This application relates generally to the field of cancer and, in particular, to compositions and methods for monitoring and detecting cancerous conditions.
Cancer is a collective term for various forms of malignant cell growth and is one of the leading causes of human deaths worldwide. Healthy cells control their own growth and will destroy themselves if they become unhealthy, while cancer cells divide and grow uncontrollably and invade nearby parts of the body. Cell division is a complex process that is normally tightly regulated. Cancer happens when problems in the genes in a cell prevent these controls from working. These problems with genes may be from damage to the gene or may be inherited. Damage to genes can come from many sources inside or outside of the cell. Faults in two types of genes are especially important: oncogenes, which drive the growth of cancer cells, and tumor suppressor genes, which prevent cancer from developing.
Cancer can be detected in a number of ways, including the presence of certain signs and symptoms, screening tests, or medical imaging. Once a possible cancer is detected it is diagnosed by microscopic examination of a tissue sample. Cancer is usually treated with chemotherapy, radiation therapy and surgery. The chances of surviving the disease vary greatly by the type and location of the cancer and the extent of disease at the start of treatment. Early detection of cancer greatly increases the chances for successful treatment.
One aspect of the present applicaiton relates to a method for monitoring or detecting a prostate condition in a subject. The method comprises determining expression levels of Engrailed-2 (EN2) gene, paired box homeotic 2 (PAX2) gene and β-defensin-1 (DEFB1) gene in a biological sample from the subject, and comparing the expression levels of EN2, PAX2 and DEFB1 genes in the sample to reference expression levels of EN2, PAX2 and DEFB1 genes, wherein elevated expression levels of both EN2 and PAX2 genes, coupled with a decresed expression level of DEFB1 gene, are indicative of a cancerous or pre-cancerousprostate condition.
Another aspect of the present applicaiton relates to a method for monitoring or detecting cancerous, pre-cancerous, or non-cancerous prostate conditions in a subject. The method comprises determining a PAX2 gene expression level in cells from the prostate of the subject, determining an EN2 gene expression level in said cells, and comparing the PAX2 and EN2 gene expression levels to reference levels of PAX2 and EN2 gene expression; wherein increase of at least 100% over the reference levels in both PAX2 and EN2 gene expression in said cells are indicative of prostate cancer, prostate intraepithelial neoplasia (PIN) or a risk for developing prostate cancer.
Another aspect of the present applicaiton relates to a method for monitoring or detecting cancerous, pre-cancerous, or non-cancerous prostate conditions in a subject. The method comprises determining a DEFB1 gene expression level in cells from the prostate of the subject, determining an EN2 gene expression level in said cells, and comparing said DEFB1 and EN2 gene expression levels to reference levels of DEFB1 and EN2 gene expression, wherein an increase of at least 100% over the reference level of EN2 gene expression and a decrease of at least 50% over the reference level of DEFB1 in said cells are indicative of prostate cancer, prostate intraepithelial neoplasia (PIN) or a risk for developing prostate cancer.
Another aspect of the present application relates to a kit for monitoring or detecting a prostate condition in a subject. The kit comprises (1) reagents for detecting an expression level of EN2 gene; and (2) reagents for detecting expression levels of PAX2 and/or DEFB1 genes.
The accompanying drawings illustrate one or more embodiments of the application and, together with the written description, serve to explain the principles of the application. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
The following detailed description is presented to enable any person skilled in the art to make and use the invention. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required to practice the invention. Descriptions of specific applications are provided only as representative examples. The present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest possible scope consistent with the principles and features disclosed herein.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed method and compositions belong. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a peptide” includes a plurality of such peptides, reference to “the peptide” is a reference to one or more peptides and equivalents thereof known to those skilled in the art, and so forth.
Disclosed herein are compositions and methods of detecting cancerous and pre-cancerous conditions in a subject. A key advantage of the present teaching is that the herein disclosed methods provide a more rapid and simplified process to identify from a tissue or bodily fluid of a subject having or at risk for such conditions.
One aspect of the present application relates to a method for monitoring or detecting a cancerous and pre-cancerous conditions in a subject. The method comprises determining expression levels of EN2, PAX2 and/or DEFB1 genes in a biological sample from the subject, and comparing the expression levels of EN2, PAX2 and/or DEFB1 genes in the sample to reference expression levels of EN2, PAX2 and/or DEFB1 genes, wherein elevated expression levels of both EN2 and PAX2 genes, coupled with a decresed expression level of DEFB1 gene, are indicative of a cancerous or pre-cancerous condition in the subject.
The cancerous or pre-cancerous conditions include conditions relating to aberrant expression of EN2, PAX2 and/or DEFB1 genes. Examples of such conditions include, but are not limited to, prostate cancer, prostate intraepithelial neoplasia (PIN), breast cancer and mammary intraepithelial neoplasia (MIN). In some other embodiments, the cancerous or pre-cancerous conditions relate to other cancers such as lung cancer (e.g., small cell lung cancer, non-small cell lung cancer, SCC, adenocarcinoma of the lung, bronchogenic carcinoma), bladder cancer, neuroblastoma, breast cancer, colorectal cancer, colon cancer, inflammatory myofibroblastic tumors, multiple myeloma, leukemia (e.g., acute lymphocytic leukemia (ALL), acute myelocytic leukemia (AML), chronic myelocytic leukemia (CML), chronic lymphocytic leukemia (CLL), lymphoma (e.g., anaplastic large cell lymphoma, Hodgkin lymphoma, non-Hodgkin lymphoma (NHL), pancreatic cancer (e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN)), prostate cancer, medulloblastoma, chondrosarcoma, osteosarcoma, ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma), head and neck squamous cell carcinoma (HNSCC), brain cancer (e.g., meningioma; glioma, e.g., astrocytoma, oligodendroglioma; medulloblastoma), kidney cancer, liver cancer, gastric cancer (e.g., stomach adenocarcinoma), gastrointestinal stromal tumor (GIST), skin cancer (e.g., squamous cell carcinoma (SCC), keratoacanthoma (KA), melanoma, basal cell carcinoma) and neuroendocrine cancer.
In certain embodiments, the levels of EN2, PAX2 and/or DEFB1 gene expression are determined relative to the expression level of an internal control gene, such as the β-actin gene or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. The gene expression level is then compared to a reference expression level. The term “reference expression level” refers to a normal level of expression, which can be the average expression level of a gene in a population free-from the cancerous or pre-cancerous conditions, or the expression level of a gene in a normal tissue (i.e., a tissue that is free from cancerous and pre-cancerous conditions) from the same subject. The term “elevated expression,” or “increase expression” as used herein, refers to an increase of 50% or more, 100% or more, 150% or more, 200% of more, or 400% or more in expression. The term “decreased expression,” as used herein, refers to a decrease of 30% or more, 50% or more, 70% or more, or 90% of more in expression.
The biological sample can be a cell sample, a tissue sample or a sample of biological fluid such as blood, urine, plasma, serum, tears, lymph, bile, cerebrospinal fluid, interstitial fluid, aqueous or vitreous humor, colostrum, sputum, amniotic fluid, saliva, anal and vaginal secretions, perspiration, semen, transudate, exudate, and synovial fluid. Cells may be obtained from any tissue. Exemplary tissues for use in the methods of the present application include breast, prostate, lung, bronchus, colon, rectum, urinary bladder, kidney, renal pelvis, pancreas, oral cavity or pharynx (head & neck), ovary, thyroid, stomach, brain, esophagus, liver, intrahepatic bile duct, cervix, larynx, soft tissue such as heart, testis, gastro-intestinal stroma, pleura, small intestine, anus, anal canal and anorectum, vulva, gallbladder, bones, joints, hypopharynx, eye or orbit, nose, nasal cavity, middle ear, nasopharynx, ureter, peritoneum, omentum, or mesentery. In one embodiment, cells are obtained from the prostate tissue. In another embodiment, cells are obtained from the breast tissue.
In some embodiments, the biological sample contains cells from the prostate of the subject, and an increase of 100% or more in the expression levels of both EN2 and PAX2 genes in cells from the prostate, coupled with a decrease of 50% or more in the expression level of DEFB1 gene in the same cells, is indicative of a cancerous or pre-cancerous condition in the prostate.
In other embodiments, the biological sample contains cells from the prostate of the subject. The method further comprises determining a PAX2-to-DEFB1 expression ratio in the biological sample, wherein (1) an elevated level of EN2 gene expression and a PAX2-to-DEFB1 expression ratio of 100:1 or higher are indicative of the presence of prostate cancer in the subject, (2) an elevated level of EN2 gene expression and a PAX 2-to-DEFB1 expression ratio of 40:1 or higher, but less than 100:1 are indicative of the presence of prostate intraepithelial neoplasia (PIN) in the subject, and (3) the absence or a low level of EN2 gene expression and a PAX2-to-DEFB1 expression ratio of less than 40:1 are indicative of normal prostate in the subject.
In other embodiments, the method comprises determining expression levels of the EN2 and PAX2 genes in prostate cells from the subject, and comparing the expression levels of EN2 and PAX2 genes in the cells to reference expression levels of EN2 and PAX2 genes, wherein elevated expression levels of both EN2 and PAX2 genes, are indicative of a cancerous or pre-cancerousprostate condition in the subject.
In other embodiments, the method comprises determining expression levels of the EN2 and DEFB1 genes in prostate cells from the subject, and comparing the expression levels of EN2 and DEFB1 genes in the cells to reference expression levels of EN2 and DEFB1 genes, wherein an elevated expression level of EN2 genes and a decreased level of DEFB1 gene are indicative of a cancerous or pre-cancerousprostate condition in the subject.
Gene expression levels and gene expression ratios may be determined at the mRNA level (e.g., by RT-PCR, QT-PCR, oligonucleotide array, etc) or at the protein level (e.g., by Western blot, antibody microarray, ELISA, etc.). Preferred methodologies for determining mRNA expression levels (and ratios therefrom) include quantitative reverse transcriptase PCR (QT-PCR), quantitative real-time RT-PCR, oligonucleotide microarray, antibody microarray, or combination thereof. Preferred methodologies for determining protein expression levels (and ratios therefrom) include the use of ELISAs and antibody microarrays.
In some embodiments, the method further comprises determining an androgen receptor (AR) status (i.e., hormone-sensitive or hormone-refractory) in prostate cells or bodily fluids obtained from the subject. The AR status of the prostate tissue may be used, in combination with the expression levels of EN2, PAX2 and DEFB1, as well as the PAX2-to-DEFB1 ratio and/or EN2-to-DEFB1 ratio in the same tissue, for determining the prostate conditions in the subject.
In certain embodiments, an EN2-to-DEFB1 ratio of below 20 is indicative of normal prostate in the subject, an EN2-to-DEFB1 ratio of 20-200 is indicative of the presence of prostate cancer with low-to-moderate aggressiveness, and an EN2-to-DEFB1 ratio of above 200 is indicative of the presence of prostate cancer with moderate-to-high aggressiveness in the subject.
In other embodiments, the method further comprises determining an oestrogen receptor/progesterone receptor (ER/PR) status in breast cells or bodily fluids obtained from the subject. The ER/PR status of the breast tissue may be used, in combination with the expression levels of EN2, PAX2 and DEFB1, as well as the PAX2-to-DEFB1 ratio and/or EN2-to-DEFB1 ratio in the same tissue, for determining the breast conditions in the subject.
In certain embodiments, an EN2-to-DEFB1 ratio of below 20 is indicative of normal breast in the subject, an EN2-to-DEFB1 ratio of 20-200 is indicative of the presence of breast cancer with low-to-moderate aggressiveness, and an EN2-to-DEFB1 ratio of above 200 is indicative of the presence of breast cancer with moderate-to-high aggressiveness in the subject.
The monitoring and detecting methods of the present application provide clinicians with a prognosticator for initiated or pre-cancerous tissue. Candidates for this test include patients at high risk (based on age, race) for cancer. Positive or negative PAX2, EN2, and/or DEFB1 tests can then be followed by additional screening with biomarkers to determine cancer status. In addition, these patients can be candidates for treatment with PAX2/EN2/DEFB1 modulators. Alternatively, these tests can be used on patients to monitor the effectiveness of their cancer therapy, to determine treatment course, or to monitor cancer recurrence.
As another example, patients who present with potential indicators of cancer such as the detection of nodules in the prostate during a digital rectal exam by the clinician, or those who experience a sudden rise in PSA often are in the “Watchful Waiting” state. It is often difficult to ascertain whether these patients have or will develop cancer. An analysis of PAX2, EN2, DEFB1 expression levels or PAX2-to-DEFB1 and/or EN2-to-DEFB1 expression ratios in patient samples can be used to assist the decision to obtain a biopsy in men with suspected prostate cancer. Similarly, an analysis of PAX2, EN2, DEFB1 expression levels or PAX2-to-DEFB1 and/or EN2-to-DEFB1 expression ratios in patient samples can be used to assist the decision to obtain a biopsy in women with suspected breast cancer. Prostate biopsies are typically performed when a digital rectal exam (DRE) detects an enlarged prostate or scores from a PSA blood test rise to a level that is associated with the possible presence of prostate cancer. Similarly, breast biopsies are typically performed in patients with breast lumps or suspicious mammograms.
Identification of blood protein markers can provide a more accurate or earlier detection of cancer can have a positive impact on cancer treatment and management. As disclosed herein, aberrant EN2, PAX2 and DEFB1 expression occurs early in the progression of cancer and can be an initiating event in tumorigenesis. Therefore, samples from patients collected to screen for the presence of EN2, PAX2 and DEFB1 proteins or antigens can be used for the early detection of cancer.
Furthermore, the incorporation of PAX2/EN2/DEFB1 screening can provide clinicians with a prognosticator for initiated or pre-cancerous tissue. Candidates for this test include patients at high risk (based on age, race, for example) for cancer. A positive EN2/PAX2 test can then be followed by additional screening with biomarker to determine cancer site. In addition, these patients can be candidates for EN2/PAX2 inhibitors for chemoprevention for their cancers. Alternatively, this test can be used on patients as a measure of the effectiveness of their cancer therapy or to monitor cancer recurrence.
Carcinoma of the prostate has become a significant disease in many countries and it is the most commonly diagnosed malignancy in men in the western world, its occurrence increasing significantly with age. This increase and the recent deaths of many public figures from prostate cancer have highlighted the need to do address this cancer. It has been suggested that the wider availability of screening may limit mortality from prostate cancer.
Prostate cancer screening currently consists of a rectal examination and measurement of prostate specific antigen (PSA) levels. These methods lack specificity as digital rectal examination has considerable inter-examiner variability and PSA levels may be elevated in benign prostatic hyperplasia (BPH), prostatic inflammation and other conditions. The comparative failure of PSA as a diagnostic test was shown in 366 men who developed prostate cancer while being included in the Physicians Health Study, a prospective study of over 22,000 men. PSA levels were measured in serum, which was stored at the start of the study, and elevated levels were found in only 47% of men developing prostate cancer within the subsequent four years (Gann et al, JAMA 273, 289-294, 1995).
Prostate cancers can be scored using the Gleason system, as well known to those skilled in the art (Gleason et al., Cancer Chemother Rep 50, 125-128, 1966). This uses tissue architecture rather than cytological features. A grade of 1 to 5 (well to poorly differentiated) is used, and the combined score of the most frequent and more severe areas of the lesion are combined to generate the Gleason score. Gleason scores provide prognostic information that may be valuable in addition to the assessment of the stage of the tumor (staging). Gleason scores of 2 to 4 and 8 to 10 have good predictive value, but about three quarters of tumors have intermediate values.
Two principal systems are used for staging prostate cancer: TNM and the Jewett system (Benson & Olsson et al., In The Prostate, ed. Fitzpatrick, J. M. and Krane R. J., pp 261-272, Edinburgh, Churchill Livingstone 1989). Staging takes into account any metastatic spread of the tumor and is difficult, because it is difficult to assess either local lymph node involvement or local invasion. Tumor size is also difficult to measure as tumor tissue cannot be distinguished macroscopically from normal prostate tissue, and because the prostate gland lacks a distinct capsule and is surrounded by a layer of fibrous fatty tissue.
Four categories describe the prostate tumor's (T) stage, ranging from T1 to T4. For T1, the cancer is microscopic, unilateral and non palpable. The doctor can't feel the tumor or see it with imaging such as transrectal ultrasound. Treatment for BPH may have disclosed the disease, or it was confirmed through the use of a needle biopsy done because of an elevated PSA. For T2, the doctor can feel the cancer with a DRE. It appears the disease is confined to the prostate gland on one or both sides of the gland. For T3, the cancer has advanced to tissue immediately outside the gland. For T4, the cancer has spread to other parts of the body.
Present screening methods are therefore unsatisfactory; there is no reliable method for detecting the cancer, or predicting or preventing its possible metastatic spread, which is the main cause of death for most patients.
Breast cancer is the most common cause of cancer in women and the second most common cause of cancer death in women in the U.S. While the majority of new breast cancers are diagnosed as a result of an abnormality seen on a mammogram, a lump or change in consistency of the breast tissue can also be a warning sign of the disease. Heightened awareness of breast cancer risk in the past decades has led to an increase in the number of women undergoing mammography for screening, leading to detection of cancers in earlier stages and a resultant improvement in survival rates. Still, breast cancer is the most common cause of death in women between the ages of 45 and 55.
Breast cancer may be classified into several stages. Stage 0 is carcinoma (including lobular carcinoma and ductal carcinoma) in situ. Stage I is an early stage of invasive breast cancer. The tumor is no more than 2 centimeters across. Cancer cells have not spread beyond the breast. Stage II tumors include tumors that are no more than 2 centimeters across but has spread to the lymph nodes under the arm, tumors that are between 2 and 5 centimeters and may have spread to the lymph nodes under the arm, and tumors that are larger than 5 centimeters (2 inches) but has not spread to the lymph nodes under the arm. Stage III is locally advanced cancer. It is further divided into Stage IIIA, IIIB, and IIIC. Stage 1V is distant metastatic cancer. The cancer has spread to other parts of the body. Early-stage treatment options are different from late-stage options.
PAX genes are a family of nine developmental control genes coding for nuclear transcription factors. They play an important role in embryogenesis and are expressed in a very ordered temporal and spatial pattern. They all contain a “paired box” region of 384 base pairs encoding a DNA binding domain which is highly conserved throughout evolution (Stuart et al., Ann. Rev. Gen., 28(219):219-236, 1994). The influence of PAX genes on developmental processes has been demonstrated by the numerous natural mouse and human syndromes that can be attributed directly to even a heterozygous insufficiency in a PAX gene.
The PAX2 sequence has been disclosed (Dressler et al., Development 109, 787-795, 1990). The amino acid sequences of the human PAX2 protein and its variants, as well as the DNA sequences encoding the proteins, are listed in SEQ ID NOS: 39-50 (SEQ ID NO:39, amino acid sequence encoded by exon 1 of the human PAX2 gene; SEQ ID NO:40, human PAX2 gene promoter and exon 1; SEQ ID NO:41, amino acid sequence of the human PAX2; SEQ ID NO:42, human PAX2 gene; SEQ ID NO:43, amino acid sequence of the human PAX2 gene variant b; SEQ ID NO:44, human PAX2 gene variant b; SEQ ID NO:45, amino acid sequence of the human PAX2 gene variant c; SEQ ID NO:46, human PAX2 gene variant c; SEQ ID NO:47, amino acid sequence of the human PAX2 gene variant d; SEQ ID NO:48, human PAX2 gene variant d; SEQ ID NO:49, amino acid sequence of the human PAX2 gene variant e; SEQ ID NO:50 human PAX2 gene variant e).
PAX proteins bind specific DNA sequences through domains called a “paired domain” and, in some cases, a “homeodomain”. The paired domain (PD) is a consensus sequence shared by all PAX proteins, including PAX2. The PD directs DNA binding of amino acids located in the α3-helix forming a DNA-protein complex.
It has been reported that PAX2 suppresses DEFB-1 expression by binding to the DEFB-1 promoter (Bose S K et al., Mol. Immunol. 2009, 46:1140-8) at a 5′-CCTTG-3′ (SEQ ID NO:1) recognition site just upstream of the DEFB1 TATA box. For PAX2, the amino acids in the paired domain recognize and interact specifically with a CCTTG (SEQ ID NO:1) DNA core sequence in the DEFB1 promoter. Oligonucleotides up to and exceeding 64 bases in length, which include this sequence or its complement are expected to be inhibitors.
Examples of cancers in which PAX2 expression has been detected are listed in Table 1.
The EN1 and EN2 genes, homologues of the mouse and drosophila segmentation gene Engrailed, encode homeodomain transcription factors (Joyner, Trends Genet., 12:15-20, 1996). PAX and EN genes are the part of genetic networks that control the development of brain and occupy a prominent position in the developmental regulatory hierarchy (Joyner, 1996). Studies in Xenopus suggest that EN2 and PAX2 are essential for the expression of Xenopus wnt-1 and for signalling through the wnt/β-catenin pathway (Koenig et al., Dev. Biol., 340:318-328, 2010).
EN2 was identified as a candidate oncogene in human breast cancer (Martin et al., Oncogene, 24:6890-901, 2005) and its expression has been found to be deregulated in pediatric brain tumor and acute myeloid leukemia (AML) (Kozmik et al., Proc. Natl. Acad. Sci. USA, 92:5709-13, 1995; Nagel et al., Genes Chromosomes Cancer, 42:170-8, 2005). Other studies have shown that Xenopus EN2 binds to eukaryotic initiation factor 4E (eIF4E) and triggers rapid phosphorylation of eIF4E and eIF4E-binding protein (Brunet, 2005). eIF4E is typically found in translational machinery and is a target for cancer therapy (Graff et al., Cancer Res., 68(3):631-634, 2008). Recent studies have shown that eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression (Furic et al., PNAS, 107(32):14134-39, 2010).
The amino acid sequences of the human EN2 protein and the human EN2 mRNAgene sequences are listed in SEQ ID NOS: 73 and 74, respectively. DEFB1
β-defensins are cationic peptides with broad-spectrum antimicrobial activity that are products of epithelia and leukocytes (Ganz and Weiss, Semin Hematol., 34(4):343-54, 1997). These two-exon, single gene products are expressed at epithelial surfaces and secreted at sites including the skin. To date, five β-defensin genes of epithelial origin have been identified and characterized in humans: DEFB1 (Bensch et al., FEBS Lett., 368(2):331-5, 1995), DEFB 2 (Harder et al., Genomics, 46(3):472-5, 1997), DEFB3 (Harder et al., J. Biol. Chem., 276(8):5707-13, 2001; Jia et al., Gene, 263(1-2):211-8, 2001), DEFB4, and HE2/EP2.
The amino acid sequence of human DEFB1 (or hBD-1) and the 5′ regulatory sequence of the human DEFB1 gene sequence, including 644 nucleotides upstream of the transcriptional start site, are shown in SEQ ID NOS:63 and 64, respectively. The primary structure of each β-defensin gene product is characterized by small size, a six cysteine motif, high cationic charge and exquisite diversity beyond these features. The most characteristic feature of defensin proteins is their six-cysteine motif that forms a network of three disulfide bonds. The three disulfide bonds in the β-defensin proteins are between C1-C5, C2-C4 and C3-C6. The most common spacing between adjacent cysteine residues is 6, 4, 9, 6, 0. The spacing between the cysteines in the β-defensin proteins can vary by one or two amino acids except for C5 and C6, located nearest the carboxy terminus. In all known vertebrate β-defensin genes, these two cysteine residues are adjacent to each other.
A second feature of the β-defensin proteins is their small size. Each β-defensin gene encodes a preproprotein that ranges in size from 59 to 80 amino acids with an average size of 65 amino acids. This gene product is then cleaved by an unknown mechanism to create the mature peptide that ranges in size from 36 to 47 amino acids with an average size of 45 amino acids. The exceptions to these ranges are the EP2/HE2 gene products that contain the β-defensin motif and are expressed in the epididymis.
A third feature of β-defensin proteins is the high concentration of cationic residues. The number of positively charged residues (arginine, lysine, histidine) in the mature peptide ranges from 6 to 14 with an average of 9.
A further feature of the β-defensin gene products is their diverse primary structure but apparent conservation of tertiary structure. Beyond the six cysteines, no single amino acid at a given position is conserved in all known members of this protein family. However, there are positions that are conserved that appear to be important for secondary and tertiary structures and function.
Despite the great diversity of the primary amino acid sequence of the β-defensin proteins, the limited data suggests that the tertiary structure of this protein family is conserved. The structural core is a triple-stranded, antiparallel β-sheet, as exemplified for the proteins encoded by BNBD-12 and DEFB2. The three β-strands are connected by a β-turn, and an α-hairpin loop, and the second β-strand also contains a β-bulge. When these structures are folded into their proper tertiary structure, the apparently random sequence of cationic and hydrophobic residues are concentrated into two faces of a globular protein. One face is hydrophilic and contains many of the positively charged side chains and the other is hydrophobic. In solution, the HBD-2 protein encoded by the DEFB2 gene exhibited an α-helical segment near the N-terminus not previously ascribed to solution structures of α-defensins or to the β-defensin BNBD-12. The amino acids whose side chains are directed toward the surface of the protein are less conserved between β-defensin proteins while the amino acid residues in the three β-strands of the core β-sheet are more highly conserved.
β-defensin peptides are produced as pre-pro-peptides and then cleaved to release a C-terminal active peptide fragment, however the pathways for the intracellular processing, storage and release of the human β-defensin peptides in airway epithelia are unknown.
DEFB1's gene locus (8p23.3) is a hotspot for deletions and has been linked to patients with poorer prognosis. Thus, DEFB1 (and perhaps PAX2) can be used as a biomarker, e.g., in a screening for the early detection of prostate cancer. Furthermore, data presented here indicate that its loss may occur as early as PIN (or even before), and may be a major contributing factor to the onset of prostate cancer.
An oligonucleotide microarray consists of an arrayed series of a plurality of microscopic spots of oligonucleotides, called features, each containing a small amount (typically in the range of picomoles) of a specific oligonucleotide sequence. The specific oligonucleotide sequence can be a short section of a gene or other oligonucleotide element that is used as a probe to hybridize a cDNA or cRNA sample under high-stringency conditions. Probe-target hybridization is usually detected and quantified by fluorescence-based detection of fluorophore-labeled targets to determine relative abundance of nucleic acid sequences in the target. The oligonucleotidee probes are typically attached to a solid surface by a covalent bond to a chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide or others). The solid surface can be glass or a silicon chip or microscopic beads. Oligonucleotide arrays are different from other types of microarray only in that they either measure nucleotides or use oligonucleotide as part of its detection system.
To detect gene expression in cells or bodily fluids using an oligonucleotide array, polynucleotides of interest are purified from the cells or bodily fluids. The polynucleotides can include total RNA for expression profiling, DNA for comparative hybridization, or DNA/RNA bound to a particular protein which is immunoprecipitated (ChIP-on-chip) for epigenetic or regulation studies.
In one embodiment, total RNA is isolated (total as it is nuclear and cytoplasmic) by guanidinium thiocyanate-phenol-chloroform extraction (e.g. Trizol). The purified RNA may be analyzed for quality (e.g., by capillary electrophoresis) and quantity (e.g., by using a nanodrop spectrometer. The total RNA is RNA is reverse transcribed into DNA with either polyT primers or random primers. The DNA products may be optionally amplified by PCR. A label is added to the amplification product either in the RT step or in an additional step after amplification if present. The label can be a fluorescent label or radioactive labels. The labeled DNA products are then hybridized to the microarray. The microarray is then washed and scanned. The expression level of the gene of interest is determined based on the hybridization result using method well known in the art.
Immunoassays, in their most simple and direct sense, are binding assays involving binding between antibodies and antigens. Many types and formats of immunoassays are known and all are suitable for detecting the disclosed biomarkers. Examples of immunoassays are enzyme linked immunosorbent assays (ELISAs), radioimmunoassays (RIA), radioimmune precipitation assays (RIPA), immunobead capture assays, Western blotting, dot blotting, gel-shift assays, Flow cytometry, protein arrays, multiplexed bead arrays, magnetic capture, in vivo imaging, fluorescence resonance energy transfer (FRET), and fluorescence recovery/localization after photobleaching (FRAP/FLAP).
In general, immunoassays involve contacting a sample suspected of containing a molecule of interest (such as the disclosed biomarkers) with an antibody to the molecule of interest or contacting an antibody to a molecule of interest (such as antibodies to the disclosed biomarkers) with a molecule that can be bound by the antibody, as the case may be, under conditions effective to allow the formation of immunocomplexes. In many forms of immunoassay, the sample-antibody composition, such as a tissue section, ELISA plate, dot blot or Western blot, can then be washed to remove any non-specifically bound antibody species, allowing only those antibodies specifically bound within the primary immune complexes to be detected.
Radioimmune Precipitation Assay (RIPA) is a sensitive assay using radiolabeled antigens to detect specific antibodies in serum. The antigens are allowed to react with the serum and then precipitated using a special reagent such as, for example, protein A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis. Radioimmunoprecipitation assay (RIPA) is often used as a confirmatory test for diagnosing the presence of HIV antibodies. RIPA is also referred to in the art as Fan Assay, Precipitin Assay, Radioimmune Precipitin Assay; Radioimmunoprecipitation Analysis; Radioimmunoprecipitation Analysis, and Radioimmunoprecipitation Analysis.
Also contemplated are immunoassays wherein the protein or antibody specific for the protein is bound to a solid support (e.g., tube, well, bead, or cell) to capture the antibody or protein of interest, respectively, from a sample, combined with a method of detecting the protein or antibody specific for the protein on the support. Examples of such immunoassays include Radioimmunoassay (RIA), Enzyme-Linked Immunosorbent Assay (ELISA), Flow cytometry, protein array, multiplexed bead assay, and magnetic capture.
Protein arrays are solid-phase ligand binding assay systems using immobilized proteins on surfaces which include glass, membranes, microtiter wells, mass spectrometer plates, and beads or other particles. The assays are highly parallel (multiplexed) and often miniaturized (microarrays, protein chips). Their advantages include being rapid and automatable, capable of high sensitivity, economical on reagents, and giving an abundance of data for a single experiment. Bioinformatics support is important; the data handling demands sophisticated software and data comparison analysis. However, the software can be adapted from that used for DNA arrays, as can much of the hardware and detection systems.
Capture arrays form the basis of detection chips and arrays for expression profiling. They employ high affinity capture reagents, such as conventional antibodies, single domains, engineered scaffolds, peptides or nucleic acid aptamers, to bind and detect specific target ligands in high throughput manner. Antibody arrays are available commercially. In addition to the conventional antibodies, Fab and scFv fragments, single V-domains from camelids or engineered human equivalents (Domantis, Waltham, Mass.) may also be useful in arrays.
Nonprotein capture molecules, notably the single-stranded nucleic acid aptamers which bind protein ligands with high specificity and affinity, are also used in arrays (SomaLogic, Boulder, Colo.). Aptamers are selected from libraries of oligonucleotides by the SELEX™ procedure and their interaction with protein can be enhanced by covalent attachment, through incorporation of brominated deoxyuridine and UV-activated crosslinking (photoaptamers). Photocrosslinking to ligand reduces the crossreactivity of aptamers due to the specific steric requirements. Aptamers have the advantages of ease of production by automated oligonucleotide synthesis and the stability and robustness of DNA; on photoaptamer arrays, universal fluorescent protein stains can be used to detect binding.
An alternative to an array of capture molecules is one made through ‘molecular imprinting’ technology, in which peptides (e.g., from the C-terminal regions of proteins) are used as templates to generate structurally complementary, sequence-specific cavities in a polymerizable matrix; the cavities can then specifically capture (denatured) proteins that have the appropriate primary amino acid sequence (PROTEINPRINT™, Aspira Biosystems, Burlingame, Calif.).
Another methodology which can be used cancer detection and in expression profiling is the ProteinChip® array (Ciphergen, Fremont, Calif.), in which solid phase chromatographic surfaces bind proteins with similar characteristics of charge or hydrophobicity from mixtures such as plasma or tumor extracts, and SELDI-TOF mass spectrometry is used to detection the retained proteins.
Other useful methodology includes large-scale functional chips constructed by immobilizing large numbers of purified proteins on a chip, and multiplexed bead assays.
The present application contemplates the use antibodies that specifically bind PAX2, EN2, or DEFB1 for detecting PAX2, EN2, or DEFB1 in a test sample. The term “antibodies” is used herein in a broad sense and includes both polyclonal and monoclonal antibodies. In addition to intact immunoglobulin molecules, also included in the term “antibodies” are fragments or polymers of those immunoglobulin molecules, and human or humanized versions of immunoglobulin molecules or fragments thereof, as long as they are chosen for their ability to interact with, for example, PAX2, EN2, or DEFB1. The antibodies can be tested for their desired activity using the in vitro assays described herein, or by analogous methods, after which their in vivo therapeutic and/or prophylactic activities are tested according to known clinical testing methods.
The monoclonal antibodies herein specifically include “chimeric” antibodies in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, as long as they exhibit the desired antagonistic activity (See, U.S. Pat. No. 4,816,567 and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984)).
As used herein, the term “antibody” or “antibodies” can also refer to a human antibody and/or a humanized antibody. Many non-human antibodies (e.g., those derived from mice, rats, or rabbits) are naturally antigenic in humans, and thus can give rise to undesirable immune responses when administered to humans. Therefore, the use of human or humanized antibodies in the methods serves to lessen the chance that an antibody administered to a human will evoke an undesirable immune response. Methods for humanizing non-human antibodies are well known in the art.
In another embodiment, the EN2, PAX2 and/or DEFB1 expression profiles are used for determine pharmacogenomics in the treatment of prostate or breast cancer. Pharmacogenomics refers to the relationship between an individual's genotype and that individual's response to a foreign compound or drug. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer an anti-cancer drug, as well as tailoring the dosage and/or therapeutic regimen of treatment with the anti-cancer drug.
Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally-occurring polymorphisms. For example, glucose-6-phosphate dehydrogenase deficiency (G6PD) is a common inherited enzymopathy in which the main clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
One pharmacogenomics approach to identifying genes that predict drug response, known as “a genome-wide association,” relies primarily on a high-resolution map of the human genome consisting of already known gene-related sites (e.g., a “bi-allelic” gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants). Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically substantial number of subjects taking part in a Phase II/III drug trial to identify genes associated with a particular observed drug response or side effect. Alternatively, such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome. As used herein, an “SNP” is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, an SNP may occur once per every 1,000 bases of DNA. An SNP may be involved in a disease process. However, the vast majority of SNPs may not be disease associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals. Thus, mapping of EN2, PAX2 and/or DEFB1 to SNP maps of breast patients may allow easier identification of these genes according to the genetic methods described herein.
Alternatively, a method termed the “candidate gene approach,” can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a drug target is known, all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.
As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic polymorphisms of drug metabolizing enzymes (e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYPZC19) has provided an explanation as to why some subjects do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer and poor metabolizer. The prevalence of poor metabolizer phenotypes is different among different populations. For example, the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in poor metabolizers, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, poor metabolizers show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-fouled metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
Alternatively, a method termed the “gene expression profiling” can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug can give an indication whether gene pathways related to toxicity have been turned on.
Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a breast condition.
In one embodiment, the EN2, PAX2 and/or DEFB1 expression profiles, as well as the androgen receptor (AR) status, in a subject are used to determine the appropriate treatment regimens for a prostate condition in the subject.
In another embodiment, the EN2, PAX2 and/or DEFB1 expression profiles, as well as the ER/PR status, in a subject are used to determine the appropriate treatment regimens for a breast condition in the subject.
In another embodiment, the EN2, PAX2 and/or DEFB1 expression level (typically determine in reference to a control gene as actin gene or GAPDH gene) is used in patients with triple negative breast cancer (i.e., oestrogen receptor (ER) negative, progesterone receptor (PR) negative, human epidermal growth factor receptor 2 (HER2) negative) to measure of the effectiveness of cancer therapy, to determine treatment course, or to monitor cancer recurrence.
Another aspect of the present application relates to a kit for monitoring or detecting a cancerous, pre-cancerous, or non-cancerous condition in a test subject in accordance with the above-described methods. In one embodiment, the kit for monitoring or detecting a cancerous, pre-cancerous, or non-cancerous condition in a test subject comprises (1) one or more reagents for detecting EN2 expression in a biological sample, (2) one or more reagents for detecting PAX2 expression in the biological sample and/or one or more reagents for detecting DEFB1 expression in the biological sample. The kit may further include instructions for determining expression levels of PAX2, EN2, and/or DEFB1 or expression ratios therefrom and correlating the expression levels or expression ratios with one or more cancerous, pre-cancerous, or non-cancerous conditions.
The reagents for determining expression levels and/or expression ratios include, but are not limited to amplification primers or probes for determination of mRNA levels and mRNA ratios, and antibody reagents for determining protein levels and protein ratios.
In one embodiment, kit for monitoring or detecting a cancerous, pre-cancerous, or non-cancerous condition in a test subject comprises one or more pairs of amplification primers for detecting PAX2 expression by quantitative PCR; one or more pairs of amplification primers for detecting EN2 expression by quantitative PCR, and optionally one or more pairs of amplification primers for detecting DEFB1 expression by quantitative PCR. In a preferred embodiment, the kit comprises reagents and instructions for quantitative real-time PCR analysis.
In certain embodiments, the kit comprises one or more pairs of amplification primers for detecting PAX2 expression comprising an amplification primer pair selected from the group consisting of SEQ ID NOs: 43 and 47, SEQ ID NOs: 44 and 48, and SEQ ID NOs: 45 and 49; one or more amplification primers for detecting EN2 expression comprising an amplification primer pair of 5′-GTTCGTGGATTCAAAGGTGGCT-3′ (forward primer, SEQ ID NO:75) and 5′-TAAATCCCACACTGGTTCTCCG-3′ (reverse primer, (SEQ ID NO:76), and optionally one or more pairs of amplification primers for detecting DEFB1 expression comprising SEQ ID NOs: 35 and 37.
In another embodiment, the kit further comprises one or more pairs of control amplification primers. In one embodiment, the one or more pairs of control amplification primers comprise amplification primers for detecting expression of (β-actin expression. In a preferred embodiment, the amplification primers for detecting expression of β-actin expression comprise SEQ ID NOs: 34 and 36.
In another embodiment, the one or more pairs of control amplification primers comprise amplification primers for detecting expression of GAPDH expression.
In a preferred embodiment, the amplification primers for detecting expression of GAPDH expression comprise SEQ ID NOs: 42 and 46.
In another related embodiment, the kit further comprises one or more reagents for PCR reaction.
In yet another related embodiment, the kit further comprises one or more reagents for RNA extraction.
In another embodiment, the kit comprises an oligonucleotide microarray having oligonucleotide probes for detecting PAX2, EN2, and/or DEFB1 expression and instructions on how to determine PAX2-to-DEFB1 and EN2-to-DEFB1 expression ratios from a tissue sample using the oligonucleotide microarray.
In another embodiment, the kit comprises an immunoassay, such as an antibody microarray or an ELISA system, which includes antibody detection reagents for detecting and quantitating protein expression levels of PAX2, EN2, and optionally DEFB1.
In a related embodiment, the kit further comprises reagents for extracting RNA or proteins from a tissue sample.
The present invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures.
In this example, DEFB1 was cloned into an inducible expression system to examine what effect it had on normal prostate epithelial cells, as well as androgen receptor positive (AR+) and androgen receptor negative (AR−) prostate cancer cell lines. Induction of DEFB1 expression resulted in a decrease in cellular growth in AR− cells DU145 and PC3, but had no effect on the growth of the AR+ prostate cancer cells LNCaP. DEFB1 also caused rapid induction of caspase-mediated apoptosis. Data presented here are the first to provide evidence of its role in innate tumor immunity and indicate that its loss contributes to tumor progression in prostate cancer.
Cell lines: The cell lines DU145 were cultured in DMEM medium, PC3 were grown in F12 medium, and LNCaP were grown in RPMI medium (Life Technologies, Inc., Grand Island, N.Y.). Growth media for all three lines was supplemented with 10% (v/v) fetal bovine serum (Life Technologies). The hPrEC cells were cultured in prostate epithelium basal media (Cambrex Bio Science, Inc., Walkersville, Md.). All cell lines were maintained at 37° C. and 5% CO2.
Tissue samples and laser capture microdissection: Prostate tissues obtained from consented patients that underwent radical prostatectomy were acquired through the Hollings Cancer Center tumor bank in accordance with an Institutional Review Board-approved protocol. This included guidelines for the processing, sectioning, histological characterization, RNA purification and PCR amplification of samples. Following pathologic examination of frozen tissue sections, laser capture microdissection (LCM) was performed to ensure that the tissue samples assayed consisted of pure populations of benign prostate cells. For each tissue section analyzed, LCM was performed at three different regions containing benign tissue and the cells collected were then pooled.
Prostate tissues were obtained from patients who provided informed consent prior to undergoing radical prostatectomy. Samples were acquired through the Hollings Cancer Center tumor bank in accordance with an Institutional Review Board-approved protocol. This included guidelines for the processing, sectioning, histological characterization, RNA purification and PCR amplification of samples. Prostate specimens received from the surgeons and pathologists were immediately frozen in OCT compound. Each OCT block was cut to produce serial sections which were stained and examined. Areas containing benign cells, prostatic intraepithelial neoplasia (PIN), and cancer were identified and used to guide our selection of regions from unstained slides using the Arcturus PixCell II System (Sunnyvale, Calif.). Caps containing captured material were exposed to 20 μl of lysate from the Arcturus Pico Pure RNA Isolation Kit and processed immediately. RNA quantity and quality was evaluated using sets of primers that produce 5′ amplicons. The sets include those for the ribosomal protein L32 (the 3′ amplicon and the 5′ amplicon are 298 bases apart), for the glucose phosphate isomerase (391 bases apart), and for the glucose phosphate isomerase (842 bases apart). Ratios of 0.95 to 0.80 were routinely obtained for these primer sets using samples from a variety of prepared tissues. Additional tumor and normal samples were grossly dissected by pathologists, snap frozen in liquid nitrogen and evaluated for hBD-1 and cMYC expression.
Cloning of DEFB1 gene: DEFB1 cDNA was generated from RNA by reverse transcription-PCR. The PCR primers were designed to contain Oat and KpnI restriction sites. DEFB1 PCR products were restriction digested with ClaI and KpnI and ligated into a TA cloning vector. The TA/DEFB1 vector was then transfected into E. coli by heat shock and individual clones were selected and expanded. Plasmids were isolated as DNA Midipreps (Qiagen, Valencia, Calif.) from E. coli cultures and sequence integrity verified by automated sequencing. The DEFB1 gene fragment was then ligated into the pTRE2 digested with ClaI and KpnI, which served as an intermediate vector for orientation purposes. Then the pTRE2/DEFB1 construct was digested with ApaI and KpnI to excise the DEFB1 insert, which was ligated into pIND vector of the Ecdysone Inducible Expression System (Invitrogen, Carlsbad, Calif.) also double digested with ApaI and KpnI. The construct was again transfected into E. coli and individual clones were selected and expanded. Plasmids were isolated and sequence integrity of pIND/DEFB1 was again verified by automated sequencing.
Cell transfections: Cells (1×106) were seeded onto 100-mm Petri dishes and grown overnight. Then the cells were co-transfected using Lipofectamine 2000 (Invitrogen, Carlsbad, Calif.) with 1 μg of pVgRXR plasmid, which expresses the heterodimeric ecdysone receptor, and 1 μg of the pIND/DEFB1 vector construct or empty pIND control vector in Opti-MEM media (Life Technologies, Inc., Grand Island, N.Y.).
RNA isolation and quantitative RT-PCR: In order to verify DEFB1 protein expression in the cells transfected with DEFB1 construct, RNA was collected after a 24 hour induction period with Ponasterone A (Pon A). Briefly, total RNA was isolated using the SV Total RNA Isolation System (Promega, Madison, Wis.) from approximately 1×106 cells harvested by trypsinizing. Cells were lysed and total RNA was isolated by centrifugation through spin columns. For cells collected by LCM, total RNA was isolated using the PicoPure RNA Isolation Kit (Arcturus Biosciences, Mt. View, Calif.) following the manufacturer's protocol. Total RNA (0.5 μg per reaction) from both sources was reverse transcribed into cDNA utilizing random primers (Promega). AMV Reverse Transcriptase II enzyme (500 units per reaction; Promega) was used for first strand synthesis and Tfl DNA Polymerase for second strand synthesis (500 units per reaction; Promega) as per the manufacturer's protocol. In each case, 50 pg of cDNA was used per ensuing PCR reaction. Two-step ORT-PCR was performed on cDNA generated using the MultiScribe Reverse Transcripatase from the TaqMan Reverse Transcription System and the SYBR® Green PCR Master Mix (Applied Biosystems).
The primer pair for DEFB1 was generated from the published DEFB1 sequence (GenBank Accession No. U50930). The primer sequences are:
Forty cycles of PCR were performed under standard conditions using an annealing temperature of 56° C. In addition, β-actin (Table 2) was amplified as a housekeeping gene to normalize the initial content of total cDNA. DEFB1 expression was calculated as the relative expression ratio between DEFB1 and β-actin and was compared in cells lines induced and uninduced for DEFB1 expression, as well as LCM benign prostatic tissue. As a negative control, QRT-PCR reactions without cDNA template were also performed. All reactions were run three times in triplicate.
MTT cell viability assay: To examine the effects of DEFB1 on cell growth, metabolic 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays were performed. PC3, DU145 and LNCaP cells co-transfected with pVgRXR plasmid and pIND/DEFB1 construct or empty pIND vector were seeded onto a 96-well plate at 1-5×103 cells per well. Twenty-four hours after seeding, fresh growth medium was added containing 10 μM Ponasterone A daily to induce DEFB1 expression for 24-, 48- and 72 hours after which the MTT assay was performed according to the manufacturer's instructions (Promega). Reactions were performed three times in triplicate.
Flow cytometry: PC3 and DU145 cells co-transfected with the DEFB1 expression system were grown in 60-mm dishes and induced for 12, 24, and 48 hours with 10 μM Ponasterone A, Following each incubation period, the medium was collected from the plates (to retain any detached cells) and combined with PBS used to wash the plates. The remaining attached cells were harvested by trypsinization and combined with the detached cells and PBS. The cells were then pelleted at 4° C. (500×g) for 5 min, washed twice in PBS, and resuspended in 100 ul of 1× Annexin binding buffer (0.1 M Hepes/NaOH at pH 7.4, 1.4 M NaCl, 25 mM CaCl2) containing 5 μl of Annexin V-FITC and 5 μl of PI. The cells were incubated at room temperature (RT) for 15 min. in the dark, then diluted with 400 μl of 1× Annexin binding buffer and analyzed by FACscan (Becton Dickinson, San Jose, Calif.). All reactions were performed three times.
Microscopic analysis: Cell morphology was analyzed by phase contrast microscopy. DU145, PC3 and LNCaP cells containing no vector, empty plasmid or DEFB1 plasmid were seeded onto 6 well culture plates (BD Falcon, USA). The following day plasmid-containing cells were induced for a period of 48 h with media containing 10 μM Ponasterone A, while control cells received fresh media. The cells were then viewed under an inverted Zeiss IM 35 microscope (Carl Zeiss, Germany). Phase contrast pictures of a field of cells were obtained using the SPOT Insight Mosaic 4.2 camera (Diagnostic Instruments, USA). Cells were examined by phase contrast microscopy under 32× magnification and digital images were stored as uncompressed TIFF files and exported into Photoshop CS software (Adobe Systems, San Jose, Calif.) for image processing and hard copy presentation.
Caspase detection: Detection of caspase activity in the prostate cancer cell lines was performed using APO LOGIX™ Carboxyfluorescin Caspase detection kit (Cell Technology, Mountain View, Calif.). Active caspases were detected through the use of a FAM-VAD-FMK inhibitor that irreversibly binds to active caspases. Briefly, DU145 and PC3 cells (1.5-3×105) containing the DEFB1 expression system were plated in 35 mm glass bottom microwell dishes (Matek, Ashland, Mass.) and treated for 24 hours with media only or with media containing PonA as previously described. Next, 10 μl of a 30× working dilution of carboxyfluorescein labeled peptide fluoromethyl ketone (FAM-VAD-FMK) was added to 300 μl of media and added to each 35 mm dish. Cells were then incubated for 1 hour at 37° C. under 5% CO2. Then, the medium was aspirated and the cells were washed twice with 2 ml of a 1× Working dilution Wash Buffer. Cells were viewed under differential interference contrast (DIC) or under laser excitation at 488 nm. The fluorescent signal was analyzed using a confocal microscope (Zeiss LSM 5 Pascal) and a 63×DIC oil lens with a Vario 2 RGB Laser Scanning Module.
Statistical analysis: Statistical differences were evaluated using the Student's t-test for unpaired values. P values were determined by a two-sided calculation, and a P value of less than 0.05 was considered statistically significant.
DEFB1 expression in prostate tissue and cell lines: DEFB1 expression levels were measured by QRT-PCR in benign and malignant prostatic tissue, hPrEC prostate epithelial cells and DU145, PC3 and LNCaP prostate cancer cells. DEFB1 expression was detected in all of the benign clinical samples. The average amount of DEFB1 relative expression was 0.0073. In addition, DEFB1 relative expression in hPrEC cells was 0.0089. There was no statistical difference in DEFB1 expression detected in the benign prostatic tissue samples and hPrEC (
QRT-PCR was performed on prostate tissues by laser capture microdissection, including regions containing benign, PIN and cancer. DEFB1 relative expression was 0.0146 in the benign region compared to 0.0009 in the malignant region (
DEFB1 causes cell membrane permeability and ruffling: Induction of DEFB1 in the prostate cancer cell lines resulted in a significant reduction in cell number in DU145 and PC3, but had no effect on cell proliferation in LNCaP (
Expression of DEFB1 results in decreased cell viability: The MTT assay showed a reduction in cell viability by DEFB1 in PC3 and DU145 cells, but no significant effect on LNCaP cells (
DEFB1 causes rapid caspase-mediated apoptosis in late-stage prostate cancer cells: In order to determine whether the effects of DEFB1 on PC3 and DU145 were cytostatic or cytotoxic, FACS analysis was performed. Under normal growth conditions, more than 90% of PC3 and DU145 cultures were viable and non-apoptotic (lower left quadrant, (
Caspase activity was determined by confocal laser microscopic analysis (
In conclusion, this study provides the functional role of DEFB1 in prostate cancer. Furthermore, these findings show that DEFB1 is part of an innate immune system involved in tumor immunity. Data presented demonstrate that DEFB1 expressed at physiological levels is cytotoxic to AR− hormone refractory prostate cancer cells, but not to AR+ hormone sensitive prostate cancer cell nor to normal prostate epithelial cells. Given that DEFB1 is constitutively expressed in normal prostate cells without cytotoxicity, it may be that late-stage AR− prostate cancer cells possess distinct phenotypic characteristics that render them sensitive to DEFB1 cytotoxicity. Thus, DEFB1 is a viable therapeutic agent for the treatment of late-stage prostate cancer, and potentially other cancers as well.
This example examines the effects of inhibiting PAX2 expression by RNA interference in prostate cancer cells which differ in p53 gene status. The results demonstrate that the inhibition of PAX2 results in cell death irrespective of p53 status, indicating that there are additional tumor suppressor genes or cell death pathways inhibited by PAX2 in prostate cancer.
siRNA silencing of PAX2: In order to achieve efficient gene silencing, a pool of four complementary short interfering ribonucleotides (siRNAs) targeting human PAX2 mRNA (Accession No. NM—003989.1), were synthesized (Dharmacon Research, Lafayette, Colo., USA). A second pool of four siRNAs were used as an internal control to test for the specificity of PAX2 siRNAs. Two of the sequences synthesized target the GL2 luciferase mRNA (Accession No. X65324), and two were non-sequence-specific (Table 3). For annealing of siRNAs, 35 M of single strands were incubated in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate) for 1 min at 90° C. followed by 1 h incubation at 37° C. Other PAX2 sequences that have been targeted by siRNA include: ACCCGACTATGTTCGCCTGG (SEQ ID NO: 11), AAGCTCTGGATCGAGTCTTTG (SEQ ID NO: 12), and ATGTGTCAGGCACACAGACG (SEQ ID NO: 13), which was shown to inhibit PAX2 (Davies et al., Hum. Mol. Gen. 2004, 13:235).
Western blot analysis: Briefly, cells were harvested by trypsinization and washed twice with PBS. Lysis buffer was prepared according to the manufacturer's instructions (Sigma), and was then added to the cells. Following a 15 minute incubation period at 4° C. on an orbital shaker, cell lysate were then collected and centrifuged for 10 minutes at 12000×g to pellet cellular debris. The protein-containing supernatant were then collected and quantitated. Next, 25 μg protein extract was loaded onto an 8-16% gradient SDS-PAGE (Novex). Following electrophoresis, proteins were transferred to PVDF membranes, and then blocked with 5% nonfat dry milk in TTBS (0.05% Tween 20 and 100 mM Tris-C1) for 1 hour. Blots were then probed with rabbit anti-PAX2 primary antibody (Zymed, San Francisco, Calif.) at a 1:2000 dilution. After washing, the membranes were incubated with anti-rabbit antibody conjugated to horseradish peroxidase (HRP) (dilution 1:5000; Sigma), and signal detection was visualized using chemilluminescence reagents (Pierce) on an Alpha Innotech Fluorchem 8900. As a control, blots were stripped and reprobed with mouse anti-β-actin primary antibody (1:5000; Sigma-Aldrich) and HRP-conjugated anti-mouse secondary antibody (1:5000; Sigma-Aldrich) and signal detection was again visualized.
Phase contrast microscopy: The effect of PAX2 knock-down on cell growth was analyzed by phase contrast microscopy as described in Example 1.
MTT cytotoxicity assay: DU145, PC3 and LNCaP cells (1×105) were transfected with 0.5 μg of the PAX2 siRNA pool or control siRNA pool using Codebreaker transfection reagent according to the manufacturer's protocol (Promega). Next, cell suspensions were diluted and seeded onto a 96-well plate at 1-5×103 cells per well and allowed to grow for 2-, 4- or 6 days. After culture, cell viability was determined by measuring the conversion of 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide, MTT (Promega), to a colored formazan product. Absorbance was read at 540 nm on a scanning multiwell spectrophotometer.
Pan-caspase detection: Detection of caspase activity in the prostate cancer cell lines was performed s described in Example 1.
Quantitative real-time RT-PCR: Quantitative real-time RT-PCR was performed as described in Example 1 in order to verify gene expression after PAX2 siRNA treatment in PC3, DU145 and LNCaP cell lines. The primer pairs for GAPDH (control gene), BAX, BID and BAD are:
Reactions were performed in MicroAmp Optical 96-well Reaction Plate (PE Biosystems). Forty cycles of PCR were performed under standard conditions using an annealing temperature of 60° C. Quantification was determined by the cycle number where exponential amplification began (threshold value) and averaged from the values obtained from the triplicate repeats. There was an inverse relationship between message level and threshold value. In addition, GAPDH was used as a housekeeping gene to normalize the initial content of total cDNA. Gene expression was calculated as the relative expression ratio between the pro-apoptotic genes and GAPDH. All reactions were carried out in triplicate.
siRNA inhibition of PAX2 protein expression: In order to confirm that the siRNA effective targeted the PAX2 mRNA, Western blot analysis was performed to monitor PAX2 protein expression levels over a six day treatment period. Cells were given a single round of transfection with the pool of PAX2 siRNA. The results confirmed specific targeting of PAX2 mRNA by showing knock-down of PAX2 protein by day four in DU145 (
Knock-down of PAX2 inhibits prostate cancer cell growth: Cells were analyzed following a six day treatment period with media only, negative control non-specific siRNA or PAX2 siRNA (
Cytotoxicity assays: Cell viability was measured after two-, four-, and six-day exposure times, and is expressed as a ratio of the 570-630 nm absorbance of treated cells divided by that of the untreated control cells (
Pan-caspase detection: Caspase activity was detected by confocal laser microscopic analysis. DU145, PC3 and LNCaP cells were treated with PAX2 siRNA and activity was monitored based on the binding of FAM-labeled peptide to caspases in cells actively undergoing apoptosis which will fluoresce green. Analysis of cells with media only under DIC shows the presence of viable DU145 (A), PC3 (E) and LNCaP (I) cells at 0 hours (
Effect of PAX2 Inhibition on Pro-apoptotic Factors: DU145, PC3 and LNCaP cells were treated with siRNA against PAX2 for six days and expression of pro-apoptotic genes dependent and independent of p53 transcription regulation were measured to monitor cell death pathways. For BAX, there was a 1.81-fold increase in LNCaP, a 2.73-fold increase in DU145, and a 1.87-fold increase in PC3 (
These results demonstrate dependency of prostate cancer cell survival on PAX2 expression. Following p53 activation as a result of PAX2 knock-down in the p53-expressing cell line LNCaP, the p53-mutated line DU145, and the p53-null line PC3, caspase activity was detected in all three lines, indicating of the initiation of programmed cell death. BAX expression was upregulated in all three cell lines independent of p53 status. The expression of pro-apoptotic factor BAD was also increased in all three lines following PAX2 inhibition. Following treatment with PAX2 siRNA, BID expression was increased in LNCaP and DU145, but actually decreased in PC3. These results indicate that cell death observed in prostate cancer is influenced by but is not dependent on p53 expression. The initiation of apoptosis in prostate cancer cells through different cell death pathways irrespective of p53 status indicates that PAX2 inhibits other tumor suppressors.
The identification of tumor-specific molecules that serve as targets for the development of new cancer drugs is considered to be a major goal in cancer research. Example 1 demonstrated that there is a high frequency of DEFB1 expression loss in prostate cancer, and that induction of DEFB1 expression results in rapid apoptosis in androgen receptor negative-stage prostate cancer. These data show that DEFB1 plays a role in prostate tumor suppression. In addition, given that it is a naturally occurring component of the immune system of normal prostate epithelium, DEFB1 is expected to be a viable therapeutic agent with little to no side effects. Example 2 demonstrated that inhibition of PAX2 expression results in prostate cancer cell death independent of p53. These data indicate that there is an addition pro-apoptotic factor or tumor suppressor that is inhibited by PAX2. In addition, the data show that the oncogenic factor PAX2, which is over-expressed in prostate cancer, is a transcriptional repressor of DEFB1. The purpose of this study is to determine if loss of DEFB1 expression is due to aberrant expression of the PAX2 oncogene, and whether inhibiting PAX2 results in expression of DEFB1 and DEFB1-mediated cell death (
RNA isolation and quantitative RT-PCR: RNA isolation and quantitative RT-PCR of DEFB1 were performed as described in Example 1.
Generation of the DEFB1 reporter construct: The pGL3 luciferase reporter plasmid was used to monitor DEFB1 reporter activity. A region 160 bases upstream of the DEFB1 transcription initiation site and included the DEFB1 TATA box. The region also included the CCTTG (SEQ ID NO: 1) sequence which is necessary for PAX2 binding. The PCR primers were designed to contain KpnI and NheI restriction sites. The DEFB1 promoter PCR products were restriction digested Kpn I and NheI and ligated into a similary restriction digested pGL3 plasmid (
Luciferase reporter assay: 1 μg of the DEFB1 reporter construct or the control pGL3 plasmid was transfected into 1×106 DU145 cells. Next, 0.5×103 cells were seeded onto each well of a 96-well plate and allowed to grow overnight. Then, fresh medium was added containing PAX2 siRNA or media only and the cells were incubated for 48 hours. Luciferase was detected by the BrightGlo kit according to the manufacturer's protocol (Promega) and the plates were read on a Veritas automated 96-well luminometer. Promoter activity was expressed as relative luminescence.
Analysis of membrane permeability: Acridine orange (AO)/ethidium bromide (EtBr) dual staining was performed to identify changes in cell membrane integrity, as well as apoptotic cells by staining the condensed chromatin. AO stains viable cells as well as early apoptotic cells, whereas EtBr stains late stage apoptotic cells that have lost membrane permeability. Briefly, cells were seeded into 2 chamber culture slides (BD Falcon, USA). Cells transfected with empty pIND plasmid/pvgRXR or pIND DEFB1/pvgRXR were induced for 24 or 48 h with media containing 10 μM Ponasterone A. Control cells were provided fresh media at 24 and 48 h. In order to determine the effect of PAX2 inhibition on membrane integrity, separate culture slides containing DU145, PC3 and LNCaP were treated with PAX2 siRNA and incubated for 4 days. Following this, cells were washed once with PBS and stained with 2 ml of a mixture (1:1) of AO (Sigma, USA) and EtBr (Promega, USA) (5 ug/ml) solution for 5 min. Following staining, the cells were again washed with PBS. Fluorescence was viewed by a Zeiss LSM 5 Pascal Vario 2 Laser Scanning Confocal Microscope (Carl Zeiss Jena, Germany). The excitation color wheel contain BS505-530 (green) and LP560 (red) filter blocks which allowed for the separation of emitted green light from AO into the green channel and red light from EtBr into the red channel. The laser power output and gain control settings within each individual experiment were identical between control and DEFB1 induced cells. The excitation was provided by a Kr/Ar mixed gas laser at wavelengths of 543 nm for AO and 488 nm for EtBr. Slides were analyzed under 40× magnification and digital images were stored as uncompressed TIFF files and exported into Photoshop CS software (Adobe Systems, San Jose, Calif.) for image processing and hard copy presentation.
ChIP analysis of PAX2: Chromatin immunoprecipitation (ChIP) allows the identification of binding sites for DNA-binding proteins based upon in vivo occupancy of a promoter by a transcription factor and enrichment of transcription factor bound chromatin by immunoprecipitation. A modification of the protocol described by the Farnham laboratory was used; also on line at http://mcardle.oncology.wisc.edu/farnham/). The DU145 and PC3 cell lines over-expresses the PAX2 protein, but does not express DEFB1. Cells were incubated with PBS containing 1.0% formaldehyde for 10 minutes to crosslink proteins to DNA. Samples were then sonicated to yield DNA with an average length of 600 bp. Sonicated chromatin precleared with Protein A Dynabeads was incubated with PAX2-specific antibody or “no antibody” control [isotype-matched control antibodies]. Washed immunoprecipitates were then collected. After reversal of the crosslinks, DNA was analyzed by PCR using promoter-specific primers to determine whether DEFB1 is represented in the PAX2-immunoprecipitated samples. Primers were designed to amplify the 160 bp region immediately upstream of the DEFB1 mRNA start site which contained the DEFB1 TATA box and the functional CCTTG (SEQ ID NO: 1) PAX2 recognition site. For these studies, positive controls included PCR of an aliquot of the input chromatin (prior to immunoprecipitation, but crosslinks reversed). All steps were performed in the presence of protease inhibitors.
siRNA inhibition of PAX2 increases DEFB1 expression: QRT-PCR analysis of DEFB1 expression before siRNA treatment revealed relative expression levels of 0.00097 in DU145, 0.00001 in PC3, and 0.00004 LNCaP (
siRNA inhibition of PAX2 increases DEFB1 promoter activity:
DEFB1 causes cell membrane permeability: Membrane integrity was monitored by confocal analysis. As shown in
Inhibition of PAX2 results in membrane permeability: Cells were treated with PAX2 siRNA for 4 days and membrane integrity was monitored again by confocal analysis. As shown in
PAX2 binds to the DEFB1 promoter: ChIP analysis was performed on DU145 and PC3 cells to determine if the PAX2 transcriptional repressor is bound to the DEFB1 promoter (
In
The results in this Example demonstrate that the oncogenic factor PAX2 suppresses DEFB1 expression. The suppression occurs at the transcriptional level. Furthermore, computational analysis of the DEFB1 promoter revealed the presence of a CCTTG (SEQ ID NO: 1) DNA binding site for the PAX2 transcriptional repressor near the DEFB1 TATA box (
The anti-tumoral ability of DEFB1 is evaluated by injecting tumor cells that overexpress DEFB1 into nude mice. DEFB1 is cloned into pBI-EGFP vector, which has a bidirectional tetracycline responsible promoter. Tet-Off Cell lines are generated by transfecting pTet-Off into DU145, PC3 and LNCaP cells and selecting with G418. The pBI-EGFP-DEFB1 plasmid is co-transfected with pTK-Hyg into the Tet-off cell lines and selected with hygromycin. Only single-cell suspensions with a viability of >90% are used. Each animal receives approximately 500,000 cells administered subcutaneously into the right flank of female nude mice. There are two groups, a control group injected with vector only clones and a group injected with the DEFB1 over-expressing clones. 35 mice are in each group as determined by a statistician. Animals are weighed twice weekly, tumor growth monitored by calipers and tumor volumes determined using the following formula: volume=0.5×(width)2×length. All animals are sacrificed by CO2 overdose when tumor size reaches 2 mm3 or 6 months following implantation; tumors are excised, weighed and stored in neutral buffered formalin for pathological examination. Differences in tumor growth between the groups are descriptively characterized through summary statistics and graphical displays. Statistical significance is evaluated with either the t-test or non-parametric equivalent.
Hairpin PAX2 siRNA template oligonucleotides utilized in the in vitro studies are utilized to examine the effect of the up-regulation of DEFB1 expression in vivo. The sense and antisense strand (see Table 3) are annealed and cloned into pSilencer 2.1 U6 hygro siRNA expression vector (Ambion) under the control of the human U6 RNA pol III promoter. The cloned plasmid is sequenced, verified and transfected into PC3, Du145, and LNCap cell lines. Scrambled shRNA is cloned and used as a negative control in this study. Hygromycin resistant colonies are selected, cells are introduced into the mice subcutaneously and tumor growth is monitored as described above.
Short oligonucleotides complementary to the PAX2 DNA-binding domain are provided. Examples of such oligonucleotides include the 20-mer and 40-mer oligonucleotides containing the CCTTG (SEQ ID NO: 1) recognition sequence provided below. These lengths were randomly selected, and other lengths are expected to be effective in blocking binding as well. As a negative control, oligonucleotides with a scrambled sequence (CTCTG) (SEQ ID NO: 22) were designed to verify specificity. The oligonucleotides are transfected into the prostate cancer cells and the hPrEC cells with lipofectamine reagent or Codebreaker transfection reagent (Promega, Inc). In order to confirm DNA-protein interactions, double stranded oligonucleotides will be labeled with [32P]dCTP and electrophoretic mobility shift assays are performed. DEFB1 expression can be monitored by QRT-PCR and Western blot analysis following treatment with oligonucleotides. Finally, cell death may be detected by the MTT assay and flow cytometry as previously described.
Further examples of oligonucleotides of the application include:
This set of alternative inhibitory oligonucleotides includes recognition sequences for PAX2 binding, which are derived from the DEFB1 promoter (SEQ ID NOs: 25 and 28). The PAX2 gene is required for the growth and survival of various cancer cells including prostate. In addition, the inhibition of PAX2 expression results in cell death mediated by the innate immunity component DEFB1. Suppression of DEFB1 expression and activity may be accomplished by binding of the PAX2 protein to an excess quantity of double stranded oligonucleotide decoy comprising the CCTTG (SEQ ID NO: 1) recognition site in the DEFB1 promoter. Use of such oligonucleotide decoys provides a viable therapeutic target for treatment of prostate cancer. In this method, binding of the oligonucleotide decoy to PAX2, prevents or reduces PAX2 binding to the DEFB1 promoter, thereby allowing DEFB1 expression to proceed. The oligonucleotide sequences and experiment described above are examples demonstrating a model for the design of additional PAX2 inhibitor drugs.
Generation of loss of function mice: The Cre/loxP system has been useful in elucidating the molecular mechanisms underlying prostate carcinogenesis. A DEFB1 Cre conditional KO is used for inducible disruption within the prostate. The DEFB1 Cre conditional KO involves the generation of a targeting vector containing loxP sites flanking DEFB1 coding exons, targeted ES cells with this vector and the generation of germline chimeric mice from these targeted ES cells. Heterozygotes are mated to prostate-specific Cre transgenics and heterozygous intercross is used to generate prostate-specific DEFB1 KO mice. Four genotoxic chemical compounds have been found to induce prostate carcinomas in rodents: N-methyl-N-nitrosourea (MNU), N-nitrosobis 2-oxopropyl amine (BOP), 3,2X-dimethyl-4-amino-biphenyl (MAB) and 2-amino-1-methyl-6-phenylimidazow 4,5-bxpyridine (PhIP). DEFB1-transgenic mice are treated with these carcinogenic compounds via intra-gastric administration or i.v. injection for prostate adenoma and adenocarcinoma induction studies. Prostate samples are studied for differences in tumor growth and changes gene expression though histological, immunohistological, mRNA and protein analyses.
Generation of GOF mice: For PAX2 inducible GOF mice, PAX2 GOF (bi-transgenic) and wild-type (mono-transgenic) littermates are administered doxycycline (Dox) from 5 weeks of age to induce prostate-specific PAX2 expression. Briefly, PROBASIN-rtTA mono-transgenic mice (prostate cell-specific expression of tet-dependent rtTA inducer) are crossed to our PAX2 transgenic responder lines. For induction, bi-transgenic mice are fed Dox via the drinking water (500 mg/L freshly prepared twice a week). Initial experiments verify low background levels, good inducibility and cell-type specific expression of PAX2 and the EGFP reporter using transgenic founder line in bi-transgenic mice. Regarding experimental group sizes, 5-7 age- and sex-matched individuals in each group (wild-type and GOF) allow for statistical significance. For all animals in this study, prostate tissues are collected initially at weekly intervals for analysis and comparison, to determine carcinogenic time parameters.
PCR genotyping, RT-PCR and qPCR: PROBASIN-rtTA transgenic mice are genotyped using the following PCR primers and conditions:
95° C. denaturation for 5 min, followed by 30 cycles of 95° C. for 30 sec, 57° C. for 30 sec, 72° C. for 30 sec, followed by a 5 min extension at 72° C., yielding a 600 bp product. PAX2 inducible transgenic mice are genotyped using the following PCR primers and conditions:
95° C. denaturation for 5 min, followed by 34 cycles of 95° C. for 30 sec, 63° C. for 30 sec, 72° C. for 30 sec, followed by a 5 min extension at 72° C., yielding a 460 bp product.
Immortomouse hemizygotes are be genotyped using the following PCR primers and conditions: Immol1,5′-GCGCTTGTGTC GCCATTGTATTC-3′ (SEQ ID NO: 35); Immol2,5′-GTCACACCACAGAAGTAAGGTTCC-3′ (SEQ ID NO: 36);
94° C. 30 sec, 58° C. 1 min, 72° C. 1 min 30 sec, 30 cycles to yield a ˜1 kb transgene band. For genotyping PAX2 knockout mice, the following PCR primers and conditions were used:
94° C. 1 min, 65° C. 1 min, 72° C. 30 sec, 36 cycles to yield a 280 bp band.
DEFB1 peptide animal studies: Six-week-old male athymic (nude) mice purchased from Charles River Laboratories are injected sub-cutaneously over the scapula with 106 viable PC3 cells. One week after injection, the animals are randomly allocated to one of three groups—group I: control; group II: intraperitoneal injections of DEFB1, 100 μg/day, 5 days a week, for weeks 2-14; group III: intraperitoneal injections of DEFB1, 100 μg/day, 5 days a week, for weeks 8-14. Animals are maintained in sterile housing, four animals to a cage, and observed on a daily basis. At 10-day intervals, the tumors are measured by using calipers, and the volumes of the tumors are calculated by using V=(L×W2)/2.
Cancer chemoprevention is defined as the prevention of cancer or treatment at the pre-cancer state or even earlier. The long period of progression to invasive cancer is a major scientific opportunity but also an economic obstacle to showing the clinical benefit of candidate chemopreventive drugs. Therefore, an important component of chemopreventive agent development research in recent years has been to identify earlier (than cancer) end points or biomarkers that accurately predict an agent's clinical benefit or cancer incidence-reducing effect. In many cancers, IEN is an early end point such as in prostate cancer. Given that the PAX2/DEFB1 pathway is deregulated during IEN and perhaps at even an earlier histopathological state makes it a powerful predictive biomarker and an excellent target for chemoprevention of cancer. Shown are a number of compounds that suppress PAX2 and increases DEFB1 expression that may have utility as chemoprevention agents for prostate cancer.
As shown in Table 1, the PAX2 gene is expressed in a number of cancers. In addition, several cancers have been shown to have aberrant PAX2 expression (
Cell culture: hPrEC cells and DUI45, LnCap, and PC3 cell lines were cultured as described in Example 1.
Reagents and treatments: Cells were treated with 5 or 10 uM of AngII, 5 uM of the AT1R antagonist Los, 5 uM of the AT2R antagonist PD123319, 25 uM of the MEK inhibitor U0126, 20 uM of the MEK/ERK inhibitor PD98059 or 250 μM of the AMP kinase inducer AICAR.
Western blot analysis: Western blot analysis was performed as described in Example 2. Blots were then probed with primary antibody (anti-PAX2, -phospho-PAX2, -JNK, -phospho-JNK, -ERK1/2, or -phospho-ERK1/2) (Zymed, San Francisco, Calif.) at 1:1000-2000 dilutions. After washing, the membranes were incubated with anti-rabbit antibody conjugated to horseradish peroxidase (HRP) (dilution 1:5000; Sigma), and signal detection was visualized using chemilluminescence reagents (Pierce) on an Alpha Innotech Fluorchem 8900. As a control, blots were stripped and re-probed with mouse anti-β-actin primary antibody (1:5000; Sigma-Aldrich) and HRP-conjugated anti-mouse secondary antibody (1:5000; Sigma-Aldrich), and signal detection was again visualized.
QRT-PCR analysis: Quantitative real-time RT-PCR was performed as described in Example 1 to verify changes in gene expression following PAX2 knockdown in PC3 and DU145 prostate cancer cell lines and the hPrEC normal prostate epithelial cells. Forty cycles of PCR were performed under standard conditions using an annealing temperature of 60° C. Quantification was determined by the cycle number where exponential amplification began (threshold value) and averaged from the values obtained from the triplicate repeats. There was an inverse relationship between message level and threshold value. In addition, GAPDH was used as a housekeeping gene to normalize the initial content of total cDNA. Relative expression was calculated as the ratio between each genes and GAPDH. All reactions were carried out in triplicate.
Thymidine incorporation: Proliferation of cells was determined by [H]thymidine ribotide ([3H]TdR) incorporation into DNA. 0.5×106 cells/well of suspension DU145 cells were plated in their appropriate media. Cells were incubated for 72 h with or without the presence of AngII at the indicated concentrations. Cells were exposed to 37 kBq/ml [methyl-3H]thymidine in the same medium for 6 h. The adherent cells were fixed by 5% trichloroacetic acid and lysed in SDS/NaOH lysis buffer overnight. Radioactivity was measured by Beckman LS3801 liquid scintillation counter (Canada). Suspension cell cultures were harvested by cell harvester (Packard Instrument Co., Meriden, Conn.), and radioactivity was measured by 1450 microβ liquid scintillation counter (PerkinElmer Life Sciences).
To investigate the effect of AngII on PAX2 expression in DU145 prostate cancer cells, PAX2 expression was examined following treatment with AngII over a 30 min to 48 hour period. As shown in
Blocking RAS signaling by treating DU145 with Los significantly reduced PAX2 expression. As shown in
It is known that the AT2R receptor opposes the action of the AT1R. Therefore, the effect of blocking the AT2R receptor on PAX2 expression was examined. Treatment of DU145 with the AT2R blocker PD123319 resulted in a 7-fold increase in PAX2 expression after 48 hours and an 8-fold increase after 96 hours of treatment (
It is known that AngII directly affects the proliferation of prostate cancer cells through AT1R-mediated activation of MAPK and STAT3 phosphorylation. Treatment of DU145 with AngII resulted in a two-to three-fold increase in proliferation rate (
To further examine the role of the AT1R signaling in the regulation of PAX2 expression and activation, the effect of blocking various components of the MAP kinase signaling pathway on PAX2 expression was examined. DU145 cells treated with the MEK inhibitor U0126 resulted in a significant reduction of PAX2 expression (
In addition, the effect of AT1R signaling on PAX2 activation by JNK was examined. Treatment of DU145 with Los, U0126, and PD98059 all resulted in a significant decrease or suppression of phospho-PAX2 protein levels (
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) is widely used as an AMP-kinase activator, which regulates energy homeostasis and response to metabolic stress. Recent reports have indicated anti-proliferative and pro-apoptotic action of activated AMPK using pharmacological agents or AMPK overexpression. AMPK activation has been shown to induce apoptosis in human gastric cancer cells, lung cancer cells, prostate cancer, pancreatic cells, and hepatic carcinoma cells and enhance oxidative stress induced apoptosis in mouse neuroblastoma cells, by various mechanisms that include inhibition of fatty acid synthase pathway and induction of stress kinases and caspase 3. In addition, treatment of PC3 prostate cancer cells increased expression of p21, p27, and p53 proteins and inhibition of PI3K-Akt pathway. All of these pathways are directly or indirectly regulated by PAX2. Treatment of prostate cancer cells with AICAR resulted in the suppression of PAX2 pression expression (
Finally, it was hypothesized that aberrant RAS signaling which leads to upregulation and overexpression of PAX2 suppresses the expression of the DEFB1 tumor suppressor gene. To investigate this possibility, a normal prostate epithelial primary culture hPrEC was treated with AngII and examined for expression levels of PAX2 and DEFB1. An inverse relationship between DEFB1 and PAX2 expression was discovered in normal prostate cells versus prostate cancer cells. As shown in
Inhibition of apoptosis is a critical pathophysiological factor that contributes to the development of cancer. Despite significant advances in cancer therapeutics, little progress has been made in the treatment of advanced disease. Given that carcinogenesis is a multiyear, multistep, multipath disease of progression, chemoprevention through the use of drug or other agents to inhibit, delay, or reverse this process has been recognized as a very promising area of cancer research. Successful drug treatment for the chemoprevention of prostate cancer requires the use of therapeutics with specific effects on target cells while maintaining minimal clinical effects on the host with the overall goal of suppressing cancer development. Therefore, understanding the mechanisms in early stage carcinogenesis is critical in determining the efficacy of a specific treatment. The significance of aberrant PAX2 expression and its abrogation of apoptosis, with subsequent contribution to tumor formation, suggest that it may be a suitable target for prostate cancer treatment. PAX2 was regulated by the AT1R in prostate cancer (
This study demonstrates that the upregulation of the PAX2 oncogene in prostate cancer is due to deregulated RAS signaling. PAX2 expression is regulated by the ERK 1/2 signaling pathway which is mediated by the Angiotensin type I receptor. In addition, blocking the AT1R with Losartan (Los) suppresses PAX2 expression. In addition, AICAR which is an AMPK activator has also shown promise as a potential PAX2 inhibitor. Collectively, these studies strongly implicate these classes of drugs as potential suppressors of PAX2 expression and may ultimately serve as novel chemoprevention agents.
QRT-PCR analysis: Prostate sections were collected from patients that underwent radical prostatectomies. Following pathological examination, laser capture microdisection was performed to isolate areas of Normal, Proliferative Intraepithelial Neoplasia (PIN) and cancerous tissue. QRT-PCR was performed as previously described to assess expression. DEFB1 and PAX2 expression in each region and GAPDH was used as an internal control.
Blood collection and RNA isolation: For QRT-PCR, blood (2.5 ml) from each individual was collected into a PAXGENE™ Blood RNA tube (QIAGEN) following the manufacturer's protocol. Whole blood was thoroughly mixed with PAXGENE™ stabilization reagent and stored at room temperature for 6 hours prior to RNA extraction. Total RNA was then extracted using the PAXGENE™ Blood RNA kit according to the manufacturer's directions (QIAGEN). In order to remove contaminating genomic DNA, total RNA samples absorbed to the PAXGENE™ Blood RNA System spin column was incubated with DNase I (QIAGEN) at 25° C. for 20 min to remove genomic DNA. Total RNA was eluted, quantitated, and QRT-PCR is performed as previously mentioned to compare PAX2 and DEFB1 expression ratios.
In
In
There currently is a critical need for predictive biomarkers for prostate cancer development. It is known that the onset of prostate cancer occurs long before the disease is detectable by current screening methods such as the PSA test or the digital rectal exam. It is thought that a reliable test which could monitor the progression and early onset of prostate cancer would greatly reduce the mortality rate through more effective disease management. Disclosed herein is a predictive index to allow physicians to know well in advance the pathological state of the prostate. The DPF measures the decrease in the PAX2-DEFB1 expression ratio associated with prostate disease progression. This powerful measure can not only predict the likelihood of a patient developing prostate cancer, but also may pinpoint the early onset of pre-malignant cancer. Ultimately, this tool can allow physicians to segregate which patients have more aggressive disease from those which do not.
The identification of cancer-specific markers has been utilized to help identify circulating tumor cells (CTCs). There is also emerging evidence which demonstrates that detection of tumor cells disseminated in peripheral blood can provide clinically important data for tumor staging, prognostication, and identification of surrogate markers for early assessment of the effectiveness of adjuvant therapy. Furthermore, by comparing gene expression profiling of all circulating cells, one can examine the expression of the DEFB1 and PAX2 genes which play a role in “immunosurveillance” and “cancer survival”, respectively as a prognosticator for the early detection of prostate cancer.
Cell culture: hPrEC cells and DU145, LnCap, and PC3 cell lines were cultured as described in Example 1.
Tissue samples and laser capture microdissection: Prostate tissues were obtained from patients who provided informed consent prior to undergoing radical prostatectomy. Samples were acquired through the Hollings Cancer Center tumor bank in accordance with an Institutional Review Board-approved protocol. This included guidelines for the processing, sectioning, histological characterization, RNA purification and PCR amplification of samples. Prostate specimens received from the surgeons and pathologists were immediately frozen in OCT compound. Each OCT block was cut to produce serial sections which were stained and examined. Areas containing benign cells, prostatic intraepithelial neoplasia (PIN), and cancer were identified and used to guide our selection of regions from unstained slides using the Arcturus PixCell II System (Sunnyvale, Calif.). Caps containing captured material were exposed to 20 μl of lysate from the Arcturus Pico Pure RNA Isolation Kit and processed immediately. RNA quantity and quality was evaluated using sets of primers that produce 5′ amplicons. The sets include those for the ribosomal protein L32 (the 3′ amplicon and the 5′ amplicon are 298 bases apart), for the glucose phosphate isomerase (391 bases apart), and for the glucose phosphate isomerase (842 bases apart). Ratios of 0.95 to 0.80 were routinely obtained for these primer sets using samples from a variety of prepared tissues. Additional tumor and normal samples were grossly dissected by pathologists, snap frozen in liquid nitrogen and evaluated for hBD-1 and cMYC expression.
Cloning of hBD-1 gene: hBD-1 cDNA was generated from RNA by reverse transcription-PCR using primers generated from the published hBD-1 sequence (accession no. U50930) (Ganz, 2004). The PCR primers were designed to contain ClaI and KpnI restriction sites. hBD-1 PCR products were restriction digested with ClaI and KpnI and ligated into a TA cloning vector. The TA/hBD1 vector was then transfected into the XL-1 Blue strain of E. coli by heat shock and individual clones were selected and expanded. Plasmids were isolated by Cell Culture DNA Midiprep (Qiagen, Valencia, Calif.) and sequence integrity verified by automated sequencing. The hBD-1 gene fragment was then ligated into the pTRE2 digested with ClaI and KpnI, which served as an intermediate vector for orientation purposes. The pTRE2/hBD-1 construct was digested with ApaI and KpnI to excise the hBD-1 insert. The insert was ligated into pIND vector of the Ecdysone Inducible Expression System (Invitrogen, Carlsbad, Calif.) also double digested with ApaI and KpnI. The construct was transfected into E. coli and individual clones were selected and expanded. Plasmids were isolated and sequence integrity of pIND/hBD-1 was again verified by automated sequencing.
Cell transfections: Cells (1×106) were seeded onto 100-mm Petri dishes and grown overnight. Next, the cells were co-transfected using Lipofectamine 2000 (Invitrogen) with 1 μg of pvgRXR plasmid, which expresses the heterodimeric ecdysone receptor, and 1 μg of the pIND/hBD-1 vector construct or pIND/β-galactosidase (3-gal) control vector in Opti-MEM media (Life Technologies, Inc.). Transfection efficiency was determined by inducing β-gal expression with Ponasterone A (PonA) and staining cells with a (3-galactosidase detection kit (Invitrogen). Assessment of transfection efficiency by counting positive staining (blue) colonies which demonstrated that 60-85% of cells expressed β-galactosidase for the cell lines.
Immunocytochemistry: In order to verify hBD-1 protein expression, DU145 and hPrEC cells were seeded onto 2-chamber culture slides (BD Falcon, USA) at 1.5-2×104 cells per chamber. DU145 cells transfected with pvgRXR alone (control) or with the hBD-1 plasmid were induced for 18 h with media containing 10 μM Pon A, while untransfected cells received fresh growth media. Following induction, cells were washed in 1×PBS and fixed for 1 h at room temperature with 4% paraformaldehyde. Cells were then washed six times with 1×PBS and blocked in 1×PBS supplemented with 2% BSA, 0.8% normal goat serum (Vector Laboratories, Inc., Burlingame, Calif.) and 0.4% Triton-X 100 for 1 h at room temperature. Next, cells were incubated overnight in primary rabbit anti-human BD-1 polyclonal antibody (PeproTech Inc., Rocky Hill, N.J.) diluted 1:1000 in blocking solution. Following this, cells were washed six times with blocking solution and incubated for 1 h at room temperature in Alexa Fluor 488 goat anti-rabbit IgG (H+L) secondary antibody at a dilution of 1:1000 in blocking solution. After washing cells with blocking solution six times, coverslips were mounted with Gel Mount (Biomeda, Foster City, Calif.). Finally, cells were viewed under differential interference contrast (DIC) and under laser excitation at 488 nm. The fluorescent signal was analyzed by confocal microscopy (Zeiss LSM 5 Pascal) using a 63×DIC oil lens with a Vario 2 RGB Laser Scanning Module. The digital images were exported into Photoshop CS Software (Adobe Systems) for image processing and hard copy presentation.
RNA isolation and quantitative RT-PCR: QRT-PCR was performed as previously described (Gibson et al., 2007). Briefly, total RNA (0.5 μg per reaction) from tissue sections were reverse transcribed into cDNA utilizing random primers (Promega). Two-step QRT-PCR was performed on cDNA generated using the MultiScribe Reverse Transcriptase from the TaqMan Reverse Transcription System and the SYBR Green PCR Master Mix (Applied Biosystems, Foster City, Calif.). The primer pairs for hBD-1 and c-MYC were generated from the published sequences (Table 5). Forty cycles of PCR were performed under standard conditions using an annealing temperature of 56.4° C. for hBD-1 and c-MYC and 55° C. for PAX2. In addition, β-actin (Table 5) was amplified as a housekeeping gene to normalize the initial content of total cDNA. Gene expression in benign prostate tissue samples was calculated as the expression ratio compared to β-actin. Levels of hBD-1 expression in malignant prostate tissue, hPREC prostate primary culture, and prostate cancer cell lines before and after induction were calculated relative to the average level of hBD-1 expression in hPrEC cells. As a negative control, QRT-PCR reactions without cDNA template were also performed. All reactions were run a minimum of three times.
MTT cell viability assay: To examine the effects of hBD-1 on cell growth, metabolic 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was performed. DU145, LNCaP, PC3 and PC3/AR+ cells co-transfected with pvgRXR plasmid and pIND/hBD-1 construct or control pvgRXR plasmid were seeded onto a 96-well plate at 1-5×103 cells per well. Twenty-four hours after seeding, fresh growth medium was added containing 10 μM Pon A daily to induce hBD-1 expression for 24, 48 and 72 h after which the MTT assay was performed according to the manufacturer's instructions (Promega). Reactions were performed three times in triplicate.
Analysis of membrane integrity: Acridine orange (AO)/ethidium bromide (EtBr) dual staining was performed to identify changes in cell membrane integrity, as well as apoptotic cells by staining the condensed chromatin. AO stains viable cells and early apoptotic cells, whereas EtBr stains late stage apoptotic cells that have compromised membranes. Briefly, PC3, DU145 and LNCaP cells were seeded into 2-chamber culture slides (BD Falcon). Cells transfected with empty plasmid or hBD-1 plasmid were induced for 24 or 48 h with media containing 10 μM Pon A, while control cells received fresh growth media at each time point. After induction, cells were washed once with PBS and stained with 2 ml of a mixture (1:1) of AO (Sigma, St. Louis, Mo.) and EtBr (Promega) (5 μg/ml) solution for 5 min and were again washed with PBS.
Fluorescence was viewed by a Zeiss LSM 5 Pascal Vario 2 Laser Scanning Confocal Microscope (Carl Zeiss). The excitation color wheel contains BS505-530 (green) and LP560 (red) filter blocks which allowed for the separation of emitted green light from AO into the green channel and red light from EtBr into the red channel. The laser power output and gain control settings within each individual experiment were identical between control and hBD-1 induced cells. The excitation was provided by a Kr/Ar mixed gas laser at wavelengths of 543 nm for AO and 488 nm for EtBr. Slides were analyzed under 40× magnification and digital images were stored as uncompressed TIFF files and exported into Photoshop CS software (Adobe Systems) for image processing and hard copy presentation.
Flow cytometry: PC3 and DU145 cells transfected with the hBD-1 expression system were grown in 60-mm dishes and induced for 12, 24, and 48 h with 10 μM Pon A. The cells were harvested and analyzed by flow cytometry as described in Example 1.
Caspase detection: Detection of caspase activity in the prostate cancer cell lines was performeds described in Example 1.
siRNA silencing of PAX2: SiRNA knock-down and verification was performed as described in Example 2.
hBD-1 expression in prostate tissue: 82% of prostate cancer frozen tissue sections analyzed exhibited little or no expression of hBD-1 (Donald et al., 2003). To compare hBD-1 expression levels, QRT-PCR analysis was performed on normal prostate tissue obtained by gross dissection or LCM of normal prostate tissue adjacent to malignant regions which were randomly chosen. hBD-1 was detected in all of the gross dissected normal clinical samples with a range of expression that represents approximately a 6.6-fold difference in expression levels (
hBD-1 expression in prostate cell lines: To verify upregulation of hBD-1 in the prostate cancer cell lines, QRT-PCR was performed in cells transfected with a DEFB1 (hBD-1) expression system inducible with Ponasterone A (Pon A). In addition, no template negative controls were also performed, and amplification products were verified by gel electrophoresis.
Expression of hBD-1 results in decreased cell viability MTT assay was performed to assess the effect of hBD-1 expression on relative cell viability in DU145, PC3, PC3/AR+ and LNCaP prostate cancer cell lines. MTT analysis with empty vector exhibited no statistical significant change in cell viability. Twenty-four hours following hBD-1 induction, relative cell viability was 72% in DU145 and 56% in PC3 cells, and after 48 h cell viability was reduced to 49% in DU145 and 37% in PC3 cells (
To determine whether the effects of hBD-1 on PC3 and DU145 were cytostatic or cytotoxic, FACS analysis was performed to measure cell death. Under normal growth conditions, more than 90% of PC3 and DU145 cultures were viable and non-apoptotic (lower left quadrant, (
hBD-1 causes alterations in membrane integrity and caspase activation: It was investigated whether the cell death observed in prostate cancer cells after hBD-1 induction is caspase-mediated apoptosis. To better understand the cellular mechanisms involved in hBD-1 expression, confocal laser microscopic analysis was performed (
The proposed mechanism of antimicrobial activity of defensin peptides is the disruption of the microbial membrane due to pore formation (Papo and Shai, JBC 280:10378-10387 (2005)). In order to determine if hBD-1 expression altered membrane integrity EtBr uptake was examined by confocal analysis. Intact cells were stained green due to AO which is membrane permeable, while only cells with compromised plasma membranes stained red due to incorporation of membrane impermeable EtBr. Control DU145 and PC3 cells stained positively with AO and emitted green color, but did not stain with EtBr. However, hBD-1 induction in both DU145 and PC3 resulted in the accumulation of EtBr in the cytoplasm at 24 h as indicated by the red staining. By 48 h, DU145 and PC3 possessed condensed nuclei and appeared yellow due to the colocalization of green and red staining from AO and EtBr, respectively. Conversely, there were no observable alterations to membrane integrity in LNCaP cells after 48 h of induction as indicated by positive green fluorescence with AO, but lack of red EtBr fluorescence. This finding indicates that alterations to membrane integrity and permeabiization in response to hBD-1 expression differ between early- and late-stage prostate cancer cells.
Comparison of hBD-1 and cMYC expression levels: QRT-PCR analysis was performed on LCM prostate tissue sections from three patients (
Induction of hBD-1 expression following PAX2 inhibition: To further examine the role of PAX2 in regulating hBD-1 expression, siRNA was utilized to knock-down PAX2 expression and QRT-PCR performed to monitor hBD-1 expression. Treatment of hPrEC cells with PAX2 siRNA exhibited no effect on hBD-1 expression (
Cell lines: The cancer cell lines PC3, DU145 and LNCaP, which all differ in p53 mutational status (Table 6), were cultured as described in Example 1. The prostate epithelial cell line hPrEC was obtained from Cambrex Bio Science, Inc., (Walkersville, Md.) and were cultured in prostate epithelium basal media. Cells were maintained at 37° C. in 5% CO2.
siRNA silencing of PAX2: siRNA silencing of PAX2 was performed as described in Example 2.
Western blot analysis: Western blot analysis was performed as described in Example 2.
Phase contrast microscopy: The effect of PAX2 knockdown on cell number was analyzed by phase contrast microscopy as described in Example 1.
MTT cytotoxicity assay: MTT cytotoxicity assay was performed as described in Example 1.
Pan-caspase detection: Detection of caspase activity in the prostate cancer cell lines was performed as described in Example 1.
Quantitative real-time RT-PCR: To verify changes in gene expression following PAX2 knockdown in PC3, DU145 and LNCaP cell lines, quantitative real-time RT-PCR was performed as described in Example 1. The primer pairs for BAX, BID, BCL-2, AKT and BAD were generated from the published sequences (Table 7). Reactions were performed in MicroAmp Optical 96-well Reaction Plate (PE Biosystems). Forty cycles of PCR were performed under standard conditions using an annealing temperature of 60° C. Quantification was determined by the cycle number where exponential amplification began (threshold value) and averaged from the values obtained from the triplicate repeats. There was an inverse relationship between message level and threshold value. In addition, GAPDH was used as a housekeeping gene to normalize the initial content of total cDNA. Relative expression was calculated as the ratio between each genes and GAPDH. All reactions were carried out in triplicate.
Membrane permeability assay: Membrane permeability assay was performed as described in Example 3.
Analysis of PAX2 protein expression in prostate cells: PAX2 protein expression was examined by Western blot analysis in hPrEC prostate primary culture and in LNCaP, DU145 and PC3 prostate cancer cell lines. PAX2 protein was detected in all of the prostate cancer cell lines (
Effect of PAX2 knockdown on prostate cancer cell growth: The effect of PAX2 siRNA on cell number and cell viability was analyzed using light microscopy and MTT analysis. To examine the effect of PAX2 siRNA on cell number, PC3, DU145 and LNCaP cell lines were transfected with media only, non-specific siRNA or PAX2 siRNA over a period of 6 days. Each of the cell lines reached a confluency of 80-90% in 60 mm culture dishes containing media only. Treatment of hPrEC, DU145, PC3 and LNCaP cells with non-specific siRNA appeared to have little to no effect on cell growth compared to cell treated with media only (
Effect of PAX2 knockdown on prostate cancer cell viability: Cell viability was measured after 2-, 4-, and 6-day exposure times. Percent viability was calculated as the ratio of the 570-630 nm absorbance of cell treated with PAX2 siRNA divided by untreated control cells. As negative controls, cell viability was measured after each treatment period with negative control non-specific siRNA or transfection with reagent alone. Relative cell viability was calculated by dividing percent viability following PAX2 siRNA treatment by percent viability following treatment with non-specific siRNA (
Detection of pan-caspase activity: Caspase activity was detected by confocal laser microscopic analysis. LNCaP, DU145 and PC3 cells were treated with PAX2 siRNA and activity was monitored based on the binding of FAM-labeled peptide to caspases in cells actively undergoing apoptosis which will fluoresce green. Analysis of cells with media only shows the presence of viable LNCaP, DU145 and PC3 cells, respectively. Excitation by the confocal laser at 488 nm produced no detectable green staining which indicates no caspase activity in the untreated cells (
Effect of PAX2 inhibition on apoptotic factors: LNCaP, DU145 and PC3 cells were treated with siRNA against PAX2 for 4 days and expression of both pro- and anti-apoptotic factors were measured by QRT-PCR. Following PAX2 knockdown, analysis of BAD revealed a 2-fold in LNCaP, 1.58-fold in DU145 and 1.375 in PC3 (
Analysis of membrane integrity and necrosis: Membrane integrity was monitored by confocal analysis in LNCaP, DU145 and PC3 cells. Here, intact cells stained green due to AO which is membrane permeable, while cells with compromised plasma membranes would stained red due to incorporation of membrane impermeable EtBr into the cytoplasm, and yellow due to co-localization of AO and EtBr in the nuclei. Untreated LNCaP, DU145 and PC3 cells stained positively with AO and emitted green color, but did not stain with EtBr. Following PAX2 knockdown, there were no observable alterations to membrane integrity in LNCaP cells as indicated by positive green fluorescence with AO and absence of red EtBr fluorescence. These finding further indicate that LNCaP cells can be undergoing apoptotic, but not necrotic cell death following PAX2 knockdown. Conversely, PAX2 knockdown in DU145 and PC3 resulted in the accumulation of EtBr in the cytoplasm as indicated by the red staining. In addition, both DU145 and PC3 possessed condensed nuclei which appeared yellow due to the co-localization of green and red staining from AO and EtBr, respectively. These results indicate that DU145 and PC3 are undergoing an alternate cell death pathway involving necrotic cell death compared to LNCaP.
Cell culture: hPrEC cells and DU145, LnCap, and PC3 cell lines were cultured as described in Example 1.
siRNA silencing of PAX2 and EN2: Small interfering RNA knock-down was performed as previously described (Gibson et al., Cancer Lett., 248 (2):251-261, 2007). Briefly, a pool of four complementary siRNAs, targeting human PAX2 mRNA (Accession no. NM—003989.1) were synthesized (Dharmacon Research, Lafayette, Colo., USA) to knock down expression. To achieve EN2 gene silencing, siRNA targeting human EN2 mRNA (Accession no. NM—001427.2) was purchased from Ambion (Applied Biosystem, Inc.). The siRNA and the cDNA sequences of the EN2 mRNA target sequences are:
In addition, a second pool of four non-specific siRNAs was used as a negative control (Dharmacon, Inc.). siRNA molecules were transfected with Code-Breaker transfection reagent according to the manufacturer's protocol (Promega, Inc.).
RNA isolation and quantitative real-time PCR: RNA was isolated and subjected to two-step QRT-PCR as described in Example 1. The primer pair for human PAX2 (Cat # PPH06881-A, SEQ ID NOS: 33 and 34) and EN2 (Cat. # PPH00975A, SEQ ID NOS:75 and 76) were purchased from Super Array Bioscience, Frederick, Md., USA. GAPDH was amplified as a housekeeping gene to normalize the initial content of total cDNA as previously described (Gibson et al., Cancer Lett., 248 (2):251-261, 2007).
Cell proliferation assay: The rate of cell proliferation was determined by [3H]thymidine ribotide ([3H]TdR) incorporation into DNA. Approximately 2.5-5×104 cells were plated onto 24-well plates in their appropriate media. Cells were incubated for 72 hours in the absence or presence of siRNA at the indicated concentrations. The cells were exposed to 37 kBq/ml [methyl-3H]thymidine in the same medium for 6 hours. The adherent cells were fixed by 5% trichloro-acetic acid and lysed in SDS/NaOH lysis buffer overnight. Radioactivity was measured with a Beckman LS3801 liquid scintillation counter. All assays were run three times in triplicate.
Western blot analysis: Western blot analysis was performed as described in Example 2.
Statistical analysis: Statistical analysis was performed using the Student's t-test for unpaired values. P values were determined by a two-sided calculation, and a P value of less than 0.05 was considered statistically significant. Statistical differences are indicated by asterisks.
Analysis of EN2 expression in prostate cancer cells: To investigate EN2 expression, QRT-PCR was performed on prostate cancer cell lines and hPrEC prostate primary culture. As shown in
Small interfering RNA-mediated suppression of EN2: QRT-PCR analysis of EN2 expression was monitored in PC3 cells following treatment with an EN2 siRNA comprising SEQ ID NO: 78, 79, 81, 82, 84, or 85. This study revealed a 63% decrease after 48 hours, 43% after 72 hours, and 60% after 96 hours of EN2 siRNA treatment in PC3 (
Effect of EN2 knockdown on prostate cancer cell growth: To examine the effect of therapeutic targeting and inhibition of EN2 expression on the rate of prostate cancer cell growth, cell proliferation was monitored by a thymidine incorporation assay after 72 hours of siRNA treatment against EN2 in PC3 and LNCaP cells. Treatment of PC3 cells with 150 nM EN2 siRNA resulted in a 20% inhibition in cell proliferation rate compared to cell treated with media only (
Effect of PAX2 knockdown on EN2 expression in prostate cancer: To determine the role of PAX2 on EN2 expression in prostate cancer, PC3 and LNCaP cells were treated for 3 days with a pool of siRNAS specifically targeted against PAX2 (SEQ ID NOS:3-6). It was previously demonstrated that siRNA knockdown of PAX2 expression occurs as early as 2 days in the prostate cancer cell lines (Gibson et al., Cancer Lett., 248 (2):251-261, 2007). QRT-PCR analysis revealed that EN2 mRNA level was down-regulated in PC3 cell line by 91% as compared to control cells treated with media only (
Analysis of PAX2 expression after EN2 knockdown in prostate cancer: QRT-PCR analysis of PAX2 was performed in LNCaP cells after treatment with EN2 siRNA to determine whether EN2 can modulate PAX2 expression in prostate cancer. The data shows that PAX2 mRNA level was significantly decreased by 90% at 48 hours, 67% at 72 hours and 90% at 96 hours in LNCaP cells (
Comparition of EN2- to DEFB1 expression rations in prostate cancer: QRT-PCR analysis of EN2 and DEFB1 was performed in the prostate epithelial cell line HPrEC and the prostate cancer cell lines LnCaP, DU145 and PC3. The data shows that the EN2/DEFB1 ratio was 0.24 in HPrEC, 24 in DU145, 210 in LnCaP, and 566 in PC3 (
This example demonstrates that EN2 is over-expressed in human prostate cancer cells as compared to normal prostate epithelial cells. It is plausible that deregulated expression of PAX2 and EN2 may ultimately promote tumor progression specifically via cancer cell proliferation and survival.
The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present invention, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present invention, which is defined by the following claims. The claims are intended to cover the claimed components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.
This application is a continuation-in-part of U.S. application Ser. No. 12/708,294, filed Feb. 18, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/090,191, filed on Sep. 15, 2008 as the national entry of PCT Application No. PCT/US2006/040215, filed on Oct. 16, 2006, which claims priority to U.S. Patent Application No. 60/726, 921, filed on Oct. 14, 2005 and is a continuation-in-part of U.S. patent application Ser. No. 12/546,292, filed on Aug. 24, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 12/440; 193, filed on Mar. 13, 2009 as the national entry of PCT Application No. PCT/US2008/051168, filed Jan. 16, 2008, which claims priority to U.S. Provisional Application No. 60/885,142, filed Jan. 16, 2007. The entirety of all of the aforementioned applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60726921 | Oct 2005 | US | |
60885142 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12708294 | Feb 2010 | US |
Child | 13310930 | US | |
Parent | 12090191 | Sep 2008 | US |
Child | 12708294 | US | |
Parent | 12546292 | Aug 2009 | US |
Child | 12090191 | US | |
Parent | 12440193 | Mar 2009 | US |
Child | 12546292 | US |