mutations, into one or more genes encoding CKI proteins in the cells. This can be accomplished using any gene based technologies, for example, using CRISPR-Cas (Clustered Regularly Interspersed Short Palindromic Repeats) based technology or TALEN based technology. In an exemplary embodiment, the genes encoding CKI proteins are the genes encoding CKI proteins p15, p16, paralogs, orthologs, or genetic variants thereof. In an exemplary embodiment, the methods of inhibiting CKI proteins comprise introducing loss-of-function mutations in CDKN2B gene (p15) and/or in CDKN2A gene (p16).


In some embodiments, inhibiting the activity of CKI proteins comprises activating a CDK4 protein, paralogs, orthologs or genetic variants thereof.


In some embodiments, the methods of inhibiting the CKI function comprise introducing into the cells a vector expressing a polynucleotide that encodes a dominant negative mutant of one or more CKI proteins. In some embodiments, the polynucleotide is ectopically expressed from a construct that is introduced into the cells of the biomass, for example expressed from a plasmid, or other vector. In some embodiments, the construct is integrated into the cell's genome, and the expression is driven in that manner (e.g. introduction mediated by CRISPR-based technology). In some embodiments, the expression of the polynucleotide involves electroporating a DNA, delivering a DNA complexed with a transfection vehicle, using a viral vector (e.g. retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus), and the like, or combinations thereof. In some embodiments, the expression is constitutive. In some embodiments, the expression is conditional, e.g. inducible, e.g. under the control of an inducible promoter, e.g. an inducible Tet construct.


In some embodiments, the methods of inhibiting comprise delivering dominant negative mutants of one or more CKI proteins directly, e.g. purified proteins, synthetic proteins, or recombinantly expressed proteins, or combinations thereof, to the cells.


In some embodiments, the methods of inhibiting comprise transcriptional repression of the endogenous genes encoding one or more CKI proteins in the cells. This can be accomplished, for example, by using nucleic acid sequence-directed transcriptional repressors. For example, an endonuclease-defective Cas9, dCas9, can be combined with a guide RNA that targets the promoter region of the genes encoding one or more CKI proteins and reduces the transcriptional activation and concomitant gene expression.


In some embodiments, the cells are of a livestock, poultry, game or aquatic animal species. In an exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to stably overexpress GS, IGF, albumin, or any combination thereof. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to transiently overexpress GS, IGF, albumin, or any combination thereof. In another exemplary embodiment, the renewal capacity of the primary duck myoblasts is extended, and the myoblasts are engineered to ectopically overexpress GS, IGF, albumin, or any combination thereof.


In some embodiments, provided herein are cells that overexpress a GS protein and an IGF protein. The cells may optionally be modified to extend renewal capacity, and may comprise activated TERT and/or inactivated CKI protein, may comprise an antagonized HIPPO signaling pathway, e.g., activated YAP/TAZ, may be further differentiated, and the like.


In some embodiments, provided herein are cells that overexpress an albumin protein and a GS protein. The cells may optionally be modified to extend renewal capacity, and may comprise activated TERT and/or inactivated CKI protein, may comprise an antagonized HIPPO signaling pathway, e.g., activated YAP/TAZ, may be further differentiated, and the like.


In some embodiments, provided herein are cells that overexpress an albumin protein and an IGF protein. The cells may optionally be modified to extend renewal capacity, and may comprise activated TERT and/or inactivated CKI protein, may comprise an antagonized HIPPO signaling pathway, e.g., activated YAP/TAZ, may be further differentiated, and the like.


In some embodiments, provided herein are cells that overexpress an albumin protein, a GS protein, and an IGF protein. The cells may optionally be modified to extend renewal capacity, and may comprise activated TERT and/or inactivated CKI protein, may comprise an antagonized HIPPO signaling pathway, e.g., activated YAP/TAZ, may be further differentiated, and the like.


Tables 1A and 1B show exemplary sequences used for ectopic overexpression in some exemplary embodiments provided herein. The cells may optionally be modified to extend renewal capacity, and may comprise activated TERT and/or inactivated CKI protein, may comprise an antagonized HIPPO signaling, e.g., activated YAP/TAZ, may be further differentiated, and the like.


Table 1C shows exemplary amino acid sequences for GS, albumin, and IGF proteins that may be expressed in cells according to the methods described here.
















TABLE 1A









Eukaryotic
Prokaryotic






NCBI

selection
selection




Gene
Species
#
Vendor
marker
marker
Tag
Backbone







Glutamine
mouse
NM_008131
Genscript
Neo
Amp
C terminal
pcDNA3.1+/


Synthetase


OMu19897D


DYKDDD
C-(K)DYK


(GS)





DK (SEQ
(SEQ ID








ID NO: 57)
NO: 58)








tags






IGF-1
human
NM_000618.2
Origene
Neo
Kan
Myc-DDK
pCMV6-





RG212527



Entry





Albumin
human
NM_000477
Genscript
Neo
Amp
C terminal






OHu18744


DYKDDD









DK (SEQ









ID NO: 57)









tags






Albumin
Mouse
NM_009654
Genscript
Neo
Amp
C terminal






OMu21640


DYKDDD









DK (SEQ









ID NO: 57)









tags



















TABLE 1B





Gene
Species
NCBI #
DNA Sequence







IGF1 +
bovine

ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


porcine


TCAGCTCTGCTTATTCCTTCTTGAAGCAGGTGAAGA


albumin


TGCCCATCACATCCTCCTCGCATCTCTTCTATCTGG


signal


CCCTGTGCTTGCTCGCCTTCACCAGCTCTGCCACGG


peptide


CGGGACCCGAGACCCTCTGCGGGGCTGAGTTGGTG





GATGCTCTCCAGTTCGTGTGCGGAGACAGGGGCTT





TTATTTCAACAAGCCCACGGGGTATGGCTCGAGCA





GTCGGAGGGCGCCCCAGACAGGAATCGTGGATGA





GTGCTGCTTCCGGAGCTGTGATCTGAGGAGGCTGG





AGATGTACTGCGCGCCTCTCAAGCCCGCCAAGTCG





GCCCGCTCAGTCCGTGCCCAGCGCCACACCGACAT





GCCCAAGGCTCAGAAGGAAGTACATTTGAAGAACA





CAAGTAGAGGGAGTGCAGGAAACAAGAACTACAG





AATGTAG (SEQ ID NO: 1)





IGF1 +
chicken

ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


porcine


TCAGCTCTGCTTATTCCTTCTTGAAGGTGAAGATGC


albumin


ACACTGTGTCCTACATTCATTTCTTCTACCTTGGCC


signal


TGTGTTTGCTTACCTTAACCAGTTCTGCTGCTGCCG


peptide


GCCCAGAAACACTGTGTGGTGCTGAGCTGGTTGAT





GCTCTTCAGTTCGTATGTGGAGACAGAGGCTTCTAC





TTCAGTAAGCCTACAGGGTATGGATCCAGCAGTAG





ACGCTTACACCACAAGGGAATAGTGGATGAATGCT





GCTTCCAGAGTTGTGACCTGAGGAGGCTGGAGATG





TACTGTGCTCCAATAAAGCCACCTAAATCTGCACG





CTCTGTACGTGCTCAGCGCCACACTGATATGCCAA





AAGCACAAAAGGAAGTGCATTTGAAGAATACAAG





TAGAGGGAACACAGGAAACAGAAACTACAGAATG





TAA (SEQ ID NO: 2)





IGF1 +
porcine

ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


porcine


TCAGCTCTGCTTATTCCTTGGCCCTGTGCTTGCTCTC


albumin


CTTCACCAGCTCTGCCACGGCTGGACCTGAGACCC


signal


TCTGTGGGGCTGAGCTGGTGGACGCTCTTCAGTTCG


peptide


TGTGCGGAGACAGGGGCTTTTATTTCAACAAGCCC





ACAGGGTACGGCTCCAGCAGTCGGAGGGCGCCACA





GACGGGCATCGTGGATGAGTGCTGCTTCCGGAGCT





GTGATCTGAGGAGGCTGGAGATGTACTGTGCACCC





CTCAAGCCTGCCAAGTCGGCCCGCTCCGTCCGTGC





CCAGCGCCACACGGACATGCCCAAGGCTCAGAAGG





AAGTACATTTGAAGAACACAAGTAGAGGGAGTTCA





GGAAACAAGAACTACAGAATGTAG (SEQ ID NO: 3)





Wild
chicken
NM_001004384
ATGGAAAAAATCAACAGTCTTTCAACACAATTAGT


Type


TAAGTGCTGCTTTTGTGATTTCTTGAAGGTGAAGAT


IGF1


GCACACTGTGTCCTACATTCATTTCTTCTACCTTGG





CCTGTGTTTGCTTACCTTAACCAGTTCTGCTGCTGC





CGGCCCAGAAACACTGTGTGGTGCTGAGCTGGTTG





ATGCTCTTCAGTTCGTATGTGGAGACAGAGGCTTCT





ACTTCAGTAAGCCTACAGGGTATGGATCCAGCAGT





AGACGCTTACACCACAAGGGAATAGTGGATGAATG





CTGCTTCCAGAGTTGTGACCTGAGGAGGCTGGAGA





TGTACTGTGCTCCAATAAAGCCACCTAAATCTGCA





CGCTCTGTACGTGCTCAGCGCCACACTGATATGCC





AAAAGCACAAAAGGAAGTGCATTTGAAGAATACA





AGTAGAGGGAACACAGGAAACAGAAACTACAGAA





TGTAA (SEQ ID NO: 4)





Wild
bovine
NM_001077828
ATGGGAAAAATCAGCAGTCTTCCAACCCAATTATT


Type


TAAGTGCTGCTTTTGTGATTTCTTGAAGCAGGTGAA


IGF1


GATGCCCATCACATCCTCCTCGCATCTCTTCTATCT





GGCCCTGTGCTTGCTCGCCTTCACCAGCTCTGCCAC





GGCGGGACCCGAGACCCTCTGCGGGGCTGAGTTGG





TGGATGCTCTCCAGTTCGTGTGCGGAGACAGGGGC





TTTTATTTCAACAAGCCCACGGGGTATGGCTCGAG





CAGTCGGAGGGCGCCCCAGACAGGAATCGTGGATG





AGTGCTGCTTCCGGAGCTGTGATCTGAGGAGGCTG





GAGATGTACTGCGCGCCTCTCAAGCCCGCCAAGTC





GGCCCGCTCAGTCCGTGCCCAGCGCCACACCGACA





TGCCCAAGGCTCAGAAGGAAGTACATTTGAAGAAC





ACAAGTAGAGGGAGTGCAGGAAACAAGAACTACA





GAATGTAG (SEQ ID NO: 5)





Wild
porcine
NM_214256
ATGCACATCACATCCTCTTCGCATCTCTTCTACTTG


Type


GCCCTGTGCTTGCTCTCCTTCACCAGCTCTGCCACG


IGF1


GCTGGACCTGAGACCCTCTGTGGGGCTGAGCTGGT





GGACGCTCTTCAGTTCGTGTGCGGAGACAGGGGCT





TTTATTTCAACAAGCCCACAGGGTACGGCTCCAGC





AGTCGGAGGGCGCCACAGACGGGCATCGTGGATG





AGTGCTGCTTCCGGAGCTGTGATCTGAGGAGGCTG





GAGATGTACTGTGCACCCCTCAAGCCTGCCAAGTC





GGCCCGCTCCGTCCGTGCCCAGCGCCACACGGACA





TGCCCAAGGCTCAGAAGGAAGTACATTTGAAGAAC





ACAAGTAGAGGGAGTTCAGGAAACAAGAACTACA





GAATGTAG (SEQ ID NO: 6)





Albumin +
bovine

ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


porcine


TCAGCTCTGCTTATTCCAGGGGTGTGTTTCGTCGAG


albumin


ATACACACAAGAGTGAGATTGCTCATCGGTTTAAA


signal


GATTTGGGAGAAGAACATTTTAAAGGCCTGGTACT


peptide


GATTGCCTTTTCTCAGTATCTCCAGCAGTGTCCATT





TGATGAGCATGTAAAATTAGTGAACGAACTAACTG





AGTTTGCAAAAACATGTGTTGCTGATGAGTCCCAT





GCCGGCTGTGAGAAGTCACTTCACACTCTCTTTGGA





GATGAATTGTGTAAAGTTGCATCCCTTCGTGAAAC





CTATGGTGACATGGCTGACTGCTGTGAGAAACAAG





AACCTGAGAGAAATGAATGCTTCTTGTCACACAAA





GATGATAGCCCTGATCTACCTAAACTCAAACCTGA





CCCCAATACTTTGTGTGACGAGTTTAAGGCCGATG





AAAAGAAGTTTTGGGGAAAATACCTATACGAAATT





GCTAGAAGACATCCCTACTTTTATGCACCAGAACT





CCTTTACTATGCTAATAAATATAATGGAGTTTTTCA





AGAATGCTGCCAAGCTGAAGATAAAGGTGCCTGCC





TGCTACCAAAGATTGAAACTATGAGGGAAAAGGTA





CTGACTTCATCTGCCAGACAGAGACTCAGGTGTGC





CAGTATTCAAAAATTTGGAGAAAGAGCTTTAAAAG





CATGGTCAGTAGCTCGCCTGAGCCAGAAATTTCCC





AAGGCTGAGTTTGTAGAAGTTACCAAGCTAGTGAC





AGATCTCACAAAAGTGCACAAGGAATGCTGCCATG





GAGACCTACTTGAATGCGCAGATGACAGGGCGGAC





CTTGCCAAGTACATATGTGATAATCAAGATACAAT





CTCCAGTAAACTGAAGGAATGCTGTGATAAGCCTT





TGTTGGAAAAATCCCACTGCATTGCTGAGGTAGAA





AAAGATGCCATACCTGAAAACTTGCCCCCATTAAC





TGCTGACTTTGCTGAAGATAAGGATGTATGCAAAA





ACTATCAAGAAGCAAAGGATGCCTTCCTGGGCTCA





TTTCTTTATGAATATTCAAGAAGGCATCCTGAATAT





GCTGTCTCAGTGCTATTGAGACTTGCCAAGGAATA





TGAAGCCACACTGGAGGAATGCTGTGCCAAAGATG





ATCCACATGCATGCTATTCCACAGTGTTTGACAAAC





TTAAGCATCTTGTGGATGAGCCTCAGAATTTAATTA





AACAAAACTGTGACCAATTCGAAAAACTTGGAGAG





TATGGATTCCAAAATGCGCTCATAGTTCGTTACACC





AGGAAAGTACCCCAAGTGTCAACTCCAACTCTCGT





GGAGGTTTCAAGAAGCCTAGGAAAAGTGGGTACTA





GGTGTTGTACAAAACCGGAATCAGAAAGAATGCCC





TGTACAGAAGACTATCTGAGCTTGATCCTGAACCG





GTTGTGCGTGCTGCATGAGAAGACACCAGTGAGTG





AAAAAGTCACCAAGTGCTGCACAGAGTCATTGGTG





AACAGACGGCCATGTTTCTCTGCTCTGACACCTGAT





GAAACATATGTACCCAAAGCCTTTGATGAGAAATT





GTTCACCTTCCATGCAGATATATGCACACTTCCCGA





TACTGAGAAACAAATCAAGAAACAAACTGCACTTG





TTGAGCTGTTGAAACACAAGCCCAAGGCAACAGAG





GAACAACTGAAAACCGTCATGGAGAATTTTGTGGC





TTTTGTAGACAAGTGCTGCGCAGCTGATGACAAAG





AAGCCTGCTTTGCTGTGGAGGGTCCAAAACTTGTT





GTTTCAACTCAAACAGCCTTAGCCTAA (SEQ ID NO:





7)





Albumin +
chicken

ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


porcine


TCAGCTCTGCTTATTCCAGGAATCTGCAAAGATTTG


albumin


CTCGTGATGCAGAGCACAAGAGTGAAATTGCCCAT


signal


CGCTACAATGATTTGAAAGAAGAAACATTTAAGGC


peptide


AGTTGCCATGATCACATTTGCCCAGTATCTCCAGAG





GTGCTCTTATGAAGGACTGTCTAAGCTTGTGAAGG





ATGTTGTTGATCTGGCACAAAAATGTGTAGCCAAT





GAAGATGCTCCTGAATGCTCAAAACCACTGCCTTC





CATTATCCTGGATGAAATCTGCCAAGTGGAAAAGC





TCCGTGACTCTTATGGTGCAATGGCCGACTGCTGTA





GCAAAGCTGATCCTGAAAGAAATGAGTGTTTCCTG





TCATTTAAAGTTTCCCAACCAGACTTCGTTCAGCCA





TACCAAAGACCAGCTTCTGATGTGATATGCCAGGA





ATACCAGGACAACAGAGTGTCATTTCTGGGACATT





TCATCTATTCTGTTGCAAGAAGACACCCCTTCTTGT





ATGCCCCTGCAATCCTTAGTTTTGCTGTTGATTTTG





AACATGCACTTCAAAGCTGTTGCAAAGAGAGTGAT





GTCGGTGCTTGCCTGGACACCAAGGAAATTGTTAT





GAGAGAAAAAGCCAAGGGAGTAAGTGTGAAGCAG





CAGTATTTTTGTGGAATCTTGAAGCAGTTCGGAGAT





AGAGTTTTCCAAGCACGACAACTTATTTACCTAAG





CCAAAAATACCCCAAGGCTCCATTCTCAGAGGTTT





CTAAATTTGTACATGATTCTATCGGCGTCCACAAAG





AGTGCTGTGAAGGGGACATGGTGGAGTGCATGGAT





GACATGGCACGTATGATGAGCAATCTGTGCTCTCA





ACAAGATGTTTTCTCAGGTAAAATCAAAGACTGCT





GTGAGAAGCCTATTGTGGAACGAAGCCAGTGCATT





ATGGAGGCAGAATTTGATGAGAAACCTGCAGATCT





TCCTTCATTAGTTGAAAAGTACATAGAAGATAAGG





AAGTGTGTAAAAGTTTTGAAGCAGGCCACGATGCA





TTCATGGCAGAGTTCGTTTATGAATACTCACGAAG





ACACCCTGAGTTCTCCATACAGCTTATTATGAGAAT





TGCCAAAGGATATGAATCACTTCTGGAAAAGTGCT





GCAAAACTGATAACCCTGCTGAGTGCTACGCAAAT





GCTCAAGAGCAACTGAACCAACATATCAAAGAAAC





TCAGGATGTTGTGAAGACAAACTGTGATCTTCTCC





ATGACCATGGCGAGGCAGACTTCCTCAAGTCCATC





CTGATCCGCTACACTAAGAAAATGCCTCAAGTACC





AACTGATCTCCTGCTTGAAACTGGAAAGAAAATGA





CAACTATTGGTACTAAGTGCTGCCAGCTTCCTGAA





GACAGACGCATGGCTTGTTCTGAGGGTTATCTGAG





CATTGTGATTCATGATACGTGCAGGAAACAGGAGA





CCACACCTATAAATGACAACGTTTCACAATGCTGC





AGCAGCTCCTATGCTAACAGAAGACCATGTTTCAC





TGCTATGGGAGTAGATACCAAATATGTTCCTCCAC





CATTTAATCCTGATATGTTCAGCTTTGATGAAAAAT





TGTGCAGTGCTCCTGCTGAAGAACGAGAAGTAGGC





CAGATGAAATTGCTAATCAACCTCATTAAACGCAA





GCCCCAGATGACAGAAGAACAAATAAAGACAATT





GCTGATGGTTTCACTGCCATGGTTGACAAGTGCTGC





AAGCAGTCGGACATCAATACATGCTTTGGAGAAGA





GGGTGCCAACCTAATAGTCCAAAGCAGAGCCACAT





TAGGAATTGGTGCTTAA (SEQ ID NO: 8)





Wild
porcine
NM_001005208
ATGAAGTGGGTGACTTTTATTTCCCTTCTCTTTCTCT


Type


TCAGCTCTGCTTATTCCAGGGGTGTGTTTCGTCGAG


Albumin


ATACATACAAGAGTGAAATTGCTCATCGGTTTAAA





GATTTGGGAGAACAATATTTCAAAGGCCTAGTGCT





GATTGCCTTTTCTCAGCATCTCCAGCAATGCCCATA





TGAAGAGCATGTGAAATTAGTGAGGGAAGTAACTG





AGTTTGCAAAAACATGTGTTGCTGATGAGTCAGCT





GAAAATTGTGACAAGTCAATTCACACTCTCTTTGG





AGATAAATTATGTGCAATTCCATCCCTTCGTGAACA





CTATGGTGACTTGGCTGACTGCTGTGAAAAAGAAG





AGCCTGAGAGAAACGAATGCTTCCTCCAACACAAA





AATGATAACCCCGACATCCCTAAATTGAAACCAGA





CCCTGTTGCTTTATGCGCTGACTTCCAGGAAGATGA





ACAGAAGTTTTGGGGAAAATACCTATATGAAATTG





CCAGAAGACATCCCTATTTCTACGCCCCAGAACTC





CTTTATTATGCCATTATATATAAAGATGTTTTTTCA





GAATGCTGCCAAGCTGCTGATAAAGCTGCCTGCCT





GTTACCAAAGATTGAGCATCTGAGAGAAAAAGTAC





TGACTTCCGCCGCCAAACAGAGACTTAAGTGTGCC





AGTATCCAAAAATTCGGAGAGAGAGCTTTCAAAGC





ATGGTCATTAGCTCGCCTGAGCCAGAGATTTCCCA





AGGCTGACTTTACAGAGATTTCCAAGATAGTGACA





GATCTTGCAAAAGTCCACAAGGAATGCTGCCATGG





TGACCTGCTTGAATGTGCAGATGACAGGGCGGATC





TTGCCAAATATATATGTGAAAATCAAGACACAATC





TCCACTAAACTGAAGGAATGCTGTGATAAGCCTCT





GTTGGAAAAATCCCACTGCATTGCTGAGGCAAAAA





GAGATGAATTGCCTGCAGACCTGAACCCATTAGAA





CATGATTTTGTTGAAGATAAGGAAGTTTGTAAAAA





CTATAAAGAAGCAAAGCATGTCTTCCTGGGCACGT





TTTTGTATGAGTATTCAAGAAGGCACCCAGACTAC





TCTGTCTCATTGCTGCTGAGAATTGCCAAGATATAT





GAAGCCACACTGGAGGACTGCTGTGCCAAAGAGG





ATCCTCCGGCATGCTATGCCACAGTGTTTGATAAAT





TTCAGCCTCTTGTGGATGAGCCTAAGAATTTAATCA





AACAAAACTGTGAACTTTTTGAAAAACTTGGAGAG





TATGGATTCCAAAATGCGCTCATAGTTCGTTACACC





AAGAAAGTACCCCAAGTGTCAACTCCAACTCTTGT





GGAGGTCGCAAGAAAACTAGGACTAGTGGGCTCTA





GGTGTTGTAAGCGTCCTGAAGAAGAAAGACTGTCC





TGTGCTGAAGACTATCTGTCCCTGGTCCTGAACCGG





TTGTGCGTGTTGCACGAGAAGACACCAGTGAGCGA





AAAAGTTACCAAATGCTGCACAGAGTCCTTGGTGA





ACAGACGGCCTTGCTTTTCTGCTCTGACACCAGACG





AAACATACAAACCCAAAGAATTTGTTGAGGGAACC





TTCACCTTCCATGCAGACCTATGCACACTTCCTGAG





GATGAGAAACAAATCAAGAAGCAAACTGCACTCGT





TGAGTTGTTGAAACACAAGCCTCATGCAACAGAGG





AACAACTGAGAACTGTCCTGGGCAACTTTGCAGCC





TTTGTACAAAAGTGCTGCGCCGCTCCTGACCATGA





GGCCTGCTTTGCTGTGGAGGGTCCGAAATTTGTTAT





TGAAATTCGAGGGATCTTAGCCTAA (SEQ ID NO: 9)





Wild
chicken
NM_205261
ATGAAGTGGGTAACATTAATTTCATTCATTTTCCTC


Type


TTCAGTTCAGCAACATCCAGGAATCTGCAAAGATT


Albumin


TGCTCGTGATGCAGAGCACAAGAGTGAAATTGCCC





ATCGCTACAATGATTTGAAAGAAGAAACATTTAAG





GCAGTTGCCATGATCACATTTGCCCAGTATCTCCAG





AGGTGCTCTTATGAAGGACTGTCTAAGCTTGTGAA





GGATGTTGTTGATCTGGCACAAAAATGTGTAGCCA





ATGAAGATGCTCCTGAATGCTCAAAACCACTGCCT





TCCATTATCCTGGATGAAATCTGCCAAGTGGAAAA





GCTCCGTGACTCTTATGGTGCAATGGCCGACTGCTG





TAGCAAAGCTGATCCTGAAAGAAATGAGTGTTTCC





TGTCATTTAAAGTTTCCCAACCAGACTTCGTTCAGC





CATACCAAAGACCAGCTTCTGATGTGATATGCCAG





GAATACCAGGACAACAGAGTGTCATTTCTGGGACA





TTTCATCTATTCTGTTGCAAGAAGACACCCCTTCTT





GTATGCCCCTGCAATCCTTAGTTTTGCTGTTGATTT





TGAACATGCACTTCAAAGCTGTTGCAAAGAGAGTG





ATGTCGGTGCTTGCCTGGACACCAAGGAAATTGTT





ATGAGAGAAAAAGCCAAGGGAGTAAGTGTGAAGC





AGCAGTATTTTTGTGGAATCTTGAAGCAGTTCGGA





GATAGAGTTTTCCAAGCACGACAACTTATTTACCTA





AGCCAAAAATACCCCAAGGCTCCATTCTCAGAGGT





TTCTAAATTTGTACATGATTCTATCGGCGTCCACAA





AGAGTGCTGTGAAGGGGACATGGTGGAGTGCATGG





ATGACATGGCACGTATGATGAGCAATCTGTGCTCT





CAACAAGATGTTTTCTCAGGTAAAATCAAAGACTG





CTGTGAGAAGCCTATTGTGGAACGAAGCCAGTGCA





TTATGGAGGCAGAATTTGATGAGAAACCTGCAGAT





CTTCCTTCATTAGTTGAAAAGTACATAGAAGATAA





GGAAGTGTGTAAAAGTTTTGAAGCAGGCCACGATG





CATTCATGGCAGAGTTCGTTTATGAATACTCACGA





AGACACCCTGAGTTCTCCATACAGCTTATTATGAG





AATTGCCAAAGGATATGAATCACTTCTGGAAAAGT





GCTGCAAAACTGATAACCCTGCTGAGTGCTACGCA





AATGCTCAAGAGCAACTGAACCAACATATCAAAGA





AACTCAGGATGTTGTGAAGACAAACTGTGATCTTC





TCCATGACCATGGCGAGGCAGACTTCCTCAAGTCC





ATCCTGATCCGCTACACTAAGAAAATGCCTCAAGT





ACCAACTGATCTCCTGCTTGAAACTGGAAAGAAAA





TGACAACTATTGGTACTAAGTGCTGCCAGCTTCCTG





AAGACAGACGCATGGCTTGTTCTGAGGGTTATCTG





AGCATTGTGATTCATGATACGTGCAGGAAACAGGA





GACCACACCTATAAATGACAACGTTTCACAATGCT





GCAGCAGCTCCTATGCTAACAGAAGACCATGTTTC





ACTGCTATGGGAGTAGATACCAAATATGTTCCTCC





ACCATTTAATCCTGATATGTTCAGCTTTGATGAAAA





ATTGTGCAGTGCTCCTGCTGAAGAACGAGAAGTAG





GCCAGATGAAATTGCTAATCAACCTCATTAAACGC





AAGCCCCAGATGACAGAAGAACAAATAAAGACAA





TTGCTGATGGTTTCACTGCCATGGTTGACAAGTGCT





GCAAGCAGTCGGACATCAATACATGCTTTGGAGAA





GAGGGTGCCAACCTAATAGTCCAAAGCAGAGCCAC





ATTAGGAATTGGTGCTTAA (SEQ ID NO: 10)





Wild
Bovine
NM_180992
ATGAAGTGGGTGACTTTTATTTCTCTTCTCCTTCTCT


Type


TCAGCTCTGCTTATTCCAGGGGTGTGTTTCGTCGAG


Albumin


ATACACACAAGAGTGAGATTGCTCATCGGTTTAAA





GATTTGGGAGAAGAACATTTTAAAGGCCTGGTACT





GATTGCCTTTTCTCAGTATCTCCAGCAGTGTCCATT





TGATGAGCATGTAAAATTAGTGAACGAACTAACTG





AGTTTGCAAAAACATGTGTTGCTGATGAGTCCCAT





GCCGGCTGTGAGAAGTCACTTCACACTCTCTTTGGA





GATGAATTGTGTAAAGTTGCATCCCTTCGTGAAAC





CTATGGTGACATGGCTGACTGCTGTGAGAAACAAG





AACCTGAGAGAAATGAATGCTTCTTGTCACACAAA





GATGATAGCCCTGATCTACCTAAACTCAAACCTGA





CCCCAATACTTTGTGTGACGAGTTTAAGGCCGATG





AAAAGAAGTTTTGGGGAAAATACCTATACGAAATT





GCTAGAAGACATCCCTACTTTTATGCACCAGAACT





CCTTTACTATGCTAATAAATATAATGGAGTTTTTCA





AGAATGCTGCCAAGCTGAAGATAAAGGTGCCTGCC





TGCTACCAAAGATTGAAACTATGAGGGAAAAGGTA





CTGACTTCATCTGCCAGACAGAGACTCAGGTGTGC





CAGTATTCAAAAATTTGGAGAAAGAGCTTTAAAAG





CATGGTCAGTAGCTCGCCTGAGCCAGAAATTTCCC





AAGGCTGAGTTTGTAGAAGTTACCAAGCTAGTGAC





AGATCTCACAAAAGTGCACAAGGAATGCTGCCATG





GAGACCTACTTGAATGCGCAGATGACAGGGCGGAC





CTTGCCAAGTACATATGTGATAATCAAGATACAAT





CTCCAGTAAACTGAAGGAATGCTGTGATAAGCCTT





TGTTGGAAAAATCCCACTGCATTGCTGAGGTAGAA





AAAGATGCCATACCTGAAAACTTGCCCCCATTAAC





TGCTGACTTTGCTGAAGATAAGGATGTATGCAAAA





ACTATCAAGAAGCAAAGGATGCCTTCCTGGGCTCA





TTTCTTTATGAATATTCAAGAAGGCATCCTGAATAT





GCTGTCTCAGTGCTATTGAGACTTGCCAAGGAATA





TGAAGCCACACTGGAGGAATGCTGTGCCAAAGATG





ATCCACATGCATGCTATTCCACAGTGTTTGACAAAC





TTAAGCATCTTGTGGATGAGCCTCAGAATTTAATTA





AACAAAACTGTGACCAATTCGAAAAACTTGGAGAG





TATGGATTCCAAAATGCGCTCATAGTTCGTTACACC





AGGAAAGTACCCCAAGTGTCAACTCCAACTCTCGT





GGAGGTTTCAAGAAGCCTAGGAAAAGTGGGTACTA





GGTGTTGTACAAAACCGGAATCAGAAAGAATGCCC





TGTACAGAAGACTATCTGAGCTTGATCCTGAACCG





GTTGTGCGTGCTGCATGAGAAGACACCAGTGAGTG





AAAAAGTCACCAAGTGCTGCACAGAGTCATTGGTG





AACAGACGGCCATGTTTCTCTGCTCTGACACCTGAT





GAAACATATGTACCCAAAGCCTTTGATGAGAAATT





GTTCACCTTCCATGCAGATATATGCACACTTCCCGA





TACTGAGAAACAAATCAAGAAACAAACTGCACTTG





TTGAGCTGTTGAAACACAAGCCCAAGGCAACAGAG





GAACAACTGAAAACCGTCATGGAGAATTTTGTGGC





TTTTGTAGACAAGTGCTGCGCAGCTGATGACAAAG





AAGCCTGCTTTGCTGTGGAGGGTCCAAAACTTGTT





GTTTCAACTCAAACAGCCTTAGCCTAA (SEQ ID NO:





11)





TERT
chicken
Modified
ATGGAGCGCGGGGCTCAGCCGGGAGTCGGTGTGCG




NM_001031007.1
GCGGCTCCGCAATGTAGCGCGGGAGGAGCCCTTCG




(substitution
CCGCGGTCCTGGGCGCGCTGCGGGGCTGCTACGCC




made at
GAGGCCACGCCGCTGGAGGCCTTCGTCCGGCGGCT




position 2667
GCAGGAGGGTGGCACCGGGGAGGTCGAGGTGCTG




T to C)
CGAGGCGACGACGCTCAGTGCTACCGGACCTTCGT





GTCGCAGTGCGTGGTGTGCGTCCCCCGCGGTGCTC





GCGCCATCCCCCGGCCCATCTGCTTCCAGCAGTTAT





CCAGTCAGAGCGAAGTCATCACAAGAATCGTTCAG





AGGCTGTGTGAAAAGAAAAAGAAGAACATCCTTGC





GTATGGATACTCCTTGCTGGATGAGAACAGTTGTC





ACTTCAGAGTTTTGCCATCTTCGTGTATATACAGCT





ATCTGTCCAATACTGTAACAGAAACGATTCGCATC





AGTGGCCTCTGGGAGATACTGCTGAGTAGGATAGG





GGACGACGTGATGATGTACCTGCTGGAGCACTGTG





CACTCTTCATGCTGGTTCCCCCAAGTAACTGTTACC





AGGTCTGCGGGCAACCAATTTATGAACTTATTTCGC





GTAACGTAGGGCCATCCCCAGGGTTTGTTAGACGA





CGGTACTCAAGGTTTAAACATAATAGCTTGCTTGA





CTATGTGCGAAAAAGGCTTGTGTTTCACAGGCACT





ATCTTTCCAAGTCGCAGTGGTGGAAGTGCAGGCCG





AGACGTCGAGGTCGTGTCTCCAGCAGGAGAAAAAG





AAGGAGCCATAGGATACAAAGCCTAAGGTCTGGTT





ATCAGCCTTCTGCAAAAGTGAACTTTCAAGCAGGT





AGGCAGATCAGCACAGTTACTGCACGTCTGGAAAA





ACAGAGCTGCTCCAGTTTATGTTTGCCAGCTAGAG





CACCATCTTTAAAAAGGAAGCGTGATGGAGAACAG





GTTGAAATCACAGCTAAGAGAGTGAAAATAATGGA





GAAAGAGATAGAGGAACAGGCTTGTAGTATCGTTC





CTGATGTAAACCAAAGTAGCTCCCAGAGGCATGGA





ACCTCCTGGCATGTAGCACCACGTGCTGTAGGTCTT





ATTAAAGAACATTACATTTCTGAAAGAAGTAACAG





TGAGATGTCTGGTCCTTCTGTAGTTCACAGATCTCA





CCCTGGGAAGAGGCCTGTGGCAGACAAAAGCTCTT





TTCCACAAGGAGTTCAGGGTAACAAACGCATAAAG





ACCGGTGCAGAAAAACGAGCAGAATCCAATAGAA





GGGGCATAGAGATGTATATAAACCCAATCCATAAA





CCCAATAGAAGGGGCATAGAGAGGCGTATAAATCC





AACCCACAAACCTGAGTTGAATTCTGTACAAACTG





AACCAATGGAAGGTGCTTCTTCAGGGGACAGAAAG





CAGGAAAATCCCCCAGCTCATTTGGCAAAGCAGTT





ACCAAATACATTGTCGCGCTCTACAGTGTACTTTGA





GAAGAAATTTCTTCTGTATTCCCGCAGTTACCAAGA





ATATTTTCCTAAATCGTTCATACTGAGCCGCCTGCA





GGGTTGTCAGGCAGGTGGAAGGCGGCTTATAGAAA





CTATATTCTTAAGCCAAAACCCATTAAAGGAACAG





CAGAACCAAAGCCTACCACAGCAAAAGTGGCGAA





AGAAGAGGTTGCCCAAACGCTACTGGCAAATGAGA





GAGATATTTCAGAAGCTGGTAAAGAACCATGAGAA





GTGCCCTTATTTAGTTTTCTTGAGGAAAAATTGCCC





TGTTTTGCTTTCTGAAGCATGTTTGAAAAAGACGGA





GCTGACCTTGCAGGCGGCTCTGCCTGGGGAAGCAA





AGGTTCACAAGCACACAGAACATGGGAAAGAGTC





CACTGAGGGTACTGCACCGAACAGCTTCCTCGCTC





CTCCCTCAGTGCTAGCATGTGGGCAGCCAGAGAGA





GGGGAACAGCACCCTGCAGAGGGGAGTGATCCGCT





CCTCAGGGAGCTGCTCAGGCAGCACAGCAGCCACT





GGCAGGTGTATGGCTTTGTGAGGGAGTGCCTGGAG





CGGGTGATCCCTGCTGAGCTGTGGGGTTCAAGCCA





TAACAAATGCCGGTTCTTTAAAAACGTGAAAGCAT





TCATTTCCATGGGGAAGTATGCTAAGCTTTCATTGC





AGCAGCTGATGTGGAAGATGAGAGTGAATGACTGC





GTATGGCTTCGTCTGGCCAAAGGTAATCACTCTGTT





CCTGCCTATGAACATTGTTACCGTGAAGAAATTCTG





GCAAAATTCCTATACTGGCTGATGGATTCCTATGTT





ATCGAGTTGCTCAAATCATTTTTCTATATCACCGAG





ACCATGTTCCAGAAAAACATGCTTTTCTACTACCGA





AAGTTTATCTGGGGCAAGTTACAGAACATTGGAAT





TAGAGACCATTTTGCCAAAGTACATCTACGTGCCTT





GTCTTCAGAGGAGATGGAAGTGATCCGTCAAAAAA





AGTATTTTCCTATTGCATCAAGGCTCCGGTTCATTC





CTAAAATGAATGGTTTAAGACCCGTAGTAAGACTA





AGCCGTGTTGTTGAAGGACAGAAACTCAGCAAGGA





AAGCAGAGAAAAGAAGATACAGCGCTATAACACT





CAGCTAAAAAATCTATTTAGTGTTTTAAACTATGAA





CGAACTGTAAACACCAGTATCATTGGCTCCTCAGT





ATTCGGGAGAGATGATATCTACAGGAAGTGGAAGG





AGTTTGTTACAAAGGTTTTTGAATCAGGTGGTGAA





ATGCCTCATTTCTACTTTGTAAAGGGTGATGTATCC





AGAGCTTTTGATACCATTCCTCACAAGAAACTTGTG





GAAGTGATATCACAGGTCTTGAAACCTGAGAGCCA





AACTGTCTATGGAATAAGGTGGTATGCAGTGATTA





TGATTACCCCAACTGGAAAAGCCAGGAAACTCTAT





AAGAGACATGTTTCTACTTTCGAGGATTTTATTCCA





GACATGAAGCAGTTTGTGTCCAAGCTTCAAGAGAG





AACTTCATTACGAAATGCAATAGTAGTTGAACAGT





GCTTAACTTTTAATGAGAACAGTTCCACCCTGTTTA





CTTTCTTTCTTCAAATGTTACATAATAACATCCTGG





AGATTGGGCACAGGTACTATATACAGTGCTCTGGA





ATCCCACAGGGCTCCATTTTGTCAACCTTACTTTGC





AGCTTATGCTACGGAGACATGGAAAACAAATTACT





CTGTGGGATCCAGAAGGATGGAGTCCTAATACGTC





TTATTGATGACTTTTTGCTGGTTACGCCACATTTAA





TGCAGGCAAGAACTTTTCTAAGGACTATAGCAGCA





GGTATTCCTGAGTATGGCTTTTTAATAAATGCCAAG





AAGACTGTGGTGAATTTTCCTGTTGATGATATCCCG





GGATGTTCCAAGTTCAAACATCTGCCAGATTGTCGT





TTGATCTCATGGTGTGGTTTATTATTGGATGTGCAG





ACACTTGAGGTTTATTGTGATTACTCCAGTTATGCC





TTTACTTCTATCAGATCAAGTCTTTCCTTCAATTCA





AGTAGAATAGCTGGGAAAAACATGAAATGCAAATT





GACTGCAGTCCTCAAACTGAAATGCCATCCTTTACT





TCTTGACTTAAAGATCAACAGCCTTCAGACAGTTCT





AATTAACATCTACAAGATATTTTTACTTCAGGCTTA





CAGGTTCCATGCCTGTGTTCTTCAGCTTCCATTCAA





CCAGAAAGTTAGGAATAATCCTGATTTCTTCCTAA





GGATCATCTCTGATACTGCTTCATGCTGCTATTTTA





TCCTGAAAGCTAAAAATCCAGGAGTTTCTTTAGGT





AGCAAAGATGCATCTGGCATGTTCCCTTTTGAGGC





AGCAGAATGGCTGTGCTACCATGCCTTCATTGTCA





AACTGTCCAACCACAAAGTTATTTACAAATGCTTA





CTTAAGCCCCTTAAAGTCTATAAGATGCATCTGTTT





GGGAAGATCCCAAGGGATACTATGGAACTGCTGAA





GACGGTGACGGAACCATCGCTTTGTCAAGATTTCA





AAACTATACTGGACTAA (SEQ ID NO: 12)





cMyoDER
chicken

ATGGACTTACTGGGCCCCATGGAAATGACGGAGGG





CTCCCTCTGCTCCTTCACGGCCGCCGATGACTTCTA





TGACGACCCGTGCTTCAACACGTCGGACATGCACT





TCTTCGAGGACCTGGACCCCCGGCTGGTGCACGTG





GGCGGGCTGCTGAAGCCCGAGGAGCACCCGCACCA





CCACGGGCACCACCACGGGAACCCACACGAGGAG





GAGCACGTGCGGGCGCCCAGTGGGCACCACCAGGC





CGGCCGCTGCCTGCTGTGGGCGTGCAAGGCCTGCA





AGAGGAAGACCACCAACGCTGACCGCCGCAAAGC





CGCCACCATGAGGGAACGGCGGCGGCTCAGCAAG





GTCAACGAGGCCTTCGAGACCCTCAAGCGCTGCAC





TTCCACCAACCCCAACCAGCGCCTGCCCAAGGTGG





AGATCCTGCGCAACGCCATCCGCTACATCGAGAGC





CTGCAGGCCCTGCTGCGTGAGCAGGAGGGCGATTC





TTCTACAGAGCTGCGAGCTCCAACCCTTTGGACAA





GTCCACTGGTGGTTAAACATAACAAGAAGAACAGT





CCGGCTCTGTCTCTGACAGCAGAACAGATGGTCAG





TGCCTTGCTGGAAGCTGAGCCACCTATAGTTTATTC





TGAATATGACCCCAATAGACCATTCAACGAAGCAT





CTATGATGACCCTGTTGACCAACCTTGCAGACAGA





GAATTAGTGCACATGATCAACTGGGCAAAGAGAGT





TCCAGGATTTGTGGATTTAACACTCCATGATCAGGT





CCATCTGCTGGAATGTGCCTGGTTAGAGATATTGAT





GATCGGCTTAGTCTGGCGCTCCATGGAACACCCAG





GAAAGCTTTTATTTGCACCTAATCTATTACTGGACA





GGAATCAAGGGAAATGTGTAGAGGGCATGGTGGA





AATCTTTGACATGCTACTGGCTACTGCTGCTCGGTT





TCGGATGATGAACCTTCAAGGGGAGGAATTTGTGT





GCCTTAAGTCCATCATCCTGCTCAATTCTGGTGTGT





ACACTTTTCTTTCTAGCACCTTGAAATCTCTGGAAG





AGAGGGACTATATCCACCGTGTTCTGGACAAAATC





ACAGATACTCTGATACACCTAATGGCAAAGTCAGG





TCTTTCTCTGCAGCAGCAACACCGGCGACTAGCTC





AGCTCCTCCTTATCCTCTCTCACATCAGGCATATGA





GCAACAAAGGAATGGAGCACCTGTACAATATGAA





GTGTAAAAATGTAGTTCCGCTCTACGACCTCTTACT





GGAGATGCTGGACGCTCACCGCCTACATGCACCGG





CAGCCAGGAGTGCTGCACCAATGGAAGAGGAGAA





CCGAAACCAACTGACAACCGCACCAGCTTCATCTC





ATTCCCTGCAGTCCTTTTACATTAACAGCAAAGAA





GAGGAGAGTATGCAGAATACAGCTATCGCCGATGC





ATACTACCCAGTGCTGGAGCACTACAGCGGGGAGT





CAGATGCCTCCAGCCCTCGCTCCAACTGCTCCGAC





GGCATGATGGAGTACAGCGGGCCGCCCTGTAGCTC





TCGCAGGAGAAACAGCTACGACAGCAGCTACTACA





CGGAATCACCAAATGACCCAAAGCATGGGAAGAG





TTCTGTTGTTTCCAGCCTCGACTGCCTCTCAAGCAT





TGTGGAGAGGATTTCCACAGACAACTCCACATGTC





CCATACTGCCTCCAGCTGAAGCTGTAGCTGAAGGG





AGTCCCTGTTCCCCCCAGGAAGGAGCAAACCTGAG





TGACAGTGGAGCCCAGATTCCTTCCCCCACCAACT





GCACCCCTCTTCCCCAGGAAAGCAGCAGCAGCAGC





AGCAGCAATCCAATCTACCAAGTGCTATAA (SEQ





ID NO: 13)





IGF2
Cow
NM_174087.3
ATGGGGATCACAGCAGGAAAGTCGGTGCTGGTGCT



[Bos

TCTTGCCTTCTTGGCCTTCGCCTCGTGCTGCTATGCT




Taurus]


GCTTACCGCCCCAGCGAGACTCTGTGCGGCGGGGA





GCTGGTGGACACCCTCCAGTTTGTCTGTGGGGACC





GCGGCTTCTACTTCAGCCGACCATCCAGCCGCATA





AACCGACGCAGCCGTGGCATCGTGGAAGAGTGTTG





CTTCCGAAGCTGCGACCTGGCCCTGCTGGAGACTT





ACTGTGCCACCCCCGCCAAGTCCGAGAGGGATGTG





TCTGCCTCTACGACCGTGCTTCCGGACGACGTCACC





GCATACCCCGTGGGCAAGTTCTTCCAATATGACAT





CTGGAAGCAGTCCACCCAGCGCCTGCGCAGGGGCC





TGCCCGCCTTCCTGCGAGCACGCCGGGGTCGCACG





CTCGCCAAGGAGCTGGAGGCGCTCAGAGAGGCCA





AGAGTCACCGTCCGCTGATCGCCCTGCCCACCCAG





GACCCTGCCACCCACGGGGGCGCCTCTTCCAAGGC





ATCCAGCGATTAG (SEQ ID NO: 15)





IGF1
Zebrafish
NM_131825.2
ATGTCTAGCGGTCATTTCTTCCAGGGGCATTGGTGT



[Danio

GATGTCTTTAAGTGTACCATGCGCTGTCTCCCGAGT




rerio]


ACCCACACCCTCTCACTGGTGCTGTGCGTCCTCGCG





TTGACTCCCGCGACTCTGGAGGCGGGGCCGGAGAC





GCTGTGCGGGGCGGAGCTTGTAGACACGCTGCAGT





TTGTGTGTGGAGACAGGGGCTTTTATTTCAGCAAA





CCGACAGGATATGGACCTAGTTCAAGAAGGTCACA





CAACCGTGGCATCGTGGACGAATGCTGCTTTCAGA





GCTGTGAGCTACGGCGCCTCGAGATGTATTGTGCG





CCTGTGAAGACAGGCAAATCTCCACGATCTCTACG





AGCACAACGACACACAGATATTCCCAGGACACCAA





AGAAACCTATATCTGGGCATAGCCACTCTTCCTGTA





AGGAGGTTCATCAGAAGAACTCGAGCCGAGGAAA





CACAGGGGGCAGAAACTATCGCATGTAG (SEQ ID





NO: 16)





serum
Rainbow
XM_021614654.1
ATGAGGAGACCCTGTATCCTGGCCATCCAGCCTGA


albumin
trout

CACGGAGTTCATGCCCCCAGAGCTGGATGCCAGCA


1
[Oncorhynchus

ACTTCCACATGGGCCCTGAGCTCTGCACCAAGGAC




mykiss]


AGCAAGGAGCTGCTGCTCTCTGGGAAGAAACTACT





GTATGGTGTGGTCAGACATAAGACCACCATCACTG





AGGAGCAGCTGAAGTCCATCTCTACTAAATATCAC





AGTATGAAGGAGAAGTGCTGTGCTGCTGAGGACCA





AGCAGCATGCTTCACTGAGGAGGCACCCAAGCTGG





TTGCTGAGAGTGCAGAGCTGGTCAAGGCTTAA





(SEQ ID NO: 17)





GLUL
Tilapia
NM_001279668.1
ATGGCTACATCCGCCAGCGCCAGCTTGAGTAAAGC



[Oreochromis

TGTCAAGCAGCAGTACATGGAGCTCCCTCAGGGGG




niloticus]


ACAAAGTCCAGGCCATGTACATCTGGATCGACGGA





ACCGGAGAGGGGCTCCGATGCAAAACCAGGACGC





TTGATTCTGAGCCCAAAAGCATCGAAGATCTTCCT





GAATGGAACTTTGACGGATCCAGTACCTACCAGTC





CGAAGGCTCCAACAGCGACATGTATCTGATCCCCT





CAGCCATGTTCCGCGATCCATTCCGCAAAGACCCC





AACAAGCTGGTGCTGTGTGAAGTCCTGAAGTACAA





CCGTAAACCTACAGAAACCAACCTTCGGCTCACCT





GTAAGAAAGTGATGGATATGGTGGCGGATCAGCAT





CCTTGGTTTGGCATGGAGCAGGAGTACACCATCCT





TGGAACGGACGGGCATCCATTTGGCTGGCCATCTA





ATGGTTTCCCCGGACCACAGGGGCCGTACTACTGT





GGTGTTGGAGCTGACAAAGCCTATGGCAGGGACGT





AGTCGAGGCCCATTACAAAGCTTGTTTGTACGCTG





GAGTCCAGATTTGTGGCACAAATGCTGAAGTAATG





CCTGCTCAGTGGGAGTTCCAGGTCGGACCTTGCGA





AGGCATTGACATGGGCGATCATTTGTGGGTAGCGC





GCTTCATCCTGCACCGTGTCTGTGAGGATTTTGGCG





TCGTCGCCTCATTTGATCCCAAGCCAATCCCTGGAA





ACTGGAACGGTGCTGGCTGCCATACAAACTTCAGC





ACGAAAGAGATGAGGGAAGACGGTGGATTGAAAG





CTATTGAGGATTCCATTGAGAAGCTTGGAAAGAGG





CACAGCTACCACATTCGTGCCTACGACCCCAAAGG





GGGGCTCGACAACGCCCGCCGTCTCACTGGCCGCC





ATGAAACCTCAAACATCAACGAATTCTCTGCTGGT





GTGGCCAACCGTGGTGCCAGCATTCGCATTCCTCGT





AATGTTGGTCAGGAGAAGAAAGGCTACTTCGAAGA





CCGTCGCCCTTCAGCCAACTGTGACCCGTACAGTGT





GACCGAGGCCCTGATCCGCACCTGTCTGCTGAACG





AGGAAGGAGATGAACCCGCGGATTACTAA (SEQ ID





NO: 18)





IGF2
Rainbow
NM_001124697.1
ATGGAAACCCAGAAAAGACACGAATACCACTCAGT



trout

TTGTCACACCTGCCGGAGAACGGAAAACACAAGAA



[Oncorhynchus

TGAAGGTCAAGATGATGTCTTCGTCAAATCGAGTG




mykiss]


CTGGTCATTGCGCTGGCACTTACTCTGTACATTGTT





GAAGTGGCTTCGGCAGAAACGCTATGTGGAGGAGA





ACTGGTGGACGCGCTGCAGTTCGTCTGTGAAGATA





GAGGATTCTATTTCAGTAGGCCAACCAGCAGGTCT





AACAGCAGACGCTCCCAGAACCGTGGTATCGTGGA





GGAGTGTTGTTTCCGTAGCTGTGACCTCAACCTGTT





GGAGCAGTACTGTGCCAAACCTGCCAAGTCAGAGA





GGGACGTGTCGGCCACCTCTCTACAGATCATTCCC





ATGGTGCCCACAATCAAACAGGATGTCCCAAGAAA





ACATGTGACTGTGAAGTATTCCAAATATGAGGCGT





GGCAGAGGAAGGCTGCTCAGCGGCTCCGGAGGGG





CGTCCCGGCCATCCTCAGGGCCCGGAAGTTCCGGA





GGCAGGCGGTGAAGATCAAGGCCCAAGAGCAGGC





GATGTTCCACCGGCCTCTGATCACCCTGCCCAGCA





AGCTTCCCCCAGTCCTGCCCCCCACGGACAACTAC





GTCAGCCACAATTGA (SEQ ID NO: 19)





IGF1
Tropical
XM_002936829.4
ATGGAAAAAAACAACAGTCTTTCAACACAATTATT



clawed

TAAGTGCTACTTTTGTGATTTCTTAAAGCTGAAGAT



frog

GCACAAAATGTCCTACATTCATCTGCTCTACCTGGC



[Xenopus

TTTGTGTTTCCTGACTTTAACCCATTCAGCAGCTGC




tropicalis]


TGGACCAGAGACCCTCTGTGGAGCCGAACTGGTAG





ACACTCTTCAGTTTGTATGTGGAGACAGAGGCTTCT





ATTTTAGCAAGCCAACAGGGTACGGATCCAGCAAT





CGAAGATCGCATCACAGAGGAATAGTAGATGAGTG





CTGTTTCCAAAGCTGTGATTTCAGAAGGCTGGAGA





TGTACTGCGCTCCTGCCAAGCCAGCCAAATCAGCA





CGTTCTGTACGTGCTCAACGTCACACTGACATGCCA





AAAGCCCAGAAGGAAGTACACCTAAAGAATGCAA





GTCGAGGAAACACAGGGAGTCGAGGATTCCGAAT





GTAA (SEQ ID NO: 20)





GLUL
Tropical
XM_004914038.3
ATGGCAACCTCCGCCAGTGCTCAGTTGAGTAAGGC



clawed

CATAAAGCAGATGTATCTGGAACTGCCACAGGGAG



frog

ATAAGGTGCAGGCTATGTACATCTGGGTTGATGGG



[Xenopus

ACCGGGGAGGGTCTTCGCTGCAAGACTCGCACTCT




tropicalis]


GGACAGTGAACCCAAGACCATAGAAGATCTTCCTG





AATGGAACTTCGATGGATCTAGCACATACCAATCC





GAGGGTTCCAACAGTGACATGTACCTGATTCCAGT





TGCAATGTTTAGAGACCCTTTTCGAAGGGACCCCA





ACAAGCTGGTACTCTGCGAGGTGCTCAAATACAAC





CGAAAAACAGCTGAAACAAACTTGCGTCATACATG





TAACCAGATAATGGACATGATGGCCAATGAGCATC





CATGGTTTGGCATGGAACAGGAATACACATTGCTG





GGTATGGATGGACACCCTTTTGGCTGGCCTTCAAAT





GGCTTCCCAGGACCACAAGGTCCCTATTACTGTGG





AGTGGGTGCAGATAAGGCATATGGTCGGGATATTG





TGGAGGCTCATTATCGGGCTTGCCTTTATGCTGGTG





TGAAAATTGCAGGAACAAATGCAGAAGTTATGCCA





GCACAGTGGGAGTTCCAAATTGGGCCATGTGAGGG





AATAGAAATGGGAGATCACCTTTGGATTGCTCGAT





TTATACTGCATAGAATTTGTGAGGATTTTGGGATCA





TTGTTTCGTTTGACCCAAAGCCCATAACTGGAAACT





GGAATGGAGCTGGATGTCACACCAATTTCAGCACA





AAGTCAATGCGTGAAGAAGGAGGCCTTAAGGACAT





AGAAGAATCCATTGAACGTCTAAGCAAACGTCATG





ATTATCACATCAGAATGTATGACCCAAGGGGTGGT





AAAGACAATGCCCGTCGTCTCACAGGTTTCCATGA





GACCTCCAGCATCCATGAGTTCTCTGCAGGAGTGG





CAAACCGTGGTGCCAGTATCCGCATTCCCCGCAGT





GTAGGCCAGGAGAAGAAAGGCTATTTTGAAGATCG





TCGTCCATCAGCCAACTGTGATCCCTATGCTGTGAC





AGAAGCTATGATCAGAACCTGCCTACTGAATGAAA





CTGGAGACGAACCTCTTGAATACAAGAACTAA





(SEQ ID NO: 21)





ALB
Tropical
BC075287.1
ATGAACGCGTTGATGCGGCGTGCCTGCTGCGGGGC



clawed

GCTATTCCCCCTCTCATTCCGACTGGCCGCGCTGAG



frog

CCCTATGAAGGGAGCTAGTAACTTTAGCTGCGGTA



[Xenopus

ACGTGTGCGCCTCTCCTGCCGGATGTTGGGCGCCA




tropicalis]


CCAAGTGGACACGACACGGGGATAAAAGTGTACA





ACAGCCTTACTAGGAGGAAGGATCCACTTATTCTG





GCAGATCCGACAGTAGCGACATGGTATAGCTGTGG





ACCTACAGTTTATGACCATGCACATCTTGGACATGC





ATGTTCTTATGTTAGATTTGACATAATTCGAAGGAT





TCTGCTCAAGGTTTTTGGGATTGATACAGTCGTGGT





GATGGTAGTCACAGACATTGATGATAAGATAATCA





AGAGAGCAAAGGAGCTCAATATATCTCCTGTGGCC





TTAGCTCGTACTTACGAACAGGATTTTAAACAAGA





CATGACTGCGTTGAAGGTCCTTCCACCAACAGTAT





ACATGAGAGTTACTGAAAATATTCCACAGATCATA





TCATTTATTGAACACATAATTGCCAATGGATATGCA





TATGCTACCTCACAAGGAAATGTTTATTTTGATGTT





CAGTCGATTGGAGAGCGATATGGGAAATTTAATGA





TTCTTTCAGTGATACAGCCAGCGAATCAGCATCAC





AAGATAAAAGGCATATCCGAGATTTTGCTTTGTGG





AAAACATCCAAGCCTGAGGAGCCTTACTGGGCTTC





TCCTTGGGGCAAGGGAAGACCTGGCTGGCACATAG





AGTGTTCCACAATTGCAAGTTCTGTATTTGGCAAAC





ATCTAGACATTCACACTGGTGGGATTGACCTTGCTT





TCCCTCATCATGAAAATGAAATTGCTCAGTGTGAG





GCATATCACCAGAGCACACAGTGGGGAAACTATTT





CCTTCATACTGGACATTTACATTTGAAAGGGAATG





AAGAAAAAATGTCAAAATCCCTGAGAAACTATCTG





ACAGTTAAGGAGTTTTTAAAGTCCTTTTCCCCTGAC





CAGTTTAGAATGTTTTGTCTGCGCTCAAAATATAAA





TCAGCCGTGGAATACAGCAACGGGTCCATGCATGA





TGCAGTAAATACCCTACACACCATCTCTTCGTTTGT





CGATGATGCAAAAGCCTATATGAAAGGTCAGCTGA





TTTGCCAACCAGTGCAGGAGGCTTTACTCTGGCAA





AGGCTGAATGAAACAAAAGTAAATGTTAAGGCTGC





GTTTTCAGATGACTTTGACACCCCACGAGCAGTTG





ATGCAGTTATGGACCTCATTCACCATGGCAACAGA





CAGCTTAAGGCTGTTTCCAAGGAGTCAAACTCTCC





CAGGAGCTCTGTAGTTTATGGTGCCATGATCTCTTA





CATTGAACAATTTCTGGAGATATTGGGAATTTCCTT





GAGCCAAAACCAGGTCGCTGCAGAAGATAGACACT





CGGCTGTTCTCTTTAATGTAGTAGAAGAAATGATC





AGTTTTAGAAGTAAGGTGCGGAATTACGCCCTGGC





TGCAGATGAATCACCAAATGCAATAGGACAAGAG





GAAAAACAGCAATACAAGGAGAGGAGAAGGCAGT





TGTTACTGGAAAGGGAACCACTCCTACAGGCTTGT





GACATAATGCGCCAACATCTGGCTGTATATGGCAT





AAATGTAAAGGATCGTGGAAATACATCAACATGGG





AACTACTTGACCGCAAAGAAGAAACCTAG (SEQ ID





NO: 22)





IGF2
Tropical
NM_001113672.1
ATGAGGCATCTCCTCCTCCTCTCTATCACCTTCCTG



clawed

GTATACACGCTAGACTCTGCTAAAGCCTATGGAGC



frog

AACGGAGACCCTGTGCGGTGGGGAGCTGGTGGACA



[Xenopus

CCCTGCAGTTTGTTTGTGGAGACAGGGGCTTCTATT




tropicalis]


TCAGCAGGAATAATGGCCGCTCCAACCGCAGGGCT





AACAGGGGGATTGTGGAAGAATGTTGCTTCCGGAG





CTGTGATTTGGAACTGTTGGAAACGTACTGCGCAA





AGCCAGCTAAGAACGAGAGGGATGTCTCCACTGCA





CCCTCCACAGCAATACCACCACTGAACAAGCAGGA





CCTGTACCACAAACATCACCACACAAAGAGCTCCA





AGTATGACATTTGGCAGAGGAAGTCTATCCATCGG





CTGCGGAGAGGAGTCCCTGCCATTGTACGTGCTAG





GCAGTATCGATTGCTAATGCAGCAGGCTGAAGAAT





CAGAGCAGGCACTATCACATCGGCCCCTTACCACC





TTACCCATAACGCGGCCTCTCCATCTGCAACAAAC





CTCAGAACCTTCCCTCAATTGA (SEQ ID NO: 23)





GLUL
Chicken
NM_205493.1
ATGGCCACCTCGGCGAGCTCCCACCTGAGCAAAGC



[Gallus

CATCAAGCACATGTACATGAAGCTGCCGCAGGGTG




gallus]


AGAAGGTCCAAGCCATGTACATCTGGATCGACGGG





ACTGGGGAGCACCTCCGCTGCAAAACCCGCACTCT





GGACCACGAACCCAAGAGCCTGGAAGATCTCCCCG





AGTGGAACTTTGATGGCTCCAGCACCTTCCAAGCC





GAAGGCTCCAACAGCGACATGTACCTGCGACCTGC





TGCCATGTTCCGGGACCCTTTTCGCAAGGATCCCAA





CAAATTAGTTCTCTGTGAGGTCTTCAAATACAACCG





CCAGTCTGCAGACACAAATCTTCGGCACACCTGTA





GGCGGATTATGGATATGGTGTCCAACCAGCACCCC





TGGTTTGGGATGGAGCAGGAGTACACCCTTCTGGG





AACAGATGGTCATCCGTTTGGCTGGCCTTCCAATTG





CTTCCCTGGACCCCAAGGTCCGTACTACTGCGGTGT





AGGAGCTGACAAAGCCTATGGCAGAGACATTGTGG





AGGCCCACTACCGAGCGTGCCTGTATGCTGGTGTG





AAAATTGGAGGAACCAACGCAGAAGTGATGCCAG





CCCAGTGGGAGTTCCAGGTGGGACCGTGCGAAGGG





ATTGAGATGGGGGATCACCTCTGGATAGCACGTTT





CATCCTCCACCGGGTGTGCGAAGACTTTGGTGTCAT





TGTGTCCTTCGATCCCAAACCCATCCCTGGGAACTG





GAACGGTGCTGGCTGTCACACCAACTTCAGCACCA





AGAACATGAGGGAAGATGGAGGTCTCAAGCACAT





CGAGGAGGCCATCGAGAAGCTGAGCAAGCGCCAC





CAGTACCACATCCGTGCCTACGACCCCAAAGGAGG





GCTGGACAACGCCCGGCGCCTGACGGGCTTCCACG





AGACGTCCAGCATCCACGAGTTCTCCGCCGGCGTG





GCCAACCGCGGCGCCAGCATCCGCATCCCACGCAA





CGTGGGCCATGAGAAGAAAGGCTACTTCGAGGACC





GCGGGCCTTCAGCCAACTGCGATCCCTACGCCGTG





ACGGAGGCCCTGGTCCGTACGTGTCTCCTCAACGA





AACCGGGGACGAGCCTTTTGAGTACAAGAACTAa





(SEQ ID NO: 24)





IGF2
Chicken
NM_001030342
ATGTGTGCTGCCAGGCAGATACTGCTGCTACTGCT



[Gallus

GGCCTTCCTGGCCTATGCGTTGGATTCAGCTGCGGC




gallus]


GTATGGCACGGCGGAGACCCTCTGCGGTGGGGAGC





TGGTGGACACACTGCAGTTCGTCTGTGGGGACAGG





GGCTTCTACTTCAGTAGACCAGTGGGACGAAATAA





CAGGAGGATCAACCGTGGCATTGTGGAGGAGTGCT





GCTTTCGGAGCTGTGACCTGGCTCTGCTGGAAACCT





ACTGTGCCAAGTCCGTCAAGTCAGAGCGTGACCTC





TCCGCCACCTCCCTCGCGGGCCTCCCAGCCCTCAAC





AAGGAGAGCTTCCAGAAGCCATCTCATGCCAAGTA





CTCCAAGTACAACGTGTGGCAGAAGAAGAGCTCGC





AGCGGCTGCAGCGGGAGGTGCCAGGCATCCTGCGT





GCCCGTCGGTACCGGTGGCAGGCGGAGGGGCTGCA





AGCAGCTGAGGAAGCCAGGGCGATGCATCGTCCCC





TCATCTCCTTGCCCAGTCAGCGGCCCCCAGCGCCGC





GGGCATCCCCTGAAGCGACCGGCCCCCAGGAATGA





(SEQ ID NO: 25)





TERT
Cow
NM_001046242.1
ATGCCGCGCGCGCCCAGGTGCCGGGCCGTGCGCGC



[Bos

CCTTCTGCGGGCCAGCTACCGGCAGGTGCTGCCCC




taurus]


TGGCCGCCTTCGTACGGCGCCTGCGGCCCCAGGGC





CACCGGCTTGTGCGGCGCGGGGACCCGGCGGCCTT





CCGCGCGCTGGTGGCTCAGTGCTTGGTGTGCGTGC





CCTGGGACGCGCAGCCGCCCCCTGCCGCCCCGTCC





TTCCGCCAGGTGTCCTGCCTGAAGGAGCTGGTGGC





CAGAGTCGTGCAGAGGCTCTGCGAGCGCGGCGCGA





GGAACGTGCTGGCCTTCGGCTTCACGCTGCTGGCC





GGGGCCCGCGGCGGGCCGCCCGTGGCCTTCACGAC





CAGCGTACGCAGCTACCTGCCCAACACGGTAACCG





ACACGCTGCGCGGCAGCGGCGCCTGGGGGCTGCTG





CTGCACCGCGTGGGCGACGACGTGCTCACCCACCT





GCTGTCGCGCTGCGCGCTCTACCTGCTGGTGCCCCC





GACCTGCGCCTACCAGGTGTGTGGGCCGCCGCTCT





ATGACCTCCGCGCCGCCGCCGCCGCCGCTCGTCGG





CCCACGCGGCAAGTGGGCGGGACCCGGGCGGGCTT





CGGACTCCCGCGCCCGGCCTCGTCGAACGGCGGCC





ACGGGGAGGCCGAAGGACTCCTGGAGGCGCGGGC





CCAGGGCGCGAGGCGGCGTCGCAGTAGCGCGCGG





GGACGACTGCCTCCAGCCAAGAGGCCCAGGCGCGG





CCTGGAGCCCGGGCGGGATCTCGAAGGGCAGGTGG





CCCGCAGCCCGCCCCGCGTGGTGACACCTACCCGA





GACGCTGCGGAAGCCAAGTCTCGGAAGGGCGACGT





GCCCGGGCCCTGCCGCCTCTTCCCGGGCGGCGAGC





GGGGTGTCGGCTCCGCGTCCTGGCGGCTGTCACCC





TCGGAGGGCGAGCCGGGTGCCGGAGCTTGCGCTGA





GACCAAGAGGTTCCTTTACTGCTCCGGCGGTGGCG





AACAGCTGCGCCGCTCCTTCCTGCTCTGCTCCCTGC





CTCCCAGCCTGGCCGGGGCGCGGACACTCGTGGAA





ACCATCTTTCTGGACTCGAAGCCCGGGCCGCCAGG





GGCTCCCCGCCGGCCGCGCCGCCTGCCCGCGCGCT





ACTGGCAGATGCGGCCCCTGTTCCGGAAACTGCTT





GGGAACCACGCGCGGAGCCCCTATGGCGCGCTGCT





CAGGGCGCACTGCCCGCTGCCGGCCTCTGCGCCCC





GGGCGGGGCCAGACCATCAGAAGTGCCCTGGTGTT





GGGGGCTGCCCCTCTGAGAGGCCGGCCGCTGCCCC





CGAGGGCGAGGCGAACTCAGGGCGCCTGGTCCAGC





TGCTCCGCCAGCACAGCAGCCCCTGGCAGGTGTAC





GGGCTCCTGCGGGCCTGTCTTCGCCGCCTGGTGCCC





GCCGGCCTCTGGGGCTCCCGGCACAACGAGCGGCG





CTTCCTGCGGAACGTGAAGAAGCTCCTCTCCCTGG





GGAAGCACGGCAGGCTCTCGCAGCAGGAGCTCACG





TGGAAGATGAAGGTGCAGGACTGCGCCTGGCTGCG





CGCGAGCCCAGGGGCTCGCTGCGTGCCCGCCGCGG





AGCACCGCCAGCGCGAGGCCGTCCTGGGTCGCTTC





CTGCACTGGCTGATGGGCGCCTACGTGGTGGAGCT





GCTCAGGAGCTTCTTCTACGTCACAGAGACCACGT





TCCAGAAGAACCGGCTCTTCTTCTTCCGGAAGCGC





ATCTGGAGCCAGCTGCAGCGCCTGGGCGTCAGACA





ACACTTAGACCGTGTGCGGCTTCGAGAACTGTCAG





AAGCAGAGGTCAGGCAGCACCAGGAGGCCAGGCC





GGCTCTGCTGACATCCAGGCTCCGTTTCGTCCCCAA





GCCCGGCGGGCTGCGGCCCATCGTGAACGTGGGCT





GTGTTGAGGGCGCCCCGGCACCGCCCAGAGACAAG





AAGGTGCAGCATCTCAGCTCACGGGTCAAGACGCT





GTTCGCGGTGCTGAACTACGAGCGAGCTCGGCGGC





CTGGCCTCCTGGGGGCCTCGGTGCTGGGCATGGAC





GACATCCACAGGGCCTGGCGGGCCTTCGTGCTGCC





CCTGAGGGCCCGGGGCCCAGCCCCCCCGCTCTACT





TCGTCAAGGTGGACGTGGTGGGGGCCTACGATGCC





CTCCCCCAGGATAAGCTGGCAGAGGTGATCGCTAA





CGTGCTGCAGCCGCAGGAGAATACGTACTGCGTGC





GCCACTGCGCCATGGTCCGGACTGCGCGCGGGCGC





ATGCGCAAGTCCTTCAAGAGACACGTGTCCACCTT





CTCGGACTTCCAGCCGTACCTGAGGCAGCTCGTGG





AGCATCTGCAGGCGATGGGCTCCCTGAGGGACGCC





GTGGTCATCGAGCAGAGCTGCTCCCTGAACGAGCC





TGGCAGCAGCCTCTTCAACCTCTTCCTGCACCTGGT





CCGCAGCCACGTCATCAGGATCGGGGGCAGGTCCT





ACATCCAGTGTCAGGGGATCCCCCAGGGCTCCATC





CTGTCCACCCTGCTCTGCAGCTTCTGCTATGGGGAC





ATGGAGAACAAGCTCTTCCCTGGAGTCCAGCAGGA





CGGGGTGCTTCTGCGCCTGGTGGACGACTTCCTGCT





GGTCACCCCACACCTGACGCGGGCCAGAGACTTCC





TCAGGACGCTGGTGCGCGGTGTGCCTGAGTATGGC





TGCCAGGTGAACCTGCGGAAGACGGTGGTGAACTT





CCCCGTGGAGCCCGGGGCCCTGGGCGGCGCGGCGC





CCCTGCAGCTGCCGGCCCACTGCCTGTTCCCCTGGT





GCGGCCTGCTGCTGGATACCCGCACCCTGGAGGTG





CATGGCGACCACTCCAGTTATGCCCGGACGTCCAT





CAGAGCGAGTCTCACCTTCACCCAGGGCTTCAAGC





CCGGGAGGAACATGCGTCGCAAGCTGTTGGCGGTC





TTGCAGCTCAAGTGCCATGGGCTCTTCCTGGACCTG





CAGGTGAACAGTCTGCAGACGGTCTTCACAAACGT





TTACAAGATATTCCTGCTGCAGGCCTACAGGTTCCA





CGCCTGCGTGCTGCAGCTGCCCTTCAGCCAGCCGG





TCAGGAGCAGCCCCGCGTTCTTTCTCCAGGTCATCG





CCGACACCGCATCCCGCGGCTACGCCCTCCTGAAA





GCCAGGAACGCAGGGGCGTCACTGGGGGCCAGGG





GCGCCGCCGGCCTGTTCCCGTCTGAAGCTGCGCAG





TGGCTGTGTCTCCACGCCTTCCTGCTCAAGCTGGCT





CGCCACCGTGTCACCTACAGCCGCCTGCTGGGGGC





CCTCCGGACAGCCCGAGCACGGCTGCACCGGCAGC





TCCCGGGGCCCACACGGGCCGCCCTGGAGGCGGCG





GCCGACCCCGCCCTGACCGCAGACTTCAAGACCAT





CTTGGACTGA (SEQ ID NO: 39)





TERT
Porcine
NM_001244300.2
ATGCCGCGCGCGCCCCGGTGCCGGGCCGTGCGCTC



[Sus

CCTGCTCCGGGACCGCTACAGGCAGGTGCTGCCGC




scrofa]


TGGCCACCTTCGTGCGGCGCCTGGGCCCTGAGGGC





CGGCGGCTTGTTCGGCGCGGGGACCCGGCGGCCTA





CCGCGCGCTGGTGGCGCAGTGCCTGGTGTGCGTGC





CCTGGGACGCGCAGCCGCCTCCTGCCTCCCCGTCCT





TCCGCCAGGTGTCCTGCCTGAAGGAGCTGGTGGCC





AGGGTCGTGCAGAGGCTCTGCGAGCGCGGCGCGAG





GAACGTGCTGGCCTTTGGCTTCGCGCTGCTGGACG





GGGCTCGCGGCGGGCCGCCCGTGGCCTTCACGACC





AGCGTGCGCAGCTACCTGCCCAACACCGTGACCGA





CACACTGCGCGGGAGCGGCGCGTGGGGGCTGCTGC





TGCGCCGCGTGGGCGACGACGTGCTCACCCACCTG





TTGGCGCGCTGCGCGCTGTACCTGCTGGTGCCCCCG





AGTTGCGCCTACCAGGTGTGCGGGCCGCCACTCTA





TGACCTCTACACCGCAGCGGAGGCTCGGCCCATGC





GACACAAGGGCCAGACCCCGACTGGCCTCGGACTC





ACGCGCCCCGTTTGCAATGGGGAAGCCGGGCGACC





CCAGGAGCAGAGGGCGCAAGGTGTGAGGCGACGT





CGGGGCAGAGCGGGGGGACATCCACTTCCAGCCAA





GAGGCCCAGGCACGTCCCGGAGCCTGAACAGGGTC





CCGAAGGGCAGGCGTCCCGGGCCCACCAGGGCAG





GGCGCCTGGGCCGAGCGACAGCGACCCCCCCGTGA





TGACACCTACCAGAGCCGCTGCGAAAGCCAAGTCT





CGGGAGGGTGAGGCGCCCGGAACCCGGCACCTTTC





CCCTCAAGCAGGCGGTGCGCGGGGTACCTGCCCCC





CATCCTGGTGGCAGCCACACCTCCAGGGCAAGCCC





AGTCCTCATGTGTGCGCTGCCGAGACCAAGCGCTT





CCTCTACTGCTCGGGGAGCAAGGAAGGGCTGCGCC





GCTCGTTCCTGCTCTGCTCCCTGCCGCCCAGCCTGG





CGGGGGCCGGGAGGCTCGTGGAGGTCATCTTTCTG





GCCTCAAAGCCCGGGCAGCCAGGGGCGCGCCGCGT





GCCCGCACGCTACTGGCGGATGAGGCCCCTGTTCC





GGGAGCTGCTTAAGAACCACGCGCGGTGCCCCTAC





AAGGCGCTTCTCAGGGCGCACTGCCCGTTGCGGGC





TGCGGCGACCCTCTCGGGGTCCGGCGGTCAGGTGT





GCGACCACAAAGTGGGCCCCCTCGCTCCAGAGCGG





CTGGCAGCGGCCGCCGAGGGGGACTCGGCCTCGAG





GCGCCTAGTCCAGCTGCTCCGCCAGCACAGCAGCC





CCTGGCAGGTGTACCGCCTCCTGCGGGCCTGTCTTC





ACCGGCTGGTGCCCCCGGGCCTCTGGGGCTCCCCG





CACAACAAGCGGCGCTTTCTGAAGAATGTGAAGAA





GCTCGTCTCCCTGGGGAAGCACGCCAGGCTCTCGC





TGCAGGAGCTGATGTGGAAGATGAAAGTGCAAGA





CTGCATCTGGCTGCGCCGGAGCCCGGACGCTCGCC





ATGTCCAGGCCGCCGAGCACCGTCTGAGAGAGGCC





ATTCTGGCCAAGTTCCTGCGCTGGTTGATGGGCAC





GTACGTGGTCGAGCTGCTCAGGTCGTTTTTTTATGT





CACGGAGACCACGTTTCAGAAGAACCGGCTCTTCT





TCTTCCGGAAGCGCATCTGGAGCCGGCTGCAGAGC





GCAGGCATCAGGCAACACTTAGATCGTGTGCGGCT





TCGAGAACTGTCGGAAGCAGAGATCAGGCGACGCC





GGGAGGCCAGGCCCGCTGTACTGACCTCCAAGCTC





CGCTTCGTCCCCAAACCCGACGGGCTGCGGCCCAT





CGTGAACATGGCGAACGTCGTGCGAGCCAGGACAG





GCCCCGGAGACAAGAAGGTCCGGCGTCTCACGGGG





CAGGTCAAGACGCTGTTTGCTGTGCTGAACTACGA





GCGGGCGCGGCGCCCGCGCCTCCTGGGGGCCTCCG





TGCTGGGCGTGGGTGACATCCACAGGGCCTGGCGG





GCCTTTGTGCTGCCCCTGCGGGCCCAGGACCCGGC





CCCCCCGCTGTACTTTGTCAAGGTGGACGTGACGG





GGGCCTACGACGCCCTCCCTCAGGACAGGCTGCTG





GAGGTGGTCGCCAACGTGATCCGGCCCCACGAGAG





CACGTACTGCGTGCGCCAGTGCGCCGTGCTCCGGA





GGACCGCCCGCGGGCACGTGCGCAAGTCCTTCCAA





ACCCACGTGTCCACCTTCGCAGACCTCCAGCCTTAC





ATGAGACAGTTTGTGGCACACCTGCAGGCAACCGG





CCCGCTGAGGGACGCCGTGGTCATCGAGCAGAGCT





GCTCTCTGAACGAGGCCGGCAGCCGTCTCCTGGAG





CTTTTCCTGAGCCTGCTGCGAAACCACGTCATCCGG





ATCGGGGGCAGGTCCTACGTCCAGTGTCAGGGGAT





CCCACAGGGCTCCATTCTGTCCACGCTGCTCTGCAG





CCTGTGCTACGGGGACATGGAAAACAGACTCTTCC





CCGGGATCCAGCGTGACGGGGTGCTCCTGCGCTTG





GTGGACGACTTCCTGCTGGTGACCCCTCACCTGAC





ACGAGCCAAAGCCTTTCTCAGGACCCTGGTCCGCG





GCGTGCCCGAGTACGGCTGCCTGGCCAACTTGCGG





AAGACGGCCGTGAACTTCCCTGTGGAGGACGGCGC





CCGGGGCGGCCCGGCCCCACTGCAGCTGCCGGCAC





ACTGCCTGTTCCCCTGGTGCGGGCTGCTGCTGGACA





CCCGCACGCTGGAGGTGCACTGCGACTATGCCAGT





TACGCCCGGACCTCGATCAGAGCGAGTCTCACCTT





CAACCAGGGCTTCAAGCCCGGGAGGAACATGCGCC





GCAAGCTCTTGGCGGTCTTGCGGCTAAAGTGCCAC





GGGATCCTTCTGGACCTGCAGGTGAACAGTCTTCC





GACGGTGCTCGCCAACGTTTACAAGATCTTCCTGCT





GCAGGCCTACAGGTTCCACGCGTGTGTGCTGCAGC





TGCCCTTCCGTCAGCCGCTTGCGAGGAACCCCTCAT





TTTTCCTCCGGCTTGTCTCCGACACCGCGTCCTGCT





GCTACTCGCTCCTGAAAGCCAGAAACGCAGGGATG





TCCCTGGGAGCCAGGGGCGCCTCCGGCCCGTTTCC





CTCTGAAGCCGCAGAGTGGCTCTGCCTCCACGCCTT





CCTGCTCAAGCTGGTTCGTCACCGCGTTACCTACAG





CTGTCTTCTGGGGCCGCTCCGGGCAGCCAGAGAGC





GATTGTGCCAGCGGCTCCCTGGGGCCACACTGGCC





GCCCTCGAGGCCGCCGCCGACCCAGCCCTGACTAC





AGACTTCCGGACCATCCTGGACTGA (SEQ ID NO:





40)





TERT
Zebrafish
NM_001083866.1
ATGTCTGGACAGTACTCGACAGATGGCGGATTTAG



[Danio

GCCGGTTTTGGAGATTCTGCGCTCCTTATATCCGGT




rerio]


CGTGCAGACTTTGGAGGAGTTCACCGACGGACTGC





AATTCCCTGACGGCCGAAAGCCGGTTCTGCTGGAG





GAAACAGACGGCGCGCGCTTTAAAAAGCTCCTCAG





TGGACTTATTGTATGTGCGTACACGCCGCCGCAGCT





GCGCGTCCCCGCCCAGCTCAGCACCCTGCCGGAGG





TCTTGGCGTTCACTCTGAACCACATTAAACGTAAG





AAACTGAGGAACGTCCTGGGCTTCGGTTATCAATG





CAGCGACGTGACGACCAGTTCGGATCCCTTCCGTTT





CCATGGCGACGTTTCGCAGACGGCTGCCTCCATCA





GCACCAGCGAGGTCTGGAAGCGTATCAACCAGCGT





CTGGGCACGGAGGTAACGCGGTACCTGCTGCAGGA





CTGTGCCGTTTTCACCACCGTCCCGCCATCGTGTGT





TCTGCAGGTGTGCGGAGAACCTGTTTACGACTTGCT





GATGCCGCGCTCATGGTCTGGCTTTTTCCTCAGTAA





CTCAGATAATGAACGAATCAGCGGCGCGATGCGGA





AATTCCCTGCTGTCCAGAAGACAGTCGCAATTTCC





AAAAAGAGAACAAGAGATAACGAAAAATATATTT





CGGTAAAGCGGCGGAGGGTAAAGGAAACTGTGAA





TAATAATAACGGAAATTACAGATCTCTGTGTTTTGC





AATTTCTAAAAAGAGAGCGATAGATAATGAAGAA





AATATTTCGTTAAAGCGACGGAGGATGGAGGAAAC





TGACCAAGTAGCGAAAATACGTAATGAAAATCACG





AATCTCAGAGTTTCGCAATTTCTAAAAAGAGAGCG





AGAGATAATGAAGAAAATATTTCGTTAAAGCGACA





AAGGATGGAGGAAATTGACCAAGTAGCGAAAATA





CGTAACGAAAATCATGGATCTCAGAGTTGGAAACC





AGCAGATCAGCGTCCTCCTCGACCCTCGCAATGTTC





AATACGCGTTCTGAGCATGCTCTACAATGGGCGGG





GCATGAAGAACTTCCTGCTCAACAGGAAGTTGAAA





GGAGTGGGCGGGGCCAGGCGCATGCAAGGGGAGG





ATCTTGTCCGCATGATTTTCCTCCAATCAGAATCCA





ACGACAGCAAACCGAAAAAACTTCCCAAACGATTC





TTCGCAATGGTGCCGCTATTCAGTCGGCTGTTGCGG





CAGCACAGGAAGTGTCCGTATCGGCTGTTCCTGCA





GAGGAAGTGTGCAGGAAATCCAGACGTGAAGGAT





ATGGAGTCTCTGCTGAAGTCACACTCGTCTCCATAT





AGAGTTTATCTGTTCGTCAGGGAGTGTCTGCGCCAT





ATTATTCCCCACGAGCTCTGGGGCTGCCAGGAAAA





CCAGCTCCACTTCCTGTCTAATGTAAAGAACTTCCT





GCTTCTGGGGAAGTTTGAGCGCCTCACGCTGGTCC





AGCTGATGTGGAGGATGAAGGTTCAGGCCTGCCAT





TGGCTGGGGCCCAAGAAACGTCAGTGTGCGAGCGA





GCACCGCTACCGTGAGTGGATGTTGGGTCAGTGTA





TGGGCTGGATGTTGAGTGGTTTTGTGGTCGGTCTGG





TCAGAGCTCAGTTCTACATCACGGAGAGTATGGGC





CACAAACACACACTGCGCTTCTACAGGGGAGATGT





CTGGAGCAGACTGCAGGACCAGGCCTTCAGGGCTC





ATCTGTGTAAGGGCCAGTGGAGGCCCCTGTCTCCA





TCCCAGGCGCTGAAGGTCCCCAATAGTGCAGTGAC





ATCCCGCATCCGCTTTATTCCCAAAACCAGCAGCAT





GAGGCCCATCACACGCCTCAGCGGCAGCAGAGACA





CACTGCAGTATTTTCAGAGCTGTGTGCGTGTGCTGC





AGAATGTGTTGAGTGTGTGTGTGCGTGAGGCCCCG





GGGCCCATGGGCTCCACCGTCTGGGGTTGGCAGGA





CATTCACAGACGCCTGCAAGACTTCAGCCCTCAGC





AGAAGAGCTCGCCACGACCGCTCTACTTCGTCAAG





GTGGATGTGAGCGGAGCGTATGACAGTCTCCCGCA





CCTGAAGCTGGTGGAGGTGCTGAAGGAAGTGTTGG





GTCCGTTTGCAGAGCAGAGCTTCTTCCTGCGTCAGT





ACAGCAGTGTGTGGAGCGACCCGACCCGCGGCCTG





CGCAAACGCTTCTGCACCAAAGCTGAGATGTCAGA





GCCGCTCAACATGAAGGGGTTTGTTGTGGATGAAC





AGGTCAGCGGGCGCCTGCATGACGCTATATTAGTG





GAGCGGCACTCGTCTGAGGTCAGAGGTGGAGACGT





CTTCCAGTTCTTCCAGAAGATGCTCTGCAGTTACGT





CATCCATTACGACCAGCAGATGTTCCGGCAGGTGT





GTGGGATCCCGCAGGGCTCTTCAGTGTCTTCTCTGC





TGTGTAATCTGTGTTACGGACACATGGAGAAAGCC





CTGCTGAAGGACATCGCTAAAGGAGGGTGTCTGAT





GAGGCTGATTGATGATTTTTTGCTCATTACTCCTCA





TCTGAGTAAAGCCACAGAGTTCCTGACCACTCTTCT





GTCTGGAGTTCCAGATTACGGTTGCCAGATTAACC





CTCAGAAGGTGGCGGTGAACTTCCCCGTGTGTGTG





TCCTGGGTAAACTCGGGCGTCTCTGTGCTGCCGTCC





AGCTGCCTGTTCCCCTGGTGCGGCTTGATGATACAC





ACACACACGCTGGACGTCTATAAAGACTACTCACG





GTATGACGGCCTATCACTGCGCTACAGCCTGACTCT





TGGCTCCGCCCACTCTCCATCTACAGTCATGAAGA





AGCTGCTGTCGGTGCTCAGCATCAAAAGCACGGAC





ATCTTCTTAGACCTCAGGCTGAACTCTGTGGAGGCC





GTTTACAGGAGTCTGTATAAGCTGATTCTGCTGCAG





GCGCTCAGGTTTCATGCGTGCGTGAGGAGTCTGCC





GTTGGGTCAGAGTGTGAACAGAAACCCGTCGTTCT





TCCTGAAGATGATCTGGAGAATGACTCGAGTCACC





AATAAACTCCTCACACACATTAACAAAGGTCTGCC





TGTGTGTTCTGTGGACAGTGGTGGTGTTCTGCAGTC





TGAGGCGGTTCAGCTTTTATTCTGTTTGGCCTTCGA





GACGCTTTTCAGACGGTTTCGCTCGGTTTACCACTG





CCTGATCCCTGCACTGCACAAACGGAAGCGTGCTC





TTCAGCGTGAGCTCTGCGGGATCACTCTGGCTCGG





GTCCGTCAAGCTTCCTCTCCCAGAATCCCCCTGGAT





TTCAGCATGCGGGTGTAA (SEQ ID NO: 41)





TERT
Tilapia
XM_003458511.4
ATGACGCGGGCCCTTAAAAGGTCAAACATAGCTAA



[Oreochromis

ATCCCAGTGTAAAGTAGCTAACCTCCGTCCAAGTG




niloticus]


CTCCGAACACAGTCGGTATGTCTGCGACTGATATG





TCCGGTGTGCTGGATATCCTTCGGTTACTGTACCGG





CACACGCAGACACTGGAGGAGTTTTCGGACAGCAT





CGTGTTCAGAGAAGGACAGAAAGCAGCTCTCATTG





AGCAGACAGATACAAACCGATTCAAATCTTTCGTT





AGGAGTGTTTTTGTGTGCTTTGACAAGGAGCTACA





GCAGGTAGCGAGCTGTAAACAGATCTGCAGTCTGC





CTGAACTACTGGCGTTTGTTCTCAACACTCTAAAAA





GAAAAAGAAAAAGGAATGTCTTGGCACATGGCTAT





AACTTTCAGACCCTGGCTCAGGAGGATCGGGATGC





AGACTTCCTCAAATTCCAAGGCGACGTAACACAGA





GTGCTGCCTACATCCACGGCAGTGACCTGTGGAAA





AAAGTCACAATGCGTCTGGGCACAGACATCACGCA





ATATCTTCTGGAGAGCTGCTCTGTGTTTGTGGCAGT





TCCTCCTTCGTGTGTTTTCCAGGTGTGCGGCCCTCC





AGTCTATGACAGGGTGTCCATGACCATGGCCTCGA





GTGGGTTTTTTCTCCAGCCTGGAGTCAGGAAACAT





AATCGTACCAAGATTGAGAGCTGTCGAGGGTCAGT





GAGTTTGAAACAGAAACGCACAGTTGTGAATCCTG





CTGCAAGCAAGAAGATGAAAAGAAGGAATAAAGG





AGGGAAAAAAGGGAAAAGAAAACGGGAAACTGGT





GAAGAGGAGGAGGTGGCGGTTTGTTCAAGAAAGA





GGCGGCGAGTAGCGTCTATAGAACATCAACAGGCG





ATCCAACCAGTTGGCTCTGAAAAGGAAGGACAGGT





TGTGCCTGTGGAATCAGCACCGCCTGCAGCTTTCA





AACAGCCTGTTGAAATGCCAACATTGGAGGGCGGT





CCTAGTTGGAGATCAGGGATTTTCCCCCCTTTACCA





CCCTCGCAATGTTTTATCCGCACCCTGGGATTCCTG





TATGGGGGCAGGGGCATGCGTGGCTTTCTTCTTAA





CAGGAGGAAGAAGACTGCTCATGGATCCAGAAGG





CTTCAAGGACAAGATCTGGTAAGAATAGTCTTCTT





CGAGGGACTAGCGTATTTGAATGGAGTAGAGAGGA





AGCCTAAAAAACTCCCCCAGAGGTTCTTTGGCATG





GTCCCCCTGTTTAGGCAGCTCTTACAACAACACAG





GAGCTGTTCCTACACCAAAATACTACAGAGGTTAT





GTCCATCAATAGAGGAGAGCAATGCAGGACAGGG





AGAACTAAACTCACTCTTACCTCAGCACTGTGCAC





CGCACAGGGTTTACCTGTTTGTCCGGGAATGCCTCT





CTTCTGTGATCCCGCAAGAACTGTGGGGCTCTGATC





AAAACCGGCTGCATTTCTTTGCCAGGGTCAGGACT





TTCTTGCGAAGTGGCAAGTTTGAGAGGCTCTCACT





GGCTGAACTGATGTGGAAGATAAAGGTGAATGACT





GTGATTGGTTGAAGAGGAGTAAAACAGGCTGTTTT





CCACCCAGCGAGCTTGCGTATCGGACACAGGTCCT





GGGTCAGTTCTTGGCTTGGCTTCTGGATGGATATGT





TACAGGCCTTGTGAGAGCCTGTTTCTATGCAACAG





AGAGTATTGGGCAAAAAAACGCCATCAGGTTCTAC





AGGCAGGAAGTCTGGGCCAAACTGCAAGACTTGGC





CTTCAGAGGTCACCTTTCCAAAGGCCAGATGGAAG





AGCTGACTCCAGCTCAGGTGGCATCCCTGCCCAAA





GGCACCGTCATCTCCCGCCTTCGCTTTATTCCCAAG





ACTGATGGCATGAGGCCCATCACACGAGTCATAGG





AGCAGATGCCAAAACAAGGCTCTACCGAGGCCGTG





TCAGGGACTTGCTGGATATGCTGCGGGCCTGTGTG





CGTGCCACTCCATCACTGCTGGGGTCCACAGTGTG





GGGGATGACTGACATCCACAAGGTTTTGTGCTCTTT





GGCACCAGCGCAGAAGGAAAAACCACAACCCCTCT





ATTTTGTTAAGGTGGACGTGAGTGGAGCCTATGAG





AGTTTGCCGCATGACAAACTCATAGAGGTGATTGG





CCAAGCCCTGTCACCTGTCCACGATGAACTCTTTAC





CATCCGCCGCTATGCCAAGATCTGGGCGGACTCCC





ACGAAGGCCTGAAAAAGGCCTTTGTCAGACAGGCA





GATTTCCTGGAGGATAACATGGGATCCACCAACAT





GAAGGGCTTTTTGACGTCACTGCAGAGAAAAGGCA





AAGTTCATCACGCCATCCTGGTTGAGCAGCACTTTT





GCTCAGATCTTCATGGCAGAGAGGCATTGCAGTTC





TTTACCCAAATGCTAACTGGCAGTGTTGTTCAGTAT





GGGAAAAAGACGTACCGTCAGTGCCGGGGGATTCC





TCAGGGATCGGTTGTGTCTAGTCTGCTCTGCTGCCT





TTGCTACGGCCACATGGAGAATCTCCTGTTTAAAG





ATATTCCTGGACACAAAGGGTGTTTGATGAGACTG





GTGGATGACTTCCTTCTGATCACACCAGACCAACA





TGAAGCACAAGCTTTTCTCAAGATCTTGCTGGCCG





GAGTGCCACAGTATGGTCTGGCGGTCAACCCGCAG





AAGGTGGTTTTGAACTTTCAGGTATCGGGAAGCGT





GGCCTCCTGTCCCGACATTCGCATCCTGCCCCCTCA





CTGCCTCTTCCCCTGGTGTGGACTGCTGCTGGACAC





CCACAAGCTGGACGTCTATAAAGACTATTCCAGCT





ATGCTGGACTGTCTCTGCGCTACAGCCTTACTCTGG





GTTCATCCCACTCTGCAGGACAGCAGATGAAAAGG





AAACTAATGGCTATCCTCAGGCTCAAGTGTCATGC





CCTGTTCTTCGACTTGAAGACTAATTCTCTTGAAGC





GGTCTACAAGAACATCTACAAGCTGGTGCTGCTGC





ATGCGTGCAGGTTTCATGTCTGTGCCCAAAGCTTGC





CCTTTGGTCAGACCGTTTCCAAGAACCCCGTCTTCT





TTCTGCAGTTGATATGGGAGATGGCCCAGTACTGC





AACAAGCTCATCAGACGCAGCAACAAAGGACTGAT





TTTAGGTGATAAGGCCCAGACGGGGATCGTGCAGT





ACGAAGCAGTGGAGCTGCTTTTCTGTCTGTGCTTCT





TGCTGGTGCTGTCACAACATCGTCTTCTCTATAAAG





ATCTGCTCGCACACTTGCACAAGCGAAAGCGCAGT





CTGGAGCGGCGTCTGGGGGACCTGAGGCTGGCCAG





GGTGCGGCAGGCTGCTAGCCCCAGGACTCCAGTCG





ACTTCTTGGCCATTCAGACATAA (SEQ ID NO: 42)





TERT
Rainbow
XM_021559758.1
ATGCCCAGTGGCGATATGACACGTGTGCTCGGCAT



trout

ACTCGGCTCTCTGTATCGGCACGTCGAGACCCTGG



[Oncorhynchus

AGGAGTTTGCAGACCATATTGTATTCAGAGAGGGA




mykiss]


CAGAGAGCGGTGCTCATCGAACCGACAGATACAAC





GCGCTTCATATCGTTTGTCCGGGGAGTGTTGGTCTG





CACGGATAAAACCCTACAGGACGTCCCCAGCTGCA





ATCAGATCAGCACCGTGCCTGAGCTGTTGGCGTTC





GTGTTGAACAACATCAAGAGGAAAAAGAAAAGGA





ATGTCCTGGCGCACGGTTACGGTTACACGTTCCAG





GACCGCGACGCAGACCAGTTTAAGTTTCATGGCGA





GATCACTCAGAGTGCCATGTACATCCACTGCAGCG





ACTTATGGAAGAGGGCCTGCCAGCGCCTCGGCACG





GACATCTCCAAGTACCTCCTGGAGAGCTGTTCTTTG





TTCGTGACGGTGCCGCCGTCGTCCGCGTTCCAGGTG





TGCGGCGTGCCTGTGTACGACCGCGTTTCCATGTCA





ACGGGTATCTCTAGGTTCCACCTGGGATACAAACG





GAATGGTACTACTAGGAACAGCAGAGGGAGAAGT





AAGGAGGTCAGAAATGGGGGATGGGAATTTCAGG





GTTCTGCTGGGAGAAATAGGAGAAAGGATGGAGG





TAGAGACACTGGGAAAAGGAAGGGAGACGAGGTC





AGTTTGGGAGGGAAGAGGAAGAGGGAGAGGGAGG





AGGTGGAAGGAGATGTGTGTTTGCCTGGAAAAAGG





AGATGCACTCAAAGAGAAGCTCCCACAGTCTCCAG





TGGGACTAGCGATCGTAAGCACAGAACACTGGAAA





CAAATGGGGTCAAGAGACCAGTGGAGGTCATTTCT





CTCACCAAGGGACCCACACAGAGCCTACAGGTTTT





CAATGGTTCTAGCAATGTGGAACAGGTGTCAGCAG





AAATGGAACGTCTCAGGAAGCCAGTGGAGAAACT





GGCTGGACCCGGAAGACCATTGGAGGCTGTGATGG





TCACCATAGCACCCGCTGAGAGCTCTAAACAGGTC





TCCAACGGCACAGGTAATATCGAGCAGATGTCAAT





GAAAACAGGACATAGAAGGCCAGCGGCTGTAGTC





CCAAGACCAGTAGAAGAACAGTCTGGACCTGTATC





GGCCACCGTCCATGTAGAGGGGGGCCCTAGTTGGA





GAACAGGGTCGTTCCCACCGCTTCCCCACTCCCAGT





GTTTCATCCGCACCCTGGGCATGCTCTACGGAGGG





CGGGGCATGCGCCGCTTCCTACTAAACAGGAAGAG





GAAAAGTAGGGACGAGGGGCCCAGGCGTCTGCAG





GGGCGAGACTTAGTGAGACTGGTCTTCTTTGAAGG





CGTGGCCTATCTGAACGGAACAGAAAGGAAGCCTG





AGAGACTTCCCAGAAGATTTTTCACCTTGGTGCCTC





TGTTTTGTCAGTTGTTACGTCGACACAGGAGGTGTC





CCTATTCTAAGATACTGCAGAGGGTTTGTCCAGCA





GTGGGACAGGGGGATATGGCCTCCCTCCTGCCCCA





GCACAGTGCACCTCACCGGGTGTACCTCTTTGTCAG





AGAGTGCCTCAACGCGGTGGTCCCCTCGGAGTTCT





GGGGGTCGGACCATAACCGATTCAAATTCCTGTCC





GCAGTCAGGAACTTCCTGTCCATGGGCAAGTTTGA





GAGGATGTCATTGGCTGAGCTGATGTGGAAGATGA





AGGTGAATGACTGTGATTGGCTGAAGATCAGCAAG





ACAGGCCGCTGCCCGCCCAGTGAGCTGTCGTATCG





GACGCGGGTGCTAGGCCAGCTCCTGGCTTGGCTGC





TGGATGGCTATGTGCTAGGCCTGGTGAGAGCTATG





TTCTACGTCACAGAGAGCATGGGACAGAAGAACGC





ACTGCGCTTCTACAGATACCAGGTCTGGGCCAAGC





TGCAGGAGCTGGCTTTCAGTGGTCACCTCTCTAAA





GGTCAGATGTCAGAGTTGACCCTGGCCCAGGTGAC





GTCGCTCCCCAAAACCACTGTCCCCTCCCGCCTCCG





CTTCATCCCCAAGACCGAAGGGATGAGACCCATCA





CACGGGTCATAGGGGCTGACGCCAAAACAAGGTTG





TTCCAGACCCGTGTGAAGGAGCTGTTAGATGTGCT





AGGTGTCTGTGTACGGTCCTCTCCCTCTCTCCTGGG





CTCTACAGTGTGGGGGTTGACCGACATCCACAGAG





TCCTCTCTTCCATCACCCCTGCTCAGAAAGACAAAC





CACAGCGGCTCTACTTTGTCAAGGTGGATGTGAGT





GGGGCCTATGACAGTCTACCCCACACTCAGCTCTT





GGAGGTGATTGGTCAGGTCCTGTCACATGTGCAGC





AAGAGCTTTTCTCGGTGCGACGCTATGCCAAGGTG





TGGGCCGACACCCACGAGGGCCTCAAGAAGACCTT





TGTCAGACAGGCAGACTTCACGGAAGACACTGTGT





CGTCCACCAACATGAAAGGCTTTGTGATGTCACTG





CAGAGAGAGGGCAAAGTTCACGATGCCATACTGGT





GGAGCAGCATTTCTCCACAGATATTCATGGCAAAG





ACGTCTTGGAGTTCTTCACCCAGATGCTCTCTAGCT





GTGTTGTCCAGTTTGGGAAGAAATCGTTCCGTCAGT





GTCAGGGGATTCCTCAGGGTTCCGCGGTGTCGTCTC





TGCTGTGCTGCCTCTGTTACGGCCACATGGAGAAC





CTTCTGTTTCCTAACGTCAGTCGGCGAGGAGGGTGT





CTGATGAGACTGGTTGACGATTTCCTCCTCATCACT





CCTGACCTGAGCCAGGCACAGACCTTCCTCAAGAC





CCTGATGGCGGGGGTACCACGGTACGGGTGTGTGG





TGAACCCCCAGAAGGTGGCTGTTAACTTCCCTTTGG





GTGAGTGGGGGTCCTGTCCTGCTGGGGTACGCCTG





CTGCCTTTACACTGTCTGTTCCCCTGGTGTGGACTA





TTGCTGAATACACACACCCTGGACGTCCACAACAA





CTACGCCAGCTACGCTGGCCTATCCCTGCGCTACA





GCCTGACGCTAGGCTCCGCCCACTGCGCGGGGCAG





CAAATGAAGAGGAAGCTCATGTCCATCCTTAGATT





CAAGTGCCACGCCCTCTTCCTGGACCTCAAAACCA





ACTCCCTGGAGGCTGTCTATAGCAACGTCTACAAG





TTAGTGTTGCTGCAGGCGTTCAGGTTCCATGCCTGT





GCACAGAGTTTGCCGTTTGGTCAGAAAGTGGGCGG





AAACCACTCGTACTTCCTCAATCTGATCTGGGACTT





GGCGGAGTACACCAACCATCTAGTCAGACTCTGCA





ACAAAGGTGTGTCTCTAGGCTGTAAGGCTTTAACA





GGTAGCCTTCAGTATGAGGCAGTAGAACTGATATA





CTGTCTGGCCTTCCTGTTGGTTCTGTCCCGTCATCG





CCCCCTCTACTACCATCTCCTCGCTCCGCTACGCAC





ACGTAAGAGGAAGCTGGAGGGGAAGCTGGAGGGT





TTGAGATTGGCCCGAATCAGACAGGCTGCCACACC





CAAAATGCCTGAAGACTTCAAGGCCATCCAGGCCT





AG (SEQ ID NO: 43)





TERT
Tropical
XM_018094976.1
ATGACTCTGTGTACCGGAGGAGCTGAACTACTGAG



clawed

CATTTTGCACAGCCTTTATGGCCAGGTCCTTGGGAT



frog

TGTGGAATATATCGACTCACTGCATGTTCCCGGCG



[Xenopus

GCATTAAGGTGCCTGTGCTGCGAGAGGGAGACCCG




tropicalis]


GAGAAGTTCAAGTCATTTGTTGCGGAACTGATGCT





GTGCATTCCAAGAGGAACAAAGTCGCTTCCGTCCC





CTGTCTCCTTTCTTCAGCTATCAACTCAGAGAGAAG





TAGTGGCGCGAGTAATTCAGCGGATTTGTGAAAAG





AAAAGAAAAAATGTTCTTGCTTTTGGTTATGGCTTA





GTTGATGAAAAAAGCTCTCTGAATATTCGATTGAC





TCCAAATATTTGCAGTTATTTTCCTAATTCCACAAC





AACAACAATCAGCACAAGTATTCTTTGGGAAACTC





TGCTTACTAGAGTAGGTGATGATGTTATGATGTATT





GGCTGGAACAATGCTCAGTTTTTGTATTTGTGCCAC





CTAGTTGTTGTTATCAAATCAGTGGGCAGCCAATCT





ACACTTTACCCTATGATAGTATGTGTTCATTTCGAT





CTCAGTCATTTATGCATAGCAATGTTTTGTTGCAGT





ACATTAAAAGAAATGCCTTTTTCTTGCGGAAAAAA





TATCTGAAGCCAAAAAAGTGGTGGAAAACGGTGTT





AAACAGCAAAGTAGAAAAACATTCAAAGACTTCTC





AAATGCTAACATGGCAAAATAAAAAGTCCACATCA





GCATTGCCTATTTGTAGTGAGTCATCTATGAAAGTT





ACCACAAAAATACATTCCAAAAGGAAGATGTGTAC





TACAGATATTTGTGACATTCCAACTAAGAAACGCA





GAGTCAACTTGGACAAAGATGATAAAATGGACCAC





GTTTCCTTTACGTCTGCATGTCTTTCTTCCTTCTCAA





ATGTGTGCCCTGAAGCTAAAGTACAAGCAACGGAA





TTTATTACCTCAAGATATGGAAAAAAAACAAAAAT





TCAATGTCCAAAATCGACTTCATACTCAGTTGATGG





TGAATTTAATGTAACTCTTCAAAATAATGCTAATAC





GTTTATTACCAATGCTTCTGTCCCTACAATACAAAG





CAAAACTTCATTTTCAAATATTTTTATTGAAATTGG





AAGAACATTGTATTCAAGTATTAGTTTCAAGAAGG





GCTTCTCTGAAAGTTTTATACTTAACAGTTTAGACT





GTACCCCTTCTGGGAGCCAAAAATTAGTGGAAACC





ATATTTCTAAACAACTTTTTAACTGAGCAAAATTTT





GACCAGCCAAAACGGGATGAAAACTTTAGATCTAA





ACTTCCCAAACGTTATTGGAGAATGAGAAAATATT





TCCAAGAATTAATACAGAACCATAAGAATTTCCCT





TATCTGGTATATTTGAATAAACACTGCCCTGTTAGG





CCTTCAATGGCTTGTTCACACAAACTGGCGTTGCAG





AAAAAGAATAAATGTAAAATGGATAAATCAATTTG





TGACTTAAGTAATACCTCAGTTATGAAAAACAAAA





TTGTAAATGATGAAAAGCCGCTAAAACATGTTACA





GCCGAAGCAACTTTTTTACCTCTTCTTAAACAACAC





AGCAGCAGTTGGCAAGTGTACATGTTTGTTAGAGA





ATGTTTAAATAGTTTAGTGCCTGATTTCATATGGGG





CTCCAGTCACAACAAGTGCCGTTTCCTTAGAAATGT





AAAATCTTTTCTTTTTTTTTCTGGCAAATTTGGCAA





GGTCTCTTTATTAGAGCTTATGTGGAAGATGAAAG





TAGAAGACTGCTCTTGGATTCGTCTACGAAAAAGT





GATCACTTTGTTCCTGCTTCAGAACACTTGCTACGA





GAGAGAATCCTTGCCAAATTTATCTTTTGGCTAATG





GACACCTATGTCATACAGTTGCTGAAATCATTTTTT





TTTGTCACGGAAACCATGTTTCAGAAGAATAGACT





TTTGTTCTACAGAAAAAGAATTTGGAAGAAACTTC





AAAATTTAGGTCTAAGAAAACATCTAGAGAAGGTG





AAATTGCGTCCATTGTCCTGCGATGAACTAGAAAA





GATGCAACAATGGAAAAACATTCCACTGGTTTCCA





GGCTCAGATTCATACCAAAAACAAATGGACTACGT





CCAATATCTAGAGTATCCAGTACTTTGGGTAGCCA





ACAAAGCAAAGAAAACCAAGAGAAGAAGATTCAA





CATTTTACCTCTCGGGTTCGAAACCTTTTTAGTGTT





CTTAACTATGAATGGAATAGAAATTGCAGCCTAAT





TGGCTCATCTGTTTTTGGCATGGATGATATATACAA





ACAGTGGAAAAAATTTGTGCTAGATTTTGAAAAAT





CGAGAGCTGAAAAAGGCAAATTTTACTTTGTGAAG





ACAGATGTTAAGGGAGCATATGATACCATTCCACA





TTCAAAGCTCGATGAAGTGATCTTAAAAGTAATTA





ATCCAAATGCAAATGAAGTATATTGCATACGACGT





TATGCCTCAGTTTCAGTGGATTCAACTGGACGCATT





ATAAAATCTTTCAAAAGACATGTATCTGCATTAGC





AGATGTTCTTCCAAATATGAAACAGTTTGTTTCAAA





TCAACAAGAAAAAAACTTGACACGTAACACAATTC





TAGTGGAACAGAGCCTTTTATTGAATGAGAGCTCT





GTCAAACTTCTTGCTGTTTTTCAACAAATGATCAGA





TCCCATATTTTAAGAATAGAAGATCGATATTACAT





GCAGTGCTGTGGAATACCACAGGGTTCAATGTTAT





CTACAATCCTATGCAGTTTATGCTATGGAGACATG





GAAAATAAACTGTTTGGCGGAATACAGCAAAATGG





GGTACTAATGCGATTGATTGATGATTTTTTGTTTGT





AACACCTCATCTTAACCAGGCAAAAACATTTTTAA





GGACTCTGGCAGAAGGAATTCCCCAATATGGGTGC





TCCATCAGCCCTCAAAAAACAGTGGTAAACTTTCC





TGTTGATGACATCCCAGCATGCTCTGAGGTGGAAC





AATTACCAGTTCACTGCTTGTTCCGGTGGTGTGGTC





TTTTGCTGGACACTCAGACTTTGGATGTTTACTATG





ATTATTCAAGCTATGCCTGTACCTCAATCCGATCAA





GTATGACATTTTGTCACAGTTCTGCAGCAGGAAAA





AACATGAAACAAAAACTTCTAAGAGTCCTTAAATT





GAAGTGCCACAGTCTCTTTCTTGATTTACAGGTAAA





CAGTTTAAGGACAGTTTTCATCAATACTTATAAGAT





ATTCTTACTTCAAGCTTACAGATTCCATGCTTGTGT





TGTTCAGCTTCCATTTGGCCAGCGTGTAATGAATAA





TCCACCTTTTTTTCTTACTGTGATTTCTGATATGGCA





CCTTGCTTTTACACTACTTTTAAGTCCAAAAACAAA





GATGTCACACGTGGGTACAAGGATGTGAGCTGCCA





GTTTAACTTTGAAGCAGTCCAGTGGCTCAGTTATCA





AGCTTTTCTTACTAAGCTTCGCAATCACAAAATATT





ATACAAATGTCTTATTGGGCCACTGCAGAACTGTA





AAATGCAGTTATCTAGAAGACTTTCGCAGTATACT





ATTGATCTTCTAAAAGCTGTCACAGATTCTTCCCTT





CACAAAGACTTTTCATGTATAATGGATTAG (SEQ ID





NO: 44)





TERT
Chicken
NM_001031007.1
ATGGAGCGCGGGGCTCAGCCGGGAGTCGGCGTGCG



[Gallus

GCGGCTCCGCAATGTAGCGCGGGAGGAGCCCTTCG




gallus]


CCGCGGTCCTGGGCGCGCTGCGGGGCTGCTACGCC





GAGGCCACGCCGCTGGAGGCCTTCGTCCGGCGGCT





GCAGGAGGGTGGCACCGGGGAGGTCGAGGTGCTG





CGAGGCGACGACGCTCAGTGCTACCGGACCTTCGT





GTCGCAGTGCGTGGTGTGCGTCCCCCGCGGTGCTC





GCGCCATCCCCCGGCCCATCTGCTTCCAGCAGTTAT





CCAGTCAGAGCGAAGTCATCACAAGAATCGTTCAG





AGGCTGTGTGAAAAGAAAAAGAAGAACATCCTTGC





GTATGGATACTCCTTGCTGGATGAGAACAGTTGTC





ACTTCAGAGTTTTGCCATCTTCGTGTATATACAGCT





ATCTGTCCAATACTGTAACAGAAACGATTCGCATC





AGTGGCCTCTGGGAGATACTGCTGAGTAGGATAGG





GGACGACGTGATGATGTACCTGCTGGAGCACTGTG





CACTCTTCATGCTGGTTCCCCCAAGTAACTGTTACC





AGGTCTGCGGGCAACCAATTTATGAACTTATTTCGC





GTAACGTAGGGCCATCCCCAGGGTTTGTTAGACGA





CGGTACTCAAGGTTTAAACATAATAGCTTGCTTGA





CTATGTGCGAAAAAGGCTTGTGTTTCACAGGCACT





ATCTTTCCAAGTCACAGTGGTGGAAGTGCAGGCCG





AGACGTCGAGGTCGTGTCTCCAGCAGGAGAAAAAG





AAGGAGCCATAGGATACAAAGCCTAAGGTCTGGTT





ATCAGCCTTCTGCAAAAGTGAACTTTCAAGCAGGT





AGGCAGATCAGCACTGTTACTGCACGTCTGGAAAA





ACAGAGCTGCTCCAGTTTATGTTTGCCAGCTAGAG





CACCATCTTTAAAAAGGAAGCGTGATGGAGAACAG





GTTGAAATCACAGCTAAGAGAGTGAAAGTAATGGA





GAAAGAGATAGAGGAACAGGCTTGTAGTATCGTTC





CTGATGTAAACCAAAGTAGCTCCCAGAGGCATGGA





ACCTCCTGGCATGTAGCACCACGTGCTGTAGGTCTT





ATTAAAGAACATTACATTTCTGAAAGAAGTAACAG





TGAGATGTCTGGTCCTTCTGTAGTTCGCAGATCTCA





CCCTGGGAAGAGGCCTGTGGCAGACAAAAGCTCTT





TTCCACAAGGAGTTCAGGGTAACAAACGCATAAAG





ACCGGTGCAGAAAAACGAGCAGAATCCAATAGAA





GGGGCATAGAGATGTATATAAACCCAATCCATAAA





CCCAATAGAAGGGGCATAGAGAGGCGTATAAATCC





AACCCACAAACCTGAGTTGAATTCTGTACAAACTG





AACCAATGGAAGGTGCTTCTTCAGGGGACAGAAAG





CAGGAAAATCCCCCAGCTCATTTGGCAAAGCAGTT





ACCAAATACATTGTCGCGCTCTACAGTGTACTTTGA





GAAGAAATTTCTTCTGTATTCCCGCAGTTACCAAGA





ATATTTTCCTAAATCGTTCATACTGAGCCGCCTGCA





GGGTTGTCAGGCAGGTGGAAGGCGGCTTATAGAAA





CTATATTCTTAAGCCAAAACCCATTAAAGGAACAG





CAGAACCAAAGCCTACCACAGCAAAAGTGGCGAA





AGAAGAGGTTGCCCAAACGCTACTGGCAAATGAGA





GAGATATTTCAGAAGCTGGTAAAGAACCATGAGAA





GTGCCCTTATTTAGTTTTCTTGAGGAAAAATTGCCC





TGTTTTGCTTTCTGAAGCATGTTTGAAAAAGACGGA





GCTGACCTTGCAGGCGGCTCTGCCTGGGGAAGCAA





AGGTTCACAAGCACACAGAACATGGGAAAGAGTC





CACTGAGGGTACTGCACCGAACAGCTTCCTCGCTC





CTCCCTCAGTGCTAGCGTGTGGGCAGCCAGAGAGA





GGGGAACAGCACCCTGCAGAGGGGAGTGATCCGCT





CCTCAGGGAGCTGCTCAGGCAGCACAGCAGCCACT





GGCAGGTGTATGGCTTTGTGAGGGAGTGCCTGGAG





CGGGTGATCCCTGCTGAGCTGTGGGGTTCAAGCCA





TAACAAATGCCGGTTCTTTAAAAACGTGAAAGCAT





TCATTTCCATGGGGAAGTATGCTAAGCTTTCATTGC





AGCAGCTGATGTGGAAGATGAGAGTGAATGACTGC





GTATGGCTTCGTCTGGCCAAAGGTAATCACTCTGTT





CCTGCCTATGAACATTGTTACCGTGAAGAAATTCTG





GCAAAATTCCTATACTGGCTGATGGATTCCTATGTT





ATCGAGTTGCTCAAATCATTTTTCTATATCACCGAG





ACCATGTTCCAGAAAAACATGCTTTTCTACTACCGA





AAGTTTATCTGGGGCAAGTTACAGAACATTGGAAT





TAGAGACCATTTTGCCAAAGTACATCTACGTGCCTT





GTCTTCAGAGGAGATGGAAGTGATCCGTCAAAAAA





AGTATTTTCCTATTGCATCAAGGCTCCGGTTCATTC





CTAAAATGAATGGTTTAAGACCCGTAGTAAGACTA





AGCCGTGTTGTTGAAGGACAGAAACTCAGCAAGGA





AAGCAGAGAAAAGAAGATACAGCGCTATAACACT





CAGCTAAAAAATCTATTTAGTGTTTTAAACTATGAA





CGAACTGTAAACACCAGTATCATTGGCTCTTCAGT





ATTCGGGAGAGATGATATCTACAGGAAGTGGAAGG





AGTTTGTTACAAAGGTTTTTGAATCAGGTGGTGAA





ATGCCTCATTTCTACTTTGTAAAGGGTGATGTATCC





AGAGCTTTTGATACCATTCCTCACAAGAAACTTGTG





GAAGTGATATCACAGGTCTTGAAACCTGAGAGCCA





AACTGTCTATGGAATAAGGTGGTATGCAGTGATTA





TGATTACCCCAACTGGAAAAGCCAGGAAACTCTAT





AAGAGACATGTTTCTACTTTCGAGGATTTTATTCCA





GACATGAAGCAGTTTGTGTCCAAGCTTCAAGAGAG





AACTTCATTACGAAATGCAATAGTAGTTGAACAGT





GCTTAACTTTTAATGAGAACAGTTCCACCCTGTTTA





CTTTCTTTCTTCAAATGTTACATAATAACATCCTGG





AGATTGGGCACAGGTACTATATACAGTGCTCTGGA





ATCCCACAGGGCTCCATTTTGTCAACCTTACTTTGC





AGCTTATGCTACGGAGACATGGAAAACAAATTACT





CTGTGGGATCCAGAAGGATGGAGTCCTAATACGTC





TTATTGATGACTTTTTGCTGGTTACGCCACATTTAA





TGCAGGCAAGAACTTTTCTAAGGACTATAGCAGCA





GGTATTCCTGAGTATGGCTTTTTAATAAATGCCAAG





AAGACTGTGGTGAATTTTCCTGTTGATGATATCCCG





GGATGTTCCAAGTTCAAACATCTGCCAGATTGTCGT





TTGATCTCATGGTGTGGTTTATTATTGGATGTGCAG





ACACTTGAGGTTTATTGTGATTACTCCAGTTATGCC





TTTACTTCTATCAGATCAAGTCTTTCCTTCAATTCA





AGTAGAATAGCTGGAAAAAACATGAAATGCAAATT





GACTGCAGTCCTCAAACTGAAATGCCATCCTTTACT





TCTTGACTTAAAGATCAACAGCCTTCAGACAGTTCT





AATTAACATCTACAAGATATTTTTACTTCAGGCTTA





CAGGTTCCATGCCTGTGTTCTTCAGCTTCCATTCAA





CCAGAAAGTTAGGAATAATCCTGATTTCTTCCTAA





GGATCATCTCTGATACTGCTTCATGCTGCTATTTTA





TCCTGAAAGCTAAAAATCCAGGAGTTTCTTTAGGT





AGCAAAGATGCATCTGGCATGTTCCCTTTTGAGGC





AGCAGAATGGCTGTGCTACCATGCCTTCATTGTCA





AACTGTCCAACCACAAAGTTATTTACAAATGCTTA





CTTAAGCCCCTTAAAGTCTATAAGATGCATCTGTTT





GGGAAGATCCCAAGGGATACTATGGAACTGCTGAA





GACGGTGACGGAACCATCGCTTTGTCAAGATTTCA





AAACTATACTGGACTAA (SEQ ID NO: 45)





TERT
Turkey
XM_019613879.1
ATGTCTGGGGCTCGGGGGCTCGTCTGGTGCGACGA



[Meleagris

GCGAGCGTGGCTGTTATCCAGTCAGAGCGAAGTCA




gallopavo]


TCACAAGAATCGTTCAGAGACTATGTGAAAAGAAA





AAGAAGAACATCCTTGCGTATGGATACTCCTTGCT





GGATGAAAACAGTTGTCACTTCAGGATTTTGCCAT





CTTCGTGCATATACAGCTATCTGCCCAATACTGTAA





CAGAAACGATTCGCATCAGTGGCCTCTGGGAGATA





CTGCTGAGCAGGATAGGGGACGATGTGATGATGTA





CCTGCTGGAGCACTGTGCACTCTTCATGCTGGTTCC





CCCAAGTAACTGTTACCAGGTCTGCGGGCAACCAA





TTTATGAACTTATTTCGCGTAACATAGGGCCGTCCC





CAGGGTTCGTTAGACGACGATATTCAAGGTTTAAA





CATAATAACTTGCTTAACTATGTGCGAAAAAGACT





TGTGTTTCATAGGCACTATCTTTCCAAGTCACAGTG





GTGGAAGTGCGGGCCGAGACGTCAAGGTCGTGTCT





CCAGCAGAAGAAAAAGAAGGACCCATAGGATACA





AAGCCCAAGGTCTGGTTACCAGTCTTCTGCAAAAG





TGAACTTTCAAGCAGGCATGCGGATCAGCACAGTT





ACTGCACATCTGGAAAAACAGAACTGCTCCAGTTT





ATGTTTGCCAGCTAGAACACCATCTTTAAAAAGGA





AGCGTGATGGAGAACAGGTTGAAACCACAGCTAA





GAGAGTGAAAGTAATGGAGAGAGAGGAACAGGCT





TGTAGTATCGTTCCTGATGTAAATCGAAGTAGCTCC





CGGAGGCATGGAGTTTGGCATGTAGCACCACGTGC





TGTAGGTCTTATTAAAGAACGTTACGTTTCTGAAAG





AAGTTACAGTGAGATGTCTGGTCCTTCTGTAGTTCA





CAGATCTCACCCTGGGAAGAGGCCTGTAGCAGACA





AAAGCTCTTTTCCAAGAGGAGTTCAGGGTAACAAA





CACATAAAGACCGGTGCAGAAAAACGAGCAGAAT





CCAATAAAAGGGGCATAGAGATGTATATAAACCCA





ATCTGTAAACCCAATAGAAGGGGTATAGAGAGGCA





TATAAATCCAACCCATAAACCTGGGTTGAATTCTGT





ACAAACTGAACCAATGGAAAGTGCTTCTTCGGGGG





ACAGAAAGCAGGAAAATCCCCCAGCTCATTTGGCA





AAGCAGTTACCAAATACATTCTTGCGCTCTGCAGT





GTACTTTGAGAAGAAATTTCTTCTGTATTCCCGTAG





TTACCAAGAATATTTTCCTAAATCGTTCATACTGAG





CCGCCTGCAGGGTTGTCAGGCAGGTGGAAGGCAGC





TTATAGAAACTATATTTTTAAGCCAAAACCCATTAA





AGGAAAAGCAGAACCAAAGCCTAAAACAGCAAAA





GTGGAGAAAGAAGAGGTTGCCCAAACGCTACTGGC





AAATGAGAGAGATATTTCAGAAGCTGTTAAAAAAC





CACGAGAAGTGCCCTTATTTAGTTTTCTTGAGAAAA





AATTGCCCTGTTTTGCTTTCTGAAGCATGTTTGAAA





AAAACGGAGCTGACCTTGCAGGCAGCTCTGCCTGG





GGAAGCAAAGGTTCACAAGCACACAGAACATGGG





GAAGAGACCACTGAGGGTACTGCACCGAACAGCTT





CTACACTCCTCCCTCAATGCCATTGTGTGGGCAGAC





AGAGAGAGAGGAGCAGCACCTTGCAGAGGGGAGT





GATCCGCTCCTCAGGGAGCTGCTCAGGCAGCACAG





CAGCCACTGGCAGGTGTATGGCTTTGTGAGGGAGT





GCCTGGAGCGGGTGATTCCTGCCGAGCTGTGGGGT





TCAAGCCATAACAAATGCCGGTTCTTTAAAAACGT





GAAAGCATTCATTTCCATGGGGAAGTATGCTAAGC





TTTCATTGCAGCAGCTGATGTGGAAGATGAGAGTG





AATGACTGCGTATGGCTTCGTCTGGCCAAAGGTAA





TCATTCTGTTCCTGCCTATGAACATTGTTACCGTGA





AGAAATTTTGGCAAAATTCCTATACTGGCTGATGG





ATTCCTATGTTATCGAGTTGCTCAAATCATTTTTCT





ATATCACCGAGACCATGTTCCAGAAAAACATGCTT





TTCTACTACCGAAAGTTTATCTGGGGCAAGTTACA





GAACATTGGAATTAGAAACCATTTTGCCAAAGTAC





ATCTACGTGCTTTATCTTCAGAGGAGATGGAAGTG





ATCCATCAAAAAAAGTATTTTCCTATTGCATCAAG





GCTCCGGTTCATTCCTAAAATCAATGGTTTAAGACC





CGTAGTAAGACTAAGCCGTGTTGTTGAAGGACAGA





AACTCAGCAAGGAAAGCAGAGAAAAGAAGATACA





GCGCTATAACACTCAGCTAAAAAATCTATTTAGTG





TGTTAAATTATGAACGAACTGTAAACACCAGTATC





ATTGGCTCTTCAGTATTCGGGAGAGATGATATCTAC





AGGAAGTGGAAGGAGTTTGTTACAAAGGTTTTTGA





ATCAGGTGGTGAAATGCCTCATTTCTACTTTGTGAA





GGGTGATGTGTCCAGAGCTTTTGATACTATTCCTCA





CAAGAAACTTGTGGAAGTGATCTCACAGGTCTTGA





AACCTGAGAGCCAAACTGTATATGGAATAAGGTGG





TATGCTGTGATTATGATTACCCCAACTGGAAAAGC





CAGGAAGCTCTATAAGAGACACGTTTCTACTTTTG





AGGATTTTATTCCAGACATGAAGCAGTTTGTGTCCA





AGCTTCAAGAGAGAACTTCATTACGAAATGCAATA





GTAGTTGAACAGTGCTTAACTTTTAATGAGAACAG





TTCCACCCTGTTTACTTTCTTTCTTCAAATGTTACAT





AATAACATCCTGGAGATTGGGCACAGGTACTATAT





ACAGTGCTCTGGAATCCCACAGGGCTCCATTTTGTC





AACCTTACTTTGCAGCTTATGCTATGGAGACATGG





AAAACAAATTACTTTGTGGAATCCAGAAGGATGGA





ATCCTAATACGTCTTATTGATGACTTTTTGCTGGTT





ACACCACATTTAATGCAGGCAAAAACTTTTCTAAG





GACTATAGCAGCAGGTATTCCTGAGTATGGCTTTTT





AATAAATGCCAAGAAGACAGTGGTGAATTTTCCTG





TTGATGATATTCCGGGATGTTCTAAGTTCAAACAGC





TGCCAGATTGTCGTTTGATCTCATGGTGCGGTTTAT





TACTGGATATGCAGACACTTGAGGTTTATTGTGATT





ACTCCAGTTATGCCTTTACTTCTATCAGATCAAGTC





TTTCCTTCAATTCAAGTAGAATAGCTGGAAAAAAC





ATGAAATGCAAATTGACTGCAGTCCTCAAACTGAA





ATGCCATCCTTTATTTCTTGACTTAAAGATCAACAG





CCTTAAAACAGTTTTAATTAACATCTACAAGATATT





TTTACTTCAGGCTTACAGATTCCATGCCTGTGTTCT





TCAGCTTCCATTCAACCAGAAAGTTAGGAATAATC





CTTATTTCTTTGTAAGGATCATCTCTGATACTGCTT





CATGCTGCTATTTTATCCTGAAAGCTAAAAATCCAG





GGGTTTGTTTAGGTTGCAAAGATGCATCTGGCATGT





TCCCTTTTGAGGCAGCAGAATGGCTCTGCTACCATG





CTTTCATTGTCAAACTGTCCAACCACAAAGTTATTT





ACAAATGCTTACTTAAGCCCCTTAAAGTCTATAAG





ATGCATCTGTTTGGGAAGATACCAAGGGATACTAT





GGTACTGCTGAAGACAGTGACGGAACCATCTCTTT





GTCAAGATTTCAAAACTATACTGGACTAA (SEQ ID





NO: 46)





TERT
Duck
XM_013104503.2
ATGCAGAGGCTGTGTGGGAAAAAGAAGAAGAACA



[Anas

TCCTCACGTATGGATACTCCTTGCTGGATGAAAAC




platyrhynchos]


AGTTCTCACTTCCAAATCATGCCGCTCTCAAACGTG





TACAGCTACCTGCCCAACACCGCAACAGAAACCAT





GCGTATCAGTGGCCTCTGGGAAACGCTGCTGAGCA





GGATAGGGGATGACGTGATGATGTATTTATTGGAA





CACTGTGCGATCTTTATGCTGGTTCCCCCTAGTAAC





TGTTACCAAGTCTGTGGGCAACCAATTTATGAACTT





ATTTCGCAAAATGTAGAATCAGCCCCAGCGTTTGTT





AAACAACGGCTTTCAAAGCACAAACGTAGTAGCTT





GCTTAAGTATACCCAGAAAAGGCTAACGTTTCACA





GACAGTATCTTTCAAAGTCACGTCAGTCGAAACGC





AGGCAAAGACTTGAAGCTAATGTCTCCAGCGTGAG





AAATAAAACCAGCAATAATATACAAAGCCTAGGGT





CCGCTGCTCTGGAAAAACAGAGTAGCTCCAATGCA





GGTTTGTCAGCTACAGCACCGTCCTTAAAAAGGAA





GCTTGCTAGGGAGCAACTGGAAGTCACGGCTAAGA





GAGCAAGATTAGAAGAGAAAGAGAGGGAGGAACA





GGCATGTAATACTGCTCCTAATGTAAACCAGAGCA





TTCCCAAGAGGTATGGAACCGGCTGTGTAGCATCA





CGTTCTGTAAGTCTGACTAAAGAAAAAAACATTTC





TCAAAGAAGTAACAGTGATATGCCTCGTCCTTCTTT





AGTTCACAATTCTCATCGCGGGAAGAAGTCTGTGG





CAGACAAAAGCTCTTTCCTGCAAGGAGCTGAGAGT





AACAGACATTTAAAGCCCAGCATTGAAATGCAAGC





AGGATCCAGCAGGAAGGGAGTGGAGACACGCAGG





CCTATACCTCGGTTGGATTGGGTACCAATCGAACC





GGCGGAAAGTAGTTCTTCAGGACACAAAAAGCAG





GAAGGTCCCCTAGCTCATCTGGCAGAGGAGGTACC





AAATAGGGTTTTGCCATCTACAATATACATTGACA





GGAAGTTTCTGTATTCTCGCAGATACTGGGGGGAG





CGTTTCCCGAAATCCTTCCTATTGAATCGCCTGAAG





GGTAGCCAGGCAGGTGTAAAGCGGCTAATAGAAA





CGATATTCTTAAGCCAAAATCCGTTTGGGCAAAAG





TGCAACCAAGGTCTGCCACAGAAAAAACGGAGAA





AGAAGAAGCTTCCCAAACGCTTCTGGAGAATGAGA





AGTATATTTCAACAACTCTTAAAGAATCATGGAAA





GTTCCCTTACGTAGCTTTCTTGAGACAAAATTGCCC





TCTTCGGATATCTGACACCATTTTGGGAAAAGCCA





AGCTGCTCAGTCGGGCACCTTTGCCTGGGCAAGCA





GAGGCTCGCAAGCAAGCAGAACAGCTTGGGAAGG





AGCCTGCTGAGCGTGTGGCAAGCAGCAGATGTGAA





TCTGGTCACACCAACGTGCCCAGCAGCGTACGCGC





TCCTCTCGCAGCATCTGCGTGTGGGGAGCCGGGGG





GTGAGGAGCAGATCCCTGCAGAGGCGTCTGATTCA





GTCCTCAGGGAGCTTCTCAAGGAGCACTGCAGCCA





CTTCCAGGTGTACCTCTTTGTGAGGGAGTGCGTGG





AGAGGGTGATCCCCACCGAGCTCTGGGGTTCAAAC





CATAACAAGCGCCGGTTCTTCAAGAACGTGAAAGC





GTTCATTTCCATGGGGAAGTACGCTAAGCTTTCCTT





GCAGGTGTTGATGTGGAAGATGAGAGTAAATGACT





GCATGTGGCTTCGTCTGGCCAAAGGTAATCACTTTG





TTCCTGCCTCTGAACACCTTTACCGTGAAGAAATTT





TGGCTAAATTCCTATACTGGCTGATGGATACGTATG





TTGTTCAGTTGCTCAGATCATTTTTCTATGTCACCG





AGACCATGTTCCAGAAAAACATGCTCTTCTACTAC





CGAAAGTGTATTTGGGGCAAGTTACAGGACATTGG





AATTAGAAAGCATTTTTCCAAAGTGAAGCTACGTC





CTTTAACTGCAGAGGAGATGGAAGCGATCCATCAA





AAAAAATACCTTCCTATGGCGTCAAAGCTCCGTTTC





ATTCCCAAAGTCACTGGACTAAGACCCATCGTCAG





AATGAGCGGTGTTGTTGAAGCACAAACGTTGAGCA





AGGAAAGCAGAGCAAAGAAGGCCGATGTGTCCAG





GGCTTTTGATAGCATTCCTCACAATAAACTTGTGGA





AGTGATTTCACAGGTCTTAAAACCCGAGAAAAAAA





CTGTCTACTGCATACGGCGCTATGCAGTGGTTATGA





TCACTGGAAGTGGAAAAACCAGGAAGTTATATAAG





AGACATGTTTCTACTTTCAAGGATTTTATGCCAGAC





ATGAAGCAGTTTGTGTCCCGGCTTCATGAGAGTAC





CTCATTGCGAGATGCAATAATAGTTGAACAGAGCC





TAACTTTCAATGAGACAAGTGCCAGTCTATTTAATT





TTTTTCTTCAAATGCTAAATAATAACATCCTGGAAA





TTGAGCGCAGTTACTACTTACAGTGCTCTGGAATTC





CACAGGGCTCCCTTTTGTCAACCTTGCTTTGCAGCT





TGTGCTATGGAGACATGGAAAACAAATTATTCAGT





GGGGTACAGAAGGATGGAGTCCTGATCCGTCTCAT





TGATGACTTTTTGCTGGTTACACCACATTTAATGCA





TGCAAGAACTTTTCTAAGGACTCTAGCAATGGGCA





TTCCTGAGTATGGCTTTTTGATAAACCCCAAAAAG





ACAGTGGTGAATTTTTCTGCTGACGATATCCCAGA





ATGTTCTGAATTTAAACAGCTGCCAAACTGTCGTTT





GATCCCATGGTGTGGCTTATTATTGGATACACAGA





CACTTGAGGTTTACTGCGATTACTCCAGCTATTCCT





GTACTTCTATCAGATCAAGTCTTTCCTTCAATTCAA





ACAGAACAGCTGGGAAAAACATGAAACACAAATT





GCTTGCAGTCCTTAAACTGAAATGCCATGGCTTGTT





TCTCGATTTACAGATCAATAGCCTTAAAACAGTTTT





CATTAACGTCTACAAGATATTTTTACTTCAGGCTTA





CAGGTTCCATGCCTGTGTTATTCAACTTCCATTCAA





CCAGAAAGTTAGGAACAATCCTGATTTCTTCCTCA





GAGTCATCGCTGAGAATGCATCGTGCTGCTATTCTA





TGCTAAAAGCTAAAAATCCAGGGTTTACTTTAGGT





AACAGAGGTGCATCTGGCATGTTTCCTTCTGAGGC





AGCAGAGTGGCTCTGCTATCATGCCTTCACTGTCAA





ACTGTCAAACCACAAAGTTGTTTACAAATGCTTGCT





GAAGCCCCTGAAGTTCTGTATGATGCAGCTATTCC





GGAAGATCCCAAAGGATACTAAGGCACTACTGAAG





ACAGTGACAGAACCATCTATTTGTAAAGATTTCAA





ATCTATCCTGGACTGA (SEQ ID NO: 47)



















TABLE 1C





Gene
Species
NCBI #
Amino Acid Sequence







IGF2
Cow [Bos
NP_776512.2
MGITAGKSVLVLLAFLAFASCCYAAYRPSE




Taurus]


TLCGGELVDTLQFVCGDRGFYFSRPSSRINR





RSRGIVEECCFRSCDLALLETYCATPAKSER





DVSASTTVLPDDVTAYPVGKFFQYDIWKQ





STQRLRRGLPAFLRARRGRTLAKELEALRE





AKSHRPLIALPTQDPATHGGASSKASSD





(SEQ ID NO: 26)





IGF1
Zebrafish
NP_571900.1
MSSGHFFQGHWCDVFKCTMRCLPSTHTLS



[Daniorerio]

LVLCVLALTPATLEAGPETLCGAELVDTLQ





FVCGDRGFYFSKPTGYGPSSRRSHNRGIVD





ECCFQSCELRRLEMYCAPVKTGKSPRSLRA





QRHTDIPRTPKKPISGHSHSSCKEVHQKNSS





RGNTGGRNYRM (SEQ ID NO: 27)





serum
Rainbow trout
XP_021470329.1
MRRPCILAIQPDTEFMPPELDASNFHMGPEL


albumin
[Oncorhynchus

CTKDSKELLLSGKKLLYGVVRHKTTITEEQ


1

mykiss]


LKSISTKYHSMKEKCCAAEDQAACFTEEAP





KLVAESAELVKA (SEQ ID NO: 28)





GLUL
Tilapia
NP_001266597.1
MATSASASLSKAVKQQYMELPQGDKVQA



[Oreochromis

MYIWIDGTGEGLRCKTRTLDSEPKSIEDLPE




niloticus]


WNFDGSSTYQSEGSNSDMYLIPSAMFRDPF





RKDPNKLVLCEVLKYNRKPTETNLRLTCK





KVMDMVADQHPWFGMEQEYTILGTDGHP





FGWPSNGFPGPQGPYYCGVGADKAYGRD





VVEAHYKACLYAGVQICGTNAEVMPAQW





EFQVGPCEGIDMGDHLWVARFILHRVCEDF





GVVASFDPKPIPGNWNGAGCHTNFSTKEM





REDGGLKAIEDSIEKLGKRHSYHIRAYDPK





GGLDNARRLTGRHETSNINEFSAGVANRG





ASIRIPRNVGQEKKGYFEDRRPSANCDPYS





VTEALIRTCLLNEEGDEPADY (SEQ ID NO:





29)





IGF2
Rainbow trout
NP_001118169.1
METQKRHEYHSVCHTCRRTENTRMKVKM



[Oncorhynchus

MSSSNRVLVIALALTLYIVEVASAETLCGG




mykiss]


ELVDALQFVCEDRGFYFSRPTSRSNSRRSQ





NRGIVEECCFRSCDLNLLEQYCAKPAKSER





DVSATSLQIIPMVPTIKQDVPRKHVTVKYS





KYEAWQRKAAQRLRRGVPAILRARKFRRQ





AVKIKAQEQAMFHRPLITLPSKLPPVLPPTD





NYVSHN (SEQ ID NO: 30)





IGF1
Tropical
XP_002936875.1
MEKNNSLSTQLFKCYFCDFLKLKMHKMSY



clawed frog

IHLLYLALCFLTLTHSAAAGPETLCGAELV



[Xenopus

DTLQFVCGDRGFYFSKPTGYGSSNRRSHHR




tropicalis]


GIVDECCFQSCDFRRLEMYCAPAKPAKSAR





SVRAQRHTDMPKAQKEVHLKNASRGNTGS





RGFRM (SEQ ID NO: 31)





GLUL
Tropical
XP_004914095.1
MATSASAQLSKAIKQMYLELPQGDKVQAM



clawed frog

YIWVDGTGEGLRCKTRTLDSEPKTIEDLPE



[Xenopus

WNFDGSSTYQSEGSNSDMYLIPVAMFRDPF




tropicalis]


RRDPNKLVLCEVLKYNRKTAETNLRHTCN





QIMDMMANEHPWFGMEQEYTLLGMDGHP





FGWPSNGFPGPQGPYYCGVGADKAYGRDI





VEAHYRACLYAGVKIAGTNAEVMPAQWE





FQIGPCEGIEMGDHLWIARFILHRICEDFGII





VSFDPKPITGNWNGAGCHTNFSTKSMREEG





GLKDIEESIERLSKRHDYHIRMYDPRGGKD





NARRLTGFHETSSIHEFSAGVANRGASIRIP





RSVGQEKKGYFEDRRPSANCDPYAVTEAM





IRTCLLNETGDEPLEYKN (SEQ ID NO: 32)





ALB
Tropical
AAH75287.1
MNALMRRACCGALFPLSFRLAALSPMKGA



clawed frog

SNFSCGNVCASPAGCWAPPSGHDTGIKVY



[Xenopus

NSLTRRKDPLILADPTVATWYSCGPTVYDH




tropicalis]


AHLGHACSYVRFDIIRRILLKVFGIDTVVVM





VVTDIDDKIIKRAKELNISPVALARTYEQDF





KQDMTALKVLPPTVYMRVTENIPQIISFIEHI





IANGYAYATSQGNVYFDVQSIGERYGKFN





DSFSDTASESASQDKRHIRDFALWKTSKPE





EPYWASPWGKGRPGWHIECSTIASSVFGKH





LDIHTGGIDLAFPHHENEIAQCEAYHQSTQ





WGNYFLHTGHLHLKGNEEKMSKSLRNYLT





VKEFLKSFSPDQFRMFCLRSKYKSAVEYSN





GSMHDAVNTLHTISSFVDDAKAYMKGQLI





CQPVQEALLWQRLNETKVNVKAAFSDDFD





TPRAVDAVMDLIHHGNRQLKAVSKESNSP





RSSVVYGAMISYIEQFLEILGISLSQNQVAA





EDRHSAVLFNVVEEMISFRSKVRNYALAA





DESPNAIGQEEKQQYKERRRQLLLEREPLL





QACDIMRQHLAVYGINVKDRGNTSTWELL





DRKEET (SEQ ID NO: 33)





IGF2
Tropical
NP_001107144.1
MRHLLLLSITFLVYTLDSAKAYGATETLCG



clawed frog

GELVDTLQFVCGDRGFYFSRNNGRSNRRA



[Xenopus

NRGIVEECCFRSCDLELLETYCAKPAKNER




tropicalis]


DVSTAPSTAIPPLNKQDLYHKHHHTKSSKY





DIWQRKSIHRLRRGVPAIVRARQYRLLMQQ





AEESEQALSHRPLTTLPITRPLHLQQTSEPSL





N (SEQ ID NO: 34)





GLUL
Chicken
NP_990824.1
MATSASSHLSKAIKHMYMKLPQGEKVQA



[Gallusgallus]

MYIWIDGTGEHLRCKTRTLDHEPKSLEDLP





EWNFDGSSTFQAEGSNSDMYLRPAAMFRD





PFRKDPNKLVLCEVFKYNRQSADTNLRHT





CRRIMDMVSNQHPWFGMEQEYTLLGTDG





HPFGWPSNCFPGPQGPYYCGVGADKAYGR





DIVEAHYRACLYAGVKIGGTNAEVMPAQW





EFQVGPCEGIEMGDHLWIARFILHRVCEDF





GVIVSFDPKPIPGNWNGAGCHTNFSTKNMR





EDGGLKHIEEAIEKLSKRHQYHIRAYDPKG





GLDNARRLTGFHETSSIHEFSAGVANRGASI





RIPRNVGHEKKGYFEDRGPSANCDPYAVTE





ALVRTCLLNETGDEPFEYKN (SEQ ID NO:





35)





ALB
Chicken
NP_990592.2
MKWVTLISFIFLFSSATSRNLQRFARDAEHK



[Gallusgallus]

SEIAHRYNDLKEETFKAVAMITFAQYLQRC





SYEGLSKLVKDVVDLAQKCVANEDAPECS





KPLPSIILDEICQVEKLRDSYGAMADCCSKA





DPERNECFLSFKVSQPDFVQPYQRPASDVIC





QEYQDNRVSFLGHFIYSVARRHPFLYAPAIL





SFAVDFEHALQSCCKESDVGACLDTKEIVM





REKAKGVSVKQQYFCGILKQFGDRVFQAR





QLIYLSQKYPKAPFSEVSKFVHDSIGVHKEC





CEGDMVECMDDMARMMSNLCSQQDVFSG





KIKDCCEKPIVERSQCIMEAEFDEKPADLPS





LVEKYIEDKEVCKSFEAGHDAFMAEFVYE





YSRRHPEFSIQLIMRIAKGYESLLEKCCKTD





NPAECYANAQEQLNQHIKETQDVVKTNCD





LLHDHGEADFLKSILIRYTKKMPQVPTDLL





LETGKKMTTIGTKCCQLPEDRRMACSEGY





LSIVIHDTCRKQETTPINDNVSQCCSSSYAN





RRPCFTAMGVDTKYVPPPFNPDMFSFDEKL





CSAPAEEREVGQMKLLINLIKRKPQMTEEQ





IKTIADGFTAMVDKCCKQSDINTCFGEEGA





NLIVQSRATLGIGA (SEQ ID NO: 36)





IGF1
Chicken
NP_001004384.1
MEKINSLSTQLVKCCFCDFLKVKMHTVSYI



[Gallusgallus]

HFFYLGLCLLTLTSSAAAGPETLCGAELVD





ALQFVCGDRGFYFSKPTGYGSSSRRLHHKG





IVDECCFQSCDLRRLEMYCAPIKPPKSARSV





RAQRHTDMPKAQKEVHLKNTSRGNTGNR





NYRM (SEQ ID NO: 37)





IGF2
Chicken
NP_001025513
MCAARQILLLLLAFLAYALDSAAAYGTAE



[Gallusgallus]

TLCGGELVDTLQFVCGDRGFYFSRPVGRN





NRRINRGIVEECCFRSCDLALLETYCAKSV





KSERDLSATSLAGLPALNKESFQKPSHAKY





SKYNVWQKKSSQRLQREVPGILRARRYRW





QAEGLQAAEEARAMHRPLISLPSQRPPAPR





ASPEATGPQE (SEQ ID NO: 38)









Provided herein are expression vectors comprising any one of the sequences selected from Tables 1A and 1B, and cells comprising any one of such expression vectors, for example a cell is from a livestock, poultry, game, or aquatic species.


Exemplary Methods and Compositions

Provided herein are methods of increasing the efficiency of maintaining cells in culture.


In some embodiments, provided herein is a method of decreasing the concentration of ammonia in the culture medium of cells comprising increasing the expression of glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of ammonia in the culture medium is decreased by at least 2.5%.


In some embodiments, provided herein is a method of increasing the production of glutamine in cells comprising increasing the expression of glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of glutamine in the cells is increased by at least 2.5%.


In some embodiments, provided herein is a method of increasing the concentration of Insulin-like growth factor (IGF) in the medium of cells in culture comprising increasing the expression of IGF protein secreted by the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of IGF in the ambient medium, or within the cell, is increased by at least 2.5%.


In some embodiments, provided herein is a method of increasing the concentration of albumin in the medium of cells in culture comprising increasing the expression of albumin in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of albumin in the ambient medium, or within the cell, is increased by increased by at least 2.5%.


In some embodiments, provided herein are methods for increasing the cell density of a culture comprising metazoan cells comprising introducing any combination of the following cellular modifications: increased expression of GS, increased expression of IGF, increased expression of albumin, increased expression of telomerase reverse transcriptase (TERT), loss-of-function mutations in cyclin-dependent kinase inhibitor (CKI) proteins, increased expression of YAP, increased expression of TAZ, increased expression of myogenic transcription factors.


In some embodiments, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), and albumin; and (b) culturing the cells in a cultivation infrastructure.


In some embodiments, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or combinations (GS+IGF; GS+albumin; IGF+albumin; GS+IGF+albumin) thereof; and (b) culturing the cells in a cultivation infrastructure.


In some embodiments, provided herein is a method for increasing the cell density of a culture comprising metazoan cells, the method comprising (a) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or combinations (GS+IGF; GS+albumin; IGF+albumin; GS+IGF+albumin) thereof; (b) introducing into the cells a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT); and (c) culturing the cells expressing GS, IGF, albumin or combinations thereof and TERT in a cultivation infrastructure.


As provided herein, the density of cells in a culture or cultivation infrastructure is determined by calculating the cell number per unit volume of the cultivation infrastructure, by determining the biomass per unit volume of the cultivation infrastructure, by determining the biomass DNA content per unit volume of the cultivation infrastructure, by determining the biomass RNA content per unit volume of the cultivation infrastructure, by determining the biomass protein content per unit volume of the cultivation infrastructure, or by visual, electronic, metabolic, spectroscopic, or microscopic, measurement of the biomass density.


In some embodiments, an increase in the cell density of a culture using the methods described herein is about 1.025 fold, 1.05 fold, 1.10-fold, 1.15-fold, 1.20-fold, 1.25-fold, 1.30 fold, 1.35-fold, 1.40-fold, 1.45-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 3.5-fold, 4-fold, 4.5-fold, 5-fold, 7.5-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, 40-fold, or even about 50-fold, 75-fold, 100-fold, 150-fold, or is even about 200-fold, compared to the density of a culture comprising cells that do not include one or more cellular modifications described herein.


In some embodiments, an increase in the density of cells in a culture using the methods described herein is at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 150%, at least 200%, at least 250%, at least 300%, at least 350%, at least 400%, at least 450%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950%, at least 1000%, compared to the cell density of a culture comprising cells that do not include one or more cellular modifications described herein.


In some embodiments, using the methods described herein, there is an increased yield of cellular biomass harvestable per unit volume of the cultivation infrastructure. In some embodiments, the increase is at least about 1.0-fold, 1.25-fold, 1.5-fold, 2-fold, 2.5-fold, 3-fold, 3.5-fold, 4-fold, 4.5-fold, 5-fold, 7.5-fold, 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, 40-fold, or even about 50-fold, 75-fold, 100-fold, 150-fold, or is even about 200-fold compared to the yield of cellular biomass harvestable per unit volume of the cultivation infrastructure in the absence of one or more cellular modifications described herein.


In some embodiments, methods described herein increase the density of cells in a culture by increasing the rate of proliferation of cells in the culture. In some embodiments, the increase in the rate of cell proliferation is at least 2.5%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, at least 150%, at least 200%, at least 250%, at least 300%, at least 350%, at least 400%, at least 450%, at least 500%, at least 550%, at least 600%, at least 650%, at least 700%, at least 750%, at least 800%, at least 850%, at least 900%, at least 950%, or at least 1000%, including values and ranges therebetween, compared to the rate of proliferation of cells that do not include one or more cellular modifications described herein. In some embodiments, the increase in the rate of cell proliferation is about 25-1000%, about 25-750%, about 25-500%, about 50-1000%, about 50-750%, about 50-500%, about 100-1000%, about 100-750%, or about 100-500%, including values and ranges therebetween, compared to the rate of proliferation of cells that do not include one or more cellular modifications described herein.


In some embodiments, methods described herein increase the cell density of a culture by decreasing cell death within the cellular biomass. In some embodiments, the decrease in cell death is at least 2.5%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 100%, including values and ranges therebetween, compared to the rate of cell death in cells that do not include one or more cellular modifications described herein. In some embodiments, a decrease in the rate of cell death within the cellular biomass is about 2.5-10%, about 2.5-75%, about 2.5-50%, about 5.0-100%, about 5.0-75%, about 5.0-50%, about 10-100%, about 10-75%, or about 10-50%, including values and ranges therebetween, compared to the rate of cell death in cells that do not include one or more cellular modifications described herein.


In some embodiments, using the methods described herein, the density of cells in a culture may reach about 105 cells/mL, about 106 cells/mL, about 107 cells/mL, about 108 cells/mL, about 109 cells/mL, or about 1010 cells/mL (cells in the cellular biomass/mL of cultivation infrastructure), including values and ranges therebetween.


In some embodiments, using the methods described herein, the density of cells in a culture may reach about 1 g/L, 5 g/L, 10 g/L, 25 g/L, 50 g/L, 75 g/L, 100 g/L, 150 g/L, 200 g/L, 250 g/L, 300 g/L, 350 g/L, 400 g/L, 450 g/L, 500 g/L, 550 g/L, 600 g/L, 650 g/L, 700 g/L, 750 g/L, 800 g/L, 850 g/L, 900 g/L, or 1000 g/L (g of cellular biomass/L of cultivation infrastructure), including values and ranges therebetween. In some embodiments, the density of cells in a culture may range from about 1 g/L to about 5 g/L, about 1 g/L to about 750 g/L, about 1 g/L to about 500 g/L, about 1 g/L to about 250 g/L, about 1 g/L to about 100 g/L, about 1 g/L to about 50 g/L, about 5 g/L to about 1000 g/L, about 5 g/L to about 750 g/L, about 5 g/L to about 500 g/L, about 5 g/L to about 250 g/L, about 5 g/L to about 100 g/L, about 5 g/L to about 50 g/L, about 25 g/L to about 1000 g/L, about 25 g/L to about 750 g/L, about 25 g/L to about 500 g/L, about 25 g/L to about 300 g/L, about 25 g/L to about 250 g/L, about 25 g/L to about 100 g/L, about 50 g/L to about 1000 g/L, about 50 g/L to about 750 g/L, about 50 g/L to about 500 g/L, about 50 g/L to about 300 g/L, about 50 g/L to about 250 g/L, about 100 g/L to 1000 g/L, about 100 g/L to about 750 g/L, about 100 g/L to about 500 g/L, about 200 g/L to about 1000 g/L, about 200 g/L to about 750 g/L, about 200 g/L to about 500 g/L, about 300 g/L to about 1000 g/L, about 300 g/L to about 800 g/L, about 400 g/L to about 1000 g/L, or about 500 g/L to about 1000 g/L including values and ranges therebetween.


In some embodiments, provided herein is an in vitro method for producing a cultured edible product (e.g. cultured poultry, cultured livestock, cultured game, cultured fish), the method comprising: (a) introducing one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or combinations (GS+IGF; GS+albumin; IGF+albumin; GS+IGF+albumin) thereof into myogenic metazoan cells; (b) optionally introducing a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT) into the myogenic metazoan cells; (c) inducing myogenic differentiation of the cells, wherein the differentiated cells form myocytes and multinucleated myotubes; and (d) culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product. In one embodiment, myogenic cells are natively myogenic. In another embodiment, myogenic cells are not natively myogenic and are modified to become myogenic cells by expressing one or more myogenic transcription factors.


In some embodiments, provided herein is an in vitro method for producing a cultured edible product, the method comprising: (a) overexpressing GS, IGF, albumin, or a combination thereof in a self-renewing cell line, wherein the cell line is a myogenic transcription factor-modified cell line, and wherein the cell line is of a livestock, poultry, game or aquatic animal species; (b) inducing myogenic differentiation of the cell line, wherein the differentiated cell line forms myocytes and multinucleated myotubes; and (c) culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product. In some embodiments, provided herein is cultured edible product produced by the in vitro methods.


In the methods for producing a cultured edible product provided herein, myogenic differentiation can be induced in a variety of ways. In some embodiments, cellular biomass with increased cell density can be differentiated into a phenotype of interest by contacting the cells with a differentiation agent. For example, if the phenotype of interest for the expanded cellular biomass is skeletal muscle and the cellular biomass comprises non-myogenic cells (e.g., non-myogenic stem cells or fibroblasts), the expanded cellular biomass can be contacted with a differentiation agent that would induce the skeletal muscle phenotype into the cells of the biomass. Exemplary differentiation agents that may induce skeletal muscle phenotype include myogenic transcription factors such as MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, and genetic variants thereof. A PCT publication, WO/2015/066377, discloses exemplary methods for differentiating cells into a skeletal muscle phenotype and is incorporated by reference herein in its entirety. Accordingly, in some embodiments, the expanded cellular biomass may be differentiated into the skeletal muscle phenotype using the methods described in WO/2015/066377.


In some embodiments, cells of the expanded biomass can be differentiated into a phenotype of interest without a differentiation agent. For example, if the phenotype of interest for the expanded biomass is a skeletal muscle and the cellular biomass comprises cells of the skeletal muscle lineage, then these cells may differentiate into the skeletal muscle phenotype on their own without a need for an external differentiation agent. However, in some embodiments, an external differentiation agent such as one or more myogenic transcription factors can be used to differentiate cells of the skeletal muscle lineage into the skeletal muscle phenotype.


Induction of myogenic differentiation in cells overexpressing any one of the cellular modifications described herein would result in the formation of differentiated myocytes and multinucleated myotubes. These myocytes and myotubes are cultured to generate skeletal muscle fibers thereby producing a cultured edible biomass or a cultured edible product.


The cultured edible biomass/product can be processed as a raw, uncooked edible product (cultured meat) or as a cooked edible product or as a cooked/uncooked food ingredient. In some embodiments, processing comprises withdrawal of the culture medium that supports the viability, survival, growth, expansion and differentiation of the cellular biomass. Withdrawal may comprise physical removal of the culture medium or altering the composition of the culture medium, for example, by addition of components that would reduce or prevent further expansion and/or differentiation of the biomass or by depletion of components that support expansion and/or differentiation of the biomass.


In some embodiments, processing comprises exposing the cultured edible biomass to sub-physiological temperatures that would not support the expansion and/or differentiation of the biomass. Sub-physiological temperatures include a temperature of about 15° C. (about 59° F.) or lower, about 10° C. (about 50° F.) or lower, about 0° C. to about 15° C. (about 32° F. to about 59° F.), about 0° C. to −15° C. (about 32° F. to about 5° F.), about −15° C. to about 15° C. (about 5° F. to about 59° F.), about 0° C. to −213° C. (about 32° F. to about −350° F.), about −30° C. to about −100° C. (about −22° F. to about −148° F.), about −50° C. to about −90° C. (about −58° F. to about −130° F.), or about −170° C. to about −190° C. (about −274° F. to about −310° F.). For example, in one embodiment, the expanded and/or differentiated biomass can be cooled to a temperature of about 2° C. to about 8° C. (about 35° F. to about 46.5° F.). In another embodiment, the expanded and/or differentiated biomass can be frozen, for example, by cooling to a temperature of about 32° F. or lower, e.g. about 32° F. to about 0° F., about 32° F. to about −10° F., about 32° F. to about −20° F., about 32° F. to about −30° F., about 32° F. to about −40° F., about 32° F. to about −50° F., about 32° F. to about −60° F., about 32° F. to about −70° F., about 32° F. to about −80° F., and the like. In some embodiments, the expanded and/or differentiated biomass can be exposed to sub-physiological temperatures as low as about −300° F. to about −350° F., such as the liquid nitrogen temperature of about −321° F.


In some embodiments, processing comprises exposing the biomass to superphysological temperatures that would not support the viability, survival, expansion and/or differentiation of the biomass. In one embodiment, exposing the biomass to superphysiological temperatures comprises fully or partially cooking the biomass, for example, by heating the biomass to a temperature of about 100° F. to about 600° F., about 100° F. to about 550° F., about 100° F. to about 500° F., about 100° F. to about 450° F., about 100° F. to about 400° F., about 100° F. to about 350° F., about 100° F. to about 300° F., about 100° F. to about 250° F., about 100° F. to about 200° F. or about 100° F. to about 150° F.


In some embodiments, provided herein is an edible metazoan biomass product (cultured edible product) comprising cells having any combination of the following cellular modifications: increased expression of GS, increased expression of IGF, increased expression of albumin, increased expression of telomerase reverse transcriptase (TERT), loss-of-function mutations in cyclin-dependent kinase inhibitor (CKI) proteins, increased expression of YAP, increased expression of TAZ, increased expression of myogenic transcription factors.


Cultivation Infrastructure

As referred to herein, a cultivation infrastructure refers to the environment in which metazoan cells are cultured, i.e. the environment in which the cellular biomass is cultivated.


A cultivation infrastructure may be a tube, a cylinder, a flask, a petri-dish, a multi-well plate, a dish, a vat, an incubator, a bioreactor, an industrial fermenter and the like. A cultivation infrastructure may be a culture medium in which metazoan cells are cultured.


A cultivation infrastructure can be of any scale, and support any volume of cellular biomass and culturing reagents. In some embodiments, the cultivation infrastructure ranges from about 10 μL to about 100,000 L. In exemplary embodiments, the cultivation infrastructure is about 10 μL, about 100 μL, about 1 mL, about 10 mL, about 100 mL, about 1 L, about 10 L, about 100 L, about 1000 L, about 10,000 L, or even about 100,000 L.


In some embodiments, the cultivation infrastructure comprises a substrate. A cultivation infrastructure may comprise a permeable substrate (e.g. permeable to physiological solutions) or an impermeable substrate (e.g. impermeable to physiological solutions).


In some embodiments, the cultivation infrastructure comprises a primary substrate, which can be a flat, concave, or convex substrate. In some embodiments, the cultivation infrastructure further comprises a secondary substrate, either introduced, or autologous, to direct cellular growth between the substrates, e.g. to direct attachment, proliferation and hypertrophy of cells on a plane perpendicular to the primary substrate.


In some embodiments, the cultivation infrastructure comprises a hydrogel, a liquid cell culture media, or soft agar.


In some embodiments, the cultivation infrastructure does not comprise a substrate to which cells can adhere. In some embodiments, the cultivation infrastructure comprises a suspension culture, e.g. supporting the growth of a self-adhering biomass, or single-cell suspension in a liquid medium.


In some embodiments, the cultivation infrastructure comprises adherent cells (i.e. those cells that adhere to a substrate). In some embodiments, the cultivation infrastructure comprises non-adherent cells (i.e. those cells that do not adhere to a substrate). In some embodiments, the cultivation infrastructure comprises both adherent and non-adherent cells.


Kits and Articles of Manufacture

The present application also provides kits for engineering cells of interest to increase production of glutamine, increase production of IGF, increase production of albumin, and/or decrease the production of ammonia.


In some embodiments, the kits comprise a GS DNA construct, an IGF construct, and/or an albumin construct for transfection. The kits optionally may further comprise tools for immortalization or extending cell self-renewal capacity, activating YAP/TAZ pathways, and myogenic differentiation.


The present application also provides articles of manufacture comprising any one of the compositions or kits described herein.


It is to be understood that the terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof. The following examples are for illustrative purposes. These are intended to show certain aspects and embodiments of the present invention but are not intended to limit the invention in any manner.


EXAMPLES
Example 1: The Effects of Ectopic Expression of Glutamine Synthetase (GS) in Primary Duck Fibroblasts and Myoblasts

This example describes the effects of ectopic expression of GS on ammonia concentration in ambient media from primary duck fibroblast and myoblast cultures.


Methods
Measurement of Ammonia Concentration

Following the manufacturer's instructions (Sigma-Aldrich #AA0100), the absolute ammonia concentration (in μg/mL) was determined for each time point and treatment group (in biological triplicate). Results were reported as the mean of the treatment group bounded by the 95% confidence interval. Measurements of the ammonia detection assay were performed on a spectrophotometer (Spectramax 250). All statistical analyses and visualizations were performed in Microsoft Excel 2010.


Primary Duck Fibroblast and Myoblast Cultures

A peptide-coated (peptides mimicking extracellular matrix) T-150 flask was prepared for cell seeding by adding 10 mL of an aqueous peptide solution to the T-150 flask and incubated for at least 1 hour at 37° C. The aqueous peptide solution was aspirated from the T-150 flask and the flask washed with PBS. 25 mL of culture medium specific to the targeted cell type was added to the flask and the flask incubated and equilibrated at 37° C. in 5% atmospheric CO2.


Under aseptic conditions the targeted tissue was excised with dissection instruments. Tissue sections were minced into approximately 2 mm×2 mm sections. 150 mg tissue sections were weighed and then transferred to a sterile 50 mL centrifuge tube containing 8 mL of enzymatic cell dissociation solution consisting of 0.17% trypsin and 0.085% collagenase in Hanks Balanced Salt Solution pH 7.4. The centrifuge tube was closed tightly and incubated on ice. Following overnight incubation, the tube was then incubated at 37° C. for 15 minutes. The enzymatic tissue digest was triturated with a sterile 5 mL serological pipet for 1 minute. The cell suspension was passed through a sterile 70 μm strainer into a sterile 50 mL centrifuge tube. 20 mL of cold basal medium was flowed through the strainer. The strainer was discarded and the tube capped. The centrifuge tube was centrifuged at 300×g for 5 minutes. The supernatant was aspirated, and the cell pellet was resuspended in culture medium before transfer to the T-150 flask prepared for seeding. The flask was incubated at 37° C. in 5% atmospheric CO2. The cells were checked daily for growth and contamination. Culture medium was changed every two to three days. After the cultures reached a confluence of 70% to 90%, the cells were dissociated and either cryopreserved or passaged using standard cell culture technique.


Transfection

The primary duck fibroblast and myoblast cultures were routinely sub-cultured under 5% atmospheric CO2 at 37° C. (i.e. incubation conditions) until 80% confluent on gelatin-coated dishes. Cells were dissociated to single cells and counted to determine the number of cells. In a gelatin-coated 12-well tissue culture plate, 5×104 cells were seeded into each well. Growth culture medium was added to each well to a total final volume of 1 ml per well. The cells were incubated overnight at 37° C.


Cells were washed with PBS and transfection media added. 1 μg of plasmid DNA containing the murine GS coding sequence (pcDNA3.1+/C−(K)DYK (SEQ ID NO: 58), Genscript OMu19897D, Table 1A) driven by a CMV promoter was complexed using the Lipofectamine 3000 system (Thermo Fisher Scientific #L3000001). The complexed DNA was added dropwise to each well in biological triplicate. Vehicle control cells received an equivalent treatment absent the DNA. The cells were shaken gently and incubated for 48 hours; the media was then changed to proliferation media supplemented with 10% FBS and either the combination of 434 μg/mL (2 mM) L-alanyl-L-glutamine and 584 μg/mL (4 mM) L-glutamine or no supplemented glutamine (0 mM glutamine, “glutamine absent”). The cells were then returned to incubation conditions.


Conditioned Media Collection

Cells were washed with PBS, and 1 mL of either glutamine-supplemented or glutamine-absent proliferation medium was added to each well. Cells were then returned to incubation.


200 μL media samples were collected from each well and stored in sterile tubes at −80° C. In a gelatin-coated 12-well plate, proliferation medium was incubated in wells devoid of cells (i.e. acellular) in parallel experimental wells containing cells as a background control for ammonia accumulation.


Following each 24-hour period through day seven, 200 μL samples of media were collected from each well stored at −80° C. 200 μL of fresh medium were then added to each of the wells to a total volume of 1 mL. Following sample collection, the plates were then returned to incubation conditions.


Results

As demonstrated in FIG. 1, concentration of ammonia in media spontaneously increased in the absence of cells over the course of seven days. The rate at which ammonia increased differed between the three media conditions shown in the figure. Initial concentration of ammonia was largely dependent on whether or not the media had been supplemented with glutamine.



FIG. 2A-D shows that fibroblasts transfected with expression vectors coding for glutamine synthetase exhibited morphology similar to vehicle-only control transfected fibroblasts. Transfected fibroblasts remained viable and stable as evidenced by their continued adherence to substrate following a seven day incubation. FIG. 2A shows fibroblasts transfected with vehicle-only and grown in media with supplemented glutamine; FIG. 2B shows fibroblasts transfected with mouse GS and grown in media with supplemented glutamine; FIG. 2C shows fibroblasts transfected with vehicle-only and grown in media without supplemented glutamine; and FIG. 2D shows fibroblasts transfected with mouse GS and grown in media without supplemented glutamine.


As demonstrated in FIG. 3, following a one day incubation post transfection, fibroblasts expressing GS and grown in a culture medium supplemented with glutamine showed a smaller increase in extracellular ammonia than cells transfected with vehicle-only and grown in a culture medium supplemented with glutamine compared to a culture medium supplemented with glutamine in which no cells were grown. Within glutamine treatment groups, two-way ANOVA revealed a statistically significant difference (p<0.001) between ammonia concentration over time, dependent upon GS transfection and dependent on which day the measurement was made. The glutamine-supplemented culture medium in which no cells were grown showed an increase in ammonia concentration of 0.072 μg/mL/day, and the culture medium not supplemented with glutamine in which no cells were grown showed an increase in ammonia concentration of 0.51 μg/mL/day. It was observed on Day 3 that fibroblasts grown without supplemental ammonia and transfected with GS exhibited a statistically lower ammonia concentration compared to fibroblasts transfected with vehicle-only. Seven days following transfection, there was a significant difference (p<0.001, two-way ANOVA) in the amount of ammonia in glutamine absent growth media between cells transfected with GS and cells transfected with vehicle-only. Error bars in FIG. 3 indicate 95% confidence intervals. One asterisk indicates p<0.05; two asterisks indicate p<0.01.



FIG. 4 and Table 2 show normalized data from FIG. 3 to present a percent increase in ammonia relative to the extracellular ammonia concentration. After seven days in media without supplemented glutamine, fibroblasts transfected with GS showed a smaller increase in ammonia than cells transfected with vehicle-only.









TABLE 2







Percent Increase of Ammonia Relative to


Media-Only Ammonia Concentration












+Glutamine
−Glutamine




Media
Media







Glutamine
43%
 35%



Synthetase





Vehicle
43%
148%










As shown in FIG. 5, myoblasts transfected with expression vectors coding for GS exhibited morphology similar to vehicle treated myoblasts. Transfected cells remain viable and capable of normal differentiation as evidenced by spontaneous myotube formation. FIG. 5A shows myoblasts transfected with vehicle and grown in media with supplemented glutamine; FIG. 5B shows myoblasts transfected with a mouse GS gene and grown in a medium with supplemented glutamine; FIG. 5C shows myoblasts transfected with vehicle-only and grown in media without supplemented glutamine; and FIG. 5D shows myoblasts transfected with a mouse GS gene and grown in a medium without supplemented glutamine.


As demonstrated in FIG. 6, following a one-day incubation post transfection, myoblasts expressing GS and grown in media not supplemented with glutamine show less increase in ammonia in the media than myoblasts transfected with vehicle and grown in media not supplemented with glutamine compared to acellular control medium supplemented with glutamine. Additionally, following a one-day incubation post transfection, myoblasts expressing GS and grown in media supplemented with glutamine show less increase in ammonia in the media than myoblasts transfected with vehicle and grown in a medium supplemented with glutamine compared to a medium supplemented with glutamine in which no cells were grown. Glutamine-supplemented medium in which no cells were grown showed an increase in ammonia concentration of 0.34 μg/mL/day, and medium in which no cells were grown and not supplemented with glutamine increased by 0.51 μg/mL/day. It was observed on Day 3 that myoblasts grown without supplemental ammonia and transfected with GS exhibited a statistically lower ammonia concentration compared to fibroblasts transfected with vehicle. Seven days following transfection, there is a significant difference in the amount of ammonia in growth media between myoblasts transfected with GS and myoblasts transfected with vehicle. Two-way ANOVA revealed a statistically significant difference (p<0.001) between ammonia concentrations over time, dependent upon the presence or absence of glutamine, revealing that the effect of GS was statistically significant (p<0.001) only when glutamine was absent. Error bars in FIG. 6 indicate 95% confidence intervals. One asterisk indicates p<0.05; two asterisks indicate p<0.01. FIG. 7 and Table 3 normalize the data from FIG. 6 to show a percent increase in ammonia relative to the medium-only (medium without cells−control) concentration of ammonia. After seven days in media with or without supplemented glutamine, myoblasts transfected with GS show a smaller increase in ammonia than myoblasts transfected with vehicle.









TABLE 3







Percent Increase of Ammonia Relative to Media-


Only Ammonia Concentration












+Glutamine
−Glutamine




Media
Media







Glutamine
40%
 1%



Synthetase





Vehicle
67%
111%











FIG. 8 and Table 4 demonstrate that myoblast cultures show a reduction in ammonia in glutamine supplemented medium and an even larger percentage decrease in medium not supplemented with glutamine. Fibroblast cultures do not show a decrease in ammonia in glutamine supplemented media, but do exhibit a decrease in ammonia in media without supplemented glutamine.









TABLE 4







Percent Ammonia Remaining in


Media from +GS Cells Relative to


Media from −GS cells












+Glutamine
−Glutamine




Media
Media







Myoblast
 60%
 1%



Fibroblast
100%
24%










In both fibroblasts and myoblasts, transfection of GS resulted in statistically significant reduction of observed ammonia concentration compared to background ammonia generation (p<0.001, two-way ANOVA). In both cell types, there was a significant difference between ammonia concentrations in groups that were supplemented with glutamine compared to those that were not supplemented with glutamine (P<0.001). There was a statistically significant difference in cells transfected with GS compared to those transfected with vehicle alone when media was not supplemented with glutamine (p<0.001). The presence or absence of glutamine in cell culture media exhibits a significantly different effect between treatment groups (p<0.01, two-way ANOVA). Regression analysis reveals that the presence or absence of glutamine accounts for 72-98% of the variance of the data (p<0.001). Covariance analysis reveals strong positive interactions between systems where glutamine is present (4-12 fold greater than without glutamine), and a moderate interaction when cells are transfected with a GS gene or vehicle-only control, regardless of whether glutamine is present or not.


Based on data presented in FIG. 3, FIG. 9 illustrates cells transfected with a GS gene demonstrate a 6.8-fold delay in the time to achieve wild-type, primary cell ammonia concentration (in this instance, 14 μg/mL was observed on average and is indicated by horizontal dashed line). When controlled for the absence of supplemented glutamine, transfection of a GS gene accounts for 31% of this delay. Solid lines depict experimental data while dotted lines are extrapolated values based on a linear fit of the experimental data.


Example 2: The Effects of Ectopic Expression of IGF-1 and Albumin Expression in Primary Duck Fibroblasts and Myoblasts

This example describes the effects of ectopic expression of IGF-1 and albumin expression on the concentration of IGF-1 and albumin in media in primary duck fibroblasts and myoblasts.


Primary duck myoblast and fibroblast cells were isolated and cultured as described in Example 1. Cells were washed with PBS and transfection medium was added. 1 pg of plasmid DNA comprising a human serum albumin gene (Genscript OHu18744, Table 1A), a murine serum albumin gene (Genscript OMu21640, Table 1A) or human insulin-like growth factor 1 (IGF-1) (Origene RG212527, Table 1A) gene coding sequence fused to a nucleotide coding sequence encoding a FLAG-tag peptide (DYKDDDDK (SEQ ID NO: 57)) driven by a CMV promoter was complexed using the Lipofectamine 3000 system as a transfection vehicle (Thermo Fisher Scientific #L3000001). For transfection, the complexed DNA was added dropwise to each well in biological triplicate. Vehicle-only control cells received an equivalent treatment absent the DNA. The cell cultures were shaken gently and incubated for 48 hours; the transfection medium was then changed to growth medium and the cells were returned to incubation. Conditioned medium was collected as described in Example 1.



FIG. 10A-D show that fibroblasts transfected with a IGF-1 or albumin gene show morphology similar to cells transfected with vehicle-only (FIG. 10A Fibroblasts transfected with vehicle-only; FIG. 10B Fibroblasts transfected with a human IGF-1 gene; FIG. 10C Fibroblasts transfected with a mouse albumin gene; FIG. 10D Fibroblasts transfected with a human albumin gene).



FIG. 11A-D show that myoblasts transfected with an IGF-1 or albumin gene show morphology similar to cells transfected with vehicle-only (FIG. 11A Myoblasts transfected with vehicle-only; FIG. 11B Myoblasts transfected with a human IGF-1 gene; FIG. 11C Myoblasts transfected with a mouse albumin gene; FIG. 11D Myoblasts transfected with a human albumin gene).


Indirect ELISA detection assays were used to measure the secretion of IGF-1 into the ambient medium by the cells. Ambient culture media samples were thawed and maintained on ice until use. Total protein concentration in media samples was determined by absorbance measurement on a spectrophotometer (Spectramax 250) using a BCA serial dilution method (Thermo Fisher Scientific #22325). Using untreated black walled, black-bottomed polystyrene 96-well plates, 1 μg of total protein from each treatment was adsorbed to the plate using 1× coating buffer (Abcam #ab210899). Following coating, the wells were washed and blocked using a 5% solution of non-fat dry milk (NFDM) in 1×PBS. Primary antibody (murine anti-DDK monoclonal, Origene #OTI4C5) was incubated at 1:5000 dilution in 5% NFDM/PBS at 4° C. for 18 hours. Wells were washed with PBS for three cycles of shaking for five minutes per cycle. Secondary antibody (goat anti-mouse-HRP conjugate, Sigma AP130P) was applied at a 1:10000 dilution in 5% NFDM/PBS for 1.5 hours at 22° C. A second PBS wash/shake cycle was applied to remove excess secondary antibody. QuantaRed kit detection was applied as per manufacturer's instructions (Thermo Fisher Scientific #15159). Fluorescence emission values were obtained by a fluorometer (Tecan Infinite F200). Data was analyzed and visualized using Microsoft Excel 2010. Transfection with a plasmid encoding an IGF-1 protein resulted in a statistically significant 53% increase in secretion of IGF-1 into the ambient medium (FIG. 12) compared to vehicle-only transfected cells (p<0.001, one-way ANOVA) as measured by ELISA.


Example 3: Edible Metazoan Biomass Manufacturing Methods

The manufacturing of an edible metazoan biomass, in one exemplary protocol, can comprise three steps:


Step 1 is expanding cell populations overexpressing containing a GS gene, an IGF gene, an albumin gene, or a combination thereof in a cell line capable of self-renewal, wherein the cell line is a myogenic transcription factor-modified cell line, and wherein the cell line is of from a livestock, poultry, game or an aquatic animal species. Selected cell populations overexpressing targeted genes are seeded onto a substrate consisting of peptide-coated tissue-culture treated plastic, in a standard growth medium at a density of 7.5×103 cells/cm2 and cultured at 37° C. under 5% CO2 atmospheric conditions. As cultures approach 80% confluence, cells are enzymatically dissociated and the expanded quantity of cells are seeded at 7.5×103 cells/cm2. This process is repeated until the total number of cells harvested following dissociation exceeds 1.0×108 cells.


Step 2 is cryopreserving and storing the expanded cell populations in a cryopreserved cell bank. Cells harvested in quantities equal to or exceeding 1.0×108 following expansion of selected cells are pelleted by centrifugation for 5 minutes at 300×g. The cell pellet is suspended in a standard cryopreservation medium at 2.5×106 cells/mL and aliquoted at 1.0 mL per cryovial. Cryovials are cooled to −80° C. at −1° C./minute using an insulated container and transferred to a dewar containing liquid nitrogen for long-term storage. As cells stocks are depleted from this bank, remaining vials of cells are expanded and cryopreserved to replenish the cryopreserved cell bank inventory.


Step 3 is seeding and cultivating cells from a master cell bank in an ex vivo milieu: In accordance with the cultivation scale desired, one or more vials from the master cell bank is rapidly thawed to room temperature. The cryopreservation medium is removed from the cells by a 5 minute, 300×g centrifugation step. Cells are suspended in standard growth medium and seeded onto a gelatin-coated cultivation substrate in standard growth medium as before, except that, on the final passage prior to harvest, the cells are permitted to proliferate to 100% confluence on the cell culture substrate. The growth medium is next exchanged for differentiation medium specific to the myogenic transcription factor-modified cell line, and the cultures are permitted to differentiate for up to 6 days inducing myogenic differentiation of the cell line, wherein the differentiated cell line forms myocytes and multinucleated myotubes; and the myocytes and myotubes are cultured to generate skeletal muscle fibers.


The cultivation scale for proliferative biomass is outlined according to Table 5, where the predicted average cell mass is 2.0×10−9 grams, and the predicted average cell doubling time is 24 hours (h).









TABLE 5







Biomass Production Scale Cultivation Estimates During Cell Proliferation.


Masses are shown in grams. 1 vial is equivalent to 2.5 × 106 cells.

















# hours
1 vial
2 vials
3 vials
4 vials
5 vials
6 vials
7 vials
8 vials
9 vials
10 vials




















 0 h
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05


 24 h
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1


 48 h
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2


 72 h
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32
0.36
0.4


 96 h
0.08
0.16
0.24
0.32
0.4
0.48
0.56
0.64
0.72
0.8


120 h
0.16
0.32
0.48
0.64
0.8
0.96
1.12
1.28
1.44
1.6


144 h
0.32
0.64
0.96
1.28
1.6
1.92
2.24
2.56
2.88
3.2


168 h
0.64
1.28
1.92
2.56
3.2
3.84
4.48
5.12
5.76
6.4


192 h
1.28
2.56
3.84
5.12
6.4
7.68
8.96
10.24
11.52
12.8


216 h
2.56
5.12
7.68
10.24
12.8
15.36
17.92
20.48
23.04
25.6


240 h
5.12
10.24
15.36
20.48
25.6
30.72
35.84
40.96
46.08
51.2


264 h
10.24
20.48
30.72
40.96
51.2
61.44
71.68
81.92
92.16
102.4


288 h
20.48
40.96
61.44
81.92
102.4
122.88
143.36
163.84
184.32
204.8


312 h
40.96
81.92
122.88
163.84
204.8
245.76
286.72
327.68
368.64
409.6


336 h
81.92
163.84
245.76
327.68
409.6
491.52
573.44
655.36
737.28
819.2









Step 4 is harvesting cultivated cell biomass for dietary consumption. After the cells have proliferated to confluence, the culture medium is removed, and the adherent cell cultures are rinsed with phosphate buffered saline. Next, the confluent biomass of adherent cells mechanically dissociated from the substrate by means of a scraping device. The dissociated biomass is collected into centrifuge tubes, pelleted at 400×g for 5 minutes to remove excess liquid, and processed for food product preparation. Harvested yield of differentiated cell biomass are estimated by multiplying the projected biomass of the proliferative culture by four to account for biomass accumulation during cell differentiation.


NUMBERED EMBODIMENTS



  • 1. A method for increasing the cell density of a culture comprising metazoan cells, the method comprising:
    • a. introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), and albumin; and
    • b. culturing the cells in a cultivation infrastructure.

  • 2. A method for increasing the cell density of a culture comprising metazoan cells, the method comprising:
    • a. introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and
    • b. culturing the cells in a cultivation infrastructure.

  • 3. A method for increasing the cell density of a culture comprising metazoan cells, the method comprising:
    • a. introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof;
    • b. introducing into the cells a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT); and
    • c. culturing the cells in a cultivation infrastructure.

  • 4. The method of any one of embodiments 1-3, wherein the cells comprise a loss-of-function mutation in one or more genes encoding cyclin-dependent kinase inhibitor (CKI) proteins.

  • 5. The method of embodiment 1 or 2, comprising introducing into the cells a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT).

  • 6. The method of embodiment 4, wherein the CKI proteins are p15, p16, paralogs, orthologs, or genetic variants thereof

  • 7. The method of any one of embodiments 1-6, wherein the cells are from a self-renewing cell line.

  • 8. The method of embodiment 7, wherein the self-renewing cell line is selected from the group consisting of an embryonic stem cell line, induced pluripotent stem cell line, extraembryonic cell line, and somatic cell line.

  • 9. The method of any one of embodiments 1-8, wherein the cells are modified with a myogenic transcription factor.

  • 10. The method of embodiment 9, wherein the myogenic transcription factor is MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof

  • 11. The method of any one of embodiments 1-10, wherein:
    • a. the concentration of glutamine in the culture medium is increased to at least 0.001 mM, to at least 0.0025 mM, to at least 0.005 mM, to at least 0.0075 mM, to at least 0.01 mM, to at least 0.025 mM, to at least 0.05 mM, to at least 0.075 mM, to at least 0.1 mM, to at least 0.25 mM, to at least 0.50 mM, to at least 0.75 mM, to at least 1.0 mM, to at least 1.5 mM, to at least 2.0 mM, to at least 3.0 mM, to at least 5.0 mM, to at least 10 mM, or to at least 20 mM;
    • b. the concentration of IGF in the culture medium is increased to at least 0.00001 ng/mL, to at least 0.000025 ng/mL, to at least 0.000075 ng/mL, to at least 0.0005 ng/mL, to at least 0.001 ng/mL, to at least 0.0025 ng/mL, to at least 0.005 ng/mL, to at least 0.0075 ng/mL, to at least 0.01 ng/mL, to at least 0.025 ng/mL, to at least 0.05 ng/mL, to at least 0.1 ng/mL, to at least 0.25 ng/mL, to at least 0.5 ng/mL, to at least 1 ng/mL, to at least 2.5 ng/mL, to at least 5 ng/mL, to at least 7.5 ng/mL, to at least 10 ng/mL, to at least 25 ng/mL, to at least 50 ng/mL, to at least 75 ng/mL, to at least 125 ng/mL, to at least 250 ng/mL, to at least 500 ng/mL, to at least 750 ng/mL, to at least 1,000 ng/mL, to at least 1,500 ng/mL, to at least 2,000 ng/mL, to at least 2,500 ng/mL, to at least 3,000 ng/mL, to at least 3,500 ng/mL, to at least 4,000 ng/mL, to at least 4,500 ng/mL, to at least 5,000 ng/mL to at least 6,000 ng/mL, to at least 7,000 ng/mL, to at least 8,000 ng/mL, to at least 9,000 ng/mL, or even by at least 10,000 ng/mL; and/or
    • c. the concentration of albumin in the culture medium is increased to at least 0.0001 mg/mL, to at least 0.0002 mg/mL, to at least 0.0004 mg/mL, to at least 0.0005 mg/mL, to at least 0.0006 mg/mL, to at least 0.0007 mg/mL, to at least 0.0008 mg/mL, to at least 0.0009 mg/mL, to at least 0.001 mg/mL, to at least 0.002 mg/mL, to at least 0.003 mg/mL, to at least 0.004 mg/mL, to at least 0.005 mg/mL, to at least 0.006 mg/mL, to at least 0.007 mg/mL, to at least 0.008 mg/mL, to at least 0.009 mg/mL, to at least 0.01 mg/mL, to at least 0.05 mg/mL, to at least 0.075 mg/mL, to at least 0.1 mg/mL, to at least 0.25 mg/mL, to at least 0.5 mg/mL, to at least 0.75 mg/mL, to at least 1 mg/mL, to at least mg/mL, to at least 1.5 mg/mL, to at least 1.5 mg/mL, to at least 1.75 mg/mL, to at least 2 mg/mL, to at least 3 mg/mL, to at least 5 mg/mL, to at least 10 mg/mL, to at least 20 mg/mL, to at least 25 mg/mL, to at least 50 mg/mL, to at least 75 mg/mL, or to at least 100 mg/mL,
    • compared to cultures of cells in which the expression of GS, IGF, albumin or a combination thereof is not increased.

  • 12. The method of any one of embodiments 1-11, comprising inhibiting the HIPPO signaling pathway.

  • 13. The method of embodiment 12, wherein inhibiting the HIPPO signaling pathway comprises activating Yes-Associated Protein 1 (YAP1), Transcriptional co-Activator with PDZ-binding motif (TAZ), or a combination thereof in the cells.

  • 14. The method of any one of embodiments 1-13, wherein the cells are the cells of livestock, poultry, game or aquatic animal species.

  • 15. The method of any one of embodiments 1-14, wherein the cells are of a chicken, duck, or turkey.

  • 16. The method of any one of embodiments 1-14, wherein the cells are of a fish.

  • 17. The method of any one of embodiments 1-14, wherein the cells are of a livestock species.

  • 18. The method of embodiment 17, wherein the livestock species is porcine or bovine.

  • 19. The method of any one of embodiments 1-14, wherein the cells are from any animal species intended for human or non-human dietary consumption.

  • 20. The method of any one of embodiments 1-6, wherein the cells are myogenic cells.

  • 21. The method of embodiment 20, wherein the myogenic cells are myoblasts, myocytes, satellite cells, side population cells, muscle derived stem cells, mesenchymal stem cells, myogenic pericytes, or mesoangioblasts.

  • 22. The method of any one of embodiments 1-6, wherein the cells are non-myogenic cells.

  • 23. The method of any one of embodiments 1-6, wherein the cells are non-myogenic cells modified to express one or more myogenic transcription factors.

  • 24. The method of embodiment 23, wherein the myogenic transcription factor is MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof

  • 25. The method of any one of embodiments 1-24, wherein the polynucleotide sequence encoding GS comprises a GS gene sequence from Tables 1A and 1B.

  • 26. The method of any one of embodiments 1-24, wherein the polynucleotide sequence encoding IGF comprises an IGF gene sequence from Tables 1A and 1B.

  • 27. The method of any one of embodiments 1-24, wherein the polynucleotide sequence encoding albumin comprises an albumin gene sequence from Tables 1A and 1B.

  • 28. An in vitro method for producing a cultured edible product, the method comprising:
    • a. introducing one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combinations thereof into myogenic cells;
    • b. optionally introducing a polynucleotide sequence encoding a telomerase reverse transcriptase (TERT) into the cells;
    • c. inducing myogenic differentiation of the cells expressing GS, IGF, albumin or combinations thereof and optionally TERT, wherein the differentiated cells form myocytes and multinucleated myotubes;
    • d. culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product.

  • 29. The method of embodiment 28, wherein the myogenic cells are natively myogenic.

  • 30. The method of embodiment 28, wherein the myogenic cells are not natively myogenic and are modified to express one or more myogenic transcription factors.

  • 31. The method of embodiment 28 or 29, wherein the myogenic cells are myoblasts, myocytes, satellite cells, side population cells, muscle derived stem cells, mesenchymal stem cells, myogenic pericytes, or mesoangioblasts.

  • 32. The method of embodiment 30, wherein the myogenic transcription factor is MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof

  • 33. The method of any one of embodiments 28-32, wherein the step of inducing myogenic differentiation comprises activating the expression of one or more myogenic transcription factors.

  • 34. The method of any one of embodiments 28-33, comprising inhibiting the HIPPO signaling pathway.

  • 35. The method of embodiment 34, wherein inhibiting the HIPPO signaling pathway comprises activating Yes-Associated Protein 1 (YAP1) and/or Transcriptional co-Activator with PDZ-binding motif (TAZ) in the cells.

  • 36. The method of any one of embodiments 28-35, wherein the cells comprise a loss-of-function mutation in one or more genes encoding cyclin-dependent kinase inhibitor (CKI) proteins.

  • 37. The method of embodiment 36, wherein the CKI proteins are p15, p16, paralogs, orthologs, or genetic variants thereof

  • 38. The method of embodiment 30, wherein the myogenic cells are from an embryonic stem cell line, induced pluripotent stem cell line, extraembryonic cell line, or a somatic cell line, modified to express one or more myogenic transcription factors.

  • 39. The method of any one of embodiments 28-38, wherein:
    • a. the concentration of glutamine in the culture medium is increased to at least 0.001 mM, to at least 0.0025 mM, to at least 0.005 mM, to at least 0.0075 mM, to at least 0.01 mM, to at least 0.025 mM, to at least 0.05 mM, to at least 0.075 mM, to at least 0.1 mM, to at least 0.25 mM, to at least 0.50 mM, to at least 0.75 mM, to at least 1.0 mM, to at least 1.5 mM, to at least 2.0 mM, to at least 3.0 mM, to at least 5.0 mM, to at least 10 mM, or to at least 20 mM;
    • b. the concentration of IGF in the culture medium is increased to at least 0.00001 ng/mL, to at least 0.000025 ng/mL, to at least 0.000075 ng/mL, to at least 0.0005 ng/mL, to at least 0.001 ng/mL, to at least 0.0025 ng/mL, to at least 0.005 ng/mL, to at least 0.0075 ng/mL, to at least 0.01 ng/mL, to at least 0.025 ng/mL, to at least 0.05 ng/mL, to at least 0.1 ng/mL, to at least 0.25 ng/mL, to at least 0.5 ng/mL, to at least 1 ng/mL, to at least 2.5 ng/mL, to at least 5 ng/mL, to at least 7.5 ng/mL, to at least 10 ng/mL, to at least 25 ng/mL, to at least 50 ng/mL, to at least 75 ng/mL, to at least 125 ng/mL, to at least 250 ng/mL, to at least 500 ng/mL, to at least 750 ng/mL, to at least 1,000 ng/mL, to at least 1,500 ng/mL, to at least 2,000 ng/mL, to at least 2,500 ng/mL, to at least 3,000 ng/mL, to at least 3,500 ng/mL, to at least 4,000 ng/mL, to at least 4,500 ng/mL, to at least 5,000 ng/mL to at least 6,000 ng/mL, to at least 7,000 ng/mL, to at least 8,000 ng/mL, to at least 9,000 ng/mL, or even by at least 10,000 ng/mL; and/or
    • c. the concentration of albumin in the culture medium is increased to at least 0.0001 mg/mL, to at least 0.0002 mg/mL, to at least 0.0004 mg/mL, to at least 0.0005 mg/mL, to at least 0.0006 mg/mL, to at least 0.0007 mg/mL, to at least 0.0008 mg/mL, to at least 0.0009 mg/mL, to at least 0.001 mg/mL, to at least 0.002 mg/mL, to at least 0.003 mg/mL, to at least 0.004 mg/mL, to at least 0.005 mg/mL, to at least 0.006 mg/mL, to at least 0.007 mg/mL, to at least 0.008 mg/mL, to at least 0.009 mg/mL, to at least 0.01 mg/mL, to at least 0.05 mg/mL, to at least 0.075 mg/mL, to at least 0.1 mg/mL, to at least 0.25 mg/mL, to at least 0.5 mg/mL, to at least 0.75 mg/mL, to at least 1 mg/mL, to at least mg/mL, to at least 1.5 mg/mL, to at least 1.5 mg/mL, to at least 1.75 mg/mL, to at least 2 mg/mL, to at least 3 mg/mL, to at least 5 mg/mL, to at least 10 mg/mL, to at least 20 mg/mL, to at least 25 mg/mL, to at least 50 mg/mL, to at least 75 mg/mL, or to at least 100 mg/mL,
    • compared to cultures of cells in which the expression of GS, IGF, albumin or a combination thereof is not increased.

  • 40. The method of any one of embodiments 28-39, wherein the cells are from livestock, poultry, game or aquatic animal species.

  • 41. The method of any one of embodiments 28-40, wherein the cells are from a chicken, duck, or turkey.

  • 42. The method of any one of embodiments 28-40, wherein the cells are from a fish.

  • 43. The method of any one of embodiments 28-40, wherein the cells are from a livestock species.

  • 44. The method of embodiment 43, wherein the livestock species is porcine or bovine.

  • 45. The method of any one of embodiments 28-44, wherein the cells are from any animal species intended for human or non-human dietary consumption.

  • 46. The method of any one of embodiments 28-45, wherein the polynucleotide sequence encoding GS comprises a GS coding sequence from Tables 1A and 1B.

  • 47. The method of any one of embodiments 28-45, wherein the polynucleotide sequence encoding IGF comprises an IGF coding sequence from Tables 1A and 1B.

  • 48. The method of any one of embodiments 28-45, wherein the polynucleotide sequence encoding albumin comprises an albumin coding sequence from Tables 1A and 1B.

  • 49. The method of any one of embodiments 1-48, wherein the cells express the GS protein at levels sufficient to decrease the ammonia production, increase the production of glutamine, or any combination thereof

  • 50. A method of decreasing the concentration of ammonia and/or ammonium hydroxide in the medium of cells in culture comprising increasing the expression of a glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of ammonia (i.e. ammonium hydroxide) in the medium is decreased by at least 2.5%.

  • 51. A method of increasing the production of glutamine in cells comprising increasing the expression of a glutamine synthetase (GS) protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of glutamine in the cells is increased by at least 2.5%.

  • 52. The method of any one of embodiments 50-51, wherein the cells are modified to overexpress a gene encoding the GS protein.

  • 53. The method of any one of embodiments 50-52, wherein the cells overexpress the gene encoding the GS protein at levels sufficient to decrease the ammonia production, increase the production of glutamine, or any combination thereof

  • 54. A method of increasing the concentration of Insulin-like growth factor (IGF) in the medium of cells in culture comprising increasing the expression of an IGF protein in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of the IGF protein in the medium is increased by at least 2.5% or is increased to at least 0.001 ng/mL.

  • 55. The method of embodiment 54, wherein the cells are modified to overexpress a gene encoding the IGF protein.

  • 56. The method of any one of embodiments 54-55, wherein the cells overexpress the gene encoding the IGF protein at levels sufficient to increase the concentration of IGF in the medium.

  • 57. The method of any one of embodiments 54-56, wherein the IGF protein is an IGF-1 protein.

  • 58. The method of any one of embodiments 54-56, wherein the IGF protein is an IGF-2 protein.

  • 59. A method of increasing the concentration of albumin in the medium of cells in culture comprising increasing the expression of albumin in the cells, wherein the cells are of livestock, poultry, game or aquatic animal species, and wherein the concentration of albumin in the medium is increased at least 2.5% or is increased to at least 0.1 μg/mL.

  • 60. The method of embodiment 59, wherein the cells are modified to overexpress a gene encoding the albumin protein.

  • 61. The method of any one of embodiments 59-60, wherein the cells overexpress the gene encoding the albumin protein at levels sufficient to increase the concentration of albumin in the medium.

  • 62. The method of any one of embodiments 50-61, wherein the cells are a self-renewing cell line.

  • 63. The method of embodiment 62, wherein the self-renewing cell line is selected from the group consisting of an embryonic stem cell line, induced pluripotent stem cell line, extraembryonic cell lines, and somatic cell lines.

  • 64. The method of any one of embodiments 50-63, wherein the cell line is a myogenic transcription factor-modified cell line.

  • 65. The method of embodiment 64, wherein the myogenic transcription factor is MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof

  • 66. The method of any one of embodiments 50-65, wherein the renewal capacity of the cells is extended.

  • 67. The method of any one of embodiments 50-65, further comprising activating Telomerase reverse transcriptase (TERT) in the cells.

  • 68. The method of any one of embodiments 50-67, wherein the cells comprise a loss-of-function mutation in one or more genes encoding cyclin-dependent kinase inhibitor (CKI) proteins.

  • 69. The method of embodiment 68, wherein the CKI proteins are p15, p16, paralogs, orthologs, or genetic variants thereof

  • 70. The method of any one of embodiments 50-67, comprising inhibiting the HIPPO signaling pathway in the cells.

  • 71. The method of embodiment 70, wherein inhibiting the HIPPO signaling pathway comprises activating Yes-Associated Protein 1 (YAP1), Transcriptional co-Activator with PDZ-binding motif (TAZ), or a combination thereof in the cells.

  • 72. The method of any one of embodiments 50-71, wherein the cell line is of a game species.

  • 73. The method of any one of embodiments 50-71, wherein the cell line is of a poultry species.

  • 74. The method of embodiment 73, wherein the poultry species is a duck.

  • 75. The method of any one of embodiments 50-71, wherein the cell line is of an aquatic species.

  • 76. The method of any one of embodiments 50-71, wherein the cell line is of a livestock species.

  • 77. The method of embodiment 76, wherein the livestock species is porcine or bovine.

  • 78. The method of any one of embodiments 50-71, wherein the cell line is from any animal species intended for human or non-human dietary consumption.

  • 79. An in vitro method for producing a cultured edible product, the method comprising:
    • a. overexpressing a GS, IGF, albumin protein, or a combination thereof in a self-renewing cell line, wherein the cell line is a myogenic transcription factor-modified cell line, and wherein the cell line is of a livestock, poultry, game or aquatic animal species;
    • b. inducing myogenic differentiation of the cell line, wherein the differentiated cell line forms myocytes and multinucleated myotubes; and
    • c. culturing the myocytes and myotubes to generate skeletal muscle fibers, thereby producing a cultured edible product.

  • 80. The method of embodiment 79, wherein the cell line is modified to overexpress a gene encoding the GS protein.

  • 81. The method of embodiment 80, wherein the cell line is engineered to overexpress the gene encoding the GS protein at levels sufficient to decrease the ammonia production, increase the production of glutamine, or any combination thereof

  • 82. The method of embodiment 79, wherein the cell line is modified to overexpress a gene encoding the IGF protein.

  • 83. The method of embodiment 82, wherein the cells overexpress the gene encoding the IGF protein at levels sufficient to increase the production of IGF by the cells.

  • 84. The method of any one of embodiments 79-83, wherein the IGF protein is an IGF-1 protein.

  • 85. The method of any one of embodiments 79-83, wherein the IGF protein is an IGF-2 protein

  • 86. The method of embodiment 79, wherein the cell line is modified to overexpress a gene encoding the albumin protein.

  • 87. The method of embodiment 86, wherein the cells overexpress the gene encoding the albumin protein at levels sufficient to increase the concentration of albumin in cells.

  • 88. The method of any one of embodiments 79-87, wherein the self-renewing cell line is selected from the group consisting of embryonic stem cells, induced pluripotent stem cells, extraembryonic cell lines, and somatic cell lines.

  • 89. The method of any one of embodiments 79-88, wherein the myogenic transcription factor is the MYOD1, MYOG, MYF5, MYF6, PAX3, PAX7, paralogs, orthologs, or genetic variants thereof.

  • 90. The method of any one of embodiments 79-89, wherein the renewal capacity of the cells is extended.

  • 91. The method of any one of embodiments 79-89, further comprising activating Telomerase reverse transcriptase (TERT) in the cells.

  • 92. The method of any one of embodiments 79-91, wherein the cells comprise a loss-of-function mutation in one or more genes encoding cyclin-dependent kinase inhibitor (CKI) proteins.

  • 93. The method of embodiment 92, wherein the CKI proteins are p15, p16, paralogs, orthologs, or genetic variants thereof

  • 94. The method of any one of embodiment 79-93, comprising inhibiting the HIPPO signaling pathway in the cells.

  • 95. The method of embodiment 94, wherein the inhibition of the HIPPO signaling pathway comprises activating Yes-Associated Protein 1 (YAP1) and/or Transcriptional co-Activator with PDZ-binding motif (TAZ) in the cells.

  • 96. The method of any one of embodiments 79-95, wherein the cell line is of a game species.

  • 97. The method of any one of embodiments 79-95, wherein the cell line is of a poultry species.

  • 98. The method of embodiment 97, wherein the poultry species is a duck.

  • 99. The method of any one of embodiment 79-95, wherein the cell line is of an aquatic species.

  • 100. The method of any one of embodiments 79-95, wherein the cell line is of a livestock species.

  • 101. The method of embodiment 100, wherein the livestock species is porcine or bovine.

  • 102. The method of any one of embodiments 79-95, wherein the cell line is from any animal species intended for human or non-human dietary consumption.

  • 103. A cultured edible product produced by the in vitro method of any one of embodiments 28-49 and 79-102.

  • 104. A cultured edible product comprising cells having increased expression of GS, increased expression of IGF, increased expression of albumin, and/or increased expression of TERT.

  • 105. A construct comprising any one of the sequences selected from Table 1B.

  • 106. An expression vector comprising any one of the sequences selected from Table 1B.

  • 107. A cell comprising the expression vector of embodiment 106.

  • 108. The cell of embodiment 107, wherein the cell is from a livestock, poultry, game, or aquatic species.

  • 109. A method for increasing the secretion of glutamine by cells into a culture medium, the method comprising increasing the expression of a glutamine synthetase (GS) protein in the cells, wherein the cells are from livestock, poultry, game or aquatic animal species, and wherein the concentration of glutamine secreted into the culture medium is increased by at least 2.5%.

  • 110. The method of embodiment 109, wherein the cells are modified to overexpress a gene encoding the GS protein.

  • 111. The method of embodiment 109 or 110, comprising introducing into the cells a polynucleotide comprising a GS coding sequence from Table 1B.

  • 112. The method of any one of embodiments 109-111, wherein the secretion of glutamine by cells into the culture medium is increased by at least 2.5% compared to cells in which the expression of GS is not increased.

  • 113. A method for increasing the rate of proliferation of cells in a cultivation infrastructure, comprising:
    • a. introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and
    • b. culturing the cells in a cultivation infrastructure,
    • wherein the cells are from livestock, poultry, game or aquatic animal species.

  • 114. The method of embodiment 113, wherein the polynucleotide sequence encoding GS comprises a GS coding sequence from Tables 1A and 1B.

  • 115. The method of embodiment 113, wherein the polynucleotide sequence encoding IGF comprises an IGF coding sequence from Tables 1A and 1B.

  • 116. The method of embodiment 113, wherein the polynucleotide sequence encoding albumin comprises an albumin coding sequence from Tables 1A and 1B.

  • 117. The method of any one of embodiments 113-116, wherein the rate of proliferation of cells is increased by at least 5% compared to cells in which the expression of GS, IGF, albumin, or a combination thereof is not increased.

  • 118. A method for decreasing death of cells in a cultivation infrastructure, comprising:
    • a. introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS), insulin-like growth factor (IGF), albumin or a combination thereof; and
    • b. culturing the cells in a cultivation infrastructure, wherein the cells are from livestock, poultry, game or aquatic animal species.

  • 119. The method of embodiment 118, wherein the polynucleotide sequence encoding GS comprises a GS coding sequence from Tables 1A and 1B.

  • 120. The method of embodiment 118, wherein the polynucleotide sequence encoding IGF comprises an IGF coding sequence from Tables 1A and 1B.

  • 121. The method of embodiment 118, wherein the polynucleotide sequence encoding albumin comprises an albumin coding sequence from Tables 1A and 1B.

  • 122. The method of any one of embodiment 118-121, wherein the cell death is decreased by at least 10% compared to cells in which the expression of GS, IGF, albumin, or a combination thereof is not increased.

  • 123. A method for increasing protein production in cells in a cultivation infrastructure, comprising:
    • a. introducing into the cells a polynucleotide sequence encoding insulin-like growth factor (IGF); and
    • b. culturing the cells in a cultivation infrastructure, wherein the cells are from livestock, poultry, game or aquatic animal species.

  • 124. The method of embodiment 123, wherein the polynucleotide sequence encoding IGF comprises an IGF coding sequence from Tables 1A and 1B.

  • 125. The method of embodiment 123 or 124, wherein the IGF is IGF-1 or IGF-2.

  • 126. The method of any one of embodiment 123-125, wherein the protein production measured as total cell protein per cell nucleus is increased by at least 5% compared to cells in which the expression of IGF is not increased.

  • 127. The method of any one of embodiments 3, 28, 67, and 91, wherein the polynucleotide encoding TERT comprises a TERT coding sequence from Table 1B.


Claims
  • 1. A method for extending a renewal capacity of a cell culture comprising non-human cells having fibroblastic capacity, the method comprising: a) introducing into the cells one or more polynucleotide sequences encoding a telomerase reverse transcriptase (TERT) or an engineered transcriptional activator capable of activating endogenous TERT expression; andb) culturing the cells in a suspension cultivation infrastructure, adherent cultivation infrastructure, or a combination thereof.
  • 2. The method of claim 1, further comprising modifying the cells to express one or more myogenic transcription factors, whereby expression of the one or more myogenic transcription factors differentiates at least a portion of the cells into cells having myogenic potential.
  • 3. The method of claim 2, wherein the one or more myogenic transcription factors are selected from MYOD1, MYOG, MYF5, MYF6, PAX3, and PAX7.
  • 4. The method of claim 1, wherein the cells are derived from poultry or a game species.
  • 5. The method of claim 1, wherein the cells are derived from duck.
  • 6. The method of claim 1, wherein the cells of step (a) comprise primary duck fibroblasts.
  • 7. The method of claim 1, wherein the introducing step comprises ectopically expressing the polynucleotide sequence encoding TERT.
  • 8. The method of claim 1, wherein the introducing step comprises transiently expressing the polynucleotide sequence encoding TERT.
  • 9. The method of claim 1, wherein the introducing step comprises engineering the cells to stably express TERT.
  • 10. The method of claim 1, wherein the TERT comprises activated TERT.
  • 11. A method for increasing insulin-like growth factor (IGF) concentration in a cell culture, comprising: a) providing cells having myogenic or fibroblastic capacity; andb) introducing into the cells one or more polynucleotide sequences encoding IGF,wherein the concentration of IGF is increased relative to cells cultured without introduction of one or more polynucleotide sequences encoding IGF.
  • 12. The method of claim 11, further comprising culturing the cells as a self-adherent aggregate.
  • 13. The method of claim 11, further comprising culturing the cells in a suspension culture at a density of 50,000 to 1,000,000 cells per mL.
  • 14. The method of claim 11, further comprising culturing the cells sequentially in both a suspension culture and an adherent culture.
  • 15. The method of claim 11, wherein the introducing step comprises ectopically expressing the polynucleotide sequence encoding IGF.
  • 16. The method of claim 11, wherein the introducing step comprises transiently expressing the polynucleotide sequence encoding IGF.
  • 17. The method of claim 11, wherein the introducing step comprises engineering the cells to stably express IGF.
  • 18. The method of claim 11, wherein the cells are derived from a poultry or a game species.
  • 19. The method of claim 11, wherein the cells are derived from duck.
  • 20. The method of claim 11, further comprising introducing into the cells one or more polynucleotide sequences encoding albumin, wherein the concentration of albumin is increased relative to cells cultured without introduction of one or more polynucleotide sequences encoding albumin.
  • 21. A method for decreasing ammonia concentration in a cell culture, comprising: a) providing cells having myogenic or fibroblastic capacity; andb) introducing into the cells one or more polynucleotide sequences encoding glutamine synthetase (GS),wherein a concentration of ammonia is reduced relative to cells cultured without introduction of one or more polynucleotide sequences encoding GS.
  • 22. The method of claim 21, further comprising culturing the cells as a self-adherent aggregate.
  • 23. The method of claim 21, further comprising culturing the cells in a suspension culture at a density of 50,000 to 1,000,000 cells per mL.
  • 24. The method of claim 21, further comprising culturing the cells sequentially in both a suspension culture and an adherent culture.
  • 25. The method of claim 21, wherein the introducing step comprises ectopically expressing the polynucleotide sequence encoding GS.
  • 26. The method of claim 21, wherein the introducing step comprises transiently expressing the polynucleotide sequence encoding GS.
  • 27. The method of claim 21, wherein the introducing step comprises engineering the cells to stably express GS.
  • 28. The method of claim 21, wherein the cells are derived from a poultry or a game species.
  • 29. The method of claim 21, wherein the cells are derived from duck.
  • 30. The method of claim 21, further comprising introducing into the cells one or more polynucleotide sequences encoding albumin; and wherein the concentration of albumin is increased relative to cells cultured without introduction of one or more polynucleotide sequences encoding albumin.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of co-pending U.S. patent application Ser. No. 16/630,404, filed Jan. 10, 2020, which is the 371 National Stage application of PCT Application No. PCT/US2018/042187, filed Jul. 13, 2018, which claims the benefit of and priority to U.S. Provisional Application No. 62/532,345, filed Jul. 13, 2017, all of which are hereby incorporated by reference in their entireties for all purposes.

Provisional Applications (1)
Number Date Country
62532345 Jul 2017 US
Continuations (1)
Number Date Country
Parent 16630404 Jan 2020 US
Child 17929652 US