COMPOSITIONS AND METHODS FOR INHIBITING WNT SIGNALING

Information

  • Patent Application
  • 20190031734
  • Publication Number
    20190031734
  • Date Filed
    March 21, 2017
    7 years ago
  • Date Published
    January 31, 2019
    5 years ago
Abstract
The present disclosure relates to isolated polypeptides that inhibit Wnt signaling, pharmaceutical compositions comprising the isolated polypeptides, and methods of use thereof. Nucleic acids, cells, and methods of production related to the isolated polypeptides and compositions are also disclosed.
Description
BACKGROUND OF THE DISCLOSURE


Clostridium difficile toxin B (TcdB) is a critical virulence factor causing diseases associated with C. difficile infections (CDI). CDI is the most common cause for antibiotic-associated diarrhea and the leading cause of gastroenteritis-associated death in developed countries. Existing treatment regimens of CDI with antibiotics are ineffective and the rate of reoccurrence for the disease is high.


SUMMARY


Clostridium difficile toxin B (TcdB) is a critical virulence factor causing diseases associated with C. difficile infections (CDI). Utilizing genome-wide CRISPR/Cas9 mediated knockout screen, we identified the Wnt receptors Frizzled (FZD) as TcdB receptors. TcdB competes with Wnt for binding to the conserved cysteine-rich domain (CRD) in FZDs, with the highest affinity toward FZD1, 2, and 7, and is a potent inhibitor of Wnt signaling. A recombinant FZD2-CRD fragment protected cells from TcdB. Triple FZD1/2/7 knockout (KO) cells were dramatically resistant to toxin entry. Thus, FZDs as physiologically relevant epithelial receptors for TcdB and play a role in Wnt signaling blockage in CDI pathogenesis and diseases associated with increased Wnt signaling, e.g., cancer.


One aspect of the present disclosure provides isolated polypeptides comprising an amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, wherein the polypeptide does not have the amino acid sequence of SEQ ID NO: 27.


Another aspect of the present disclosure provides isolated polypeptides containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 18.


Another aspect of the present disclosure provides isolated polypeptides containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 19.


Another aspect of the present disclosure provides isolated polypeptides containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 20.


In some embodiments, the polypeptide has the amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20.


In some embodiments, the polypeptide is cross-linked, cyclized, conjugated, acylated, carboxylated, lipidated, acetylated, thioglycolic acid amidated, alkylated, methylated, polyglycylated, glycosylated, polysialylated, phosphorylated, adenylylated, PEGylated, or combinations thereof. In some embodiments, the polypeptide has a modification at the C-terminus or at the N-terminus.


In some embodiments, the polypeptide further contains a fusion domain. In some embodiments, the fusion domain is selected from the group consisting of polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin. In some embodiments, the polypeptide further contains an Fc portion of human IgG1.


Further provided herein are fusion proteins containing: a polypeptide comprising an amino acid sequence that has at least 95%, at least 96, at least 97, at least 98, at least 99, or at least 99.5% identity to SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, which polypeptide is fused to an Fc portion of an immunoglobulin. In some embodiments, the Fc portion is an Fc portion of a human IgG1. In some embodiments, the fusion protein consists of the amino acid sequence of SEQ ID NO:21, SEQ ID NO: 22, or SEQ ID NO: 23.


Another aspect of the present disclosure provides chimeric molecules containing a first portion and a second portion, wherein the first portion is an isolated polypeptide disclosed herein, and wherein in the second portion is a molecule that is not the isolated polypeptide disclosed herein.


In some embodiments, the isolated polypeptide binds Frizzled (FZD). In some embodiments, the isolated polypeptide blocks Wnt signaling. In some embodiments, the isolated polypeptide is a dimer, trimer, tetramer, or pentamer. In some embodiments, the isolated polypeptide is attached to a polymer. In some embodiments, the polymer prolongs the serum half-life of the isolated polypeptide. In some embodiments, the polymer prolongs the shelf-life of the isolated polypeptide. In some embodiments, the isolated polypeptide has 1-100 conservative amino acid substitutions.


In some embodiments, the second portion is an anti-bacterial agent. In some embodiments, the anti-bacterial agent is an antibiotic. In some embodiments, the second portion is an antibody that binds Frizzled co-receptors. In some embodiments, the Frizzled co-receptor is lipoprotein receptor-related protein (LRP)-5/6, receptor tyrosine kinase (RTK), or tyrosine-protein kinase transmembrane receptor (ROR2).


In some embodiments, the second portion contains an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26. In some embodiments, the second portion contains an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.


Further provided herein are isolated nucleic acid molecules containing a polynucleotide encoding a polypeptide containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 18.


Further provided herein are nucleic acid molecules comprising a polynucleotide encoding a polypeptide containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 19.


Further provided herein are nucleic acid molecules comprising a polynucleotide encoding a polypeptide containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 20.


Further provided herein are nucleic acid molecules containing a polynucleotide encoding a polypeptide containing an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 21.


Further provided herein are nucleic acid molecules comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 22.


Further provided herein are nucleic acid molecules containing a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity, or 100% identity of SEQ ID NO: 23.


Another aspect of the present disclosure provides pharmaceutical compositions comprising the isolated polypeptides or the chimeric molecules disclosed herein.


In some embodiments, the pharmaceutical composition further contains an additional isolated polypeptide containing an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26. In some embodiments, the additional isolated polypeptide contains an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26. In some embodiments, the additional isolated polypeptide consists of the amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.


In some embodiments, the polypeptide is acetylated, carboxylated, glycosylated, phosphorylated, lipidated, acylated, PEGylated, thioglycolic acid amidated, or combinations thereof.


In some embodiments, the polypeptide further comprises a fusion domain. In some embodiments, the fusion domain is selected from the group consisting of polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin. In some embodiments, the additional polypeptide comprises an Fc portion of human IgG1. In some embodiments, the fusion domain is an Fc portion of human IgG1.


Another aspect of the present disclosure provides a method of treating Clostridium difficile infection (CDI), the method comprising administering to a subject in need thereof, a therapeutically effective amount of the isolated polypeptide, the chimeric molecule, or the pharmaceutical composition disclosed herein. In some embodiments, the pharmaceutical composition further contains an agent that induces Wnt signaling downstream of Frizzled (FZD) in a cell. In some embodiments, the agent is a GSK-3 inhibitor. In some embodiments, the GSK-3 inhibitor is Lithium (LiCl), CHIR99021, SB 216763, BIO, TCS 2002, TC-G 24, TWS 119, SB 415286, A 1070722, AR-A 014418, L803-mts, or combination thereof.


In some embodiments, the pharmaceutical composition further comprises an agent that inhibits the cysteine protease activity of TcdB in a cell. In some embodiments, the agent is ebselen. In some embodiments, the pharmaceutical composition further comprises Frizzled antibodies.


In some embodiments, the cell is a colonic epithelial cell.


Yet another aspect of the present disclosure provides a method of treating cancer, the method comprising administering to a subject in need thereof, a therapeutically effective amount of the isolated polypeptide, the chimeric molecule, or the pharmaceutical composition disclosed herein. In some embodiments, the cancer is colon cancer, lung cancer, liver cancer, or breast cancer.


In some embodiments, the pharmaceutical composition further comprises an agent that blocks Wnt signaling. In some embodiments, the agent is a Dkk family protein, a Secreted Frizzled Related Protein (sFRP), Draxin, IGFBP-4, SOST/Sclerostin, USAG1, or WIF-1. In some embodiments, the agent is an Frizzled antibody. In some embodiments, the cancer is metastatic cancer.


Each of the limitations of the disclosure can encompass various embodiments of the disclosure. It is, therefore, anticipated that each of the limitations of the disclosure involving any one element or combinations of elements can be included in each aspect of the disclosure. This disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 shows genome-wide CRISPR/Cas9-mediated screens to identify host factors for TcdB. Panel A is a schematic drawing of the CRISPR/Cas9 screen. Four rounds of screenings were carried out with TcdB (0.05 pM, 0.1 pM, 0.2 pM, and 0.5 pM) and TcdB1-1830 (5 pM, 10 pM, 20 pM, and 50 pM), respectively. Panels B and C show ranked and plotted genes identified in the screens with TcdB (panel B) or TcdB1-1830 (panel C). The CRISPR library contains six unique sgRNAs per gene. As genes identified with multiple unique sgRNAs are less likely false-positives, the Y-axis is based on the number of unique sgRNAs identified for each gene. The X-axis is the total sgRNA NGS reads for a gene, which reflects the abundance of cells harboring mutated genes after selection. The percentages noted in the plot represent the relative abundance of sgRNA reads for indicated genes among total sgRNA reads.



FIG. 2 demonstrates that FZDs are CROPs-independent receptors for TcdB. In Panel A, HeLa cells with the indicated genes mutated via CRISPR/Cas9 were exposed to a series of concentrations of TcdB or TcdB1-1830, and the percentages of rounded cells were quantified as described in FIG. 9, panels A-C. Their sensitivities to toxins, defined as the toxin centration that induced 50% cell-rounding (CR50, listed in FIG. 9, panel C), were normalized to WT HeLa cells and plotted (*P<0.005, one-way ANOVA). Panel B shows that the binding of TcdB (10 nM, 10 min) was greatly reduced in CSPG4−/− cells compared to WT cells assayed by immunostaining. Ectopic expression of rat NG2 increased binding of TcdB. Scale bar=20 μm. NG2 was detected using a polyclonal anti-CSPG4/NG2 antibody. TcdB was detected using a polyclonal chicken anti-TcdB antibody. Panel C shows that the transfection of FZD2 increased TcdB binding to CSPG4−/− cells. Transfected FZD2 was identified by 1D4 tag fused to its C-terminal cytoplasmic domain. Scale bar=20 μm. Panel D illustrates that the ectopic expression of NG2 or FZD2 both restored TcdB entry into CSPG4−/− cells, which resulted in cell-rounding for nearly all transfected cells when CSPG4−/− cells have yet to show any cell-rounding effect after exposure to TcdB (5 pM, 3 hours). Co-transfected GFP was used to mark transfected cells. Scale bar=50 μm. Panel E shows CSPG4−/− cells transfected with the indicated FZD members exposed to TcdB (10 nM, 10 min). Cells were washed and cell lysates were subjected to immunoblot analysis. Expression of FZDs was confirmed by 1D4 tag fused to their cytoplasmic domains. Actin served as a loading control. Transfection of FZD1, 2, and 7 greatly increased binding of TcdB to cells. Panel F shows the assessed sensitivities of FZD1−/−, FZD2−/−, FZD7−/−, as well as triple FZD1/2/7−/− cells to TcdB and TcdB1-1830 using cytopathic cell-rounding assays as described in FIG. 2, Panel A (*P<0.005, one-way ANOVA). Panel G shows that ectopic expression of FZD1, 2, or 7 restored entry of TcdB1-1830 into FZD1/2/7−/− cells, resulting in cell-rounding for nearly all transfected cells (300 pM, 3 hours). Co-transfected GFP marked the transfected cells. Scale bar=50 μm. Panel H is a schematic illustration of FZD. Recombinant Fc-tagged FZD2-CRD binds directly to immobilized GST-tagged TcdB1501-2366, but not GST-tagged CROP region (residues 1831-2366) in pull-down assays. Panel I is a characterization of interactions between TcdB and Fc-tagged CRDs of FZD1, 2, 5, and 7 using a bio-layer interferometry (BLI) assay. The binding curve between FZD1/2/7 and TcdB fits a single binding site with low nanomolar Kd (see FIG. 14 for detailed Kd analysis). Panel J shows that FZD7-CRD, but not FZD8-CRD, when expressed on the surface of CSPG4−/− cells via a GPI anchor, mediated binding of TcdB to cells.



FIG. 3 shows that FZDs can function as TcdB receptors independent of CSPG4. Panel A shows CSPG4/NG2-E immobilized on micro-titer plates, followed by binding of TcdB, washing away unbound TcdB, and the addition of FZD-CRD. FZD2-CRD binds robustly to TcdB that is pre-bound by CSPG4/NG2-EC on the micro-titer plate. FZD2-CRD did not bind to CSPG4/NG2-EC without TcdB, and FZDS-CRD showed no detectable binding to CSPG4/NG2-TcdB complex in this assay. Panels B and C show that excessive amounts of recombinant FZD2-CRD prevented TcdB (300 pM, 3 hrs) entry into CSPG4−/− cells, measured by both cytopathic cell-rounding assays (Panel B) and glucosylation of Rac1 (Panel C). Human IgG1-Fc served as a negative control. FIG. 3, Panels D and E show that FZD2-CRD protected HT29 (Panel D) and Caco-2 cells (Panel E) from TcdB1-1830 (300 pM, 3 hours). Panel F shows the examination of endogenous CSPG4 in HeLa, HT29, and Caco-2 cell expression via immunoblot analysis of cell lysates (200 μg). Panels G through I show an analysis and quantification of the degree of protection from TcdB using recombinant FZD2-CRD and CSPG4/NG2-EC on HeLa (Panel G, 5 pM TcdB), HT29 (Panel H, 50 pM TcdB), and Caco-2 (Panel I, 150 pM TcdB) by cytopathic cell-rounding assays at indicated time points. Representative images of cells are shown in FIG. 15. CSPG4/NG2-EC alone reduced TcdB entry into HeLa cells, suggesting that CSPG4 is the dominant receptor in HeLa cells. A combination of CSPG4/NG2-EC and FZD2-CRD provided significant protection of HT29 cells from TcdB, suggesting that CSPG4 and FZDs likely contribute equivalently for toxin entry in HT29 cells. FZD2-CRD alone protected Caco-2 cells from TcdB, indicating that FZDs are the dominant receptors for TcdB in Caco-2 cells.



FIG. 4 shows FZDs are functional receptors for TcdB in colonic organoids. Panel A shows differential interference contrast (DIC) images of WT and FZDT−/−/FZD1/2 KD organoids, with and without exposure to TcdB (0.5 pM, 3 days), showing that TcdB induced atrophy and death of WT organoids. Scale bar represents 200 μm. Panel B shows quantification of the viability of organoids with MTT assays for WT and FZDT−/−/FZD1/2 KD organoids when they were exposed to a titrations of TcdB (*p<0.005, n=4). Panel C shows the IC50 of TcdB (defined as the TcdB concentration that results in 50% viability after three days) on WT, FZDT−/− and FZD7−/−/FZD1/2 KD organoids (*p<0.005, n=4). Panel D demonstrates that a non-toxic fragment of TcdB (residues 1114-1835) blocked Wnt3a mediated signaling in cells, which was analyzed using TOPFLASH/TK-Renilla dual luciferase reporter assay. Panel E shows that a non-toxic fragment TcdB1114-1835 inhibited the growth of WT colon organoids and resulted in death of organoids, which was rescued with the addition of CHIR99021. Normal organoids (indicated by letter “a”), growth inhibited organoids (indicated by letter “b”), and disrupted/dead organoids (*) were marked. Scale bar represents 200 μm. Panel F shows the viabilities of organoids after exposure to 25 nM TcdB1114-1835, with and without the presence of 5 μM CHIR99021, as measured with MTT assays and plotted (*p<0.005, n=4).



FIG. 5 demonstrate that FZDs are physiologically relevant receptors in the colonic epithelium in vivo. Panel A is a schematic illustration for colon loop ligation assay. In Panel B, TcdB was injected into the ligated colonic segments in WT mice, together with either FZD2-CRD or IgG1-Fc control, and incubated for 2 hours. The colonic segment was then excised, washed with PBS, and subjected to immunohistochemical analysis to detect binding of TcdB to colonic tissues. Location of TcdB is marked by arrows. PBS injection served as a negative control (left panel). TcdB bound to the colon epithelium (middle panel). Co-injection of FZD2-CRD abolished binding of TcdB to the colonic epithelium (right panel). Panel C shows TcdB1-1830 injected into the ligated colonic segments in WT and FZD7−/− KO mice. Saline injection served as a negative control. Mice were allowed to recover and survive for 8 hours before the ligated colon segments were excised. Fluid accumulations in the excised colon segments were recorded by measuring weight versus length. Boxes represent mean±SE and the bars represent SD (*p<0.005). Panel D shows experiments carried out as described in Panel C, except that the excised colon segments were fixed, sectioned, and subjected to H&E staining. Scale bar represents 100 μm. Panel E shows histological scores of H&E stained colon sections described in FIG. 5, Panel D (Mean±SE, *p<0.005). Panel F shows experiments were carried out as described in Panel C, except that the excised colon segments were fixed, sectioned, and subjected to immunohistochemical analysis detecting Claudin3. Right panels are enlarged from the areas marked in the left panels to show the detail of tight junctions. Claudin3 is marked by arrows. Scale bar represents 200 μm.



FIG. 6 shows that TcdB1-1830 remains a potent toxin that can induce cell-rounding in a variety of cell lines. Panel A presents schematic drawings of TcdB and a truncated TcdB lacking the CROPs region (TcdB1-1830). GTD: glucosyltransferase domain; CPD: cysteine protease domain; TD: translocation domain; RBD: receptor binding domain, including a putative receptor binding region and the CROPs region. Panel B shows HeLa cells exposed to titrations of TcdB and TcdB1-1830 as indicated for 24 hrs. Cell rounding can be easily observed. HeLa cells were less sensitive to TcdB1-1830 than to TcdB, but TcdB1-1830 remained a potent toxin that induced cell rounding at picomolar concentrations. Scale bar=50 μm. Panels C-E show CHO (Panel C), HT-29 (Panel D) and Caco-2 (Panel E) cells exposed to titrations of TcdB and TcdB1-1830 as indicated for 24 hrs. Scale bars=25 (Panel D) or 50 μm (Panels C, E).



FIG. 7 shows the ranks of sgRNAs in the four libraries of cells after screening with TcdB and TcdB1-1830. Panel A shows the sequences of sgRNA were amplified by PCR and subjected to NGS. Panels B-E are lists of top-ranking sgRNAs and their relative abundance among total sgRNA reads.



FIG. 8 shows deep sequencing of targeted mutation sites in CRISPR/Cas9 mediated knockout HeLa cells. HeLa-Cas9 cells were transduced with lentiviruses that express sgRNAs targeting indicated genes. Cells were further selected with 2.5 μg/ml puromycin (Gibco) and 200 μg/ml hygromycin B to generate mixed populations of stable cells. Genomic DNAs of these cells were extracted and the sequences for targeted mutation sites were amplified via PCR and subjected to NGS. The total percentage of mutated genes and the total number of unique mutations for each cell population are listed. Top 100 specific sequences for each cell population are listed in Tables 1-6. Deep sequencing revealed that mutagenesis rates are high (e.g. 98.7% for CSPG4−/− and 96.3% for FZD2−/−), with the majority of them being frameshift mutations (Tables S1-6). Each sgRNA induced highly diverse mutations in the cell population, due to random NHEJ (non-homologous end joining) repair processes in individual cells.



FIG. 9 shows assessments of the sensitivities of CRISPR/Cas9 mediated knockout HeLa cells to TcdB and TcdB1-1830. Panels A and B show HeLa-Cas9 cells with the indicated genes mutated via CRISPR/Cas9, as well as WT Hela-Cas9 cells, exposed to titrations of TcdB and TcdB1-1830 for 24 hrs. The percentages of cell rounding for each indicated cell lines were quantified and plotted against the concentrations of TcdB (Panel A) or TcdB1-1830 (Panel B). Panel C shows the determination of toxin concentrations that induce 50% of cells to become round after 24 hours, defined as CR50, from the fitting curves in Panels A and B. Errors represent SD. *P<0.005, one-way ANOVA. Panel D shows HeLa cells with the indicated genes mutated exposed to TcdB (top panel) or TcdB1-1830 (lower panel) for 3 hours. Cell lysates were subjected to immunoblot analysis for total levels of Rac1, and for non-glucosylated Rac1 that was not modified by TcdB. UGP2−/− cells have significant levels of Rac1 that remains non-glucosylated after exposure to TcdB or TcdB1-1830. CSPG4−/− cells have significant levels of non-glucosylated Rac1 after exposure to TcdB. FZD2−/− and EMC4−/− cells both have slightly higher levels of non-glucosylated Rac1 compared to WT cells after exposure to TcdB1-1830.



FIG. 10 demonstrates that the CROPs of TcdB is essential for its binding to CSPG4/NG2-EC. Panel A shows schematic drawings of CSPG4/NG2. Two fractions of recombinant extracellular domain (EC) fragments were used: one that does not contain chondroitin sulfate (CS) chains (EC P1), and the other that contains CS (EC P2). TMD-cyto: transmembrane and cytoplasmic domain. Panel B shows that TcdB, but not TcdB1-1830, binds directly to both EC P1 and EC P2 of CSPG4/NG2 in a micro-titer plate based binding assay. Panel C shows CSPG4−/− cells transfected with the indicated constructs exposed to TcdB (upper panel, 10 nM, 10 min) or TcdB1-1830 (lower panel, 10 nM, 10 min). Cells were washed and lysates were subjected to immunoblot analysis. IL1RAPL2 and Synaptotagmin II (Syt II, a receptor for botulinum neurotoxins) served as negative controls. Expression of CSPG4 increased binding of TcdB, but not TcdB1-1830, whereas expression of FZD2 increased binding of both TcdB and TcdB1-1830. Panel D shows that the CROPs fragment binds to CSPG4/NG2 on cell surfaces in a concentration-dependent manner. This binding is dependent on CSPG4/NG2 because it is largely abolished in CSPG4−/− cells. High concentrations of CROPs fragment reduced CSPG4/NG2-dependent binding of full-length TcdB to cells, indicating that CROPs can compete with full-length TcdB for binding to CSPG4/NG2.



FIG. 11 shows FZD1, 2, and 7 can mediate binding of TcdB to CSPG4−/− cells. CSPG4−/− HeLa cells were transfected with 1D4 tagged FZD1, 2, 5, 7, and 9. Cells were exposed to TcdB (10 nM, 10 minutes). Cells were washed, fixed, permeabilized, and subjected to immunostaining analysis. Scale bar=20 μm.



FIG. 12 shows FZD2 can mediate binding of TcdB1501-2366, but not the CROPs region to cells. CSPG4−/− Hela cells were transfected with FZD2 and then exposed to TcdB or the indicated TcdB fragments. Cells were washed and cell lysates were subjected to immunoblot analysis. FZD2 mediated binding of TcdB, TcdB1-1830, and TcdB1501-2366, but not the CROPs region (TcdB1831-2366).



FIG. 13 shows sequence alignment of the CRDs of FZD1, 2, and 7. The CRD domains of human FZD1 (residues 102-235), FZD2 (residues 25-158), and FZD7 (residues 35-168) were aligned. Sequence alignment was performed with Vector NTI software. The sequences, from top to bottom, correspond to SEQ ID NOs: 14-17.



FIG. 14 shows binding affinities between FZD isoforms and TcdB determined using BLI assays. Panel A shows representative binding/dissociation curves for different concentrations of TcdB to Fc-tagged CRDs of FZD1, 2, 5, and 7. Parameters characterizing binding of the Fc-tagged FZD isoforms to TcdB are calculated from these binding curves and are listed in the table. Panel B shows representative binding/dissociation curves for TcdB1-1830 to Fc-tagged FZD2-CRD. Parameters characterizing binding of FZD2 to TcdB1-1830 are listed in the table. FZD2 showed similar binding affinities towards TcdB (KD=19 nM) versus TcdB1-1830 (KD=17 nM).



FIG. 15 shows representative images of cells showing protection from TcdB using FZD2-CRD-Fc and CSPG4/NG2-EC. Experiments were carried out as described in FIG. 3, Panels G-I, on HeLa (Panel A, 5 pM TcdB), HT29 (Panel B, 50 pM TcdB), and Caco-2 (Panel C, 150 pM TcdB). Scale bars=50 (Panels A and C) or 25 μm (Panel B).



FIG. 16 shows the susceptibility of colonic organoids to TcdB and TcdB1-1830. Panel A shows colonic organoids cultured from WT mice. They were exposed to a gradient of TcdB or TcdB1-1830. Viabilities of organoids were quantified using MTT assays. TcdB and TcdB1-1830 showed similar IC50, suggesting that WT organoids are equally susceptible to TcdB and TcdB1-1830. Panels B and C show shRNA sequences targeting FZD1 and FZD2 validated by measuring KD efficiency of transfected 1D4 tagged FZD1 and FZD2 in HEK293 cells. Selected shRNAs were marked with asterisks (shRNA2 for FZD1 and shRNA5 for FZD2) and used to generate adenoviruses. Actin served as loading controls.



FIG. 17 shows that TcdB1114-1835 inhibits Wnt signaling. Panels A and B show HEK 293T cells in 24-well plate exposed to Wnt3a (50 ng/ml) and TcdB1114-1835 (with molar ratio 1:8, 1:40, and 1:200 to Wnt3a, respectively) in culture medium for 6 hours. Cell lysates were harvested and subjected to immunoblotting analysis detecting phosphorylated Dvl2 (Panel A) and LRP6 (Panel B). Wnt signaling activation results in phosphorylation of Dvl2 and LRP6. Phosphorylated Dvl2 is marked with an asterisk.



FIG. 18 shows the expression of FZD1/2/7 and CSPG4 in mouse and human colonic tissues. Panels A-C show mouse (left panel) and human (right panel) colonic cryosections subjected to immunohistochemistry assays to detect expression of FZD7 (Panel A), FZD2 (Panel B), and CSPG4/NG2 (Panel C). The target proteins are marked by arrows. Ep: epithelial cells; Mf: sub-epithelial myofibroblasts; SM: smooth muscles. Scale bar=50 μm. Panel D shows experiments carried out as described in Panel A, except for detecting FZD1. Expression of FZD1 was not detectable in mouse and human colonic tissues using antibodies tried.



FIG. 19 shows the expression of FZDs is reduced in EMC4−/− cells. Panel A shows WT and EMC4−/− HeLa cells transfected with 1D4 tagged FZD1, 2, or 7. Cell lysates were subjected to immunoblot analysis detecting FZDs. Actin served as an internal control. Expressions of FZD1, 2, and 7 are drastically reduced in EMC4−/− cells compared to WT cells. Panel B shows EMC4−/− cells still express similar levels of CSPG4 as WT cells, suggesting that EMC is not required for the expression of single-pass transmembrane proteins.



FIG. 20 shows that PVRL3 failed to mediate binding and entry of TcdB. Panel A shows CSPG4−/− HeLa cells transfected with the indicated constructs exposed to TcdB in medium for 10 min. Cells were washed and the lysates were collected and subjected to immunoblotting analysis. Expression of PVRL3 was confirmed using an anti-PVRL3 antibody. TcdB binds to cells transfected with FZD2, but not to cells transfected with PVRL3. Panel B shows cells challenged with 300 pM TcdB for the indicated period of time. Ectopic expression of PVRL3 failed to restore the sensitivity of CSPG4−/− HeLa cells towards TcdB, while expression of FZD2 restored entry of TcdB in CSPG4−/− cells. Co-transfected GFP was used to mark the transfected cells. Scale bar=50 μm. Panel C shows excess amounts of recombinant extracellular domain of PVRL3 (PVRL3-EC) does not reduce TcdB entry into Caco-2 cells, analyzed by cytopathic cell-rounding assay. In contrast, FZD2-CRD prevented entry of TcdB into Caco-2 cells. Scale bar=20 μm.



FIG. 21 is a schematic overview of cellular factors identified in the CRISPR/Cas9 screen. Validated and plausible cellular factors identified in our unbiased genome-wide screens were grouped based on their being present in the same protein complexes and/or signaling pathways. The color of the gene names reflects the number of unique sgRNA identified. The arrows link these genes to either confirmed or plausible roles in four major steps of TcdB actions: (1) receptor-mediated endocytosis; (2) low pH in the endosomes triggers conformational changes of the TD, which translocates the GTD across endosomal membranes; (3) GTD is later released via auto-proteolysis by the CPD, which is activated by the cytosolic co-factor inositol hexakisphosphate (InsP6); (4) released GTD glucosylates small GTPases such as Rho, Rac, and CDC42, using UDP-glucose as a donor.





DETAILED DESCRIPTION


Clostridium difficile toxin B (TcdB) is a critical virulence factor causing diseases associated with C. difficile infections (CDI). CDI leads to a range of pathology from diarrhea to life-threatening pseudomembranous colitis and toxic megacolon (1, 2). It is the most common cause for antibiotic-associated diarrhea and the leading cause of gastroenteritis-associated death in developed countries, accounting for nearly a half-million cases and 29,000 deaths annually in the United States (3). Two homologous C. difficile exotoxins, toxin A (TcdA) and toxin B (TcdB), are the causal agents for diseases associated with CDI (4-6). These toxins enter cells via receptor-mediated endocytosis and inactivate small GTPases by glucosylating a key residue, which results in cell-rounding and eventual death of cells (4, 5, 7).


Disclosed herein is the identification of the Wnt receptor Frizzled (FZD) as TcdB receptor. TcdB competes with Wnt for binding to the conserved cysteine-rich domain (CRD) in FZD and functions as a potent inhibitor of Wnt signaling. Binding of TcdB to FZDs directly disrupts the integrity of the colon epithelium and its self-renewal by inhibiting Wnt signaling. In one aspect of the disclosure, we identified regions of TcdB (e.g., TcdB1114-1835) that bind FZD. TcdB1114-1835 is a non-toxic fragment of the TcdB that contains the FZD binding domain but not the enzymatic domains (i.e., the cysteine protease domain or the glucosyltransferase domain), competes with the wild-type TcdB and inhibits wild type TcdB. Thus, the use of TcdB1114-1835 for treating CDI and other diseases is also contemplated.


Without wishing to be bound by any particular mechanism or theory, it is believed that some aspects of the present disclosure relies on, at least in part, a novel mechanisms of Clostridium difficile infection. Such mechanism relates to the role of TcdB in inhibiting Wnt signaling in colonic epithelium cells. Among the two Clostridium difficile toxins, TcdB alone is capable of causing the full spectrum of diseases. However, how TcdB targets the colonic epithelium remains largely undefined due to the lack of established receptors. Chondroitin sulfate proteoglycan 4 (CSPG4, also known as neuron-glial antigen 2 (NG2) in rodents) has been identified as a functional receptor for TcdB in HeLa cells and in a colorectal cell line HT-29. However, CSPG4 is not expressed in colonic epithelial cells. Poliovirus receptor-like 3 (PVRL3) was recently suggested as a cellular factor contributing to necrotic cell death process (cytotoxicity) after exposure to high concentrations of TcdB in HeLa cells and in a colorectal cell line Caco-2, but whether PVRL3 is a relevant TcdB receptor in the colonic epithelium remains unknown and its role in directly mediating TcdB entry into cells has not been established.


Described in the Examples and Figures of the present disclosure are the identification and validation of TcdB receptors in colonic epithelia cells using a CRISPR/Cas9 mediated knockout screening system. The CRISPR/Cas9 system and its use is known in the art, e.g., US Patent Publication US20140357530, the entire contents of which is hereby incorporated by reference. Several Frizzled family proteins (FZDs) are identified and validated as novel and pathologically relevant TcdB receptors in the present disclosure. Among the 10 know FZD proteins, FZD 1, 2, and 7 are identified as the most important TcdB receptors that mediate the pathogenesis of Clostridium difficile. Further, FZD 1, 2, and 7 are redundant receptors for TcdB and have overlapping functions. Binding of TcdB to FZDs mediates the entry of the toxin into the cells. TcdB catalyzes the glycosylation of small GTPases inside epithelial cells, causing cell rounding and death. Accordingly, illustrated herein is a novel mechanism independent of the intracellular mechanism of TcdB pathogenesis, relating to the inhibition of Wnt signaling via competition for the FZD receptors.


FZDs are trans-membrane protein known to be involved in Wnt signaling. These receptors span the plasma membrane seven times and constitute a distinct family of G-protein coupled receptors (GPCRs). FZDs play key roles in governing cell polarity, embryonic development, formation of neural synapses, cell proliferation, and many other processes in developing and adult organisms, many of which relate to the Wnt signaling pathways.


The Wnt signaling pathways are a group of signal transduction pathways comprising proteins that pass signals into a cell through cell surface receptors. Three Wnt signaling pathways have been characterized: the canonical Wnt pathway, the noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium pathway. All three pathways are activated by binding a Wnt-protein ligand to a Frizzled family receptor, which passes the biological signal to proteins inside the cell. The canonical Wnt pathway leads to regulation of gene transcription. The noncanonical planar cell polarity pathway regulates the cytoskeleton that is responsible for the shape of the cell. The noncanonical Wnt/calcium pathway regulates calcium inside the cell. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine).


Wnt signaling was first identified for its role in carcinogenesis, then for its function in embryonic development. Wnt signaling also controls tissue regeneration in adult bone marrow, skin and intestine. For example, Wnt signaling is essential for maintaining colonic stem cells in vivo, which continuously give rise to new epithelial cells. The health of stem cells is critical for maintaining and repairing the epithelium, which turns over at an extraordinary rate: the entire colonic epithelium undergoes complete replacement every 5-7 days. Thus, as illustrated in the present disclosure, during Clostridium difficile infection, inhibition of Wnt signaling pathway led to depletion of colonic stem cells and greatly amplified the damage to the epithelium.


Further provided herein are the regions of FZD that interact with both TcdB and Wnt, resulting in competition. Both TcdB and Wnt bind to an N-terminal extracellular cysteine-rich domain of FZDs (FZD-CRD). TcdB is shown to preferentially bind FZDs 1, 2, and 7. The CRDs of FZDs 1, 2, and 7 are highly conserved with over 98% sequence similarity (See FIG. 13 for sequence alignment). The amino acid sequences of the CRDs of FZD 1, 2, and 7 are provided herein.









FZD1-CRD


(SEQ ID NO: 24)


YNGERGISVPDHGYCQPISIPLCTDIAYNQTIMPNLLGHTNQEDAGLEVH


QFYPLVKVQCSAELKFFLCSMYAPVCTVLEQALPPCRSLCERARQGCEAL


MNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDK





FZD2-CRD


(SEQ ID NO: 25)


YNGERGISVPDHGYCQPISIPLCTDIAYNQTIMPNLLGHTNQEDAGLEVH


QFYPLVKVQCSAELKFFLCSMYAPVCTVLEQALPPCRSLCERARQGCEAL


MNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDK





FZD3-CRD


(SEQ ID NO: 26)


YNGERGISVPDHGYCQPISIPLCTDIAYNQTIMPNLLGHTNQEDAGLEVH


QFYPLVKVQCSAELKFFLCSMYAPVCTVLEQALPPCRSLCERARQGCEAL


MNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDK






The region of TcdB that interacts with FZD-CRD is identified to be between amino acid 1501-1830 of the TcdB protein (full-length TcdB protein, SEQ ID NO: 27). Polypeptide fragments corresponding to the region of TcdB that interacts with FZD-CRD, e.g., a polypeptide fragment of TcdB between amino 1114 to 1835 (hereafter termed “TcdB1114-1835”, SEQ ID NO: 18), is able to compete with Wnt and inhibit Wnt signaling, and is lacking the cysteine protease activity and the glucosyltransferase activity of TcdB. Such TcdB1114-1835 polypeptide fragments, prevents the entry of wild-type, pathogenic TcdB from entering the cells. Further, the TcdB1114-1835 fragments that enter the cells, are non-toxic due to its lacking the cysteine protease activity and the glucosyltransferase activity. Additionally, two other non-toxic polypeptides that have similar activity as the TcdB1114-1835 are also provided: TcdB1028-1835 (SEQ ID NO: 19) and TcdB1114-2101 (SEQ ID NO: 20).









Full-length TcdB amino acid sequence


(SEQ ID NO: 27)


MSLVNRKQLEKMANVRFRTQEDEYVAILDALEEYHNMSENTVVEKYLKLK





DINSLTDIYIDTYKKSGRNKALKKFKEYLVTEVLELKNNNLTPVEKNLHF





VWIGGQINDTAINYINQWKDVNSDYNVNVFYDSNAFLINTLKKTVVESAI





NDTLESFRENLNDPRFDYNKFFRKRMEIIYDKQKNFINYYKAQREENPEL





IIDDIVKTYLSNEYSKEIDELNTYIEESLNKITQNSGNDVRNFEEFKNGE





SFNLYEQELVERWNLAAASDILRISALKEIGGMYLDVDMLPGIQPDLFES





IEKPSSVTVDFWEMTKLEAIMKYKEYIPEYTSEHFDMLDEEVQSSFESVL





ASKSDKSEIFSSLGDMEASPLEVKIAFNSKGIINQGLISVKDSYCSNLIV





KQIENRYKILNNSLNPAISEDNDFNTTTNTFIDSIMAEANADNGRFMMEL





GKYLRVGFFPDVKTTINLSGPEAYAAAYQDLLMFKEGSMNIHLIEADLRN





FEISKTNISQSTEQEMASLWSFDDARAKAQFEEYKRNYFEGSLGEDDNLD





FSQNIVVDKEYLLEKISSLARSSERGYIHYIVQLQGDKISYEAACNLFAK





TPYDSVLFQKNIEDSEIAYYYNPGDGEIQEIDKYKIPSIISDRPKIKLTF





IGHGKDEFNTDIFAGFDVDSLSTEIEAAIDLAKEDISPKSIEINLLGCNM





FSYSINVEETYPGKLLLKVKDKISELMPSISQDSIIVSANQYEVRINSEG





RRELLDHSGEWINKEESIIKDISSKEYISFNPKENKITVKSKNLPELSTL





LQEIRNNSNSSDIELEEKVMLTECEINVISNIDTQIVEERIEEAKNLTSD





SINYIKDEFKLIESISDALCDLKQQNELEDSHFISFEDISETDEGFSIRF





INKETGESIFVETEKTIFSEYANHITEEISKIKGTIFDTVNGKLVKKVNL





DTTHEVNTLNAAFFIQSLIEYNSSKESLSNLSVAMKVQVYAQLFSTGLNT





ITDAAKVVELVSTALDETIDLLPTLSEGLPIIATIIDGVSLGAAIKELSE





TSDPLLRQEIEAKIGIMAVNLTTATTAIITSSLGIASGFSILLVPLAGIS





AGIPSLVNNELVLRDKATKVVDYFKHVSLVETEGVFTLLDDKIMMPQDDL





VISEIDFNNNSIVLGKCEIWRMEGGSGHTVTDDIDHFFSAPSITYREPHL





SIYDVLEVQKEELDLSKDLMVLPNAPNRVFAWETGWTPGLRSLENDGTKL





LDRIRDNYEGEFYWRYFAFIADALTTTLKPRYEDTNIRINLDSNTRSFIV





PIITTEYIREKLSYSFYGSGGTYALSLSQYNMGINIELSESDVWIIDVDN





VVRDVTIESDKIKKGDLIEGILSTLSIEENKIILNSHEINFSGEVNGSNG





FVSLTFSILEGINAIIEVDLLSKSYKLLISGELKILMLNSNHIQQKIDYI





GFNSELQKNIPYSFVDSEGKENGFINGSTKEGLFVSELPDVVLISKVYMD





DSKPSFGYYSNNLKDVKVITKDNVNILTGYYLKDDIKISLSLTLQDEKTI





KLNSVHLDESGVAEILKFMNRKGNTNTSDSLMSFLESMNIKSIFVNFLQS





NIKFILDANFIISGTTSIGQFEFICDENDNIQPYFIKFNTLETNYTLYVG





NRQNMIVEPNYDLDDSGDISSTVINFSQKYLYGIDSCVNKVVISPNIYTD





EINITPVYETNNTYPEVIVLDANYINEKINVNINDLSIRYVWSNDGNDFI





LMSTSEENKVSQVKIRFVNVFKDKTLANKLSFNFSDKQDVPVSEIILSFT





PSYYEDGLIGYDLGLVSLYNEKFYINNFGMMVSGLIYINDSLYYFKPPVN





NLITGFVTVGDDKYYFNPINGGAASIGETIIDDKNYYFNQSGVLQTGVFS





TEDGFKYFAPANTLDENLEGEAIDFTGKLIIDENIYYFDDNYRGAVEWKE





LDGEMHYFSPETGKAFKGLNQIGDYKYYFNSDGVMQKGFVSINDNKHYFD





DSGVMKVGYTEIDGKHFYFAENGEMQIGVFNTEDGFKYFAHHNEDLGNEE





GEEISYSGILNFNNKIYYFDDSFTAVVGWKDLEDGSKYYFDEDTAEAYIG





LSLINDGQYYFNDDGIMQVGFVTINDKVFYFSDSGIIESGVQNIDDNYFY





IDDNGIVQIGVFDTSDGYKYFAPANTVNDNIYGQAVEYSGLVRVGEDVYY





FGETYTIETGWIYDMENESDKYYFNPETKKACKGINLIDDIKYYFDEKGI





MRTGLISFENNNYYFNENGEMQFGYINIEDKMFYFGEDGVMQIGVFNTPD





GFKYFAHQNTLDENFEGESINYTGWLDLDEKRYYFTDEYIAATGSVIIDG





EEYYFDPDTAQLVISE





TcdB1114-1835 amino acid sequence


(SEQ ID NO: 18)


RDKATKVVDYFKHVSLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIV





LGKCEIWRMEGGSGHTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEEL





DLSKDLMVLPNAPNRVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFY





WRYFAFIADALITTLKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLS





YSFYGSGGTYALSLSQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIK





KGDLIEGILSTLSIEENKIILNSHEINFSGEVNGSNGFVSLTFSILEGIN





AIIEVDLLSKSYKLLISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYS





FVDSEGKENGFINGSTKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNL





KDVKVITKDNVNILTGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVA





EILKFMNRKGNTNTSDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIIS





GTTSIGQFEFICDENDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDL





DDSGDISSTVINFSQKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNT





YPEVIVLDANYINEKINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQV





KIRFVNVFKDKTLANKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDL





GLVSLYNEKFYINNFGMMVSGL





TcdB1028-1835 amino acid sequence


(SEQ ID NO: 19)


GLPIIATIIDGVSLGAAIKELSETSDPLLRQEIEAKIGIMAVNLTTATTA





IITSSLGIASGFSILLVPLAGISAGIPSLVNNELVLRDKATKVVDYFKHV





SLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIVLGKCEIWRMEGGSG





HTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEELDLSKDLMVLPNAPN





RVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFYWRYFAFIADALITT





LKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLSYSFYGSGGTYALSL





SQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIKKGDLIEGILSTLSI





EENKIILNSHEINFSGEVNGSNGFVSLTFSILEGINAIIEVDLLSKSYKL





LISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYSFVDSEGKENGFING





STKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNLKDVKVITKDNVNIL





TGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVAEILKFMNRKGNTNT





SDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIISGTTSIGQFEFICDE





NDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDLDDSGDISSTVINFS





QKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNTYPEVIVLDANYINE





KINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQVKIRFVNVFKDKTLA





NKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDLGLVSLYNEKFYINN





FGMMVSGL





TcdB1114-2101 amino acid sequence


(SEQ ID NO: 20)


RDKATKVVDYFKHVSLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIV





LGKCEIWRMEGGSGHTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEEL





DLSKDLMVLPNAPNRVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFY





WRYFAFIADALITTLKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLS





YSFYGSGGTYALSLSQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIK





KGDLIEGILSTLSIEENKIILNSHEINFSGEVNGSNGFVSLTFSILEGIN





AIIEVDLLSKSYKLLISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYS





FVDSEGKENGFINGSTKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNL





KDVKVITKDNVNILTGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVA





EILKFMNRKGNTNTSDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIIS





GTTSIGQFEFICDENDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDL





DDSGDISSTVINFSQKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNT





YPEVIVLDANYINEKINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQV





KIRFVNVFKDKTLANKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDL





GLVSLYNEKFYINNFGMMVSGLIYINDSLYYFKPPVNNLITGFVTVGDDK





YYFNPINGGAASIGETIIDDKNYYFNQSGVLQTGVFSTEDGFKYFAPANT





LDENLEGEAIDFTGKLIIDENIYYFDDNYRGAVEWKELDGEMHYFSPETG





KAFKGLNQIGDYKYYFNSDGVMQKGFVSINDNKHYFDDSGVMKVGYTEID





GKHFYFAENGEMQIGVFNTEDGFKYFAHHNEDLGNEEGEEISYSGILNFN





NKIYYFDDSFTAVVGWKDLEDGSKYYFDEDTAEAYIGL






In some embodiments, the present disclosure makes available isolated and/or purified forms of polypeptides. “An isolated polypeptide”, as used herein, refers to a polypeptide that is isolated from, or is otherwise substantially free of (e.g., at least 80%, 90%, 95%, 97%, 99%, or 99.5% free of), other protein(s) and/or other polypeptide(s) (e.g., TcdB polypeptide species). In some embodiments, the isolated polypeptides is 100% free of other protein(s) and/or other polypeptide(s) (e.g., TcdB polypeptide species).


The isolated polypeptides of the present disclosure, block or inhibit Wnt signaling in cells. “Block”, or “inhibit”, as used herein, means the amplitude of Wnt signaling is decreased compared to normal physiological condition. Inhibition of Wnt signaling exacerbates the pathological outcome of CDI. Conversely, in certain abnormal or pathological conditions, e.g., cancer, Wnt signaling may also be elevated, or hyperactive compared to normal physiological condition. The amplitude of Wnt signaling under normal physiological condition in different cell types may vary and are known in the art. Abnormal Wnt signaling, or the dysfunction of Wnt signaling pathway, is the underlying mechanism of a variety of diseases. Thus, later in the present disclosure, methods of treating such diseases are contemplated.


In some embodiments, the isolated polypeptides of the present disclosure, comprise an amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, wherein the polypeptide does not have the amino acid sequence of SEQ ID NO: 27. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 18. For example, the isolated polypeptide comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 18. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 19. For example, the isolated polypeptide comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 19. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 20. For example, the isolated polypeptide comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 20. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% identity to SEQ ID NO: 18. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has 85%, 86%, 87&, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% identity to SEQ ID NO: 19. In some embodiments, the isolated polypeptide comprises an amino acid sequence that has 85%, 86%, 87&, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or 100% identity to SEQ ID NO: 20. In some embodiments, the isolated polypeptide consists of an amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20.


The “percent identity” of two amino acid sequences is determined using the algorithm of Karlin and Altschul Proc. Natl. Acad. Sci. USA 87:2264-68, 1990, modified as in Karlin and Altschul Proc. Natl. Acad. Sci. USA 90:5873-77, 1993. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. J. Mol. Biol. 215:403-10, 1990. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the protein molecules of interest. Where gaps exist between two sequences, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res. 25(17):3389-3402, 1997. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NB LAST) can be used.


The polypeptides described herein can be conjugated or otherwise covalently attached to other molecules (e.g., using a chemical linker). One such form of attachment is through a non-amide linkage (e.g., a disulfide bond). In some embodiments, the polypeptide is covalently attached (e.g., via a linker molecule) to an antibody or a domain thereof suitable for enhancing the half-life of the molecule (e.g., one or more constant domains in an Fc domain). In some embodiments, the polypeptide is linked to an Fc domain disclosed herein (e.g., IgG, IgA, IgM, IgD, or IgE).


In some embodiments, the isolated polypeptide of the present disclosure, further comprises a fusion domain. Thus, also provided herein are functional variants or modified forms of the polypeptide fragments having one or more fusion domains. Well known examples of such fusion domains include, without limitation, polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin. A fusion domain may be selected so as to confer a desired property. For example, some fusion domains are particularly useful for isolation of the fusion proteins by affinity chromatography. For the purpose of affinity purification, relevant matrices for affinity chromatography, such as glutathione-, amylase-, and nickel- or cobalt-conjugated resins are used. Many of such matrices are available in “kit” form, such as the Pharmacia GST purification system and the QlAexpress™ system (Qiagen) useful with (HIS6) fusion partners. In some embodiments, the isolated polypeptide fragment is fused with a domain that stabilizes the isolated polypeptide fragment in vivo (a “stabilizer” domain). “Stabilizing”, as used herein, means an increase in the half-life of the polypeptide in vivo, regardless of whether this is because of decreased destruction, decreased clearance by the kidney, or other pharmacokinetic effect. Fusions with the Fc portion of an immunoglobulin are known to confer desirable pharmacokinetic properties on a wide range of proteins. Likewise, fusions to human serum albumin can confer desirable properties. Other types of fusion domains that may be selected include multimerizing (e.g., dimerizing, tetramerizing) domains and functional domains.


In some embodiments, the isolated polypeptides of the present disclosure, further comprises an Fc portion of human IgG1 (SEQ ID NO: 28). Thus, fusion proteins an Fc portion of an immunoglobulin are also contemplated herein. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has at least 95% identity to SEQ ID NO: 18, wherein the said polypeptide is fused to an Fc portion of an immunoglobulin. For example, the polypeptide in the fusion protein of the present disclosure, may comprise an amino acid sequence that has at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 18. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 18. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has at least 95% identity to SEQ ID NO: 19, wherein the said polypeptide is fused to an Fc portion of an immunoglobulin. For example, the polypeptide in the fusion protein of the present disclosure, may comprise an amino acid sequence that has at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 19. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 19. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has at least 95% identity to SEQ ID NO: 20, wherein the said polypeptide is fused to an Fc portion of an immunoglobulin. For example, the polypeptide in the fusion protein of the present disclosure, may comprise an amino acid sequence that has at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 20. In some embodiments, the fusion protein comprises a polypeptide comprising an amino acid sequence that has 95%, 96%, 97%, 98%, 99%, or 100% identity to SEQ ID NO: 20. In some embodiments, the fusion protein comprises a polypeptide consisting of the amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, fused to the Fc portion of a human IgG1. Also provided herein are exemplary fusion proteins comprising a TcdB1114-1835 polypeptide fused to an Fc domain (SEQ ID NO: 21), a TcdB1028-1835 polypeptide fused to an Fc domain (SEQ ID NO: 22), and a TcdB1114-2101 polypeptide fused to an Fc domain (SEQ ID NO: 23). The exemplary isolated polypeptide fragment is provided for the sole purpose of illustration and is not meant to be limiting.









Fc portion of human IgG1


(SEQ ID NO: 28)


THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE





VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK





VSNKALPVPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGF





YPSDIAVEWESNGQPENNYKTTPPVLDSDGPFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





TcdB1114-1835-Fc fusion protein


(SEQ ID NO: 21)


RDKATKVVDYFKHVSLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIV





LGKCEIWRMEGGSGHTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEEL





DLSKDLMVLPNAPNRVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFY





WRYFAFIADALITTLKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLS





YSFYGSGGTYALSLSQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIK





KGDLIEGILSTLSIEENKIILNSHEINFSGEVNGSNGFVSLTFSILEGIN





AIIEVDLLSKSYKLLISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYS





FVDSEGKENGFINGSTKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNL





KDVKVITKDNVNILTGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVA





EILKFMNRKGNTNTSDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIIS





GTTSIGQFEFICDENDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDL





DDSGDISSTVINFSQKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNT





YPEVIVLDANYINEKINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQV





KIRFVNVFKDKTLANKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDL





GLVSLYNEKFYINNFGMMVSGLTHTCPPCPAPELLGGPSVFLFPPKPKDT






LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY







RVVSVLTVLHQDWLNGKEYKCKVSNKALPVPIEKTISKAKGQPREPQVYT







LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS







DGPFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






(Fc domain is underlined)





TcdB1028-1835-Fc fusion protein


(SEQ ID NO: 22)


GLPIIATIIDGVSLGAAIKELSETSDPLLRQEIEAKIGIMAVNLTTATTA





IITSSLGIASGFSILLVPLAGISAGIPSLVNNELVLRDKATKVVDYFKHV





SLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIVLGKCEIWRMEGGSG





HTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEELDLSKDLMVLPNAPN





RVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFYWRYFAFIADALITT





LKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLSYSFYGSGGTYALSL





SQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIKKGDLIEGILSTLSI





EENKIILNSHEINFSGEVNGSNGFVSLTFSILEGINAIIEVDLLSKSYKL





LISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYSFVDSEGKENGFING





STKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNLKDVKVITKDNVNIL





TGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVAEILKFMNRKGNTNT





SDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIISGTTSIGQFEFICDE





NDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDLDDSGDISSTVINFS





QKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNTYPEVIVLDANYINE





KINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQVKIRFVNVFKDKTLA





NKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDLGLVSLYNEKFYINN





FGMMVSGLTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV






DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWL







NGKEYKCKVSNKALPVPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVS







LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGPFFLYSKLTVDK







SRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (Fc domain is






underlined)





TcdB1114-2101-Fc fusion protein


(SEQ ID NO: 23)


RDKATKVVDYFKHVSLVETEGVFTLLDDKIMMPQDDLVISEIDFNNNSIV





LGKCEIWRMEGGSGHTVTDDIDHFFSAPSITYREPHLSIYDVLEVQKEEL





DLSKDLMVLPNAPNRVFAWETGWTPGLRSLENDGTKLLDRIRDNYEGEFY





WRYFAFIADALITTLKPRYEDTNIRINLDSNTRSFIVPIITTEYIREKLS





YSFYGSGGTYALSLSQYNMGINIELSESDVWIIDVDNVVRDVTIESDKIK





KGDLIEGILSTLSIEENKIILNSHEINFSGEVNGSNGFVSLTFSILEGIN





AIIEVDLLSKSYKLLISGELKILMLNSNHIQQKIDYIGFNSELQKNIPYS





FVDSEGKENGFINGSTKEGLFVSELPDVVLISKVYMDDSKPSFGYYSNNL





KDVKVITKDNVNILTGYYLKDDIKISLSLTLQDEKTIKLNSVHLDESGVA





EILKFMNRKGNTNTSDSLMSFLESMNIKSIFVNFLQSNIKFILDANFIIS





GTTSIGQFEFICDENDNIQPYFIKFNTLETNYTLYVGNRQNMIVEPNYDL





DDSGDISSTVINFSQKYLYGIDSCVNKVVISPNIYTDEINITPVYETNNT





YPEVIVLDANYINEKINVNINDLSIRYVWSNDGNDFILMSTSEENKVSQV





KIRFVNVFKDKTLANKLSFNFSDKQDVPVSEIILSFTPSYYEDGLIGYDL





GLVSLYNEKFYINNFGMMVSGLIYINDSLYYFKPPVNNLITGFVTVGDDK





YYFNPINGGAASIGETIIDDKNYYFNQSGVLQTGVFSTEDGFKYFAPANT





LDENLEGEAIDFTGKLIIDENIYYFDDNYRGAVEWKELDGEMHYFSPETG





KAFKGLNQIGDYKYYFNSDGVMQKGFVSINDNKHYFDDSGVMKVGYTEID





GKHFYFAENGEMQIGVFNTEDGFKYFAHHNEDLGNEEGEEISYSGILNFN





NKIYYFDDSFTAVVGWKDLEDGSKYYFDEDTAEAYIGLTHTCPPCPAPEL






LGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEV







HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPVPIEK







TISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN







GQPENNYKTTPPVLDSDGPFFLYSKLTVDKSRWQQGNVFSCSVMHEALHN







HYTQKSLSLSPGK (Fc domain is underlined)







Optionally, the Fc domain may have one or more mutations at residues such as Asp-265, lysine 322, and Asn-434. In certain cases, the mutant Fc domain having one or more of these mutations (e.g., Asp-265 mutation) has reduced ability of binding to the Fc receptor relative to a wildtype Fc domain. In other cases, the mutant Fc domain having one or more of these mutations (e.g., Asn-434 mutation) has increased ability of binding to the MHC class I-related Fc-receptor (FcRN) relative to a wildtype Fc domain.


It is understood that different elements of the fusion proteins may be arranged in any manner that is consistent with the desired functionality. For example, the TcdB1114-1835 polypeptide may be placed C-terminal to a heterologous domain, or, alternatively, a heterologous domain may be placed C-terminal to a TcdB1114-1835 polypeptide. The TcdB1114-1835 polypeptide domain and the heterologous domain need not be adjacent in a fusion protein, and additional domains or amino acid sequences may be included C- or N-terminal to either domain or between the domains.


As used herein, the term, “immunoglobulin Fc region” or simply “Fc” is understood to mean the carboxyl-terminal portion of an immunoglobulin chain constant region, preferably an immunoglobulin heavy chain constant region, or a portion thereof. For example, an immunoglobulin Fc region may comprise 1) a CH1 domain, a CH2 domain, and a CH3 domain, 2) a CH1 domain and a CH2 domain, 3) a CH1 domain and a CH3 domain, 4) a CH2 domain and a CH3 domain, or 5) a combination of two or more domains and an immunoglobulin hinge region. In a preferred embodiment the immunoglobulin Fc region comprises at least an immunoglobulin hinge region a CH2 domain and a CH3 domain, and preferably lacks the CH1 domain.


In some embodiments, the class of immunoglobulin from which the heavy chain constant region is derived is IgG (Igγ) (γ subclasses 1, 2, 3, or 4). Other classes of immunoglobulin, IgA (Iga), IgD (Igδ), IgE (Igε) and IgM (Igμ), may be used. The choice of appropriate immunoglobulin heavy chain constant region is discussed in detail in U.S. Pat. Nos. 5,541,087, and 5,726,044. The choice of particular immunoglobulin heavy chain constant region sequences from certain immunoglobulin classes and subclasses to achieve a particular result is considered to be within the level of skill in the art. The portion of the DNA construct encoding the immunoglobulin Fc region preferably comprises at least a portion of a hinge domain, and preferably at least a portion of a CH3 domain of Fc γ or the homologous domains in any of IgA, IgD, IgE, or IgM.


Furthermore, it is contemplated that substitution or deletion of amino acids within the immunoglobulin heavy chain constant regions may be useful in the practice of the methods and compositions disclosed herein. One example would be to introduce amino acid substitutions in the upper CH2 region to create an Fc variant with reduced affinity for Fc receptors (Cole et al. (1997) J. Immunol. 159:3613).


Optionally, the isolated polypeptides of the present disclosure, may comprise modifications. Polypeptides comprising modifications have additional features other than amino acid contents. As used herein, a “modification” or “derivative” of a peptide produces a modified or derivatized polypeptide, which is a form of a given peptide that is chemically modified relative to the reference peptide, the modification including, but not limited to, oligomerization or polymerization, modifications of amino acid residues or peptide backbone, cross-linking, cyclization, conjugation, pegylation, glycosylation, acetylation, phosphorylation, acylation, carboxylation, lipidation, thioglycolic acid amidation, alkylation, methylation, polyglycylation, glycosylation, polysialylation, adenylylation, PEGylation, fusion to additional heterologous amino acid sequences, or other modifications that substantially alter the stability, solubility, or other properties of the peptide while substantially retaining the activity of the polypeptides described herein. It is to be understood that the isolated polypeptides comprising such modifications, are cross-linked, cyclized, conjugated, acylated, carboxylated, lipidated, acetylated, thioglycolic acid amidated, alkylated, methylated, polyglycylated, glycosylated, polysialylated, phosphorylated, adenylylated, PEGylated, or combination thereof. As a result, the modified polypeptide fragments of the present disclosure may contain non-amino acid elements, such as polyethylene glycols, lipids, poly- or mono-saccharide, and phosphates. The isolated polypeptides of the present disclosure, may comprise the modifications disclosed herein at the C-terminus (e.g., C-terminal amidation), N-terminus (e.g., N-terminal acetylation). Terminal modifications are useful, and are well known, to reduce susceptibility to proteinase digestion, and therefore serve to prolong half-life of the polypeptides in solutions, particularly biological fluids where proteases may be present. In some embodiments, the polypeptides or fusion proteins described herein are further modified within the sequence, such as, modification by terminal-NH2 acylation, e.g., acetylation, or thioglycolic acid amidation, by terminal-carboxylamidation, e.g., with ammonia, methylamine, and the like terminal modifications.


Terminal modifications are useful, to reduce susceptibility by proteinase digestion, and therefore can serve to prolong half-life of the polypeptides in solution, particularly in biological fluids where proteases may be present. Amino terminus modifications include methylation (e.g., —NHCH3 or —N(CH3)2), acetylation (e.g., with acetic acid or a halogenated derivative thereof such as a-chloroacetic acid, a-bromoacetic acid, or a-iodoacetic acid), adding a benzyloxycarbonyl (Cbz) group, or blocking the amino terminus with any blocking group containing a carboxylate functionality defined by RCOO— or sulfonyl functionality defined by R—SO2-, where R is selected from the group consisting of alkyl, aryl, heteroaryl, alkyl aryl, and the like, and similar groups. One can also incorporate a desamino acid at the N-terminus (so that there is no N-terminal amino group) to decrease susceptibility to proteases or to restrict the conformation of the polypeptide. In certain embodiments, the N-terminus is acetylated with acetic acid or acetic anhydride.


Carboxy terminus modifications include replacing the free acid with a carboxamide group or forming a cyclic lactam at the carboxy terminus to introduce structural constraints. One can also cyclize the peptides described herein, or incorporate a desamino or descarboxy residue at the termini of the peptide, so that there is no terminal amino or carboxyl group, to decrease susceptibility to proteases or to restrict the conformation of the peptide. Methods of circular peptide synthesis are known in the art, for example, in U.S. Patent Application No. 20090035814; Muralidharan and Muir, 2006, Nat Methods, 3:429-38; and Lockless and Muir, 2009, Proc Natl Acad Sci USA. June 18, Epub. C-terminal functional groups of the peptides described herein include amide, amide lower alkyl, amide di(lower alkyl), lower alkoxy, hydroxy, and carboxy, and the lower ester derivatives thereof, and the pharmaceutically acceptable salts thereof.


In some embodiments, the polypeptides or the fusion proteins described herein are phosphorylated. One can also readily modify peptides by phosphorylation, and other methods (e.g., as described in Hruby, et al. (1990) Biochem J. 268:249-262). One can also replace the naturally occurring side chains of the genetically encoded amino acids (or the stereoisomeric D amino acids) with other side chains, for instance with groups such as alkyl, lower (C1-6) alkyl, cyclic 4-, 5-, 6-, to 7-membered alkyl, amide, amide lower alkyl amide di(lower alkyl), lower alkoxy, hydroxy, carboxy and the lower ester derivatives thereof, and with 4-, 5-, 6-, to 7-membered heterocycles. In particular, proline analogues in which the ring size of the proline residue is changed from 5 members to 4, 6, or 7 members can be employed. Cyclic groups can be saturated or unsaturated, and if unsaturated, can be aromatic or non-aromatic. Heterocyclic groups preferably contain one or more nitrogen, oxygen, and/or sulfur heteroatoms. Examples of such groups include the furazanyl, furyl, imidazolidinyl, imidazolyl, imidazolinyl, isothiazolyl, isoxazolyl, morpholinyl (e.g. morpholino), oxazolyl, piperazinyl (e.g., 1-piperazinyl), piperidyl (e.g., 1-piperidyl, piperidino), pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolidinyl (e.g., 1-pyrrolidinyl), pyrrolinyl, pyrrolyl, thiadiazolyl, thiazolyl, thienyl, thiomorpholinyl (e.g., thiomorpholino), and triazolyl groups. These heterocyclic groups can be substituted or unsubstituted. Where a group is substituted, the substituent can be alkyl, alkoxy, halogen, oxygen, or substituted or unsubstituted phenyl.


In some embodiments, the isolated polypeptide of the present disclosure is multimeric, e.g., a dimer, trimer, tetramer, or pentamer. In some embodiments, the molecular linker used for forming the oligomeric polypeptides is a peptide linker molecule. In some embodiments, the peptide linking molecule comprises at least one amino acid residue which links at least two peptides according to the disclosure. The peptide linker comprises, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids residues and preferably less than 50 amino acids residues. The peptide linking molecule can couple polypeptides or proteins covalently or non-covalently. Typical amino acid residues used for linking are glycine, tyrosine, cysteine, lysine, glutamic and aspartic acid, or the like. A peptide linker is attached on its amino-terminal end to one peptide, polypeptide or polypeptide domain (e.g., a C-peptide) and on its carboxyl-terminal end to another peptide, polypeptide or polypeptide domain (again, e.g., a C-peptide). Examples of useful linker peptides include, but are not limited to, glycine polymers ((G)n) including glycine-serine and glycine-alanine polymers (e.g., a (Gly4Ser)n repeat where n=1-8, preferably, n=3, 4, 5, or 6). Other examples of peptide linker molecules are described in U.S. Pat. No. 5,856,456 and are hereby incorporated by reference.


In another embodiment, the molecular linker is a chemical linker such as linkages by disulfide bonds between cysteine amino acid residues or by chemical bridges formed by amine crosslinkers, for example, glutaraldehyde, bis(imido ester), bis(succinimidyl esters), diisocyanates and diacid chlorides. Extensive data on chemical cross-linking agents can be found at INVITROGEN's Molecular Probe under section 5.2.


In certain embodiments, the peptide monomers described herein are dimerized or multimerized by covalent attachment to at least one linker moiety. The linker moiety is preferably, although not necessarily, a C1-12 linking moiety optionally terminated with one or two —NH— linkages and optionally substituted at one or more available carbon atoms with a lower alkyl substituent. Preferably the linker comprises —NH—R—NH— wherein R is a lower (C1-6) alkylene substituted with a functional group, such as a carboxyl group or an amino group, that enables binding to another molecular moiety (e.g., as may be present on the surface of a solid support during peptide synthesis or to a pharmacokinetic-modifying agent such as PEG). In certain embodiments the linker is a lysine residue. In certain other embodiments, the linker bridges the C-termini of two peptide monomers, by simultaneous attachment to the C-terminal amino acid of each monomer. In other embodiments, the linker bridges the peptides by attaching to the side chains of amino acids not at the C-termini. When the linker attaches to a side chain of an amino acid not at the C-termini of the peptides, the side chain preferably contains an amine, such as those found in lysine, and the linker contains two or more carboxy groups capable of forming an amide bond with the peptides.


The polypeptides, fusion proteins, and polypeptide multimers as described herein may be attached to one or more polymer moieties. Preferably, these polymers are covalently attached to the polypeptides of the disclosure. Preferably, for therapeutic use of the end product preparation, the polymer is pharmaceutically acceptable. One skilled in the art will be able to select the desired polymer based on such considerations as whether the polymer-peptide conjugate will be used therapeutically, and if so, the desired dosage, circulation time, resistance to proteolysis, and other considerations.


Suitable polymers include, for example, polyethylene glycol (PEG), polyvinyl pyrrolidone, polyvinyl alcohol, polyamino acids, divinylether maleic anhydride, N-(2-Hydroxypropyl)-methacrylamide, dextran, dextran derivatives including dextran sulfate, polypropylene glycol, polyoxyethylated polyol, heparin, heparin fragments, polysaccharides, cellulose and cellulose derivatives, including methylcellulose and carboxymethyl cellulose, starch and starch derivatives, polyalkylene glycol and derivatives thereof, copolymers of polyalkylene glycols and derivatives thereof, polyvinyl ethyl ethers, and α,β-Poly[(2-hydroxyethyl)-DL-aspartamide, and the like, or mixtures thereof. Such a polymer may or may not have its own biological activity. The polymers can be covalently or non-covalently conjugated to the polypeptide. Methods of conjugation for increasing serum half-life and for radiotherapy are known in the art, for example, in U.S. Pat. Nos. 5,180,816, 6,423,685, 6,884,780, and 7,022,673, which are hereby incorporated by reference in their entirety.


In some embodiments, the polypeptides monomers, dimers, or multimers as described herein may be attached to one or more water soluble polymer moieties. The water soluble polymer may be, for example, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1,3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), poly(n-vinyl-pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide copolymers, and polyoxyethylated polyols. A preferred water soluble polymer is PEG.


The polymer may be of any molecular weight, and may be branched or unbranched. The average molecular weight of the reactant PEG is preferably between about 3,000 and about 50,000 daltons (the term “about” indicating that in preparations of PEG, some molecules will weigh more, and some less, than the stated molecular weight). More preferably, the PEG has a molecular weight of from about 10 kDa to about 40 kDa, and even more preferably, the PEG has a molecular weight from 15 to 30 kDa. Other sizes may be used, depending on the desired therapeutic profile (e.g., duration of sustained release desired; effects, if any, on biological activity; ease in handling; degree or lack of antigenicity; and other effects of PEG on a therapeutic peptide known to one skilled in the art).


The number of polymer molecules attached may vary; for example, one, two, three, or more water-soluble polymers may be attached to a peptide of the disclosure. The multiple attached polymers may be the same or different chemical moieties (e.g., PEGs of different molecular weight).


In certain embodiments, PEG may be attached to at least one terminus (N-terminus or C-terminus) of a peptide monomer or dimer. In other embodiments, PEG may be attached to a linker moiety of a peptide monomer or dimer. In a preferred embodiment, PEG is attached to the linker moiety of a peptide dimer. Optionally, the linker contains more than one reactive amine capable of being derivatized with a suitably activated PEG species.


In some embodiments, the isolated polypeptides, fusion proteins, or polypeptide multimers described herein, whether monomeric, oligomeric or cyclic, is PEGylated. PEGylation is the process of covalent attachment of Polyethylene glycol polymer chains to another molecule, normally a drug or therapeutic protein. PEGylation is routinely achieved by incubation of a reactive derivative of PEG with the target macromolecule. The covalent attachment of PEG to a drug or therapeutic protein can “mask” the agent from the host's immune system (reduced immunogenicity and antigenicity), and increase the hydrodynamic size (size in solution) of the agent which prolongs its circulatory time by reducing renal clearance. PEGylation can also provide water solubility to hydrophobic drugs and proteins. PEGylation, by increasing the molecular weight of a molecule, can impart several significant pharmacological advantages over the unmodified form, such as: improved drug solubility, reduced dosage frequency, without diminished efficacy with potentially reduced toxicity, extended circulating life, increased drug stability, and enhanced protection from proteolytic degradation. In addition, PEGylated drugs are have wider opportunities for new delivery formats and dosing regimens. Methods of PEGylating molecules, proteins and peptides are well known in the art, e.g., as described in U.S. Pat. Nos. 5,766,897; 7,610,156; 7,256,258 and the International Application No. WO/1998/032466.


Encompassed herein are conjugates of the polypeptide described herein or of a variant or derivative thereof. These polypeptides can be conjugated to other polymers in addition to polyethylene glycol (PEG). The polymer may or may not have its own biological activity. Further examples of polymer conjugation include but are not limited to polymers such as polyvinyl pyrrolidone, polyvinyl alcohol, polyamino acids, divinylether maleic anhydride, N-(2-Hydroxypropyl)-methacrylamide, dextran, dextran derivatives including dextran sulfate, polypropylene glycol, polyoxyethylated polyol, heparin, heparin fragments, polysaccharides, cellulose and cellulose derivatives, including methylcellulose and carboxymethyl cellulose, starch and starch derivatives, polyalkylene glycol and derivatives thereof, copolymers of polyalkylene glycols and derivatives thereof, polyvinyl ethyl ethers, and α,β-Poly[(2-hydroxyethyl)-DL-aspartamide, and the like, or mixtures thereof. Conjugation to a polymer can improve serum half-life, among other effects. A variety of chelating agents can be used to conjugate the peptides described herein. These chelating agents include but are not limited to ethylenediaminetetraacetic acid (EDTA), diethylenetriaminopentaacetic acid (DTPA), ethyleneglycol-0,0′-bis(2-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA), N,N′-bis(hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED), triethylenetetraminehexaacetic acid (TTHA), 1,4,7,10-tetra-azacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA), 1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetraacetic acid (TITRA), 1,4,8,11-tetraazacyclotetradecane-N,N′,N″,N′″-tetraacetic acid (TETA), and 1,4,8,11-tetraazacyclotetradecane (TETRA). Methods of conjugation are well known in the art, for example, P. E. Thorpe, et. al, 1978, Nature 271, 752-755; Harokopakis E., et. al., 1995, Journal of Immunological Methods, 185:31-42; S. F. Atkinson, et. al., 2001, J. Biol. Chem., 276:27930-27935; and U.S. Pat. Nos. 5,601,825, 5,180,816, 6,423,685, 6,706,252, 6,884,780, and 7,022,673, which are hereby incorporated by reference in their entirety.


In some embodiments, the polymer prolongs the serum half-life of the isolated polypeptide when attached to the isolated polypeptide. In some embodiments, the polymer prolongs the shelf-life of the isolated polypeptide when attached to the isolated polypeptide. The “serum half-life” of an isolated polypeptide, as used herein, refers to the period of time required for the concentration or amount of the polypeptides in the body to be reduced by one-half. A polypeptide's serum half-life depends on how quickly it is eliminated from the serum. The longer the serum half-life is, the more stable the polypeptide is in the body. The “shelf-life”, refers to the period of time, from the date of manufacture, that a product is expected to remain within its approved product specification while stored under defined conditions. It is desirable for a therapeutic agent, e.g., the isolated polypeptide of the present disclosure, to have a longer shelf-life.


Other methods for stabilizing peptides known in the art may be used with the methods and compositions described herein. For example, using D-amino acids, using reduced amide bonds for the peptide backbone, and using non-peptide bonds to link the side chains, including, but not limited to, pyrrolinone and sugar mimetics can each provide stabilization. The design and synthesis of sugar scaffold peptide mimetics are described by Hirschmann et al. (J. Med. Chem., 1996, 36, 2441-2448, which is incorporated herein by reference in its entirety). Further, pyrrolinone-based peptide mimetics present the peptide pharmacophore on a stable background that has improved bioavailability characteristics (see, for example, Smith et al., J. Am. Chem. Soc. 2000, 122, 11037-11038), which is incorporated herein by reference in its entirety.


The isolated polypeptides of the present disclosure, may comprise conservative amino acid substitutions. A “conservative amino acid substitution”, refers to an amino acid substitution that changes an amino acid to a different amino acid with similar biochemical properties (e.g. charge, hydrophobicity and size). Conservative substitutions of amino acids include, for example, substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D. Conservative amino acid substitutions do not alter the relative charge or size characteristics of the protein in which the amino acid substitutions are made. Conservative amino acid substitutions typically do not change the overall structure of the peptide and/or the type of amino acid side chains available for forming van der Waals bonds with a binding partner. In some embodiments, the isolated polypeptide may comprise 1-100 conservative amino acid substitutions. For example, the isolated polypeptide may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69. 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 conservative amino acid substitutions.


Amino acid substitution can be achieved during chemical synthesis of the peptide by adding the desired substitute amino acid at the appropriate sequence in the synthesis process. Alternatively, molecular biology methods can be used. Non-conservative substitutions are also encompassed to the extent that they substantially retain the activities of those peptides described herein.


The amino acid substituted polypeptide will substantially retain the activity of the non-substituted polypeptide. By “substantially retain” means one or more activity of the variant is at least 50% compared to the activity of the original polypeptide in a similar assay, under similar conditions; preferably the activity is at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, at least 100%, at least 2-fold, at least 5-fold, at least 10-fold, at least 100-fold or higher activity compared to the original polypeptide.


All combinations of the different modifications and derivativizations are envisioned for the polypeptides, fusion proteins and oligomer polypeptides described herein. Modifications, derivatives and methods of derivatizing polypeptides are described in Published International Application WO 2010/014616, the contents of which are incorporated herein by reference.


Other aspects of the present disclosure provide chimeric molecules comprising a first portion and a second portion, wherein the first portion is any isolated polypeptides, fusion proteins, multimeric polypeptides, or variants/derivatives disclosed herein. It is to be understood that the second portion of the chimeric molecule is not the same polypeptide as the first portion of the chimeric molecule. In some embodiments, the first portion of the chimeric molecule is an isolated polypeptide binds Frizzled (FZD). In some embodiments, binding of the isolated polypeptides to FZDs blocks Wnt signaling pathways.


In some embodiments, the second portion of the chimeric molecule comprises a therapeutic agent. In some embodiments, the therapeutic agent may be an anti-bacterial agent. In some embodiments, the therapeutic agent may be an antibiotic. Classes of anti-bacterial agents that may be used in accordance with the present disclosure include, without limitation, aminoglycosides, ansamycins, carbacephems, carbapenems, cephalosporins, glycopeptides, lincosamides, lipopeptides, macrolides, monobactams, nitrofurans, oxazolidinones, penicillins, quinolones, sulfonamides, and tetracyclines. It is to be understood that any known anti-bacterial agent in the art that can be attached to a polypeptide may be used herein.


In some embodiments, the second portion of the chimeric molecule may be a binder or antibody that binds the Frizzled co-receptors. It is known in the art that to facilitate Wnt signaling, co-receptors may be required alongside the interaction between the Wnt protein and FZDs. Upon activation of the receptor, a signal is sent to the phosphoprotein Dishevelled (Dsh), which is located in the cytoplasm. Blocking of the Frizzled co-receptors via binding of an antibody also blocks Wnt signaling. Examples of Frizzled co-receptors include, without limitation, lipoprotein receptor-related protein (LRP)-5/6, receptor tyrosine kinase (RTK), and tyrosine-protein kinase transmembrane receptor (ROR2). Thus, antibodies to the Frizzled co-receptors described herein, may be used as the second portion of the chimeric molecule of the present disclosure, the facilitate the blocking of Wnt signaling at the receptor level.


In some embodiments, the second portion of the chimeric molecule may be a FZD-CRD fused to the polypeptide of the first portion. In some embodiments, the second portion comprises an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 24. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 24. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 25. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 25. SEQ ID NO: 25. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 26. In some embodiments, the second portion of the chimeric molecule comprises an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% to SEQ ID NO: 26.


The isolated polypeptides of the present disclosure (e.g., polypeptides comprising amino acid sequence of any of SEQ ID NOs: 18-26), will generally be produced by expression form recombinant nucleic acids in appropriate cells (e.g., E. coli, or insect cells) and isolated. The nucleic acids encoding the polypeptides described herein may be obtained, and the nucleotide sequence of the nucleic acids determined, by any method known in the art. Further provided herein are isolated and/or recombinant nucleic acids encoding any of the isolated polypeptide fragments disclosed herein. For example, SEQ ID NO: 29 encodes the TcdB1114-1835 polypeptide. The nucleic acids encoding the isolated polypeptide fragments of the present disclosure, may be DNA or RNA, double-stranded or single stranded.









TcdB1114-1835 nucleic acid sequence


(SEQ ID NO: 29)


CGAGATAAGGCAACAAAGGTTGTAGATTATTTTAAACATGTTTCATTAGTT





GAAACTGAAGGAGTATTTACTTTATTAGATGATAAAATAATGATGCCACAA





GATGATTTAGTGATATCAGAAATAGATTTTAATAATAATTCAATAGTTTTA





GGTAAATGTGAAATCTGGAGAATGGAAGGTGGTTCAGGTCATACTGTAACT





GATGATATAGATCACTTCTTTTCAGCACCATCAATAACATATAGAGAGCCA





CACTTATCTATATATGACGTATTGGAAGTACAAAAAGAAGAACTTGATTTG





TCAAAAGATTTAATGGTATTACCTAATGCTCCAAATAGAGTATTTGCTTGG





GAAACAGGATGGACACCAGGTTTAAGAAGCTTAGAAAATGATGGCACAAAA





CTGTTAGACCGTATAAGAGATAACTATGAAGGTGAGTTTTATTGGAGATAT





TTTGCTTTTATAGCTGATGCTTTAATAACAACATTAAAACCAAGATATGAA





GATACTAATATAAGAATAAATTTAGATAGTAATACTAGAAGTTTTATAGTT





CCAATAATAACTACAGAATATATAAGAGAAAAATTATCATATTCTTTCTAT





GGTTCAGGAGGAACTTATGCATTGTCTCTTTCTCAATATAATATGGGTATA





AATATAGAATTAAGTGAAAGTGATGTTTGGATTATAGATGTTGATAATGTT





GTGAGAGATGTAACTATAGAATCTGATAAAATTAAAAAAGGTGATTTAATA





GAAGGTATTTTATCTACACTAAGTATTGAAGAGAATAAAATTATCTTAAAT





AGCCATGAGATTAATTTTTCTGGTGAGGTAAATGGAAGTAATGGATTTGTT





TCTTTAACATTTTCAATTTTAGAAGGAATAAATGCAATTATAGAAGTTGAT





TTATTATCTAAATCATATAAATTACTTATTTCTGGCGAATTAAAAATATTG





ATGTTAAATTCAAATCATATTCAACAGAAAATAGATTATATAGGATTCAAT





AGCGAATTACAGAAAAATATACCATATAGCTTTGTAGATAGTGAAGGAAAA





GAGAATGGTTTTATTAATGGTTCAACAAAAGAAGGTTTATTTGTATCTGAA





TTACCTGATGTAGTTCTTATAAGTAAGGTTTATATGGATGATAGTAAGCCT





TCATTTGGATATTATAGTAATAATTTGAAAGATGTCAAAGTTATAACTAAA





GATAATGTTAATATATTAACAGGTTATTATCTTAAGGATGATATAAAAATC





TCTCTTTCTTTGACTCTACAAGATGAAAAAACTATAAAGTTAAATAGTGTG





CATTTAGATGAAAGTGGAGTAGCTGAGATTTTGAAGTTCATGAATAGAAAA





GGTAATACAAATACTTCAGATTCTTTAATGAGCTTTTTAGAAAGTATGAAT





ATAAAAAGTATTTTCGTTAATTTCTTACAATCTAATATTAAGTTTATATTA





GATGCTAATTTTATAATAAGTGGTACTACTTCTATTGGCCAATTTGAGTTT





ATTTGTGATGAAAATGATAATATACAACCATATTTCATTAAGTTTAATACA





CTAGAAACTAATTATACTTTATATGTAGGAAATAGACAAAATATGATAGTG





GAACCAAATTATGATTTAGATGATTCTGGAGATATATCTTCAACTGTTATC





AATTTCTCTCAAAAGTATCTTTATGGAATAGACAGTTGTGTTAATAAAGTT





GTAATTTCACCAAATATTTATACAGATGAAATAAATATAACGCCTGTATAT





GAAACAAATAATACTTATCCAGAAGTTATTGTATTAGATGCAAATTATATA





AATGAAAAAATAAATGTTAATATCAATGATCTATCTATACGATATGTATGG





AGTAATGATGGTAATGATTTTATTCTTATGTCAACTAGTGAAGAAAATAAG





GTGTCACAAGTTAAAATAAGATTCGTTAATGTTTTTAAAGATAAGACTTTG





GCAAATAAGCTATCTTTTAACTTTAGTGATAAACAAGATGTACCTGTAAGT





GAAATAATCTTATCATTTACACCTTCATATTATGAGGATGGATTGATTGGC





TATGATTTGGGTCTAGTTTCTTTATATAATGAGAAATTTTATATTAATAAC





TTTGGAATGATGGTATCTGGATTA






In certain aspects, the subject nucleic acids encoding the isolated polypeptide fragments are further understood to include nucleic acids encoding polypeptides that are variants of SEQ ID NOs: 18 to 23. Variant nucleotide sequences include sequences that differ by one or more nucleotide substitutions, additions or deletions, such as allelic variants. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 18. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 19. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 20. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 21. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 22. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity of SEQ ID NO: 23. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 18. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 19. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 20. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 21. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 22. In some embodiments, the isolated nucleic acid molecule of the present disclosure comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity of SEQ ID NO: 23.


In some embodiments, the nucleic acid is comprised within a vector, such as an expression vector. In some embodiments, the vector comprises a promoter operably linked to the nucleic acid.


A variety of promoters can be used for expression of the polypeptides described herein, including, but not limited to, cytomegalovirus (CMV) intermediate early promoter, a viral LTR such as the Rous sarcoma virus LTR, HIV-LTR, HTLV-1 LTR, the simian virus 40 (SV40) early promoter, E. coli lac UV5 promoter, and the herpes simplex tk virus promoter.


Regulatable promoters can also be used. Such regulatable promoters include those using the lac repressor from E. coli as a transcription modulator to regulate transcription from lac operator-bearing mammalian cell promoters [Brown, M. et al., Cell, 49:603-612 (1987)], those using the tetracycline repressor (tetR) [Gossen, M., and Bujard, H., Proc. Natl. Acad. Sci. USA 89:5547-5551 (1992); Yao, F. et al., Human Gene Therapy, 9:1939-1950 (1998); Shockelt, P., et al., Proc. Natl. Acad. Sci. USA, 92:6522-6526 (1995)]. Other systems include FK506 dimer, VP16 or p65 using astradiol, RU486, diphenol murislerone, or rapamycin. Inducible systems are available from Invitrogen, Clontech and Ariad.


Regulatable promoters that include a repressor with the operon can be used. In one embodiment, the lac repressor from Escherichia coli can function as a transcriptional modulator to regulate transcription from lac operator-bearing mammalian cell promoters [M. Brown et al., Cell, 49:603-612 (1987)]; Gossen and Bujard (1992); [M. Gossen et al., Natl. Acad. Sci. USA, 89:5547-5551 (1992)] combined the tetracycline repressor (tetR) with the transcription activator (VP 16) to create a tetR-mammalian cell transcription activator fusion protein, tTa (tetR-VP 16), with the tetO-bearing minimal promoter derived from the human cytomegalovirus (hCMV) major immediate-early promoter to create a tetR-tet operator system to control gene expression in mammalian cells. In one embodiment, a tetracycline inducible switch is used (Yao et al., Human Gene Therapy; Gossen et al., Natl. Acad. Sci. USA, 89:5547-5551 (1992); Shockett et al., Proc. Natl. Acad. Sci. USA, 92:6522-6526 (1995)).


Additionally, the vector can contain, for example, some or all of the following: a selectable marker gene, such as the neomycin gene for selection of stable or transient transfectants in mammalian cells; enhancer/promoter sequences from the immediate early gene of human CMV for high levels of transcription; transcription termination and RNA processing signals from SV40 for mRNA stability; SV40 polyoma origins of replication and ColE1 for proper episomal replication; internal ribosome binding sites (IRESes), versatile multiple cloning sites; and T7 and SP6 RNA promoters for in vitro transcription of sense and antisense RNA. Suitable vectors and methods for producing vectors containing transgenes are well known and available in the art.


An expression vector comprising the nucleic acid can be transferred to a host cell by conventional techniques (e.g., electroporation, liposomal transfection, and calcium phosphate precipitation) and the transfected cells are then cultured by conventional techniques to produce the polypeptides described herein. In some embodiments, the expression of the polypeptides described herein is regulated by a constitutive, an inducible or a tissue-specific promoter.


The host cells used to express the isolated polypeptides described herein may be either bacterial cells such as Escherichia coli, or, preferably, eukaryotic cells. In particular, mammalian cells, such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for immunoglobulins (Foecking et al. (1986) “Powerful And Versatile Enhancer-Promoter Unit For Mammalian Expression Vectors,” Gene 45:101-106; Cockett et al. (1990) “High Level Expression Of Tissue Inhibitor Of Metalloproteinases In Chinese Hamster Ovary Cells Using Glutamine Synthetase Gene Amplification,” Biotechnology 8:662-667).


A variety of host-expression vector systems may be utilized to express the isolated polypeptides described herein. Such host-expression systems represent vehicles by which the coding sequences of the isolate d polypeptides described herein may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express the isolated polypeptides described herein in situ. These include, but are not limited to, microorganisms such as bacteria (e.g., E. coli and B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing coding sequences for the isolated polypeptides described herein; yeast (e.g., Saccharomyces pichia) transformed with recombinant yeast expression vectors containing sequences encoding the isolated polypeptides described herein; insect cell systems infected with recombinant virus expression vectors (e.g., baclovirus) containing the sequences encoding the isolated polypeptides described herein; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus (CaMV) and tobacco mosaic virus (TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing sequences encoding the isolated polypeptides described herein; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 293T, 3T3 cells, lymphotic cells (see U.S. Pat. No. 5,807,715), Per C.6 cells (human retinal cells developed by Crucell) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).


In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the polypeptides being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of polypeptides described herein, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Rüther et al. (1983) “Easy Identification Of cDNA Clones,” EMBO J. 2:1791-1794), in which the coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye et al. (1985) “Up-Promoter Mutations In The lpp Gene Of Escherichia Coli,” Nucleic Acids Res. 13:3101-3110; Van Heeke et al. (1989) “Expression Of Human Asparagine Synthetase In Escherichia Coli,” J. Biol. Chem. 24:5503-5509); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to a matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.


In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The coding sequence may be cloned individually into non-essential regions (e.g., the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (e.g., the polyhedrin promoter).


In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the immunoglobulin molecule in infected hosts (e.g., see Logan et al. (1984) “Adenovirus Tripartite Leader Sequence Enhances Translation Of mRNAs Late After Infection,” Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bitter et al. (1987) “Expression And Secretion Vectors For Yeast,” Methods in Enzymol. 153:516-544).


In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. For example, in certain embodiments, the polypeptides described herein may be expressed as a single gene product (e.g., as a single polypeptide chain, i.e., as a polyprotein precursor), requiring proteolytic cleavage by native or recombinant cellular mechanisms to form separate polypeptides described herein. The disclosure thus encompasses engineering a nucleic acid sequence to encode a polyprotein precursor molecule comprising the polypeptides described herein, which includes coding sequences capable of directing post translational cleavage of said polyprotein precursor. Post-translational cleavage of the polyprotein precursor results in the polypeptides described herein. The post translational cleavage of the precursor molecule comprising the polypeptides described herein may occur in vivo (i.e., within the host cell by native or recombinant cell systems/mechanisms, e.g. furin cleavage at an appropriate site) or may occur in vitro (e.g. incubation of said polypeptide chain in a composition comprising proteases or peptidases of known activity and/or in a composition comprising conditions or reagents known to foster the desired proteolytic action). Purification and modification of recombinant proteins is well known in the art such that the design of the polyprotein precursor could include a number of embodiments readily appreciated by a skilled worker. Any known proteases or peptidases known in the art can be used for the described modification of the precursor molecule, e.g., thrombin or factor Xa (Nagai et al. (1985) “Oxygen Binding Properties Of Human Mutant Hemoglobins Synthesized In Escherichia Coli,” Proc. Nat. Acad. Sci. USA 82:7252-7255, and reviewed in Jenny et al. (2003) “A Critical Review Of The Methods For Cleavage Of Fusion Proteins With Thrombin And Factor Xa,” Protein Expr. Purif. 31:1-11, each of which is incorporated by reference herein in its entirety)), enterokinase (Collins-Racie et al. (1995) “Production Of Recombinant Bovine Enterokinase Catalytic Subunit In Escherichia Coli Using The Novel Secretory Fusion Partner DsbA,” Biotechnology 13:982-987 hereby incorporated by reference herein in its entirety)), furin, and AcTEV (Parks et al. (1994) “Release Of Proteins And Peptides From Fusion Proteins Using A Recombinant Plant Virus Proteinase,” Anal. Biochem. 216:413-417 hereby incorporated by reference herein in its entirety)) and the Foot and Mouth Disease Virus Protease C3.


Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERY, BHK, HeLa, COS, MDCK, 293, 293T, 3T3, WI38, BT483, Hs578T, HTB2, BT20 and T47D, CRL7030 and Hs578Bst.


For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express polypeptides described herein may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the polypeptides described herein. Such engineered cell lines may be particularly useful in screening and evaluation of polypeptides that interact directly or indirectly with the polypeptides described herein.


A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al. (1977) “Transfer Of Purified Herpes Virus Thymidine Kinase Gene To Cultured Mouse Cells,” Cell 11: 223-232), hypoxanthine-guanine phosphoribosyltransferase (Szybalska et al. (1992) “Use Of The HPRT Gene And The HAT Selection Technique In DNA-Mediated Transformation Of Mammalian Cells First Steps Toward Developing Hybridoma Techniques And Gene Therapy,” Bioessays 14: 495-500), and adenine phosphoribosyltransferase (Lowy et al. (1980) “Isolation Of Transforming DNA: Cloning The Hamster aprt Gene,” Cell 22: 817-823) genes can be employed in tk-, hgprt- or aprt-cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al. (1980) “Transformation Of Mammalian Cells With An Amplifiable Dominant-Acting Gene,” Proc. Natl. Acad. Sci. USA 77:3567-3570; O'Hare et al. (1981) “Transformation Of Mouse Fibroblasts To Methotrexate Resistance By A Recombinant Plasmid Expressing A Prokaryotic Dihydrofolate Reductase,” Proc. Natl. Acad. Sci. USA 78: 1527-1531); gpt, which confers resistance to mycophenolic acid (Mulligan et al. (1981) “Selection For Animal Cells That Express The Escherichia coli Gene Coding For Xanthine-Guanine Phosphoribosyltransferase,” Proc. Natl. Acad. Sci. USA 78: 2072-2076); neo, which confers resistance to the aminoglycoside G-418 (Tolstoshev (1993) “Gene Therapy, Concepts, Current Trials And Future Directions,” Ann. Rev. Pharmacol. Toxicol. 32:573-596; Mulligan (1993) “The Basic Science Of Gene Therapy,” Science 260:926-932; and Morgan et al. (1993) “Human Gene Therapy,” Ann. Rev. Biochem. 62:191-217) and hygro, which confers resistance to hygromycin (Santerre et al. (1984) “Expression Of Prokaryotic Genes For Hygromycin B And G418 Resistance As Dominant-Selection Markers In Mouse L Cells,” Gene 30:147-156). Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), 1993, Current Protocols in Molecular Biology, John Wiley & Sons, NY; Kriegler, 1990, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY; and in Chapters 12 and 13, Dracopoli et al. (eds), 1994, Current Protocols in Human Genetics, John Wiley & Sons, NY.; Colberre-Garapin et al. (1981) “A New Dominant Hybrid Selective Marker For Higher Eukaryotic Cells,” J. Mol. Biol. 150:1-14.


The expression levels of polypeptides described herein can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol. 3 (Academic Press, New York, 1987). When a marker in the vector system expressing a polypeptide described herein is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the nucleotide sequence of a polypeptide described herein or a polypeptide described herein, production of the polypeptide will also increase (Crouse et al. (1983) “Expression And Amplification Of Engineered Mouse Dihydrofolate Reductase Minigenes,” Mol. Cell. Biol. 3:257-266).


Once a polypeptide described herein has been recombinantly expressed, it may be purified by any method known in the art for purification of polypeptides, polyproteins or antibodies (e.g., analogous to antibody purification schemes based on antigen selectivity) for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen (optionally after Protein A selection where the polypeptide comprises an Fc domain (or portion thereof)), and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of polypeptides or antibodies.


Other aspects of the present disclosure relate to a cell comprising a nucleic acid described herein or a vector described herein. The cell may be a prokaryotic or eukaryotic cell. In some embodiments, the cell in a mammalian cell. Exemplary cell types are described herein.


Yet other aspects of the disclosure relate to a method of producing a polypeptide described herein, the method comprising obtaining a cell described herein and expressing nucleic acid described herein in said cell. In some embodiments, the method further comprises isolating and purifying a polypeptide described herein.


Other aspects of the present disclosure relate to pharmaceutical compositions comprising the isolated polypeptides or the chimeric molecules described herein. The term “pharmaceutical composition”, as used herein, refers to the formulation of an isolated polypeptide described herein in combination with a pharmaceutically acceptable carrier. The pharmaceutical composition can further comprise additional agents (e.g. for specific delivery, increasing half-life, or other therapeutic agents).


In some embodiments, the pharmaceutical composition of the present disclosure comprise other therapeutic agents. In some embodiments, such other therapeutic agents comprise an additional isolated polypeptide fragment. In some embodiments, the additional isolated polypeptide fragment comprises the amino acid sequence of the cysteine-rich domain of FZD (FZD-CRD). Also illustrated in the Examples of the present disclosure, is the inhibitory effect of FZD-CRD on TcdB binding to cell surface FZDs via competition. By preventing TcdB from binding to FZDs, the FZD-CRD polypeptides not only block the entry of TcdB into the cells, but also prevent the inhibition of Wnt signaling by TcdB. Thus, further provided herein are examples of how the FZD-CRD polypeptides protect cells in from TcdB induced CDI. As illustrated herein, Triple FZD1/2/7 knockout (KO) cells were dramatically resistant to toxin entry. Furthermore, colonic organoids with reduced FZD1/2/7 were less sensitive to TcdB. Finally, FZD2-CRD prevented TcdB binding to colonic tissues in mice and the colonic epithelium in FZD7 KO mice was less susceptible to TcdB-induced tissue damage. These findings establish FZDs as physiologically relevant epithelial receptors for TcdB, point to a role of Wnt signaling blockage in CDI pathogenesis, and provide novel therapeutic targets for treating CDI. Recombinant human FZD-CRD proteins and variants are commercially available (e.g., from ACRO Biosystems).


In some embodiments, the additional isolated polypeptide fragment of the present disclosure, may comprise an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26. In some embodiments, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 24. For example, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or even 100% identity to SEQ ID NO: 24. In some embodiments, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 25. For example, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or even 100% identity to SEQ ID NO: 25. In some embodiments, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85% identity to SEQ ID NO: 26. For example, the isolated polypeptide fragment comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or even 100% identity to SEQ ID NO: 26.


The additional isolated polypeptide fragments of the present disclosure, may comprise any modifications or derivatizations disclosed herein. Such additional isolated polypeptide fragments may also be fused to any heterologous partners described herein, e.g., an Fc domain.


As it may also become clear later in the present disclosure, the pharmaceutical composition of the present disclosure, may further comprise other therapeutic agents suitable for the specific disease such composition is designed to treat.


The term “pharmaceutically-acceptable carrier”, as used herein, means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the polypeptide from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.). Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as “excipient”, “carrier”, “pharmaceutically acceptable carrier” or the like are used interchangeably herein.


In some embodiments, an isolated polypeptide of the present disclosure in a composition is administered by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber. Typically, when administering the composition, materials to which the polypeptide of the disclosure does not absorb are used.


In other embodiments, the isolated polypeptides of the present disclosure are delivered in a controlled release system. In one embodiment, a pump may be used (see, e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used. (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley, New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61. See also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105.) Other controlled release systems are discussed, for example, in Langer, supra.


Isolated polypeptides of the present disclosure can be administered as pharmaceutical compositions comprising a therapeutically effective amount of a binding agent and one or more pharmaceutically compatible ingredients.


In typical embodiments, the pharmaceutical composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human being. Typically, compositions for administration by injection are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


A pharmaceutical composition for systemic administration may be a liquid, e.g., sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.


The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. The polypeptides of the present disclosure can be entrapped in ‘stabilized plasmid-lipid particles’ (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol %) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6:1438-47). Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Pat. Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757.


The pharmaceutical compositions of the present disclosure may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.


In some embodiments, the isolated polypeptides described herein may be conjugated to a therapeutic moiety, e.g., an antibiotic. Techniques for conjugating such therapeutic moieties to polypeptides, including e.g., Fc domains, are well known; see, e.g., Amon et al., “Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy”, in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), 1985, pp. 243-56, Alan R. Liss, Inc.); Hellstrom et al., “Antibodies For Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), 1987, pp. 623-53, Marcel Dekker, Inc.); Thorpe, “Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), 1985, pp. 475-506); “Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy”, in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), 1985, pp. 303-16, Academic Press; and Thorpe et al. (1982) “The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates,” Immunol. Rev., 62:119-158.


Further, the pharmaceutical composition can be provided as a pharmaceutical kit comprising (a) a container containing a polypeptide of the disclosure in lyophilized form and (b) a second container containing a pharmaceutically acceptable diluent (e.g., sterile water) for injection. The pharmaceutically acceptable diluent can be used for reconstitution or dilution of the lyophilized polypeptide of the disclosure. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.


In another aspect, an article of manufacture containing materials useful for the treatment of the diseases described above is included. In some embodiments, the article of manufacture comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. In some embodiments, the container holds a composition that is effective for treating a disease described herein and may have a sterile access port. For example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle. The active agent in the composition is an isolated polypeptide of the disclosure. In some embodiments, the label on or associated with the container indicates that the composition is used for treating the disease of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.


The isolated polypeptides, chimeric molecules, and the pharmaceutical compositions comprising such isolated polypeptides of the present disclosure, may be used to treat a variety of diseases. In some embodiments, the diseases are caused, at least in part, by the dysregulation of Wnt signaling pathways. In some embodiments, the disease is Clostridium difficile infection. Thus, further provided herein are methods of treating Clostridium difficile infection, comprising administering to a subject in need thereof, a therapeutically effective amount of the isolated polypeptides or the pharmaceutical composition comprising such isolated polypeptides disclosed herein. The isolated polypeptides of or the pharmaceutical composition comprising such isolated polypeptides, is effective in blocking TcdB binding to FZDs.


In some embodiments, the pharmaceutically composition used for treating CDI of the present disclosure, further comprises additional therapeutic agents or polypeptides. For example, the isolated TcdB1114-1835 polypeptide fragment of the present disclosure, while being able to block the wild-type TcdB from entering the cells, still inhibits Wnt signaling due to its occupancy of the FZD receptors. Thus, agents that activate Wnt signaling downstream of the FZD receptors may afford additional therapeutic effects against CDI. Agents that activate Wnt signaling downstream of the FZD receptors are known in the art. Non-limiting examples of such agents include GSK-3 inhibitors such as Lithium (LiCl) and CHIR99021. GSK-3 inhibits Wnt signaling downstream of the FZD receptors. Therefore, GSK-3 inhibitors are able to activate Wnt signaling downstream of the FZD receptors. Other non-limiting examples of agents that induce Wnt signaling include, without limitation, SB 216763 (Tocris Bioscience, catalog #1616), BIO (Tocris Bioscience, catalog #3194), TCS 2002 (Tocris Bioscience, catalog #3869), TC-G 24 (Tocris Bioscience, catalog #4353), TWS 119 (Tocris Bioscience, catalog #3835), SB 415286 (Tocris Bioscience, catalog #1617), A 1070722 (Tocris Bioscience, catalog #4431), AR-A 014418 (Tocris Bioscience, catalog #3966), L803-mts (Tocris Bioscience, catalog #2256). The activating of Wnt signaling occurs in a cell. In some embodiments, the cell is a colonic epithelial cell.


In some embodiments, the pharmaceutically composition used for treating CDI of the present disclosure, further comprises an agent that inhibits the cysteine protease activity of TcdB. In some embodiments, the agent is ebselen. Ebselen (also called PZ 51, DR3305, and SPI-1005), is a synthetic organoselenium drug molecule with anti-inflammatory, anti-oxidant and cytoprotective activity. It acts as a mimic of glutathione peroxidase and can also react with peroxynitrite. Ebselen is a potent scavenger of hydrogen peroxide as well as hydroperoxides including membrane bound phospholipid and cholesterylester hydroperoxides. Several ebselen analogues have been shown to scavenge hydrogen peroxide in the presence of thiols. Ebselen is known in the art to be inhibiting the cysteine protease activity of TcdB. Other non-limiting examples of cysteine protease inhibitors include serpins, stefins, and Inhibitors of apoptosis (IAPs).


Yet in other embodiments, the pharmaceutically composition used for treating CDI of the present disclosure, further comprises agents that facilitate blocking TcdB binding to FZDs. Such agents may be, for example, an FZD antibody. It is to be understood that any agents that competes with TcdB for binding to FZD may be used herein.


In other embodiments, the disease caused by the dysregulation of Wnt signaling is cancer. The dysregulation of Wnt signaling pathway is a known cause of cancer and is a central mechanism in cancer biology. For example, Wnt overexpression could lead to malignant transformation of mouse mammary tissue. Therefore, the inhibition of Wnt signaling has been a focus for developing cancer therapeutics. As described herein, the isolated polypeptides of the present disclosure, e.g., the TdcB1114-1835 polypeptide, is able to inhibit/block Wnt signaling by competing with Wnt for the FZD receptors. Thus, other aspects of the present disclosure relate methods of treating cancer. Such methods comprise administering to the subject in need thereof a therapeutically effective amount of the isolated polypeptides, or the pharmaceutical composition comprising the isolated polypeptides of the present disclosure.


In some embodiments, the method of treating cancer of the present disclosure, further comprises administering to the subject an agent that blocks Wnt signaling. Non-limiting examples of agents that block Wnt signaling include Dkk family proteins, Secreted Frizzled Related Proteins (sFRP), Draxin, IGFBP-4, SOST/Sclerostin, USAG1, and WIF-1. In some embodiments, the agent that blocks Wnt signaling is an FZD antibody. The use of these agents in blocking Wnt signaling is known in the art.


Many types of cancer are characterized with over-activated Wnt signaling and over-expression of Frizzled. For instance, >90% of colon cancers feature aberrant Wnt signaling. Recent study (Gujral et al, Cell, 2014, 159, 844-856) showed that Frizzled 2 is over expressed in metastatic liver, lung, colon and breast cancers. The expression is highly correlated with the markers of epithelial-mesenchymal transition. Thus, types of cancer that may be treated using the methods disclosed herein include, without limitation neoplasms, malignant tumors, metastases, or any disease or disorder characterized by uncontrolled cell growth such that it would be considered cancerous. The cancer may be a primary or metastatic cancer. Cancers include, but are not limited to, biliary tract cancer; bladder cancer; brain cancer including glioblastomas and medulloblastomas; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; hematological neoplasms including acute lymphocytic and myelogenous leukemia; multiple myeloma; AIDS-associated leukemias and adult T-cell leukemia lymphoma; intraepithelial neoplasms including Bowen's disease and Paget's disease; liver cancer; lung cancer; lymphomas including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas; oral cancer including squamous cell carcinoma; ovarian cancer including those arising from epithelial cells, stromal cells, germ cells and mesenchymal cells; pancreatic cancer; prostate cancer; rectal cancer; sarcomas including leiomyosarcoma, rhabdomyosarcoma, liposarcoma, fibrosarcoma, and osteosarcoma; skin cancer including melanoma, Kaposi's sarcoma, basocellular cancer, and squamous cell cancer; testicular cancer including germinal tumors such as seminoma, non-seminoma, teratomas, choriocarcinomas; stromal tumors and germ cell tumors; thyroid cancer including thyroid adenocarcinoma and medullar carcinoma; and renal cancer including adenocarcinoma and Wilms' tumor. Commonly encountered cancers include breast, prostate, lung, ovarian, colorectal, and brain cancer. In some preferred embodiments, the methods of the present disclosure may be used to treat colon cancer, liver cancer, lung cancer, breast cancer. In some embodiments, the cancer cells are metastatic. It is to be understood that the examples are not meant to be limiting and that any types of cancer that shows hyperactive Wnt signaling or overexpression of Frizzled may be treated using the methods disclosed herein.


“A therapeutically effective amount” as used herein refers to the amount of each therapeutic agent of the present disclosure (e.g., the isolated polypeptide fragment, the additional isolated polypeptide fragment, and the agent that activates Wnt signaling) required to confer therapeutic effect on the subject, either alone or in combination with one or more other therapeutic agents. Effective amounts vary, as recognized by those skilled in the art, depending on the particular condition being treated, the severity of the condition, the individual subject parameters including age, physical condition, size, gender and weight, the duration of the treatment, the nature of concurrent therapy (if any), the specific route of administration and like factors within the knowledge and expertise of the health practitioner. These factors are well known to those of ordinary skill in the art and can be addressed with no more than routine experimentation. It is generally preferred that a maximum dose of the individual components or combinations thereof be used, that is, the highest safe dose according to sound medical judgment. It will be understood by those of ordinary skill in the art, however, that a subject may insist upon a lower dose or tolerable dose for medical reasons, psychological reasons or for virtually any other reasons.


Empirical considerations, such as the half-life, generally will contribute to the determination of the dosage. For example, therapeutic agents that are compatible with the human immune system, such as polypeptides comprising regions from humanized antibodies or fully human antibodies, may be used to prolong half-life of the polypeptide and to prevent the polypeptide being attacked by the host's immune system. Frequency of administration may be determined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or amelioration and/or delay of a disease. Alternatively, sustained continuous release formulations of a polypeptide may be appropriate. Various formulations and devices for achieving sustained release are known in the art.


In some embodiments, dosage is daily, every other day, every three days, every four days, every five days, or every six days. In some embodiments, dosing frequency is once every week, every 2 weeks, every 4 weeks, every 5 weeks, every 6 weeks, every 7 weeks, every 8 weeks, every 9 weeks, or every 10 weeks; or once every month, every 2 months, or every 3 months, or longer. The progress of this therapy is easily monitored by conventional techniques and assays. The dosing regimen (including the polypeptide used) can vary over time. In some embodiments, for an adult subject of normal weight, doses ranging from about 0.01 to 1000 mg/kg may be administered. In some embodiments, the dose is between 1 to 200 mg. The particular dosage regimen, i.e., dose, timing and repetition, will depend on the particular subject and that subject's medical history, as well as the properties of the polypeptide (such as the half-life of the polypeptide, and other considerations well known in the art).


For the purpose of the present disclosure, the appropriate dosage of a therapeutic agent as described herein will depend on the specific agent (or compositions thereof) employed, the formulation and route of administration, the type and severity of the disease, whether the polypeptide is administered for preventive or therapeutic purposes, previous therapy, the subject's clinical history and response to the antagonist, and the discretion of the attending physician. Typically the clinician will administer a polypeptide until a dosage is reached that achieves the desired result. Administration of one or more polypeptides can be continuous or intermittent, depending, for example, upon the recipient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled practitioners. The administration of a polypeptide may be essentially continuous over a preselected period of time or may be in a series of spaced dose, e.g., either before, during, or after developing a disease.


As used herein, the term “treating” refers to the application or administration of a polypeptide or composition including the polypeptide to a subject in need thereof. “A subject in need thereof”, refers to an individual who has a disease, a symptom of the disease, or a predisposition toward the disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disease, the symptom of the disease, or the predisposition toward the disease. In some embodiments, the subject has CDI. In some embodiments, the subject has cancer. In some embodiments, the subject is a mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is human.


Alleviating a disease includes delaying the development or progression of the disease, or reducing disease severity. Alleviating the disease does not necessarily require curative results. As used therein, “delaying” the development of a disease means to defer, hinder, slow, retard, stabilize, and/or postpone progression of the disease. This delay can be of varying lengths of time, depending on the history of the disease and/or individuals being treated. A method that “delays” or alleviates the development of a disease, or delays the onset of the disease, is a method that reduces probability of developing one or more symptoms of the disease in a given time frame and/or reduces extent of the symptoms in a given time frame, when compared to not using the method. Such comparisons are typically based on clinical studies, using a number of subjects sufficient to give a statistically significant result.


“Development” or “progression” of a disease means initial manifestations and/or ensuing progression of the disease. Development of the disease can be detectable and assessed using standard clinical techniques as well known in the art. However, development also refers to progression that may be undetectable. For purpose of this disclosure, development or progression refers to the biological course of the symptoms. “Development” includes occurrence, recurrence, and onset. As used herein “onset” or “occurrence” of a disease includes initial onset and/or recurrence.


In some embodiments, the pharmaceutical composition comprising the therapeutic agents (e.g., an isolated polypeptide) described herein is administered to a subject in need of the treatment at an amount sufficient to inhibit the activity of TcdB by at least 20% (e.g., 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater) in vivo or in vitro.


Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the isolated polypeptide or pharmaceutical composition to the subject, depending upon the type of disease to be treated or the site of the disease. This composition can also be administered via other conventional routes, e.g., administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. The term “parenteral” as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, and intracranial injection or infusion techniques. In addition, it can be administered to the subject via injectable depot routes of administration such as using 1-, 3-, or 6-month depot injectable or biodegradable materials and methods.


EXAMPLES

Genome-wide CRISPR/Cas9 Screen Reveals Frizzled as Receptors for Clostridium difficile Toxin B


To identify the physiologically relevant receptor and other host factors involved in TcdB actions, two unbiased genome-wide mutagenesis screens using the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 approach were performed (15, 16). The C-terminal part of TcdA and TcdB contains a region known as combined repetitive oligopeptides (CROPs, FIG. 6, Panel A), which can bind carbohydrates and may mediate toxin binding to cells (17). Recent studies suggest the existence of an additional receptor binding region beyond the CROPs (18-21). Indeed, a truncated toxin (TcdB1-1830) that lacks the CROPs still induced cell-rounding at clinically relevant picomolar toxin concentrations on various cell lines (FIG. 6, Panels B-E) (22). As CROPs-carbohydrate interactions may mask the contribution of specific protein receptors, two separate screens were performed, using full-length TcdB and TcdB1-1830, respectively (FIG. 1, Panel A).


HeLa cells that stably express RNA-guided endonuclease Cas9 were transduced with lentivirus libraries that express small guide RNA (sgRNA) targeting 19,052 genes, with six sgRNAs per gene (15). After four rounds of selection with increasing concentrations of toxins, the sgRNA sequences from the remaining cells were identified via next-generation sequencing (NGS). Candidate genes were ranked based on the number of unique sgRNAs identified for each gene (Y-axis) versus its total NGS reads (X-axis), which represents the abundance of cells harboring sgRNA targeting that gene (FIG. 1, panel B and FIG. 7 Tables 1-4).


UDP-glucose pyrophosphorylase (UGP2) stood out in both screens (FIG. 1, panels B and C). UGP2 is a cytosolic enzyme producing UDP-glucose, which is the essential substrate used by TcdA and TcdB to glucosylate small GTPases (23). CSPG4 was a top hit from the full-length TcdB screen (FIG. 1, Panel B), confirming a previous report that identified CSPG4 using a shRNA-based screen in HeLa cells (12). An intriguing hit was Frizzled 2 (FZD2), which was the highest-ranking membrane protein from the TcdB1-1830 screen (FIG. 1, Panel C). FZD2 is a well-known receptor for Wnt signaling, which is the central pathway regulating proliferation and self-renewal of colonic epithelial cells (24, 25). In addition to FZD2, an unusual group of high-ranking hits were the subunits of the ER membrane protein complex (EMC), including EMC1, 3, 4, 5, and 6 (FIG. 1, Panels B and C).


To validate the screening results, individual knockout HeLa cell lines for top candidates, including UGP2−/−, CSPG4−/−, FZD2−/−, and EMC4−/−, were generated using the CRISPR/Cas9 approach (FIG. 8, Tables 1-6). Two additional genes that appeared in the screen, SGMS1−/− (sphingomyelin synthase 1) and IL1RAPL2−/− (Interleukin-1 receptor accessory protein-like 2) were also tested. The above six knockout cell lines were challenged with either TcdB or TcdB1-1830, using the well-established cytopathic assay (1), by quantifying the percentages of rounded cells after exposure to a series of concentrations of toxins (FIG. 9, Panels A-C). UGP2−/− were highly resistant (3000-fold) to both TcdB and TcdB1-1830 compared to wild type (WT) HeLa cells. CSPG4−/− showed increased resistance to TcdB (˜240-fold), but not to TcdB1-1830. FZD2−/− and EMC4−/− both showed modest resistance (˜15 and ˜11-fold, respectively) to TcdB1-1830, but not to TcdB (FIG. 2, Panel A, FIG. 9, Panel C). SGMS1−/− and IL1RAPL2−/− were not significantly resistant to TcdB or TcdB1-1830 (P<0.005). Increased resistance of UGP2−/−, CSPG4−/−, FZD2−/−, and EMC4−/− to TcdB or TcdB1-1830 was further confirmed by immunoblot analysis for the levels of glucosylation of toxin substrate Rac1 (FIG. 9, Panel D).


CSPG4/NG2 and FZD2 were investigated for their potential as receptors. Binding of TcdB to CSPG4−/− cells was drastically reduced and ectopic expression of rat NG2 restored binding (FIG. 2, Panel B). TcdB binds directly to purified extracellular domain (EC) of CSPG4/NG2, independent of the glycosaminoglycan (GAG) on CSPG4/NG2 (26) (FIG. 10, Panels A and B). The above results are consistent with the previous report (12). In contrast to the previous suggestion that CSPG4 might be a CROPs-independent receptor (12), it was found that the CROPs region of TcdB is essential for binding to CSPG4/NG2 because TcdB1-1830 does not bind to either purified CSPG4/NG2-EC or CSPG4/NG2 on cell surfaces (FIG. 10, Panel B and C), and the isolated CROPs domain alone binds to CSPG4/NG2 and can compete with TcdB for binding to CSPG4/NG2 on cell surfaces (FIG. 10, Panel D). These results explain why CSPG4−/− remains sensitive to TcdB1-1830 (FIG. 2, Panel A). The previous conclusion was based on the findings that CSPG4 binds to TcdB1500-2366, but not TcdB1851-2366 (12). The recent structural studies confirmed that the CROP domain starts at residue 1831 instead of 1851 (27), thus the full CROP domain was used in the present study (residues 1831-2366). It is possible that the first repeat of CROPs is critical for binding to CSPG4/NG2.


Transfecting CSPG4−/− cells with full-length FZD2 also increased binding of TcdB (FIG. 2, Panel C). Consistently, transfection of either CSPG4/NG2 or FZD2 restored entry of TcdB into CSPG4−/− cells, resulting in rounding of transfected cells (FIG. 2, Panel D). These results suggest that FZD2 can mediate binding and entry of TcdB into cells independently of CSPG4. The FZD family has ten members (FZD1-10) and HeLa cells express multiple FZDs at low levels (28). CSPG4−/− cells were transfected with FZD1-10 and found that over-expression of FZD1, 2, and 7 each drastically increased binding of TcdB to cells (FIG. 2, Panel E, FIG. 11). FZD1, 2, and 7 are highly homologous to each other and form a subgroup within the FZD family (24). FZD7 was also identified in the screen (Table 3). To confirm the redundancy of FZDs, FZD1 and FZD7 single KO HeLa cells, as well as triple FZD1/2/7 KO HeLa cells, were generated. FZD1−/− and FZD7−/− cells behaved similarly to FZD2−/− cells: each showed a modest reduction in sensitivity to TcdB1-1830, but not to TcdB. Strikingly, the FZD1/2/7 triple KO was highly resistant to TcdB1-1830 (˜300-fold). These cells, which still express CSPG4, also become significantly resistant to TcdB (˜10-fold, FIG. 2, Panel F). Transfection of FZD1, 2, or 7 restored TcdB1-1830 entry into FZD1/2/7 triple KO cells (FIG. 2, Panel G), demonstrating that FZD1/2/7 are redundant receptors.


In contrast to CSPG4, transfecting FZD2 in CSPG4−/− cells increased binding of both TcdB and TcdB1-1830 (FIG. 10, Panel C). Further mapping showed that FZD2 mediated binding of TcdB1501-2366, but not the isolated CROPs domain (FIG. 12). FZDs are 7-pass transmembrane proteins with a sole distinct extracellular domain known as cysteine-rich domain (CRD, FIG. 2, Panel H, upper panel), which is also the Wnt binding site (24). Recombinant Fc-tagged FZD2-CRD bound directly to GST-tagged TcdB1501-2366, but not to the GST-tagged CROPs domain (FIG. 2, Panel H), demonstrating a direct interaction between FZD2-CRD with the region 1501-1830 of TcdB.


The CRDs of FZD1, 2, and 7 are highly conserved, with ˜98% sequence similarity and ˜84% identity (FIG. 13) (24). Using bio-layer interferometry (BLI) assay, it was confirmed that the CRDs of FZD1, 2, and 7 all bind to TcdB with nanomolar affinities (KD=32 nM for FZD1, 19 nM for FZD2, and 21 nM for FZD7) (FIG. 2, Panel I, FIG. 14, Panel A). Consistently, an isolated FZD7-CRD, but not FZD8-CRD, when expressed on cell surfaces via a GPI anchor, was able to mediate strong binding of TcdB to cells (FIG. 2, Panel J). Furthermore, FZD2-CRD showed the same binding affinity to TcdB1-1830 (KD=17 nM) as to full-length TcdB (FIG. 14, Panel B), confirming that the CROPs region is not involved in binding to FZDs. CRD of other FZDs such as FZDS-CRD also bind to TcdB, but with a weaker affinity (KD=670 nM, FIG. 2, Panel I, FIG. 14, Panel A), suggesting that FZDs other than FZD1/2/7 may still function as additional receptors at high toxin concentrations, which may explain why FZD1/2/7 KO cells are not completely resistant to TcdB1-1830. Indeed, FZD6 was also identified in the screen, albeit with only one sgRNA (Table 3).


As FZDs and CSPG4 are recognized by distinct regions of TcdB, the present data support a previously proposed two-receptor model for TcdB (19). Consistent with this model, FZD2-CRD binds robustly to TcdB that is pre-bound by immobilized CSPG4/NG2-EC on the micro-titer plate (FIG. 3, Panel A), confirming that TcdB can bind to CSPG4 and FZDs simultaneously. On the other hand, picomolar levels of TcdB can still enter CSPG4−/− cells (FIG. 9, Panel C). This entry is blocked by recombinant FZD2-CRD, as evidenced by lack of cell-rounding and Rac1 glucosylation (FIG. 3, Panels B and C). Thus, endogenous FZDs alone can mediate entry of TcdB independent of CSGP4 at clinically relevant picomolar concentrations.


The role of FZDs and CSPG4 in human colorectal cell lines HT-29 and Caco-2, which express multiple FZDs was further examined (29). FZD2-CRD fully protected both cell types from TcdB1-1830 (FIG. 3, Panels D and E), confirming the role of FZDs as toxin receptors in these cells. Interestingly, CSPG4 is highly expressed in HeLa cells, which may explain why loss of CSPG4 alone resulted in a drastic decrease of TcdB entry in HeLa cells. CSPG4 expression was much lower in HT-29 and undetectable in Caco-2 cells (FIG. 3, Panel F). Consistent with this expression profile, CSPG4/NG2-EC alone was able to reduce TcdB entry in HeLa cells (FIG. 3, Panel G, FIG. 15, Panel A). FZD2-CRD or CSPG4/NG2-EC demonstrated modest protection of HT-29 cells, and a combination of the two produced a stronger protection, suggesting that FZDs and CSPG4 might contribute to toxin entry equivalently in HT-29 cells (FIG. 3, Panel H, FIG. 15, Panel B). Finally, FZD2-CRD alone protected Caco-2 cells from full-length TcdB, indicating that FZDs are the dominant receptors in Caco-2 cells (FIG. 3, Panel I, FIG. 15, Panel C). Together, these results indicate that relative contributions of FZDs versus CSPG4 for TcdB entry in a particular cell type depend on their relative expression levels.


Whether FZDs are the pathologically relevant TcdB receptors in colonic epithelial cells was next examined. First, primary colonic organoid models, which develop into a “mini-gut” when cultured in 3-D matrix and display many important features of normal colonic epithelium, were used (30). Exposure to TcdB caused a concentration-dependent atrophy and death of organoids, which was quantified with a viability assay (FIG. 4, Panels A and B). TcdB1-1830 is equally potent as TcdB on colonic organoids (FIG. 16, Panel A), indicating that CROPs-CSPG4 interactions does not contribute significantly to TcdB entry in colonic organoids, which is consistent with the previous report that CSPG4 is not expressed in the colonic epithelium (13). To reduce expression of FZDs, we utilized colonic organoids cultured from FZD7 KO mice, combined with adenovirus-mediated knock-down (KD) of FZD1 and FZD2 (FIG. 16, Panels B and C). It was recently shown that FZD7 is critical for maintaining intestinal organoids, but FZD7−/− organoids can be cultured in the presence of the small molecule inhibitor CHIR99021, which inhibits the GSK3 kinase and activates the Wnt/β-catenin signaling pathway downstream of FZDs (31). It was found that FZD7−/−/FZD1/2 KD organoids showed a clear resistance to TcdB compared to WT organoids, with the TcdB concentration that resulted in 50% viability after three days (defined as IC50) at 19.7 pM versus 2.2 pM for WT organoids (FIG. 4, Panels B and C). Indeed, even before the adenovirus-mediated KD of FZD1/2, the FZD7−/− organoids already showed ˜3-fold increase in IC50 compared to WT organoids (FIG. 4, Panel C). Incomplete depletion of FZD1/2 and/or the expression of other FZDs may account for the residual toxin sensitivity of the colon organoids.


Wnt signaling plays a critical role for growth and survival of intestinal and colonic organoids. Both TcdB and Wnt bind to the FZD-CRD. It was found that a non-toxic fragment of TcdB (residues 1114-1835) potently blocked Wnt3a-mediated signaling in cultured cells, as demonstrated by the TOPFLASH luciferase reporter assay as well as phosphorylation levels of LRP6 and Dvl2, which are the FZD co-receptors and a downstream component, respectively (FIG. 4, Panel D, FIG. 17) (24). TcdB1114-1835 strongly inhibited growth of colonic organoids and induced organoid death at nanomolar concentrations (FIG. 4, Panels E and F). The death of colonic organoids was rescued when Wnt/β-catenin signaling was directly activated by CHIR99021 (FIG. 4, Panels E and F). These data revealed a potential new mechanism for TcdB in CDI: binding of TcdB to FZDs may directly disrupt the integrity of the colon epithelium and its self-renewal by inhibiting Wnt signaling, independent and in parallel of glucosylation of small GTPases inside epithelial cells.


The role of FZDs in vivo using mouse models was examined next. Because TcdB is naturally released into the lumen of the colon during CDI, a model was developed by injecting TcdB directly into the lumen of ligated colon segments in mice (FIG. 5, Panel A), which resulted in specific binding and entry of TcdB into colonic epithelial cells. Co-injection of FZD2-CRD largely prevented binding of TcdB to colonic tissues (FIG. 5, Panel B), indicating that FZDs are the dominant receptors in the colonic epithelium. Consistently, it was found that both FZD2 and FZD7 are expressed in epithelial cells in mouse and human colon tissues (FIG. 18, Panels A and B). In contrast, CSPG4 expression is limited to the multi-nucleated sub-epithelial cells termed ISEMFs (intestinal sub-epithelial myofibroblasts) and is absent from epithelial cells in both mice and humans (FIG. 18, Panel C), which is consistent with a previous report (13).


FZD2/7 double KO mice are embryonic lethal (25, 32). As FZD7 appears to be a dominant Wnt receptor in the intestinal epithelium (31), FZD7−/− mice were utilized as a model to determine whether depletion of FZD7 may reduce toxicity of TcdB on the colonic epithelium in vivo. To detect the damage to colonic tissues, TcdB1-1830 was injected directly into ligated colon segments of live mice, followed by an 8 hour incubation period. TcdB1-1830 was used instead of TcdB, in order to focus on the colonic epithelium and avoid complications from potential TcdB entry into CSPG4-expressing ISEMFs after the colonic epithelium is damaged. Accumulation of fluids was observed in the lumen of the ligated colon segments in the WT mice after exposure to TcdB1-1830, but was significantly reduced in that of FZD7−/− mice (FIG. 5, Panel C). Examining colonic tissues by hematoxylin and eosin stain (H&E) showed extensive damage to the epithelium layer in WT mice, but much less so in FZD7−/− mice (FIG. 5, Panels D and E). Finally, immunohistochemical staining for a tight junction marker, Claudin3, showed that tight junctions were disrupted in WT mice, but remained largely intact in FZD7−/− mice (FIG. 5, Panel F). Together, these data established FZD7 as a physiologically relevant receptor for TcdB in the colonic epithelium in vivo.


In addition to receptors, the screen also revealed other cellular factors, such as the EMC complex (FIG. 1, Panels B and C). Although its function remains unknown, recent studies suggested that the EMC might be critical for bio-synthesis and/or folding of multi-transmembrane proteins (33, 34). Indeed, expression of transiently transfected FZD1, 2, or 7 was drastically reduced in EMC4−/− cells as compared to WT cells (FIG. 19). Thus, reduction of FZDs in EMC-deficient cells is a potential explanation for their increased resistance to TcdB1-1830 (FIG. 2, Panel A). Besides EMC, the other protein complex identified includes five subunits of Vacuolar-type H+-ATPase. This is consistent with acidification being required for triggering toxin translocation across the endosomal membranes (5).


PVRL3 did not appear in the screens, which may not be surprising as PVRL3 was identified in a screen for factors involved in necrotic cell death induced by toxin concentrations several orders of magnitude higher than what was used in the present study to screen for cytopathic cell-rounding and apoptosis (14). The role of PVRL3 was examined experimentally and it was found that ectopically expressed PVRL3 did not mediate binding or entry of TcdB into CSPG4−/− HeLa cells (FIG. 20, Panels A and B). Furthermore, the recombinant ecto-domain of PVRL3 failed to protect Caco-2 cells from TcdB in cytopathic cell-rounding assays, whereas FZD2-CRD offered full protection (FIG. 20, Panel C). Thus, PVRL3 is not likely a relevant receptor for cytopathic cell-rounding effects and apoptosis induced by TcdB.


The unbiased genome-wide CRISPR-mediated screens revealed multiple host factors involved in all major steps of toxin actions, from surface receptors (FZDs and CSPG4) to acidification in endosomes (vacuolar-type H+-ATPase), and to toxin enzymatic activities in the cytosol (UGP2). The screens also suggested EMC as a key factor for folding/trafficking of Wnt receptors. Interestingly, the screen identified a total of eleven proteins involved in Wnt signaling pathways, including APC, GSK-3β, Wnt5a, and LRP6 (FIG. 21).


The present study showed FZDs are physiologically relevant receptors for TcdB in colonic epithelial cells, suggesting a potential new mechanism: TcdB may disrupt the colonic epithelium by directly blocking Wnt signaling. The present study also provided novel therapeutic targets for treating CDI. Furthermore, dysregulation of Wnt signaling pathways is associated with many cancers, particularly colorectal cancers. Therefore, the receptor binding domain of TcdB, or its homologs, are believed to be valuable tools and therapeutics for targeting Wnt pathways.


Materials and Methods


Cell Lines, Antibodies, and Constructs.


HeLa (H1), CHO (K1), HT-29, Caco-2, and HEK293T cells were obtained from ATCC. The following mouse monoclonal antibodies were purchased from indicated vendors: Rac1 (23A8, Abcam), non-glucosylated Rac1 (Clone 102, BD Biosciences), 1D4 tag (MA1-722, ThermoFisher Scientific), HA tag (16B12, Covance), β-actin (AC-15, Sigma). Rabbit monoclonal IgG against human CSPG4 (ab139406) and rabbit polyclonal antibodies against FZD1 (ab150553), FZD2 (ab150477), FZD7 (ab51049), PVRL3 (ab63931), and Claudin3 (ab15102) were all purchased from Abcam. Rabbit monoclonal antibodies against Dvl2 (30D2) and LRP6 (C5C7), and a rabbit polyclonal antibody against phosphorylated LRP6 (Ser1490) were all purchased from Cell Signaling. Chicken polyclonal IgY (#754A) against TcdB was purchased from List Biological Labs. A rabbit polyclonal antibody against rodent CSPG4/NG2 and a construct express full-length rat CSPG4/NG2 (in pcDNA vector) were both generated in W. Stallcup's lab. 1D4 tagged full length FZD1-10 constructs in pRK5 vectors were originally generated in J. Nathans's lab (Baltimore, Md.) and were obtained from Addgene. FZD7 and FZD8 CRD-myc-GPI constructs were generously provided by J. Nathan's lab and have been described previously (35). Constructs expressing full-length human IL1RAPL2 and full-length PVRL3 were purchased from Vigene Biosciences. A construct expressing full-length mouse Syt II in pcDNA3.1 vector was described previously (36).


TcdB and Other Recombinant Proteins.


Recombinant TcdB (from C. difficile strain VPI 10463) was expressed in Bacillus megaterium as previously described (37) and purified as a His6 tagged protein. TcdB1-1830 was cloned into the pHis1522 vector (MoBiTec) and expressed in Bacillus megaterium following the same procedure used for TcdB. TcdB1831-2366, TcdB1501-2366, and TcdB1114-1835 were cloned into pGEX-6P-1 or pET28a vectors and were purified as GST-tagged or His6-tagged proteins in E. coli. CSPG4/NG2 EC (P1 and P2) was expressed in HEK293 cells, purified from medium with DEAE-Sepharose columns, and eluted with a gradient buffer (NaCl from 0.2 to 0.8 M, 50 mM Tris-Cl, pH 8.6) as previously described (38). The following recombinant human proteins were purchased from ACRO Biosystems (IgG1 Fc and FZD2-CRD-Fc), R&D Systems (FZD1-CRD-Fc, FZDS-CRD-Fc, and FZD7-CRD-Fc), and Sino Biologics (PVRL3-EC).


Generating Stable HeLa-Cas9 Cells and Lentivirus sgRNA Libraries.


The human codon-optimized sequence of S. pyogenes Cas9 was subcloned from plasmid lentiCas9-Blast (Addgene #52962) into pQCXIH retroviral vector (Clontech), which was used to generate retroviruses to transduce into H1 HeLa cells (ATCC CRL-1958). Mixed stable cells were selected in the presence of 200 μg/ml hygromycin B (Life Technologies). Lentivirus sgRNA libraries were generated following published protocols using the human GeCKO v2 sgRNA library (Addgene #1000000049), which targets 19,052 genes in the human genome (15). The GeCKO v2 library is delivered from Addgene in two half-libraries (library A and library B). Each half library contains three unique sgRNA per gene and two half-libraries were subjected to screens with toxins independently. Cells were transduced with lentivirus-packaged GeCKO v2 sgRNA library at a MOI of 0.2.


Screening CRISPR libraries with TcdB and TcdB1-1830. For each half CRISPR library of cells, 4×107 cells were plated onto two 15-cm culture dishes to ensure sufficient coverage of sgRNAs, with each sgRNA on average being represented about 650 times (i.e., there are on average 650 cells transduced with the same sgRNA). This over-representation rate was calculated from titration plates that were set up in parallel with the library. These cells were exposed to either TcdB or TcdB1-1830, respectively, for 48 hours. Cells were then washed three times with PBS to remove loosely attached round-shaped cells. The remaining cells were re-seeded onto new dishes and cultured with normal media without toxins until the cells reach

    • 70% confluence. Cells were then subjected to the next round of screening with increased concentrations of toxins. Four rounds of screenings were carried out with TcdB (0.05 pM, 0.1 pM, 0.2 pM, and 0.5 pM) and TcdB1-1830 (5 pM, 10 pM, 20 pM, and 50 pM), respectively. The remaining cells were harvested and their genomic DNA was extracted using Blood and Cell Culture DNA mini kit (Qiagen). DNA fragments containing the sgRNA sequences were amplified by PCR with primers lentiGP-1_F (AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG) (SEQ ID NO: 1) and lentiGP-3_R (ATGAATACTGCCATTTGTCTCAAGATCTAGTTACGC) (SEQ ID NO: 2). Next generation sequencing (Illumina MiSeq) was performed by a commercial vendor (Genewiz).


Generating Knockout Cell Lines Via CRISPR.


The following sgRNA sequences were cloned into LentiGuide-Puro vectors (Addgene) to target indicated genes: ccggagacacggagcagtgg (cspg4) (SEQ ID NO: 3), gcgctgctgggacatcgcct (emc4) (SEQ ID NO: 4), accttataccacacaacatc (illrap12) (SEQ ID NO: 5), tgcgagcacttcccgcgcca (fzd2) (SEQ ID NO: 6), agcgcatgaccactacactg (sgms1) (SEQ ID NO: 7), acaggcagaaaacggctcct (ugp2) (SEQ ID NO: 8), GTGTAATGACAAGTTCGCCG (FZD1) (SEQ ID NO: 9), and GAGAACGGTAAAGAGCGTCG (FZD7) (SEQ ID NO: 10). HeLa-Cas9 cells were transduced with lentiviruses that express these sgRNAs. Mixed populations of stable cells were selected with 2.5 μg/ml puromycin (Gibco) and 200 μg/ml hygromycin B. Triple knockout cells of FZD1/2/7 were created by sequentially transducing FZD1 and 7 sgRNA lentiviruses into FZD2−/− cells, followed by selection with 50 pM TcdB1-1830. The knockout efficiency was demonstrated by NGS (FIG. 8, Tables 1-6).


Cytopathic Assay.


The cytopathic effect (cell-rounding) of TcdB and TcdB1-1830 was monitored using well established standard cell-rounding assay as previously described (1). Briefly, cells were exposed to a gradient of TcdB and TcdB1-1830 added into media for 24 hours as shown in FIG. 9, Panel A and B. Phase-contrast images of cells were taken using a microscope (Olympus IX51, 10-20× objectives). Three randomly selected images per condition were used for analysis. The numbers of round-shaped and normal shaped cells were counted manually. The ratio of round-shaped cells over the total number of cells is plotted and fitted with the Origin software. Statistical analysis was carried out with one-way ANOVA test. The experiments described here and thereafter have been repeated at least three times.


Blocking TcdB Entry into Cells with Extracellular Domains of CSPG4/NG2 and FZD2.


Recombinant proteins used for cell protection assays were pre-filtered (0.22 μM filter, Millipore). Toxins were pre-incubated with FZD2-CRD-Fc and/or CSPG4-EC (P1) for 30 minutes on ice with a toxin:protein ratio of 1:400 except when noted in the figure legend. The mixtures were added into cell culture medium. The cytopathic effects were analyzed by cell-rounding assay as described above.


Transfection and Detection of TcdB Binding.


Transient transfection of HeLa cells was carried out with POLYJET™ transfection reagent (SignaGen) following the manufacturer's instruction. Binding of TcdB to cells was analyzed by exposing cells to TcdB or truncated TcdB fragments (10 nM, unless noted in the figure) for 10 min at room temperature, followed by washing three times with PBS. Cells were then either fixed and subjected to immunostaining, or harvested and subjected to immunoblot analysis.


GST Pull-Down Assays.


GST pull-down assays were performed using glutathione Sepharose 4B as previously described (36). Briefly, 5 μg of GST-tagged TcdB1831-2366 and TcdB1501-2366 were immobilized on glutathione beads and were incubated with 10 nM FZD2-CRD-Fc for one hour at 4° C. Beads were then washed, pelleted, and boiled in SDS sample buffers. Samples were subjected to immunoblot analysis.


Biolayer Interferometry Assay.


The binding affinities between TcdB and FZDs were measured by BLI assay with the Blitz system (ForteBio). Briefly, the CRDs-Fc of FZD1, 2, 5, 7 or human IgG1 Fc (20 μg/ml) were immobilized onto DIP AND READ™ Anti-hlgG Fc Capture Biosensors (ForteBio) and balanced with PBS buffer. The biosensors were then exposed to series concentrations of TcdB or TcdB1-1830, followed by washing with PBS. Binding affinities (KD) were calculated using the Blitz system software (ForteBio).


Wnt Signaling Assay.


The TOPFLASH/TK-Renilla dual luciferase reporter assay was utilized to detect Wnt signaling activities as previously described (39). Briefly, HEK 293T cells in 24-well plates were co-transfected with TOPFLASH (50 ng/well), TK-Renilla (internal control, 10 ng/well), and pcDNA3 (200 ng/well). After 24 hours, cells were exposed to Wnt3a (50 ng/ml) and TcdB1114-1835 (with molar ratio 1:8, 1:40, and 1:200 to Wnt3a, respectively) in culture medium for 6 hours. Cell lysates were harvested and subjected to the firefly/renilla dual luciferase assay, as well as immunoblot analysis detecting phosphorylated Dvl2 and LRP6. Wnt signaling activates expression of TOPFLASH luciferase reporter (firefly luciferase). Co-transfected renilla luciferase serves as an internal control.


Micro-Titer Plate Based Binding Assay.


Binding assays were performed on EIA/RIA Half Area 96-well plates (high-binding, Corning Costar) as described previously (38). Briefly, micro-titer plates were coated with 10 μg/ml CSPG4/NG2 proteins in coating buffer (0.1 M NaHCO3, pH 8.3) at 4° C. overnight, and then blocked with 1% bovine serum albumin in PBS for 1 hour. Plates were then incubates with the indicated proteins for 1 hour in PBS. Wells were washed three times with PBS plus 0.05% tween-20 at room temperature. One-step Turbo TMB (Thermo Scientific) was used as the substrate and absorbance at 450 nm was measured with a microplate reader.


Organoid Culture, Adenoviral Transduction, and TcdB Challenge Assay.


Crypt isolation from WT or FZD7−/− mouse colon was carried out as previously described and organoids were expanded as spheroid cultures using conditioned medium (40). Except for WT organoids used for Wnt-Signaling inhibition assay, 3 μM CHIR99021 was supplemented to the medium (31). Five days after passaging, organoids were re-suspended with Cell Recovery Solution (Fisher Scientific) and mechanically fragmented. Fragments were transduced with adenovirus expressing shRNA for FZD1, shRNA for FZD2, or a control sequence using transduction medium supplemented with Nicotinamide (10 mM, Sigma), Polybrene (8 ug/ml, Sigma) and Y-27632 (10 uM, Sigma), washed and plated in growth factor reduced Matrigel (Corning) (41). Three days following viral transduction, organoids were challenged with series diluted TcdB by directly adding the toxin into the medium. The MTT assay was performed to measure the viability of cells 72-hours post-exposure to the toxin.


Wnt Signaling Inhibition Assay in WT Colon Organoids.


TcdB1114-1835 of indicated concentration was directly added into the culture media of WT colon organoids. For rescue experiments, 5 μM CHIR99021 was added to the media. The media were changed every 48 hours with the constant presence of TcdB1114-1835 and CHIR99021. Viability of cells was analyzed after six days.


Adenovirus Mediated KD.


All shRNAs were purchased from sigma TRC shRNA designed library. The knockdown efficiency was validated as described in FIG. 16, Panel B, C. ShRNA sequences showed the highest efficiency (shRNA#2 for FZD1 and shRNA#5 for FZD2) were used to generate adenoviruses. Briefly, adenoviruses expressing a control shRNA (CTGGACTTCCAGAAGAACA-3′) (SEQ ID NO: 11), shRNAs against mouse FZD1 (TGGTGTGCAACGACAAGTTTG) (SEQ ID NO: 12), or FZD2 (CGCTTCTCAGAGGACGGTTAT) (SEQ ID NO: 13) were constructed using the Block-it U6 adenoviral RNAi system (Life Technologies) followed by viral packaging and multiple rounds of amplification in 293A cells (Life Technologies) per manufacture's protocols.


Assessment of Viability of Colonic Organoids Using MTT Assay.


The viability of the organoids were assessed via the ability to reduce MTT as previously described (42). Briefly, MTT solution was added to the organoid culture to a final concentration of 500 μg/ml. After incubation at 37° C. for 2 hrs, the medium was discarded. For each well (20 μl of Matrigel, in 48-well plate), 60 μl of 2% SDS solution was added to solubilize the Matrigel (1 hour, 37° C.), followed by the addition of 300 μl of DMSO to solubilize reduced MTT (2 hours, 37° C.). The absorbance at 562 nm was measured on a microplate reader. Twenty μl of Matrigel without organoids were used as blank controls. Normal organoids without exposure to toxins were defined as 100% viable.


Immunohistochemistry (IHC) and Histology Analysis.


Colons from adult C57BL/6 mice (10-12 weeks old) were dissected out and subjected to cryosectioning with sections measuring 8-10 μm thickness. Colonic sections were fixed in cold acetone for 5 minutes and then washed three times with PBS. The colonic sections were then blocked with 5% goat serum in PBS for 30 minutes at room temperature, and incubated with primary antibodies (anti-TcdB: 1:600; anti-FZDs: 1:250; rabbit anti-NG2: 1:250) overnight, followed with biotinylated goat anti-chicken or rabbit IgG secondary antibodies (1:200, Vector Lab) for 1 hour at room temperature. They were then incubated with HRP-conjugated streptavidin (1:500, DAKO) for 30 minutes. Immuno-reactivity was visualized as a red color with 3-amino-9-thyl carbazole (DAKO). Cell nuclei were labeled as a blue color with Gill's Hematoxylin (1:3.5, Sigma). Frozen human colon tissue slides were purchased from BioChain Institute Inc., and subjected to IHC analysis. IHC analysis of Claudin3 was carried out using mouse colon tissues fixed in 10% formalin and embedded in paraffin following standard procedures (anti-Claudin3 antibody: 1:100) and detected with 3-Amino-9-Ethylcarbazole (AEC). Histology analysis was carried out with H&E staining of paraffin-embedded sections. Stained sections were coded and scored by blinded observers based on disruption of epithelium, inflammatory cell filtration, and edema, on a scale of 0 to 3 (mild to severe).


Competition Assays in Colon Tissues with Recombinant Proteins.


TcdB (40 nM) was pre-incubated with either human IgG1-Fc or FZD2-Fc (2.4 μM) for 30 minutes on ice. To generate the ex vivo colon segment, mice (C57BL/6, 6-8 weeks) were euthanized and the colon was exposed via laparotomy. A segment in the ascending colon (˜2 cm long) was sealed by tying both ends with silk ligatures. The toxin samples (40 μl) were injected through a LV catheter into the sealed colon segment. The injection site was then sealed with a hemostat. The colon was covered with PBS-soaked gauze for 2 hours. The colon segment was then excised and its lumen was washed with PBS injected through a needle for three times, and then subjected to IHC analysis.


Colon Loop Ligation Assay.


All procedures were conducted in accordance with the guidelines of the Boston Children's Hospital IACUC. WT or FZD7−/− Mice (6-8 weeks) were anesthetized following overnight fasting. A midline laparotomy was performed to locate the ascending colon and seal a ˜2 cm long loop with silk ligatures. Two μg of TcdB1-1830 in 80 μl of normal saline or 80 μl of normal saline were injected through a LV catheter into the sealed colon segment, followed by closing the wounds with stitches. Mice were allowed to recover. After 8 hours, mice were euthanized and the ligated colon segments were excised out. The weight and length of ligated colon were measured and recorded. The colon segments were fixed and subjected to H&E staining and IHC.


Inhibition of Tumor Growth in Xenograft Models.


The effects of blocking Wnt signaling with TcdB1114-1835 on tumor growth is assessed in vivo using a well-established mouse xenograft model. Liver cancer cell lines FOCUS and Huh7 cells are used. These cells lines express high levels of FZD2 and inhibiting Wnt signaling by FDZ antibodies can reduce growth of tumors formed by these cancer cells in mouse xenograft models (Gujral T S et al. Cell, 2014, 159:844-856). FOCUS or Huh7 cells (2×106 in suspension) are inoculated subcutaneously (s.c.) into athymic nude mice on day 0. Tumor growth is followed every 2 to 3 days. The size of tumor is measured using Vernier calipers. The tumor volumes are calculated using the formula: V=AB2/2 (A, axial diameter; B, rotational diameter). When tumors reach ˜200 mm3, mice are divided into two groups (control and treatment). The treatment group are injected with TcdB1114-1835 (20 mg/kg in saline) subcutaneously at the tumor site twice a week for up to three weeks. The control group are injected with saline. The tumor size are measured every 2-3 days. Tumor tissues are dissected out and subjected to immunohistochemical analysis to evaluate the markers for Wnt signaling and cellular proliferation and activity (e.g. β-catenin, Ki67).


Significantly reduced tumor sizes are observed in treated group than the control group, demonstrating that blocking Wnt signaling using TcdB1114-1835 inhibited tumor growth in vivo.









TABLE 1







CSPG4/NG2


WT sequence:


TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCTCCATGCTGGGGTGGCTCCAGCACCTGC


AGGCTGAGGCCCAGGAGAGTGGGGAAGTAG----------------GGCCCGGAGACACGGAGCA


GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTTTTGCGCCTCTAGTGGGAT


GGCAGCGGGCAGCACCTCCAGCTCCACAAGGAC (SEQ ID NO: 30)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:














231864
0.301963655
0.301963655
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
31





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






117150
0.152568066
0.454531721
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
32





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






 63230
0.082346384
0.536878104
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
33





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






 55508
0.072289784
0.609167889
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
34





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






 14095
0.018356354
0.627524243
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
35





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






 10796
0.014059965
0.641584207
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
36





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTCCAGC






TCCACAAGGAC






 10407
0.655137565
0.013553358
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
37


(WT)


CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  5631
0.007333425
0.662470991
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
38





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCAC






CTCCAGCTCCACAAGGAC






  5043
0.006567655
0.669038645
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
39





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACACTGAAGTT






TTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTCCAGC






TCCACAAGGAC






  4255
0.005541418
0.674580063
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
40





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  4059
0.005286161
0.679866225
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
41





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  3392
0.004417506
0.684283731
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
42





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  3259
0.004244296
0.688528027
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
43





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  3258
0.004242994
0.692771022
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
44





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  2951
0.003843179
0.6966142
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
45





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA----------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTC






CAGCTCCACAAGGAC






  2765
0.003600945
0.700215145
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
46





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  2671
0.003478526
0.703693671
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
47





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA----------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACAC






TGAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCAC






CTCCAGCTCCACAAGGAC






  2641
0.003439456
0.707133127
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
48





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  2426
0.003159455
0.710292582
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
49





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






  2405
0.003132106
0.713424688
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
50





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAAGCTGCCACCCTCAGGGACACTGAAGTT






TTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTCCAGC






TCCACAAGGAC






  2171
0.00282736
0.716252048
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
51





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  2070
0.002695825
0.718947873
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
52





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






  2006
0.002612476
0.721560349
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
53





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACAC






TGAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCAC






CTCCAGCTCCACAAGGAC






  1958
0.002549964
0.724110313
TGAGGGTCCTGGCTTGAGGTCCATCCTCCTTCTGCAGGGCT
54





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  1874
0.002440568
0.726550881
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
55





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACACTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






  1856
0.002417126
0.728968007
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
56





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  1529
0.001991264
0.730959271
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
57





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACC






TCCAGCTCCACAAGGAC






  1416
0.001844101
0.732803371
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
58





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGACAGTGGGCAGCACCTCCAGC






TCCACAAGGAC






  1331
0.001733402
0.734536774
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
59





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACACTGA






AGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTC






CAGCTCCACAAGGAC






  1254
0.001633123
0.736169897
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
60





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






  1240
0.00161489
0.737784787
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
61





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGGGCCGGCGATGCAGAGCAGTGG






AGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACTGAAG






TTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCA






GCTCCACAAGGAC






  1146
0.001492471
0.739277258
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
62





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






  1128
0.001469029
0.740746288
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
63





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGTGGGCAGCACCTCCAGC






TCCACAAGGAC






  1025
0.001334889
0.742081177
TGAGGGTCCTGGCTTGAGGTCCATCCTCCTTCTGCAGGGCT
64





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   997
0.001298424
0.743379601
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
65





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






   937
0.001220284
0.744599885
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
66





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACAC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   867
0.001129121
0.745729006
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
67





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   830
0.001080935
0.74680994
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
68





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACTGA






AGTTTTGCACCTCCGGTGGGATGACAGTGGGCAGCACCTC






CAGCTCCACAAGGAC






   781
0.00101712
0.747827061
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
69





CCATGCTGGGGCGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   771
0.001004097
0.748831158
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
70





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGA------------------------






GGGGCCAGGGTGAAGCTGCCACCCTCAGGGACGCTGAAGT






TTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAG






CTCCACAAGGAC






   767
0.000998888
0.749830046
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
71





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCCCCTCCAGC






TCCACAAGGAC






   759
0.000988469
0.750818515
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
72





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCGGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   752
0.000979353
0.751797868
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
73





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGACAGTGGGCAGCAC






CTCCAGCTCCACAAGGAC






   731
0.000952004
0.752749872
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
74





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCGCCTCCAGC






TCCACAAGGAC






   705
0.000918143
0.753668015
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
75








CCATGCTGGGGTGGCCCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   687
0.000894701
0.754562716
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
76





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGGTGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






    685
0.000892097
0.755454813
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
77





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   667
0.000868655
0.756323468
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
78





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGGG------------------------






GCCAGGGTGAAGCTGCCACCCTCAGGGACACTGAAGTTTT






GCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGCTC






CACAAGGAC






   620
0.000807445
0.757130913
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
79





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGGCACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   604
0.000786608
0.757917521
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
80





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGGGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   604
0.000786608
0.758704129
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
81





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGA-------






CA-----------------






CGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTG






AAGTTTTGCGCCTCCGGTGGGATGACAGTGGGCAGCACCT






CCAGCTCCACAAGGAC






   600
0.000781399
0.759485527
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCCTCTGCAGGGCT
82





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   587
0.000764468
0.760249995
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
83





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGGGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   586
0.000763166
0.761013161
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
84





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCGCCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   582
0.000757957
0.761771118
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
85





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAGGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   577
0.000751445
0.762522563
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCCGCAGGGCT
86





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   575
0.00074884
0.763271403
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
87





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAGGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   572
0.000744933
0.764016336
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
88





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACAC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   567
0.000738422
0.764754758
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
89





CCATGCTGGGGTGGCTCCAGCACCCGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   564
0.000734515
0.765489273
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
90





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCCGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   563
0.000733212
0.766222485
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
91





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACGC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   561
0.000730608
0.766953093
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
92





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGGGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   561
0.000730608
0.7676837
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
93





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGGCGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   560
0.000729305
0.768413006
TGAGGGTCCTGGCTTGAGGTCCGTCCCCCTTCTGCAGGGCT
94





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   549
0.00071498
0.769127985
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCGGGGCT
95





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   547
0.000712375
0.76984036
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
96





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   546
0.000711073
0.770551433
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
97





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCCCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   540
0.000703259
0.771254692
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
98





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCGGCACCTCCAGC






TCCACAAGGAC






   537
0.000699352
0.771954043
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
99





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   530
0.000690235
0.772644279
TGAGGGTCCTGGCTTGAGGCCCGTCCTCCTTCTGCAGGGCT
100





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   524
0.000682421
0.7733267
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
101





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






   522
0.000679817
0.774006517
TGAGGGTCCTGGCTTGAGGTCCATCCTCCTTCTGCAGGGCT
102





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   502
0.00065377
0.774660287
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
103





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACACTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   501
0.000652468
0.775312755
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
104





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGGGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   501
0.000652468
0.775965223
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
105





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCACCTCCGGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   501
0.000652468
0.77661769
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
106





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCCGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   501
0.000652468
0.777270158
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
107





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGTGGGCAGCAC






CTCCAGCTCCACAAGGAC






   497
0.000647258
0.777917417
TGAGGGTCCTGGCTTGAGGGCCGTCCTCCTTCTGCAGGGCT
108





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   488
0.000635537
0.778552954
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
109





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGGGCCGGCGATGCAGAGCAGTGG






AGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACACTGAAG






TTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCA






GCTCCACAAGGAC






   488
0.000635537
0.779188492
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
110





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAGGGCCCGGAGACACGGAGGGCCG






GCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






   484
0.000630328
0.77981882
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCC
111





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   466
0.000606886
0.780425706
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
112





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCCCAGGGACGCTG






AAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCT






CCAGCTCCACAAGGAC






   461
0.000600375
0.78102608
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
113





CCATGCTGGGGTGGCTCCGGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   459
0.00059777
0.78162385
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
114





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






   458
0.000596468
0.782220318
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
115





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGGG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   454
0.000591258
0.782811576
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
116





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGGGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   452
0.000588654
0.78340023
TGAGGGTCCTGGCTTGAGGTCCGCCCTCCTTCTGCAGGGCT
117





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   451
0.000587351
0.783987581
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
118





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGCGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   449
0.000584747
0.784572328
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
119





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCCGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGGCCGGCGATGCAGAGCA----------------






GTGGAGGGGCCAGGGTGAAGCTGCCACCCTCAGGGACACT






GAAGTTTTGCACCTCCGGTGGGATGGCAGCGGGCAGCACC






TCCAGCTCCACAAGGAC






   448
0.000583444
0.785155772
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
120





CCGTGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   443
0.000576933
0.785732704
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
121





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCGGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   435
0.000566514
0.786299218
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
122





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






CCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTTTTG






CGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGCTCC






ACAAGGAC






   435
0.000566514
0.786865732
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
123





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCGC






CTCCAGCTCCACAAGGAC






   431
0.000561305
0.787427037
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
124





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCGGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   431
0.000561305
0.787988342
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
125





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGCT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   426
0.000554793
0.788543135
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
126





CCATGCTGGGGTGGCTCCAGCGCCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------GGCCCGGAGACAC----






--------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTC






CAGCTCCACAAGGAC






   421
0.000548281
0.789091416
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
127





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCG






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA---------------






AGTGGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGC






TGAAGTTTTGCGCCTCTAGTGGGATGGCAGCGGGCAGCAC






CTCCAGCTCCACAAGGAC






   410
0.000533956
0.789625371
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
128





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAGCA------------------






GGAGGGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGA






AGTTTTGCGCCTCTAGTGGGATGACAGTGGGCAGCACCTC






CAGCTCCACAAGGAC






   408
0.000531351
0.790156723
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
129





CCATGCTGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGACGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC






   401
0.000522235
0.790678957
TGAGGGTCCTGGCTTGAGGTCCGTCCTCCTTCTGCAGGGCT
130





CCATGCCGGGGTGGCTCCAGCACCTGCAGGCTGAGGCCCA






GGAGAGTGGGGAAGTAG----------------






GGCCCGGAGACACGGAG------------------------






GGGCCAGGGTGAGGCTGCCACCCTCAGGGACGCTGAAGTT






TTGCGCCTCTAGTGGGATGGCAGCGGGCAGCACCTCCAGC






TCCACAAGGAC
















TABLE 2







FZD2


WT sequence:


TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGTGCTGGAACAGGCCATCCCGCCGTGCCGCTCTATC


TGTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCATGAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCT


GCGCTGCGAGCACTTCCCGCGCCAC----------


GGCGCCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAGGACGGAGCT (SEQ ID NO: 131)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:





106541
0.138930038
0.138930038
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
132





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGC------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GA






CGGAGCT






 66146
0.08625474
0.225184778
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
133





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGGC------------------






GCCGAGCAGATCTGCGTCGGCCAGAACCACTCCGA






G






GACGGAGCT






 42820
0.05583751
0.281022288
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
134





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACT-----------T----






CCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAA






CCACTCCGAGGACGGAGCT






 34007
0.044345311
0.325367599
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
135





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCAC-----------T----






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






 28239
0.036823808
0.362191407
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
136


(WT)


GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCCAC----------






GGCGCCGAGCAGATCTGCGTCGGCCAGAACCACTC






CGAGGACGGAGCT






 13147
0.017143759
0.379335166
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
137





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC-----------T----






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






 10667
0.013909825
0.393244991
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
138





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCG----------------------






AGCAGATCTGCGTCGGCCAGAACCACTCCGAGGA






CGGAGCT






 10071
0.013132638
0.40637763
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
139





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGAG---------------------






CAGATCTGCGTCGGCCAGAACCACTCCGAGGACG






GAGCT






  9638
0.012568004
0.418945633
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
140





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCG----------------------------------






AGCAGATCTGCGTCGGCCAGAACCACTCCGAGGA






CGGAGCT






  6967
0.009085006
0.428030639
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
141





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG------------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCAGA






GGACGGAGCT






  6806
0.008875061
0.4369057
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
142





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCG----------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  6659
0.008683372
0.445589071
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
143





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC-------------------






GGCGCCGAGCAGATCTGCGTCGGCCAGAACCACTC






CGAGGACGGAGCT






  6624
0.008637732
0.454226803
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
144





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC-------------






TCGGCGCCGAGCAGATCTGCGTCGGCCAGAACCAC






TCCGAGGACGGAGCT






  6445
0.008404315
0.462631118
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
145





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCA-----------






CGGCGCCGAGCAGATCTGCGTCGGCCAGAACCACT






CCGAGGACGGAGCT






  6441
0.008399099
0.471030216
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
146





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGGCGC-----------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GAC






GGAGCT






  6377
0.008315642
0.479345859
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
147





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGC-------------






GGCGCCGAGCAGATCTGCGTCGGCCAGAACCACTC






CGAGGACGGAGCT






  6151
0.008020937
0.487366796
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
148





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCG------------






CCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  5924
0.007724928
0.495091724
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
149





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGGC---------






CACGGCGCCGAGCAGATCTGCGTCGGCCAGAACC






ACTCCGAGGACGGAGCT






  5376
0.007010333
0.502102057
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
150





GCTGGAACAGGCCATCCCGCCGTGCCGCTCT---------






----------------------------------------






------------






GCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  4830
0.006298346
0.508400403
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
151





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTGCCCG---------------






CGGCGCCGAGCAGATCTGCGTCGGCCAGAACCACT






CCGAGGACGGAGCT






  4704
0.006134041
0.514534444
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
152





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGGG---------------






CGCCGAGCAGATCTGCGTCGGCCAGAACCACTCCG






AG






GACGGAGCT






  4248
0.005539415
0.520073859
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
153





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG---------------






GCGCCGAGCAGATCTGCGTCGGCCAGAACCACTCA






GAGGACGGAGCT






  3937
0.005133869
0.525207728
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
154





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG---------------------






GGCAGATCTGCGTCGGCCAGAACCACTCCGAGGA






CG






GAGCT






  3733
0.004867852
0.53007558
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
155





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCAC-----------------






TTCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  3662
0.004775268
0.534850848
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
156





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC--------------------






GGGCCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  3300
0.004303218
0.539154066
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
157





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG-------------------------






GATCTGCGTCGGCCAGAACCACTCCGAGGACGGA






GCT






  3257
0.004247146
0.543401211
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
158





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG------------






ACGGCGCCGAGCAGATCTGCGTCGGCCAGAACCA






CTCCGAGGACGGAGCT






  3149
0.004106313
0.547507524
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
159





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACT-----------G----






CCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAA






CCACTCCGAGGACGGAGCT






  2894
0.003773792
0.551281316
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
160





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCC------






------------------------------------GAGCAGAT






CTGCGTCGGCCAGAACCACTCCGAGGACGGAGCT






  2874
0.003747711
0.555029027
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
161





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG------------------






TCGGCCAGA---------------






ACCACTCCGAGGACGGAGCT






  2853
0.003720327
0.558749355
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
162





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCG------------------------------






------------------------------






ATCTGCGTCGGCCAGAACCACTCCGAGGACGGAG






CT






  2806
0.003659039
0.562408394
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
163





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGC-------------






------------------------------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT






  2696
0.003515599
0.565923992
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
164





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGA---------------------------






GCGCCGAGCAGATCTGCGTCGGCCAGAACCACTCC






GAGGACGGAGCT






  2657
0.003464742
0.569388734
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
165





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCACG---------------






GCGCCGAGCAGATCTGCGTCGGCCAGAACCACTCA






GAGGACGGAGCT






  2600
0.003390414
0.572779148
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
166





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTT-------------------------






CCCGCAGATCTGCGTCGGCCAGAACCACTCCGAGG






ACGGAGCT






  2318
0.003022684
0.575801833
TTCCTGTGCTCCATGTACGCACCCGTGTGCA----------
167





--------------------------------------------






--------------------------------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  2217
0.00289098
0.578692813
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
168





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC------------------------------






GATCTGCGTCGGCCAGAACCACTCCGAGGACGGA






GCT






  2135
0.002784051
0.581476864
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
169





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCC-ACG---------------






GCGCCGAGCAGATCTGCGTCGGCCAGAACCACTCA






GAGGACGGAGCT






  2110
0.002751451
0.584228316
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
170





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCC----------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  2073
0.002703203
0.586931519
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
171





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGTGCGCGCCAGGGCTGCGAAGCCCTCATG






AACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGCG






CTGCGAGCACTTC----------------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  2037
0.002656259
0.589587778
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
172





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGA---------------------------------------






----------------------------------






GCCGAGCAGATCTGCGTCGGCCAGAACCACTCCGA






GGACGGAGCT






  1985
0.002588451
0.592176229
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
173





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GC-----------------------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT






  1966
0.002563675
0.594739903
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
174





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGA






CGCAGATCTGCGTCGGCCAGAACCACTCCGAGGAC






GGAGCT






  1922
0.002506298
0.597246201
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
175





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCT----------------------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  1876
0.002446314
0.599692516
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
176





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCC----------






ACGGCGCCGAGCAGATCTGCGTCGGCCAGAACCA






CTCAGAGGACGGAGCT






  1874
0.002443706
0.602136222
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
177





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTG----------------------






-------------------






GCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1865
0.00243197
0.604568192
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
178





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC------------------






GCCGTGCAGATCTGCGTCGGCCAGAACCACTCCGA






GGACGGAGCT






  1778
0.002318522
0.606886713
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
179





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC------------------






TCGGCGCCGAGCAGATCTGCGTCGGCCAGAACCAC






TCCGAGGACGGAGCT






  1745
0.002275489
0.609162203
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
180





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAC---------------------CGA--------------






------------------






GCAGATCTGCGTCGGCCAGAACCACTCCGAGGAC






GGAGCT






  1589
0.002072065
0.611234267
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
181





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGG






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






  1562
0.002036856
0.613271124
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
182





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCAC------------------






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1541
0.002009472
0.615280596
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
183





GC------------------------------------------






------------------------------------ -------






------------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT






  1420
0.001851688
0.617132284
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
184





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGC----------------------






ACGGCGCCGAGCAGATCTGCGTCGGCCAGAACCA






CTCCGAGGACGGAGCT






  1318
0.001718679
0.618850963
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
185





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCG-----------------------






GATCTGCGTCGGCCAGAACCACTCCGAGGACGGA






GCT






  1300
0.001695207
0.62054617
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
186





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTG






CGCTGCGAGCACTTCCCGAT-------------------






CGGCCAGA---------------






ACCACTCCGAGGACGGAGCT






  1283
0.001673039
0.622219209
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
187





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCCG---------






CCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1271
0.001657391
0.623876599
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
188





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGC -------------------------






CACGGCGCCGAGCAGATCTGCGTCGGCCAGAACC






ACTCCGAGGACGGAGCT






  1248
0.001627399
0.625503998
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
189





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCC--------------






CCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1215
0.001584367
0.627088365
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
190





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACT ----------------






CCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAA






CCACTCCGAGGACGGAGCT






  1190
0.001551766
0.628640131
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
191





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC --------------------






GGGCCAGA---------------






ACCACTCCGAGGACGGAGCT






  1184
0.001543942
0.630184073
TCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
192





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCC-------------






GCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1179
0.001537422
0.631721496
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
193





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGC--------------------------------------






GTCGGCCAGAACCACTCCGAGGACGGAGCT






  1155
0.001506126
0.633227622
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
194





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACT-----------T----






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1151
0.00150091
0.634728532
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
195





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCG---------------------






CGGCCAGA---------------






ACCACTCCGAGGACGGAGCT






  1139
0.001485262
0.636213794
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
196





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCG--------------------------------






---------------------






AGCAGATCTGCGTCGGCCAGAACCACTCCGAGGA






CGGAGCT






  1122
0.001463094
0.637676888
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
197





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG------------------






GGAAGCAGATCTGCGTCGGCCAGAACCACTCCGA






GGACGGAGCT






  1110
0.001447446
0.639124334
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
198





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCTCAT----------------------






------------GAACCACTCCGAGGACGGAGCT






  1060
0.001382246
0.64050658
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
199





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGC------------






CCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






  1052
0.001371814
0.641878394
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT






GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCCGG--A----------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT
200





  1035
0.001349646
0.643228039
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
201





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCCGAGCACTTCCACGG






CGCCGAGCAGATCTGCGTCGGCCAGAACCACTCCG






AGGACGGAGCT






  1018
0.001327477
0.644555517
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
202





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGC--------------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT






  1003
0.001307917
0.645863434
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
203





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCG---------------






TCCGAGCAGATCTGCGTCGGCCAGAACCACTCCGA






GGACGGAGCT






   983
0.001281837
0.647145271
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
204





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGAG---------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






   925
0.001206205
0.648351476
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
205





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCC-------------------






--------------------






ACGGCGCCGAGCAGATCTGCGTCGGCCAGAACCA






CTCCGAGGACGGAGCT






   877
0.001143613
0.649495089
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
206





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCC----------------






CGCCGAGCAGATCTGCGTCGGCCAGAACCACTCAG






AGGACGGAGCT






   875
0.001141005
0.650636094
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
207





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC------------------






GAGCAGATCTGCGTCGGCCAGAACCACTCCGAGG






ACGGAGCT






   875
0.001141005
0.651777099
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
208





GCTGGAACAGGCCATCCCGCCG---------------------






-------------------------------------------






-------------------------






AGCAGATCTGCGTCGGCCAGAACCACTCCGAGGA






CGGAGCT






   863
0.001125357
0.652902455
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
209





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGC--






GCGCGCCAGGGCTGCGAAGCCCTCATGAACAAGTT






CGGTTTTCAGTGGCCCGAGCGCCTGCGCTGCGAGC






ACTTC






CCGCGCCGAGCAGATCTGCGTCGGCCAGAACCACT






CCGAGGACGGAGCT






   852
0.001111013
0.654013468
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
210





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCA-






GGCTGCGAAGCCCTCATGAACAAGTTCGGTTTTCA






GTGGCCCGAGCGCCTGCGCTGCGAGCACTTCCCGC






GC------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






   838
0.001092757
0.655106224
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
211





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGCGCCA--------






CGGCGCCGAGCAGATCTGCGTCGGCCAGAACCACT






CCGAGGACGGAGCT






   836
0.001090149
0.656196373
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
212





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCTCG-------------






GCGCCGTGCAGATCTGCGTCGGCCAGAACCACTCC






GAGGACGGAGCT






   782
0.001019732
0.657216105
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
213





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGGGCA-GA----






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






   697
0.000908892
0.658124997
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
214





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCG----------------------------






CCGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






   697
0.000908892
0.659033888
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
215





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCC--------------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCAGAG






GACGGAGCT






   690
0.000899764
0.659933652
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
216





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGC----------------






CGAGCAGATCTGCGTCGGCCGGAACCACTCC






GAGGACGGAGCT






   686
0.000894548
0.6608282
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
217





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC-----------------------------






TGCGTCGGCCAGAACCACTCCGAGGACGGAGCT






   680
0.000886724
0.661714924
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
218





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCAAGCACTTCCCGCGCCAG--






ATCTGCTCGGCGCCGTGGAGATCTGCGTCGGCCAG






AACCACTCCGAGGACGGAGCT






   660
0.000860644
0.662575567
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
219





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACG----------------






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAAC






CACTCCGAGGACGGAGCT






   659
0.00085934
0.663434907
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
220





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCG-------------------






AGCAGATCTGCGTCGGCCAGAACCACTCAGAGGA






CG






GAGCT






   657
0.000856732
0.664291638
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
221





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGC----------------------------






AGATCTGCGTCGGCCAGAACCACTCAGAGGACGG






AGCT






   594
0.000774579
0.665066217
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
T.





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGC----------------------






CACGGCGCCGAGCAGATCTGCGTCGGCCAGAACC






ACTCCGAGGACGGAGCT






   582
0.000758931
0.665825149
TTCCTGTGCTCCATGTACGC------------------------
223





--------------------------------------------






------------------------------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






   580
0.000756323
0.666581472
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
224





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGGAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTC-----------------------






CCGCGCCGAGCAGATCTGCGTCGGCCAGAACCACT






CCGAGGACGGAGCT






   577
0.000752411
0.667333883
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
225





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGAGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCAC------------T----






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAGC






CACTCCGAGGACGGAGCT






   564
0.000735459
0.668069342
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
226





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCGCT------------T----






CCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAA






CCACTCCGAGGACGGAGCT






   564
0.000735459
0.668804801
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
227





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GC------------------------------






CGAGCAGATCTGCGTCGGCCAGAACCACTCCGAG






GACGGAGCT






   562
0.000732851
0.669537652
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
228





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGC------------------------------------






------------------------------------






AGATCTGCGTCGGCCAGAACCACTCCGAGGACGG






AGCT






   552
0.000719811
0.670257463
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
229





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAA-






CCCTCATGAACAAGTTCGGTTTTCAGTGGCCCGAG






CGCCTGCGCTGCGAGCACTTC----------------------






----------------------






TGCGTCGGCCAGAACCACTCCGAGGACGGAGCT






   551
0.000718507
0.67097597
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
230





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCACTTCCCGCGGC-----------------






GCCGAGCAGATCTGCGTCGGTCAGAACCACTCCGA






GGACGGAGCT






   546
0.000711987
0.671687957
TTCCTGTGCTCCATGTACGCACCCGTGTGCACCGT
231





GCTGGAACAGGCCATCCCGCCGTGCCGCTCTATCT






GTGAGCGCGCGCGCCAGGGCTGCGAAGCCCTCAT






GAACAAGTTCGGTTTTCAGTGGCCCGAGCGCCTGC






GCTGCGAGCAC--------------T----






TCCACGGCGCCGAGCAGATCTGCGTCGGCCAGAGC






CACTCCGAGGACGGAGCT
















TABLE 3







UGP2


WT Sequence:


AATTTTCATTGTAACAACATACCTTTAATGAAACATTTTTTCCAAATGTCACATCTCCTGAAACTGTGA


GGTGATCCAATTCAAGCAT--------A-


TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGAACCTTACAGAAA


AGGAGAAACATAAAAATTTGTCTCAAATGGGTTCAAAGAAAGACAGGAAAAATATTAACAAGAAAG


TTTAACTGAACTGTAGAAACCTTTTTTGGCAAAGCTCAGGTCCTCT (SEQ ID NO: 232)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:





295658
0.302416711
0.302416711
AATTTTCATTGTAACAACATACCTTTAATGAAACA
233





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






196681
0.201177107
0.503593818
AATTTTCATTGTAACAACATACCTTTAATGAAACA
234





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






178981
0.183072487
0.686666305
AATTTTCATTGTAACAACATACCTTTAATGAAACA
235


(WT)


TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT--------A-






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






  1354
0.001384952
0.688051258
AATTTTCATTGTAACAACATACCTTTAATGAAACA
236





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAGGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






  1142
0.001168106
0.689219364
AATTTTCATTGTAACAACATACCTTTAATGAAACA
237





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAGGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   998
0.001020814
0.690240178
AATTTTCATTGTAACAACATACCTTTAATGAAACA
238





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAGCCTTTTT






TGGCAAAGCTCAGGTCCTCT






   992
0.001014677
0.691254855
AATTTTCATTGTAACAACATACCTTTAATGAAACA
239





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAGGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   990
0.001012631
0.692267486
AATTTTCATTGTAACAACATACCTTTAATGAAACA
240





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAGCTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   971
0.000993197
0.693260683
AATTTTCATTGTAACAACATACCTTTAATGAAACA
241





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAA--------------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   971
0.000993197
0.69425388
AATTTTCATTGTAACAACATACCTTTAATGAAACA
242





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






GCCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   950
0.000971717
0.695225597
AATTTTCATTGTAACAACATACCTTTAATGAAACA
243





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGGCAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   942
0.000963534
0.696189131
AATTTTCATTGTAACAACATACCTTTAATGAAACA
244





TTTTTTCCAAATGCCACATCTCCTGAAACTGTGAG






GTGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   939
0.000960465
0.697149596
AATTTTCATTGTAACAACATACCTTTAATGAAACA
245





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACGGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   914
0.000934894
0.69808449
AATTTTCATTGTAACAACATACCTTTAATGAAACA
246





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






CCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   898
0.000918528
0.699003018
AATTTTCATTGTAACAACATACCTTTAATGAAACA
247





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAGCATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   886
0.000906254
0.699909272
AATTTTCATTGTAACAACATACCTTTAATGAAACA
248





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAGGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   880
0.000900117
0.700809389
AATTTTCATTGTAACAACATACCTTTAATGAAACA
249





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGCTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   875
0.000895002
0.701704391
AATTTTCATTGTAACAACATACCTTTAATGAAACA
250





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAGAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   874
0.00089398
0.702598371
AATTTTCATTGTAACAACATACCTTTAATGAAACA
251





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACGGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   857
0.000876591
0.703474962
AATTTTCATTGTAACAACATACCTTTAATGAAACA
252





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAGACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   847
0.000866362
0.704341324
AATTTTCATTGTAACAACATACCTTTAATGAAACA
253





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGGAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   847
0.000866362
0.705207687
AATTTTCATTGTAACAACATACCTTTAATGAAACA
254





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTCCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   846
0.000865339
0.706073026
AATTTTCATTGTAACAACATACCTTTAATGAAACA
255





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACTTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAGAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   842
0.000861248
0.706934274
AATTTTCATTGTAACAACATACCTTTAATGAAACA
256





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAGGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   837
0.000856134
0.707790408
AATTTTCATTGTAACAACATACCTTTAATGAAACA
257





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGC----------






ATTCTGGTATACCTTCAAATCTTCTTAGATAATCTT






GAACCTTACAGAAAAGGAGAAACATAAAAATTTG






TCTCAAATGGGTTCAAAGAAAGACAGGAAAAATA






TTAACAAGAAAGTTTAACTGAACTGTAGAAACCTT






TTTTGGCAAAGCTCAGGTCCTCT






   834
0.000853065
0.708643473
AATTTTCATTGTAACAACATACCTTTAATGAAACA
258





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACC-






TTTTTGGCAAAGCTCAGGTCCTCT






   833
0.000852042
0.709495515
AATTTTCATTGTAACAACATACCTTTAATGAAACA
259





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCCTTTT






TGGCAAAGCTCAGGTCCTCT






   826
0.000844882
0.710340398
AATTTTCATTGTAACAACATACCTTTAATGAAACA
260





TTTTTTCCAAATGTCGCATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   820
0.000838745
0.711179143
AATTTTCATTGTAACAACATACCTTTAATGAAACA
261





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCGAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   813
0.000831585
0.712010728
AATTTTCATTGTAACAACATACCTTTAATGAAACA
262





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAGAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   804
0.000822379
0.712833107
AATTTTCATTGTAACAACATACCTTTAATGAAACA
263





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGGAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   794
0.000812151
0.713645258
AATTTTCATTGTAACAACATACCTTTAATGAAACA
264





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAGGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   792
0.000810105
0.714455363
AATTTTCATTGTAACAACATACCTTTAATGAAACA
265





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGGACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   786
0.000803968
0.715259331
AATTTTCATTGTAACAACATACCTTTAATGAAACA
266





TTTTTTCCAAATGTCACATCCCCTGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   750
0.000767145
0.716026476
AATTTTCATTGTAACAACATACCTTTAATGAAACA
267





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGGAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   746
0.000763053
0.716789529
AATTTTCATTGTAACAACATACCTTTAATGAAACA
268





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGGAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   745
0.000762031
0.71755156
AATTTTCATTGTAACAACATACCTTTAATGAAACA
269





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGGGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   733
0.000749756
0.718301316
AATTTTCATTGTAACAACATACCTTTAATGAAACA
270





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAGGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   730
0.000746688
0.719048004
AATTTTCATTGTAACAACATACCTTTAATGAAACA
271





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAGAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   718
0.000734413
0.719782417
AATTTTCATTGTAACAACATACCTTTAATGAAACA
272





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGGAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   707
0.000723162
0.720505579
AATTTTCATTGTAACAACATACCTTTAATGAAACA
273





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTCGTC






TCAAATGGGTTCAAAGAAAGACAGGAAAAATATT






AACAAGAAAGTTTAACTGAACTGTAGAAACCTTTT






TTGGCAAAGCTCAGGTCCTCT






   707
0.000723162
0.721228741
AATTTTCATTGTAACAACATACCTTTAATGAAACA
274





TTTTTTCCAAATGTCACATCTCCTGAAACTGCGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   704
0.000720093
0.721948835
AATTTTCATTGTAACAAAATACCTTTAATGAAACA
275





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   701
0.000717025
0.722665859
AATTTTCATTGTAACAACATACCTTTAATGAAACA
276





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






CGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   699
0.000714979
0.723380838
AATTTTCATTGTAACAACATACCTTTAATGAAACA
277





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACGTAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   698
0.000713956
0.724094795
AATTTTCATTGTAACAACATACCTTTAATGAAACA
278





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGGGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   696
0.00071191
0.724806705
AATTTTCATTGTAACAACATACCTTTAATGAAACA
279





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTC






CCAAATGGGTTCAAAGAAAGACAGGAAAAATATT






AACAAGAAAGTTTAACTGAACTGTAGAAACCTTTT






TTGGCAAAGCTCAGGTCCTCT






   696
0.00071191
0.725518616
AATTTTCATTGTAACAACATACCTTTAATGAAACA
280





TTTTTTCCAAATGTCACACCTCCTGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   689
0.00070475
0.726223366
AATTTTCATTGTAACAACATACCTTTAATGAAACA
281





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGG






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   681
0.000696568
0.726919934
AATTTTCATTGTAACAACATACCTTTAATGAAACA
282





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAGGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   670
0.000685316
0.72760525
AATTTTCATTGTAACAACATACCTTTAATGAAACA
283





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GCTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   667
0.000682248
0.728287497
AATTTTCATTGTAACAACATACCTTTAATGAAACA
284





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAGTGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   664
0.000679179
0.728966676
AATTTTCATTGTAACAACATACCTTTAATGAAACA
285





TTTTTTCCAAATGTCACATCTCCTGAAACCGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   663
0.000678156
0.729644832
AATTTTCATTGTAACAACATACCTTTAATGAAACA
286





TTTTTTCCAAATGTCACGTCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   661
0.00067611
0.730320943
AATTTTCATTGTAACAACATACCTTTAATGAAACA
287





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAGACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   661
0.00067611
0.730997053
AATTTTCATTGTAACAACATACCTTTAATGAAACA
288





TTTTTTCCAAATGTAACATCTCCTGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   660
0.000675088
0.731672141
AATTTTCATTGTAACAACATACCTTTAATGAAACA
289





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACCGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   658
0.000673042
0.732345182
AATTTTCATTGTAACAACATACCTTTAATGAAGCA
290





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   651
0.000665882
0.733011064
AATTTTCATTGTAACAACATACCTTTAATGAAACA
291





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCGAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   648
0.000662813
0.733673877
AATTTTCATTGTAACAACATACCTTTAATGAAACA
292





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAGCTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   646
0.000660767
0.734334645
AATTTTCATTGTAACAACATACCTTTAATGAAACA
293





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAACCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   643
0.000657699
0.734992344
AATTTTCATTGTAACAACATACCTTTAATGAAACA
294





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCCTACAGAAAAGGAGAAACATAAAAATTTGTC






TCAAATGGGTTCAAAGAAAGACAGGAAAAATATT






AACAAGAAAGTTTAACTGAACTGTAGAAACCTTTT






TTGGCAAAGCTCAGGTCCTCT






   643
0.000657699
0.735650043
AATTTTCATTGTAACAACATACCTTTAATGAAACA
295





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAGCCTTTTTTGGCAAA






GCTCAGGTCCTCT






   642
0.000656676
0.736306719
AATTTTCATTGTAACAACATACCTTTAATGAAACA
296





TTTTTTCCAAATGTCACATCTCCCGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   638
0.000652585
0.736959303
AATTTTCATTGTAACAACATACCTTTAATGAAACA
297





TTTTTTCCAAATGTCACATCTCCTGAGACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   638
0.000652585
0.737611888
AATTTTCATTGTAACAACATACCTTTAATGAAACA
298





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGCTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   635
0.000649516
0.738261404
AATTTTCATTGTAACAACATACCTTTAATGAAACA
299





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAGGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   633
0.00064747
0.738908874
AATTTTCATTGTAACAACATACCTTTAATGAAACA
300





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTCGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   632
0.000646447
0.739555322
AATTTTCATTGTAACAACATACCTTTAATGAAACA
301





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACGGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   631
0.000645425
0.740200746
AATTTTCATTGTAACAACATACCTTTAATGAAACA
302





TTTTTTCCAAATGTCACATCTCCTGAAGCTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   629
0.000643379
0.740844125
AATTTTCATTGTAACAACATACCTTTAATGAAACA
303





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAGCCTTTTT






TGGCAAAGCTCAGGTCCTCT






   627
0.000641333
0.741485459
AATTTTCATTGTAACAACATACCTTTAATGAAACA
304





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGGTCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   624
0.000638265
0.742123723
AATTTTCATTGTAACAACATACCTTTAATGAAACA
305





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAGCCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   620
0.000634173
0.742757896
AATTTTCATTGTAACAACATACCTTTAATGAAACA
306





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAGCATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   607
0.000620876
0.743378772
AATTTTCATTGTAACAACATACCTTTAATGAAACA
307





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAGGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   604
0.000617807
0.74399658
AATTTTCATTGTAACAACATACCTTTAATGAAACA
308





TTTTTTCCAAATGCCACATCTCCTGAAACTGTGAG






GTGATCCAATTCAAGCATATACTTGAATTCTGGTA






TACTTTCAAATCTTCTTAGATAATCTTGAACCTTAC






AGAAAAGGAGAAACATAAAAATTTGTCTCAAATG






GGTTCAAAGAAAGACAGGAAAAATATTAACAAGA






AAGTTTAACTGAACTGTAGAAACCTTTTTTGGCAA






AGCTCAGGTCCTCT






   599
0.000612693
0.744609273
AATTTTCATTGTAACAACATACCTTTAATGAAACA
309





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAGCTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   597
0.000610647
0.74521992
AATTTTCATTGTAACAACATACCTTTAATGAAACA
310





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTCTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   594
0.000607579
0.745827499
AATTTTCATTGTAACAACATACCTTTAATGAAACA
311





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTGGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   585
0.000598373
0.746425872
AATTTTCATTGTAACAACATACCTTTAATGAAACA
312





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACCTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   584
0.00059735
0.747023222
AATTTTCATTGTAACAACATACCTTTAATGAAACA
313





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGCTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   584
0.00059735
0.747620572
AATTTTCATTGTAACAACATACCCTTAATGAAACA
314





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   582
0.000595304
0.748215877
AATTTTCATTGTAACAACATACCTTTAATGAAACA
315





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACGGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   581
0.000594282
0.748810158
AATTTTCATTGTAACAACATACCTTTAATGAAACA
316





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACG






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   578
0.000591213
0.749401371
AATTTTCATTGTAACAACATACCTTTAATGAAACA
317





TTTTTTCCAAACGTCACATCTCCTGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   577
0.00059019
0.749991561
AATTTTCATTGTAACAACATACCTTTAATGAGACA
318





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   573
0.000586099
0.75057766
AATTTTCATTGTAACAACATACCTTTAATGAAACA
319





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCCTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   573
0.000586099
0.751163759
AATTTTCATTGTAACAACATACCTTTAATGAAACA
320





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAGCTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   573
0.000586099
0.751749858
AATTTTCATTGTAACAACATACCTTTAATGAAACA
321





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGCCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   570
0.00058303
0.752332888
AATTTTCATTGTAACAACATACCTTTAATGAAACA
322





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






GGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   568
0.000580984
0.752913872
AATTTTCATTGTAACAACATACCTTTAATGAAACA
323





TTTTCTCCAAATGTCACATCTCCTGAAACTGTGAG






GTGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   568
0.000580984
0.753494857
AATTTTCATTGTAACAACATACCTTTAACGAAACA
324





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   567
0.000579962
0.754074818
AATTTTCATTGTAACAACATACCTTTAATGAAACA
325





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGGCAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   566
0.000578939
0.754653757
AATTTTCATTGTAACAACATACCTTTAATGAAACA
326





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGGAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAAAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   564
0.000576893
0.75523065
AATTTTCATTGTAACAACATACCTTTAATGAAACA
327





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGCATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   564
0.000576893
0.755807543
AATTTTCATTGTAACAACATACCTTTAATGAAACA
328





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATATACTTGAATTCTGGTAT






ACTTTCAAATCTTCTTAGATAATCTTGAACCTTACA






GAAAAGGAGAAACATAAAAATTTGTCTCAAATGG






GTTCAAAGAGAGACAGGAAAAATATTAACAAGAA






AGTTTAACTGAACTGTAGAAACCTTTTTTGGCAAA






GCTCAGGTCCTCT






   562
0.000574847
0.75638239
AATTTTCATTGTAACAACATACCTTTAATGAAACA
329





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






TCTGGTATACTTTCAAATCTTCTTAGGTAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   559
0.000571779
0.756954169
AATTTTCATTGTAACAACATACCTTTAATGAAACA
330





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCAT----------






CCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   559
0.000571779
0.757525947
AATTTTCATTGTAACAACATACCTTTAATGAAACA
331





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA---------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






GCCTTACAGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT






   558
0.000570756
0.758096703
AATTTTCATTGTAACAACATACCTTTAATGAAACA
332





TTTTTTCCAAATGTCACATCTCCTGAAACTGTGAGG






TGATCCAATTCAAGCATA---------






TCTGGTATACTTTCAAATCTTCTTAGATAATCTTGA






ACCTTACGGAAAAGGAGAAACATAAAAATTTGTCT






CAAATGGGTTCAAAGAAAGACAGGAAAAATATTA






ACAAGAAAGTTTAACTGAACTGTAGAAACCTTTTT






TGGCAAAGCTCAGGTCCTCT
















TABLE 4







EMC4


WT Sequence:


AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTTCATGTGATTTAGCATCAGTGATATGGCAAATGT


GGGACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGTGTTTTGTTTTAGCGCTGCTGGGACATCG-CC--


TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTCATCATGTACATGGCAGGCAATACTATCTCCATC


TTCCCTACTATGATGGTGTGTATGATGGCCTGG (SEQ ID NO: 333)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:





202135
0.185140407
0.185140407
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
334


(WT)


CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






94677
0.086716988
0.271857394
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
335





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-TT----






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG






35489
0.032505246
0.30436264
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
336





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTG-------------C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






31794
0.029120905
0.333483545
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
337





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGG----------------






TCCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






21465
0.01966032
0.353143865
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
338





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCA-----------






-------






AACAGATTCCCATGAATCTCTTCATCATGTACATG






GCAGGCAATACTATCTCCATCTTCCCTACTATGAT






GGTGTGTATGATGGCCTGG






18219
0.016687229
0.369831094
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
339





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC-----






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






17040
0.015607354
0.385438448
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
340





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG--C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 9631
0.008821269
0.394259718
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
341





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG------






TGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 8354
0.007651634
0.401911351
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
342





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACCTTG--------






GGTCCCCTCAAACAGATTCCCATGAATCTCTTCAT






CATGTACATGGCAGGCAATACTATCTCCATCTTCC






CTACTATGATGGTGTGTATGATGGCCTGG






 8144
0.007459289
0.409370641
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
343





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCT---






GTTTGGGTCCCCTCAAACAGATTCCCATGAATCTC






TTCATCATGTACATGGCAGGCAATACTATCTCCAT






CTTCCCTACTATGATGGTGTGTATGATGGCCTGG






 6912
0.00633087
0.415701511
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
344





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC------------






CCTCAAACAGATTCCCATGAATCTCTTCATCATGT






ACATGGCAGGCAATACTATCTCCATCTTCCCTACT






ATGATGGTGTGTATGATGGCCTGG






 6520
0.005971828
0.421673339
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
345





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGG-----------------






TCCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






 5469
0.005009191
0.42668253
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
346





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACACCT------






TGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 5428
0.004971638
0.431654169
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
347





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG--------






GGTCCCCTCAAACAGATTCCCATGAATCTCTTCAT






CATGTACATGGCAGGCAATACTATCTCCATCTTCC






CTACTATGATGGTGTGTATGATGGCCTGG






 4620
0.004231571
0.43588574
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
348





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGAC----------------






CCCTCAAACAGATTCCCATGAATCTCTTCATCATGT






ACATGGCAGGCAATACTATCTCCATCTTCCCTACT






ATGATGGTGTGTATGATGGCCTGG






 4419
0.004047471
0.439933211
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
349





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGT---------------






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 4007
0.00367011
0.44360332
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
350





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTG------------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 3721
0.003408155
0.447011476
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
351





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCT----------------






CAAACAGATTCCCATGAATCTCTTCATCATGTACA






TGGCAGGCAATACTATCTCCATCTTCCCTACTATG






ATGGTGTGTATGATGGCCTGG






 3663
0.003355032
0.450366507
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
352





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG---------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






 3649
0.003342209
0.453708716
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
353





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATTG--------






GGTCCCCTCAAACAGATTCCCATGAATCTCTTCAT






CATGTACATGGCAGGCAATACTATCTCCATCTTCC






CTACTATGATGGTGTGTATGATGGCCTGG






 3556
0.003257028
0.456965744
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
354





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACAGAT----------------






---------






TCCCATGAATCTCTTCATCATGTACATGGCAGGCA






ATACTATCTCCATCTTCCCTACTATGATGGTGTGTA






TGATGGCCTGG






 3549
0.003250616
0.46021636
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
355





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCGGCC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 3539
0.003241457
0.463457817
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
356





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






--






AACAGATTCCCATGAATCTCTTCATCATGTACATG






GCAGGCAATACTATCTCCATCTTCCCTACTATGAT






GGTGTGTATGATGGCCTGG






 3379
0.003094909
0.466552726
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
357





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGAC-----CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 3239
0.00296668
0.469519405
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
358





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATC------------------






-------------------------------------------






---------------






TTCCCTACTATGATGGTGTGTATGATGGCCTGG






 2964
0.0027148
0.472234206
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
359





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCT-GC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTA TGATGGTGTGTATGATGGCCTGG






 2901
0.002657097
0.474891303
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
360





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGG---------------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






 2804
0.002568252
0.477459555
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
361





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCT----------GT--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 2776
0.002542607
0.480002162
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
362





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-GG------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






 2690
0.002463837
0.482465999
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
363





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CCC-






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 2539
0.002325532
0.484791531
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
364





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC--C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 2469
0.002261418
0.487052949
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
365





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACA---------------------






AACAGATTCCCATGAATCTCTTCATCATGTACATG






GCAGGCAATACTATCTCCATCTTCCCTACTATGAT






GGTGTGTATGATGGCCTGG






 2415
0.002211958
0.489264906
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
366





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGAC-----------------






CCTCAAACAGATTCCCATGAATCTCTTCATCATGT






ACATGGCAGGCAATACTATCTCCATCTTCCCTACT






ATGATGGTGTGTATGATGGCCTGG






 2191
0.002006791
0.491271697
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
367





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCT------------------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






 2168
0.001985724
0.493257422
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
368





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






CAAACAGATTCCCATGAATCTCTTCATCATGTACA






TGGCAGGCAATACTATCTCCATCTTCCCTACTATG






ATGGTGTGTATGATGGCCTGG






 2013
0.001843756
0.495101178
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
369





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTT--------------------------






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG






 1979
0.001812615
0.496913792
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
370





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-------------






CCTCAAACAGATTCCCATGAATCTCTTCATCATGT






ACATGGCAGGCAATACTATCTCCATCTTCCCTACT






ATGATGGTGTGTATGATGGCCTGG






 1944
0.001780557
0.49869435
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
371





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACAT--------------------






-----------------






CTCTTCATCATGTACATGGCAGGCAATACTATCTC






CATCTTCCCTACTATGATGGTGTGTATGATGGCCTG






G






 1901
0.001741173
0.500435522
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
372





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATGA----------------






-----------------






ATCTCTTCATCATGTACATGGCAGGCAATACTATC






TCCATCTTCCCTACTATGATGGTGTGTATGATGGCC






TGG






 1769
0.001620271
0.502055793
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
373





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCT ---TG---






GGTCCCCTCAAACAGATTCCCATGAATCTCTTCAT






CATGTACATGGCAGGCAATACTATCTCCATCTTCC






CTACTATGATGGTGTGTATGATGGCCTGG






 1760
0.001612027
0.50366782
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
374





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGC---------------C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 1737
0.001590961
0.505258781
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
375





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATC------------------






---------------------------






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






 1714
0.001569895
0.506828675
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
376





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------






TCCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






 1706
0.001562567
0.508391243
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
377





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTG---------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






 1652
0.001513107
0.50990435
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
378





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACAT--------------------






----------------------------------






GGCAGGCAATACTATCTCCATCTTCCCTACTATGA






TGGTGTGTATGATGGCCTGG






 1582
0.001448993
0.511353343
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
379





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCT-------------------------






CAAACAGATTCCCATGAATCTCTTCATCATGTACA






TGGCAGGCAATACTATCTCCATCTTCCCTACTATG






ATGGTGTGTATGATGGCCTGG






 1527
0.001398617
0.512751959
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
380





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATC------------------






----------------------------------------






------------






TCCATCTTCCCTACTATGATGGTGTGTATGATGGCC






TGG






 1521
0.001393121
0.514145081
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
381





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG------------






CCCTCAAACAGATTCCCATGAATCTCTTCATCATGT






ACATGGCAGGCAATACTATCTCCATCTTCCCTACT






ATGATGGTGTGTATGATGGCCTGG






1489
0.001363812
0.515508892
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
382





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-----------






CCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






   1430
0.001309772
0.516818664
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
383





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






---






ACAGATTCCCATGAATCTCTTCATCATGTACATGG






CAGGCAATACTATCTCCATCTTCCCTACTATGATG






GTGTGTATGATGGCCTGG






   1409
0.001290538
0.518109202
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
384





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC----------------






------------






CATGAATCTCTTCATCATGTACATGGCAGGCAATA






CTATCTCCATCTTCCCTACTATGATGGTGTGTATGA






TGGCCTGG






   1371
0.001255733
0.519364935
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
385





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG--------------






CTCAAACAGATTCCCATGAATCTCTTCATCATGTA






CATGGCAGGCAATACTATCTCCATCTTCCCTACTAT






GATGGTGTGTATGATGGCCTGG






   1265
0.001158645
0.520523579
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
386





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG---TTT-






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG






   1256
0.001150401
0.52167398
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
387





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGA-------------------------






-------------------------






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG






   1234
0.522804231
0.001130251
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
388





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTG----------------






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






   1194
0.001093614
0.523897845
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
389





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGA-----------------------






---






TTCCCATGAATCTCTTCATCATGTACATGGCAGGC






AATACTATCTCCATCTTCCCTACTATGATGGTGTGT






ATGATGGCCTGG






   1180
0.001080791
0.524978636
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
390





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACA--------------------






------------------------------------------






ATACTATCTCCATCTTCCCTACTATGATGGTGTGTA






TGATGGCCTGG






   1135
0.001039574
0.52601821
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
391





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCT-------------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






   1114
0.00102034
0.52703855
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
392





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGC---------------------------






---






AGATTCCCATGAATCTCTTCATCATGTACATGGCA






GGCAATACTATCTCCATCTTCCCTACTATGATGGTG






TGTATGATGGCCTGG






   1095
0.001002937
0.528041488
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
393





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG---AT






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






   1086
0.000994694
0.529036182
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
394





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG---






CTTTGGGTCCCCTCAAACAGATTCCCATGAATCTCT






TCATCATGTACATGGCAGGCAATACTATCTCCATC






TTCCCTACTATGATGGTGTGTATGATGGCCTGG






   1042
0.000954393
0.529990575
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
395





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC---------------






TCAAACAGATTCCCATGAATCTCTTCATCATGTAC






ATGGCAGGCAATACTATCTCCATCTTCCCTACTAT






GATGGTGTGTATGATGGCCTGG






   1022
0.000936075
0.53092665
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
396





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCA----------------






------






GATTCCCATGAATCTCTTCATCATGTACATGGCAG






GCAATACTATCTCCATCTTCCCTACTATGATGGTGT






GTATGATGGCCTGG






    999
0.000915009
0.531841659
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
397





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCT---------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    993
0.000909513
0.532751172
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
398





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






----






CAGATTCCCATGAATCTCTTCATCATGTACATGGC






AGGCAATACTATCTCCATCTTCCCTACTATGATGGT






GTGTATGATGGCCTGG






    982
0.000899438
0.53365061
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
399





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCG----------------C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    940
0.000860969
0.534511579
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
400





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






-






AAACAGATTCCCATGAATCTCTTCATCATGTACAT






GGCAGGCAATACTATCTCCATCTTCCCTACTATGA






TGGTGTGTATGATGGCCTGG






    909
0.000832575
0.535344154
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
401





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGAC----------------






CTCAAACAGATTCCCATGAATCTCTTCATCATGTA






CATGGCAGGCAATACTATCTCCATCTTCCCTACTAT






GATGGTGTGTATGATGGCCTGG






    908
0.000831659
0.536175814
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
402





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGC-----------------C--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    902
0.000826164
0.537001977
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
403





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTT--------------------------------






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG






    882
0.000807845
0.537809823
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
404





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTT--------------------------------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






    859
0.000786779
0.538596602
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
405





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGG------------------------






--------------------------------------------






------------






TGTGTATGATGGCCTGG






    806
0.000738235
0.539334837
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
406





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACAT----------------






-------------------------






ACTATCTCCATCTTCCCTACTATGATGGTGTGTATG






ATGGCCTGG






    799
0.000731824
0.540066661
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
407





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCGGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    792
0.000725412
0.540792073
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
408





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG----------------






--------






ATTCCCATGAATCTCTTCATCATGTACATGGCAGG






CAATACTATCTCCATCTTCCCTACTATGATGGTGTG






TATGATGGCCTGG






    754
0.000690607
0.54148268
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
409





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGC---------------------------






-------------------






CATGAATCTCTTCATCATGTACATGGCAGGCAATA






CTATCTCCATCTTCCCTACTATGATGGTGTGTATGA






TGGCCTGG






    749
0.000686027
0.542168708
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
410





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGC---------------------------






AAACAGATTCCCATGAATCTCTTCATCATGTACAT






GGCAGGCAATACTATCTCCATCTTCCCTACTATGA






TGGTGTGTATGATGGCCTGG






    721
0.000660382
0.542829089
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
411





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGGCATCG-CC






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    715
0.000654886
0.543483975
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
412





CACGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    707
0.000647559
0.544131534
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
413





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCGTCC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    700
0.000641147
0.544772681
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
414





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCCT






CATCATGTACATGGCAGGCAATACTATCTCCATCT






TCCCTACTATGATGGTGTGTATGATGGCCTGG






    694
0.000635652
0.545408333
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
415





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCT---GT------






CCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






    689
0.000631072
0.546039405
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
416





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTG--------------------------






CCCCTCAAACAGATTCCCATGAATCTCTTCATCAT






GTACATGGCAGGCAATACTATCTCCATCTTCCCTA






CTATGATGGTGTGTATGATGGCCTGG






    687
0.00062924
0.546668645
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
417





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTT--------------------------------------






--------------------------






GGTAGGCAATACTATCTCCATCTTCCCTACTATGAT






GGTGTGTATGATGGCCTGG






    685
0.000627408
0.547296053
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGCT
418





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    675
0.000618249
0.547914302
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
419





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGG---------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    665
0.00060909
0.548523392
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
420





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGT----






--------------------------






GTGTCCCCTCAAACAGATTCCCATGAATCTCTTCAT






CATGTACATGGCAGGCAATACTATCTCCATCTTCC






CTACTATGATGGTGTGTATGATGGCCTGG






    661
0.000605426
0.549128818
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
421





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGC----------------------






TGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    656
0.000600846
0.549729665
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
422





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACGTGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    651
0.000596267
0.550325932
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
423





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATGG----------






GTCCCCTCAAACAGATTCCCATGAATCTCTTCATC






ATGTACATGGCAGGCAATACTATCTCCATCTTCCC






TACTATGATGGTGTGTATGATGGCCTGG






    651
0.000596267
0.550922199
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
424





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACAT--------------






----------------CT--






TCATCATGTACATGGCAGGCAATACTATCTCCATC






TTCCCTACTATGATGGTGTGTATGATGGCCTGG






    644
0.000589855
0.551512054
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
425





CATGCGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    641
0.000587108
0.552099162
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTC
426





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    637
0.000583444
0.552682606
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
427





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCGACC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    632
0.000578864
0.55326147
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
428





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGGTGGTGTGTATGATGGCCTGG






    631
0.000577948
0.553839418
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
429





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGCGT






GTTTTGTTTTAGCGCTGCTGGGACATCG-CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    628
0.000575201
0.554414619
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
430





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGGACATCC--------------






---






CTCAAACAGATTCCCATGAATCTCTTCATCATGTA






CATGGCAGGCAATACTATCTCCATCTTCCCTACTAT






GATGGTGTGTATGATGGCCTGG






    626
0.000573369
0.554987988
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
431





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GCTTTGTTTTAGCGCTGCTGGGACATCG -CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    621
0.000568789
0.555556777
AGCTCAGTTAGAAGCAGGGAGTTGGGAATTCCGTT
432





CATGTGATTTAGCATCAGTGATATGGCAAATGTGG






GACTAAGGGTAGTGATCAGAGGGTTAAAATTGTGT






GTTTTGTTTTAGCGCTGCTGGG--------CC--






TTGGGTCCCCTCAAACAGATTCCCATGAATCTCTTC






ATCATGTACATGGCAGGCAATACTATCTCCATCTT






CCCTACTATGATGGTGTGTATGATGGCCTGG






    617
0.000565125
0.556121902
AGCTCAGTTAGAAGCAGGGAGTT----------------------
433





--------------------------------------------






------------------------------






GGGTCCCCTCAAACAGATTCCCATGAATCTCTTCA






TCATGTACATGGCAGGCAATACTATCTCCATCTTC






CCTACTATGATGGTGTGTATGATGGCCTGG
















TABLE 5







SGMS1


WT Sequence:


GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCTCGGCGACTCTGGTGGTATCACTGGATTTGCTGG


CTTCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGCGCATGACCACTACA--C-


TGTGGACGTGGTGG


TGGCATATTACATCACCACGAGACTCTTCTGGTGGTATCACACTATGGCCAATCAGCAAGTGAGTTTC


CCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT (SEQ ID NO: 434)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:





226590
0.198527189
0.198527189
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
435





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






101436
0.088873313
0.287400502
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
436


(WT)


CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--C--






TGTGGACGTGGTGGTGGCATATTACATCACCACGA






GACTCTTCTGGTGGTATCACACTATGGCCAATCAG






CAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGT






TGTTTCTGGCTT






 67864
0.059459152
0.346859654
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
437





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCA---------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






 56625
0.049612084
0.396471738
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
438





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTA------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






 20086
0.017598381
0.414070118
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
439





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCAT-------------------






GACGTGGTGGTGGCATATTACATCACCACGAGACT






CTTCTGGTGGTATCACACTATGGCCAATCAGCAAG






TGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTT






CTGGCTT






 15031
0.013169435
0.427239553
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
440





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA-----






TGTGGACGTGGTGGTGGCATATTACATCACCACGA






GACTCTTCTGGTGGTATCACACTATGGCCAATCAG






CAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGT






TGTTTCTGGCTT






 13287
0.011641426
0.438880979
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
441





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG------------------






GACGTGGTGGTGGCATATTACATCACCACGAGACT






CTTCTGGTGGTATCACACTATGGCCAATCAGCAAG






TGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTT






CTGGCTT






 10732
0.009402859
0.448283838
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
442





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG------------------






TGGACGTGGTGGTGGCATATTACATCACCACGAGA






CTCTTCTGGTGGTATCACACTATGGCCAATCAGCA






AGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTG






TTTCTGGCTT






 10690
0.009366061
0.457649899
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
443





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAC-------GT----






GGTGGTGGCATATTACATCACCACGAGACTCTTCT






GGTGGTATCACACTATGGCCAATCAGCAAGTGAGT






TTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGC






TT






 10577
0.009267055
0.466916954
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
444





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG-------GA-






CGTGGTGGTGGCATATTACATCACCACGAGACTCT






TCTGGTGGTATCACACTATGGCCAATCAGCAAGTG






AGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCT






GGCTT






  9132
0.008001016
0.47491797
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
445





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG-------AC--






GTGGTGGTGGCATATTACATCACCACGAGACTCTT






CTGGTGGTATCACACTATGGCCAATCAGCAAGTGA






GTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTG






GCTT






  7889
0.00691196
0.48182993
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
446





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG-----------A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  7547
0.006612316
0.488442246
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
447





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTA----------CG---






TGGTGGTGGCATATTACATCACCACGAGACTCTTC






TGGTGGTATCACACTATGGCCAATCAGCAAGTGAG






TTTCCCCGCTTTTGATTTTAGCTTC






TGTTGTTTCTGGCTT






  6500
0.005694985
0.494137232
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
448





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






-----------------------------------






GCATATTACATCACCACGAGACTCTTCTGGTGGTA






TCACACTATGGCCAATCAGCAAGTGAGTTTCCCCG






CTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  6114
0.005356791
0.499494022
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
449





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC---C--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  6031
0.00528407
0.504778093
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
450





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAT-------






GGACGTGGTGGTGGCATATTACATCACCACGAGAC






TCTTCTGGTGGTATCACACTATGGCCAATCAGCAA






GTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGT






TTCTGGCTT






  5783
0.005066785
0.509844877
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
451





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA------------------------






TATTACATCACCACGAGACTCTTCTGGTGGTATCA






CACTATGGCCAATCAGCAAGTGAGTTTCCCCGCTT






TTGATTTTAGCTTCTGTTGTTTCTGGCTT






  5581
0.004889802
0.514734679
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
452





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA-------------------------------






TCACCACGAGACTCTTCTGGTGGTATCACACTATG






GCCAATCAGCAAGTGAGTTTCCCCGCTTTTGATTTT






AGCTTCTGTTGTTTCTGGCTT






  5246
0.004596291
0.519330971
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
453





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAC----






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  4878
0.004273867
0.523604838
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
454





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGATTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   4313
0.003778842
0.52738368
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
455





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAA-------CG---






TGGTGGTGGCATATTACATCACCACGAGACTCTTC






TGGTGGTATCACACTATGGCCAATCAGCAAGTGAG






TTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGG






CTT






  4253
0.003726273
0.531109953
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
456





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAC---A---






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






  3729
0.003267169
0.534377122
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
457





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC----------------






GTGGTGGTGGCATATTACATCACCACGAGACTCTT






CTGGTGGTATCACACTATGGCCAATCAGCAAGTGA






GTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTG






GCTT






  3658
0.003204963
0.537582084
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
458





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--






CACTGTGGACGTGGTGGTGGCATATTACATCACCA






CGAGACTCTTCTGGTGGTATCACACTATGGCCAAT






CAGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTC






TGTTGTTTCTGGCTT






  3401
0.002979792
0.540561876
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
459





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC----------------------------------






--------






GAGACTCTTCTGGTGGTATCACACTATGGCCAATC






AGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCT






GTTGTTTCTGGCTT






  3320
0.002908823
0.543470699
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
460





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTT------------------------






---------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  2894
0.002535583
0.546006282
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
461





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGTCCACTA------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  2830
0.002479509
0.548485791
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
462





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG-------TG----G-






TGGTGGCATATTACATCACCACGAGACTCTTCTGG






TGGTATCACACTATGGCCAATCAGCAAGTGAGTTT






CCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  2375
0.00208086
0.550566651
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
463





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG-------G-------






TGGTGGCATATTACATCACCACGAGACTCTTCTGG






TGGTATCACACTATGGCCAATCAGCAAGTGAGTTT






CCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  2304
0.002018653
0.552585304
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
464





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACACCT---






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






  2219
0.00194418
0.554529485
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
465





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA----






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGATTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  2165
0.001896868
0.556426353
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
466





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAG--






------------------------






CGTGGTGGTGGCATATTACATCACCACGAGACTCT






TCTGGTGGTATCACACTATGGCCAATCAGCAAGTG






AGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCT






GGCTT






 1999
0.001751427
0.55817778
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
467





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGAC-----------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1942
0.001701486
0.559879266
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
468





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG------------------------






GTGGTGGCATATTACATCACCACGAGACTCTTCTG






GTGGTATCACACTATGGCCAATCAGCAAGTGAGTT






TCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCT






T






  1918
0.001680459
0.561559725
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
469





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG-------------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1780
0.00155955
0.563119275
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
470





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCA-----------------------------






TATTACATCACCACGAGACTCTTCTGGTGGTATCA






CACTATGGCCAATCAGCAAGTGAGTTTCCCCGCTT






TTGATTTTAGCTTCTGTTGTTTCTGGCTT






  1714
0.001501724
0.564620999
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
471





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAC-------






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






  1570
0.001375558
0.565996557
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
472





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACT--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1534
0.001344017
0.567340573
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
473





CGGCGACTCTGGTGGTATCAC-------------------------






----------------------------------------------






----------------------------------------------






--------






ACTATGGCCAATCAGCAAGTGAGTTTCCCCGCTTT






TGATTTTAGCTTCTGTTGTTTCTGGCTT






  1529
0.001339636
0.568680209
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
474





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACT---------






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGATTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






  1493
0.001308094
0.569988303
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
475





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGAC---------A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1481
0.001297581
0.571285884
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
476





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG---------------------------






GTGGCATATTACATCACCACGAGACTCTTCTGGTG






GTATCACACTATGGCCAATCAGCAAGTGAGTTTCC






CCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  1465
0.001283562
0.572569446
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
477





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--






AACTGTGGACGTGGTGGTGGCATATTACATCACCA






CGAGACTCTTCTGGTGGTATCACACTATGGCCAAT






CAGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTC






TGTTGTTTCTGGCTT






  1403
0.001229241
0.573798687
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
478





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAT------------






GGACGTGGTGGTGGCATATTACATCACCACGAGAC






TCTTCTGGTGGTATCACACTATGGCCAATCAGCAA






GTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGT






TTCTGGCTT






  1381
0.001209965
0.575008652
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
479





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCT------------






------------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1358
0.001189814
0.576198466
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
480





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCA----------






TGTGGACGTGGTGGTGGCATATTACATCACCACGA






GACTCTTCTGGTGGTATCACACTATGGCCAATCAG






CAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGT






TGTTTCTGGCTT






  1322
0.001158272
0.577356738
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
481





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATCACC-----------------------------------






-------






ACGAGACTCTTCTGGTGGTATCACACTATGGCCAA






TCAGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTT






CTGTTGTTTCTGGCTT






  1191
0.001043497
0.578400235
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
482





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAC------






TGTGGACGTGGTGGTGGCATATTACATCACCACGA






GACTCTTCTGGTGGTATCACACTATGGCCAATCAG






CAAGTGAGTTTCCCCGATTTTGATTTTAGCTTCTGT






TGTTTCTGGCTT






  1185
0.00103824
0.579438474
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
483





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATT----------------






----------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1160
0.001016336
0.58045481
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
484





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACT-----A---






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






  1105
0.000968148
0.581422958
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
485





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAAGA-------CG---






TGGTGGTGGCATATTACATCACCACGAGACTCTTC






TGGTGGTATCACACTATGGCCAATCAGCAAGTGAG






TTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGG






CTT






  1086
0.000951501
0.582374458
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
486





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAT---






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1084
0.000949748
0.583324207
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
487





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA---






GCTGTGGACGTGGTGGTGGCATATTACATCACCAC






GAGACTCTTCTGGTGGTATCACACTATGGCCAATC






AGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCT






GTTGTTTCTGGCTT






  1072
0.000939235
0.584263441
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
488





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC-----------






TGGACGTGGTGGTGGCATATTACATCACCACGAGA






CTCTTCTGGTGGTATCACACTATGGCCAATCAGCA






AGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTG






TTTCTGGCTT






  1065
0.000933101
0.585196543
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
489





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






G-----------------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1058
0.000926968
0.586123511
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
490





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACT-------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1042
0.00091295
0.587036461
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
491





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCA---------------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






  1036
0.000907693
0.587944154
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
492





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGT---------------------------------






------------






TGGACGTGGTGGTGGCATATTACATCACCACGAGA






CTCTTCTGGTGGTATCACACTATGGCCAATCAGCA






AGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTG






TTTCTGGCTT






  1036
0.000907693
0.588851847
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
493





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAT-------GG------






TGGTGGCATATTACATCACCACGAGACTCTTCTGG






TGGTATCACACTATGGCCAATCAGCAAGTGAGTTT






CCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  1028
0.000900684
0.589752531
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
494





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA----------------------






CATATTACATCACCACGAGACTCTTCTGGTGGTAT






CACACTATGGCCAATCAGCAAGTGAGTTTCCCCGC






TTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






  1003
0.00087878
0.590631311
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
495





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACC------------------






GTGGTGGTGGCATATTACATCACCACGAGACTCTT






CTGGTGGTATCACACTATGGCCAATCAGCAAGTGA






GTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTG






GCTT






   969
0.000848991
0.591480302
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
496





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGAC-------------






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






   945
0.000827963
0.592308265
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
497





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG---ACTA------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   936
0.000820078
0.593128343
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
498





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTA----------------------------






TTACATCACCACGAGACTCTTCTGGTGGTATCACA






CTATGGCCAATCAGCAAGTGAGTTTCCCCGCTTTT






GATTTTAGCTTCTGTTGTTTCTGGCTT






   929
0.000813945
0.593942288
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
499





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG----------------------






TGGTGGTGGCATATTACATCACCACGAGACTCTTC






TGGTGGTATCACACTATGGCCAATCAGCAAGTGAG






TTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGG






CTT






   927
0.000812193
0.59475448
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
500





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GC----------------------






ACGTGGTGGTGGCATATTACATCACCACGAGACTC






TTCTGGTGGTATCACACTATGGCCAATCAGCAAGT






GAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTT






CTGGCTT






   896
0.000785032
0.595539512
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
501





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






G----------------------






CGTGGTGGTGGCATATTACATCACCACGAGACTCT






TCTGGTGGTATCACACTATGGCCAATCAGCAAGTG






AGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCT






GGCTT






   878
0.000769261
0.596308773
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
502





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTA----A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   856
0.000749986
0.597058759
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
503





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAT-------G---------






GTGGCATATTACATCACCACGAGACTCTTCTGGTG






GTATCACACTATGGCCAATCAGCAAGTGAGTTTCC






CCGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






   837
0.000733339
0.597792098
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
504





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG---------------------






CATATTACATCACCACGAGACTCTTCTGGTGGTAT






CACACTATGGCCAATCAGCAAGTGAGTTTCCCCGC






TTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






   816
0.00071494
0.598507038
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
505





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACGCTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   815
0.000714064
0.599221101
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
506





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACGT------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   809
0.000708807
0.599929908
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
507





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC--------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   808
0.00070793
0.600637838
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
508





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTGGTG-------GT----------






GGCATATTACATCACCACGAGACTCTTCTGGTGGT






ATCACACTATGGCCAATCAGCAAGTGAGTTTCCCC






GCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






   790
0.00069216
0.601329998
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
509





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCGCCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   775
0.000679017
0.602009016
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
510





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCAT------------A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   747
0.000654485
0.602663501
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
511





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCA------------------------------------






TCACCACGAGACTCTTCTGGTGGTATCACACTATG






GCCAATCAGCAAGTGAGTTTCCCCGCTTTTGATTTT






AGCTTCTGTTGTTTCTGGCTT






   745
0.000652733
0.603316234
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
512





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTC------------------------






-----------






TGGACGTGGTGGTGGCATATTACATCACCACGAGA






CTCTTCTGGTGGTATCACACTATGGCCAATCAGCA






AGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTG






TTTCTGGCTT






   739
0.000647476
0.60396371
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
513





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






G--------------------






TGGACGTGGTGGTGGCATATTACATCACCACGAGA






CTCTTCTGGTGGTATCACACTATGGCCAATCAGCA






AGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTG






TTTCTG GCTT






   739
0.000647476
0.604611186
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
514





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAT---------






GGACGTGGTGGTGGCATATTACATCACCACGAGAC






TCTTCTGGTGGTATCACACTATGGCCAATCAGCAA






GTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGT






TTCTGGCTT






   731
0.000640467
0.605251653
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
515





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATG--------A--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   720
0.000630829
0.605882482
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
516





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCACGTCCA---------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   713
0.000624696
0.606507178
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
517





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCAT------------------------------






GGCATATTACATCACCACGAGACTCTTCTGGTGGT






ATCACACTATGGCCAATCAGCAAGTGAGTTTCCCC






GCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






   707
0.000619439
0.607126617
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
518





CAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGT






CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTA-------






TGTGGACGTGGTGGTGGCATATTACATCACCACGA






GACTCTTCTGGTGGTATCACACTATGGCCAATCAG






TGTTTCTGGCTT






   707
0.000619439
0.607746056
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
519





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC------A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   701
0.000614182
0.608360238
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
520





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACC----------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   687
0.000601916
0.608962155
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
521





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC----------






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGGCTT






   683
0.000598412
0.609560566
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
522





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACGA-------CG---






TGGTGGTGGCATATTACATCACCACGAGACTCTTC






TGGTGGTATCACACTATGGCCAATCAGCAAGTGAG






TTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTTCTGG






CTT






   676
0.000592278
0.610152845
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
523





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACAG-------G----------






TGGCATATTACATCACCACGAGACTCTTCTGGTGG






TATCACACTATGGCCAATCAGCAAGTGAGTTTCCC






CGCTTTTGATTTTAGCTTCTGTTGTTTCTGGCTT






   663
0.000580889
0.610733733
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
524





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGGGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   652
0.000571251
0.611304984
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
525





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCCGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   645
0.000565118
0.611870102
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
526





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGGCCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   641
0.000561613
0.612431715
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
527





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCC






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   637
0.000558109
0.612989823
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
528





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCAC------A---






GTGGACGTGGTGGTGGCATATTACATCACCACGAG






ACTCTTCTGGTGGTATCACACTATGGCCAATCAGC






AAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTT






GTTTCTGG CTT






   634
0.00055548
0.613545304
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
529





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






CCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   628
0.000550223
0.614095527
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
530





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCAT--------------






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   626
0.000548471
0.614643998
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
531





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACG---------






GACGTGGTGGTGGCATATTACATCACCACGAGACT






CTTCTGGTGGTATCACACTATGGCCAATCAGCAAG






TGAGTTTCCCCGCTTTTGATTTTAGCTTCTGTTGTTT






CTGGCTT






   616
0.000539709
0.615183707
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
532





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACC--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCA






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   616
0.000539709
0.615723416
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
533





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTACA--A-






CTGTGGACGTGGTGGTGGCATATTACATCACCACG






AGACTCTTCTGGTGGTATCACACTATGGCCAATCG






GCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCTG






TTGTTTCTGGCTT






   615
0.000538833
0.61626225
GACTATTGCAAATCTCTCCCCCTTTCAGATTCCCCT
534





CGGCGACTCTGGTGGTATCACTGGATTTGCTGGCT






TCTCAGCGTAGTTGGAATCTTCTGTATTCTCTTAGC






GCATGACCACTAC----






GCTGTGGACGTGGTGGTGGCATATTACATCACCAC






GAGACTCTTCTGGTGGTATCACACTATGGCCAATC






AGCAAGTGAGTTTCCCCGCTTTTGATTTTAGCTTCT






GTTGTTTCTGGCTT
















TABLE 6







IL1RAPL2


WT sequence:


TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAAATATGAATTTGACACCATGCTGAGTTACCTTATA


CCACACAA---------CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGGACAGGAGATCTCC


TTTCTTTTAGTGACTTCAGATTT--------------TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG


CCTGATTCATT----------------------------------------------CTCTGCAACAGTCAAGGACA (SEQ ID NO: 535)













Fraction

SEQ ID


Reads
Fraction
Cum_Sum
Seq
NO:





233692
0.275762621
0.275762621
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
536


(WT)


ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






32827
0.038736711
0.314499333
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
537





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CCATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






26161
0.030870659
0.345369991
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
538





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA--------------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT-------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






18043
0.021291208
0.366661199
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
539





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CTATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






15983
0.018860355
0.385521554
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
540





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA------






CAATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






CTCTGCAACAGTCAAGGACA






11590
0.013676501
0.399198054
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
541





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACAC-----------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






10519
0.012412693
0.411610747
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
542





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA----------






TCAGGCTCCTGATCGGACTTTTTAAAGTCATCCAT






GTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTC






AGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 9660
0.011399051
0.423009798
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
543





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CGATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 8642
0.010197784
0.433207582
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
544





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CA----------------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 8162
0.009631372
0.442838954
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
545





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA----------






CCAGGCTCCTGATCGGACTTTTTAAAGTCATCCAT






GTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTC






AGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 8041
0.009488589
0.452327542
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
546





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------C-






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






ATCTGCAACAGTCAAGGACA






 8011
0.009453188
0.46178073
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
547





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA-------------






TCAGGCTCCTGATCGGACTTTTTAAAGTCATCCAT






GTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTC






AGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 8002
0.009442568
0.471223297
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
548





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA------------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 7538
0.008895036
0.480118333
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
549





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-----------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






CTCTGCAACAGTCAAGGACA






 5582
0.006586905
0.486705238
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
550





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-----------------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 5070
0.005982732
0.492687969
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
551





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA---------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 4681
0.005523701
0.498211671
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
552





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-----------------






CTGATCGGACTTTTTAAAGTCATCCATGTCTGGAC






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






CTCTGCAACAGTCAAGGACA






 4127
0.004869967
0.503081638
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
553





ATATGAATTTGACACCATGCTGAGTTACCTTAT-----






-------------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 4064
0.004795625
0.507877263
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
554





ATATGAATTTGACACCATGCTGAGTTAC---------------






-----------------






CTGATCGGACTTTTTAAAGTCATCCATGTCTGGAC






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2841
0.003352454
0.511229717
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
555





ATATGAATTTGACACCATGCTGAGTTACCTT---------






-----------------------






ATCGGACTTTTTAAAGTCATCCATGTCTGGACAGG






AGATCTCCTTTCTTTTAGTGACTTCAGATTT-----------






---TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






CTCTGCAACAGTCAAGGACA






 2809
0.003314693
0.51454441
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
556





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA------------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2573
0.003036207
0.517580616
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
557





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------------






GGCTCCTGATCGGACTTTTTAAAGTCATCCATGTCT






GGACAGGAGATCTCCTTTCTTTTAGTGACTTCAGA






TTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2513
0.002965405
0.520546022
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
558





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






----------------------






TCCTGATCGGACTTTTTAAAGTCATCCATGTCTGGA






CAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT--






------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






CTCTGCAACAGTCAAGGACA






 2419
0.002854483
0.523400504
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
559





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






C---------------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2369
0.002795481
0.526195986
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
560





ATATGAATTTGACACCATGCTGAGTTACCTT---------






-----------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2241
0.002644438
0.528840424
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
561





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA---------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2224
0.002624378
0.531464802
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
562





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA------------------






CTGATCGGACTTTTTAAAGTCATCCATGTCTGGAC






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2223
0.002623198
0.534087999
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
563





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA----------






CCATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 2018
0.002381292
0.536469292
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
564





ATATGAATTTGACACCATGCTG---------------------------






-----






AGGCTCCTGATCGGACTTTTTAAAGTCATCCATGT






CTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCAG






ATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1964
0.002317571
0.538786863
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
565





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-------------






CGATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1908
0.002251489
0.541038352
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
566





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






---------------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1860
0.002194848
0.5432332
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
567





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CA--------------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1699
0.002004864
0.545238064
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
568





ATATGAATTTGACACCATGCTGAG-----------------------






----------------






ATCGGACTTTTTAAAGTCATCCATGTCTGGACAGG






AGATCTCCTTTCTTTTAGTGACTTCAGATTT-----------






---TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1610
0.001899842
0.547137906
TCCTCATCCCCAAGACTG-------
569





CTGACCAAAGCCTATATTTTGGGACGTGGATGA-






TGAGAGTAAACTACACCTTCTGCCCATTTTAGCTTC






CTGCTCTCACCTCCAACA------------






AGAATAAGAGATGTGCCAACTTTCTCTGGGTGCAT






ACTTGCTGCCATGCACTGTTCTGGGTACCAGGATA






GAGCATTAAAAGGGCAGATGCAGTCCCTGCTTCCA






TGAAGGGTCATAAATTCCTTCCTGGGCCTTATAGT






TAGCCTTCATCACTCTGCAACAGTCAAGGACA






 1536
0.00181252
0.548950426
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
570





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA---------------------------






CTTTTTAAAGTCATCCATGTCTGGACAGGAGATCT






CCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT------------------------------






---------------






-CTCTGCAACAGTCAAGGACA






 1413
0.001667377
0.550617803
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
571





ATATGAATTTGACACCATGCTGA-------------------------






--------






GCTCCTGATCGGACTTTTTAAAGTCATCCATGTCTG






GACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATT






T--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1402
0.001654396
0.552272199
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
572





ATATGAATTTGACACCATGCTGAGTTACCTTA-------






----------------------






TGATCGGACTTTTTAAAGTCATCCATGTCTGGACA------






--------GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1338
0.001578875
0.553851074
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
573





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACAC-----------------------






ATCGGACTTTTTAAAGTCATCCATGTCTGGACAGG






AGATCTCCTTTCTTTTAGTGACTTCAGATTT-----------






---TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------------






--------






CTCTGCAACAGTCAAGGACA






 1302
0.001536394
0.555387467
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
574





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA------------------------------






CTTTTTAAAGTCATCCATGTCTGGACAGGAGATCT






CCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






 1255
0.001480933
0.5568684
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
575





ATATGAATTTGACACCATGCTGA-------------------------






----------------






TCGGACTTTTTAAAGTCATCCATGTCTGGACAGGA






GATCTCCTTTCTTTTAGTGACTTCAGATTT-------------






-TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG-






------CCTGATTCATT--------------------------------






------------






--CTCTGCAACAGTCAAGGACA






 1243
0.001466772
0.558335172
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
576





ATATGAATTTGACACCATGCTGAGTTAC---------------






--------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1200
0.001416031
0.559751203
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
577





ATATGAATTTGACACCATGCTGAG----------------------






--------------






TGATCGGACTTTTTAAAGTCATCCATGTCTGGACA






GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT------






--------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






 1197
0.001412491
0.561163694
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
578





ATATGAATTTGACACCATGCTGAGTTACCTTA-------






-------------------






TCCTGATCGGACTTTTTAAAGTCATCCATGTCTGGA






CAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1177
0.001388891
0.562552585
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
579





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA---------






CTCAGGCTCCTGATCGGACTTTTTAAAGTCATCCAT






GTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTC






AGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1172
0.00138299
0.563935575
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
580





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA----------






CGATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1138
0.00134287
0.565278445
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
581





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CA-----------------------






CTGATCGGACTTTTTAAAGTCATCCATGTCTGGAC






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






 1130
0.001333429
0.566611874
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
582





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CCATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






ATCTGCAACAGTCAAGGACA






 1125
0.001327529
0.567939403
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
583





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-------------






CAATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1075
0.001268528
0.569207931
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
584





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACA------------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1074
0.001267348
0.570475279
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
585





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------------






CCTCCTGATCGGACTTTTTAAAGTCATCCATGTCTG






GACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATT






T--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1040
0.001227227
0.571702506
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
586





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-------------------------






TGATCGGACTTTTTAAAGTCATCCATGTCTGGACA






GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT------






--------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1023
0.001207167
0.572909673
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
587





ATATGAATTTGACACCATGCTGAGTT-------------------






------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1005
0.001185926
0.574095599
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
588





ATATGAATTTGACACCATGCTGAG-----------------------






-----------






TCCTGATCGGACTTTTTAAAGTCATCCATGTCTGGA






CAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






 1003
0.001183566
0.575279165
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
589





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-----------------






CCTGATCGGACTTTTTAAAGTCATCCATGTCTGGA






CAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT--






------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  972
0.001146985
0.57642615
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
590





ATATGAATTTGACACCATGCTGAGT---------------------






---------------






TGATCGGACTTTTTAAAGTCATCCATGTCTGGACA






GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT------






--------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  969
0.001143445
0.577569595
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
591





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






------------------






AGGCTCCTGATCGGACTTTTTAAAGTCATCCATGT






CTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCAG






ATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  937
0.001105684
0.578675279
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
592





ATATGAATTTGACACCATGCTGAGTTACCT-----------






--------------------






TGATCGGACTTTTTAAAGTCATCCATGTCTGGACA






GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT------






--------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  909
0.001072644
0.579747923
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
593





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






---------------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  884
0.001043143
0.580791066
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
594





ATATGAATTTGACACCATGCTGAG-----------------------






--------------------------






TTAAAGTCATCCATGTCTGGACAGGAGATCTCCTT






TCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  883
0.001041963
0.581833029
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
595





ATATGAATTTGACACCATGCTGAGTT-------------------






--------------------------






ACTTTTTAAAGTCATCCATGTCTGGACAGGAGATC






TCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  878
0.001036063
0.582869091
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
596





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------------------






CATCGGACTTTTTAAAGTCATCCATGTCTGGACAG






GAGATCTCCTTTCTTTTAGTGACTTCAGATTT---------






-----TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  857
0.001011282
0.583880374
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
597





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA---------------------






CTGATCGGACTTTTTAAAGTCATCCATGTCTGGAC






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  851
0.001004202
0.584884576
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
598





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------------






CGCTCCTGATCGGACTTTTTAAAGTCATCCATGTCT






GGACAGGAGATCTCCTTTCTTTTAGTGACTTCAGA






TTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  846
0.000998302
0.585882878
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
599





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA------






CAAATCAGGCTCCTGATCGGACTTTTTAAAGTCAT






CCATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGA






CTTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  840
0.000991222
0.586874099
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
600





ATATGAATTTGACACCATGCTGAGTT-------------------






--------------------






CGGACTTTTTAAAGTCATCCATGTCTGGACAGGAG






ATCTCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






-CTCTGCAACAGTCAAGGACA






  834
0.000984142
0.587858241
TCCTCATCCCCAAGACTGCTATTGACTGAGGGAAA
601





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  833
0.000982962
0.588841203
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
602





ATATGAATTTGACACCATGCTGAGTTACC-------------






-------------------------------






TTAAAGTCATCCATGTCTGGACAGGAGATCTCCTT






TCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  830
0.000979422
0.589820624
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
603





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA--------------






CAGGCTCCTGATCGGACTTTTTAAAGTCATCCATG






TCTGGACAGGAGATCTCCTTTCTTTTAGTGACTTCA






GATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






ATCTGCAACAGTCAAGGACA






  816
0.000962901
0.590783525
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
604





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA-----------------------------------------






---------------------------------------------






CAGG-------CCTGATTCATT--------------------------






------------------






CTCTGCAACAGTCAAGGACA






  793
0.000935761
0.591719286
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
605





ATATGAATTTGACACCATGCTGAGTTA-----------------






-------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  786
0.0009275
0.592646786
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
606





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA-------------------------






TCGGACTTTTTAAAGTCATCCATGTCTGGACAGGA






GATCTCCTTTCTTTTAGTGACTTCAGATTT-------------






-TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG-






------CCTGATTCATT--------------------------------






------------






--CTCTGCAACAGTCAAGGACA






  783
0.00092396
0.593570747
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
607





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACAC---------






ACATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  768
0.00090626
0.594477007
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
608





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------------------






CGATCGGACTTTTTAAAGTCATCCATGTCTGGACA






GGAGATCTCCTTTCTTTTAGTGACTTCAGATTT------






--------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  758
0.00089446
0.595371466
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
609





ATATGAATTTGACACCATGCTGAGTTACCTTAT-----






-------------------------






ATCGGACTTTTTAAAGTCATCCATGTCTGGACAGG






AGATCTCCTTTCTTTTAGTGACTTCAGATTT-----------






---TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  751
0.000886199
0.596257666
TCCTCATCCCCAAGACTGCTATTGACTGAGGCAAA
610





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  749
0.000883839
0.597141505
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
611





ATATGAATTTGACACCATGCTGAG-----------------------






--------------------






GACTTTTTAAAGTCATCCATGTCTGGACAGGAGAT






CTCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  743
0.000876759
0.598018264
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
612





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






C--------------------------------






ACTTTTTAAAGTCATCCATGTCTGGACAGGAGATC






TCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






-CTCTGCAACAGTCAAGGACA






  713
0.000841358
0.598859623
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
613





ATATGAATTTGACACCAT-------------------------------






-------






GCTCCTGATCGGACTTTTTAAAGTCATCCATGTCTG






GACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATT






T--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  711
0.000838998
0.599698621
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
614





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-CA----------






CCATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  700
0.000826018
0.60052464
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
615





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA--------------------






CCTGATCGGACTTTTTAAAGTCATCCATGTCTGGA






CAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT--






-------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  688
0.000811858
0.601336497
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
616





ATATGAATTTGACACCATGCTGAGTTACCTTA-------






------------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  686
0.000809498
0.602145995
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
617





ATATGAATTTGACACCATGCTGAG------------------------






---------------------






ACTTTTTAAAGTCATCCATGTCTGGACAGGAGATC






TCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  682
0.000804778
0.602950773
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
618





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACA----------------






CTCCTGATCGGACTTTTTAAAGTCATCCATGTCTGG






ACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT






--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  670
0.000790617
0.60374139
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
619





ATATGAATTTGACACCATGCTGAGTTAC---------------






--------






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  663
0.000782357
0.604523747
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
620





ATATGAATTTGACACCATGCTGAGTTACCTTATAC-






-----------------------------






CGGACTTTTTAAAGTCATCCATGTCTGGACAGGAG






ATCTCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  655
0.000772917
0.605296664
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
621





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACA--------






ACATCAGGCTCCTGATCGGACCTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  650
0.000767017
0.606063681
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
622





ATATGAATTTGACGCCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  647
0.000763477
0.606827158
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
623





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCGCAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  641
0.000756397
0.607583555
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
624





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCCTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  633
0.000746956
0.608330511
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
625





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTCGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  631
0.000744596
0.609075107
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
626





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------------






GCTCCTGATCGGACTTTTTAAAGTCATCCATGTCTG






GACAGGAGATCTCCTTTCTTTTAGTGACTTCAGATT






T--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  628
0.000741056
0.609816164
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
627





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA------






CTTATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  611
0.000720996
0.61053716
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
628





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACA--------------------------






CGGACTTTTTAAAGTCATCCATGTCTGGACAGGAG






ATCTCCTTTCTTTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  610
0.000719816
0.611256975
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
629





ATATGAATTTGACACCATGCTGAGTT-------------------






------------------






ATCGGACTTTTTAAAGTCATCCATGTCTGGACAGG






AGATCTCCTTTCTTTTAGTGACTTCAGATTT-----------






---TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  610
0.000719816
0.611976791
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
630





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CTATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






ATCTGCAACAGTCAAGGACA






  610
0.000719816
0.612696607
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
631





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA--------






CATCAGGCTCCTGATCGGACTTTTTAAAGTCATCC






ATGTCTGGACAGGAGATCTCCCTTCTTTTAGTGACT






TCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






CTCTGCAACAGTCAAGGACA






  601
0.000709196
0.613405803
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
632





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACAC------------------------------------






AAGTCATCCATGTCTGGACAGGAGATCTCCTTTCT






TTTAGTGACTTCAGATTT--------------






TTCTAAATAGC-GGATCCTGCTGTTGTAGCACAGG--






-----CCTGATTCATT--------------------------------






------------






-CTCTGCAACAGTCAAGGACA






  597
0.000704475
0.614110278
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
633





ATATGAATTTGACACCATGCTG---------------------------






--






ATCAGGCTCCTGATCGGACTTTTTAAAGTCATCCA






TGTCTGGACAGGAGATCTCCTTTCTTTTAGTGACTT






CAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA






  596
0.000703295
0.614813574
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
634





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACACAA-------






CAATCAGGCTCCTGATCGGACTTTTTAAAGTCATC






CATGTCTGGACAGGAGATCTCCTTTCTTTTAGTGAC






TTCAGATTT--------------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






ATCTGCAACAGTCAAGGACA






  595
0.000702115
0.615515689
TCCTCATCCCCAAGACTGCTATTGACTGAGGTAAA
635





ATATGAATTTGACACCATGCTGAGTTACCTTATAC






CACAC------------------------------------------






-------------






AGGAGATCTCCTTTCTTTTAGTGACTTCAGATTT----






----------TTCTAAATAGC-






GGATCCTGCTGTTGTAGCACAGG-------






CCTGATTCATT--------------------------------






------------






CTCTGCAACAGTCAAGGACA









REFERENCES



  • 1. D. M. Lyerly, H. C. Krivan, T. D. Wilkins, Clinical Microbiology Reviews 1, 1 (January, 1988).

  • 2. M. Rupnik, M. H. Wilcox, D. N. Gerding, Nat Rev Microbiol 7, 526 (July, 2009).

  • 3. F. C. Lessa et al., The New England Journal of Medicine 372, 825 (Feb. 26, 2015).

  • 4. T. Jank, K. Aktories, Trends Microbiol 16, 222 (May, 2008).

  • 5. D. E. Voth, J. D. Ballard, Clinical Microbiology Reviews 18, 247 (April, 2005).

  • 6. X. Sun, T. Savidge, H. Feng, Toxins (Basel) 2, 1848 (July, 2010).

  • 7. I. Just et al., Nature 375, 500 (Jun. 8, 1995).

  • 8. D. Drudy, S. Fanning, L. Kyne, Int J Infect Dis 11, 5 (January, 2007).

  • 9. D. Lyras et al., Nature 458, 1176 (Apr. 30, 2009).

  • 10. S. A. Kuehne et al., Nature 467, 711 (Oct. 7, 2010).

  • 11. G. P. Carter et al., MBio 6, e00551 (2015).

  • 12. P. Yuan et al., Cell Res 25, 157 (February, 2015).

  • 13. N. Terada et al., Histochem Cell Biol 126, 483 (October, 2006).

  • 14. M. E. LaFrance et al., Proceedings of the National Academy of Sciences of the United States of America 112, 7073 (Jun. 2, 2015).

  • 15. O. Shalem et al., Science 343, 84 (Jan. 3, 2014).

  • 16. J. A. Doudna, E. Charpentier, Science 346, 1258096 (Nov. 28, 2014).

  • 17. A. Greco et al., Nature Structural & Molecular Biology 13, 460 (May, 2006).

  • 18. L. A. Barroso, J. S. Moncrief, D. M. Lyerly, T. D. Wilkins, Microbial Pathogenesis 16, 297 (April, 1994).

  • 19. S. Genisyuerek et al., Molecular Microbiology 79, 1643 (March, 2011).

  • 20. A. Olling et al., PLoS ONE 6, e17623 (2011).

  • 21. B. Schorch et al., Proceedings of the National Academy of Sciences of the United States of America 111, 6431 (Apr. 29, 2014).

  • 22. A. B. Ryder et al., Journal of Clinical Microbiology 48, 4129 (November, 2010).

  • 23. M. Flores-Diaz et al., The Journal of Biological Chemistry 272, 23784 (Sep. 19, 1997).

  • 24. B. T. MacDonald, X. He, Cold Spring Harb Perspect Biol 4, (December, 2012).

  • 25. A. Gregorieff, H. Clevers, Genes Dev 19, 877 (Apr. 15, 2005).

  • 26. W. B. Stallcup, F. J. Huang, Cell Adh Migr 2, 192 (July-September, 2008).

  • 27. P. Orth et al., The Journal of Biological Chemistry 289, 18008 (Jun. 27, 2014).

  • 28. N. Sagara, G. Toda, M. Hirai, M. Terada, M. Katoh, Biochemical and Biophysical Research Communications 252, 117 (Nov. 9, 1998).

  • 29. K. Ueno et al., Neoplasia 10, 697 (July, 2008).

  • 30. T. Sato et al., Nature 459, 262 (May 14, 2009).

  • 31. D. J. Flanagan et al., Stem Cell Reports 4, 759 (May 12, 2015).

  • 32. H. Yu, X. Ye, N. Guo, J. Nathans, Development 139, 4383 (Dec. 1, 2012).

  • 33. M. Richard, T. Boulin, V. J. Robert, J. E. Richmond, J. L. Bessereau, Proceedings of the National Academy of Sciences of the United States of America 110, E1055 (Mar. 12, 2013).

  • 34. T. Satoh, A. Ohba, Z. Liu, T. Inagaki, A. K. Satoh, Elife 4, (2015).

  • 35. J. C. Hsieh, A. Rattner, P. M. Smallwood, J. Nathans, Proceedings of the National Academy of Sciences of the United States of America 96, 3546 (Mar. 30, 1999).

  • 36. M. Dong et al., The Journal of Cell Biology 162, 1293 (Sep. 29, 2003).

  • 37. G. Yang et al., BMC Microbiol 8, 192 (2008).

  • 38. E. Tillet, F. Ruggiero, A. Nishiyama, W. B. Stallcup, The Journal of Biological Chemistry 272, 10769 (Apr. 18, 1997).

  • 39. B. T. MacDonald, C. Yokota, K. Tamai, X. Zeng, X. He, The Journal of Biological Chemistry 283, 16115 (Jun. 6, 2008).

  • 40. H. Miyoshi, T. S. Stappenbeck, Nature Protocols 8, 2471 (December, 2013).

  • 41. N. Wang et al., PLoS ONE 9, e93608 (2014).

  • 42. T. Grabinger et al., Cell Death Dis 5, e1228 (2014)



OTHER EMBODIMENTS

All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.


From the above description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications of the disclosure to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.


EQUIVALENTS

While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. An isolated polypeptide comprising an amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, wherein the polypeptide does not have the amino acid sequence of SEQ ID NO: 27.
  • 2. An isolated polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 18.
  • 3. An isolated polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 19.
  • 4. An isolated polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 20.
  • 5. The isolated polypeptide of claim 1, wherein the polypeptide consists of the amino acid sequence of SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20.
  • 6. The isolated polypeptide of any of claims 1-5, wherein the polypeptide is cross-linked, cyclized, conjugated, acylated, carboxylated, lipidated, acetylated, thioglycolic acid amidated, alkylated, methylated, polyglycylated, glycosylated, polysialylated, phosphorylated, adenylylated, PEGylated, or combinations thereof.
  • 7. The isolated polypeptide of any of claims 1-6, comprising a modification at the C-terminus or at the N-terminus.
  • 8. The isolated polypeptide of claim 1, wherein the polypeptide further comprises a fusion domain.
  • 9. The isolated polypeptide of claim 8, wherein the fusion domain is selected from the group consisting of polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin.
  • 10. The isolated polypeptide of claim 8, wherein the polypeptide further comprises an Fc portion of human IgG1.
  • 11. A fusion protein comprising: a polypeptide comprising an amino acid sequence that has at least 95%, at least 96, at least 97, at least 98, at least 99, or at least 99.5% identity to SEQ ID NO: 18, SEQ ID NO: 19, or SEQ ID NO: 20, which polypeptide is fused to an Fc portion of an immunoglobulin.
  • 12. The fusion protein of claim 11, wherein the Fc portion is an Fc portion of a human IgG1.
  • 13. The fusion protein of claim 12, wherein the fusion protein consists of the amino acid sequence of SEQ ID NO:21, SEQ ID NO: 22, or SEQ ID NO: 23.
  • 14. A chimeric molecule comprising a first portion and a second portion, wherein the first portion is an isolated polypeptide of any of claims 1-13; and wherein in the second portion is not the isolated polypeptide of any of claims 1-13.
  • 15. The chimeric molecule of claim 14, wherein the isolated polypeptide binds Frizzled (FZD).
  • 16. The chimeric molecule of claim 15, wherein the isolated polypeptide blocks Wnt signaling.
  • 17. The chimeric molecule of claim 14, wherein the isolated polypeptide is a dimer, trimer, tetramer, or pentamer.
  • 18. The chimeric molecule of any of claims claim 14-17, wherein the isolated polypeptide is attached to a polymer.
  • 19. The chimeric molecule of claim 18, wherein the polymer prolongs the serum half-life of the isolated polypeptide.
  • 20. The chimeric molecule of claim 18, wherein the polymer prolongs the shelf-life of the isolated polypeptide.
  • 21. The chimeric molecule of any of any of claims 14-20, wherein the isolated polypeptide has 1-100 conservative amino acid substitutions.
  • 22. The chimeric molecule of any of claims 14-20, wherein the second portion is an anti-bacterial agent.
  • 23. The chimeric molecule of claim 22, wherein the anti-bacterial agent is an antibiotic.
  • 24. The chimeric molecule of any of claims 14-21, wherein the second portion is an antibody that binds Frizzled co-receptors.
  • 25. The chimeric molecule of any of claim 24, wherein the Frizzled co-receptor is lipoprotein receptor-related protein (LRP)-5/6, receptor tyrosine kinase (RTK), or tyrosine-protein kinase transmembrane receptor (ROR2).
  • 26. The chimeric molecule of any of claims 14-21, wherein the second portion comprises an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.
  • 27. The chimeric molecule of any of claims 14-21, wherein the second portion comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.
  • 28. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 18.
  • 29. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 19.
  • 30. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 20.
  • 31. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 21.
  • 32. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 22.
  • 33. An isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5%, or 100% identity of SEQ ID NO: 23.
  • 34. A pharmaceutical composition comprising the isolated polypeptide of any of claims 1-13, or the chimeric molecule of any of claims 14-27.
  • 35. The pharmaceutical composition of claim 34, further comprising an additional isolated polypeptide comprising an amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.
  • 36. The pharmaceutical composition of claim 34, wherein the additional isolated polypeptide comprises an amino acid sequence that has at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identity to SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.
  • 37. The pharmaceutical composition of claim 34, wherein the additional isolated polypeptide consists of the amino acid sequence of SEQ ID NO: 24, SEQ ID NO: 25, or SEQ ID NO: 26.
  • 38. The additional isolated polypeptide of any of claims 35-37, wherein the polypeptide is acetylated, carboxylated, glycosylated, phosphorylated, lipidated, acylated, PEGylated, thioglycolic acid amidated, or combinations thereof.
  • 39. The additional isolated polypeptide of claim 35, wherein the polypeptide further comprises a fusion domain.
  • 40. The additional isolated polypeptide of claim 39, wherein the fusion domain is selected from the group consisting of polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin.
  • 41. The additional isolated polypeptide of claim 39, wherein the polypeptide comprises an Fc portion of human IgG1.
  • 42. The additional isolated polypeptide of claim 41, wherein the fusion domain is an Fc portion of human IgG1.
  • 43. A method of treating Clostridium difficile infection (CDI), the method comprising administering to a subject in need thereof, a therapeutically effective amount of the isolated polypeptide of any of claim 1-13, the chimeric molecule of any of claims 14-27, or the pharmaceutical composition of any of claims 34-42.
  • 44. The method of claim 43, wherein the pharmaceutical composition further comprises an agent that induces Wnt signaling downstream of Frizzled (FZD) in a cell.
  • 45. The method of claim 44, wherein the agent is a GSK-3 inhibitor.
  • 46. The method of claim 45, wherein the GSK-3 inhibitor is Lithium (LiCl), CHIR99021, SB 216763, BIO, TCS 2002, TC-G 24, TWS 119, SB 415286, A 1070722, AR-A 014418, L803-mts, or combination thereof.
  • 47. The method of any of claims claim 44-46, wherein the pharmaceutical composition further comprises an agent that inhibits the cysteine protease activity of TcdB in a cell.
  • 48. The method of claim 47, wherein the agent is ebselen.
  • 49. The method of claim 47, wherein the pharmaceutical composition further comprises Frizzled antibodies.
  • 50. The method of any of claims 44-49, wherein the cell is a colonic epithelial cell.
  • 51. A method of treating cancer, the method comprising administering to a subject in need thereof, a therapeutically effective amount of the isolated polypeptide of any of claim 1-13, the chimeric molecules of any of claims 14-27, or a pharmaceutical composition of any of claims 34-42.
  • 52. The method of claim 51, wherein the cancer is selected from a group consisting of colon cancer, lung cancer, liver cancer, and breast cancer.
  • 53. The method of claim 51, wherein the pharmaceutical composition further comprises an agent that blocks Wnt signaling.
  • 54. The method of claim 53, wherein the agent is a Dkk family protein, a Secreted Frizzled Related Protein (sFRP), Draxin, IGFBP-4, SOST/Sclerostin, USAG1, or WIF-1.
  • 55. The method of claim 54, wherein the agent is an Frizzled antibody.
  • 56. The method of claim 51, wherein the cancer is metastatic cancer.
RELATED APPLICATIONS

This application claims the benefit of the filing date under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/311,381, filed Mar. 21, 2016, and entitled Compositions and Methods for Inhibiting WNT Signaling, the entire contents of which are incorporated herein by reference.

GOVERNMENT SUPPORT

This disclosure was made with government support under grant 1R01NS080833, awarded by the National Institutes of Health. The government has certain rights in the disclosure.

PCT Information
Filing Document Filing Date Country Kind
PCT/US17/23381 3/21/2017 WO 00
Provisional Applications (1)
Number Date Country
62311381 Mar 2016 US