COMPOSITIONS AND METHODS FOR NEURALGENESIS

Abstract
The present invention relates to novel compositions and methods to produce 3D organ equivalents of the brain (i.e. “mini-brains”). The invention also relates to methods of using human induced pluripotent stem cells, a combination of growth and other soluble factors and gyratory shaking. Cells from healthy or diseased donors or animals can be used to allow testing different genetic backgrounds. The model can be further enhanced by using genetically modified cells, adding micro-glia or their precursors or indicator cells (e.g. with reporter genes or tracers) as well as adding endothelial cells to form a blood-brain-barrier.
Description
BACKGROUND

Simple neural in vitro systems do not reflect the physiology, cellular interactions, or genetics of mammalian brain tissue. Accordingly, there is an unmet need to develop human models of brain disorders and/or diseases.


SUMMARY

Aspects of the invention are directed to an in vitro brain microphysiological system (BMPS). In embodiments, the BMPS comprises a least one neural cell type aggregated into a spheroid mass and a population of microglia-like cells. The in vitro BMPS can be electrophysiologically active in a spontaneous manner.


In one embodiment, the micro-glia like cells comprise microglia, microglia precursor cells, or a combination thereof. The micro-glia like cells can comprise monocytes, human monocytes, pro-monocyte cell lines, hematopoietic stem cells, isolated microglia, immortalized microglia, or combinations thereof. In embodiments, the monocytes comprise adult cell-derived monocytes, embryonic cell-derived monocytes, or a combination thereof. The monocytes can comprise embryonic stem cell (ESC)-derived monocytes, induced pluripotent stem cell (iPSC)-derived monocytes, or a combination thereof. In certain embodiments, the isolated microglia comprise adult microglia, fetal microglia, or a combination thereof. The microglia-like cells can be derived from somatic cells, neuronal cells, myeloid progenitor cells, or a combination thereof. In embodiments, the microglia-like cells express one or more of the following biomarkers: HLA-DR, Iba1, CD14, CX3CR1, F4/80, CD80, CD86, CD36, iNOS, COX2, ARG1, PPARy, SOCS-3, TMEM119, Mertk, Ax1, CD11b, CD11c, P2RY12, CD45, CD68, CD40, B7, ICAM-1 or any combination thereof.


In some embodiments, the BMPS expresses receptors associated with microglia function. In embodiments, the receptors associated with microglia function comprise CCL2, CX3CL, RAGE, NLRP3, SR-AI, TREM2, FPRL1/FPR2, CD36, CD33, C5a, CR1, CR3/Mac-1, FcRs, FPRs, TLRs, or a combination thereof.


In embodiments, the BMPS is configured to elicit a pro-inflammatory response, an anti-inflammatory response, or a combination thereof. The BMPS can be configured to elicit a pro-inflammatory response to viral infection, LPS exposure, or a combination thereof. The BMPS being configured to elicit an anti-inflammatory response to IL-3, IL-4, IL-10, IL-13, IL-1β, IL-6, TNF-α, TGF-β, or a combination thereof.


In certain embodiments, the microglia-like cells comprise about 20% or less of the BMPS.


In embodiments, the at least one neuronal cell type comprises a mature neuron, a glial cell, or a combination thereof. The at least one neural cell type can further comprise astrocytes, polydendrocytes, oligodendrocytes, or combinations thereof.


In various exemplary embodiments, the in vitro BMPS has neural characteristics selected from the group consisting of synaptogenesis, neuron-neuron interactions, neuronal-glial interactions, axon myelination, cell migration, neurological development, disease phenotypes, or combinations thereof. Exemplary disease process phenotypes include autophagy, Integrated stress response, non-sense mediated decay, lesions, amyloid deposition, plaque formation, protein aggregation, or combinations thereof.


In embodiments, the at least one neural cell type express one or more biomarker selected from the group consisting of MBP, PLP, NG2, Olig1, Olig2, Olig 3, OSP, MOG, SOX10, neurofilament 200 (NF200), GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof. The at least one neuronal cell type can comprise one or more genetically modified cells. In embodiments, the one or more genetically modified cells comprise one or more reporter genes.


In certain embodiments, the spheroid mass comprises a diameter that is about 1000 μm or less. The spheroid mass can comprise a diameter that is about 500 μm or less.


In embodiments, the BMPS comprises one or more endothelial cells, pericytes, or a combination thereof capable of forming a blood-brain-barrier.


Other aspects are directed to a method of reproducibly producing an in vitro brain microphysiological system (BMPS). In embodiments, the method comprises any one or more of the following steps: inducing one or more pluripotent stem cell (PSC) types; differentiating the one or more PSC types to form one or more neural progenitor cell (NPC) types; exposing the one or more NPC types to gyratory shaking or stirring; differentiating the one or more NPC types into one or more neural cell types aggregated into a spheroid mass; and adding microglia-like cells. In embodiments, the micro-glia like cells comprise mature microglia, monocytes, human monocytes, pro-monocyte cell lines, PSC-derived monocytes, hematopoetic stem cells, isolated microglia, immortalized microglia, or combinations thereof. In embodiments, the one or more pluripotent stem cells are selected from the group consisting of human or animal embryonic stem cells, iPSC, adult stem cells, fibroblasts, embryonic fibrobflasts, peripheral blood mononuclear cells, neuronal precursor cells, mesenchymal stem cells, neuronal cells, glial cells, and combinations thereof. The microglia-like cells can be added during an early stage (before BMPS differentiation) or late stage (after BMPS differentiation). In alternate embodiments, the microglia are generated in parallel with the BMPS. In certain embodiments, gyratory shaking comprises constant or regular gyratory shaking or stirring for 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, or 8 or more weeks.


The present invention provides brain microphysiological systems (BMPS) that can be produced from induced pluripotent stem cells (iPSCs). Furthermore, the invention provides for reproducible BMPS that differentiate into mature neurons and glial cells (astrocytes and oligodendrocytes) in the central nervous system. This model is electrophysiologically active in a spontaneous manner and may be reproduced with patient cells. The derivation of 3D BMPS from iPSCs has applications in the study and treatment of neurological diseases.


In an aspect, the disclosure provides an in vitro brain microphysiological system (BMPS), comprising two or more neural cell types aggregated into a spheroid mass, wherein the spheroid mass has a diameter that is less than about 500 μm and the in vitro BMPS is electrophysiologically active in a spontaneous manner.


In an embodiment, the two or more neural cell types comprise at least a mature neuron and glial cell.


In an embodiment, the two or more neural cell types further comprise cells selected from the group consisting of astrocytes, polydendrocytes, oligodendrocytes, and combinations thereof.


In an embodiment, the in vitro BMPS has neural characteristics selected from the group consisting of synaptogenesis, neuron-neuron interactions, neuronal-glial interactions, axon myelination, and combinations thereof.


In an embodiment, two or more neural cell types of the in vitro BMPS express one or more biomarker selected from the group consisting of GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, MBP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof.


In an aspect, the disclosure provides a synthetic neurological organ comprising two or more neural cell types aggregated into a spheroid mass, wherein the spheroid mass has a diameter that is less than 500 μm and the in vitro BMPS is electrophysiologically active in a spontaneous manner. In an embodiment, the two or more neural cell types comprise at least a mature neuron and glial cells.


In an embodiment, the mature neuron and glial cells further comprise cells selected from the group consisting of astrocytes, polydendrocytes, oligodendrocytes, and combinations thereof.


In an embodiment, the synthetic neurological organ further comprises neural characteristics selected from the group consisting of synaptogenesis, neuron-neuron interactions, neuronal-glial interactions, axon myelination, and combinations thereof.


In an embodiment, the synthetic neurological organ mimics the microenvironment of the central nervous system (CNS).


In an aspect, the disclosure provides a method of reproducibly producing an in vitro brain microphysiological system (BMPS), comprising: inducing one or more pluripotent stem cell (PSC) types; differentiating the one or more PSC types to form one or more neural progenitor cell (NPC) types; exposing the one or more NPC types to gyratory shaking or stirring; and differentiating the one or more NPC types into one or more neural cell types aggregated into a spheroid mass, wherein the spheroid mass has a diameter that is less than 500 μm.


In an embodiment, the one or more pluripotent stem cells are selected from the group consisting of human or animal embryonic stem cells, iPSC, adult stem cells, fibroblasts, embryonic fibroblasts, peripheral blood mononuclear cells, neuronal precursor cells, mesenchymal stem cells, and combinations thereof.


In an embodiment, inducing further comprises: adding micro-glia or micro-glia precursor cells.


In an embodiment, the micro-glia or micro-glia precursor cells are selected from the group consisting of monocytes, human monocytes, pro-monocyte cell lines, iPSC-derived monocytes, hematopoetic stem cells, isolated microglia, immortalized microglia, and combinations thereof.


In an embodiment, gyratory shaking comprises constant or regular gyratory shaking or stirring for 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, or 8 or more weeks.


In an embodiment, the one or more growth factors are selected from the group consisting of GDNF, BDNF, GM-CSF, B27, basic FGF, basic EGF, NGF, CNTF, and any combination thereof.


In an aspect, the disclosure provides a method of cryopreserving an in vitro brain microphysiological system (BMPS), comprising: differentiating BMPS aggregates into one or more mature neurons; incubating the aggregates in a cryopreserving medium; and exposing the aggregates to freezing temperatures of −60° C. or colder.


In an embodiment, differentiating further comprises: inducing differentiation of one or more pluripotent stem cell types by incubation with one or more growth factors.


In an embodiment, the one or more pluripotent stem cells are selected from a group consisting of human or animal embryonic stem cells, iPSC, adult stem cells, fibroblasts, embryonic fibroblasts, peripheral blood mononuclear cells, neuronal precursor cells, mesenchymal stem cells, and combinations thereof.


In an embodiment, inducing further comprises: adding micro-glia precursor cells.


In an embodiment, micro-glia precursor cells are selected from the group consisting of monocytes, human monocytes, iPSC-derived monocytes, hematopoetic stem cells, pro-monocyte cell lines, isolated microglia, immortalized microglia, and combinations thereof.


In an embodiment, the one or more growth factors are selected from the group consisting of GDNF, BDNF, GM-CSF, B27, basic FGF, basic EGF, NGF, CNTF, and any combination thereof.


In an embodiment, the cryopreserving medium is a medium selected from the group consisting of regular cryopreservation medium (95% FBS and 5% DMSO), STEMdiff Neural Progenitor Freezing Medium (Stem Cells Technologies), solutions with cryoprotectants, and combinations thereof.


In an embodiment, exposing the aggregates to freezing temperatures further comprises freezing aggregates over a temperature gradient of about 1° C. per hour to below −60° C. over up to 48 hours.


In an embodiment, cryopreserving further comprises additives selected from the group consisting of DMSO, HES, glycerol, serum, and any combination or derivative thereof.


In an aspect, the disclosure provides a method of transporting a brain microphysiological system (BMPS) or mini-brain, comprising: producing the BMPS or mini-brain of claim 1, incubating the BMPS or mini-brain at 37° C., and maintaining the temperature at 37° C. with constant application of heat while moving the BMPS or mini-brain.


In an embodiment, maintaining the temperature comprises use of heating pads, heaters, insulation, insulated boxes, heat packs, electric blankets, chemical pads, and combinations thereof.


In an aspect, the disclosure provides a method of studying a neurological disease or disorder comprising: producing an in vitro brain microphysiological system (BMPS); exposing the in vitro BMPS to conditions that replicate or induce the neurological disease or disorder; adding an agent to treat the neurological disease or disorder; and assessing the effect of the agent on the neurological disease or disorder.


In an embodiment, the neurological disease or disorder is selected from the group consisting of neurodegenerative disorder, muscular dystrophy, Parkinson's Disease, Huntington's Disease, Autism Spectrum Disorder and other neurodevelopmental disorders, Down's Syndrome, Multiple Sclerosis, Amyotrophic lateral sclerosis, brain cancer, encephalitis, infection, trauma, stroke, and paralysis.


In an aspect, the disclosure provides a method of treating a patient having a neurological disease or disorder, comprising: extracting a stem cell from the patient with a genetic background pre-disposed for the neurological disease or disorder; producing a brain microphysiological system (BMPS) or mini-brain with the genetic background; treating the BMPS or mini-brain with an agent targeting the neurological disease or disorder; and assessing the effect of the agent on the BMPS or mini-brain.


In an embodiment, the neurological disease or disorder is selected from the group consisting of neurodegenerative disorder, muscular dystrophy, Parkinson's Disease, Huntington's Disease, Autism Spectrum Disorder and other neurodevelopmental disorders, Down's Syndrome, Multiple Sclerosis, Amyotrophic lateral sclerosis, brain cancer, encephalitis, infection, trauma, stroke, and paralysis.


In an embodiment, the BMPS includes two or more neuronal cell types that include one or more genetically modified cells. The BMPS wherein the one or more genetically modified cells include one or more reporter genes. The BMPS further comprises one or more endothelial cells capable of forming a blood-brain-barrier.


In an embodiment, the synthetic neurological organ may include two or more neural cell types that include one or more genetically modified cells. The synthetic neurological organ including one or more genetically modified cells that include one or more reporter genes. The synthetic neurological organ further comprising one or more endothelial cells capable of forming a blood-brain-barrier.


In an aspect, the disclosure provides a method of reproducibly producing an in vitro brain microphysiological system (BMPS), comprising: exposing one or more NPC types to gyratory shaking or stirring; and differentiating the one or more NPC types into one or more neural cell types aggregated into a spheroid mass, wherein the spheroid mass has a diameter that is less than 500 μm.


In an embodiment, the spheroid mass has a diameter that is less than about 450 μm, 400 μm, 350 μm, or 300 μm, or a diameter that is between about 350 μm and about 300 μm, or a diameter that is between about 330 μm and about 300 μm, or a diameter that is about 310 μm.


In an embodiment, the two or more neural cell types of the in vitro BMPS express one or more biomarker selected from the group consisting of GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, MBP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof.


In an embodiment, the two or more neural cell types of the in vitro BMPS express one or more biomarker selected from the group consisting of GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, MBP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof.


In an embodiment, the two or more neural cell types of the in vitro BMPS express one or more biomarker selected from the group consisting of GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, MBP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof.


In an embodiment, inducing comprises a single PSC.


In an embodiment, the an in vitro brain microphysiological system (BMPS) may be produced according to the above described method.


It is also contemplated within the scope of the invention that the addition of other cells inside (see e.g., FIG. 6) and outside (see e.g., FIG. 7) the BMPS may be used to modify the structure/composition of the BMPS, such as, e.g., by forming a blood-brain-barrier. It is also contemplated that the BMPS described herein may include genetically modified pluripotent stem cells, or be combined with other organoids (see e.g., Example 11).


Definitions

By “agent” is meant any small compound, antibody, nucleic acid molecule, or polypeptide, or fragments thereof.


By “alteration” is meant a change (increase or decrease) in the expression levels or activity of a gene or polypeptide as detected by standard art known methods such as those described herein. As used herein, an alteration includes a 10% change in expression levels, preferably a 25% change, more preferably a 40% change, and most preferably a 50% or greater change in expression levels.


By “ameliorate” is meant decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease.


In this disclosure, “comprises,” “comprising,” “containing,” and “having” and the like may have the meaning ascribed to them in U.S. Patent law and may mean “includes,” “including,” and the like; “consisting essentially of” or “consists essentially” likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.


“Detect” refers to identifying the presence, absence or amount of the analyte to be detected.


By “effective amount” is meant the amount of an agent needed to ameliorate the symptoms of a neurological disease relative to an untreated patient. The effective amount of active agent(s) used to practice the present invention for therapeutic treatment of a neurological disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “effective” amount.


By “fragment” is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids, or more.


By “gene” is meant a locus (or region) of DNA that encodes a functional RNA or protein product, and is the molecular unit of heredity.


By “marker” is meant any protein or polynucleotide having an alteration in expression level or activity that is associated with a disease or disorder.


By “modulate” is meant alter (increase or decrease). Such alterations are detected by standard art known methods such as those described herein.


Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 as well as all intervening decimal values between the aforementioned integers such as, for example, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9. With respect to sub-ranges, “nested sub-ranges” that extend from either end point of the range are specifically contemplated. For example, a nested sub-range of an exemplary range of 1 to 50 may comprise 1 to 10, 1 to 20, 1 to 30, and 1 to 40 in one direction, or 50 to 40, 50 to 30, 50 to 20, and 50 to 10 in the other direction.


By “reduces” is meant a negative alteration of at least 10%, 25%, 50%, 75%, or 100%.


By “reference” is meant a standard or control condition.


By “pluripotency” is meant stem cells with the potential to differentiate into any of the three germ layers: endoderm (e.g., interior stomach lining, gastrointestinal tract, the lungs), mesoderm (e.g., muscle, bone, blood, urogenital), or ectoderm (e.g., epidermal tissues and nervous system). However, one of skill in the art will understand that cell pluripotency is a continuum, ranging from the completely pluripotent cell that can form every cell of the embryo proper, e.g., embryonic stem cells and iPSCs (see below), to the incompletely or partially pluripotent cell that can form cells of all three germ layers but that may not exhibit all the characteristics of completely pluripotent cells. Induced pluripotent stem cells, commonly abbreviated as iPS cells or iPSCs are a type of pluripotent stem cell artificially derived from a non-pluripotent cell, typically an adult somatic cell, by inducing a “forced” expression of certain genes and transcription factors. These transcription factors play a key role in determining the state of these cells and also highlight the fact that these somatic cells do preserve the same genetic information as early embryonic cells. The ability to induce cells into a pluripotent state was initially pioneered using mouse fibroblasts and four transcription factors, Oct4, Sox2, Klf4 and c-Myc;—a process called reprogramming. The successful induction of human iPSCs derived from human dermal fibroblasts has been performed using methods similar to those used for the induction of mouse cells. These induced cells exhibit similar traits to those of embryonic stem cells (ESCs) but do not require the use of embryos. Some of the similarities between ESCs and iPSCs include pluripotency, morphology, self-renewal ability, a trait that implies that they can divide and replicate indefinitely, and gene expression.


By “stem cells” is meant undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells)—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three known accessible sources of autologous adult stem cells in humans: 1. Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest). 2. Adipose tissue (lipid cells), which requires extraction by liposuction. 3. Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation), and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body.


By “subject” is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, ovine, or feline.


As used herein, the terms “treat,” treating,” “treatment,” and the like refer to reducing or ameliorating a neurological disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.


As used herein, the terms “prevent,” “preventing,” “prevention,” “prophylactic treatment” and the like refer to reducing the probability of developing a disorder or condition in a subject, who does not have, but is at risk of or susceptible to developing a disorder or condition.


Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms “a,” “an,” and “the” are understood to be singular or plural.


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.


A “therapeutically effective amount” is an amount sufficient to effect beneficial or desired results, including clinical results. An effective amount can be administered in one or more administrations.


By “GRIN1 polypeptide” (or glutamate ionotropic receptor NMDA type subunit 1) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q05586.











  1
mstmrlltla llfscsvara acdpkivnig avlstrkheq mfreavnqan krhgswkiql






 61
natsvthkpn aiqmalsvce dlissqvyai lvshpptpnd hftptpvsyt agfyripvlg





121
lttrmsiysd ksihlsflrt vppyshqssv wfemmrvysw nhiillvsdd hegraaqkrl





181
etlleeresk aekvlqfdpg tknvtallme akelearvii lsaseddaat vyraaamlnm





241
tgsgyvwlvg ereisgnalr yapdgilglq lingknesah isdavgvvaq avhelleken





301
itdpprgcvg ntniwktgpl fkrvlmssky adgvtgrvef nedgdrkfan ysimnlqnrk





361
lvqvgiyngt hvipndrkii wpggetekpr gyqmstrlki vtihqepfvy vkptlsdgtc





421
keeftvngdp vkkvictgpn dtspgsprht vpqccygfci dlliklartm nftyevhlva





481
dgkfgtqerv nnsnkkewng mmgellsgqa dmivapltin neraqyiefs kpfkyqglti





541
lvkkeiprst ldsfmqpfqs tlwllvglsv hvvavmlyll drfspfgrfk vnseeeeeda





601
ltlssamwfs wgvllnsgig egaprsfsar ilgmvwagfa miivasytan laaflvldrp





661
eeritgindp rlrnpsdkfi yatvkqssvd iyfrrqvels tmyrhmekhn yesaaeaiqa





721
vrdnklhafi wdsavlefea sqkcdlvttg elffrsgfgi gmrkdspwkq nvslsilksh





781
engfmedldk twvryqecds rsnapatltf enmagvfmlv aggivagifl ifieiaykrh





841
kdarrkqmql afaavnvwrk nlqdrksgra epdpkkkatf raitstlass fkrrrsskdt





901
stgggrgalq nqkdtvlprr aiereegqlq lcsrhres






By “GRIN1 nucleic acid molecule” (or glutamate ionotropic receptor NMDA type subunit 1) is meant a polynucleotide encoding an GRIN1 polypeptide. An exemplary GRIN1 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_007327.











   1
gtcgccgcag cgtccggacc ggaaccagcg ccgtccgcgg agccgccgcc gccgccgccg






  61
ggccctttcc aagccgggcg ctcggagctg tgcccggccc cgcttcagca ccgcggacag





 121
cgccggccgc gtggggctga gccccgagcc cccgcgcacg cttcagcgcc ccttccctcg





 181
gccgacgtcc cgggaccgcc gctccggggg agacgtggcg tccgcagccc gcggggccgg





 241
gcgagcgcag gacggcccgg aagccccgcg ggggatgcgc cgagggcccc gcgttcgcgc





 301
cgcgcagagc caggcccgcg gcccgagccc atgagcacca tgcgcctgct gacgctcgcc





 361
ctgctgttct cctgctccgt cgcccgtgcc gcgtgcgacc ccaagatcgt caacattggc





 421
gcggtgctga gcacgcggaa gcacgagcag atgttccgcg aggccgtgaa ccaggccaac





 481
aagcggcacg gctcctggaa gattcagctc aatgccacct ccgtcacgca caagcccaac





 541
gccatccaga tggctctgtc ggtgtgcgag gacctcatct ccagccaggt ctacgccatc





 601
ctagttagcc atccacctac ccccaacgac cacttcactc ccacccctgt ctcctacaca





 661
gccggcttct accgcatacc cgtgctgggg ctgaccaccc gcatgtccat ctactcggac





 721
aagagcatcc acctgagctt cctgcgcacc gtgccgccct actcccacca gtccagcgtg





 781
tggtttgaga tgatgcgtgt ctacagctgg aaccacatca tcctgctggt cagcgacgac





 841
cacgagggcc gggcggctca gaaacgcctg gagacgctgc tggaggagcg tgagtccaag





 901
gcagagaagg tgctgcagtt tgacccaggg accaagaacg tgacggccct gctgatggag





 961
gcgaaagagc tggaggcccg ggtcatcatc ctttctgcca gcgaggacga tgctgccact





1021
gtataccgcg cagccgcgat gctgaacatg acgggctccg ggtacgtgtg gctggtcggc





1081
gagcgcgaga tctcggggaa cgccctgcgc tacgccccag acggcatcct cgggctgcag





1141
ctcatcaacg gcaagaacga gtcggcccac atcagcgacg ccgtgggcgt ggtggcccag





1201
gccgtgcacg agctcctcga gaaggagaac atcaccgacc cgccgcgggg ctgcgtgggc





1261
aacaccaaca tctggaagac cgggccgctc ttcaagagag tgctgatgtc ttccaagtat





1321
gcggatgggg tgactggtcg cgtggagttc aatgaggatg gggaccggaa gttcgccaac





1381
tacagcatca tgaacctgca gaaccgcaag ctggtgcaag tgggcatcta caatggcacc





1441
cacgtcatcc ctaatgacag gaagatcatc tggccaggcg gagagacaga gaagcctcga





1501
gggtaccaga tgtccaccag actgaagatt gtgacgatcc accaggagcc cttcgtgtac





1561
gtcaagccca cgctgagtga tgggacatgc aaggaggagt tcacagtcaa cggcgaccca





1621
gtcaagaagg tgatctgcac cgggcccaac gacacgtcgc cgggcagccc ccgccacacg





1681
gtgcctcagt gttgctacgg cttttgcatc gacctgctca tcaagctggc acggaccatg





1741
aacttcacct acgaggtgca cctggtggca gatggcaagt tcggcacaca ggagcgggtg





1801
aacaacagca acaagaagga gtggaatggg atgatgggcg agctgctcag cgggcaggca





1861
gacatgatcg tggcgccgct aaccataaac aacgagcgcg cgcagtacat cgagttttcc





1921
aagcccttca agtaccaggg cctgactatt ctggtcaaga aggagattcc ccggagcacg





1981
ctggactcgt tcatgcagcc gttccagagc acactgtggc tgctggtggg gctgtcggtg





2041
cacgtggtgg ccgtgatgct gtacctgctg gaccgcttca gccccttcgg ccggttcaag





2101
gtgaacagcg aggaggagga ggaggacgca ctgaccctgt cctcggccat gtggttctcc





2161
tggggcgtcc tgctcaactc cggcatcggg gaaggcgccc ccagaagctt ctcagcgcgc





2221
atcctgggca tggtgtgggc cggctttgcc atgatcatcg tggcctccta caccgccaac





2281
ctggcggcct tcctggtgct ggaccggccg gaggagcgca tcacgggcat caacgaccct





2341
cggctgagga acccctcgga caagtttatc tacgccacgg tgaagcagag ctccgtggat





2401
atctacttcc ggcgccaggt ggagctgagc accatgtacc ggcatatgga gaagcacaac





2461
tacgagagtg cggcggaggc catccaggcc gtgagagaca acaagctgca tgccttcatc





2521
tgggactcgg cggtgctgga gttcgaggcc tcgcagaagt gcgacctggt gacgactgga





2581
gagctgtttt tccgctcggg cttcggcata ggcatgcgca aagacagccc ctggaagcag





2641
aacgtctccc tgtccatcct caagtcccac gagaatggct tcatggaaga cctggacaag





2701
acgtgggttc ggtatcagga atgtgactcg cgcagcaacg cccctgcgac ccttactttt





2761
gagaacatgg ccggggtctt catgctggta gctgggggca tcgtggccgg gatcttcctg





2821
attttcatcg agattgccta caagcggcac aaggatgctc gccggaagca gatgcagctg





2881
gcctttgccg ccgttaacgt gtggcggaag aacctgcagg atagaaagag tggtagagca





2941
gagcctgacc ctaaaaagaa agccacattt agggctatca cctccaccct ggcttccagc





3001
ttcaagaggc gtaggtcctc caaagacacg agcaccgggg gtggacgcgg cgctttgcaa





3061
aaccaaaaag acacagtgct gccgcgacgc gctattgaga gggaggaggg ccagctgcag





3121
ctgtgttccc gtcataggga gagctgagac tccccgcccg ccctcctctg ccccctcccc





3181
cgcagacaga cagacagacg gacgggacag cggcccggcc cacgcagagc cccggagcac





3241
cacggggtcg ggggaggagc acccccagcc tcccccaggc tgcgcctgcc cgcccgccgg





3301
ttggccggct ggccggtcca ccccgtcccg gccccgcgcg tgcccccagc gtggggctaa





3361
cgggcgcctt gtctgtgtat ttctattttg cagcagtacc atcccactga tatcacgggc





3421
ccgctcaacc tctcagatcc ctcggtcagc accgtggtgt gaggcccccg gaggcgccca





3481
cctgcccagt tagcccggcc aaggacactg atgggtcctg ctgctcggga aggcctgagg





3541
gaagcccacc cgccccagag actgcccacc ctgggcctcc cgtccgtccg cccgcccacc





3601
ccgctgcctg gcgggcagcc cctgctggac caaggtgcgg accggagcgg ctgaggacgg





3661
ggcagagctg agtcggctgg gcagggccgc agggcgctcc ggcagaggca gggccctggg





3721
gtctctgagc agtggggagc gggggctaac tggccccagg cggaggggct tggagcagag





3781
acggcagccc catccttccc gcagcaccag cctgagccac agtggggccc atggccccag





3841
ctggctgggt cgcccctcct cgggcgcctg cgctcctctg cagcctgagc tccaccctcc





3901
cctcttcttg cggcaccgcc cacccacacc ccgtctgccc cttgacccca cacgccgggg





3961
ctggccctgc cctcccccac ggccgtccct gacttcccag ctggcagcgc ctcccgccgc





4021
ctcgggccgc ctcctccaga ctcgagaggg ctgagcccct cctctcctcg tccggcctgc





4081
agcccagaac gggcctcccc gggggtcccc ggacgctggc tcgggactgt cttcaaccct





4141
gccctgcacc ttgggcacgg gagagcgcca cccgcccgcc cccgccctcg ctccgggtgc





4201
gtgaccggcc cgccaccttg tacagaacca gcactcccag ggcccgagcg cgtgccttcc





4261
ccgtgcggcc cgtgcgcagc cgcgctctgc ccctccgtcc ccagggtgca ggcgcgcacc





4321
gcccaacccc cacctcccgg tgtatgcagt ggtgatgcct aaaggaatgt cacgcagttt





4381
tcaaaaaaaa aaaaaaaaaa






By “GAD1 polypeptide” (or glutamate decarboxylase 1) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q99259.











  1
masstpsssa tssnagadpn ttnlrpttyd twcgvahgct rklglkicgf lqrtnsleek






 61
srlvsafker qssknllsce nsdrdarfrr tetdfsnlfa rdllpaknge eqtvqfllev





121
vdillnyvrk tfdrstkvld fhhphqlleg megfnlelsd hpesleqilv dcrdtlkygv





181
rtghprffnq lstgldiigl agewltstan tnmftyeiap vfvlmeqitl kkmreivgws





241
skdgdgifsp ggaisnmysi maarykyfpe vktkgmaavp klvlftseqs hysikkagaa





301
lgfgtdnvil ikcnergkii padfeakile akqkgyvpfy vnatagttvy gafdpiqeia





361
dicekynlwl hvdaawgggl lmsrkhrhkl ngieransvt wnphkmmgvl lqcsailvke





421
kgilqgcnqm cagylfqpdk qydvsydtgd kaiqcgrhvd ifkfwlmwka kgtvgfenqi





481
nkclelaeyl yakiknreef emvfngepeh tnvcfwyipq slrgvpdspq rreklhkvap





541
kikalmmesg ttmvgyqpqg dkanffrmvi snpaatqsdi dflieeierl gqdl






By “GAD1 nucleic acid molecule” (or glutamate decarboxylase 1) is meant a polynucleotide encoding an GAD1 polypeptide. An exemplary GAD1 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC036552.











   1
agcgtgtggt agaggagaaa cgctgaaacc ggaccgaaac ctcgccctag gcttagcgat






  61
ggctaaaaac cggctgggac aagagggagg caagcaacat tccgactcgc tgctttctgg





 121
ctgtctggag tgcaaggtga ctgtggttct tctctggcca agtccgaggg agaacgtaaa





 181
gatatgggcc tttttccccc tctcaccttg tctcaccaaa gtccctagtc cccggagcag





 241
ttagcctctt tctttccagg gaattagcca gacacaacaa cgggaaccag acaccgaacc





 301
agacatgccc gccccgtgcg ccctcccccc gctggcccac acgccggctg ctgagtgccc





 361
aatggggctt gtagcggctc ggctggaaaa tcgctcactg agcgctcccc tgtgctccta





 421
gcccagtccc ccacaccctt gcgtcttgta ctggccttgg acccccaccc cgaccccgac





 481
cccgcctcgt ctcggcgctt cactccaggt cgcgccgatg caccgccaga ctcgagagcg





 541
gcccagggct acgctccctg cgccccagta ccggagctag cgcgcacgtc tcctccgctg





 601
cccccacccc tgcgcacccc taccaggcag gctcgctgcc tttcctccct cttgtctctc





 661
cagagccgga tcttcaaggg gagcctccgt gcccccggct gctcagtccc tccggtgtgc





 721
aggaccccgg aagtcctccc cgcacagctc tcgcttctct ttgcagcctg tttctgcgcc





 781
ggaccagtcg aggactctgg acagtagagg ccccgggacg accgagctga tggcgtcttc





 841
gaccccatct tcgtccgcaa cctcctcgaa cgcgggagcg gaccccaata ccactaacct





 901
gcgccccaca acgtacgata cctggtgcgg cgtggcccat ggatgcacca gaaaactggg





 961
gctcaagatc tgcggcttct tgcaaaggac caacagcctg gaagagaaga gtcgccttgt





1021
gagtgccttc aaggagaggc aatcctccaa gaacctgctt tcctgtgaaa acagcgaccg





1081
ggatgcccgc ttccggcgca cagagactga cttctctaat ctgtttgcta gagatctgct





1141
tccggctaag aacggtgagg agcaaaccgt gcaattcctc ctggaagtgg tggacatact





1201
cctcaactat gtccgcaaga catttgatcg ctccaccaag gtgctggact ttcatcaccc





1261
acaccagttg ctggaaggca tggagggctt caacttggag ctctctgacc accccgagtc





1321
cctggagcag atcctggttg actgcagaga caccttgaag tatggggttc gcacaggtca





1381
tcctcgattt ttcaaccagc tctccactgg attggatatt attggcctag ctggagaatg





1441
gctgacatca acggccaata ccaacatgtt tacatatgaa attgcaccag tgtttgtcct





1501
catggaacaa ataacactta agaagatgag agagatagtt ggatggtcaa gtaaagatgg





1561
tgatgggata ttttctcctg ggggcgccat atccaacatg tacagcatca tggctgctcg





1621
ctacaagtac ttcccggaag ttaagacaaa gggcatggcg gctgtgccta aactggtcct





1681
cttcacctca gaacagagtc actattccat aaagaaagct ggggctgcac ttggctttgg





1741
aactgacaat gtgattttga taaagtgcaa tgaaaggggg aaaataattc cagctgattt





1801
tgaggcaaaa attcttgaag ccaaacagaa gggatatgtt cccttttatg tcaatgcaac





1861
tgctggcacg actgtttatg gagcttttga tccgatacaa gagattgcag atatatgtga





1921
gaaatataac ctttggttgc atgtcgatgg atttaacttc tcacaattgg ccaataggat





1981
catctgcctt gctactgaac taatgactaa caaaggctgt gtcacgtggc atcccaacta





2041
ttcagtaaac atgcatcatg gctgcctggg gaggtgggct gctcatgtcc aggaagcacc





2101
accataaact caacggcata gaaagggcca actcagtcac ctggaaccct cacaagatga





2161
tgggcgtgct gttgcagtgc tctgccattc tcgtcaagga aaagggtata ctccaaggat





2221
gcaaccagat gtgtgcagga tacctcttcc agccagacaa gcagtatgat gtctcctacg





2281
acaccgggga caaggcaatt cagtgtggcc gccacgtgga tatcttcaag ttctggctga





2341
tgtggaaagc aaagggcaca gtgggatttg aaaaccagat caacaaatgc ctggaactgg





2401
ctgaatacct ctatgccaag attaaaaaca gagaagaatt tgagatggtt ttcaatggcg





2461
agcctgagca cacaaacgtc tgtttttggt atattccaca aagcctcagg ggtgtgccag





2521
acagccctca acgacgggaa aagctacaca aggtggctcc aaaaatcaaa gccctgatga





2581
tggagtcagg tacgaccatg gttggctacc agccccaagg ggacaaggcc aacttcttcc





2641
ggatggtcat ctccaaccca gccgctaccc agtctgacat tgacttcctc attgaggaga





2701
tagaaagact gggccaggat ctgtaatcat ccttcgcaga acatgagttt atgggaatgc





2761
cttttccctc tggcactcca gaacaaacct ctatatgttg ctgaaacaca caggccattt





2821
cattgaggga aaacataata tcttgaagaa tattgttaaa accttactta aagcttgttt





2881
gttctagtta gcaggaaata gtgttctttt taaaaagttg cacattagga acagagtata





2941
tatgtacagt tatacatacc tctctctata tatacatgta tagtgagtgt ggcttagtaa





3001
tagatcacgg catgtttccc gctccaagag aattcacttt accttcagca gttaccgagg





3061
agctaaacat gctgccaacc agcttgtcca acaactccag gaaaactgtt tttcaaaacg





3121
ccatgtccta ggggccaagg gaaatgctgt tggtgagaat cgacctcact gtcagcgttt





3181
ctccacctga agtgatgatg gatgagaaaa aacaccacca aatgacaagt cacaccctcc





3241
ccattagtat cctgttaggg gaaaatagta gcagagtcat tgttacaggt gtactatggc





3301
tgtattttta gagattaatt tgtgtagatt gtgtaaattc ctgttgtctg accttggtgg





3361
tgggaggggg agactatgtg tcatgatttc aatgattgtt taattgtagg tcaatgaaat





3421
atttgcttat ttatattcag agatgtacca tgttaaagag gcgtcttgta ttttcttccc





3481
atttgtaatg tatcttattt atatatgaag taagttctga aaactgttta tggtattttc





3541
gtgcatttgt gagccaaaga gaaaagatta aaattagtga gatttgtatt tatattagag





3601
tgcccttaaa ataatgattt aagcatttta ctgtctgtaa gagaattcta agattgtaca





3661
taaagtcata tatatggaaa tcctgttact taaatagcat ctgctcttct cttacgctct





3721
ctgtctggct gtacgtctgg tgttctcaat gcttttctag caactgttgg ataataacta





3781
gatctcctgt aattttgtag tagttgatga ccaatctctg ttactcgctt agctgaaacc





3841
taaggcaaca tttccgaaga ccttctgaag atctcagata aagtgaccag gctcacaact





3901
gtttttgaag aagggaaatt cacactgtgc gttttagagt atgcaagaag aatataaata





3961
aataaaaata ttctccatgg agaatttgaa caaaaaaaaa aaaaaaa






By “GABA polypeptide” (or gamma-Aminobutyric acid) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P30531.











  1
matngskvad gqistevsea pvandkpktl vvkvqkkaad lpdrdtwkgr fdflmscvgy






 61
aiglgnvwrf pylcgknggg aflipyfltl ifagvplfll ecslgqytsi gglgvwklap





121
mfkgvglaaa vlsfwlniyy iviiswaiyy lynsftttlp wkqcdnpwnt drcfsnysmv





181
nttnmtsavv efwernmhqm tdgldkpgqi rwplaitlai awilvyfciw kgvgwtgkvv





241
yfsatypyim liilffrgvt lpgakegilf yitpnfrkls dsevwldaat qiffsyglgl





301
gslialgsyn sfhnnvyrds iivccinsct smfagfvifs ivgfmahvtk rsiadvaasg





361
pglaflaype avtqlpispl wailffsmll mlgidsqfct vegfitalvd eyprllrnrr





421
elfiaavcii syliglsnit qggiyvfklf dyysasgmsl lflvffecvs iswfygvnrf





481
ydniqemvgs rpciwwklcw sfftpiivag vfifsavqmt pltmgnyvfp kwgqgvgwlm





541
alssmvlipg ymaymfltlk gslkqriqvm vqpsedivrp engpeqpqag sstskeayi






By “GABA nucleic acid molecule” (or gamma-Aminobutyric acid) is meant a polynucleotide encoding an GABA polypeptide. An exemplary GABA nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. U76343.











   1
gtagcttcac taaggtggga tggatagcag ggtctcaggc acaaccagta atggagagac






  61
aaaaccantg tatcacaaga tggagtttgt gctgtcagtg gctggggaga tcattggctt





 121
aggcaacgtc tggaggtttc cctatctctg ctacaaaaat gggggaggtg ccttcttcat





 181
cccctacctc gtcttcctct ttacctgtgg cattcctgtc ttccttctgg agacagcact





 241
aggccagtac actagccagg gaggcgtcac agcctggagg aagatctgcc ccatctttga





 301
gggcattggc tatgcctccc agatgatcgt catcctcctc aacgtctact acatcattgt





 361
gttggcctgg gccctgttct acctcttcag cagcttcacc atcgacctgc cctggggcgg





 421
ctgctaccat gagtggaaca cagaacactg tatggagttc cagaagacca acggctccct





 481
gaatggtacc tctgagaatg ccacctctcc tgtcatcgag ttctgggagc ggcgggtctt





 541
gaagatctct gatgggatcc agcacctggg ggccctgcgc tgggagctgg ctctgtgcct





 601
cctgctggcc tgggtcatct gctacttctg catctggaag ggggtgaagt ccacaggcaa





 661
ggtggtgtac ttcacggcca catttcctta cctcatgctg gtggtcctgt taattcgagg





 721
ggtgacgttg cctggggcag cccaaggaat tcagttttac ctgtacccaa acctcacgcg





 781
tctgtgggat ccccaggtgt ggatggatgc aggcacccag atattcttct ccttcgccat





 841
ctgtcttggg tgcctgacag ccctgggcag ctacaacaag taccacaaca actgctacag





 901
cggcaccagc tttgtggccg gctttgccat cttctccatc ctgggcttca tgtctcagga





 961
gcagggggtg cccatttctg aggtggccga gtcaggccct ggcctggctt tcatcgctta





1021
cccgcgggct gtggtgatgc tgcccttctc tcctctctgg gcctgctgtt tcttcttcat





1081
ggtcgttctc ctgggactgg atagccagtt tgtgtgtgta gaaagcctgg tgacagcgct





1141
ggtggacatg taccctcacg tgttccgcaa gaagaaccgg agggaagtcc tcatccttgg





1201
agtatctgtc gtctccttcc ctgtggggct gatcatgctc acagagggcg gaatgtacgt





1261
gttccagctc tttgactact atgcggccag tggcatgtgc ctcctgttcg tggccatctt





1321
cgagtccctc tgtgtggctt gggtttacgg agccaagcgc ttctacgaca acatcgaaga





1381
catgattggg tacaggccat ggcctcttat caaatactgt tggctcttcc tcacaccagc





1441
tgtgtgcaca gccacctttc tcttctccct gataaagtac actccgctga cctacaacaa





1501
gaagtacacg tacccgtggt ggggcgatgc cctgggctgg ctcctggctc tgtcctcctg





1561
gtctgcattc ctgcctggag cctctacaga ctcggaaccc tcaagggccc cttcagagag





1621
agaatccgtc agctcatgtg cccagccgag gacctgcccc agcggaaccc agcaggaccc





1681
tcggctcccg ccacccccag gacctcactg ctcagactca cagagctaga gtctcactgc





1741
tagggggcag gcccttggat ggtgcctgtg tgcctggcct tggggatggc tgtggaggga





1801
acgtggcaga agcagcccca tgtgttccct gcccccgacc tggagtggat aagacaagag





1861
gggtattttg gagtccacct gctgagctgg aggcctccca ctgcaacttt tcagctcagg





1921
ggttgttgaa cagatgtgaa aaggccagtg ccaagagtgt ccctcggaga cccttgaagg





1981
c






By “TH polypeptide” (or Tyrosine Hydroxylase) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_002692.











  1
mptpdattpq akgfrravse ldakqaeaim vrgqgapgps ltgspwpgta apaasytptp






 61
rsprfigrrq sliedarker eaavaaaaaa vpsepgdple avafeekegk avlnllfspr





121
atkpsalsra vkvfetfeak ihhletrpaq rpraggphle yfvrlevrrg dlaallsgvr





181
qvsedvrspa gpkvpwfprk vseldkchhl vtkfdpdldl dhpgfsdqvy rqrrkliaei





241
afqyrhgdpi prveytaeei atwkevyttl kglyathacg ehleafalle rfsgyredni





301
pqledvsrfl kertgfqlrp vagllsardf laslafrvfq ctqyirhass pmhspepdcc





361
hellghvpml adrtfaqfsq diglaslgas deeieklstl ywftvefglc kqngevkayg





421
agllssygel lhclseepei rafdpeaaav qpyqdqtyqs vyfvsesfsd akdklrsyas





481
riqrpfsvkf dpytlaidvl dspqavrrsl egvqdeldtl ahalsaig






By “TH nucleic acid molecule” (or Tyrosine Hydroxylase) is meant a polynucleotide encoding an TH polypeptide. An exemplary TH nucleic acid molecule is provided at NCBI Accession No. NG_008128.











    1
gcgggggggc agtgtgtgct ccagcatgtg tgtgtgtgtg tgcatgtaca cgtgtgcacc






   61
tgtatcgcct gtgtgtgtgc atgtgatgtg tacacgtgtc atgcatgcac gcacatgtgt





  121
agtgtgtgct cgtgtgtggt gtgtgcctgt gtcatgtatg agcacacttg tatatgttgt





  181
gtgtactgtg tcatatatga gtgtgtttgc ctgtgtagtg catgcacatc cgtgtgtgca





  241
tctggtgtgt ccgtgggtca ttacgagtgc atcgtatgtg tatcgtgtac atgagtacac





  301
ttgtatgtgt ggtgtgtaca ggtgccatgt aagtgtgctt gtacatatat gcatgcatgt





  361
gtcatatgca tctgtgtgtg catgtgtgtg gtgcacacat gtgttatgtc tgagtgtgcc





  421
tgtatgtgtg ctatgtacac gtcatgtgtg agtgtgcttg catgtgcagt gtgtggatgc





  481
tgcttgtacc tgtggtgtgt acctgtgtca tgggtgctca cacgtgcatg gagtgttgtg





  541
tgtgtgcttg tgtgccccat gtgtgcatgt gtgtgtgcct cacacagatg cctgcatttg





  601
cctaggcact tgcaagagga caccatgctg gctctcaaag atcacagggc cacctgagcc





  661
ctgtgcacac cacagccagg ccatggctag accctgcaga gccacagggc gatgcctgtc





  721
agccagggga cccagaacac ctcctgggct cctccccagc acatggctgg gctcctccag





  781
caggcctgga tttgggaagg gcccgtggtg ggcaaggctg gtgctgggga gcaggcctgg





  841
tggcctcaga gactcgccct gtgggcggag cagcctcaca gccaggtcga agtcagcact





  901
ctgaccctgc cccacgcggg gagtgggcac cagtcccagg gcacagacgt gctgggtgat





  961
taatctgggt gattaagcct cgggctgaga ggctgttgag agagaacacg ctccattgtg





 1021
gagctggctc agcattcctt acggccatgg tggcaggggc tgtaaccaca gggacggcgg





 1081
aagtggtgga gggtggtggg gtatggaggg aagcccagag ggctccgtgc aggaaggtgg





 1141
agcctggtgc aatggagggg acagcaaggg ctcctcagac ctctgcgggg cccccactcc





 1201
cctggtcacc tgttttgtct ctgatctggc ctgggtcggc cctcactcct ggccccacct





 1261
catagccccc cctggtgggg ctccgctcca gcccttctcc ttcccagggg ccagtatgct





 1321
ggccccaggg gtctcttggg gcgtgacctc ggcctccaga gaaccctgtc ccagctctgc





 1381
ccttccctct ggggtctctg tagatgggac gctggtcaca gcagcctgtc tgatttgttc





 1441
cctgtggcct aggttcctga gccccacagt gccaggggat ggatgccacc ggatctttga





 1501
aagaccagtg tcaggccggg cgcagtggct cacgcctgta atcccagcac tttgggaggc





 1561
cgaggtgggc ggatcacgaa gtcaggagat cgagaccatc ctggctaaca cagtgaaacc





 1621
ccgtctccac taaaaataca aaaagttagc tgggcgtggt ggtgggcgcc tgtagtccca





 1681
gctacttggg aggctgaggc aggagaatgg cgtgaaccgg ggaggcggag cttgcagtga





 1741
gccgagatcg cgccattgca ctccagcctg ggtgacagag cgagactcgg tctcaaaaaa





 1801
aaagaaaaaa aggaaagacc agtgtcttgg gagttgggaa acctgggctg gagactcact





 1861
gcatgacccc tgagaagttg cacctcagaa cctcagtcct cgcatctgca gaatgggtct





 1921
gtgaacacct cagctgcccg aacgtggatg ccgcaggctg acccagcact gagctctacc





 1981
aagaccaggg gccagccgtg tgctccctcc aggcctgtgc ccagcgtgga gaggcctcgt





 2041
cccgtgggcg ctggagtgga gccttcctgg tgtttgtgga catctctgga gagggccaga





 2101
ggcaggtggg tgacacgggg catggctcaa tcatgggtgg tccagactgg agaggtaccc





 2161
tcgggctggg agcggggagg ctggccaggg tagacttttg gggcctccat ggataccctc





 2221
accatctgga atcggagagg ggcacggcac aaaggagggc ggggccaggg ccaggactgg





 2281
agtcgggggc acctctgtgc caacaggggc cttggatctg gggtacagca tggttccccg





 2341
gccctgaagg ggctggcgtg tgggacaggc ttcccaggaa tggataggca gggatggatg





 2401
ctgcctgatt ggggcgggag gctggaggca gggcaggtgc aggcacctga gggcagcact





 2461
cacctccaca ggggtccagg ggcctcccca gcctcagcac ctggcctggg ctcctgcctc





 2521
cagagagcct ggccccaagg aagagtctag taagcttagt tcccatcggg cttccatgaa





 2581
agcacaactg gcccggcagg aaaccgaatt aaaaagcaat atttgtatca gtggaagaca





 2641
tttgctgaaa ggttaaatcc acatccggca gtgtgggcca tgagcctccg gcgtggtgtt





 2701
catcaggcat gtctctcctc ctggcctggg cacctgagca ctggggccgc cctgggcaga





 2761
gctggggcgg ggtgctgggg ggcctggagc tgcctcaccg agggatcctc agcagccgac





 2821
cctgggggag gcaaatgaga ctctttctgg ggaccttgag gggagctcgg gggagccatg





 2881
cagagcttca ccaggcctgg acactgggca tggaggctgg gccacccaag ggccatcacc





 2941
agggactcag gtgggtgggc ctcagccctg ggtgacagaa gctcacgggc cgcagggcga





 3001
ggccagaggc tgagccttca ggctgaggtc ttggaggcaa atccctccaa cgcccttctg





 3061
agcaggcacc cagacctact gtgggcagga cccacaggag gtggaggcct ttggggaaca





 3121
ctgtggaggg gcatagcatc tccgagagag gacagggtct gcactgggtg ctgagagaca





 3181
gcaggggccg agcggtaggc ttccctgccc ccagggatgt tccagaggag cgcaagggag





 3241
gggcattaat atcgtggcaa gaaagggcag gcattgcaga gtgagcagcg acggaactgg





 3301
gttttgtggg atgcatagga gttcacccgg ataagaggtg ggtgaggaat gacactgcaa





 3361
accggggatc acggagcccc aaatccttct gggccaggaa gtgggaaggg ttggggggtc





 3421
ttccctttgc tttgactgag cactcagcct gcctgcagag ggcagcgagg agccacggag





 3481
gggtgtggga cagggatgcc atggctgaag cagttttagg aaaggtccca ggggctattg





 3541
ttgaagagag aacggggagc ggggagtccc acagctgaca ggagcagagt gggccctgag





 3601
agatgccagc tctggctgcc acagtgacca gccggggtag gccttcgaga agtcagggag





 3661
cgtctagggc ttctggctcc tgctgggccc agggtgtcat cttgggctgc caacaccaga





 3721
aagcccagca gatacaggaa gccccaagcc ctgtcggaaa cggttcttct ccaggaggga





 3781
cagcggtggc agcgttcagc cgcaggccat gcactctggg gccacgtcct tccctctgta





 3841
cagtccagca ttgtcaaggc aggctctggc catctctgct gaccccagag ggatggggag





 3901
gcctcccctt ccaccagaag ggccagaagc caccctgggc aggggcatca ctctccctgg





 3961
gtggggcagc ggctgggagc aggaggtgcc agtgggcgtg ggctggatgc gggtgcctgc





 4021
ggggcggaca tggaacttgg gggaggctct aggctggggt tgtcctcaag ggagttctca





 4081
ggtcacccca gggtcaccct caacccgggg cctggtgggg tagaggagaa actgcaaagg





 4141
tctctccaag gggaaggcat cagggccctc agcactgagg gacgtgcgtg ctctttaaag





 4201
aaggggccac aggaccccga gggaagccag gagctagcag tgggccatag aggggctgag





 4261
tggggtgggt ggaagccgtc cctggccctg gtcgccctgg caaccctggt ggggactgtg





 4321
atgcaggagg tggcagccat ttggaaacgc gtggcgtctc cttagagatg tcttcttcag





 4381
cctcccaggg tcctccacac tggacaggtg ggccctcctg ggacattctg gaccccacgg





 4441
ggcgagcttg ggaagccgct gcaagggcca cacctgcagg gcccgggggc tgtgggcaga





 4501
tggcactcct aggaaccacg tctatgagac acacggcctg gaatcttctg gagaagcaaa





 4561
caaattgcct cctgacatct gaggctggag gctggattcc ccgtcttggg gctttctggg





 4621
tcggtctgcc acgaggttct ggtgttcatt aaaagtgtgc ccctgggctg ccagaaagcc





 4681
cctccctgtg tgctctcttg agggctgtgg ggccaagggg accctggctg tctcagcccc





 4741
ccgcagagca cgagcccctg gtccccgcaa gcccgcgggc tgaggatgat tcagacaggg





 4801
ctggggagtg aaggcaatta gattccacgg acgagccctt tctcctgcgc ctccctcctt





 4861
cctcacccac ccccgcctcc atcaggcaca gcaggcaggg gtgggggatg taaggagggg





 4921
aaggtggggg acccagaggg ggctttgacg tcagctcagc ttataagagg ctgctgggcc





 4981
agggctgtgg agacggagcc cggacctcca cactgagcca tgcccacccc cgacgccacc





 5041
acgccacagg ccaagggctt ccgcagggcc gtgtctgagc tggacgccaa gcaggcagag





 5101
gccatcatgg taagagggca ggtaggtgcc cggcggccgc agtggaccgg agcccagggc





 5161
tggtgccagc tgcctctgct actccccagc ctggctggca gccccaggct cagggtccat





 5221
gcaaacccct gggacgcggc gtggatgtgg aggcctgggc acagcggcat cccctgtgcc





 5281
tggtgtttga gtccctgttg ggggagggtg aggtgatgcc tgtccctgtg tgtgcccctc





 5341
ttaggccgac ctctctcggg ggtcgtgtgg gtctctgtgt cttgtttcat cttgaatctt





 5401
aacgatcgga atgtggaaac aaatccatcc aaaaaatcca agatggccag aggtccccgg





 5461
ctgctgcacc cagcccccac cctactccca cctgcccctg cctccctctg ccccagctgc





 5521
cctagtcagc accccaacca gcctgcctgc ttggggaggc agccccaagg cccttcccag





 5581
gctctagcag cagctcatgg tggggggtcc tgggcaaata gggggcaaaa ttcaaagggt





 5641
atctgggctc tggggtgatt cccattggcc tgttcctccc ttatttccct cattcattca





 5701
ttcattcatt cattcattca ccatggagtc tgtgttccct gtgacctgca ctcggaagcc





 5761
ctgtgtacag gggactgtgt gggccaggct ggataatcgg gagcttttca gcccacagga





 5821
ggggtcttcg gtgcctcctt gggcactcag aaccttgggc tccctggcac atttaaaatg





 5881
ggtttttatt tatggacctt gattgaaatg tggtgtgagt tgtagcagtg tcatttccag





 5941
gtaccttctc agggacacag ggcgccctcc cccgtcctcc cccgccctcc cctaccctcc





 6001
cccaccaggc tccccatcag gcatcccctc cccagggcgc cccggggccc agcctcacag





 6061
gctctccgtg gcctggaact gcagccccag ctgcatccta cacccccacc ccaagggtaa





 6121
gtaagagggg actctgggag gggcttctgc tgctcccctt catgttccac aaccctggaa





 6181
gctcaggatg aagctgattc ttctcttaca aggggcccag agccttcttg ggagttcagc





 6241
tccaagggat gagccccagg tgtctgccaa gtccccctct gtccaggcct gggacggctc





 6301
tgggatcgag gggtcagagg cgctgagccc agggagagac acctgcgccc agagctatga





 6361
caaagggtgg agggatgaca aggcagccag gagcgggcgc ctgcggggtg gcacagaggg





 6421
gcagggcccg aggacaggtg tcctgatggg agtgtgagaa agggtcccct gtgcggcagc





 6481
caggagggta ggggggttgt tcactggggc cctgtggggg cagctccttc ctgagctgcc





 6541
gttccctccc cggcagccga tgccactgtc catcaagaca tcgccctctt cccatcacta





 6601
atccagttag cgcctggcct ggggatgagt gacacagcgt ctctgtctgt ctgctcgcca





 6661
cagagtgggg agcaggcgag caccttccca gcccccactc ctcccccacc accactgctt





 6721
ctgactgggc tgcccccatc gggaagggcg tgcaatgccc gcaggcacct cggctagcat





 6781
ctgccccagc aggcacacag taggcgctca aaaacgtgct ctcatcccct gcctctgtgt





 6841
gccatcagcg ctgcccgact gtgggaccag ctgtgggtgg aggtccccgg gtctcagcag





 6901
gtggaggagg catgggtgcc ccttgtcccc acagtccccg cggttcattg ggcgcaggca





 6961
gagcctcatc gaggacgccc gcaaggagcg ggaggcggcg gtggcagcag cggccgctgc





 7021
agtcccctcg gagcccgggg accccctgga ggctgtggcc tttgaggaga aggaggggaa





 7081
ggccgtgcta aacctgctct tctccccgag ggccaccaag ccctcggcgc tgtcccgagc





 7141
tgtgaaggtg tttgaggtga gctggtggcc ttcgtgtccc tggggcaagt tcacctgtgg





 7201
gtggggctgt gtgggctgag ttcctgaccc ctctatagca gaggtgcagc tgcccaggcc





 7261
cccgaggccg gcacaggatg cagcagggga gtctcaggcc tcagctcagc ccccatggca





 7321
tctagccaca cccccgtgtt tttgagggat cctgagccca cccctagggc tgaggctacc





 7381
aagccccact gtgcctcttg ccttgcccat cccctggatc cccctcaccc accatttccc





 7441
acgtgggggg ctcccagcag ggcagcacaa gaggcagggg cagggcagtg tgccctctcc





 7501
cacccaccca gcacagtggc tcaggtgacc actgattgca ttagtcactc cggccccact





 7561
gtgccccggg aggcaggtga cccagctccc ggaagaagct cccaaatgac attaaagcca





 7621
gactccccgc cccccagctc ccagagccag ttttgtggcc cgagggccac tgcgacccac





 7681
cgcccttgtt gctaggcaac aggaggtggg ggtggagcgg acccttctgg ccagtgtcct





 7741
ggacgctcag gggccagtga gactcagggc ccatcctaca aacctggatg aggccaccag





 7801
ggttgggggc accttctgac cagtggctga ggagccggac tgtgtggcat ggccttggga





 7861
cacacacacc gagccgccca gaaccaggtt aagcctcaag cggtgacaac tcctggttag





 7921
gcacgtaaca caaaatccaa cttgccagtg gcaaaccctg gcctggtggc cgacagctga





 7981
cctgagcctg gaagaacggg atctgtgtgc tgctagcaca aaagtcaagg gcagggcctg





 8041
gccagccagc cagatgtgcc tcctccccgc ccaccccacc ctctctctcc atctctgtct





 8101
ctttctcctt ctctctctct tcctgctttt gctccctaag acgtttgaag ccaaaatcca





 8161
ccatctagag acccggcccg cccagaggcc gcgagctggg ggcccccacc tggagtactt





 8221
cgtgcgcctc gaggtgcgcc gaggggacct ggccgccctg ctcagtggtg tgcgccaggt





 8281
gtcagaggac gtgcgcagcc ccgcggggcc caagggtgag gcggttttct gtccttgagg





 8341
gccaccaaat gaccttgaga ggctggggtg caggggctcc tgcaggggga ccctacagtg





 8401
accacgtggt ggtggcctgg ttccctctct gcgggctcca ctccgcaccc cgttttgcta





 8461
cacatccgtg tccgggcctg gggccactcc aggatccccc cgcagctctc acagccccgg





 8521
ctgcctctgc cccccggaag tcttgtaggg gaggctgctt caaggtgggt gacacagccc





 8581
cacggctccg agctcaccaa gatctcttcc tccatcaccc ataaagtccc ctggttccca





 8641
agaaaagtgt cagagctgga caagtgtcat cacctggtca ccaagttcga ccctgacctg





 8701
gacttggacc acccggtgag tggtgcgccc ctcactcagg cctcctgccc ctgatcacat





 8761
cccctaccct tagcccaacc ctggacagga gtctgtcggc tccaggagcc tccgtggcct





 8821
gtgcccccac cccagcacag cctcctgacc cgtgcatccc ctctgccctc agggcttctc





 8881
ggaccaggtg taccgccagc gcaggaagct gattgctgag atcgccttcc agtacaggca





 8941
gtgaggggcc cctgcgctcg ggacccagac tccgtcctgc aggctgacgc tggacctggg





 9001
gggtgggagg gaaggacaaa ggggaggacc catcttgtca ccagcatcag tgcctcctgc





 9061
caggcagctc tgctccaggg ctttccatgt ccccaaatcc cagtggggaa actgaggccc





 9121
aggggggcta gagcaacctg ccgaggccac atagccggct cacggcacag tcagctgggg





 9181
tgcaccctcc tgtccatcct ccaacccaaa ggcctcgctg cactaggcgg gtgtggacct





 9241
gtgcccagtg aagctccctc cctccctcct gcccttctca ctccccgagg ggacctgctg





 9301
accactggcc ccctccccag cggcgacccg attccccgtg tggagtacac cgccgaggag





 9361
attgccacct ggtgagacct ccgtgcagct aggggctggg gaggagcccg ggggatgcct





 9421
cctggaatcc tggcgtgtga gggccgcctc cagggacctt ggcacaacag gagagactaa





 9481
ggccgggaag aagagggact tgcagggctc agaatgttgg gttgggagga agaggctacc





 9541
catcctgtcg ggccatcccc agtgtgctga gggaccgccc ctcatggccc cctatcccct





 9601
gggattccct aaagccacca gcaaaagccc ctcccggggg cctgggtctt caggggtccc





 9661
caagaggcct gcgttggtag gggctcaggc aggcagaggc acccacagtt caggaggggg





 9721
gtttcgggca ctggggtggg gcattagagg gccctgagcc tggctgcccg caggaaggag





 9781
gtctacacca cgctgaaggg cctctacgcc acgcacgcct gcggggagca cctggaggcc





 9841
tttgctttgc tggagcgctt cagcggctac cgggaagaca atatccccca gctggaggac





 9901
gtctcccgct tcctgaaggg tgtgcccaga cgggaggggc gcagagccgg ggggccgggg





 9961
atggtcagcc aagcgcccca ccccagcgcg gctccagccc gtcccggctc ggcagtgacc





10021
cgcgtggccc cttgcagagc gcacgggctt ccagctgcgg cctgtggccg gcctgctgtc





10081
cgcccgggac ttcctggcca gcctggcctt ccgcgtgttc cagtgcaccc agtatatccg





10141
ccacgcgtcc tcgcccatgc actcccctga gccgtgagtg cgcgccctgg ccgccagccc





10201
gagggtgggg ggtgcgacgg gcggcccctc agcccccttc tccctcctac gcgcagggac





10261
tgctgccacg agctgctggg gcacgtgccc atgctggccg accgcacctt cgcgcagttc





10321
tcgcaggtac gccgcggcct cggagggagc cggggtcacc caggggctgg cttggcgccg





10381
ggggcgggcg gggatcgatg tgcgggtggg tgaagtgtgc tgcctgctcc cgggccccgc





10441
caaggaggct cggcgccccg agggtcgcgc ggcatagggc ggggctggag cggagcctcc





10501
cacggcctgt gctgccacct gccggctacc tgggaacggc gcccacgggc ttaggaatgt





10561
ggtcaaggag ggctgcctgg aggaggaggc ccggtggagg tgcggatcct gggcggccag





10621
ggaaggtctc tgccgccagg gaagtgtccc agagacccct ggaggggctg ctgacacccc





10681
cggtgccccc acctcgagca tgacccaggg ctgcctctcc ccatccttca tcctccctgc





10741
tccacaggac attggcctgg cgtccctggg ggcctcggat gaggaaattg agaagctgtc





10801
cacggtgggt tgacccctcc ctgcagggcc tggggtgtgg gtttgggggt ctgaatccag





10861
gcctcaccct cttgccgtcc aggctgaggc ctctccttcc acccacgaat tgtgaccctc





10921
accctggcct gcctgcatcc tggcctggcc tccctggggg tggtatcctg gtcacgggtg





10981
accaggggct gcccggtggg cggcagctgt ctctgggctg atgctgcccg gcttccccgc





11041
agctgtactg gttcacggtg gagttcgggc tgtgtaagca gaacggggag gtgaaggcct





11101
atggtgccgg gctgctgtcc tcctacgggg agctcctggt gagagtctct ccttgctgca





11161
gcccccagca gaggggcagg gctgggggac ggtgcaggga ggggacaggc tcccagtggg





11221
aggaaactga ggcctggacc tccaggactc aggctctgtt tgggagaagg cttgtctctg





11281
cccagtcctc accccacatt atcccaggcc tccgaaggcc cggcggggga gatgggggtg





11341
actctaccca aggaacccac ccagcgtcag gccacggtgc cccagttccc tcggggacct





11401
gggtgcagtg gagtcagtga tgccattggc ctcctgccag cactgcctgt ctgaggagcc





11461
tgagattcgg gccttcgacc ctgaggctgc ggccgtgcag ccctaccaag accagacgta





11521
ccagtcagtc tacttcgtgt ctgagagctt cagtgacgcc aaggacaagc tcaggtgggc





11581
taggctgcta gggcaagccc cccatggtgc ccccaaactg ggccagccag gccttccttc





11641
tggccttgag cagggctgga cctgtgagcc caggtcacag atgagaaaac cgacccctgg





11701
ttgcagcagc ccccacacag cagggacacc atccgtgaga aggaccccag cgtctgggga





11761
ggggcagacc tacaggactg ggggctgctg ggtggccggg tcaaggccag tcttggaggt





11821
gctgacagag cctgagcttt gtgaggacgt cctgtggaac ctgtcccggc cccctgccct





11881
gggatgggga gaagtcaggg ggatagacag agtcaaggtg ggggacaggg cgggagtggg





11941
gtccccaggg ctgggggcct ttggtgcagt gaccagagtg tcaggagagg ggagcaaagc





12001
cctctagcct catcctcata aaaggtctca tcattttccc tccagcctct tatgcactgg





12061
ggaaactgag gccaggggct atgtgtccag cggacagggg tgctgaattc cacccacagg





12121
cttagggata tggtcaagga aagcttcctg gaggaggccc agtggaggtt cagggaggga





12181
tggggtgccc ggcagtctct agtggaaaag gcgcctagcc tatctccccc atgaaccccc





12241
tcacccagcc ctggaagagg cctcagtgtc ccgcctgtga ccagttggct cagaaaagcc





12301
ctgggagctc tgagccactg tgaaggtgga aacgcggccc ctggcctccc ctctcctgga





12361
ggctgcagac tctgcccgcc agttgacgag ggctctgccg ctctcctccc caggagctat





12421
gcctcacgca tccagcgccc cttctccgtg aagttcgacc cgtacacgct ggccatcgac





12481
gtgctggaca gcccccaggc cgtgcggcgc tccctggagg gtgtccagga tgagctggac





12541
acccttgccc atgcgctgag tgccattggc taggtgcacg gcgtccctga gggcccttcc





12601
caacctcccc tggtcctgca ctgtcccgga gctcaggccc tggtgagggg ctgggtcccg





12661
ggtgcccccc atgccctccc tgctgccagg ctcccactgc ccctgcacct gcttctcagc





12721
gcaacagctg tgtgtgcccg tggtgaggtt gtgctgcctg tggtgaggtc ctgtcctggc





12781
tcccagggtc ctgggggctg ctgcactgcc ctccgccctt ccctgacact gtctgctgcc





12841
ccaatcaccg tcacaataaa agaaactgtg gtctctacac ctgcctggcc ccacatctgt





12901
gccacagaga cagaccctgg gatcctcaga ctcccacacc cccaccccag cctcactcag





12961
aggtttcgcc ctggcctcct tcctcctctg ggagatggct ggccgccctg gccaggcagc





13021
tggcccctcc gggcctggtt tccccgctca ccctgaggcc ccgcccagct ctgagcccca





13081
agcagctcca gaggctcggg caccctggcc gagctgcccc atctccgtgg ggtgccctcc





13141
caaggtgggg agccacgtga cagtgggagg gcctctctca ggcctggcag ggagcagggg





13201
tcacaaactg tgctggctgg gggtggtctc agaggtgggc ctgcaggcct aaccctccct





13261
gctgacaggg ctcccagccc ttgagagaaa cagggatgga ggaacagctg ccctgatgcc





13321
ctcacccacc cggagcaggc cctgcgaacc aaggggaacc tcagtgtggc ccccagcatg





13381
tgtgctgatg gggagggtct ggctgagctg gtgcccaggc agatggtctg ggcctgtctc





13441
cccagcgagg caggatgggg gctggatttc agactctgta agatgcccct ggcttactcg





13501
aggggcctgg acattgccct ccagagagag cacccaacac cctccaggct tgaccggcca





13561
gggtgtcccc ttcctacctt ggagagagca gccccagggc atcctgcagg gggtgctggg





13621
acaccagctg gccttcaagg tctctgcctc cctccagcca ccccactaca cgctgctggg





13681
atcctggatc tcagctcccc ggccgacaac actggcaaac tcctactcat ccacgaaggc





13741
cctcctgggc atggtggtcc ttcccagcct ggcagtctgt tcctcacaca ccttgttagt





13801
gcccagcccc tgaggttgca gctgggggtg tctctgaagg gctgtgagcc cccaggaagc





13861
cctggggaag tgcctgcctt gcctcccccc ggccctgcca gcgcctggct ctgccctcct





13921
acctgggctc cccccatcca gcctccctcc ctacacactc ctctcaagga ggcacccatg





13981
tcctctccag ctgccgggcc tcagagcact gtggcgtcct ggggcagcca ccgcatgtcc





14041
tgctgtggca tggctcaggg tggaaagggc ggaagggagg ggtcctgcag atagctggtg





14101
cccactacca aacccgctcg gggcaggaga gccaaaggct gggtgtgtgc agagcggccc





14161
cgagaggttc cgaggctgag gccagggtgg gacataggga tgcgaggggc cggggcacag





14221
gatactccaa cctgcctgcc cccatggtct catcctcctg cttctgggac ctcctgatcc





14281
tgcccctggt gctaagaggc aggtaggggc tgcaggcagc agggctcgga gcccatgccc





14341
cctcaccatg ggtcaggctg gacctccagg tgcctgttct ggggagctgg gagggccgga





14401
ggggtgtacc ccaggggctc agcccagatg acactatggg ggtgatggtg tcatgggacc





14461
tggccaggag aggggagatg ggctcccaga agaggagtgg gggctgagag ggtgcctggg





14521
gggccaggac ggagctgggc cagtgcacag cttcccacac ctgcccaccc ccagagtcct





14581
gccgccaccc ccagatcaca cggaagatga ggtccgagtg gcctgctgag gacttgctgc





14641
ttgtccccag gtccccaggt catgccctcc ttctgccacc ctggggagct gagggcctca





14701
gctggggctg ctgtcctaag gcagggtggg aactaggcag ccagcaggga ggggacccct





14761
ccctcactcc cactctccca cccccaccac cttggcccat ccatggcggc atcttgggcc





14821
atccgggact ggggacaggg gtcctgggga caggggtgtg gggacagggg tcctggg






By “LMX1A polypeptide” (or LIM homeobox transcription factor 1-alpha) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q8TE12.











1
mldglkmeen fqsaidtsas fssllgrays pksvcegcqr vildrfllrl ndsfwheqcv






61
qcasckeple ttcfyrdkkl yckydyeklf avkcggcfea iapnefvmra qksvyhlscf





121
cccvcerqlq kgdefvlkeg qllckgdyek erellslvsp aasdsgksdd eeslcksahg





181
agkgtaeegk dhkrpkrprt ilttqqrraf kasfevsskp crkvretlaa etglsvrvvq





241
vwfqnqrakm kklarrqqqq qqdqqntqrl ssaqtngggs agmegimnpy talptpqq11





301
aieqsvyssd pfrqgltppq mpgdhmhpyg aeplfhdlds ddtslsnlgd cflatseagp





361
lqsrvgnpid hlysmqnsyf ts






By “LMX1A nucleic acid molecule” (or LIM homeobox transcription factor 1-alpha) is meant a polynucleotide encoding an LMX1A polypeptide. An exemplary LMX1A nucleic acid molecule is provided at NCBI Accession No. AH011517.











1
gtataggttg gggcggagtc ggattcggga tggaaaacct ggggcaaggg atgtaggtgg






61
gggtgagggg ggcaggagaa ggagaaacgc agttgggggg cggaggccta agtacataac





121
gtgttgactt caagtgaaat cagatcagcc agagcagttc gctgtgactg atctctcctc





181
ccaccctaca ttctcttggc tggaccctat cctcctggct gattctggtc gccctggaca





241
ctccctcagt tctttcccag gagtgcggtg gctgctggcg ccgagtccca gcgggcacgg





301
acgtcagacg catcgtttct tctcctctac aggtcctccc ggcccggccc gaacatgctg





361
gacggcctaa agatggagga gaacttccaa agcgcgatcg acacctcggc ctccttctcc





421
tcgctgctgg gtgagtgttc aggccgtgcg tcctgggcgc actctctttc cgcttggcgc





481
tgagctctgg agccccgctc tctgggacct ggtccgcgat agggaagcta gcgcccctct





541
tcatacacta aattgagccc catcactatc tgtccgtcag tgcttgtggg tcgtccctac





601
ccaaataaat ccaacaagcc gccccaggcc tcacgcactg ggcaccgaat tccccaaagc





661
cgcgaggggc gggcgagctt gttcgtaggc gtctgagtgg caagtgatta aaaataccca





721
gggctggatt tttaatctcg gagctgatcg acgtctcata aatgccgccc tcttctcgcg





781
gcctagaggc aatagcatcc gagacccgag gcctggagcg cccaagttcg aggaggcttc





841
tctcccccac caactccagc cccaatttca gccatgggca aggccgagag agacttttct





901
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn





961
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn gggtcccggc caggtttggc





1021
atggtctacc tgcccgggct gctcacccgc caacgtctgt tgtggctaca ggcagagcgg





1081
tgagccccaa gtctgtctgc gagggctgtc agcgggtcat cttggacagg tttctgctgc





1141
ggctcaacga cagcttctgg catgagcagt gcgtgcagtg cgcctcctgc aaagagcccc





1201
tggagaccac ctgcttctac cgggacaaga agctgtactg caagtatgac tacgagaagt













1261
aagtggccgc acccccgcag cgctccccgc gcactggcat nnnnnnnnnn nnnnnnnnnn







1321
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






1381
nnnnnnnnnn nnnnnnnnnn atcccagttc ttgaagttcc ttttgctgtt gacttcaggg






1441
gagacccagg accaagccag attttactca tggtgcatgt acttcctttc tccctgctgc






1501
caggctgttt gctgttaaat gtgggggctg cttcgaggcc atcgctccca atgagtttgt






1561
tatgcgggcc cagaagagtg tataccacct gagctgcttc tgctgctgtg tctgcgagcg






1621
acagcttcag aagggtgatg agtttgtcct gaaggagggg cagctgctct gcaaagggga






1681
ctatgagaag gagcgggagc tgctcagcct ggtgagccca gcagcctcag actcaggtga






1741
gtgccaggtg gtgggcaggg ctgcggtggg gtgggtagag tggagttggg tggctgtctg






1801
cattgtttct tccctagatg nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






1861
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






1921
catacagctc caggaactgg ctttcaggga ctcacaacat tgtcttttgc ttctttcagg






1981
taaaagtgat gatgaagaaa gtctctgcaa gtcagcccat ggggcaggga aaggaactgc






2041
tgaggaaggc aaggaccata agcgccccaa acgtccgaga accatcttga caactcaaca






2101
gaggcgagca ttcaaggcct catttgaagt atcctccaag ccctgcagga aggtatagga






2161
gggagcaggg aggaaaagga gctgggcccc acttctctgt gtgcactcag acccctctgg






2221
gatctcagtg ggcattgggg gtcacagtgg tgaggaaggc tgttcagaca gagcctgcac






2281
aggcggctca agcctgttgg agactccaga gatcactaag ctgtggccag ggtgtgatag






2341
actctcctga agctttcatg catgcacacc aactccaaat ggcccctgtc acacctttca






2401
tttcatagag cacaatggga acagtaataa tgataggtgt ccattgtggt gtagacccag






2461
atgctgtaaa gcaaagagta taaaaacaca gtggcttgca gtactctttt ttgagtctgg






2521
ctttttccac ttggtgtggt ggtttgggga ttcattcatt cctatttcag cattccactg






2581
tataggtgtg ccatgattgg tttgtccatg cacctgttga tgggtgtttg gggttgtttc






2641
tagtttggga ctgtttcaaa taggactgct atggacattc atgtaaaaaa aaatacagtg






2701
gtttaatgag acaggagttt attctcttct gtcacagtcc agaggtgagc aaggcaaggc






2761
tggtgggtgg ctctgttatc catctcctgt gtccaagcga ctgctccagt tgtcaccatg






2821
tttccagtca ccaggtagag aaagaggaaa tggagggcaa gcgccctgct ttttaaggat






2881
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






2941
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn atgcatatgc atggcttata






3001
gctaaagcac aacaatagac taaagtctaa accacttgaa ggcctaattt ccagagcaag






3061
agaaatccag aaacacctct tgggaatgca catgtaaatt aataattatt attttgtttc






3121
tttacctggt gaaggacttt ctttctacct gaagggaagc aatgttctcg tgtttgtgtg






3181
tatgctcaac attaaaaact attcagctcc taaagcagat acagtctttt ggcctcctca






3241
agtattatat aggagatgtt ctacctccta ccctgagatg ccagtgtgtc tacatttctc






3301
gttcaatttt tccaaggtga gagagactct ggctgcagag acagggctga gtgtccgtgt






3361
cgtccaggtg tggttccaaa accagagagc gaaggtaacc tgcttcttac ttttatctgt






3421
ccccatgttg ctggtttcct gaaataatca cagtaggaca nnnnnnnnnn nnnnnnnnnn






3481
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






3541
nnnnnnnnnn nnnnnnnnnn agccctctcc cggggaaggt gtcacttcca ggccccccct






3601
tactttgtga acatgctgca ggccacctga cttctaatcc tatggtcctc tccttatcag






3661
atgaagaagc tggccaggcg acagcagcag cagcagcaag atcagcagaa cacccagagg






3721
ctgagctctg gtaagctggt gcctcctccc aggcagttct ggctggaatc caggctgttc






3781
ctaccagagg cctcccacta cccagctctt tggatgacat atctggactc agtgaagcct






3841
agaccacacc cactggagaa ataaggcctt caagggaaga ctgagccacg aggaacttgt






3901
gagagggttg agggctcctg agctgcaggc ttagaactgc tgattgggga tggcactgac






3961
cttatccaca gcgtccaggc ctggatccca ccacagcgtc agggactgct tgcagagtca






4021
cagatacgtt cagtttctca tcttgcttag ttctccttcc aggctaattg atttaataga






4081
agacacctcg gtgacttggc tctttccaaa ataacataaa gtagtaaaaa taatgatagt






4141
aaaataacaa tgccttcctt tgttgaacac tcttatagat tggtgttctc atacatgctg






4201
acttgacttt tacaacaccc attcctggag gcgagtggag aagttgttat tatccctatg






4261
tcacagatga gcaaacaaag gctctgcaag attgaatgtg gccctagatc ggtaagggca






4321
gggggctggg actagaactc taactgtgtt ccacaggcca tgggccttct catctctacc






4381
cagatgtgct tttgaaaaag nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






4441
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






4501
cacgttgaga atgacctggc ttcttctttg ttccacagct cagacaaacg gtggtgggag






4561
tgctgggatg gaaggaatca tgaaccccta cacggctctg cccaccccac agcagctcct






4621
ggccatcgag cagagtgtct acagctcaga tcccttccga cagggtctca ccccacccca






4681
gatgcctgga gaccacatgc acccttatgg taagagggac ttaagcccct cgggccctct






4741
cataacttgt gtgggtttct cattccctcc taaacacatc taggcagttc ccagatgctc






4801
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn






4861
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn aaatgagtca cacttcaag






4921
accctcatgc cagtgtttca tctccatttc aggtgccgag ccccttttcc atgacctgga






4981
tagcgacgac acctccctca gtaacctggg tgattgtttc ctagcaacct cagaagctgg






5041
gcctctgcag tccagagtgg gaaaccccat tgaccatctg tactccatgc agaattctta






5101
cttcacatct tgagtcttcc cctagagttc tgtgactagg ctcccatatg gaacaaccat






5161
attctttgag gggtcactgg ctttaggaca gggaggccag ggaagaggtg ggttggggag






5221
ggagttttgt tggggatgct gttgtataat gatatggtgt agctcagcat ttccaaagac






5281
tgaatacatt atggattgca tagtttaatg







By “FOXO1 polypeptide” (or Forkhead box protein 01) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q12778.











1
maeapqvvei dpdfeplprp rsctwplprp efsqsnsats spapsgsaaa npdaaaglps






61
asaaaysadf msnlsllees edfpqapgsv aaavaaaaaa aatgglcgdf qgpeagclhp





121
appqppppgp lsqhppvppa aagplagqpr kssssrrnaw gnlsyadlit kaiessaekr





181
ltlsqiyewm vksvpyfkdk gdsnssagwk nsirhnlslh skfirvqneg tgksswwmln





241
peggksgksp rrraasmdnn skfaksrsra akkkaslqsg qegagdspgs qfskwpaspg





301
shsnddfdnw stfrprtssn astisgrlsp imteqddlge gdvhsmvypp saakmastlp





361
slseisnpen menlldnlnl lssptsltvs tqsspgtmmq qtpcysfapp ntslnspspn





421
yqkytygqss msplpqmpiq tlqdnkssyg gmsqyncapg llkelltsds pphndimtpv





481
dpgvaqpnsr vlgqnvmmgp nsvmstygsq ashnkmmnps shthpghaqq tsavngrplp





541
htvstmphts gmnrltqvkt pvqvplphpm qmsalggyss vsscngygrm gllhqeklps





601
dldgmfierl dcdmesiirn dlmdgdtldf nfdnvlpnqs fphsvkttth swvsg






By “FOXO1 nucleic acid molecule” (or Forkhead box protein 01) is meant a polynucleotide (e.g., mRNA) encoding an FOXO1 polypeptide. An exemplary FOXO1 nucleic acid molecule is provided at NCBI Accession No. NM_002015.












1
gcagccgcca cattcaacag gcagcagcgc agcgggcgcg ccgctgggga gagcaagcgg







61
cccgcggcgt ccgtccgtcc ttccgtccgc ggccctgtca gctggagcgc ggcgcaggct






121
ctgccccggc ccggcggctc tggccggccg tccagtccgt gcggcggacc ccgaggagcc






181
tcgatgtgga tggccccgcg aagttaagtt ctgggctcgc gcttccactc cgccgcgcct






241
tcctcccagt ttccgtccgc tcgccgcacc ggcttcgttc ccccaaatct cggaccgtcc






301
cttcgcgccc cctccccgtc cgcccccagt gctgcgttct ccccctcttg gctctcctgc






361
ggctggggga ggggcggggg tcaccatggc cgaggcgcct caggtggtgg agatcgaccc






421
ggacttcgag ccgctgcccc ggccgcgctc gtgcacctgg ccgctgccca ggccggagtt






481
tagccagtcc aactcggcca cctccagccc ggcgccgtcg ggcagcgcgg ctgccaaccc






541
cgacgccgcg gcgggcctgc cctcggcctc ggctgccgct gtcagcgccg acttcatgag






601
caacctgagc ttgctggagg agagcgagga cttcccgcag gcgcccggct ccgtggcggc






661
ggcggtggcg gcggcggccg ccgcggccgc caccgggggg ctgtgcgggg acttccaggg






721
cccggaggcg ggctgcctgc acccagcgcc accgcagccc ccgccgcccg ggccgctgtc






781
gcagcacccg ccggtgcccc ccgccgccgc tgggccgctc gcggggcagc cgcgcaagag






841
cagctcgtcc cgccgcaacg cgtggggcaa cctgtcctac gccgacctca tcaccaaggc






901
catcgagagc tcggcggaga agcggctcac gctgtcgcag atctacgagt ggatggtcaa






961
gagcgtgccc tacttcaagg ataagggtga cagcaacagc tcggcgggct ggaagaattc






1021
aattcgtcat aatctgtccc tacacagcaa gttcattcgt gtgcagaatg aaggaactgg






1081
aaaaagttct tggtggatgc tcaatccaga gggtggcaag agcgggaaat ctcctaggag






1141
aagagctgca tccatggaca acaacagtaa atttgctaag agccgaagcc gagctgccaa






1201
gaagaaagca tctctccagt ctggccagga gggtgctggg gacagccctg gatcacagtt






1261
ttccaaatgg cctgcaagcc ctggctctca cagcaatgat gactttgata actggagtac






1321
atttcgccct cgaactagct caaatgctag tactattagt gggagactct cacccattat






1381
gaccgaacag gatgatcttg gagaagggga tgtgcattct atggtgtacc cgccatctgc






1441
cgcaaagatg gcctctactt tacccagtct gtctgagata agcaatcccg aaaacatgga






1501
aaatcttttg gataatctca accttctctc atcaccaaca tcattaactg tttcgaccca






1561
gtcctcacct ggcaccatga tgcagcagac gccgtgctac tcgtttgcgc caccaaacac






1621
cagtttgaat tcacccagcc caaactacca aaaatataca tatggccaat ccagcatgag






1681
ccctttgccc cagatgccta tacaaacact tcaggacaat aagtcgagtt atggaggtat






1741
gagtcagtat aactgtgcgc ctggactctt gaaggagttg ctgacttctg actctcctcc






1801
ccataatgac attatgacac cagttgatcc tggggtagcc cagcccaaca gccgggttct






1861
gggccagaac gtcatgatgg gccctaattc ggtcatgtca acctatggca gccaggcatc






1921
tcataacaaa atgatgaatc ccagctccca tacccaccct ggacatgctc agcagacatc






1981
tgcagttaac gggcgtcccc tgccccacac ggtaagcacc atgccccaca cctcgggtat






2041
gaaccgcctg acccaagtga agacacctgt acaagtgcct ctgccccacc ccatgcagat






2101
gagtgccctg gggggctact cctccgtgag cagctgcaat ggctatggca gaatgggcct






2161
tctccaccag gagaagctcc caagtgactt ggatggcatg ttcattgagc gcttagactg






2221
tgacatggaa tccatcattc ggaatgacct catggatgga gatacattgg attttaactt






2281
tgacaatgtg ttgcccaacc aaagcttccc acacagtgtc aagacaacga cacatagctg






2341
ggtgtcaggc tgagggttag tgagcaggtt acacttaaaa gtacttcaga ttgtctgaca






2401
gcaggaactg agagaagcag tccaaagatg tctttcacca actccctttt agttttcttg






2461
gttaaaaaaa aaaacaaaaa aaaaaaccct ccttttttcc tttcgtcaga cttggcagca






2521
aagacatttt tcctgtacag gatgtttgcc caatgtgtgc aggttatgtg ctgctgtaga






2581
taaggactgt gccattggaa atttcattac aatgaagtgc caaactcact acaccatata






2641
attgcagaaa agattttcag atcctggtgt gctttcaagt tttgtatata agcagtagat






2701
acagattgta tttgtgtgtg tttttggttt ttctaaatat ccaattggtc caaggaaagt






2761
ttatactctt tttgtaatac tgtgatgggc ctcatgtctt gataagttaa acttttgttt






2821
gtactacctg ttttctgcgg aactgacgga tcacaaagaa ctgaatctcc attctgcatc






2881
tccattgaac agccttggac ctgttcacgt tgccacagaa ttcacatgag aaccaagtag






2941
cctgttatca atctgctaaa ttaatggact tgttaaactt ttggaaaaaa aaagattaaa






3001
tgccagcttt gtacaggtct tttctatttt tttttgttta ttttgttatt tgcaaatttg






3061
tacaaacatt taaatggttc taatttccag ataaatgatt tttgatgtta ttgttgggac






3121
ttaagaacat ttttggaata gatattgaac tgtaataatg ttttcttaaa actagagtct






3181
actttgttac atagtcagct tgtaaatttt gtggaaccac aggtatttgg ggcagcattc






3241
ataattttca ttttgtattc taactggatt agtactaatt ttatacatgc ttaactggtt






3301
tgtacacttt gggatgctac ttagtgatgt ttctgactaa tcttaaatca ttgtaattag






3361
tacttgcata ttcaacgttt caggccctgg ttgggcagga aagtgatgta tagttatgga






3421
cactttgcgt ttcttattta ggataactta atatgttttt atgtatgtat tttaaagaaa






3481
tttcatctgc ttctactgaa ctatgcgtac tgcatagcat caagtcttct ctagagacct






3541
ctgtagtcct gggaggcctc ataatgtttg tagatcagaa aagggagatc tgcatctaaa






3601
gcaatggtcc tttgtcaaac gagggatttt gatccacttc accattttga gttgagcttt






3661
agcaaaagtt tcccctcata attctttgct cttgtttcag tccaggtgga ggttggtttt






3721
gtagttctgc cttgaggaat tatgtcaaca ctcatacttc atctcattct cccttctgcc






3781
ctgcagatta gattacttag cacactgtgg aagtttaagt ggaaggaggg aatttaaaaa






3841
tgggacttga gtggtttgta gaatttgtgt tcataagttc agatgggtag caaatggaat






3901
agaacttact taaaaattgg ggagatttat ttgaaaacca gctgtaagtt gtgcattgag






3961
attatgttaa aagccttggc ttaagaattt gaaaatttct ttagcctgta gcaacctaaa






4021
ctgtaattcc tatcattatg ttttattact ttccaattac ctgtaactga cagaccaaat






4081
taattggctt tgtgtcctat ttagtccatc agtattttca agtcatgtgg aaagcccaaa






4141
gtcatcacaa tgaagagaac aggtgcacag cactgttcct cttgtgttct tgagaaggat






4201
ctaatttttc tgtatatagc ccacatcaca cttgctttgt cttgtatgtt aattgcatct






4261
tcattggctt ggtatttcct aaatgtttaa caagaacaca agtgttcctg ataagatttc






4321
ctacagtaag ccagctctat tgtaagcttc ccactgtgat gatcattttt ttgaagattc






4381
attgaacagc caccactcta tcatcctcat tttggggcag tccaagacat agctggtttt






4441
agaaacccaa gttcctctaa gcacagcctc ccgggtatgt aactgaactt ggtgccaaag






4501
tacttgtgta ctaatttcta ttactacgta ctgtcacttt cctcccgtgc cattactgca






4561
tcataataca aggaacctca gagcccccat ttgttcatta aagaggcaac tacagccaaa






4621
atcactgtta aaatcttact acttcatgga gtagctctta ggaaaatata tcttcctcct






4681
gagtctgggt aattatacct ctcccaagcc cccattgtgt gttgaaatcc tgtcatgaat






4741
ccttggtagc tctctgagaa cagtgaagtc cagggaaagg catctggtct gtctggaaag






4801
caaacattat gtggcctctg gtagtttttt tcctgtaaga atactgactt tctggagtaa






4861
tgagtatata tcagttattg tacatgattg ctttgtgaaa tgtgcaaatg atatcaccta






4921
tgcagccttg tttgatttat tttctctggt ttgtactgtt attaaaagca tattgtatta






4981
tagagctatt cagatatttt aaatataaag atgtattgtt tccgtaatat agacgtatgg






5041
aatatattta ggtaatagat gtattacttg gaaagttctg ctttgacaaa ctgacaaagt






5101
ctaaatgagc acatgtatcc cagtgagcag taaatcaatg gaacatccca agaagaggat






5161
aaggatgctt aaaatggaaa tcattctcca acgatataca aattggactt gttcaactgc






5221
tggatatatg ctaccaataa ccccagcccc aacttaaaat tcttacattc aagctcctaa






5281
gagttcttaa tttataacta attttaaaag agaagtttct tttctggttt tagtttggga






5341
ataatcattc attaaaaaaa atgtattgtg gtttatgcga acagaccaac ctggcattac






5401
agttggcctc tccttgaggt gggcacagcc tggcagtgtg gccaggggtg gccatgtaag






5461
tcccatcagg acgtagtcat gcctcctgca tttcgctacc cgagtttagt aacagtgcag






5521
attccacgtt cttgttccga tactctgaga agtgcctgat gttgatgtac ttacagacac






5581
aagaacaatc tttgctataa ttgtataaag ccataaatgt acataaatta tgtttaaatg






5641
gcttggtgtc tttcttttct aattatgcag aataagctct ttattaggaa ttttttgtga






5701
agctattaaa tacttgagtt aagtcttgtc agccacaa







By “FOXA2 polypeptide” (or Forkhead box protein A2) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q9Y261.











1
mlgavkmegh epsdwssyya epegyssysn mnaglgmngm ntymsmsaaa mgsgsgnmsa






61
gsmnmssyvg agmspslagm spgagamagm ggsagaagva gmgphlspsl splggqaaga





121
mgglapyanm nsmspmygqa glsrardpkt yrrsythakp pysyislitm aiqqspnkml





181
tlseiyqwim dlfpfyrqnq qrwqnsirhs lsfndcflkv prspdkpgkg sfwdhpdsg





241
nmfengcylr rqkrfkcekq lalkeaagaa gsgkkaaaga qasqaqlgea agpasetpag





301
tesphssasp cqehkrgglg elkgtpaaal sppepapspg qqqqaaahll gpphhpglpp





361
eahlkpehhy afnhpfsinn lmsseqqhhh shhhhqphkm dlkayeqvmh ypgygspmpg





421
slamgpvtnk tgldasplaa dtsyyqgvys rpimnss






By “FOXA2 nucleic acid molecule” (or Forkhead box protein A2) is meant a polynucleotide (e.g., mRNA) encoding an FOXA2 polypeptide. An exemplary FOXA2 nucleic acid molecule is provided at NCBI Accession No. NM_021784.











1
cccgcccact tccaactacc gcctccggcc tgcccaggga gagagaggga gtggagccca






61
gggagaggga gcgcgagaga gggagggagg aggggacggt gctttggctg actttttttt





121
aaaagagggt gggggtgggg ggtgattgct ggtcgtttgt tgtggctgtt aaattttaaa





181
ctgccatgca ctcggcttcc agtatgctgg gagcggtgaa gatggaaggg cacgagccgt





241
ccgactggag cagctactat gcagagcccg agggctactc ctccgtgagc aacatgaacg





301
ccggcctggg gatgaacggc atgaacacgt acatgagcat gtcggcggcc gccatgggca





361
gcggctcggg caacatgagc gcgggctcca tgaacatgtc gtcgtacgtg ggcgctggca





421
tgagcccgtc cctggcgggg atgtcccccg gcgcgggcgc catggcgggc atgggcggct





481
cggccggggc ggccggcgtg gcgggcatgg ggccgcactt gagtcccagc ctgagcccgc





541
tcggggggca ggcggccggg gccatgggcg gcctggcccc ctacgccaac atgaactcca





601
tgagccccat gtacgggcag gcgggcctga gccgcgcccg cgaccccaag acctacaggc





661
gcagctacac gcacgcaaag ccgccctact cgtacatctc gctcatcacc atggccatcc





721
agcagagccc caacaagatg ctgacgctga gcgagatcta ccagtggatc atggacctct





781
tccccttcta ccggcagaac cagcagcgct ggcagaactc catccgccac tcgctctcct





841
tcaacgactg tttcctgaag gtgccccgct cgcccgacaa gcccggcaag ggctccttct





901
ggaccctgca ccctgactcg ggcaacatgt tcgagaacgg ctgctacctg cgccgccaga





961
agcgcttcaa gtgcgagaag cagctggcgc tgaaggaggc cgcaggcgcc gccggcagcg





1021
gcaagaaggc ggccgccgga gcccaggcct cacaggctca actcggggag gccgccgggc





1081
cggcctccga gactccggcg ggcaccgagt cgcctcactc gagcgcctcc ccgtgccagg





1141
agcacaagcg agggggcctg ggagagctga aggggacgcc ggctgcggcg ctgagccccc





1201
cagagccggc gccctctccc gggcagcagc agcaggccgc ggcccacctg ctgggcccgc





1261
cccaccaccc gggcctgccg cctgaggccc acctgaagcc ggaacaccac tacgccttca





1321
accacccgtt ctccatcaac aacctcatgt cctcggagca gcagcaccac cacagccacc





1381
accaccacca accccacaaa atggacctca aggcctacga acaggtgatg cactaccccg





1441
gctacggttc ccccatgcct ggcagcttgg ccatgggccc ggtcacgaac aaaacgggcc





1501
tggacgcctc gcccctggcc gcagatacct cctactacca gggggtgtac tcccggccca





1561
ttatgaactc ctcttaagaa gacgacggct tcaggcccgg ctaactctgg caccccggat





1621
cgaggacaag tgagagagca agtgggggtc gagactttgg ggagacggtg ttgcagagac





1681
gcaagggaga agaaatccat aacaccccca ccccaacacc cccaagacag cagtcttctt





1741
cacccgctgc agccgttccg tcccaaacag agggccacac agatacccca cgttctatat





1801
aaggaggaaa acgggaaaga atataaagtt aaaaaaaagc ctccggtttc cactactgtg





1861
tagactcctg cttcttcaag cacctgcaga ttctgatttt tttgttgttg ttgttctcct





1921
ccattgctgt tgttgcaggg aagtcttact taaaaaaaaa aaaaaatttt gtgagtgact





1981
cggtgtaaaa ccatgtagtt ttaacagaac cagagggttg tactattgtt taaaaacagg





2041
aaaaaaaata atgtaagggt ctgttgtaaa tgaccaagaa aaagaaaaaa aaagcattcc





2101
caatcttgac acggtgaaat ccaggtctcg ggtccgatta atttatggtt tctgcgtgct





2161
ttatttatgg cttataaatg tgtattctgg ctgcaagggc cagagttcca caaatctata





2221
ttaaagtgtt atacccggtt ttatcccttg aatcttttct tccagatttt tcattatt





2281
acttggctta caaaatatac aggcttggaa attatttcaa gaaggaggga gggataccct





2341
gtctggttgc aggttgtatt ttattttggc ccagggagtg ttgctgtttt cccaacattt





2401
tattaataaa attttcagac ataaaaaa






By “FOXO4 polypeptide” (or Forkhead box protein 04) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P98177.











1
mdpgnensat eaaaiidldp dfepqsrprs ctwplprpei anqpseppev epdlgekvht






61
egrsepillp srlpepaggp qpgilgavtg prkggsrrna wgnqsyaeli sqaiesapek





121
rltlaqiyew mvrtvpyfkd kgdsnssagw knsirhnlsl hskfikvhne atgksswwml





181
npeggksgka prrraasmds sskllrgrsk apkkkpsvlp appegatpts pvghfakwsg





241
spcsrnreea dmwttfrprs ssnassystr lsplrpesev laeeipasvs syaggvpptl





301
neglelldgl nitsshslls rsglsgfslq hpgvtgplht yssslfspae gplsagegcf





361
sssqaleall tsdtppppad vlmtqvdpil sqapt1111g glpsssklat gvglcpkple





421
apgpsslvpt lsmiapppvm asapipkalg tpvltpptea asqdrmpqdl dldmymenle





481
cdmdniisdl mdegegldfn fepdp






By “FOXO4 nucleic acid molecule” (or Forkhead box protein 04) is meant a polynucleotide (e.g., mRNA) encoding an FOXO4 polypeptide. An exemplary FOXO4 nucleic acid molecule is provided at NCBI Accession No. NM 005938.











1
aaaaggggga gggaactgcg gctaaggaga cgttcggtga tgggagcgca atatatgagg






61
ggatacagtg cctcaggttt aaaagagcag gaagctgagt gagaggttgc agaaaaagtg





121
tcttcgctcg gcagaggtta caggtggcat ctcagaaaga gctttgaggc tacaggctgt





181
agtcgggaag gggatcggag aactgtgtga agggacagct tagggactag cgtcctggga





241
ctagggggaa gttcgcgact ttctgaagac tggcaggaat gtgcctcctg gccctcgatg





301
cttcccccct gaggggaggc atcgtgaggg actgtggcag gcttcactga acgctgagcc





361
ggggaggtcc aactccacgt atggatccgg ggaatgagaa ttcagccaca gaggctgccg





421
cgatcataga cctagatccc gacttcgaac cccagagccg tccccgctcc tgcacctggc





481
cccttccccg accagagatc gctaaccagc cgtccgagcc gcccgaggtg gagccagatc





541
tgggggaaaa ggtacacacg gaggggcgct cagagccgat cctgttgccc tctcggctcc





601
cagagccggc cgggggcccc cagcccggaa tcctgggggc tgtaacaggt cctcggaagg





661
gaggctcccg ccggaatgcc tggggaaatc agtcatatgc agaactcatc agccaggcca





721
ttgaaagcgc cccggagaag cgactgacac ttgcccagat ctacgagtgg atggtccgta





781
ctgtacccta cttcaaggac aagggtgaca gcaacagctc agcaggatgg aagaactcga





841
tccgccacaa cctgtccctg cacagcaagt tcatcaaggt tcacaacgag gccaccggca





901
aaagctcttg gtggatgctg aaccctgagg gaggcaagag cggcaaagcc ccccgccgcc





961
gggccgcctc catggatagc agcagcaagc tgctccgggg ccgcagtaaa gcccccaaga





1021
agaaaccatc tgtgctgcca gctccacccg aaggtgccac tccaacgagc cctgtcggcc





1081
actttgccaa gtggtcaggc agcccttgct ctcgaaaccg tgaagaagcc gatatgtgga





1141
ccaccttccg tccacgaagc agttcaaatg ccagcagtgt cagcacccgg ctgtccccct





1201
tgaggccaga gtctgaggtg ctggcggagg aaataccagc ttcagtcagc agttatgcag





1261
ggggtgtccc tcccaccctc aatgaaggtc tagagctgtt agatgggctc aatctcacct





1321
cttcccattc cctgctatct cggagtggtc tctctggctt ctctttgcag catcctgggg





1381
ttaccggccc cttacacacc tacagcagct cccttttcag cccagcagag gggcccctgt





1441
cagcaggaga agggtgcttc tccagctccc aggctctgga ggccctgctc acctctgata





1501
cgccaccacc ccctgctgac gtcctcatga cccaggtaga tcccattctg tcccaggctc





1561
cgactcttct gttgctgggg gggcttcctt cctccagtaa gctggccacg ggcgtcggcc





1621
tgtgtcccaa gcccctagag gctccaggcc ccagcagtct ggttcccacc ctttctatga





1681
tagcaccacc tccagtcatg gcaagtgccc ccatccccaa ggctctgggg actcctgtgc





1741
tcacaccccc tactgaagct gcaagccaag acagaatgcc tcaggatcta gatcttgata





1801
tgtatatgga gaacctggag tgtgacatgg ataacatcat cagtgacctc atggatgagg





1861
gcgagggact ggacttcaac tttgagccag atccctgagt catgcctgga agctttgtcc





1921
cctgcttcag atgtggagcc aggcgtgttc atatctactc tttacccttg agccctcccc





1981
aggaatttgg gaccctgctt tagagctagg gtggggtctg gtcacacaca ggtgttgaag





2041
aaattataaa gataaagctg ccccatctgg ggacgatatg gggagggaga tgggagggga





2101
aaggggagag ggtttttctc actgtgccaa ttagggggta aggccccctc tcaggagcca





2161
tcatcggctt tccccattcc tacccactta ggctttgtag caagatgagc aatgctgttg





2221
gaaatgtgaa gtcaccagtg gccttacccc tgcctttggg agcaggattt ttttgtagag





2281
agtcttatct gagctgagcc aggctagctg gagcctggga tttctatgca gtggcccctt





2341
aggccagtga tgtgcggtgg gtgggctgtt taggggatct ggaagggcca aggtctgagc





2401
actggagtgg ctcgccaggc caaatcaccc ttagaaggct gcagataaca gaaaggcttt





2461
ttataaactt ttaaagaaat ataaacacaa atatagagat tttttaacca tggcagggtg





2521
ctagtggtgg gcagaatgct tttttttctt tctgaaggct ttgtgatagt gacatgatac





2581
aaacactaca gacaataaat attaggagac acagggaagt ggggagaggt ggggagtaat





2641
agtaaacaca gggaagagct cccctacgga ccaggtatag agaaaggtct atgcagaaat





2701
aggttagagt ttccctaaca aaaaagctaa cccaggtccc ctcattcctt caacttgtgc





2761
ctgggagtgt gtggtgttag ggtgcagcca cactcttcta tgacccagca tgggttagtg





2821
ctatggtggg agagtacatt gaaggcctgg aattagcttg gggccaggga agggactggg





2881
aggggagaga agagaaggag ggaaggattt aggatggtaa agttaggtac agagacctcc





2941
ctgttcaagg cccctgacag ctgtccctgc ccttcttccc cttccctgac tgcaggggtt





3001
atgtggaagt gtgtgtggca gcaggcagcg gggaggggag gaacagggaa gggggagctg





3061
gggagcttgg ctgagggtct gggaaatgag cagggatggg gggggatgtg gatcaggttt





3121
actagcacct gccagggagg ccatctgggg ctccttctcc accccagccc ccaaagcagc





3181
ccttccccca gtgccctttg catcgtcccc tcccccaccc ctgctgtggg ttcccatcat





3241
ttcctgtgtc agcgcctggc ctacccagat tgtatcatgt gctagattgg agtggggaag





3301
tgtgtcaaat caataaatga ataaattcaa taaatgccta taaccagcaa aaaaaaaaaa





3361
aaaaa






By “CNP polypeptide” (or 2′,3′-cyclic-nucleotide 3′-phosphodiesterase) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P09543.











1
mnrgfsrksh tflpkiffrk msssgakdkp elqfpflqde dtvatlleck tlfilrglpg






61
sgkstlarvi vdkyrdgtkm vsadaykitp gargafseey krldedlaay crrrdirilv





121
lddtnherer leqlfemadq yqyqvvlvep ktawrldcaq lkeknqwqls addlkklkpg





181
lekdflplyf gwfltkksse tlrkagqvfl eelgnhkafk kelrqfvpgd eprekmdlvt





241
yfgkrppgvl hcttkfcdyg kapgaeeyaq qdvlkksysk aftltisalf vtpkttgary





301
elseqqlqlw psdvdklspt dnlprgsrah itlgcaadve avqtgldlle ilrqekggsr





361
geevgelsrg klyslgngrw mltlaknmev raiftgyygk gkpvptqgsr kggalqscti





421
i






By “CNP nucleic acid molecule” (or 2′,3′-cyclic-nucleotide 3′-phosphodiesterase) is meant a polynucleotide (e.g., mRNA) encoding an CNP polypeptide. An exemplary CNP nucleic acid molecule is provided at NCBI Accession No. BC011046.











1
ctccgcgcag gcgggcggcc ccggagcgct ggtgccggca gaggcggcga cggtggcgcc






61
cctcctcatc atgaggcttc tcccgaaaaa gccacacatt cctgcccaag atcttcttcc





121
gcaagatgtc atcctcaggg gccaaggaca agcctgagct gcagtttccc ttccttcagg





181
atgaggacac agtggccacg ctgctagagt gcaagacgct cttcatcttg cgcggcctgc





241
caggaagcgg caagtccacg ctggcacggg tcatcgtgga caagtaccgt gatggcacca





301
agatggtgtc ggctgacgct tacaagatca cccccggcgc tcgaggagcc ttctccgagg





361
agtacaagcg gctcgatgag gacctggctg cctactgccg ccgccgggac atcagaattc





421
ttgtgcttga tgacaccaac cacgaacggg aacggctgga gcagctcttt gaaatggccg





481
accagtacca gtaccaggtg gtgctggtgg agcccaagac ggcgtggcgg ctggactgtg





541
cccagctcaa ggagaagaac cagtggcagc tgtcggctga tgacctgaag aagctgaagc





601
ctgggctgga gaaggacttc ctgccgctct acttcggctg gttcctgacc aagaagagct





661
ctgagaccct ccgcaaagcc ggccaggtct tcctggaaga gctggggaac cacaaggcct





721
tcaagaagga gctgcgacaa ttcgtccctg gggatgagcc cagggagaag atggacttgg





781
tcacctactt tggaaagaga cccccaggcg tgctgcattg cacaaccaag ttttgtgact





841
acgggaaggc tcccggggca gaggagtacg ctcaacaaga tgtgttaaag aaatcttact





901
ccaaggcctt cacgctgacc atctctgccc tctttgtgac acccaagacg actggggccc





961
gggtggagtt aagcgagcag caactgcagt tgtggccgag tgatgtggac aagctgtcac





1021
ccactgacaa cctgccgcgg gggagccgcg cccacatcac cctcggctgt gcagctgacg





1081
tagaggccgt gcagacgggc cttgacctct tagagattct gcggcaggag aaggggggca





1141
gccgaggcga ggaggtgggc gagctaagcc ggggcaagct ctattccttg ggcaatgggc





1201
gctggatgct gaccctggcc aagaacatgg aggtcagggc catcttcacg gggtactacg





1261
ggaaaggcaa acctgtgccc acgcaaggta gccggaaggg gggcgccttg cagtcctgca





1321
ccatcatatg agtgttctca ccaccactta tgcccctaga agggaagggg agagggaaac





1381
gtgccctctg tttgatcctt gttttgtgac attttttttt tttttttttt tactcaaagt





1441
taacctacct gtaacttttt aaaaacttgt aaaataactg accctccctt cctgtccgcc





1501
ctcttcccct ctaatgctca cgctcccaac acaaggtggg cagggaggca ccattcagga





1561
acctggacca aagctgacga ggctgggcca agccagggat ggggccacag ccagaacccc





1621
gagccctact tccaggttct ggttagctca gccccagccc agcccagctg ctctgcccag





1681
agctgggtga gtggggagac acctcagagc cccgcaaaac ccactgaccg gaggcaaaag





1741
gcagtggggc tgggggtagt tttccatggt cacagagaac tagtggtggc tctgagaagg





1801
ggaggacctc tgggctttga ttccatctcc ttgtcttttt tctttgtttt tagagacagg





1861
gtcctgctat ttcccaagct ggagtgcagt ggtgcgatca tggctcactg cagcctcgaa





1921
ctcctgggct caagcaatcc tcctgagtga tcccatttct taatcagtgt agccccaaga





1981
aggctggggc tatttaccag ggtagaaaaa ggagcttacc tcccaccttt ggtcctaagt





2041
ccctgccccc tccccttcac accataacta ggtaacagtt tgataactag ggaagaaagc





2101
agaacagtta agcagccgcc acatccccgc tggctggggg cctcactcca ggaaggggct





2161
ggactggctg tcctttccag tggcctggct ccgctgtgtg gatggggaga tcggggccag





2221
aggcagaacc ctggtgagga agctccagtc ctgctctcta cccagcccat cttgcctcca





2281
tggtgcctct ggaggcctct gggcctcctc taacaggggc tggtgggcac caagagccaa





2341
tggagtagac ccctggctgg taagggccaa gtcccaccgg ttgcttctgg gaaggggttt





2401
ctaacactag tctgtgtgct gtggttcctg gggtgccctc cactgccctc tgttcagtaa





2461
cagggccttg ctaatcgggt tgtcactcaa caaaagtgct ttggatttaa gttactatcc





2521
tggctttgcc caacctcagc aacctgtaag actgataatg aaataaatca tgttaatcct





2581
agcaaaaaaa aaaaaaaa






By “MBP polypeptide” (or myelin basic protein) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P02686.











1
mgnhagkrel naekastnse tnrgesekkr nlgelsrtts ednevfgead anqnngtssq






61
dtavtdskrt adpknawqda hpadpgsrph lirlfsrdap gredntfkdr psesdelqti





121
qedsaatses ldvmasqkrp sqrhgskyla tastmdharh gflprhrdtg ildsigrffg





181
gdrgapkrgs gkdshhpart ahygslpqks hgrtqdenpv vhffknivtp rtpppsqgkg





241
rglslsrfsw gaegqrpgfg yggrasdyks ahkgfkgvda qgtlskifkl ggrdsrsgsp





301
marr






By “MBP nucleic acid molecule” (or myelin basic protein) is meant a polynucleotide (e.g., mRNA) encoding an MBP polypeptide. An exemplary MBP nucleic acid molecule is provided at NCBI Accession No. M13577.











1
gaaaacagtg cagccacctc cgagagcctg gatgtgatgg cgtcacagaa gagaccctcc






61
cagaggcacg gatccaagta cctggccaca gcaagtacca tggaccatgc caggcatggc





121
ttcctcccaa ggcacagaga cacgggcatc cttgactcca tcgggcgctt ctttggcggt





181
gacaggggtg cgccaaagcg gggctctggc aaggactcac accacccggc aagaactgct





241
cactatggct ccctgcccca gaagtcacac ggccggaccc aagatgaaaa ccccgtagtc





301
cacttcttca agaacattgt gacgcctcgc acaccacccc cgtcgcaggg aaaggggaga





361
ggactgtccc tgagcagatt tagctggggg gccgaaggcc agagaccagg atttggctac





421
ggaggcagag cgtccgacta taaatcggct cacaagggat tcaagggagt cgatgcccag





481
ggcacgcttt ccaaaatttt taagctggga ggaagagata gtcgctctgg atcacccatg





541
gctagacgct gaaaacccac ctggttccgg aatcctgtcc tcagcttctt aatataactg





601
ccttaaaact ttaatcccac ttgcccctgt tacctaatta gagcagatga cccctcccct





661
aatgcctgcg gagttgtgca cgtagtaggg tcaggccacg gcagcctacc ggcaatttcc





721
ggccaacagt taaatgagaa catgaaaaca gaaaacggtt aaaactgtcc ctttctgtgt





781
gaagatcacg ttccttcccc cgcaatgtgc ccccagacgc acgtgggtct tcagggggcc





841
aggtgcacag acgtccctcc acgttcaccc ctccaccctt ggactttctt ttcgccgtgg





901
ctcggcaccc ttgcgctttt gctggtcact gccatggagg cacacagctg cagagacaga





961
gaggacgtgg gcggcagaga ggactgttga catccaagct tcctttgttt ttttttcctg





1021
tccttctctc acctcctaaa gtagacttca tttttcctaa caggattaga cagtcaagga





1081
gtggcttact acatgtggga gctttttggt atgtgacatg cgggctgggc agctgttaga





1141
gtccaacgtg gggcagcaca gagagggggc cacctcccca ggccgtggct gcccacacac





1201
cccaattagc tgaattcgcg tgtggcagag ggaggaaaag gaggcaaacg tgggctgggc





1261
aatggcctca cataggaaac agggtcttcc tggagatttg gtgatggaga tgtcaagcag





1321
gtggcctctg gacgtcaccg ttgccctgca tggtggcccc agagcagcct ctatgaacaa













1381
cctcgtttcc aaaccacagc ccacagccgg agagtccagg aagacttgcg cactcagagc







1441
agaagggtag gagtcctcta gacagcctcg cagccgcgcc agtcgcccat agacactggc






1501
tgtgaccggg cgtgctggca gcggcagtgc acagtggcca gcactaaccc tccctgagaa






1561
gataaccggc tcattcactt cctcccagaa gacgcgtggt agcgagtagg cacaggcgtg






1621
cacctgctcc cgaattactc accgagacac acgggctgag cagacggccc ctgtgatgga






1681
gacaaagagc tcttctgacc atatccttct taacacccgc tggcatctcc tttcgcgcct






1741
ccctccctaa cctactgacc caccttttga ttttagcgca cctgtgattg ataggccttc






1801
caaagagtcc cacgctggca tcaccctccc cgaggacgga gatgaggagt agtcagcgtg






1861
atgccaaaac gcgtcttctt aatccaattc taattctgaa tgtttcgtgt gggcttaata






1921
ccatgtctat taatatatag cctcgatgat gagagagtta caaagaacaa aactccagac






1981
acaaacctcc aaatttttca gcagaagcac tctgcgtcgc tgagctgagg tcggctctgc






2041
gatccatacg tggccgcacc cacacagcac gtgctgtgac gatggctgaa cggaaagtgt






2101
acactgttcc tgaatattga aataaaacaa taaactttt







By “TUBIII polypeptide” (or TUBB3, tubulin beta chain 3) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_001184110.











1
mdsvrsgafg hlfrpdnfif gqsgagnnwa kghytegael vdsvldvvrk ecencdclqg






61
fqlthslggg tgsgmgtlli skvreeypdr imntfsvvps pkvsdtvvep ynatlsihql





121
ventdetyci dnealydicf rtlklatpty gdlnhlvsat msgvttslrf pgqlnadlrk





181
lavnmvpfpr lhffmpgfap ltargsqqyr altvpeltqq mfdaknmmaa cdprhgrylt





241
vatvfrgrms mkevdeqmla iqsknssyfv ewipnnvkva vcdipprglk msstfignst





301
aiqelfkris eqftamfrrk aflhwytgeg mdemefteae snmndlvsey qqyqdataee





361
egemyeddee eseaqgpk






By “TUBIII nucleic acid molecule” (or TUBB3, tubulin beta chain 3) is meant a polynucleotide (e.g., mRNA) encoding an TUBIII polypeptide. An exemplary TUBIII nucleic acid molecule is provided at NCBI Accession No. BC000748.











1
gcccggcccg cccgcgcccg tccgcagccg cccgccagac gcgcccagta tgagggagat






61
cgtgcacatc caggccggcc agtgcggcaa ccagatcggg gccaagttct gggaagtcat





121
cagtgatgag catggcatcg accccagcgg caactacgtg ggcgactcgg acttgcagct





181
ggagcggatc agcgtctact acaacgaggc ctcttctcac aagtacgtgc ctcgagccat





241
tctggtggac ctggaacccg gaaccatgga cagtgtccgc tcaggggcct ttggacatct





301
cttcaggcct gacaatttca tctttggtca gagtggggcc ggcaacaact gggccaaggg





361
tcactacacg gagggggcgg agctggtgga ttcggtcctg gatgtggtgc ggaaggagtg





421
tgaaaactgc gactgcctgc agggcttcca gctgacccac tcgctggggg gcggcacggg





481
ctccggcatg ggcacgttgc tcatcagcaa ggtgcgtgag gagtatcccg accgcatcat





541
gaacaccttc agcgtcgtgc cctcacccaa ggtgtcagac acggtggtgg agccctacaa





601
cgccacgctg tccatccacc agctggtgga gaacacggat gagacctact gcatcgacaa





661
cgaggcgctc tacgacatct gcttccgcac cctcaagctg gccacgccca cctacgggga





721
cctcaaccac ctggtatcgg ccaccatgag cggagtcacc acctccttgc gcttcccggg





781
ccagctcaac gctgacctgc gcaagctggc cgtcaacatg gtgcccttcc cgcgcctgca





841
cttcttcatg cccggcttcg cccccctcac agcccggggc agccagcagt accgggccct





901
gaccgtgccc gagctcaccc agcagatgtt cgatgccaag aacatgatgg ccgcctgcga





961
cccgcgccac ggccgctacc tgacggtggc caccgtgttc cggggccgca tgtccatgaa





1021
ggaggtggac gagcagatgc tggccatcca gagcaagaac agcagctact tcgtggagtg





1081
gatccccaac aacgtgaagg tggccgtgtg tgacatcccg ccccgcggcc tcaagatgtc





1141
ctccaccttc atcgggaaca gcacggccat ccaggagctg ttcaagcgca tctccgagca





1201
gttcacggcc atgttccggc gcaaggcctt cctgcactgg tacacgggcg agggcatgga





1261
cgagatggag ttcaccgagg ccgagagcaa catgaacgac ctggtgtccg agtaccagca





1321
gtaccaggac gccacggccg aggaagaggg cgagatgtac gaagacgacg aggaggagtc





1381
ggaggcccag ggccccaagt gaagctgctc gcagctggag tgagaggcag gtggcggccg





1441
gggccgaagc cagcagtgtc taaacccccg gagccatctt gctgccgaca ccctgctttc





1501
ccctcgccct agggctccct tgccgccctc ctgcagtatt tatggcctcg tcctccccac





1561
ctaggccacg tgtgagctgc tcctgtctct gtcttattgc agctccaggc ctgacgtttt





1621
acggttttgt tttttactgg tttgtgttta tattttcggg gatacttaat aaatctattg





1681
ctgtcagata cccttaaaaa aaaaaaaaaa aaaaaaaaaa






By “NEUN polypeptide” (or Feminizing Locus on X-3, Fox-3, RNA-binding protein fox-1 homolog 3, or Hexaribonucleotide Binding Protein-3) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_001076044.











1
maqpyppaqy ppppqngipa eyapppphpt qdysgqtpvp tehgmtlytp aqthpeqpgs






61
eastqpiagt qtvpqtdeaa qtdsqplhps dptekqqpkr lhvsnipfrf rdpdlrqmfg





121
qfgkildvei ifnergskgf gfvtfetssd adrareklng tivegrkiev nnatarvmtn





181
kktgnpytng wklnpvvgav ygpefyavtg fpypttgtav ayrgahlrgr gravyntfra





241
apppppipty gavvyqdgfy gaeiyggyaa yryaqpaaaa aaysdsygry yaaadpyhht





301
igpaatysig tm






By “NEUN nucleic acid molecule” (or Feminizing Locus on X-3, Fox-3, RNA-binding protein fox-1 homolog 3, or Hexaribonucleotide Binding Protein-3) is meant a polynucleotide (e.g., mRNA) encoding an NEUN polypeptide. An exemplary NEUN nucleic acid molecule is provided at NCBI Accession No. NM_001082575.











1
gatacagcag cagctggtgc tcctggccag gctgtgcgtg ctctctctgc ctctctctct






61
cggactctct gctctctctc tctgactctc tcctctctct ctgttggcct ggtgaaatgt





121
tcttggctgt aggcacacag agccttggac tcaaggctgt tggagtcgag gacaccttga





181
cttcggtcct ggaggttgaa attctgcctc tgagaagcta acagtcttcc tgtggtcgcc





241
actcctcccc agcagccccc tccttgccaa ggacggtcca gaaggagccc cactggggcc





301
tccccgctca gcaaagcaga cctcacctcc cactaccagc ttgaagtcac agcagccaga





361
ggaaattctg ccaccatttt cccaggtctg cagcccctcc agctgggaac ctgctcctgg





421
agccatccct ctgcaaacag agagcccaga gtgcctcggg gaaaattggc tgaataaaag





481
agcgatcagg acgccacggc tccgcctgaa gcgatggccc agccctaccc ccccgcccag





541
tacccccctc cgccacagaa cggcatccct gccgagtacg ccccgccccc accgcacccc





601
acgcaggact actccggcca gaccccggtc cccacagagc atggcatgac cctgtacaca





661
ccagcacaga cccaccccga gcagccaggc tccgaggcca gcacacagcc catcgccggg





721
acccagacag tgccgcagac agacgaggcg gcacagacgg acagccagcc gctccacccc





781
tccgacccta cagagaagca gcagcccaag cggctacacg tctccaacat ccccttccgg





841
ttcagggacc ccgacttgcg gcaaatgttc gggcaattcg gaaaaatttt agacgtggag





901
atcattttta acgagcgggg ctccaagggt tttgggtttg taacttttga aactagctca





961
gatgctgacc gagcccggga gaagctgaat gggacgatcg tagagggacg gaaaattgag





1021
gtcaataatg ccacggcccg agtgatgacc aacaagaaga cggggaaccc ctacaccaac





1081
ggctggaagc taaatccagt ggtcggcgca gtctacgggc ctgaattcta tgcagtgacg





1141
gggttcccct accccaccac cggcacagcc gttgcctacc ggggcgcaca tcttcggggc





1201
cggggccggg ccgtgtataa tacatttcgg gctgcgccac ccccaccccc catcccgact





1261
tacggagcgg tcgtgtatca ggatggattt tatggtgctg agatttatgg aggctacgca





1321
gcctacagat acgctcagcc cgctgcagcg gcggcagcct acagcgacag ttacggcaga





1381
gtctacgcag ctgccgaccc gtaccatcac accatcgggc ccgcggcgac ctacagcatt





1441
ggaaccatgt gaaaccttcc accgtttcct tctcggacca tgaagggcaa aaacaaaaaa





1501
acaaaaaaaa tcacaaaaca aaaaaaacaa aaaaagatgt taagatccaa gcaacaaaaa





1561
aaaaaccaac caaaccaaga ggcatccaac caagtccaag tcccgcgtcc tggccacacg





1621
cccgcaccga gggagcacgc cggcaggggc gccgaggagc ggccccagga caggacggcc





1681
ccaccgcgtc ctggctggca gcacagtggg aacacgcccc tccgtctcag gcagtggggg





1741
agttggaggg gaaggggcct cccttgtggg acccgtgggg ggctctgttt tccatccagt





1801
cttcctttcc cagcccccaa ctcccaagac agacagtgtg gagcccagcg gcggcggagc





1861
aggcccgggc ctgagcaggc aggcgctgct agcaagactt gatctttgtg gccagctgtg





1921
ccagggggcc ggcggggctg aggggtgcgg gcagctttca tcccaggggc tccactgggc





1981
cccgtcaccc tcctgtcgcg tcccctgcgt cccacctccc tcctgcccgg cagtcccgcc





2041
cgtgccccca gcctggcgag gaagccgtcc aacagtagcc ccggggccag ctcccaacag





2101
aaagggctga cgtggctcca ggactcaggg gcgctccatg ggaggacgaa ggaagcccag





2161
ccagccagga gccactcctc acacctccaa gtgtggccaa gtgggccctg aggccaagga





2221
cttacttgct cttcctggcc atctctccct ttctggagga ggcccggggc ctgtgtacac





2281
caaggctgac ctcgtgctgc ctgctgggac ccagccctcc ctgccgctcc cctgtgagcc





2341
cagtccaccg tgggcgccca gggccaggga cgggccagcg cccggctgca tcgcgaggtt





2401
gggagtcaca gtggctgtgg gcctggacgg gcacagccag agcaggggcc catgggaagg





2461
gcaagggatg gggaagcctg ggccggcccc ttccctgctc ccaaggcagg tgtccaggtg













2521
gcgggagcag caccaaggac agccaggctt acccggtggg aggagcagga gcagagcagg







2581
tggcagggag gaacccctgg cgaggcaggg agcactgaag tagggaagca gcaaaaaata






2641
caggctccca acgtggctcc actgtctcat gaagtgtcaa aaatttaaaa atacacctca






2701
ctttctattc agcatcagct attgaaatgg aattctcctt ttctattccc gttgtacata






2761
gccccacgcc ctgcctccgg ctttgtcctc tgtacagagc cccctgtccc ctctgctgtt






2821
ccggaccctt ttcttgcagc agctcaaccc cccgactcac tcagatcccc aggactgcag






2881
ccgagccccg ggcttccttt cttaccattc tgtatgcttc caaggtgtga ccattcaaac






2941
taacagtatt attaagatta ttaataaaga tttctttctt caaaccagga aaaaaaaaaa






3001
aaaaaaa







By “SLC1A6 polypeptide” (or Excitatory amino acid transporter 4; Sodium-dependent glutamate/aspartate transporter; Solute carrier family 1 member 6) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P48664.











1
msshgnslfl resgqrlgry gwlqrlqesl qqralrtrlr lqtmtlehvl rflrrnafil






61
ltvsavvigv slafalrpyq ltyrqikyfs fpgellmrml qmlvlplivs slvtgmasld





121
nkatgrmgmr aavyymvtti iavfigilmv tiihpgkgsk eglhregrie tiptadafmd





181
lirnmfppnl veacfkqfkt qystrvvtrt mvrtengsep gasmpppfsv engtsflenv





241
tralgtlqem lsfeetvpvp gsanginalg lvvfsvafgl viggmkhkgr vlrdffdsln





301
eaimrlvgii iwyapvgilf liagkileme dmavlggqlg mytltvivgl flhagivlpl





361
iyflvthrnp fpfiggmlqa litamgtsss satlpitfrc leeglgvdrr itrfvlpvga





421
tvnmdgtaly ealaaifiaq vnnyelnlgq ittisitata asvgaagipq aglvtmvivl





481
tsvglptedi tliiavdwfl drlrtmtnvl gdsigaavie hlswelelq eaeltlpslg





541
kpykslmaqe kgasrgrggn esam






By “SLC1A6 nucleic acid molecule” (or Excitatory amino acid transporter 4; Sodium-dependent glutamate/aspartate transporter; Solute carrier family 1 member 6) is meant a polynucleotide (e.g., mRNA) encoding an SLC1A6 polypeptide. An exemplary SLC1A6 nucleic acid molecule is provided at NCBI Accession No. BC040604.











1
ggcatagcgc gtcccggctc cgcgccggtg cctccacggt ccggtccccg cgccggtgct






61
gcacagtccc tggcgggtcc ccgcggcccc ggccgggcgc ttcgccgggc tccggctcct





121
gcatccgggc gcagcgcgca ggccgaggcg cgggcaggcc gcccccgccg ctccggacgc





181
cgggatgtaa gaggctccga aaagcagccc acgcatctca tcagatctaa gtgtctagag





241
gtcgggagaa ccaagtggga aagacccacc ctcacccctc accttgtaga aactgggaac





301
actagaaggg acattttctg agcaggaaac ccaagagaca gggttttacg ctgtcaccca





361
agttggagtg cagtggtacg atcatagctc attgcagcct caaactcctg ggttcaagcg





421
atcctcctgc tttagcctct tgagtagcta ggactacagg cacaggccac cgtgcctggc





481
taatttttaa tttttaaaaa agagacaggg tctggctatg ttgcccaggc tggccatgaa





541
ctcctgggct caagcggttc tccagccttc acctcccaaa gtgttgggat tgcaggcatg





601
agccactgcg tctggcccac agatgctaag tgctgtctgc tcttctccag gggtcagcaa





661
attttttcag caaatggccc aagagtaaat attttgagct ttgtggcccg tacaatctct





721
gtcccaacaa ctcaactcag gcattgtagc ttgaaagcag ctgtagacaa taggtaatcc





781
atgagtgtgg ctgtgtgcca ataaaacttt atttacaaaa acaagcagta ggctgaattt





841
gactagcaga ccatagtttg tcaataccgt attatgtctt gtaaggaaga gaaaggaacc





901
agacaaaact ctagcctcgg gagttttcct gactgttcag atcttagctg aatgatctcc





961
cttggtatct acaggcaact tcctgctgtg gcttagggac tggaaacata atatcccaga





1021
gggattccct gtgtagtctg tggttcactc tttgggattt tttttttttt tttcacagca





1081
aggagaagca gcattgtggt ttcaggagat gggtccattt ggagcaggat cctaagtggg





1141
gcttggcatt gggaatttgg attagctcta gaggacgcag gatctggaaa atcagggcag





1201
atttcccatc ccttggatat ggtggggagt tgaggagggc aaggaagatc ccagaaaagc





1261
cagtggcagc aaaacacaaa ggccagggac ctacgtactg gtaaaactga gacctccaag





1321
aaacctgcag ctcgacctgg ttgaattcag atagaccatg agcagccatg gcaacagcct





1381
gttccttcgg gagagcggcc agcggctggg ccgggtgggc tggctgcagc ggctgcagga





1441
aagcctgcag cagagagcac tgcgcacgcg cctgcgcctg cagaccatga ccctcgagca





1501
cgtgctgcgc ttcctgcgcc gaaacgcctt cattctgctg acggtcagcg ccgtggtcat





1561
tggggtcagc ctggcctttg ccctgcgccc atatcagctc acctaccgcc agatcaagta





1621
cttctctttt cctggagagc ttctgatgag gatgctgcag atgctggtgt tacctctcat





1681
tgtctccagc ctggtcacag gtatggcatc cctggacaac aaggccacgg ggcggatggg





1741
gatgcgggca gctgtgtact acatggtgac caccatcatc gcggtcttca tcggcatcct





1801
catggtcacc atcatccatc ccgggaaggg ctccaaggag gggctgcacc gggagggccg





1861
gatcgagacc atccccacag ctgatgcctt catggacctg atcagaaata tgtttccacc





1921
aaaccttgtg gaggcctgct tcaaacagtt caagacgcag tacagcacga gggtggtaac





1981
caggaccatg gtgaggacag agaacgggtc tgagccgggt gcctccatgc ctcctccatt





2041
ctcagtggag aacggaacca gcttcctgga aaatgtcact cgggccttgg gtaccctgca





2101
ggagatgctg agctttgagg agactgtacc cgtgcctggc tccgccaatg gcatcaacgc





2161
cctgggcctc gtggtcttct ctgtggcctt tgggctggtc attggtggca tgaaacacaa





2221
gggcagagtc ctcagggact tcttcgacag cctcaatgag gctattatga ggctggtggg





2281
catcattatc tggtgagtcc tggtctgtgc ccacgggaag gtggagccag agctgggaag





2341
tcaggctgtg gggaagctgc cgaagggctt gctggggacc tttggtcatt catttacgta





2401
ttgggtgatt cacttaccca ctcaccaact cattcattca tgtctttctg ggatgatttc





2461
atcactagtt cacttccttg ttcatctgtt cattcattca ttcttctatg cattggttag





2521
ttcatggaat atctcactct ttcattcatt catgtccttc tgcaatgatt cattcactgc





2581
tttgttcatc tgttcattca ctcattcttc tatgcattga tgaaatcact cattcagtga





2641
tttattcatc tatactcatg cttcaatgca ttgatttact catttcctca tgcatttatt





2701
cattcatcta tgcattggtt aaatcactgg ccaactcact aactcattca ttcattcaca





2761
cttttctgca atgatttgtt cacttgttca ctcccttgct tatctgttca ttcactcatt





2821
cttcaataca ttgaccaagc cattcactga catttattca gctacattta ttctttcatg





2881
cattggtctg gatttatttg gtcattcatt tatttatttt gcaaaattaa tgtattttta





2941
attgacaaat aaaaactgta tatattttca tgtgcaaaaa aaaaaaaaaa






By “NOGOA polypeptide” (or neurite outgrowth inhibitor A; neurite outgrowth inhibitor isoform A; human reticulon-4; human reticulon-4 isoform A) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_065393.











1
medldqsplv sssdspprpq pafkyqfvre pedeeeeeee eeedededle elevlerkpa






61
aglsaapvpt apaagaplmd fgndfvppap rgplpaappv aperqpswdp spvsstvpap





121
splsaaaysp sklpeddepp arppppppas vspqaepvwt ppapapaapp stpaapkrrg





181
ssgsvdetlf alpaasepvi rssaenmdlk eqpgntisag qedfpsvlle taaslpslsp





241
lsaasfkehe ylgnlstvlp tegtlqenvs easkevseka ktllidrdlt efseleysem





301
gssfsyspka esavivanpr eeiivknkde eeklvsnnil hnqqelptal tklykedevv













361
ssekakdsfn ekrvaveapm reeyadfkpf ervwevkdsk edsdmlaagg kiesnleskv







421
dkkcfadsle qtnhekdses snddtsfpst pegikdrsga yitcapfnpa atesiatnif






481
pllgdptsen ktdelddeek kaqivteknt stktsnpflv aaqdsetdyv ttdnitkvte






541
evvanmpegl tpdlvqeace selnevtgtk iayetkmdlv qtsevmqesl ypaaqlcpsf






601
eeseatpspv 1pdivmeapl nsavpsagas viqpsssple assvnyesik hepenpppye






661
eamsyslkkv sgikeeikep eninaalqet eapyisiacd liketklsae papdfsdyse






721
makveqpvpd hselvedssp dsepvdlfsd dsipdvpqkq detvmlvkes ltetsfesmi






781
eyenkeklsa lppeggkpyl esfklsldnt kdtllpdevs tlskkekipl qmeelstavy






841
snddlfiske aqiretetfs dsspieiide fptlissktd sfsklareyt dlevshksei






901
anapdgagsl pctelphdls lkniqpkvee kisfsddfsk ngsatskyll 1ppdvsalat






961
qaeiesivkp kvlvkeaekk 1psdtekedr spsaifsael sktsvvdlly wrdikktgvv






1021
fgaslfllls ltvfsivsvt ayialallsv tisfriykgv iqaiqksdeg hpfraylese






1081
vaiseelvqk ysnsalghvn ctikelrrlf lvddlvdslk favlmwvfty vgalfng1t1






1141
lilalislfs vpviyerhqa qidhylglan knvkdamaki qakipglkrk ae







By “NOGOA nucleic acid molecule” (or neurite outgrowth inhibitor A; neurite outgrowth inhibitor isoform A; human reticulon-4; human reticulon-4 isoform A) is meant a polynucleotide encoding an NOGOA polypeptide. An exemplary NOGOA nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_020532.











1
agtccctgcc ctcccctggg gagggtgagt cacgccaaac tgggcggaga gtccgctggc






61
ctcactccta gctcatctgg gcggcggcgg caagtgggga cagggcgggt ggcgcatcac





121
cggcgcggag gcaggaggag cagtctcatt gttccgggag ccgtcaccac agtaggtccc





181
tcggctcagt cggcccagcc cctctcagtc ctccccaacc cccacaaccg cccgcggctc





241
tgagacgcgg ccccggcggc ggcggcagca gctgcagcat catctccacc ctccagccat





301
ggaagacctg gaccagtctc ctctggtctc gtcctcggac agcccacccc ggccgcagcc





361
cgcgttcaag taccagttcg tgagggagcc cgaggacgag gaggaagaag aggaggagga





421
agaggaggac gaggacgaag acctggagga gctggaggtg ctggagagga agcccgccgc





481
cgggctgtcc gcggccccag tgcccaccgc ccctgccgcc ggcgcgcccc tgatggactt





541
cggaaatgac ttcgtgccgc cggcgccccg gggacccctg ccggccgctc cccccgtcgc





601
cccggagcgg cagccgtctt gggacccgag cccggtgtcg tcgaccgtgc ccgcgccatc





661
cccgctgtct gctgccgcag tctcgccctc caagctccct gaggacgacg agcctccggc





721
ccggcctccc cctcctcccc cggccagcgt gagcccccag gcagagcccg tgtggacccc





781
gccagccccg gctcccgccg cgcccccctc caccccggcc gcgcccaagc gcaggggctc





841
ctcgggctca gtggatgaga ccctttttgc tcttcctgct gcatctgagc ctgtgatacg





901
ctcctctgca gaaaatatgg acttgaagga gcagccaggt aacactattt cggctggtca





961
agaggatttc ccatctgtcc tgcttgaaac tgctgcttct cttccttctc tgtctcctct





1021
ctcagccgct tctttcaaag aacatgaata ccttggtaat ttgtcaacag tattacccac





1081
tgaaggaaca cttcaagaaa atgtcagtga agcttctaaa gaggtctcag agaaggcaaa





1141
aactctactc atagatagag atttaacaga gttttcagaa ttagaatact cagaaatggg





1201
atcatcgttc agtgtctctc caaaagcaga atctgccgta atagtagcaa atcctaggga





1261
agaaataatc gtgaaaaata aagatgaaga agagaagtta gttagtaata acatccttca





1321
taatcaacaa gagttaccta cagctcttac taaattggtt aaagaggatg aagttgtgtc





1381
ttcagaaaaa gcaaaagaca gttttaatga aaagagagtt gcagtggaag ctcctatgag





1441
ggaggaatat gcagacttca aaccatttga gcgagtatgg gaagtgaaag atagtaagga





1501
agatagtgat atgttggctg ctggaggtaa aatcgagagc aacttggaaa gtaaagtgga





1561
taaaaaatgt tttgcagata gccttgagca aactaatcac gaaaaagata gtgagagtag





1621
taatgatgat acttctttcc ccagtacgcc agaaggtata aaggatcgtt caggagcata





1681
tatcacatgt gctcccttta acccagcagc aactgagagc attgcaacaa acattatcc





1741
tttgttagga gatcctactt cagaaaataa gaccgatgaa aaaaaaatag aagaaaagaa





1801
ggcccaaata gtaacagaga agaatactag caccaaaaca tcaaaccctt ttcttgtagc





1861
agcacaggat tctgagacag attatgtcac aacagataat ttaacaaagg tgactgagga





1921
agtcgtggca aacatgcctg aaggcctgac tccagattta gtacaggaag catgtgaaag





1981
tgaattgaat gaagttactg gtacaaagat tgcttatgaa acaaaaatgg acttggttca





2041
aacatcagaa gttatgcaag agtcactcta tcctgcagca cagctttgcc catcatttga





2101
agagtcagaa gctactcctt caccagtttt gcctgacatt gttatggaag caccattgaa





2161
ttctgcagtt cctagtgctg gtgcttccgt gatacagccc agctcatcac cattagaagc





2221
ttcttcagtt aattatgaaa gcataaaaca tgagcctgaa aaccccccac catatgaaga





2281
ggccatgagt gtatcactaa aaaaagtatc aggaataaag gaagaaatta aagagcctga





2341
aaatattaat gcagctcttc aagaaacaga agctccttat atatctattg catgtgattt





2401
aattaaagaa acaaagcttt ctgctgaacc agctccggat ttctctgatt attcagaaat





2461
ggcaaaagtt gaacagccag tgcctgatca ttctgagcta gttgaagatt cctcacctga





2521
ttctgaacca gttgacttat ttagtgatga ttcaatacct gacgttccac aaaaacaaga





2581
tgaaactgtg atgcttgtga aagaaagtct cactgagact tcatttgagt caatgataga





2641
atatgaaaat aaggaaaaac tcagtgcttt gccacctgag ggaggaaagc catatttgga





2701
atcttttaag ctcagtttag ataacacaaa agataccctg ttacctgatg aagtttcaac





2761
attgagcaaa aaggagaaaa ttcctttgca gatggaggag ctcagtactg cagtttattc





2821
aaatgatgac ttatttattt ctaaggaagc acagataaga gaaactgaaa cgttttcaga





2881
ttcatctcca attgaaatta tagatgagtt ccctacattg atcagttcta aaactgattc





2941
attttctaaa ttagccaggg aatatactga cctagaagta tcccacaaaa gtgaaattgc





3001
taatgccccg gatggagctg ggtcattgcc ttgcacagaa ttgccccatg acctttcttt





3061
gaagaacata caacccaaag ttgaagagaa aatcagtttc tcagatgact tttctaaaaa





3121
tgggtctgct acatcaaagg tgctcttatt gcctccagat gtttctgctt tggccactca





3181
agcagagata gagagcatag ttaaacccaa agttcttgtg aaagaagctg agaaaaaact





3241
tccttccgat acagaaaaag aggacagatc accatctgct atattttcag cagagctgag





3301
taaaacttca gttgttgacc tcctgtactg gagagacatt aagaagactg gagtggtgtt





3361
tggtgccagc ctattcctgc tgctttcatt gacagtattc agcattgtga gcgtaacagc





3421
ctacattgcc ttggccctgc tctctgtgac catcagcttt aggatataca agggtgtgat





3481
ccaagctatc cagaaatcag atgaaggcca cccattcagg gcatatctgg aatctgaagt





3541
tgctatatct gaggagttgg ttcagaagta cagtaattct gctcttggtc atgtgaactg





3601
cacgataaag gaactcaggc gcctcttctt agttgatgat ttagttgatt ctctgaagtt





3661
tgcagtgttg atgtgggtat ttacctatgt tggtgccttg tttaatggtc tgacactact





3721
gattttggct ctcatttcac tcttcagtgt tcctgttatt tatgaacggc atcaggcaca





3781
gatagatcat tatctaggac ttgcaaataa gaatgttaaa gatgctatgg ctaaaatcca





3841
agcaaaaatc cctggattga agcgcaaagc tgaatgaaaa cgcccaaaat aattagtagg





3901
agttcatctt taaaggggat attcatttga ttatacgggg gagggtcagg gaagaacgaa





3961
ccttgacgtt gcagtgcagt ttcacagatc gttgttagat ctttattttt agccatgcac





4021
tgttgtgagg aaaaattacc tgtcttgact gccatgtgtt catcatctta agtattgtaa





4081
gctgctatgt atggatttaa accgtaatca tatctttttc ctatctatct gaggcactgg





4141
tggaataaaa aacctgtata ttttactttg ttgcagatag tcttgccgca tcttggcaag





4201
ttgcagagat ggtggagcta gaaaaaaaaa aaaaaaagcc cttttcagtt tgtgcactgt





4261
gtatggtccg tgtagattga tgcagatttt ctgaaatgaa atgtttgttt agacgagatc





4321
ataccggtaa agcaggaatg acaaagcttg cttttctggt atgttctagg tgtattgtga





4381
cttttactgt tatattaatt gccaatataa gtaaatatag attatatatg tatagtgttt





4441
cacaaagctt agacctttac cttccagcca ccccacagtg cttgatattt cagagtcagt





4501
cattggttat acatgtgtag ttccaaagca cataagctag aagaagaaat atttctagga





4561
gcactaccat ctgttttcaa catgaaatgc cacacacata gaactccaac atcaatttca





4621
ttgcacagac tgactgtagt taattttgtc acagaatcta tggactgaat ctaatgcttc





4681
caaaaatgtt gtttgtttgc aaatatcaaa cattgttatg caagaaatta ttaattacaa





4741
aatgaagatt tataccattg tggtttaagc tgtactgaac taaatctgtg gaatgcattg





4801
tgaactgtaa aagcaaagta tcaataaagc ttatagactt aaaaaaaaaa aaaaaaaaaa





4861
aaaaaaaaaa a






By “oligodendrocyte 01 polypeptide” (or oligodendrocyte marker 01; oligodendrocyte transcription factor 1; olig1) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q8TAK6.











1
myyavsqarv navpgtmlrp qrpgdlqlga slyelvgyrq ppssssssts stsstsssst






61
tapllpkaar ekpeapaepp gpgpgsgahp ggsarpdake eqqqqlrrki nsrerkrmqd





121
lnlamdalre vilpysaahc qgapgrklsk iatlllarny illlgsslqe lrralgegag





181
paaprlllag 1pllaaapgs vllapgavgp pdalrpakyl slaldeppcg qfalpgggag





241
gpglctcavc kfphlvpasl glaavqaqfs k






By “oligodendrocyte 01 nucleic acid molecule” (or oligodendrocyte marker 01; oligodendrocyte transcription factor 1; olig1) is meant a polynucleotide encoding an oligodendrocyte 01 polypeptide. An exemplary oligodendrocyte 01 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_138983.











1
gttctagatc gtttccccgc gcgcaggtcc gcggggaggg gcggcctgcc gaccggccca






61
ccccagggcg ttcctgaagg gcgtcctcgg ccgcccccac cgcctcccag atgtactatg





121
cggtttccca ggcgcgcgtg aacgcggtcc ccgggaccat gctgcggcca cagcggcccg





181
gagacttgca gctcggggcc tccctctacg agctggtggg ctacaggcag ccgccctcct





241
cctcctcctc ctccacctcc tccacctcct ccacttcctc ctcctccacg acggcccccc





301
tcctccccaa ggctgcgcgc gagaagccgg aggcgccggc cgagcctcca ggccccgggc





361
ccgggtcagg cgcgcacccg ggcggcagcg cccggccgga cgccaaggag gagcagcagc





421
agcagctgcg gcgcaagatc aacagccgcg agcggaagcg catgcaggac ctgaacctgg





481
ccatggacgc cctgcgcgag gtcatcctgc cctactcagc ggcgcactgc cagggcgcgc





541
ccggccgcaa gctctccaag atagccacgc tgctgctcgc ccgcaactac atcctactgc





601
tgggcagctc gctgcaggag ctgcgccgcg cgctgggcga gggcgccggg cccgccgcgc





661
cgcgcctgct gctggccggg ctgcccctgc tcgccgccgc gcccggctcc gtgctgctgg





721
cgcccggcgc cgtaggaccc cccgacgcgc tgcgccccgc caagtacctg tcgctggcgc





781
tggacgagcc gccgtgcggc cagttcgctc tccccggcgg cggcgcaggc ggccccggcc





841
tctgcacctg cgccgtgtgc aagttcccgc acctggtccc ggccagcctg ggcctggccg





901
ccgtgcaggc gcaattctcc aagtgagggc gggtctgggc ctggggcgcg acctcggccc





961
ggcctccctt cgctcagctt ctccgcgccc ctgctccctg cgtctgggag agcgaggccg





1021
agcaaggaaa gcatttcgaa ccttccagtc cagaggaagg gactgtcggg cacccccttc





1081
cccgccccca cccctgggac gttaaagtga ccagagcgga tgttcgatgg cgcctcgggg





1141
cagtttgggg ttctgggtcg gttccagcgg ctttaggcag aaagtgctcg ctctcaccca





1201
gcacatctct ctccttgtcc ctggagttgc gcgcttcgcg gggccgatgt agaacttagg





1261
gcgccttgcc gtggttggcg cgccccgggt gcagcgagag gccatccccg agcgctacct





1321
ccccggagcg gagcacgcgg gctcccagta ctaggggctg cgctcgagca gtggcggggg





1381
cggaggggtg gttcttttcc ttctcctccg ccagaggcca cgggcgccct tgttcccgcc





1441
ggccaggtcc tatcaaagga ggctgccgga actcaagagg cagaaaaaga ccagttaggc





1501
ggtgcagacg gtctgggacg tggcagacgg acggaccctc ggcggacagg tggtcggcgt





1561
cggggtgcgg tgggtagggg cgaggacaac gcagggtgcg ctgggttggg acgtgggtcc





1621
acttttgtag accagctgtt tggagagctg tatttaagac tcgcgtatcc agtgttttgt





1681
cgcagagagt tttcactctt aaatcctggg ggtttcttag aaagcaactt agaactcgag





1741
attcaccttt cgtttccctt tccccaaaag tagcgtaacc aacatttaag cttgcttaaa





1801
aacgaaaacc aaccgccttg catccagtgt tcccgattta ctaaaatagg taaccaggcg





1861
tctcacagtc gccgtcctgt caagagcgct aatgaacgtt ctcattaaca cgcaggagta





1921
ccgggagccc tgaaccgccc gctgctcggc ggatcccagc tgcggtggcg acggcgggaa





1981
ggcgctttcc gctgttcctc agcgggccgg gcccttgacc agcgcggccc gcaggtcttc





2041
cttctcgccg tcttgcagtt gaagagctac atacgtagtc agtttcgatt tgttacagac





2101
gttaacaaat tcctttaccc aaggttatgc tatgaccttt ccgcagttta ctttgatttt





2161
ctatgtttaa ggttttggtt gttggtagta gccgaattta actggcactt tattttactt





2221
ctaaccttgt ttcctgacgg tgtacagaat caacaaaata aaacatttaa agtctgattt





2281
tttaaaaaaa aaaaaaaa






By “oligodendrocyte 02 polypeptide” (or oligodendrocyte marker 02; oligodendrocyte transcription factor 2; olig2) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q13516.











1
mdsdaslvss rpsspepddl flparskgss gsaftggtvs sstpsdcppe lsaelrgamg






61
sagahpgdkl ggsgfkssss stssstssaa asstkkdkkq mtepelqqlr lkinsrerkr





121
mhdlniamdg lrevmpyahg psvrklskia tillarnyil mltnsleemk rlvseiyggh





181
hagfhpsacg glahsaplpa atahpaaaah aahhpavhhp ilppaaaaaa aaaaaaayss





241
aslpgsglps vgsirpphgl lkspsaaaaa plggggggsg asggfqhwgg mpcpcsmcqv





301
ppphhhvsam gagslprlts dak






By “oligodendrocyte 02 nucleic acid molecule” (or oligodendrocyte marker 02; oligodendrocyte transcription factor 2; olig2) is meant a polynucleotide encoding an oligodendrocyte 02 polypeptide. An exemplary oligodendrocyte 02 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_005806.











1
gggtgcttat tatagatcga cgcgacacca gcgcccggtg ccaggttctc ccctgaggct






61
tttcggagcg agctcctcaa atcgcatcca gagtaagtgt ccccgcccca cagcagccgc





121
agcctagatc ccagggacag actctcctca actcggctgt gacccagaat gctccgatac





181
agggggtctg gatccctact ctgcgggcca tttctccaga gcgactttgc tcttctgtcc





241
tccccacact caccgctgca tctccctcac caaaagcgag aagtcggagc gacaacagct





301
ctttctgccc aagccccagt cagctggtga gctccccgtg gtctccagat gcagcacatg





361
gactctgggc cccgcgccgg ctctgggtgc atgtgcgtgt gcgtgtgttt gctgcgtggt





421
gtcgatggag ataaggtgga tccgtttgag gaaccaaatc attagttctc tatttagatc





481
tccattctcc ccaaagaaag gccctcactt cccactcgtt tattccagcc cgggggctca





541
gttttcccac acctaactga aagcccgaag cctctagaat gccacccgca ccccgagggt





601
caccaacgct ccctgaaata acctgttgca tgagagcaga ggggagatag agagagctta





661
attataggta cccgcgtgca gctaaaagga gggccagaga tagtagcgag ggggacgagg





721
agccacgggc cacctgtgcc gggaccccgc gctgtggtac tgcggtgcag gcgggagcag





781
cttttctgtc tctcactgac tcactctctc tctctctccc tctctctctc tctcattctc





841
tctcttttct cctcctctcc tggaagtttt cgggtccgag ggaaggagga ccctgcgaaa





901
gctgcgacga ctatcttccc ctggggccat ggactcggac gccagcctgg tgtccagccg





961
cccgtcgtcg ccagagcccg atgacctttt tctgccggcc cggagtaagg gcagcagcgg





1021
cagcgccttc actgggggca ccgtgtcctc gtccaccccg agtgactgcc cgccggagct





1081
gagcgccgag ctgcgcggcg ctatgggctc tgcgggcgcg catcctgtgg acaagctagg





1141
aggcagtggc ttcaagtcat cctcgtccag cacctcgtcg tctacgtcgt cggcggctgc





1201
gtcgtccacc aagaaggaca agaagcaaat gacagagccg gagctgcagc agctgcgtct





1261
caagatcaac agccgcgagc gcaagcgcat gcacgacctc aacatcgcca tggatggcct





1321
ccgcgaggtc atgccgtacg cacacggccc ttcggtgcgc aagctttcca agatcgccac





1381
gctgctgctg gcgcgcaact acatcctcat gctcaccaac tcgctggagg agatgaagcg





1441
actggtgagc gagatctacg ggggccacca cgctggcttc cacccgtcgg cctgcggcgg





1501
cctggcgcac tccgcgcccc tgcccgccgc caccgcgcac ccggcagcag cagcgcacgc





1561
cgcacatcac cccgcggtgc accaccccat cctgccgccc gccgccgcag cggctgctgc





1621
cgccgctgca gccgcggctg tgtccagcgc ctctctgccc ggatccgggc tgccgtcggt





1681
cggctccatc cgtccaccgc acggcctact caagtctccg tctgctgccg cggccgcccc





1741
gctggggggc gggggcggcg gcagtggggc gagcgggggc ttccagcact ggggcggcat





1801
gccctgcccc tgcagcatgt gccaggtgcc gccgccgcac caccacgtgt cggctatggg





1861
cgccggcagc ctgccgcgcc tcacctccga cgccaagtga gcctactggc gccggcgcgt





1921
tctggcgaca ggggagccag gggccgcggg gaagcgagga ctggcctgcg ctgggctcgg





1981
gagctctgtc gcgaggaggg gcgcaggacc atggactggg ggtggggcat ggtggggatt





2041
tcagcatctg cgaacccaag caatgggggc gcccacagag cagtggggag tgaggggatg





2101
ttctctccgg gacctgatcg agcgctgtct ggctttaacc tgagctggtc cagtagacat





2161
cgttttatga aaaggtaccg ctgtgtgcat tcctcactag aactcatccg acccccgacc





2221
cccacctccg ggaaaagatt ctaaaaactt ctttccctga gagcgtggcc tgacttgcag





2281
actcggcttg ggcagcactt cgggggggga gggggtgtta tgggaggggg acacattggg





2341
gccttgctcg tcttcctcct ttcttggcgg gtgggagact ccgggtagcc gcactgcaga





2401
agcaacagcc cgaccgcgcc ctccagggtc gtccctggcc caaggccagg ggccacaagt





2461
tagttggaag ccggcgttcg gtatcagaag cgctgatggt catatccaat ctcaatatct





2521
gggtcaatcc acaccctctt agaactgtgg ccgttcctcc ctgtctctcg ttgatttggg





2581
agaatatggt tttctaataa atctgtggat gttccttctt caacagtatg agcaagttta





2641
tagacattca gagtagaacc acttgtggat tggaataacc caaaactgcc gatttcaggg





2701
gcgggtgcat tgtagttatt attttaaaat agaaactacc ccaccgactc atctttcctt





2761
ctctaagcac aaagtgattt ggttattttg gtacctgaga acgtaacaga attaaaaggc





2821
agttgctgtg gaaacagttt gggttatttg ggggttctgt tggcttttta aaattttctt





2881
ttttggatgt gtaaatttat caatgatgag gtaagtgcgc aatgctaagc tgtttgctca





2941
cgtgactgcc agccccatcg gagtctaagc cggctttcct ctattttggt ttatttttgc





3001
cacgtttaac acaaatggta aactcctcca cgtgcttcct gcgttccgtg caagccgcct





3061
cggcgctgcc tgcgttgcaa actgggcttt gtagcgtctg ccgtgtaaca cccttcctct





3121
gatcgcaccg cccctcgcag agagtgtatc atctgtttta tttttgtaaa aacaaagtgc





3181
taaataatat ttattacttg tttggttgca aaaacggaat aaatgactga gtgttgagat





3241
tttaaataaa atttaaagca aaaaaaaaaa aaaaa






By “oligodendrocyte 04 polypeptide” (or oligodendrocyte marker 04; oligodendrocyte transcription factor 4; olig4) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. Q05586.


By “oligodendrocyte 04 nucleic acid molecule” (or oligodendrocyte marker 04; oligodendrocyte transcription factor 4; olig4) is meant a polynucleotide encoding an oligodendrocyte 04 polypeptide. An exemplary oligodendrocyte 04 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_007327.


By “GFAP” (or Glial fibrillary acidic protein) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P14136.











1
merrritsaa rrsyvssgem mvgglapgrr lgpgtrlsla rmppplptry dfslagalna






61
gfketraser aemmelndrf asyiekvrfl eqqnkalaae lnqlrakept kladvyqael





121
relrlrldql tansarleve rdnlaqdlat vrqklqdetn lrleaennla ayrqeadeat





181
larldlerki esleeeirfl rkiheeevre lqeqlarqqv hveldvakpd ltaalkeirt





241
qyeamassnm heaeewyrsk fadltdaaar naellrqakh eandyrrqlq sltcdleslr





301
gtneslerqm reqeerhvre aasyqealar leeegqslkd emarhlqeyq dllnvklald





361
ieiatyrkll egeenritip vqtfsnlqir etsldtksys eghlkrnivv ktvemrdgev





421
ikeskqehkd vm






By “GFAP nucleic acid molecule” (or Glial fibrillary acidic protein) is meant a polynucleotide encoding an GFAP polypeptide. An exemplary GFAP nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_002055.











1
gcaggatgga gaggagacgc atcacctccg ctgctcgccg ctcctacgtc tcctcagggg






61
agatgatggt ggggggcctg gctcctggcc gccgtctggg tcctggcacc cgcctctccc





121
tggctcgaat gccccctcca ctcccgaccc gagtggattt ctccctggct ggggcactca





181
atgctggctt caaggagacc cgggccagtg agcgggcaga gatgatggag ctcaatgacc





241
gctttgccag ctacatcgag aaggttcgct tcctggaaca gcaaaacaag gcgctggctg





301
ctgagctgaa ccagctgcgg gccaaggagc ccaccaagct ggcagacgtc taccaggctg





361
agctgcgaga gctgcggctg cggctcgatc aactcaccgc caacagcgcc cggctggagg





421
ttgagaggga caatctggca caggacctgg ccactgtgag gcagaagctc caggatggaa





481
ccaacctgag gctggaagcc gagaacaacc tggctgccta tagacaggaa gcagatgaag





541
ccaccctggc ccgtctggat ctggagagga agattgagtc gctggaggag gagatccggt





601
tcttgaggaa gatccacgag gaggaggttc gggaactcca ggagcagctg gcccgacagc





661
aggtccatgt ggagcttgac gtggccaagc cagacctcac cgcagccctg aaagagatcc





721
gcacgcagta tgaggcaatg gcgtccagca acatgcatga agccgaagag tggtaccgct





781
ccaagtttgc agacctgaca gacgctgctg cccgcaacgc ggagctgctc cgccaggcca





841
agcacgaagc caacgactac cggcgccagt tgcagtcctt gacctgcgac ctggagtctc





901
tgcgcggcac gaacgagtcc ctggagaggc agatgcgcga gcaggaggag cggcacgtgc





961
gggaggcggc cagttatcag gaggcgctgg cgcggctgga ggaagagggg cagagcctca





1021
aggacgagat ggcccgccac ttgcaggagt accaggacct gctcaatgtc aagctggccc





1081
tggacatcga gatcgccacc tacaggaagc tgctagaggg cgaggagaac cggatcacca





1141
ttcccgtgca gaccttctcc aacctgcaga ttcgagaaac cagcctggac accaagtctg





1201
tgtcagaagg ccacctcaag aggaacatcg tggtgaagac cgtggagatg cgggatggag





1261
aggtcattaa ggagtccaag caggagcaca aggatgtgat gtgaggcagg acccacctgg





1321
tggcctctgc cccgtctcat gaggggcccg agcagaagca ggatagttgc tccgcctctg





1381
ctggcacatt tccccagacc tgagctcccc accaccccag ctgctcccct ccctcctctg





1441
tccctaggtc agcttgctgc cctaggctcc gtcagtatca ggcctgcc






By “s100b” (or S-100 protein beta chain; S-100 protein subunit beta; S100 calcium-binding protein B) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P04271.











1
mselekamva lidvfhqysg regdkhklkk selkelinne lshfleeike qevvdkvmet






61
ldndgdgecd fqefmafvam vttacheffe he






By “s100b nucleic acid molecule” (or S-100 protein beta chain; S-100 protein subunit beta; S100 calcium-binding protein B) is meant a polynucleotide encoding an s100b polypeptide. An exemplary s100b nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_006272.











1
gggcagaggg aataagaggc tgcctctgcc caccagtcct gccgcccagg acccgcagca






61
gagacgacgc ctgcagcaag gagaccagga aggggtgaga caaggaagag gatgtctgag





121
ctggagaagg ccatggtggc cctcatcgac gttttccacc aatattctgg aagggaggga





181
gacaagcaca agctgaagaa atccgaactg aaggagctca tcaacaatga gctttcccat





241
ttcttagagg aaatcaaaga gcaggaggtt gtggacaaag tcatggaaac actggacaat





301
gatggagacg gcgaatgtga cttccaggaa ttcatggcct ttgttgccat ggttactact





361
gcctgccacg agttctttga acatgagtga gattagaaag cagccaaacc tttcctgtaa





421
cagagacggt catgcaagaa agcagacagc aagggcttgc agcctagtag gagctgagct





481
ttccagccgt gttgtagcta attaggaagc ttgatttgct ttgtgattga aaaattgaaa





541
acctctttcc aaaggctgtt ttaacggcct gcatcattct ttctgctata ttaggcctgt





601
gtgtaagctg actggcccca gggactcttg ttaacagtaa cttaggagtc aggtctcagt





661
gataaagcgt gcaccgtgca gcccgccatg gccgtgtaga ccctaacccg gagggaaccc





721
tgactacaga aattaccccg gggcaccctt aaaacttcca ctacctttaa aaaacaaagc





781
cttatccagc attatttgaa aacactgctg ttctttaaat gcgttcctca tccatgcaga





841
taacagctgg ttggccggtg tggccctgca agggcgtggt ggcttcggcc tgcttcccgg





901
gatgcgcctg atcaccaggt gaacgctcag cgctggcagc gctcctggaa aaagcaactc





961
catcagaact cgcaatccga gccagctctg ggggctccag cgtggcctcc gtgacccatg





1021
cgattcaagt cgcggctgca ggatccttgc ctccaacgtg cctccagcac atgcggcttc





1081
cgagggcact accgggggct ctgagccacc gcgagggcct gcgttcaata aaaag






By “SOX10 polypeptide” (or SRY-related HMG-box transcription factor) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_008872.1.









MAEEQDLSEVELSPVGSEEPRCLSPGSAPSLGPDGGGGGSGLRASPGPGE





LGKVKKEQQDGEADDDKFPVCIREAVSQVLSGYDWTLVPMPVRVNGASKS





KPHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNESDK





RPFIEEAERLRMQHKKDHPDYKYQPRRRKNGKAAQGEAECPGGEAEQGGT





AAIQAHYKSAHLDHRHPGEGSPMSDGNPEHPSGQSHGPPTPPTTPKTELQ





SGKADPKRDGRSMGEGGKPHIDFGNVDIGEISHEVMSNMETFDVAELDQY





LPPNGHPGHVSSYSAAGYGLGSALAVASGHSAWISKPPGVALPTVSPPGV





DAKAQVKTETAGPQGPPHYTDQPSTSQIAYTSLSLPHYGSAFPSISRPQF





DYSDHQPSGPYYGHSGQASGLYSAFSYMGPSQRPLYTAISDPSPSGPQSH





SPTHWEQPVYTTLSRP






By “SOX10 nucleic acid molecule” (or SRY-related HMG-box transcription factor) is meant a polynucleotide encoding an SOX10 polypeptide. An exemplary SOX10 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_006941.3.











1
gtccggccag ggtggttggt ggtaaggatt caggctccgt cctaacgagg ccgtggcctg






61
aggctcaggg ccccccgccc ctccctccca gcccaccagc gtcacctccc agccccgagc





121
tggaccgcac accttgggac acggttttcc acttcctaag gacgagcccc agactggagg





181
agaggtccga ggaggtgggc gttggactct ttgcgaggac cccggcggct ggcccggggg





241
aggcggccga ggcggcggcg gcggcggccg ggggcgacat ggcggaggag caggacctat





301
cggaggtgga gctgagcccc gtgggctcgg aggagccccg ctgcctgtcc ccggggagcg





361
cgccctcgct agggcccgac ggcggcggcg gcggatcggg cctgcgagcc agcccggggc





421
caggcgagct gggcaaggtc aagaaggagc agcaggacgg cgaggcggac gatgacaagt





481
tccccgtgtg catccgcgag gccgtcagcc aggtgctcag cggctacgac tggacgctgg





541
tgcccatgcc cgtgcgcgtc aacggcgcca gcaaaagcaa gccgcacgtc aagcggccca





601
tgaacgcctt catggtgtgg gctcaggcag cgcgcaggaa gctcgcggac cagtacccgc





661
acctgcacaa cgctgagctc agcaagacgc tgggcaagct ctggaggctg ctgaacgaaa





721
gtgacaagcg ccccttcatc gaggaggctg agcggctccg tatgcagcac aagaaagacc





781
acccggacta caagtaccag cccaggcggc ggaagaacgg gaaggccgcc cagggcgagg





841
cggagtgccc cggtggggag gccgagcaag gtgggaccgc cgccatccag gcccactaca





901
agagcgccca cttggaccac cggcacccag gagagggctc ccccatgtca gatgggaacc





961
ccgagcaccc ctcaggccag agccatggcc cacccacccc tccaaccacc ccgaagacag





1021
agctgcagtc gggcaaggca gacccgaagc gggacgggcg ctccatgggg gagggcggga





1081
agcctcacat cgacttcggc aacgtggaca ttggtgagat cagccacgag gtaatgtcca





1141
acatggagac ctttgatgtg gctgagttgg accagtacct gccgcccaat gggcacccag





1201
gccatgtgag cagctactca gcagccggct atgggctggg cagtgccctg gccgtggcca





1261
gtggacactc cgcctggatc tccaagccac caggcgtggc tctgcccacg gtctcaccac





1321
ctggtgtgga tgccaaagcc caggtgaaga cagagaccgc ggggccccag gggcccccac





1381
actacaccga ccagccatcc acctcacaga tcgcctacac ctccctcagc ctgccccact





1441
atggctcagc cttcccctcc atctcccgcc cccagtttga ctactctgac catcagccct





1501
caggacccta ttatggccac tcgggccagg cctctggcct ctactcggcc ttctcctata





1561
tggggccctc gcagcggccc ctctacacgg ccatctctga ccccagcccc tcagggcccc





1621
agtcccacag ccccacacac tgggagcagc cagtatatac gacactgtcc cggccctaaa





1681
gggggccctg tcgccaccac cccccgccca gcccctgccc ccagcctgtg tgccctgttc





1741
cttgcccacc tcaggcctgg tggtggcagt ggaggaggct gaggaggctg aagaggctga





1801
caggtcgggg ggctttctgt ctggctcact gccctgatga cccacccgcc ccatccaggc





1861
tccagcagca aagccccagg agaacaggct ggacagagga gaaggaggtt gactgttgca





1921
cccacactga aagatgaggg gctgcacctt cccccaggaa tgaccctcta tcccaggacc





1981
tgagaagggc ctgctcaccc tcctcgggga ggggaagcac cagggttggt ggcatcggag





2041
gccttaccac tcctatgact cctgttttct ctctcacaga tagtgagggt ctgacatgcc





2101
catgccacct atgccacagt gcctaagggc taggccaccc agagactgtg cccggagctg





2161
gccgtgtctc ccactcaggg gctgagagta gctttgagga gcctcattgg ggagtggggg





2221
gttcgaggga cttagtggag ttctcatccc ttcaatgccc cctccctttc tgaaggcagg





2281
aaggagttgg cacagaggcc ccctgatcca attctgtgcc aataacctca ttctttgtct





2341
gagaaacagc ccccagtcct cctccactac aacctccatg accttgagac gcatcccagg





2401
aggtgacgag gcaggggctc caggaaagga atcagagaca attcacagag cctccctccc





2461
tgggctcctt gccagctccc tcttccctta ctaggctcta tggcccctgc tcagtcagcc





2521
ccactccctg ggcttcccag agagtgacag ctgctcaggc cctaaccctt ggctccagga





2581
gacacagggc ccagcaccca ggttgctgtc ggcaggctga agacactaga atcctgacct





2641
gtacattctg cccttgcctc ttaccccttg cctcccagtg gtatttgaat aaagtatgta





2701
gctatatctg cccctatttt cctgttctgc agccccccaa atccacatgt aactcattac





2761
tgtctcctgt tatttatctc agtagtcccc tctcctagcc actctagccc ctattaactc





2821
tgcattaagc attccacata ataaaattaa aggttccggt taaaaaaaaa aaaaaaaaaa





2881
aa






By “SYN1 protein” (or Synaptin I protein) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to GenBank: AH006533.2.









MNYLRRRLSDSNFMANLPNGYMTDLQRPQPPPPPPGAHSPGATPGPGTAT





AERSSGVAPAASPAAPSPGSSGGGGFFSSLSNAVKQTTAAAAATFSEQVG





GGSGGAGRGGAASRVLLVIDEPHTDWAKYFKGKKIHGGIDIKVEQAEFSD





LNLVAHANGGFSVDMEVLRNGVKVVRSLKPDFVLIRQHAFSMARNGDYRS





LVIGLQYAGIPSVNSLHSVYNFCDKPWVFAQMVRLHKKLGTEEFPLIDQT





FYPNHKEMLSSTTYPVVVKMGHAHSGMGKVKVDNQHDFQDIASVVALTKT





YATAEPFIDAKYDVRVQKIGQNYKAYMRTSVSGNWKTNTGSAMLEQIAMS





DRYKLWVDTCSEIFGGLDICAVEALHGKDGRDHIIEVVGSSMPLIGDHQD





EDKQLIVELVVNKMAQALPRQRQRDASPGRGSHGQTPSPGALPLGRQTSQ





QPAGPPAQQRPPPQGGPPQPGPGPQRQGPPLQQRPPPQGQQHLSGLGPPA





GSPLPQRLPSPTSAPQQPASQAAPPTQGQGRQSRPVAGGPGAPPAARPPA





SPSPQRQAGPPQATRQTSVSGPAPPKASGAPPGGQQRQGPPQKPPGPAGP





TRQASQAGPVPRTGPPTTQQPRPSGPGPAGAPKPQLAQKPSQDVPPPATA





AAGGPPHPQLNKSQSLTNAFNLPEPAPPRPSLSQDEVKAETIRSLRKSFA





SLFSD






By “SYN1 nucleic acid molecule” (or synapsin I gene) is meant a polynucleotide encoding an SYN1 polypeptide. An exemplary SYN1 nucleic acid molecule (e.g., mRNA) is provided at GenBank: AH006533.2.











1
ctcgagagag aaggagagga cattcctggc agaagttaca acacatgcaa aggtacagag






61
gttgccccct tcctacccct ctccttagag gtgggttaga gatgtatcct ttttacagat





121
gaggaaacca aatctcagaa agattaagtc actttcccaa gtgtatggtg gaggccccac





181
ttgaacccag gcactgtgtc tccagacccc acactattac tgccttgttt aaaccagcca





241
actgatttaa tgaataaagg atgaacaaat gaataagtgg atgagtcacc tgaaaattct





301
gcaggcaaag agactccata tctacttact tcttgcctat cttctgccac ctctcctagt





361
ccaccatcac tgctcactat ggtcaaggtc ctacccaatc tggcccctgc taccacaacc





421
cccttcagct tgttccagcc acattggcac tggatgtttc ctcttcctgg cacattctta





481
aaaaaatgtg ttgatcataa agtgaacatg accctttggg aattaactgg agttcttgta





541
ttccctcatc tgtaaaatag acattatatt atccacccca ctggattgtt gtgagggtgg





601
gatgaaatga tgcatgtaaa cacgcttagc ttaagagttg ggtacaatca gtgaacaaat





661
gattatgaat tagtgctttt attgtagtca gaatcataaa gatttgacag gttcccatat





721
cccacctctg cttggactac ctcatttgct catatgcaaa gattatttgg tacctactgt





781
gtgtgcacca tgggatgggc ctgcctctgt ggaaagttct tgggtgcagg gggagacagc





841
catgggcact gatgacatca ggtagttatc gtgagttttg gcggtgtcca gagcaaaggg





901
atggtggcgt atataccaag tgtgttctgg tgtgggggtg gacacgcacc agggctaggg





961
ctgcagagaa tgtctgtgtt gcagatctag gtttctccat gatcatcggt gggaatgtgt





1021
tttgtctgca agtgtatgct catatgagtt tccctgggtc tctgtgtgtc agtgtgttac





1081
ctgtgtgtgt gggggtatgg gtgtatgcat gcatgtatgt aacatgccca tgtgtgttac





1141
tctggacttg tatgtctgta tgtataccta gattggcgtg tgttctgtct gtacatgccc





1201
tcgtatgttt cctcactttt gtgtgtgttt atatgtgtgt catttcttgt gtgccctcca





1261
ggcccccctt gccaccttgg gcaagggtgt gtacaccacc caagtgtcca cctccgcttg





1321
tctgatgctg tctgtgacgc ccccgctctc tgcctagctg agcctgtgtg gatgtgggag





1381
actaatctcc ccgcgggcac tgcgtgtgac ctcacccccc tctgtgaggg ggttatttct





1441
ctactttcgt gtctctgagt gtgcttccag tgcccccctc cccccaaaaa atgccttctg





1501
agttgaatat caacactaca aaccgagtat ctgcagactg cagagggccc tgcgtatgag





1561
tgcaagtggg ttttaggacc aggatgaggc ggggtggggg tgcctacctg acgaccgacc





1621
ccgacccact ggacaagcac ccaaccccca ttccccaaat tgcgcatccc ctatcagaga





1681
gggggagggg aaacaggatg cggcgaggcg cgtcgcgact gccagcttca gcaccgcgga





1741
cagtgccttc gcccccgcct ggcggcgcgc gccaccgccg cctcagcact gaaggcgcgc





1801
tgacgtcact cgccggtccc ccgcaaactc cccttcccgg ccaccttggt cgcgtccgcg





1861
ccgccgccgg cccagccgga ccgcaccacg cgaggcgcga gatagggggg cacgggcgcg





1921
accatctgcg ctgcggcgcc ggcgactcag cgctgcctca gtctgcggtg ggcagcggag





1981
gagtcgtgtc gtgcctgaga gcgcagctgt gctcctgggc accgcgcagt ccgcccccgc





2041
ggctcctggc cagaccaccc ctaggacccc ctgccccaag tcgcagccat gaactacctg





2101
cggcgccgcc tgtcggacag caactttatg gccaatctgc caaatgggta catgacagac





2161
ctgcagcgtc cgcagccgcc cccaccgccg cccggtgccc acagccccgg agccacgccc





2221
ggtcccggga ccgccactgc cgagaggtcc tccggggtcg ccccagcggc ctctccggcc





2281
gcccctagcc ccgggtcctc ggggggcggt ggcttcttct cgtcgctgtc caacgcggtc





2341
aagcagacca cggcggcggc agctgccacc ttcagcgagc aggtgggcgg cggctctggg





2401
ggcgcaggcc gcgggggagc cgcctccagg gtgctgctgg tcatcgacga gccgcacacc





2461
gactggtaag






By “SYP protein” (or synaptophysin protein) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Reference Sequence: NM_003179.2.









MLLLADMDVVNQLVAGGQFRVVKEPLGFVKVLQWVFAIFAFATCGSYSGE





LQLSVDCANKTESDLSIEVEFEYPFRLHQVYFDAPTCRGGTTKVFLVGDY





SSSAEFFVTVAVFAFLYSMGALATYIFLQNKYRENNKGPMLDFLATAVFA





FMWLVSSSAWAKGLSDVKMATDPENIIKEMPVCRQTGNTCKELRDPVTSG





LNTSVVFGFLNLVLWVGNLWFVFKETGWAAPFLRAPPGAPEKQPAPGDAY





GDAGYGQGPGGYGPQDSYGPQGGYQPDYGQPAGSGGSGYGPQGDYGQQGY





GPQGAPTSFSNQM






By “SYP nucleic acid molecule” (or synaptophysin gene) is meant a polynucleotide encoding an SYN1 polypeptide. An exemplary SYP nucleic acid molecule (e.g., mRNA) is provided at NCBI Reference Sequence: NM_003179.2.











1
gccccctgca ttgctgatgc tgctgctggc ggacatggac gtggtgaatc agctggtggc






61
tgggggtcag ttccgggtgg tcaaggagcc cctcggcttt gtgaaggtgc tgcaatgggt





121
cttcgccatc ttcgcctttg ccacatgcgg cagctacagt ggggagctcc agctgagcgt





181
ggattgtgcc aacaagaccg agagtgacct cagcatcgag gtcgagttcg agtacccctt





241
caggctgcac caagtgtact ttgatgcacc cacctgccga gggggcacca ccaaggtctt





301
cttagttggg gactactcct cgtcagccga attctttgtc accgtggccg tgtttgcctt





361
cctctactcc atgggggctc tggccaccta catcttcctg cagaacaagt accgagagaa





421
taacaaaggg cccatgctgg actttctggc cacggctgtg ttcgccttca tgtggctagt





481
tagctcatcg gcatgggcca aggggctgtc agatgtgaag atggccacag acccagagaa





541
cattatcaag gagatgcctg tctgccgcca gacagggaac acatgcaagg agctgagaga





601
ccctgtgacc tcgggactca acacctcggt ggtgttcggc ttcctgaacc tggtgctctg





661
ggtcggcaac ctgtggttcg tgtttaagga gacaggctgg gccgccccgt tcctgcgcgc





721
gcctcccggc gcccccgaga aacaaccggc acccggggac gcctacggcg atgcaggcta





781
cgggcagggc cccggcgggt acgggcccca ggattcctac gggcctcagg gcggctacca





841
gcctgactat ggtcaaccag ccggcagcgg tggcagtggc tacgggcctc agggcgacta





901
tgggcagcaa ggctacggcc cgcagggtgc acccacctcc ttctccaatc agatgtagtc





961
tggtcagtga agcccaggag gacctggggg gggcaagagc tcaggagaag gcctgccccc





1021
cttcccaccc ctatacccta ggtctccacc cctcaagcca ggagaccctg tctttgctgt





1081
ttatatatat atatattata tataaatatc tatttatctg tctgagccct gccctcactc





1141
cactcccctc atccactagg tgcccagtct tgagtgggcc ccctctctta ccccgtccct





1201
ttccctgcat cccttggccc ctctctgttt accctccctg tcccctgagg ttaaggggat





1261
ctaaaaggag gacagggagg gaacagacct cggctgtgtg gggagggtgg gcgtgacttc





1321
agactctctc ctctctctcc ctccactcct cccaactctg gccttggttc ctccagcaat





1381
gcctgcctga acaaaggccg ttagggaaat ccaactccag ggttaaagaa aggcagagat





1441
tgggggggct tggggtagag aggacagttt aggacccaag gtggtcttgg agaggaggtg





1501
tggagtggag gggtcagcag gggggttggg ttccagacag agtggatctg gagtctgaag





1561
gagaggagtg cgctagagca ttctggggtg gggcttggaa gggcgctgag ggcagggttc





1621
tagaaggggc gaggctttaa gcgaggcaga atggtgggct ccagagtagg tgggtcttgg





1681
attggtacca gagcctatgg aaagggtgtg gcttggaaca tttgggagac tgagcttgat





1741
tctaaagggg acagatcttg agcaaggcaa gaagtgggat tcaggaatgg gccaagccag





1801
ggttccagac agggtggggc ttagaatggg gcttccatgg tggtttcaga aagggcagcc





1861
cctccccatg gtgcagtgaa gaaaatgttt tacaatggct gggtttgggc agtggagagg





1921
ggacttggat aggagcttcc agatgggttt tgttaggggt gggggagaat ggctctggct





1981
acgacttggg acggaagtgg cctgagaaga gtcgagtgat atggcttgta gggtgaggcg





2041
tgggatccag agagaagcac cccaccacac acacccttcc ccactcccgt gatgaaacag





2101
ctaggttaat aggaggacag aaccaacggg tctgtgggac tggcccaccc ctcttccccc





2161
ttcccctgcg ccctccctcc ctccacacct ccacccgtcc tggggtggtt ggaggcctgg





2221
tctggagccc ctatcctgca ccctctgcta tgtctgtgat gtcagtagtg cctgtgatcg





2281
tgtgttgcca ttttgtctgg ctgtggcccc tccttctccc ctccagaccc ctaccctttc





2341
ccaaaccctt cggtattgtt caaagaaccc ccctccccaa ggaagaacaa atatgattct





2401
cctctcccaa ataaactcct taaccaccta gtcaaaaaaa aaaaaaaaa






By “NOGOA polypeptide” (or neurite outgrowth inhibitor A; neurite outgrowth inhibitor isoform A; human reticulon-4; human reticulon-4 isoform A) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_065393.











1
medldqsplv sssdspprpq pafkyqfvre pedeeeeeee eeedededle elevlerkpa






61
aglsaapvpt apaagaplmd fgndfvppap rgplpaappv aperqpswdp spvsstvpap





121
splsaaavsp sklpeddepp arppppppas vspqaepvwt ppapapaapp stpaapkrrg





181
ssgsvdetlf alpaasepvi rssaenmdlk eqpgntisag qedfpsvlle taaslpslsp





241
lsaasfkehe ylgnlstvlp tegtlqenvs easkevseka ktllidrdlt efseleysem





301
gssfsvspka esavivanpr eeiivknkde eeklvsnnil hnqqelptal tklvkedevv





361
ssekakdsfn ekrvaveapm reeyadfkpf ervwevkdsk edsdmlaagg kiesnleskv





421
dkkcfadsle qtnhekdses snddtsfpst pegikdrsga yitcapfnpa atesiatnif





481
pllgdptsen ktdekkieek kaqivteknt stktsnpflv aaqdsetdyv ttdnltkvte





541
evvanmpegl tpdlvqeace selnevtgtk iayetkmdlv qtsevmqesl ypaaqlcpsf





601
eeseatpspv lpdivmeapl nsavpsagas viqpsssple assvnyesik hepenpppye





661
eamsvslkkv sgikeeikep eninaalqet eapyisiacd liketklsae papdfsdyse





721
makveqpvpd hselvedssp dsepvdlfsd dsipdvpqkq detvmlvkes ltetsfesmi





781
eyenkeklsa lppeggkpyl esfklsldnt kdtllpdevs tlskkekipl qmeelstavy





841
snddlfiske aqiretetfs dsspieiide fptlissktd sfsklareyt dlevshksei





901
anapdgagsl pctelphdls lkniqpkvee kisfsddfsk ngsatskvll lppdvsalat





961
qaeiesivkp kvlvkeaekk lpsdtekedr spsaifsael sktsvvdlly wrdikktgvv





1021
fgaslfllls ltvfsivsvt ayialallsv tisfriykgv iqaiqksdeg hpfraylese





1081
vaiseelvqk ysnsalghvn ctikelrrlf lvddlvdslk favlmwvfty vgalfngltl





1141
lilalislfs vpviyerhqa qidhylglan knvkdamaki qakipglkrk ae






By “NOGOA nucleic acid molecule” (or neurite outgrowth inhibitor A; neurite outgrowth inhibitor isoform A; human reticulon-4; human reticulon-4 isoform A) is meant a polynucleotide encoding an NOGOA polypeptide. An exemplary NOGOA nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_020532.











1
agtccctgcc ctcccctggg gagggtgagt cacgccaaac tgggcggaga gtccgctggc






61
ctcactccta gctcatctgg gcggcggcgg caagtgggga cagggcgggt ggcgcatcac





121
cggcgcggag gcaggaggag cagtctcatt gttccgggag ccgtcaccac agtaggtccc





181
tcggctcagt cggcccagcc cctctcagtc ctccccaacc cccacaaccg cccgcggctc





241
tgagacgcgg ccccggcggc ggcggcagca gctgcagcat catctccacc ctccagccat





301
ggaagacctg gaccagtctc ctctggtctc gtcctcggac agcccacccc ggccgcagcc





361
cgcgttcaag taccagttcg tgagggagcc cgaggacgag gaggaagaag aggaggagga





421
agaggaggac gaggacgaag acctggagga gctggaggtg ctggagagga agcccgccgc





481
cgggctgtcc gcggccccag tgcccaccgc ccctgccgcc ggcgcgcccc tgatggactt





541
cggaaatgac ttcgtgccgc cggcgccccg gggacccctg ccggccgctc cccccgtcgc





601
cccggagcgg cagccgtctt gggacccgag cccggtgtcg tcgaccgtgc ccgcgccatc





661
cccgctgtct gctgccgcag tctcgccctc caagctccct gaggacgacg agcctccggc





721
ccggcctccc cctcctcccc cggccagcgt gagcccccag gcagagcccg tgtggacccc





781
gccagccccg gctcccgccg cgcccccctc caccccggcc gcgcccaagc gcaggggctc





841
ctcgggctca gtggatgaga ccctttttgc tcttcctgct gcatctgagc ctgtgatacg





901
ctcctctgca gaaaatatgg acttgaagga gcagccaggt aacactattt cggctggtca





961
agaggatttc ccatctgtcc tgcttgaaac tgctgcttct cttccttctc tgtctcctct





1021
ctcagccgct tctttcaaag aacatgaata ccttggtaat ttgtcaacag tattacccac





1081
tgaaggaaca cttcaagaaa atgtcagtga agcttctaaa gaggtctcag agaaggcaaa





1141
aactctactc atagatagag atttaacaga gttttcagaa ttagaatact cagaaatggg





1201
atcatcgttc agtgtctctc caaaagcaga atctgccgta atagtagcaa atcctaggga





1261
agaaataatc gtgaaaaata aagatgaaga agagaagtta gttagtaata acatccttca





1321
taatcaacaa gagttaccta cagctcttac taaattggtt aaagaggatg aagttgtgtc





1381
ttcagaaaaa gcaaaagaca gttttaatga aaagagagtt gcagtggaag ctcctatgag





1441
ggaggaatat gcagacttca aaccatttga gcgagtatgg gaagtgaaag atagtaagga





1501
agatagtgat atgttggctg ctggaggtaa aatcgagagc aacttggaaa gtaaagtgga





1561
taaaaaatgt tttgcagata gccttgagca aactaatcac gaaaaagata gtgagagtag





1621
taatgatgat acttctttcc ccagtacgcc agaaggtata aaggatcgtt caggagcata





1681
tatcacatgt gctcccttta acccagcagc aactgagagc attgcaacaa acatttttcc





1741
tttgttagga gatcctactt cagaaaataa gaccgatgaa aaaaaaatag aagaaaagaa





1801
ggcccaaata gtaacagaga agaatactag caccaaaaca tcaaaccctt ttcttgtagc





1861
agcacaggat tctgagacag attatgtcac aacagataat ttaacaaagg tgactgagga





1921
agtcgtggca aacatgcctg aaggcctgac tccagattta gtacaggaag catgtgaaag





1981
tgaattgaat gaagttactg gtacaaagat tgcttatgaa acaaaaatgg acttggttca





2041
aacatcagaa gttatgcaag agtcactcta tcctgcagca cagctttgcc catcatttga





2101
agagtcagaa gctactcctt caccagtttt gcctgacatt gttatggaag caccattgaa





2161
ttctgcagtt cctagtgctg gtgcttccgt gatacagccc agctcatcac cattagaagc





2221
ttcttcagtt aattatgaaa gcataaaaca tgagcctgaa aaccccccac catatgaaga





2281
ggccatgagt gtatcactaa aaaaagtatc aggaataaag gaagaaatta aagagcctga





2341
aaatattaat gcagctcttc aagaaacaga agctccttat atatctattg catgtgattt





2401
aattaaagaa acaaagcttt ctgctgaacc agctccggat ttctctgatt attcagaaat





2461
ggcaaaagtt gaacagccag tgcctgatca ttctgagcta gttgaagatt cctcacctga





2521
ttctgaacca gttgacttat ttagtgatga ttcaatacct gacgttccac aaaaacaaga





2581
tgaaactgtg atgcttgtga aagaaagtct cactgagact tcatttgagt caatgataga





2641
atatgaaaat aaggaaaaac tcagtgcttt gccacctgag ggaggaaagc catatttgga





2701
atcttttaag ctcagtttag ataacacaaa agataccctg ttacctgatg aagtttcaac





2761
attgagcaaa aaggagaaaa ttcctttgca gatggaggag ctcagtactg cagtttattc





2821
aaatgatgac ttatttattt ctaaggaagc acagataaga gaaactgaaa cgttttcaga





2881
ttcatctcca attgaaatta tagatgagtt ccctacattg atcagttcta aaactgattc





2941
attttctaaa ttagccaggg aatatactga cctagaagta tcccacaaaa gtgaaattgc





3001
taatgccccg gatggagctg ggtcattgcc ttgcacagaa ttgccccatg acctttcttt





3061
gaagaacata caacccaaag ttgaagagaa aatcagtttc tcagatgact tttctaaaaa





3121
tgggtctgct acatcaaagg tgctcttatt gcctccagat gtttctgctt tggccactca





3181
agcagagata gagagcatag ttaaacccaa agttcttgtg aaagaagctg agaaaaaact





3241
tccttccgat acagaaaaag aggacagatc accatctgct atattttcag cagagctgag





3301
taaaacttca gttgttgacc tcctgtactg gagagacatt aagaagactg gagtggtgtt





3361
tggtgccagc ctattcctgc tgctttcatt gacagtattc agcattgtga gcgtaacagc





3421
ctacattgcc ttggccctgc tctctgtgac catcagcttt aggatataca agggtgtgat





3481
ccaagctatc cagaaatcag atgaaggcca cccattcagg gcatatctgg aatctgaagt





3541
tgctatatct gaggagttgg ttcagaagta cagtaattct gctcttggtc atgtgaactg





3601
cacgataaag gaactcaggc gcctcttctt agttgatgat ttagttgatt ctctgaagtt





3661
tgcagtgttg atgtgggtat ttacctatgt tggtgccttg tttaatggtc tgacactact





3721
gattttggct ctcatttcac tcttcagtgt tcctgttatt tatgaacggc atcaggcaca





3781
gatagatcat tatctaggac ttgcaaataa gaatgttaaa gatgctatgg ctaaaatcca





3841
agcaaaaatc cctggattga agcgcaaagc tgaatgaaaa cgcccaaaat aattagtagg





3901
agttcatctt taaaggggat attcatttga ttatacgggg gagggtcagg gaagaacgaa





3961
ccttgacgtt gcagtgcagt ttcacagatc gttgttagat ctttattttt agccatgcac





4021
tgttgtgagg aaaaattacc tgtcttgact gccatgtgtt catcatctta agtattgtaa





4081
gctgctatgt atggatttaa accgtaatca tatctttttc ctatctatct gaggcactgg





4141
tggaataaaa aacctgtata ttttactttg ttgcagatag tcttgccgca tcttggcaag





4201
ttgcagagat ggtggagcta gaaaaaaaaa aaaaaaagcc cttttcagtt tgtgcactgt





4261
gtatggtccg tgtagattga tgcagatttt ctgaaatgaa atgtttgttt agacgagatc





4321
ataccggtaa agcaggaatg acaaagcttg cttttctggt atgttctagg tgtattgtga





4381
cttttactgt tatattaatt gccaatataa gtaaatatag attatatatg tatagtgttt





4441
cacaaagctt agacctttac cttccagcca ccccacagtg cttgatattt cagagtcagt





4501
cattggttat acatgtgtag ttccaaagca cataagctag aagaagaaat atttctagga





4561
gcactaccat ctgttttcaa catgaaatgc cacacacata gaactccaac atcaatttca





4621
ttgcacagac tgactgtagt taattttgtc acagaatcta tggactgaat ctaatgcttc





4681
caaaaatgtt gtttgtttgc aaatatcaaa cattgttatg caagaaatta ttaattacaa





4741
aatgaagatt tataccattg tggtttaagc tgtactgaac taaatctgtg gaatgcattg





4801
tgaactgtaa aagcaaagta tcaataaagc ttatagactt aaaaaaaaaa aaaaaaaaaa





4861
aaaaaaaaaa a






By “GFAP” (or Glial fibrillary acidic protein) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P14136.











1
merrritsaa rrsyvssgem mvgglapgrr lgpgtrlsla rmppplptrv dfslagalna






61
gfketraser aemmelndrf asyiekvrfl eqqnkalaae lnqlrakept kladvyqael





121
relrlrldql tansarleve rdnlaqdlat vrqklqdetn lrleaennla ayrqeadeat





181
larldlerki esleeeirfl rkiheeevre lqeqlarqqv hveldvakpd ltaalkeirt





241
qyeamassnm heaeewyrsk fadltdaaar naellrqakh eandyrrqlq sltcdleslr





301
gtneslerqm reqeerhvre aasyqealar leeegqslkd emarhlqeyq dllnvklald





361
ieiatyrkll egeenritip vqtfsnlqir etsldtksys eghlkrnivv ktvemrdgev





421
ikeskqehkd vm






By “GFAP nucleic acid molecule” (or Glial fibrillary acidic protein) is meant a polynucleotide encoding an GFAP polypeptide. An exemplary GFAP nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_002055.











1
atcgccagtc tagcccactc cttcataaag ccctcgcatc ccaggagcga gcagagccag






61
agcaggatgg agaggagacg catcacctcc gctgctcgcc gctcctacgt ctcctcaggg





121
gagatgatgg tggggggcct ggctcctggc cgccgtctgg gtcctggcac ccgcctctcc





181
ctggctcgaa tgccccctcc actcccgacc cgggtggatt tctccctggc tggggcactc





241
aatgctggct tcaaggagac ccgggccagt gagcgggcag agatgatgga gctcaatgac





301
cgctttgcca gctacatcga gaaggttcgc ttcctggaac agcaaaacaa ggcgctggct





361
gctgagctga accagctgcg ggccaaggag cccaccaagc tggcagacgt ctaccaggct





421
gagctgcgag agctgcggct gcggctcgat caactcaccg ccaacagcgc ccggctggag





481
gttgagaggg acaatctggc acaggacctg gccactgtga ggcagaagct ccaggatgaa





541
accaacctga ggctggaagc cgagaacaac ctggctgcct atagacagga agcagatgaa





601
gccaccctgg cccgtctgga tctggagagg aagattgagt cgctggagga ggagatccgg





661
ttcttgagga agatccacga ggaggaggtt cgggaactcc aggagcagct ggcccgacag





721
caggtccatg tggagcttga cgtggccaag ccagacctca ccgcagccct gaaagagatc





781
cgcacgcagt atgaggcaat ggcgtccagc aacatgcatg aagccgaaga gtggtaccgc





841
tccaagtttg cagacctgac agacgctgct gcccgcaacg cggagctgct ccgccaggcc





901
aagcacgaag ccaacgacta ccggcgccag ttgcagtcct tgacctgcga cctggagtct





961
ctgcgcggca cgaacgagtc cctggagagg cagatgcgcg agcaggagga gcggcacgtg





1021
cgggaggcgg ccagttatca ggaggcgctg gcgcggctgg aggaagaggg gcagagcctc





1081
aaggacgaga tggcccgcca cttgcaggag taccaggacc tgctcaatgt caagctggcc





1141
ctggacatcg agatcgccac ctacaggaag ctgctagagg gcgaggagaa ccggatcacc





1201
attcccgtgc agaccttctc caacctgcag attcgagaaa ccagcctgga caccaagtct





1261
gtgtcagaag gccacctcaa gaggaacatc gtggtgaaga ccgtggagat gcgggatgga





1321
gaggtcatta aggagtccaa gcaggagcac aaggatgtga tgtgaggcag gacccacctg





1381
gtggcctctg ccccgtctca tgaggggccc gagcagaagc aggatagttg ctccgcctct





1441
gctggcacat ttccccagac ctgagctccc caccacccca gctgctcccc tccctcctct





1501
gtccctaggt cagcttgctg ccctaggctc cgtcagtatc aggcctgcca gacggcaccc





1561
acccagcacc cagcaactcc aactaacaag aaactcaccc ccaaggggca gtctggaggg





1621
gcatggccag cagcttgcgt tagaatgagg aggaaggaga gaaggggagg agggcggggg





1681
gcacctacta catcgccctc cacatccctg attcctgttg ttatggaaac tgttgccaga





1741
gatggaggtt ctctcggagt atctgggaac tgtgcctttg agtttcctca ggctgctgga





1801
ggaaaactga gactcagaca ggaaagggaa ggccccacag acaaggtagc cctggccaga





1861
ggcttgtttt gtcttttggt ttttatgagg tgggatatcc ctatgctgcc taggctgacc





1921
ttgaactcct gggctcaagc agtctaccca cctcagcctc ctgtgtagct gggattatag





1981
attggagcca ccatgcccag ctcagagggt tgttctccta gactgaccct gatcagtcta





2041
agatgggtgg ggacgtcctg ccacctgggg cagtcacctg cccagatccc agaaggacct





2101
cctgagcgat gactcaagtg tctcagtcca cctgagctgc catccaggga tgccatctgt





2161
gggcacgctg tgggcaggtg ggagcttgat tctcagcact tgggggatct gttgtgtacg





2221
tggagaggga tgaggtgctg ggagggatag aggggggctg cctggccccc agctgtgggt





2281
acagagaggt caagcccagg aggactgccc cgtgcagact ggaggggacg ctggtagaga





2341
tggaggagga ggcaattggg atggcgctag gcatacaagt aggggttgtg ggtgaccagt





2401
tgcacttggc ctctggattg tgggaattaa ggaagtgact catcctcttg aagatgctga





2461
aacaggagag aaaggggatg tatccatggg ggcagggcat gactttgtcc catttctaaa





2521
ggcctcttcc ttgctgtgtc ataccaggcc gccccagcct ctgagcccct gggactgctg





2581
cttcttaacc ccagtaagcc actgccacac gtctgaccct ctccacccca tagtgaccgg





2641
ctgcttttcc ctaagccaag ggcctcttgc ggtcccttct tactcacaca caaaatgtac





2701
ccagtattct aggtagtgcc ctattttaca attgtaaaac tgaggcacga gcaaagtgaa





2761
gacactggct catattcctg cagcctggag gccgggtgct cagggctgac acgtccaccc





2821
cagtgcaccc actctgcttt gactgagcag actggtgagc agactggtgg gatctgtgcc





2881
cagagatggg actgggaggg cccacttcag ggttctcctc tcccctctaa ggccgaagaa





2941
gggtccttcc ctctccccaa gacttggtgt cctttccctc cactccttcc tgccacctgc





3001
tgctgctgct gctgctaatc ttcagggcac tgctgctgcc tttagtcgct gaggaaaaat





3061
aaagacaaat gctgcgccct tccccaaaaa aaaaaaa






By “s100b” (or S-100 protein beta chain; S-100 protein subunit beta; S100 calcium-binding protein B) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. P04271.











1
mselekamva lidvfhqysg regdkhklkk selkelinne lshfleeike qevvdkvmet






61
ldndgdgecd fqefmafvam vttacheffe he






By “s100b nucleic acid molecule” (or S-100 protein beta chain; S-100 protein subunit beta; S100 calcium-binding protein B) is meant a polynucleotide encoding an s100b polypeptide. An exemplary s100b nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_006272.











1
gggcagaggg aataagaggc tgcctctgcc caccagtcct gccgcccagg acccgcagca






61
gagacgacgc ctgcagcaag gagaccagga aggggtgaga caaggaagag gatgtctgag





121
ctggagaagg ccatggtggc cctcatcgac gttttccacc aatattctgg aagggaggga





181
gacaagcaca agctgaagaa atccgaactg aaggagctca tcaacaatga gctttcccat





241
ttcttagagg aaatcaaaga gcaggaggtt gtggacaaag tcatggaaac actggacaat





301
gatggagacg gcgaatgtga cttccaggaa ttcatggcct ttgttgccat ggttactact





361
gcctgccacg agttctttga acatgagtga gattagaaag cagccaaacc tttcctgtaa





421
cagagacggt catgcaagaa agcagacagc aagggcttgc agcctagtag gagctgagct





481
ttccagccgt gttgtagcta attaggaagc ttgatttgct ttgtgattga aaaattgaaa





541
acctctttcc aaaggctgtt ttaacggcct gcatcattct ttctgctata ttaggcctgt





601
gtgtaagctg actggcccca gggactcttg ttaacagtaa cttaggagtc aggtctcagt





661
gataaagcgt gcaccgtgca gcccgccatg gccgtgtaga ccctaacccg gagggaaccc





721
tgactacaga aattaccccg gggcaccctt aaaacttcca ctacctttaa aaaacaaagc





781
cttatccagc attatttgaa aacactgctg ttctttaaat gcgttcctca tccatgcaga





841
taacagctgg ttggccggtg tggccctgca agggcgtggt ggcttcggcc tgcttcccgg





901
gatgcgcctg atcaccaggt gaacgctcag cgctggcagc gctcctggaa aaagcaactc





961
catcagaact cgcaatccga gccagctctg ggggctccag cgtggcctcc gtgacccatg





1021
cgattcaagt cgcggctgca ggatccttgc ctccaacgtg cctccagcac atgcggcttc





1081
cgagggcact accgggggct ctgagccacc gcgagggcct gcgttcaata aaaag






By “PAX6 polypeptide” (or paired box protein PAX6) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAK95849.1.









MQNSHSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSN





GCVSKILGRYYETGSIRPRAIGGSKPRVATPEVVSKIAQYKRECPSIFAW





EIRDRLLSEGVCTNDNIPSVSSINRVLRNLASEKQQMGADGMYDKLRMLN





GQTGSWGTRPGWYPGTSVPGQPTQDGCQQQEGGGENTNSISSNGEDSDEA





QMRLQLKRKLQRNRTSFTQEQIEALEKEFERTHYPDVFARERLAAKIDLP





EARIQVWFSNRRAKWRREEKLRNQRRQASNTPSHIPISSSFSTSVYQPIP





QPTTPVSSFTSGSMLGRTDTALTNTYSALPPMPSFTMANNLPMQPPVPSQ





TSSYSCMLPTSPSVNGRSYDTYTPPHMQTHMNSQPMGTSGTTSTGLISPG





VSVPVQVPGSEPDMSQYWPRLQ






By “PAX6 polynucleotide” (or paired box protein PAX6) is meant a polynucleotide encoding an PAX6 polypeptide. An exemplary PAX6 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. AY047583.











1
agggggaaga ctttaactag gggcgcgcag atgtgtgagg ccttttattg tgagagtgga






61
cagacatccg agatttcaga gccccatatt cgagccccgt ggaatcccgc ggcccccagc





121
cagagccagc atgcagaaca gtcacagcgg agtgaatcag ctcggtggtg tctttgtcaa





181
cgggcggcca ctgccggact ccacccggca gaagattgta gagctagctc acagcggggc





241
ccggccgtgc gacatttccc gaattctgca ggtgtccaac ggatgtgtga gtaaaattct





301
gggcaggtat tacgagactg gctccatcag acccagggca atcggtggta gtaaaccgag





361
agtagcgact ccagaagttg taagcaaaat agcccagtat aagcgggagt gcccgtccat





421
ctttgcttgg gaaatccgag acagattact gtccgagggg gtctgtacca acgataacat





481
accaagcgtg tcatcaataa acagagttct tcgcaacctg gctagcgaaa agcaacagat





541
gggcgcagac ggcatgtatg ataaactaag gatgttgaac gggcagaccg gaagctgggg





601
cacccgccct ggttggtatc cggggacttc ggtgccaggg caacctacgc aagatggctg





661
ccagcaacag gaaggagggg gagagaatac caactccatc agttccaacg gagaagattc





721
agatgaggct caaatgcgac ttcagctgaa gcggaagctg caaagaaata gaacatcctt





781
tacccaagag caaattgagg ccctggagaa agagtttgag agaacccatt atccagatgt





841
gtttgcccga gaaagactag cagccaaaat agatctacct gaagcaagaa tacaggtatg





901
gttttctaat cgaagggcca aatggagaag agaagaaaaa ctgaggaatc agagaagaca





961
ggccagcaac acacctagtc atattcctat cagcagtagt ttcagcacca gtgtctacca





1021
accaattcca caacccacca caccggtttc ctccttcaca tctggctcca tgttgggccg





1081
aacagacaca gccctcacaa acacctacag cgctctgccg cctatgccca gcttcaccat





1141
ggcaaataac ctgcctatgc aacccccagt ccccagccag acctcctcat actcctgcat





1201
gctgcccacc agcccttcgg tgaatgggcg gagttatgat acctacaccc ccccacatat





1261
gcagacacac atgaacagtc agccaatggg cacctcgggc accacttcaa caggactcat





1321
ttcccctggt gtgtcagttc cagttcaagt tcccggaagt gaacctgata tgtctcaata





1381
ctggccaaga ttacagtaa






By “Nestin polypeptide” is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_006608.1.









MEGCMGEESFQMWELNRRLEAYLARVKALEEQNELLSAELGGLRAQSADT





SWRAHADDELAALRALVDQRWREKHAAEVARDNLAEELEGVAGRCQQLRL





ARERTTEEVARNRRAVEAEKCARAWLSSQVAELERELEALRVAHEEERVG





LNAQAACAPRCPAPPRGPPAPAPEVEELARRLGEAWRGAVRGYQERVAHM





ETSLGQARERLGRAVQGAREGRLELQQLQAERGGLLERRAALEQRLEGRW





QERLRATEKFQLAVEALEQEKQGLQSQIAQVLEGRQQLAHLKMSLSLEVA





TYRTLLEAENSRLQTPGGGSKTSLSFQDPKLELQFPRTPEGRRLGSLLPV





LSPTSLPSPLPATLETPVPAFLKNQEFLQARTPTLASTPIPPTPQAPSPA





VDAEIRAQDAPLSLLQTQGGRKQAPEPLRAEARVAIPASVLPGPEEPGGQ





RQEASTGQSPEDHASLAPPLSPDHSSLEAKDGESGGSRVFSICRGEGEGQ





IWGLVEKETAIEGKVVSSLQQEIWEEEDLNRKEIQDSQVPLEKETLKSLG





EEIQESLKTLENQSHETLERENQECPRSLEEDLETLKSLEKENKELLKDV





EVVRPLEKEAVGQLKPTGKEDTQTLQSLQKENQELMKSLEGNLETFLFPG





TENQELVSSLQENLESLTALEKENQEPLRSPEVGDEEALRPLTKENQEPL





RSLEDENKEAFRSLEKENQEPLKTLEEEDQSIVRPLETENHKSLRSLEEQ





DQETLRTLEKETQQRRRSLGEQDQMTLRPPEKVDLEPLKSLDQEIARPLE





NENQEFLKSLKEESVEAVKSLETEILESLKSAGQENLETLKSPETQAPLW





TPEEINQGAMNPLEKEIQEPLESVEVNQETFRLLEEENQESLRSLGAWNL





ENLRSPEEVDKESQRNLEEEENLGKGEYQESLRSLEEEGQELPQSADVQR





WEDTVEKDQELAQESPPGMAGVENEDEAELNLREQDGFTGKEEVVEQGEL





NATEEVWIPGEGHPESPEPKEQRGLVEGASVKGGAEGLQDPEGQSQQVGA





PGLQAPQGLPEAIEPLVEDDVAPGGDQASPEVMLGSEPAMGESAAGAEPG





PGQGVGGLGDPGHLTREEVMEPPLEEESLEAKRVQGLEGPRKDLEEAGGL





GTEFSELPGKSRDPWEPPREGREESEAEAPRGAEEAFPAETLGHTGSDAP





SPWPLGSEEAEEDVPPVLVSPSPTYTPILEDAPGPQPQAEGSQEASWGVQ





GRAEALGKVESEQEELGSGEIPEGPQEEGEESREESEEDELGETLPDSTP





LGFYLRSPTSPRWDPTGEQRPPPQGETGKEGWDPAVLASEGLEAPPSEKE





EGEEGEEECGRDSDLSEEFEDLGTEAPFLPGVPGEVAEPLGQVPQLLLDP





AAWDRDGESDGFADEEESGEEGEEDQEEGREPGAGRWGPGSSVGSLQALS





SSQRGEFLESDSVSVSVPWDDSLRGAVAGAPKTALETESQDSAEPSGSEE





ESDPVSLEREDKVPGPLEIPSGMEDAGPGADIIGVNGQGPNLEGKSQHVN





GGVMNGLEQSEEVGQGMPLVSEGDRGSPFQEEEGSALKTSWAGAPVHLGQ





GQFLKFTQREGDRESWSSGED






By “Nestin polynucleotide” is meant a polynucleotide encoding an Nestin polypeptide. An exemplary Nestin nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_006617.











1
gctactccca ccccgccccg ccccgtcatt gtccccgtcg gtctcttttc tcttccgtcc






61
taaaagctct gcgagccgct cccttctccc ggtgccccgc gtctgtccat cctcagtggg





121
tcagacgagc aggatggagg gctgcatggg ggaggagtcg tttcagatgt gggagctcaa





181
tcggcgcctg gaggcctacc tggcccgggt caaggcgctg gaggagcaga atgagctgct





241
cagcgcggag ctcggggggc tccgggcaca atccgcggac acctcctggc gggcgcatgc





301
cgacgacgag ctggcggccc tgcgggccct cgttgaccaa cgctggcggg agaagcacgc





361
ggccgaggtg gcgcgcgaca acctggctga agagctggag ggcgtggcag gccgatgcca





421
gcagctgcgg ctggcccggg agcggacgac ggaggaggta gcccgcaacc ggcgcgccgt





481
cgaggcagag aaatgcgccc gggcctggct gagtagccag gtggcagagc tggagcgcga





541
gctagaggct ctacgcgtgg cgcacgagga ggagcgcgtc ggcctgaacg cgcaggctgc





601
ctgtgccccc cgctgccccg cgccgccccg cgggcctccc gcgccggccc cggaggtaga





661
ggagctggca aggcgactgg gcgaggcgtg gcgcggggca gtgcgcggct accaggagcg





721
cgtggcacac atggagacgt cgctgggcca ggcccgcgag cggctgggcc gggcggtgca





781
gggtgcccgc gagggccgcc tggagctgca gcagctccag gctgagcgcg gaggcctcct





841
ggagcgcagg gcagcgttgg aacagaggtt ggagggccgc tggcaggagc ggctgcgggc





901
tactgaaaag ttccagctgg ctgtggaggc cctggagcag gagaaacagg gcctacagag





961
ccagatcgct caggtcctgg aaggtcggca gcagctggcg cacctcaaga tgtccctcag





1021
cctggaggtg gccacgtaca ggaccctcct ggaggctgag aactcccggc tgcaaacacc





1081
tggcggtggc tccaagactt ccctcagctt tcaggacccc aagctggagc tgcaattccc





1141
taggacccca gagggccggc gtcttggatc tttgctccca gtcctgagcc caacttccct





1201
cccctcaccc ttgcctgcta cccttgagac acctgtgcca gcctttctta agaaccaaga





1261
attcctccag gcccgtaccc ctaccttggc cagcaccccc atccccccca cacctcaggc





1321
accctctcct gctgtagatg cagagatcag agcccaggat gctcctctct ctctgctcca





1381
gacacagggt gggaggaaac aggctccaga gcccctgcgg gctgaagcca gggtggccat





1441
tcctgccagc gtcctgcctg gaccagagga gcctgggggc cagcggcaag aggccagtac





1501
aggccagtcc ccagaggacc atgcctcctt ggcaccaccc ctcagccctg accactccag





1561
tttagaggct aaggatggag aatccggtgg gtctagagtg ttcagcatat gccgagggga





1621
aggtgaaggg caaatctggg ggttggtaga gaaagaaaca gccatagagg gcaaagtggt





1681
aagcagcttg cagcaggaaa tatgggaaga agaggatcta aacaggaagg aaatccagga





1741
ctcccaggtt cctttggaaa aagaaaccct gaagtctctg ggagaggaga ttcaagagtc





1801
actgaagact ctggaaaacc agagccatga gacactagaa agggagaatc aagaatgtcc





1861
gaggtcttta gaagaagact tagaaacact aaaaagtcta gaaaaggaaa ataaagagct





1921
attaaaggat gtggaggtag tgagacctct agaaaaagag gctgtaggcc aacttaagcc





1981
tacaggaaaa gaggacacac agacattgca atccctgcaa aaggagaatc aagaactaat





2041
gaaatctctt gaaggtaatc tagagacatt tttatttcca ggaacggaaa atcaagaatt





2101
agtaagttct ctgcaagaga acttagagtc attgacagct ctggaaaagg agaatcaaga





2161
gccactgaga tctccagaag taggggatga ggaggcactg agacctctga caaaggagaa





2221
tcaggaaccc ctgaggtctc ttgaagatga gaacaaagag gcctttagat ctctagaaaa





2281
agagaaccag gagccactga agactctaga agaagaggac cagagtattg tgagacctct





2341
agaaacagag aatcacaaat cactgaggtc tttagaagaa caggaccaag agacattgag





2401
aactcttgaa aaagagactc aacagcgacg gaggtctcta ggggaacagg atcagatgac





2461
attaagaccc ccagaaaaag tggatctaga accactgaag tctcttgacc aggagatagc





2521
tagacctctt gaaaatgaga atcaagagtt cttaaagtca ctcaaagaag agagcgtaga





2581
ggcagtaaaa tctttagaaa cagagatcct agaatcactg aagtctgcgg gacaagagaa





2641
cctggaaaca ctgaaatctc cagaaactca agcaccactg tggactccag aagaaataaa





2701
tcagggggca atgaatcctc tagaaaagga aattcaagaa ccactggagt ctgtggaagt





2761
gaaccaagag acattcagac tcctggaaga ggagaatcag gaatcattga gatctctggg





2821
agcatggaac ctggagaatt tgagatctcc agaggaggta gacaaggaaa gtcaaaggaa





2881
tctggaagag gaagagaacc tgggaaaggg agagtaccaa gagtcactga ggtctctgga





2941
ggaggaggga caggagctgc cgcagtctgc agatgtgcag aggtgggaag atacggtgga





3001
gaaggaccaa gaactggctc aggaaagccc tcctgggatg gctggagtgg aaaatgagga





3061
tgaggcagag ctgaatctga gggagcagga tggcttcact gggaaggagg aggtggtaga





3121
gcagggagag ctgaatgcca cagaggaggt ctggatccca ggcgaggggc acccagagag





3181
ccctgagccc aaagagcaga gaggcctggt tgagggagcc agtgtgaagg gaggggctga





3241
gggcctccag gaccctgaag ggcaatcaca acaggtgggg gccccaggcc tccaggctcc





3301
ccaggggctg ccagaggcga tagagcccct ggtggaagat gatgtggccc cagggggtga





3361
ccaagcctcc ccagaggtca tgttggggtc agagcctgcc atgggtgagt ctgctgcggg





3421
agctgagcca ggcccggggc agggggtggg agggctgggg gacccaggcc atctgaccag





3481
ggaagaggtg atggaaccac ccctggaaga ggagagtttg gaggcaaaga gggttcaggg





3541
cttggaaggg cctagaaagg acctagagga ggcaggtggt ctggggacag agttctccga





3601
gctgcctggg aagagcagag acccttggga gcctcccagg gagggtaggg aggagtcaga





3661
ggctgaggcc cccaggggag cagaggaggc gttccctgct gagaccctgg gccacactgg





3721
aagtgatgcc ccttcacctt ggcctctggg gtcagaggaa gctgaggagg atgtaccacc





3781
agtgctggtc tcccccagcc caacgtacac cccgatcctg gaagatgccc ctgggcctca





3841
gcctcaggct gaagggagtc aggaggctag ctggggggtg caggggaggg ctgaagccct





3901
ggggaaagta gagagcgagc aggaggagtt gggttctggg gagatccccg agggccccca





3961
ggaggaaggg gaggagagca gagaagagag cgaggaggat gagctcgggg agacccttcc





4021
agactccact cccctgggct tctacctcag gtcccccacc tcccccaggt gggaccccac





4081
tggagagcag aggccacccc ctcaagggga gactggaaag gagggctggg atcctgctgt





4141
cctggcttcc gagggccttg aggccccacc ctcagaaaag gaggaggggg aggagggaga





4201
agaggagtgt ggccgtgact ctgacctgtc agaagaattt gaggacctgg ggactgaggc





4261
accttttctt cctggggtcc ctggggaggt ggcagaacct ctgggccagg tgccccagct





4321
gctactggat cctgcagcct gggatcgaga tggggagtcc gatgggtttg cagatgagga





4381
agaaagtggg gaggagggag aggaggatca ggaggagggg agggagccag gggctgggcg





4441
gtgggggcca gggtcttctg ttggcagcct ccaggccctg agtagctccc agagagggga





4501
attcctggag tctgattctg tgagtgtcag tgtcccctgg gatgacagct tgaggggtgc





4561
agtggctggt gcccccaaga ctgccctgga aacggagtcc caggacagtg ctgagccttc





4621
tggctcagag gaagagtctg accctgtttc cttggagagg gaggacaaag tccctggccc





4681
tctagagatc cccagtggga tggaggatgc aggcccaggg gcagacatca ttggtgttaa





4741
tggccagggt cccaacttgg aggggaagtc acagcatgtg aatgggggag tgatgaacgg





4801
gctggagcag tctgaggaag tggggcaagg aatgccgcta gtctctgagg gagaccgagg





4861
gagccccttt caggaggagg aggggagtgc tctgaagacc tcttgggcag gggctcctgt





4921
tcacctgggc cagggtcagt tcctgaagtt cactcagagg gaaggagata gagagtcctg





4981
gtcctcaggg gaggactagg aaaagaccat ctgcccggca ctggggactt aggggtgcgg





5041
ggaggggaag gacgcctcca agcccgctcc ctgctcagga gcagcactct taacttacga





5101
tctcttgaca tatggtttct ggctgagagg cctggcccgc taaggtgaaa aggggtgtgg





5161
caaaggagcc tactccaaga atggaggctg taggaatata acctcccacc ctgcaaaggg





5221
aatctcttgc ctgctccatc tcataggcta agtcagctga atcccgatag tactaggtcc





5281
ccttccctcc gcatcccgtc agctggaaaa ggcctgtggc ccagaggctt ctccaaaggg





5341
agggtgacat gctggctttt gtgcccaagc tcaccagccc tgcgccacct cactgcagta





5401
gtgcaccatc tcactgcagt agcacgccct cctgggccgt ctggcctgtg gctaatggag





5461
gtgacggcac tcccatgtgc tgactccccc catccctgcc acgctgtggc cctgcctggc





5521
tagtccctgc ctgaataaag taatgcctcc gcttcaaaaa aaaaaaaaaa aaaaaaaaaa





5581
aaaaaaaaaa a






By “LHX6 polypeptide” (or LIM homeobox 6) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAI03937.1.









MAQPGSGCKATTRCLEGTAPPAMAQSDAEALAGALDKDEGQASPCTPSTPS





VCSPPSAASSVPSAGKNICSSCGLEILDRYLLKVNNLIWHVRCLECSVCRT





SLRQQNSCYIKNKEIFCKMDYFSRFGTKCARCGRQIYASDWVRRARGNAYH





LACFACFSCKRQLSTGEEFGLVEEKVLCRIHYDTMIENLKRAAENGNGLTL





EGAVPSEQDSQPKPAKRARTSFTAEQLQVMQAQFAQDNNPDAQTLQKLADM





TGLSRRVIQVWFQNCRARHKKHTPQHPVPPSGAPPSRLPSALSDDIHYTPF





SSPERARMVTLHGYIESHPFSVLTLPALPHLPVGAPQLPLSR






By “LHX6 polynucleotide” (or LIM homeobox 6) is meant a polynucleotide encoding an LHX6 polypeptide. An exemplary LHX6 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC103936.











1
cccgccaccg accaggtgat ggcccagcca gggtccggct gcaaagcgac cacccgctgt






61
cttgaaggga ccgcgccgcc cgccatggct cagtctgacg ccgaggccct ggcaggagct





121
ctggacaagg acgagggtca ggcctcccca tgtacgccca gcacgccatc tgtctgctca





181
ccgccctctg ccgcctcctc cgtgccgtct gcaggcaaga acatctgctc cagctgcggc





241
ctcgagatcc tggaccgata tctgctcaag gtcaacaacc tcatctggca cgtgcggtgc





301
ctcgagtgct ccgtgtgtcg cacgtcgctg aggcagcaga acagctgcta catcaagaac





361
aaggagatct tctgcaagat ggactacttc agccgattcg ggaccaagtg tgcccggtgc





421
ggccgacaga tctacgccag cgactgggtg cggagagctc gcggcaacgc ctaccacctg





481
gcctgcttcg cctgcttctc gtgcaagcgc cagctgtcca ctggtgagga gttcggcctg





541
gtcgaggaga aggtgctctg ccgcatccac tacgacacca tgattgagaa cctcaagagg





601
gccgccgaga acgggaacgg cctcacgttg gagggggcag tgccctcgga acaggacagt





661
caacccaagc cggccaagcg cgcgcggacg tccttcaccg cggaacagct gcaggttatg





721
caggcgcagt tcgcgcagga caacaacccc gacgctcaga cgctgcagaa gctggcggac





781
atgacgggcc tcagccggag agtcatccag gtgtggtttc aaaactgccg ggcgcgtcat





841
aaaaagcaca cgccgcaaca cccagtgccg ccctcggggg cgcccccgtc ccgccttccc





901
tccgccctgt ccgacgacat ccactacacc ccgttcagca gccccgagcg ggcgcgcatg





961
gtcaccctgc acggctacat tgagagtcat cctttttcag tactaacgct gccggcactt





1021
ccgcatctgc ccgtgggcgc cccacagctg cccctcagcc gctgagatcc agtgtccaag





1081
ctgcggccag gagtccaccc acctccgcat ccacccccgt ccgccatcct gcccaccacc





1141
aggtcggttc ccgaggcctg gcctttccct ctcctgctga gaaccagaac ccaccaggag





1201
caccacagag tcctcctctt ggaaggcaga actccctgaa atctggaatc agggtggaaa





1261
cagcctgttt ttcccattta aacaggagtc ctcttcaact tcagctgatt acaataacaa





1321
aaggcggaat tgaattgtgc gatgccaacg gccttctcat ttacaggttt ttttccccca





1381
cattggcctt tatttactac ttccttggaa ccatctctga attctgaata gctgacaacc





1441
cccaatgtta tccactctgt tgcttttgtc tggaaaactc tacagtgttt gtgggatgtc





1501
cccaaaggta agctatgttc taattttatc atttccatct gtctggttat gtcaagttaa





1561
ttcagaaaga gaagagacag tgaccaaccc tgagaggcct aatagggcag agatggaggc





1621
ctgcccagac taggaggcag cggggataga cagggaatgg ggagaagaaa gacccccatt





1681
ggtttggaaa tcaaggagag ggcggtgaca tattggacca gaagaggcac tagccatttt





1741
aaggagagga aagagaaaac tctggggtca gggagagacc ctacccccac ctaattatcc





1801
agcatatatg taagaaacat agcagcgatg gtattcgatc tgtgccatga ctcttctgaa





1861
tgtttggaca ggttagagtt ggggacccct gttggccact tgttgacctc tcatagtggt





1921
gcttgggcca ggtcttctca atggaagggg aatcccttat aggggagagg gaacagagcc





1981
cagtgaaatg gcagtcagaa tgttaaccct ggatccatct ctaagtagag agagggtgcc





2041
cattgcctag gtgagtgtgc caagctcagg attccaactg gtgcctctga gcttcccaat





2101
caatacttcc tggagccagc cccacccacc cctgagaaca gaggtcagac acagctgcgt





2161
aacatccatc ctgctacaac tcttccaccc caaacaaaag ggctcaggct acacacgacc





2221
atgatttatg ttttcagggg atgcccattt gtcccaagct tatcctgtaa ttctagaatt





2281
acctggtgtc ctgatgcatt ttccactaga ggttgctaat cagcatgttt tagcccaagt





2341
ccaccttcct gctgtggtta acctgttatg ttgcttttgg aaggagactc taagacaggg





2401
aaagcaagtt catggtacat acgcagccat tgtctctgtt tttacccatg gcagacattg





2461
ctaatcaatg gcagctctat ttcactgagt ctggataagg tttcagagtt caaatgcttg





2521
acgttggcac ttaacatgaa agcctatagg tcattcttgc tctgggatct acaggcaggg





2581
taggcacagg tgcagcctaa gaagggaacc tgcttcctct cccttccaaa gacagtgaca





2641
gctgactgag ggcaaagagc aggcaccact cagaacgtgg tgagtacagc tcagctcagc





2701
actcagtcag tggtaacttg tgcccagccc tgtgctaggc gctgacatta acaggagcaa





2761
ccagggccca attcctggcc ttggagctca aatctttcct ttgatttttg ctcctgatca





2821
tcaaggcccc agtgg






By “LHX8 polypeptide” (or LIM homeobox 8) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAH40321.1.









MQILSRCQGLMSEECGRTTALAAGRTRKGAGEEGLVSPEGAGDEDSCSSS





APLSPSSSPRSMASGSGCPPGKCVCNSCGLEIVDKYLLKVNDLCWHVRCL





SCSVCRTSLGRHTSCYIKDKDIFCKLDYFRRYGTRCSRCGRHIHSTDWVR





RAKGNVYHLACFACFSCKRQLSTGEEFALVEEKVLCRVHYDCMLDNLKRE





VENGNGISVEGALLTEQDVNHPKPAKRARTSFTADQLQVMQAQFAQDNNP





DAQTLQKLAERTGLSRRVIQVWFQNCRARHKKHVSPNHSSSTPVTAAPPS





RLSPPMLEEMAYSAYVPQDGTMLTALHSYMDAHSPTTLGLQPLLPHSMTQ





LPISHT






By “LHX8 polynucleotide” (or LIM homeobox 8) is meant a polynucleotide encoding an LHX8 polypeptide. An exemplary LHX8 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC040321.











1
agcggcaaga ggctagcggc tggaccactt gtgctggagt ggtaaagaac tatcatgaat






61
ccatttactg aaagtgtcca tttctgaact caccctaaag aggacaaaca ccgcaaagta





121
gttaaaagtc aggcattcgc gtcggacgtc tgggtttgaa ttctgccctg gcttgactgg





181
aaacgcttcc cctatttctt ccgtagcgga ccgggagagc ttactggcgc tctgcgaacc





241
ggctggaaag aaacaccgag tcactcgtac agactcttgg tcgcagaact tggctttccg





301
ctattggtcc tccagaaccg cttgaaacaa ctggccccag ctggcgcatc agaccgcagt





361
gaggaatgcc gcggggcggg tggcgaaggc agggtctgcc cgccagtgga ttcccgggtg





421
tcccgcgtgg agcaggcttg cccagctggg aagcccatca aacctcagtc ttggcccaca





481
gtgggagaga gaccagtggg tcccagacgg aggccatcgc ccgcttttgg cgacctccac





541
tggcgtgaat aaaagcaccc ctctcttacc ctcagaaact gtgggtagca aggtataaaa





601
cggagtctgg gaccggtaag tcccaaggtg agcccgtata cagctctgcc atctctgagg





661
ggttatgcag attctgagca ggtgtcaggg gctcatgtca gaggagtgcg ggcggactac





721
agccctggcg gccgggagga ctcgcaaagg cgccggggaa gagggactgg tgagccccga





781
gggagcgggg gacgaggact cgtgctcctc ctcggccccg ctgtccccgt cgtcctcgcc





841
ccggtccatg gcctcgggct ccggctgccc tcctggcaag tgtgtgtgca acagttgcgg





901
cctggagatc gtggacaaat accttctcaa ggtgaatgac ctatgctggc atgtccggtg





961
tctctcctgc agtgtttgca gaacctccct aggaaggcac accagctgtt atattaaaga





1021
caaagacatt ttctgcaaac ttgattattt cagaaggtat ggaactcgct gctctcgatg





1081
tgggagacac atccattcta ctgactgggt ccggagagcc aaggggaatg tctatcactt





1141
ggcatgcttt gcctgctttt cctgcaaaag gcaactttcc acaggagagg agtttgcttt





1201
ggtggaagag aaagtcctct gcagagtaca ttatgactgc atgctggata atttaaaaag





1261
agaagtagaa aatgggaatg ggattagtgt ggaaggtgcc ctcctcacag agcaagatgt





1321
taaccatcca aaaccagcaa aaagagctcg gaccagcttt acagcagatc agcttcaggt





1381
tatgcaagca caatttgctc aggacaacaa cccagatgca cagacactcc agaaattggc





1441
agaaaggaca ggcttgagca gacgtgtgat acaggtgtgg tttcagaatt gtagagcacg





1501
ccacaagaaa cacgtcagtc ctaatcactc atcctccacc ccagtcacag cagccccacc





1561
ctccaggctg tctccaccca tgttagaaga aatggcttat tctgcctacg tgccccaaga





1621
tggaacgatg ttaactgcgc tgcatagtta tatggatgct cattcaccaa caactcttgg





1681
actccagccc ttgttacccc attcaatgac acaactgcca ataagtcata cctaattctt





1741
ttttcaggga tagacttgat taaggatata aatttgtcat ttattatgta taaaatacca





1801
ttgaaaagat attactgtta attttttatt taacacctaa agcatttcca acatcacttt





1861
gctgcccagg tatgtatcta tagttggcct gcaagacact tttattaatt cttcattttt





1921
tgtaaaactt atgtttacaa gaagaaaaca aatcaaaaca ttttttgtat tgtctggaaa





1981
tagttcactc tagtgtgtat ctgttaattt atttgtcatc aaaagagcac tttgcctaaa





2041
agaaaggact gacaagtgtg caaaatgttt acaatctttt gtgaaattgt agtttatcat





2101
tagtttgtat ctgtaagtta ttgtaataaa tattacctgt attttttgtt atatacaact





2161
ttatactttg aagcttgtat ctgtgaattt gcaactgaaa tttattttgc caatgttttc





2221
tgaatgaact gaataaagct tctgttgtag catgccatgc aaacacatta ttgtgtttgt





2281
ggttgatgaa ttatggctgt aaataacact atagtttaat aagcccacca ttctgagttt





2341
attaaacatt ttccattctt gtgaaaattt caaaaaaaaa aaaaaaaaaa aaagaaaaaa





2401
aaaaaaaaaa a






By “TBR1 polypeptide” (or T-box, brain 1 (TBR1)) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_006584.1.









MQLEHCLSPSIMLSKKFLNVSSSYPHSGGSELVLHDHPIISTTDNLERSS





PLKKITRGMTNQSDTDNFPDSKDSPGDVQRSKLSPVLDGVSELRHSFDGS





AADRYLLSQSSQPQSAATAPSAMFPYPGQHGPAHPAFSIGSPSRYMAHHP





VITNGAYNSLLSNSSPQGYPTAGYPYPQQYGHSYQGAPFYQFSSTQPGLV





PGKAQVYLCNRPLWLKFHRHQTEMIITKQGRRMFPFLSFNISGLDPTAHY





NIFVDVILADPNHWRFQGGKWVPCGKADTNVQGNRVYMHPDSPNTGAHWM





RQEISFGKLKLTNNKGASNNNGQMVVLQSLHKYQPRLHVVEVNEDGTEDT





SQPGRVQTFTFPETQFIAVTAYQNTDITQLKIDHNPFAKGFRDNYDTIYT





GCDMDRLTPSPNDSPRSQIVPGARYAMAGSFLQDQFVSNYAKARFHPGAG





AGPGPGTDRSVPHTNGLLSPQQAEDPGAPSPQRWFVTPANNRLDFAASAY





DTATDFAGNAATLLSYAAAGVKALPLQAAGCTGRPLGYYADPSGWGARSP





PQYCGTKSGSVLPCWPNSAAAAARMAGANPYLGEEAEGLAAERSPLPPGA





AEDAKPKDLSDSSWIETPSSIKSIDSSDSGIYEQAKRRRISPADTPVSES





SSPLKSEVLAQRDCEKNCAKDISGYYGFYSHS






By “TBR1 polynucleotide” (or T-box, brain 1 (TBR1)) is meant a polynucleotide encoding an TBR1 polypeptide. An exemplary TBR1 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_006593.











1
gtcgctacca ggagccaggt gattatccta attaatgtct atctaattaa attactgtca






61
gcagctaacc aatggcagga gccgtttcat cggctgcaca agcagcaaga tcaaaagtga





121
gccttttctg attgctgcat agtgtcaatt ggccaatctc ttctcccagg gaaaaaaaaa





181
agtaaatcaa acctttgaga agcatttgct ggttgaagtg ctttctgtct agtgaggggg





241
tctgtggatt tctagtttat gataaatagg actttaaaaa ccagggacgg gagggcgagt





301
gttcaggttc tagagctatg cagctggagc actgcctttc tccttctatc atgctctcca





361
agaaatttct caatgtgagc agcagctacc cacattcagg cggatccgag cttgtcttgc





421
acgatcatcc cattatctcg accactgaca acctggagag aagttcacct ttgaaaaaaa





481
ttaccagggg gatgacgaat cagtcagata cagacaattt tcctgactcc aaggactcac





541
caggggacgt ccagagaagt aaactctctc ctgtcttgga cggggtctct gagcttcgtc





601
acagtttcga tggctctgct gcagatcgct acctcctctc tcagtccagc cagccacagt





661
ctgcggccac tgctcccagt gccatgttcc cgtaccccgg ccagcacgga ccggcgcacc





721
ccgccttctc catcggcagc cctagccgct acatggccca ccacccggtc atcaccaacg





781
gagcctacaa cagcctcctg tccaactcct cgccgcaggg ataccccacg gccggctacc





841
cctacccaca gcagtacggc cactcctacc aaggagctcc gttctaccag ttctcctcca





901
cccagccggg gctggtgccc ggcaaagcac aggtgtacct gtgcaacagg cccctttggc





961
tgaaatttca ccggcaccaa acggagatga tcatcaccaa acagggaagg cgcatgtttc





1021
cttttttaag ttttaacatt tctggtctcg atcccacggc tcattacaat atttttgtgg





1081
atgtgatttt ggcggatccc aatcactgga ggtttcaagg aggcaaatgg gttccttgcg





1141
gcaaagcgga caccaatgtg caaggaaatc gggtctatat gcatccggat tcccccaaca





1201
ctggggctca ctggatgcgc caagaaatct cttttggaaa attaaaactt acgaacaaca





1261
aaggagcttc aaataacaat gggcagatgg tggttttaca gtccttgcac aagtaccagc





1321
cccgcctgca tgtggtggaa gtgaacgagg acggcacgga ggacactagc cagcccggcc





1381
gcgtgcagac gttcactttc cctgagactc agttcatcgc cgtcaccgcc taccagaaca





1441
cggatattac acaactgaaa atagatcaca acccttttgc aaaaggattt cgggataatt





1501
atgacacgat ctacaccggc tgtgacatgg accgcctgac cccctcgccc aacgactcgc





1561
cgcgctcgca gatcgtgccc ggggcccgct acgccatggc cggctctttc ctgcaggacc





1621
agttcgtgag caactacgcc aaggcccgct tccacccggg cgcgggcgcg ggccccgggc





1681
cgggtacgga ccgcagcgtg ccgcacacca acgggctgct gtcgccgcag caggccgagg





1741
acccgggcgc gccctcgccg caacgctggt ttgtgacgcc ggccaacaac cggctggact





1801
tcgcggcctc ggcctatgac acggccacgg acttcgcggg caacgcggcc acgctgctct





1861
cttacgcggc ggcgggcgtg aaggcgctgc cgctgcaggc tgcaggctgc actggccgcc





1921
cgctcggcta ctacgccgac ccgtcgggct ggggcgcccg cagtcccccg cagtactgcg





1981
gcaccaagtc gggctcggtg ctgccctgct ggcccaacag cgccgcggcc gccgcgcgca





2041
tggccggcgc caatccctac ctgggcgagg aggccgaggg cctggccgcc gagcgctcgc





2101
cgctgccgcc cggcgccgcc gaggacgcca agcccaagga cctgtccgat tccagctgga





2161
tcgagacgcc ctcctcgatc aagtccatcg actccagcga ctcggggatt tacgagcagg





2221
ccaagcggag gcggatctcg ccggccgaca cgcccgtgtc cgagagttcg tccccgctca





2281
agagcgaggt gctggcccag cgggactgcg agaagaactg cgccaaggac attagcggct





2341
actatggctt ctactcgcac agctaggccg cccctgcccg cccggccccg ccgcggcccg





2401
gacccccagc cagcccctca cagctcttcc ccagctccgc ctccccacac tcctccttgc





2461
gcacccactc attttatttg accctcgatg gccgtctgca gcgaataagt gcaggtctcc





2521
gagcgtgatt ttaacctttt ttgcacagca gtctctgcaa ttagctcacc gaccttcaac





2581
tttgctgtaa accttttggt tttcctactt actcttcttc tgtggagtta tcctcctaca





2641
attcccctcc ccctcgtctt tctcttacct cctacttctc tttcttgtaa tgaaactctt





2701
cacctttagg agacctgggc agtcctgtca ggcagcagcg attccgaccc gccaagtctc





2761
ggcctccaca ttaaccatag gatgttgact ctagaacctg gacccaccca gcgcgtcctt





2821
tcttatcccc gagtggatgg atggatggat ggatggtagg gatgttaata attttagtgg





2881
aacaaagcct gtgaaatgat tgtacatagt gttaatttat tgtaacgaat ggctagtttt





2941
tattctcgtc aaggcacaaa accagttcat gcttaacctt tttttccttt cctttctttg





3001
cttttctttc tctcctctca tactttctct tctctctctt ttaattttct tgtgagataa





3061
tattctaaga ggctctagaa acatgaaata ctcagtagtg atgggtttcc cacttctcct





3121
caatccgttg catgaaataa ttactatgtg ccctaatgca cacaaatagc taaggagaat





3181
ccacccaaac acctttaaag gataggtgtc tgttcatagg caagtcgatt aagtggcatg





3241
atgcctgcaa agcaaagtca actggagttg tatgttcccc ccaccttcta aatagaatag





3301
ctcgacatca gcaatattat tttgccttat ttgtttttcc ccaaagtgcc aaatccatta





3361
ctggtctgtg caggtgccaa atatgctgac aaactgtttc tgaatatctt tcagtacccc





3421
ttcaccttta tatgctgtaa atctttgtaa tgaatactct attaatgata tagatgactg





3481
aattgttggt aactatagtg tagtctagtg aagatgaatt gtgtgagttg tatattttac





3541
tgcattttag ttttgaaaat gacttcccca ccacctagaa acagctgaaa tttgacttcc





3601
ttgggagaac actagcatta atgcaagtaa gactgatttt cccctaagtc ttgttatatt





3661
tgataaggag cattaatccc cctggaaata gattagtagg atttctaatg ttgtgtagca





3721
aacctatact tttttgtatt taaaaattaa tgtgaaatat gcatcataca caatattcaa





3781
tctagattcc agtccatggg gggatttttc ctaataggaa ttcagggtct aaacgtgtgt





3841
atattttggc tcttctgtaa atctaatgtt gtgattttta tatttgtttc gttttgtctg





3901
tgaactgaat aatttataca agaacacact ccattgagaa acgttttgtt ttttgctcgt





3961
ttgtatcgtc tgtgtataac aagtaaaata aacctggtaa aaacgc






By “SLC1A3 polypeptide” (or solute carrier family 1; glial high affinity glutamate transporter member 3 (SLC1A3)) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. BAG35230.1.









MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAF





VLLTVTAVIVGTILGFTLRPYRMSYREVKYFSFPGELLMRMLQMLVLPLI





ISSLVTGMAALDSKASGKMGMRAVVYYMTTTIIAVVIGIIIVIIIHPGKG





TKENMHREGKIVRVTAADAFLDLIRNMFPPNLVEACFKQFKTNYEKRSFK





VPIQANETLVGAVINNVSEAMETLTRITEELVPVPGSVNGVNALGLVVFS





MCFGFVIGNMKEQGQALREFFDSLNEAIMRLVAVIMWYAPVGILFLIAGK





IVEMEDMGVIGGQLAMYTVTVIVGLLIHAVIVLPLLYFLVTRKNPWVFIG





GLLQALITALGTSSSSATLPITFKCLEENNGVDKRVTRFVLPVGATINMD





GTALYEALAAIFIAQVNNFELNFGQIITISITATAASIGAAGIPQAGLVT





MVIVLTSVGLPTDDITLIIAVDWFLDRLRTTTNVLGDSLGAGIVEHLSRH





ELKNRDVEMGNSVIEENEMKKPYQLIAQDNETEKPIDSETKM






By “SLC1A3 polynucleotide” (or solute carrier family 1; glial high affinity glutamate transporter member 3 (SLC1A3)) is meant a polynucleotide encoding an SLC1A3 polypeptide. An exemplary SLC1A3 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. AK312304.











1
gatagtaact tgcagtttca gagcacatgc acactgtcag ggctagcctg cctgcttacg






61
cgcgctgcgg attgttgctc cgttgtacct gctggggaat tcacctcgtt actgcttgat





121
atcttccacc ccttacaaaa tcagaaaagt tgtgttttct aataccaaag aggaggtttg





181
gctttctgtg ggtgattccc agacactgaa gtgcaaagaa gagaccctcc tagaaaagta





241
aaatatgact aaaagcaatg gagaagagcc caagatgggg ggcaggatgg agagattcca





301
gcagggagtc cgtaaacgca cacttttggc caagaagaaa gtgcagaaca ttacaaagga





361
ggatgttaaa agttacctgt ttcggaatgc ttttgtgctg ctcacagtca ccgctgtcat





421
tgtgggtaca atccttggat ttaccctccg accatacaga atgagctacc gggaagtcaa





481
gtacttctcc tttcctgggg aacttctgat gaggatgtta cagatgctgg tcttaccact





541
tatcatctcc agtcttgtca caggaatggc ggcgctagat agtaaggcat cagggaagat





601
gggaatgcga gctgtagtct attatatgac taccaccatc attgctgtgg tgattggcat





661
aatcattgtc atcatcatcc atcctgggaa gggcacaaag gaaaacatgc acagagaagg





721
caaaattgta cgagtgacag ctgcagatgc cttcctggac ttgatcagga acatgttccc





781
tccaaatctg gtagaagcct gctttaaaca gtttaaaacc aactatgaga agagaagctt





841
taaagtgccc atccaggcca acgaaacgct tgtgggtgct gtgataaaca atgtgtctga





901
ggccatggag actcttaccc gaatcacaga ggagctggtc ccagttccag gatctgtgaa





961
tggagtcaat gccctgggtc tagttgtctt ctccatgtgc ttcggttttg tgattggaaa





1021
catgaaggaa caggggcagg ccctgagaga gttctttgat tctcttaacg aagccatcat





1081
gagactggta gcagtaataa tgtggtatgc ccccgtgggt attctcttcc tgattgctgg





1141
gaagattgtg gagatggaag acatgggtgt gattgggggg cagcttgcca tgtacaccgt





1201
gactgtcatt gttggcttac tcattcacgc agtcatcgtc ttgccactcc tctacttctt





1261
ggtaacacgg aaaaaccctt gggtttttat tggagggttg ctgcaagcac tcatcaccgc





1321
tctggggacc tcttcaagtt ctgccaccct acccatcacc ttcaagtgcc tggaagagaa





1381
caatggcgtg gacaagcgcg tcaccagatt cgtgctcccc gtaggagcca ccattaacat





1441
ggatgggact gccctctatg aggctttggc tgccattttc attgctcaag ttaacaactt





1501
tgaactgaac ttcggacaaa ttattacaat cagcatcaca gccacagctg ccagtattgg





1561
ggcagctgga attcctcagg cgggcctggt cactatggtc attgtgctga catctgtcgg





1621
cctgcccact gacgacatca cgctcatcat cgcggtggac tggttcctgg atcgcctccg





1681
gaccaccacc aacgtactgg gagactccct gggagctggg attgtggagc acttgtcacg





1741
acatgaactg aagaacagag atgttgaaat gggtaactca gtgattgaag agaatgaaat





1801
gaagaaacca tatcaactga ttgcacagga caatgaaact gagaaaccca tcgacagtga





1861
aaccaagatg tag






By “TH polypeptide” (or tyrosine hydroxylase) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAI43612.1.









MPTPDATTPQAKGFRRAVSELDAKQAEAIMSPRFIGRRQSLIEDARKERE





AAVAAAAAAVPSEPGDPLEAVAFEEKEGKAVLNLLFSPRATKPSALSRAV





KVFETFEAKIHHLETRPAQRPRAGGPHLEYFVRLEVRRGDLAALLSGVRQ





VSEDVRSPAGPKVPWFPRKVSELDKCHHLVTKFDPDLDLDHPGFSDQVYR





QRRKLIAEIAFQYRHGDPIPRVEYTAEEIATWKEVYTTLKGLYATHACGE





HLEAFALLERFSGYREDNIPQLEDVSRFLKERTGFQLRPVAGLLSARDFL





ASLAFRVFQCTQYIRHASSPMHSPEPDCCHELLGHVPMLADRTFAQFSQD





IGLASLGASDEEIEKLSTLYWFTVEFGLCKQNGEVKAYGAGLLSSYGELL





HCLSEEPEIRAFDPEAAAVQPYQDQTYQSVYFVSESFSDAKDKLRSYASR





IQRPFSVKFDPYTLAIDVLDSPQAVRRSLEGVQDELDTLAHALSAIG






By “TH polynucleotide” (or tyrosine hydroxylase) is meant a polynucleotide encoding an TH polypeptide. An exemplary TH nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC143611.











   1
acccagaggg ggctttgacg tcagctcagc ttataagagg ctgctgggcc agggctgtgg






  61
agacggagcc cggacctcca cactgagcca tgcccacccc cgacgccacc acgccacagg





 121
ccaagggctt ccgcagggcc gtgtctgagc tggacgccaa gcaggcagag gccatcatgt





 181
ccccgcggtt cattgggcgc aggcagagcc tcatcgagga cgcccgcaag gagcgggagg





 241
cggcggtggc agcagcggcc gctgcagtcc cctcggagcc cggggacccc ctggaggctg





 301
tggcctttga ggagaaggag gggaaggccg tgctaaacct gctcttctcc ccgagggcca





 361
ccaagccctc ggcgctgtcc cgagctgtga aggtgtttga gacgtttgaa gccaaaatcc





 421
accatctaga gacccggccc gcccagaggc cgcgagctgg gggcccccac ctggagtact





 481
tcgtgcgcct cgaggtgcgc cgaggggacc tggccgccct gctcagtggt gtgcgccagg





 541
tgtcagagga cgtgcgcagc cccgcggggc ccaaggtccc ctggttccca agaaaagtgt





 601
cagagctgga caagtgtcat cacctggtca ccaagttcga ccctgacctg gacttggacc





 661
acccgggctt ctcggaccag gtgtaccgcc agcgcaggaa gctgattgct gagatcgcct





 721
tccagtacag gcacggcgac ccgattcccc gtgtggagta caccgccgag gagattgcca





 781
cctggaagga ggtctacacc acgctgaagg gcctctacgc cacgcacgcc tgcggggagc





 841
acctggaggc ctttgctttg ctggagcgct tcagcggcta ccgggaagac aatatccccc





 901
agctggagga cgtctcccgc ttcctgaagg agcgcacggg cttccagctg cggcctgtgg





 961
ccggcctgct gtccgcccgg gacttcctgg ccagcctggc cttccgcgtg ttccagtgca





1021
cccagtatat ccgccacgcg tcctcgccca tgcactcccc tgagccggac tgctgccacg





1081
agctgctggg gcacgtgccc atgctggccg accgcacctt cgcgcagttc tcgcaggaca





1141
ttggcctggc gtccctgggg gcctcggatg aggaaattga gaagctgtcc acgctgtact





1201
ggttcacggt ggagttcggg ctgtgtaagc agaacgggga ggtgaaggcc tatggtgccg





1261
ggctgctgtc ctcctacggg gagctcctgc actgcctgtc tgaggagcct gagattcggg





1321
ccttcgaccc tgaggctgcg gccgtgcagc cctaccaaga ccagacgtac cagtcagtct





1381
acttcgtgtc tgagagcttc agtgacgcca aggacaagct caggagctat gcctcacgca





1441
tccagcgccc cttctccgtg aagttcgacc cgtacacgct ggccatcgac gtgctggaca





1501
gcccccaggc cgtgcggcgc tccctggagg gtgtccagga tgagctggac acccttgccc





1561
atgcgctgag tgccattggc taggtgcacg gcgtccctga gggcccttcc caacctcccc





1621
tggtcctgc






By “Neurofilament 200 polypeptide” (or neurofilament heavy (NEFH)) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_066554.2.









MMSFGGADALLGAPFAPLHGGGSLHYALARKGGAGGTRSAAGSS





SGFHSWTRTSVSSVSASPSRFRGAGAASSTDSLDTLSNGPEGCMVAVATS





RSEKEQLQ





ALNDRFAGYIDKVRQLEAHNRSLEGEAAALRQQQAGRSAMGELYEREVRE





MRGAVLRL





GAARGQLRLEQEHLLEDIAHVRQRLDDEARQREEAEAAARALARFAQEAE





AARVDLQK





KAQALQEECGYLRRHHQEEVGELLGQIQGSGAAQAQMQAETRDALKCDVT





SALREIRA





QLEGHAVQSTLQSEEWFRVRLDRLSEAAKVNTDAMRSAQEEITEYRRQLQ





ARTTELEA





LKSTKDSLERQRSELEDRHQADIASYQEAIQQLDAELRNTKWEMAAQLRE





YQDLLNVK





MALDIEIAAYRKLLEGEECRIGFGPIPFSLPEGLPKIPSVSTHIKVKSEE





KIKVVEKSEKETVIVEEQTEETQVTEEVTEEEEKEAKEEEGKEEEGGEEE





EAEGGEEETKSPPAEEAASPEKEAKSPVKEEAKSPAEAKSPEKEEAKSPA





EVKSPEKAKSPAKEEAKSPPEAKSPEKEEAKSPAEVKSPEKAKSPAKEEA





KSPAEAKSPEKAKSPVKEEAKSPAEAKSPVKE





EAKSPAEVKSPEKAKSPTKEEAKSPEKAKSPEKEEAKSPEKAKSPVKAEA





KSPEKAKS





PVKAEAKSPEKAKSPVKEEAKSPEKAKSPVKEEAKSPEKAKSPVKEEAKT





PEKAKSPV





KEEAKSPEKAKSPEKAKTLDVKSPEAKTPAKEEARSPADKFPEKAKSPVK





EEVKSPEK





AKSPLKEDAKAPEKEIPKKEEVKSPVKEEEKPQEVKVKEPPKKAEEEKAP





ATPKTEEK





KDSKKEEAPKKEAPKPKVEEKKEPAVEKPKESKVEAKKEEAEDKKKVPTP





EKEAPAKV





EVKEDAKPKEKTEVAKKEPDDAKAKEPSKPAEKKEAAPEKKDTKEEKAKK





PEEKPKTE





AKAKEDDKTLSKEPSKPKAEKAEKSSSTDQKDSKPPEKATEDKAAKGK






By “Neurofilament 200 polynucleotide” (or neurofilament heavy (NEFH)) is meant a polynucleotide encoding an Neurofilament 200 polypeptide. An exemplary Neurofilament 200 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM_021076.











   1
aaaagggccg gcgccctggt gctgccgcag tgcctcccgc cccgtcccgg cctcgcgcac






  61
ctgctcaggc catgatgagc ttcggcggcg cggacgcgct gctgggcgcc ccgttcgcgc





 121
cgctgcatgg cggcggcagc ctccactacg cgctagcccg aaagggtggc gcaggcggga





 181
cgcgctccgc cgctggctcc tccagcggct tccactcgtg gacacggacg tccgtgagct





 241
ccgtgtccgc ctcgcccagc cgcttccgtg gcgcaggcgc cgcctcaagc accgactcgc





 301
tggacacgct gagcaacggg ccggagggct gcatggtggc ggtggccacc tcacgcagtg





 361
agaaggagca gctgcaggcg ctgaacgacc gcttcgccgg gtacatcgac aaggtgcggc





 421
agctggaggc gcacaaccgc agcctggagg gcgaggctgc ggcgctgcgg cagcagcagg





 481
cgggccgctc cgctatgggc gagctgtacg agcgcgaggt ccgcgagatg cgcggcgcgg





 541
tgctgcgcct gggcgcggcg cgcggtcagc tacgcctgga gcaggagcac ctgctcgagg





 601
acatcgcgca cgtgcgccag cgcctagacg acgaggcccg gcagcgagag gaggccgagg





 661
cggcggcccg cgcgctggcg cgcttcgcgc aggaggccga ggcggcgcgc gtggacctgc





 721
agaagaaggc gcaggcgctg caggaggagt gcggctacct gcggcgccac caccaggaag





 781
aggtgggcga gctgctcggc cagatccagg gctccggcgc cgcgcaggcg cagatgcagg





 841
ccgagacgcg cgacgccctg aagtgcgacg tgacgtcggc gctgcgcgag attcgcgcgc





 901
agcttgaagg ccacgcggtg cagagcacgc tgcagtccga ggagtggttc cgagtgaggc





 961
tggaccgact gtcggaggca gccaaggtga acacagacgc tatgcgctca gcgcaggagg





1021
agataactga gtaccggcgt cagctgcagg ccaggaccac agagctggag gcactgaaaa





1081
gcaccaagga ctcactggag aggcagcgct ctgagctgga ggaccgtcat caggccgaca





1141
ttgcctccta ccaggaagcc attcagcagc tggacgctga gctgaggaac accaagtggg





1201
agatggccgc ccagctgcga gaataccagg acctgctcaa tgtcaagatg gctctggata





1261
tagagatagc cgcttacaga aaactcctgg aaggtgaaga gtgtcggatt ggctttggcc





1321
caattccttt ctcgcttcca gaaggactcc ccaaaattcc ctctgtgtcc actcacataa





1381
aggtgaaaag cgaagagaag atcaaagtgg tggagaagtc tgagaaagaa actgtgattg





1441
tggaggaaca gacagaggag acccaagtga ctgaagaagt gactgaagaa gaggagaaag





1501
aggccaaaga ggaggagggc aaggaggaag aagggggtga agaagaggag gcagaagggg





1561
gagaagaaga aacaaagtct cccccagcag aagaggctgc atccccagag aaggaagcca





1621
agtcaccagt aaaggaagag gcaaagtcac cggctgaggc caagtcccca gagaaggagg





1681
aagcaaaatc cccagccgaa gtcaagtccc ctgagaaggc caagtctcca gcaaaggaag





1741
aggcaaagtc accgcctgag gccaagtccc cagagaagga ggaagcaaaa tctccagctg





1801
aggtcaagtc ccccgagaag gccaagtccc cagcaaagga agaggcaaag tcaccggctg





1861
aggccaagtc tccagagaag gccaagtccc cagtgaagga agaagcaaag tcaccggctg





1921
aggccaagtc cccagtgaag gaagaagcaa aatctccagc tgaggtcaag tccccggaaa





1981
aggccaagtc tccaacgaag gaggaagcaa agtcccctga gaaggccaag tccccagaga





2041
aggaagaggc caagtcccct gagaaggcca agtccccagt gaaggcagaa gcaaagtccc





2101
ctgagaaggc caagtcccca gtgaaggcag aagcaaagtc ccctgagaag gccaagtccc





2161
cagtgaagga agaagcaaag tcccctgaga aggccaagtc cccagtgaag gaagaagcaa





2221
agtcccctga gaaggccaag tccccagtga aggaagaagc aaagaccccc gagaaggcca





2281
agtccccagt gaaggaagaa gctaagtccc cagagaaggc caagtcccca gagaaggcca





2341
agactcttga tgtgaagtct ccagaagcca agactccagc gaaggaggaa gcaaggtccc





2401
ctgcagacaa attccctgaa aaggccaaaa gccctgtcaa ggaggaggtc aagtccccag





2461
agaaggcgaa atctcccctg aaggaggatg ccaaggcccc tgagaaggag atcccaaaaa





2521
aggaagaggt gaagtcccca gtgaaggagg aggagaagcc ccaggaggtg aaagtcaaag





2581
agcccccaaa gaaggcagag gaagagaaag cccctgccac accaaaaaca gaggagaaga





2641
aggacagcaa gaaagaggag gcacccaaga aggaggctcc aaagcccaag gtggaggaga





2701
agaaggaacc tgctgtcgaa aagcccaaag aatccaaagt tgaagccaag aaggaagagg





2761
ctgaagataa gaaaaaagtc cccaccccag agaaggaggc tcctgccaag gtggaggtga





2821
aggaagacgc taaacccaaa gaaaagacag aggtagccaa gaaggaacca gatgatgcca





2881
aggccaagga acccagcaaa ccagcagaga agaaggaggc agcaccggag aaaaaagaca





2941
ccaaggagga gaaggccaag aagcctgagg agaaacccaa gacagaggcc aaagccaagg





3001
aagatgacaa gaccctctca aaagagccta gcaagcctaa ggcagaaaag gctgaaaaat





3061
cctccagcac agaccaaaaa gacagcaagc ctccagagaa ggccacagaa gacaaggccg





3121
ccaaggggaa gtaaggcagg gagaaaggaa catccggaac agccaaagaa actcagaaga





3181
gtcccggagc tcaaggatca gagtaacaca attttcactt tttctgtctt tatgtaagaa





3241
gaaactgctt agatgacggg gcctccttct tcaaacagga atttctgtta gcaatatgtt





3301
agcaagagag ggcactccca ggcccctgcc cccaggccct ccccaggcga tggacaatta





3361
tgatagctta tgtagctgaa tgtgatacat gccgaatgcc acacgtaaac acttgactat





3421
aaaaactgcc cccctccttt ccaaataagt gcatttattg cctctatgtg caactgacag





3481
atgaccgcaa taatgaatga gcagttagaa atacattatg cttgagatgt cttaacctat





3541
tcccaaatgc cttctgtttt ccaaaggagt ggtcaagccc ttgcccagag ctctctattc





3601
tggaagagcg gtccaggtgg ggccggggac tggccactga attatgccag ggcgcacttt





3661
ccactggagt tcactttcaa ttgcttctgt gcaataaaac caagtgctta taaaatgaaa





3721
a






By “Map2” (or microtubule-associated protein 2) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAH38857.1.









MADERKDEAKAPHWTSAPLTEASAHSHPPEIKDQGGAGEGLVRS





ANGFPYREDEEGAFGEHGSQGTYSNTKENGINGELTSADRETAEEVSARI





VQVVTAEA





VAVLKGEQEKEAQHKDQTAALPLAAEETANLPPSPPPSPASEQTVTVEEA





AGGESALA





PSVFKQAKDKVSNSTLSKIPALQGSTKSPRYSSACPSTTKRATFSDSLLI





QPTSAGSTDRLPYSKSGNKDGVTKSPEKRSSLPRPSSILPPRRGVSGDRD





ENSFSLNSSISSSARRTTRSEPIRRAGKSGTSTPTTPGSTAITPGTPPSY





SSRTPGTPGTPSYPRTPHTPGTPKSAILVPSEKKVAIIRTPPKSPATPKQ





LRLINQPLPDLKNVKSKIGSTDNIKYQPKGGQVRILNKKIDFSKVQSRCG





SKDNIKHSAGGGNVQIVTKKIDLSHVTSKCGSLKNIRHRPGGGRVKIESV





KLDFKEKAQAKVGSLDNAHHVPGGGNVKIDSQKLNFREHAKARVDHGA





EIITQSPGRSSVASPRRLSNVSSSGSINLLESPQLATLAEDVTAALAKQG





L






By “Map2 polynucleotide” (or microtubule-associated protein 2) is meant a polynucleotide encoding an Map2 polypeptide. An exemplary Map2 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC038857.











   1
ggcgctcggg ctgcgcgggc tctgggcagc agcagcagca gcagcagcat cctctcttcc






  61
tttacttccc ttccgcttct ttctcttcct tctccttctt tttccccccc ctccccttct





 121
tcccctaacc cttctacccc tctccttttt ctccggaggg cgctaagtcc gtgagcggtg





 181
gcagtcgcga ccgcgggtgc atccagtttc tgcgcccaga ttttattgat ctaatccaaa





 241
gtatcttata acttctggct ggaattaaga ttcttcagct tgtctctaac cgaggaagca





 301
ttgattggga gctactcatt cagaaaatta aaagaaagaa gccagaaaat attatcaacc





 361
ctttgagaac acgacacaac gaactttata ttttaccact tccttgaata gttgcaggag





 421
aaataacaag gcattgaaga atggcagatg aacggaaaga cgaagcaaag gcacctcact





 481
ggacctcagc accgctaaca gaggcatctg cacactcaca tccacctgag attaaggatc





 541
aaggcggagc aggggaagga cttgtccgaa gcgccaatgg attcccatac agggaggatg





 601
aagagggtgc ctttggagag catgggtcac agggcaccta ttcaaatacc aaagagaatg





 661
ggatcaacgg agagctgacc tcagctgaca gagaaacagc agaggaggtg tctgcaagga





 721
tagttcaagt agtcactgct gaggctgtag cagtcctgaa aggtgaacaa gagaaagaag





 781
ctcaacataa agaccagact gcagctctgc ctttagcagc tgaagaaaca gctaatctgc





 841
ctccttctcc acccccatca cctgcctcag aacagactgt cacagtggag gaagcagcag





 901
gtggggaatc agctctggct cccagtgtat ttaaacaggc aaaggacaaa gtctctaatt





 961
ctaccttgtc aaagattcct gctttacagg gtagcacaaa gtccccaaga tacagctcag





1021
cctgccctag cacgactaaa agggctacat tttctgacag tttattaata cagcccacct





1081
cagcaggctc cacagaccgt ttgccatact caaaatcagg gaacaaggac ggagtaacca





1141
agagcccaga aaagcgctct tctctcccaa gaccttcctc cattctccct cctcggcgag





1201
gtgtgtcagg agacagagat gagaattcct tctctctcaa cagttctatc tcttcttcag





1261
cacggcggac caccaggtca gagccaattc gcagagcagg gaagagtggt acctcaacac





1321
ccactacccc tgggtctact gccatcactc ctggcacccc accaagttat tcttcacgca





1381
caccaggcac tcctggaacc cctagctatc ccaggacccc tcacacacca ggaaccccca





1441
agtctgccat cttggtgccg agtgagaaga aggtcgccat catacgtact cctccaaaat





1501
ctcctgcgac tcccaagcag cttcggctta ttaaccaacc actgccagac ctgaagaatg





1561
tcaaatccaa aatcggatca acagacaaca tcaaatacca gcctaaaggg gggcaggtta





1621
ggattttaaa caagaagatc gattttagca aagttcagtc cagatgtggt tccaaggata





1681
acatcaaaca ttcggctggg ggcggaaatg tacaaattgt taccaagaaa atagacctaa





1741
gccatgtgac atccaaatgt ggctctctga agaacatccg ccacaggcca ggtggcggac





1801
gtgtgaaaat tgagagtgta aaactagatt tcaaagaaaa ggcccaagct aaagttggtt





1861
ctcttgataa tgctcatcat gtacctggag gtggtaatgt caagattgac agccaaaagt





1921
tgaacttcag agagcatgct aaagcccgtg tggaccatgg ggctgagatc attacacagt





1981
ccccaggcag atccagcgtg gcatcacccc gacgactcag caatgtctcc tcgtctggaa





2041
gcatcaacct gctcgaatct cctcagcttg ccactttggc tgaggatgtc actgctgcac





2101
tcgctaagca gggcttgtga atatttctca tttagcattg aaataataat atttaggcat





2161
gagctcttgg caggagtggg ctctgagcag ttgttatatt cattctttat aaaccataaa





2221
ataaataatc tcatccccaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa





2281
aaaaaa






By “DCX” (or doublecortin) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. NP_835366.1.









MELDFGHFDERDKTSRNMRGSRMNGLPSPTHSAHCSFYRTRTLQ





ALSNEKKAKKVRFYRNGDRYFKGIVYAVSSDRFRSFDALLADLTRSLSDN





INLPQGVR





YIYTIDGSRKIGSMDELEEGESYVCSSDNFFKKVEYTKNVNPNWSVNVKT





SANMKAPQ





SLASSNSAQARENKDFVRPKLVTIIRSGVKPRKAVRVLLNKKTAHSFEQV





LTDITEAI





KLETGVVKKLYTLDGKQVTCLHDFFGDDDVFIACGPEKFRYAQDDFSLDE





NECRVMKG





NPSATAGPKASPTPQKTSAKSPGPMRRSKSPADSANGTSSSQLSTPKSKQ





SPISTPTS





PGSLRKHKDLYLPLSLDDSDSLGDSM






By “DCX polynucleotide” (or doublecortin) is meant a polynucleotide encoding an DCX polypeptide. An exemplary DCX nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. NM 178153.











   1
ctggcaggaa tttcttgctt ggagctcaga caacaaaggc atagagagat tggttttctt






  61
tctctcagca tctccaccca accagcagaa aaccggtctc tgaggttcca ccaaaatatg





 121
gaacttgatt ttggacactt tgacgaaaga gataagacat ccaggaacat gcgaggctcc





 181
cggatgaatg ggttgcctag ccccactcac agcgcccact gtagcttcta ccgaaccaga





 241
accttgcagg cactgagtaa tgagaagaaa gccaagaagg tacgtttcta ccgcaatggg





 301
gaccgctact tcaaggggat tgtgtacgct gtgtcctctg accgttttcg cagctttgac





 361
gccttgctgg ctgacctgac gcgatctctg tctgacaaca tcaacctgcc tcagggagtg





 421
cgttacattt acaccattga tggatccagg aagatcggaa gcatggatga actggaggaa





 481
ggggaaagct atgtctgttc ctcagacaac ttctttaaaa aggtggagta caccaagaat





 541
gtcaatccca actggtctgt caacgtaaaa acatctgcca atatgaaagc cccccagtcc





 601
ttggctagca gcaacagtgc acaggccagg gagaacaagg actttgtgcg ccccaagctg





 661
gttaccatca tccgcagtgg ggtgaagcct cggaaggctg tgcgtgtgct tctgaacaag





 721
aagacagccc actcttttga gcaagtcctc actgatatca cagaagccat caaactggag





 781
accggggttg tcaaaaaact ctacactctg gatggaaaac aggtaacttg tctccatgat





 841
ttctttggtg atgatgatgt gtttattgcc tgtggtcctg aaaaatttcg ctatgctcag





 901
gatgattttt ctctggatga aaatgaatgc cgagtcatga agggaaaccc atcagccaca





 961
gctggcccaa aggcatcccc aacacctcag aagacttcag ccaagagccc tggtcctatg





1021
cgccgaagca agtctccagc tgactcagca aacggaacct ccagcagcca gctctctacc





1081
cccaagtcta agcagtctcc catctctacg cccaccagtc ctggcagcct ccggaagcac





1141
aaggacctgt acctgcctct gtccttggat gactcggact cgcttggtga ttccatgtaa





1201
aggaggggag agtgctcaga gtccagagta caaatccaag cctatcattg tagtagggta





1261
cttctgctca agtgtccaac agggctattg gtgctttcaa gtttttattt tgttgttgtt





1321
gttattttga aaaacacatt gtaatatgtt gggtttattt tcctgtgatt tctcctctgg





1381
gccactgatc cacagttacc aattatgaga gatagattga taaccatcct ttggggcagc





1441
attccaggga tgcaaaatgt gctagtccat gacctttcaa tggaaagctt aggtgcctgc





1501
gttatatttg ccctgtctaa ttttgcccat acagtcttcc ttctgtagag ggctgtttac





1561
atatacagca cttaaaatgt ttgtgtggga aaaaaaaaac tcattggcag atccaagaat





1621
gacaaacaca agtgcccctt ttctctggat ctcaagaatg gtggaggacc ctggaaggac





1681
agcaaggcag ctccccagcc tcactcttca ctcctgattg aggcccgggt ttgttgtcca





1741
gcaccaattc tggctgtcaa tggggagaaa taaaccaaca acttataatt gtgacaccag





1801
atgcttagga tcctggtgct gggttagcta agagaataga cagaattgga aaatactgca





1861
gacatttccg aagagtttat aaagcacagt gaattcctgg tcaatctctc cactgaggca





1921
atttggaatc aataagcaat tgataatagt ttggagtaag ggacttcata tacctgattc





1981
ctctagaagg ctgtctaaca taccacatga ttacatgaac tgtatggtat ccatctatct





2041
ctgttctatt gaatgccttg ttaacagcca acactgaaaa cactgtgaga atttgttttc





2101
aggtctgaca cctttcagtc tctttttata gcaagaaatc aatatccttt ttataaaaat





2161
tcatgtctgt atttcaggag caaactcttc aggctccttt tttataaact ggtgattttt





2221
cttttgtcta aaaaacacat gaagaaaatt taccaaaaaa aaaaaaaaaa gcagaagaat





2281
aatgtagttt agaaattatg ctgtcactgc caaacagtaa cctccaggag aaaacaagat





2341
gaatagcaga ggccaattca atagaatcag ttttttgata gctttttaac agttatgctt





2401
gcattaataa tttcaatgtg gaccagacat tctaattata ttttaaatga aatgttacag





2461
catattttaa gcaactcttt ttatctataa tcctaatatt tcatactgaa gacacagaaa





2521
tctttcactt gtctttaaca ttagaaagga tttctcttta ctaaggactg atcatttgaa





2581
atagttttca gtcttttgag atacaggttt ataacactgc tttttttttt ctgtaatcat





2641
agcccataat ggcaaagaca actaaattta agtgaaggtc atgcatgcca attctgtgtt





2701
tgcttttagc agatatgaag atttccttat ttctttgtaa ttgtgcagat attttgaaag





2761
gcacagcatt cgaagccaag ctgctgtttg gctactgaat ggcttgcagt tgttcctcca





2821
ctctaaatgg aatgagcttg ctgtgtgtgt gtgtggtggt ggtgggaggg ggtggtgcat





2881
gtgtgtgtgt gtgtgtgcat ctgcagctgc ttcaaaatta ggaaatacta caggacaccc





2941
ctgtaatgga ttggtggcaa ctgggtggca ctgctgatgt gcactgtgta ggggggaacc





3001
cagtggtggt ggggtagctc agatgcccct agacaagctt cagatgtctg tagctaccag





3061
aaacattttc ggttcaggaa aagtgagatg atggtagtac tggtttctgg tgaaattgaa





3121
gaaccccaaa tgatgaggat ctctttttgc cccctctcct ttttttgtag acccattcaa





3181
aaccattaat aagcccattt tactaagccc ctatttcttt ctagaagctc agggttttct





3241
tagtgcctcc cagaacattt tgtagttaat tgggaaaaag tgatacttgg attagggggt





3301
gtgggcataa agaatggtgg gaggcctgat tttaaacttc aggccagaac ccccaatgac





3361
tccacccata gtctcacttt aggtctcatt tagtccatca cctttatttt aagttgagga





3421
agtggaggct ggtaaagagc aggaccagag gaagaatcca gatttcctta tgcttgggcc





3481
tcacactagc tctctgagta tttccttgat tgcggtatat gtactactag aaaataccaa





3541
atggatatat tttctttagg ataacctttg aaccaacaat cttcaataac aatagtacat





3601
cttccatctt acttttaatc gagtataagg aaatgtttct ttatggccat tttggaggga





3661
gcaggggatg aggcttggca tagtccaaaa tttaagtctc caataattaa ttgcatttta





3721
aattggccca ctttcaaggc aatttttttt gtgtgtctgt aactgagctc ctccacccct





3781
gtcattcact tccaatttta cccaatccaa ttttagcact caagttccat tgtgttaatt





3841
tctgcacggt caacaaacat caagtcagca agcatttgcc accactccct atacttctcc





3901
ctccttctta cacacacaca cacacacaca cacacaatcc atctcttgct tgttcctacc





3961
tcctgatttt tcttccctac agaaatagaa atagggacaa agaaggggaa aatgtatata





4021
ttggggctgg gctgaacaac taacttcata agtagtatta actaggggta aattgagaga





4081
aaagctcctt ttctcttcac tgttttggaa aggatagcca ttagcatgac tgctttgtgt





4141
ccttatggac tttagtatta gcctagattg aattatagcg ttttctagct ggaaggaacc





4201
ttaagatcac atcatctact cctctactcc aaatttctca ttcttcaggc caggaaaccg





4261
agacacagag gtaaagtaat ttccccaagg tcacacagct ggctggggca ggattgggtt





4321
tacaacccac atctcctggc tcttattcca gggccttttc ccactaagta gtattgcctt





4381
ccattaggct cctgagagtt atttctcagg gtcatgttgc atcttggagc cacatgctgc





4441
tgccctgatc tcagtgggaa atccacccag caacctaata cagccccttt tccctgcatt





4501
cacctggttc ccatccacat gggttgcaga tgtccttgaa gagagtgagg cattgagggc





4561
caataggagc aatggggtcc ctggccttgt ccatctgatt caggagatca ctgctccatc





4621
gtgaggagcc ctctgaatag ccccccactg aatgcttgcc ttgcccaaat ggaatggagg





4681
aagattgatt ttctccatca gttcaccttg tgtcatctca taatggttgg tctttccagg





4741
ctgagggaaa tgtttcttgt ttccagagta gaaaaagaaa gagtggaaca atagctttgt





4801
tcatcctaac tttctgagat ggcttttcaa cattttaaaa aaactagtgt ggctaccatt





4861
cactggcaat gatttctttt agaatatggg agtaagatga gctagagaaa ataacctggt





4921
ctcactgtgg ttgccctcat ccacaatgtc cccaaagcca tcctgctctg atgaggacaa





4981
tttccaggta taagcaaggg gctttgtgac aaaaatgtac cctggctgat gttaaacatt





5041
ggctcctgtg tttgcaccaa aatagcaagc tgtgtgctct atacactctt cccatcgtct





5101
tgtgtacact gctcctgtgg ccttccacag cagaaaccag ggcaaaaggg tccaaacaca





5161
tggttttcct tgctgcaagg ctcttcctgg gaactaaggg ggtatttatt agttcagttc





5221
taagagacct ccttctgggc ttaccccact cctcaggtac ttctctctcc ttcctccttc





5281
tcctccacag tcacaagtaa ccaaggaacc tgaaagtgga tgtgtagcta tttgaagaag





5341
gcaaggaacc ctgagattct tctttgaatc ctctagtcca agtcttagac cagtgattgg





5401
tgcttacctt gaacaaaatt ttgtctgtgt tcctaatccc ttcaatactc tgggtacaat





5461
gctcccaatc accctgcaca tttgattcta aatggctttt attttttaaa aatccatatc





5521
cctaggacaa gagaacagga tgcctatatc cccaaaatga gctccaggac actgatggga





5581
atgatcccaa agatcacccc acctcagaaa cgtctgtgcc aagagacttc cccagataga





5641
aacactggga cagtggtttg aacgacttct tttatggttg tccagtttgc tatggaaata





5701
aaaggcattg attttttaaa aagatgattg gaacctgtct ttggccacat agggccactt





5761
ggatccattt ccaggcctta ctcatatatt gccttcactg aagggctttg gctttaagtc





5821
ccagactggt ctcccaagtg aaccataagt gttttggagc tcatctgggg tgaggcatga





5881
gaatgttgcc ccatctatcc cttcaggaaa aggtgccttc cctccctttc tcctaaagcc





5941
tggtccccag aaattgtttt tgtctccaaa agtctagtat ggtctttata cacccagact





6001
cttagtgttg cgtcctgcct tgtttccttg ttaaggatct atgcagacct cccgctttgg





6061
cttagctagc gtgacattgg ctatcatttg acaagactaa cttttttttt tttttttttt





6121
tgactgagtc tccctctgtc acctaggctg gagtgcagtg gcacaatctt ggctcgctgc





6181
aaccttcacc cttcacctcc caggtcgaag cgattctcct gcctcagtct cccgagtagc





6241
tgggattaca ggcgtgcgcc accaaatctg gctatttttt tattattatt atttttagta





6301
gagatggggt ttcaccatgt tggccagact ggtcttgaac tcttggcctc aaattatctg





6361
cccacctcgg cctcccaaag tgctgggatt acaggcatga gccaccatgc ccagctgaca





6421
agactaattt tttatccctt ggtttattgg cttcaacatc ttctggaatc agaggtgatt





6481
ttttcttacc ttggatgcct gagactaggg gagtatagaa ttccaattgg taattaaggc





6541
atctttctgc tcctgatcag aagggcaggt tagttgggag aggtcagatg gcacaacaga





6601
agtcaccttg taagtaaggc aaagacttga aggcattagc gtttctcatt actaggtcaa





6661
taacctgagg gaatcaatgg ctttttgccg ctctacctct tgtgtatctc tttgactttt





6721
ctttctctgt ctagtttcct ctgttctcag tttatattct atgttatcag tctctctttc





6781
cacagtacaa acatccatcc tttctcctgt gcaattctgt ctctccctct tattatcttt





6841
atttgtactt tttccttcct ccctgtctag gcattgggca tgtgcctctt cttagcctgt





6901
gattttgcct tgggactgat gataaattat ttccagattc aatcagccct ggtcctaccc





6961
cagtccaatc agaagtatgt tggtgggaat caacctgatc ctggcccttt cttcttctcc





7021
attttcattc gtaatccccc tcagcagatc tttacaagca gtttccttat agctcatgta





7081
tctttaggtc tttgccttcc aagcactgta cagaatactt tgtggttcct ttttagtctg





7141
acattttgtg gagcagtgaa gcgtgctcag agacataatc agctgaagag aaaaaatcca





7201
cccatggatt tatatcagct aaatactaat aattgatttt gtttgatgtg cccataattt





7261
ttaaagctgc aatataatat aatgagggac cacaggtaat ttctcctgtc atttgttttg





7321
gctggatggg ggtgggggag taattgctta aagttttacc attacacatt aaactctcta





7381
taataatctt gtttggggct tgctaactgt tgagctgttt taactaaact ggtaggcaat





7441
cggagttgat ttaaatgaaa agataattta acaaatctat actataaaaa gagacatttg





7501
cttaattgac atgtattttt tccttctgag tcacctaaac atttactctt gacaccaact





7561
gttcatgata ctgaatagac agtccatata agagaaatta gtggacctaa agaagccaga





7621
ttgtaggtgt taatttatta aacagagtgc aaagcccttg gaaatgtcac tgcttggcaa





7681
taccatatgg aatgccaaaa tttacaatga cttttcttta taagttatcc aaaagggatt





7741
tgaacaagta agaggttatg ccaaaatgtc tccaatgtat ggtcctgtaa tatattgcag





7801
cttgaagcca atgatccctt atgacttgta tacaactaat gcatgtttta ttgaattttg





7861
catttcccac gtgtggtaag ttctttaaaa tgtttttgat cacctttttg tgccattaaa





7921
cttgtacaga aaatgttttt atggccattt tcaaagggag aaagtttaaa atggaaacag





7981
cccacccttt ctgccctata gctgtagtta gaattgagta cctgtagcaa aacagctgta





8041
attggtggtt gtagtgttag aggtgttagc ttgctagtga ctagctttgg agagtaaatg





8101
catggtattg tacatcacat ttcttaactc gttttaacct ctgaaaagaa tatattcttc





8161
tttgtagtcc ttcttcccac ccccttgccc tctccctctc cctgctccca gttgtcttac





8221
agttgtaaat atctgatttg aggcccaata actcttgcca agtaaagtca gcaaacaaca





8281
aacaaaccaa aatgtgggga aaaggcattt ctcaaccatc tctcagcagt tattgatcat





8341
ttcttaagga acagcattgt gatcaaagac tcaactttac gtaaaaatca gtggtaaatt





8401
ggggttgtat ttggccattt gattacattt caggattgaa tagttttcag aatcacatgt





8461
aatccaaaga cagtaggtag tgatgtccct tatccctgca gctgttttaa gatagagacc





8521
tcagaagact ctgcttgacc gatgaccaat aattatttga aaaaaaaaga aaaaatgaga





8581
gaaataaaac agatatttaa gaactttagc cacctattta gaatagttat agccagaaaa





8641
aaaaacaagg gcatgagttc aaatgcatta ctatcagtgt cctaggcaat acctaaccta





8701
ctctgaaatt gtgattcaaa agcagtattt caagaggcat tctccttttt tggtttgctg





8761
accccacttg gactggtagg tttggtgagg cccccataaa ccagctggag cagacccttt





8821
tcatctcctg tgcctgtaac acccctcttc ccccaccccc tccgcaattc aatgagggct





8881
ttcttgggtc agaggacttc aaggttgtct agagaagttt gccatgtgtg taaggtgctg





8941
tgaactgtga gtgctgaaga ttcgcagcat tcaataccag gcagccaaag agctgctctt





9001
gcaattattt tggctctcaa gctctgttct tcatcgcatt ctcatttctg tgtacatttg





9061
caagatgtgt gtaatgtcat tttccaaaaa taaaatttga tttcaataaa aaaaaaaaaa





9121
aaaaaaaaaa aaaaa






By “GABRA1” (or gamma-aminobutyric acid (GABA) A receptor) is meant a polypeptide or fragment thereof having at least about 85% amino acid identity to NCBI Accession No. AAH30696.1.









MRKSPGLSDCLWAWILLLSTLTGRSYGQPSLQDELKDNTTVFTR





ILDRLLDGYDNRLRPGLGERVTEVKTDIFVTSFGPVSDHDMEYTIDVFFR





QSWKDERL





KFKGPMTVLRLNNLMASKIWTPDTFFHNGKKSVAHNMTMPNKLLRITEDG





TLLYTMRL





TVRAECPMHLEDFPMDAHACPLKFGSYAYTRAEVVYEWTREPARSVVVAE





DGSRLNQY





DLLGQTVDSGIVQSSTGEYVVMTTHFHLKRKIGYFVIQTYLPCIMTVILS





QVSFWLNR





ESVPARTVFGVTTVLTMTTLSISARNSLPKVAYATAMDWFIAVCYAFVFS





ALIEFATV





NYFTKRGYAWDGKSVVPEKPKKVKDPLIKKNNTYAPTATSYTPNLARGDP





GLATIAKS





ATIEPKEVKPETKPPEPKKTFNSVSKIDRLSRIAFPLLFGIFNLVYWATY





LNREPQLK





APTPHQ






By “GABRA1 polynucleotide” (or gamma-aminobutyric acid (GABA) A receptor) is meant a polynucleotide encoding an GABRA1 polypeptide. An exemplary GABRA1 nucleic acid molecule (e.g., mRNA) is provided at NCBI Accession No. BC030696.











   1
agcggagcgg gcgagcaagg gagcgagcag gacaggagcc tgatcccaca gctgctgctc






  61
cagcccgcga tgaggaaaag tccaggtctg tctgactgtc tttgggcctg gatcctcctt





 121
ctgagcacac tgactggaag aagctatgga cagccgtcat tacaagatga acttaaagac





 181
aataccactg tcttcaccag gattttggac agactcctag atggttatga caatcgcctg





 241
agaccaggat tgggagagcg tgtaaccgaa gtgaagactg atatcttcgt caccagtttc





 301
ggacccgttt cagaccatga tatggaatat acaatagatg tatttttccg tcaaagctgg





 361
aaggatgaaa ggttaaaatt taaaggacct atgacagtcc tccggttaaa taacctaatg





 421
gcaagtaaaa tctggactcc ggacacattt ttccacaatg gaaagaagtc agtggcccac





 481
aacatgacca tgcccaacaa actcctgcgg atcacagagg atggcacctt gctgtacacc





 541
atgaggctga cagtgagagc tgaatgtccg atgcatttgg aggacttccc tatggatgcc





 601
catgcttgcc cactaaaatt tggaagttat gcttatacaa gagcagaagt tgtttatgaa





 661
tggaccagag agccagcacg ctcagtggtt gtagcagaag atggatcacg tctaaaccag





 721
tatgaccttc ttggacaaac agtagactct ggaattgtcc agtcaagtac aggagaatat





 781
gttgttatga ccactcattt ccacttgaag agaaagattg gctactttgt tattcaaaca





 841
tacctgccat gcataatgac agtgattctc tcacaagtct ccttctggct caacagagag





 901
tctgtaccag caagaactgt ctttggagta acaactgtgc tcaccatgac aacattgagc





 961
atcagtgcca gaaactccct ccctaaggtg gcttatgcaa cagctatgga ttggtttatt





1021
gccgtgtgct atgcctttgt gttctcagct ctgattgagt ttgccacagt aaactatttc





1081
actaagagag gttatgcatg ggatggcaaa agtgtggttc cagaaaagcc aaagaaagta





1141
aaggatcctc ttattaagaa aaacaacact tacgctccaa cagcaaccag ctacacccct





1201
aatttggcca ggggcgaccc gggcttagcc accattgcta aaagtgcaac catagaacct





1261
aaagaggtca agcccgaaac aaaaccacca gaacccaaga aaacctttaa cagtgtcagc





1321
aaaattgacc gactgtcaag aatagccttc ccgctgctat ttggaatctt taacttagtc





1381
tactgggcta cgtatttaaa cagagagcct cagctaaaag cccccacacc acatcaatag





1441
atcttttact cacattctgt tgttcagtcc tctgcactgg gaatttattt atgttctcaa





1501
cgcagtaatt cccatctgct ttattgcctc tgtcttaaag aatttgaaag tttccttatt





1561
ttcataattc atttaagaac aagagacccc tgtctggcag tctggagcaa agcagactat





1621
gcagcttgga gacaggattc tgacagagca agcgaaagag caaagtcatg tcagaaggag





1681
acagaatgag agagaaaaga gggggaagat ggttcaaaga tacaagaaaa agtagaaaaa





1741
aaaataacac ttaactaaaa cccctaggtc atttgtagat atatatttcc aaatattcta





1801
aaaaagatac tgtatatgtc aaaaatattt ttatgtgaag gtgtttcaaa gggtaaatta





1861
taaatgtttc atgaagaaaa aattttaaaa atctacgtct ttattacaca aactatggtg





1921
tgcttatgtt tttgttttgc tttttaaact gatgtatagc tttaacattt tgtttccaaa





1981
gctgaagatc cccattcttt ctctttgaaa aaaaaaaagg cctaatgcat tattttgtca





2041
taaaatgcta ttttaaaatt catggaactt tcatacgtaa aggtgcagtt gctcattgta





2101
gagcacattt agtccaatga agataaatgc tttaaatagt ttacttcact ttcatctgag





2161
cttttaccac tagactcaag gaagaataat tttaacagac atgtatactc catagaaact





2221
aaattaaaat agtttaaaaa tattcccttt ttcaccctat tttcagatag cacatgagcc





2281
caacactcac ttaattctca ttatgaagat gtttttagag gggcaaaaat attttgcaag





2341
ctctggaatt gttgaatgta ttcttttata taactacatt aaaagcttta gattgaaatt





2401
tatgactagc aaacaaaaat agaatatata aacgatatat gtaaatatac agcatgagat





2461
tgtacatttt ttactttttt aaaattgtgt tcttaaaata ttgtgtaaga atcactgcac





2521
ttagctgttg gaatgttgtt aaatgctatg gaaatacatt tagaacctgc atttaagaac





2581
agaacagcaa gtatgaacca catggaactt aaaacatatg ggtgtgaagt ccacttatgt





2641
agacaaaact tataatttcc aaactgttgt ctagtataca gtgatcagtt gctctctgtt





2701
caagtcattc cacacatttc cctattttag gctattataa tatagaaaga aaatgggaag





2761
cattagttgg agctagaaaa tgaactgtat attattgcta tatttgctaa taccaactat





2821
ttcaataagt gttgtaccat atgtagcatt aaatataaaa tacataaaag aatgtacaga





2881
aaatagcttt tattgagtaa tattacattt catttatact gtagcaatat atttgtaggt





2941
atactatgta agggctttaa ataaaagagg tccattaata cttccttata aaaattctag





3001
tctgtttcat tactgcccag atgttttaga gataaatatt tatgcagaag gtatttttga





3061
agtctccttt tgtctgatag agtttaacag atatttaaat ttagtgctca gaatccacaa





3121
gtcacggtct aaacacactt agaatactac agcataaatc tgttagcatt attgccaaat





3181
aagacagttg ggatccaaac ccaagtcttg agcaatgttt ttctcaaaaa gctgctatcc





3241
aatgatatag gaaaatacat tgtgttttcc taaacacact tttcttttta aatgtgcttc





3301
attgtttgat ttggtcctgc ctaaatttca caagctaggc caatgaaggc tgaatcaaag





3361
acatttcatc caccaatatc atgtgtagat attatgtata gaaaataaaa taaattatgg





3421
ctccaaaaaa aaaaaaaaaa






Other features and advantages of the invention will be apparent to those skilled in the art from the following detailed description and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIGS. 1A-1D depict characterization of BMPS during differentiation. FIG. 1A depicts a diagram of a differentiation protocol. FIG. 1B depicts size of aggregates measured during the 3D neuronal differentiation. Negative days on the x-axis represent 3D cells cultured in NPC medium while positive days represent 3D cells cultured in differentiation medium. FIG. 1C1-C5 depicts BMPS mRNA and miRNA expression of different markers during differentiation. FIG. 1D depicts flow cytometry population analysis of BMPS at different stages of differentiation.



FIGS. 2A-2C depict morphological characterization of BMPS. FIG. 2A depicts co-immunostaining of neurons with markers. MAP2+ neurons were co-immunostained with the maturation marker Nestin at 2, 4, and 8 weeks of differentiation, which showed progressive increase of MAP2+ neurons and decrease of Nestin+ cells over time (panels a, b, c), demonstrating neuronal maturation. Co-immunostaining of neurons (NF-H) with the myelin marker MBP at 2, 4, and 8 weeks of differentiation (d,e,f, respectively) showed progressive increase of MBP+ cells in association with axonal processes. An increasing number of MBP+ cells (oligodendrocytes) was observed in association with axons (panels d, e, f). FIG. 2B depicts neuronal and glial cell diversity was evaluated at 8 weeks. Neurons (MAP2, NF, SYP and SMI32) were visualized interacting with glia (GFAP and NOGOA). Neurons disclosed characteristic perykaria, dendrites (MAP2, panels a, b) and axons (NF, SMI32, panels c-f) associated with glia. Neurons exhibited diverse neurotransmitter identities shown by identification of glutamatergic VGLUT1+(panels g, h), GABAergic CALB+(panels i, j) and dopaminergic TH (panels k, 1) neurons. FIG. 2C depicts that GFAP+ astroglia and CNPase+, 01+ and MBP+ oligodendroglia were identified. Oligodendroglia appeared mixed among astrocytes (panels a, b). 01+(panels c, d) and MBP+(panels e, f) oligodendrocytes were associated with axonal processes. Astrocytes established relationships with oligodendrocytes and exhibited characteristic multipolar processes (panels g, h). MBP+ oligodendrocytes issued processes in association with axons (panel i) 3D-reconstruction demonstrated myelinating processes resembling human myelination (panels j, k). Electron microscopy analysis of BMPS at 4 and 8 weeks of differentiation identified morphology of axonal structures and cells (e.g., oligodendrocytes) (panel 1). Myelinating-like processes, which closely resembled cross-sections of myelinated axons of the CNS were identified at 8 weeks of differentiation (panel m). FIG. 2D depicts MBP+ oligodendrocytes issued processes in close association with axons and seemed to enwrap them at 8 weeks (a,b,c). Myelination calculated as the mean percentage MBP positive oligodendrocyte processes coverage of NF-H-positive axons (a,b,c) at 2, 4 and 8 weeks in at least 2 independent experiments showed significant increase of myelination observed with time of differentiation (p<0.001) (d). FIG. 2E depicts 3D-reconstruction based on confocal z-stacks at 8 weeks demonstrating a “wrapping” myelinating process, which resembled the myelination of axons in human CNS. FIG. 2F depicts a comparison of expression of neuronal and glial markers at 2 and 8 weeks. At 2 weeks, oligodendrocytes (01, CNPase, NOGOA) were identified without a preferential localization (a,b,e,f,i,j), later they resemble human oligodendrocytes and localize in close proximity with axons (c,d, g,h, k,l). At 2 weeks there are few MAP2-positive cells without identifiable neuronal shape (l,j) whereas at 8 weeks, the MAP2+ cells acquire a well-defined dendritic network (k,l). The amount of astrocytes and density of the astroglial network increases with time of differentiation (GFAP, g,h). FIG. 2G depicts variation in the nuclear morphology. Co-immunostaining of neurons (MAP2) with cell-division marker K167 showed that some cells are dividing (a,b), there was also a small degree of apoptosis demonstrated by positive staining with CASP3 (c). CASP 3-positive nuclei did not co-localize with mature neurons (d). FIG. 2H depicts ultrastructure analysis by electron microscopy of 4 week BMPS showed evidence of cell to cell junctions demonstrating functional interactions between the cells (arrows, a,b). Nuclear variation was confirmed by the presence of a few apoptotic nuclei (c) and normal healthy nuclei (d). NF: Neurofilament-heavy-chain, MAP2: Microtubule-associated-protein 2, MBP: myelin-basic-protein, VGLUT1: Vesicular-glutamate-transporter 1, GFAP: Glial-fibrillary-acidic-protein, CALB: Calbindin, NOGOA: Neurite-outgrowth-inhibitor, SYP: Synaptophysin, SMI32: Nonphosphorylated-neurofilament, TH: Tyrosine-hydroxylase, 01: Olig1, CNPase: 2′,3′-Cyclic-nucleotide-3′-phosphodiesterase. Scale Bar: 10 μm.



FIGS. 3A-3F depict electrical activity of BMPS. Cells were cultured in 3D for 8 weeks and then cultured in 12-well and 48-well MEA plates for 4 more weeks. FIG. 3A depicts heat map recordings from a 48-well plate. FIG. 3B depicts illustration of an active well showing spike morphology and FIG. 3C depicts spike activity. FIGS. 3D and 3E depicts phase-contrast imaging of the mini-brains on MEAs, electrode diameter is 40-50 μm and inter-electrode space is 350 μm. FIG. 3F depicts activity pattern recordings over 0.05 spikes/sec of the electrode over 10 min.



FIGS. 4A-4G depict Parkinson's disease (PD) application of BMPS. BMPS were differentiated for 4 weeks and exposed to rotenone and MPP+ for 12 and 24 hours. FIG. 4A depicts viability (resazurin assay) of BMPS after 24 hours rotenone exposure. FIG. 4B depicts ROS (OxiSelect™ In Vitro ROS/RNS Assay Kit) production of BMPS after 12 and 24 hours rotenone exposure. FIG. 4C depicts viability (resazurin assay) of BMPS after 24 hours MPP+ exposure. FIG. 4D depicts ROS (OxiSelect™ In Vitro ROS/RNS Assay Kit) production of BMPS after 12 and 24 hours MPP+ exposure. FIGS. 4E and 4F depict confocal images of BMPS exposed to different concentrations of rotenone and MPP+ for NF200 (Red), TH (Green) and Hoechst nucleus staining (Blue). FIG. 4G depicts expression of genes associated with oxidative stress and PD by real time RT-PCR. Graphs represent the relative expression of different markers compared to control (cells not treated) after 24 hours exposure to 5 μM rotenone and 1 mM MPP+. Genes of interest: mitochondrial complex 5 (ATP50, ATP5C1), mitochondrial complex 1 (NDUFB1), oxidative stress (KEAP1) and genes related to PD (TH, SNCA, TBR1, CASP1). Data are presented as mean±SD, of 3 independent experiments performed in 3 replicates. *P<0.05 comparing to control (untreated).



FIGS. 5A-5D depict Down's Syndrome application of BMPS. BMPS were produced with iPSCs derived from a patient with Down's Syndrome. FIG. 5A depicts morphological characterization with immunostaining of neurons (MAP2, Synl, TH, SYP), neural precursor cells (nestin) and glial cells (GFAP) at 8 weeks of differentiation. FIG. 5B depicts expression of genes in healthy BMPS vs. Down's Syndrome BMPS before and after treatment with 5 μM rotenone, after 24 hours exposure. Genes of interest include CNS markers (TH, OLIG2, NEFH), mitochondrial markers (ATP5C1, ATPSJ, ATP50) and ROS markers (NFE2L2, SOD1) which were measured by comparing control with exposed cells to rotenone on both healthy and Down syndrome derived mini-brains. FIGS. 5C and 5D depict karyotyping of iPSCs derived from the patient with Down's Syndrome. aCGH+SNP results for Down syndrome iPSC line are shown.



FIG. 6 depicts viability of pre-frozen NT2 human teratocarcinoma cell line and iPSC derived mini-brains. Fmedium corresponds to 95% FBS and 5% DMSO. NPC fmedium corresponds to STEMdiff™ Neural Progenitor Freezing Medium. Viability was measured by resazurin cell viability assay. Non-frozen cells at the same stage of differentiation were used as control aggregates.



FIG. 7 depicts an example of a BMPS covered with other cell types. LUHMES fluorescent cells (red) were incorporated to a BMP using gravity systems to cover the surface of the aggregate.



FIGS. 8A-8E depict morphologic characterization of mature human BMPS. FIG. 8A shows at 8 weeks, neuronal populations exhibited a diversity of neurotransmitter identities as shown by identification of dopaminergic TH+(a,b), glutamatergic VGLUT1+(c,d) and gabaergic calbindin+(e,f) neurons. Neurons disclosed characteristic axons (NF) and synaptic proteins (SYN) (g,h). FIG. 8B depicts two distinctive glial populations were identified in close interaction with neuronal populations, GFAP+ astroglia and CNPase+, 01+, NOGOA+ oligodendroglia. O1+oligodendrocytes were closely associated with axonal processes (NF) (a,b), CNPase+ oligodendroglia appeared mixed among GFAP+ astroglia (c,d) and exhibited the characteristic multipolar glial processes, which extended from the perykaria (e,f). NOGOA+ cells were associated with MAP+ neurons (g,h). FIG. 8C depicts example of custom algorithm created using the Cellomics Target Activation image-analysis software package to study astrocytes and oligodendrocytes (a,b,c,d). Quantification of cell populations as a percentage of the total nuclei count showed 3% NOGOA+ positive cells, 9% CNPase+ cells and 19% GFAP+ cells at 8 weeks (e). FIG. 8D shows Co-expression of mature oligodendroglia markers (MBP and 02). FIG. 8E shows expression of neuronal markers (VGLUT, TUJ1, SYN). Scale Bar: 10 μm.



FIGS. 9A-9D depict the generation of microglia-containing BS (OS) Immortalized Human Microglia—SV40 were incorporated to 7 week-differentiated BS by gravity. FIG. 9A shows a diagram of μBS generation procedure under one embodiment. FIG. 8B provides a comparison between μBS and BS using different microglia markers (TMEM119, Mertk, Ax1) and hematoxylin/eosin (HE). FIG. 9C provides confocal images of immunohistochemistry for the microglia marker IBA1 (green), the neuronal marker NF200 (red), and nuclear staining (Hoechst 33342, blue) in μBS, 48 h after microglia incorporation. FIG. 9D shows details of microglia aggregations in μBS. Green arrow indicates microglia cluster and red arrow indicates the BS. Bars represent 100 μm (FIG. 9B), 50 μm (FIG. 9C, upper panel), 20 μm (FIG. 9C, all other panels), and 50 μm (FIG. 9D).



FIGS. 10A-10C depicts differences between BS, μBS, and microglia after LPS treatment. The microglia, BS, μBS, were exposed to 20 ng/mL LPS up to 24 h. FIG. 10A shows gene expression of IL6, IL10, ILlb, CCL2, and TNFa after LPS treatment on the different models (BS, μBS, and microglia cells). Data are shown as fold change of treated versus untreated up to an hour post treatment (3, 6, 12, and 24 h after treatment). FIG. 10B shows changes in cell cycle in percentage of the cells in G2 plus S phase in microglia cells, BS and μBS treated or non-treated with LPS. Each dot symbol represent a replicate sample (n+3). FIG. 10C shows Annexin V Apoptosis Muse assay. Results show % live cells microglia, BS, ad μBS cells treated (+) or not treated (−) with LPS. Each symbol represent a replicate (n=3). Statistical analysis in FIG. 10A was performed using Dunnett test on ΔΔCt. The asterisks symbols represents *P<0.05 and **P<0.01 (two independent experiments and three biological replicates on each experiment).



FIG. 11 shows virus infection by immunohistochemistry in BrainSpheres with (OS) and without microglia (BS). Green represents the Flavivirus marker for ZIKV (NS1) and DENV-1, red represents microglia markers IBA1 and NF200. Bars represent 50 μm (lower magnification) and 10 μm (higher magnification).



FIGS. 12A-12D depict the effects of Flavivirus infection on 3D human iPSC-derived brain spheres (BrainSpheres, BS) without or with microglia cells (OS). The microglia cells, BS, and μBS were infected with Dengue, ZIKV-BR, and ZIKV-UG using MOI equal 0.1. FIG. 12A shows the growth kinetics of flaviviruses over time for the three models.


The viral load (RNA copies/mL) are shown with standard deviation. FIG. 12B depicts changes in cell cycle shown as percentage of cells in G2/S phase in BS, μBS, and microglia treated or non-treated with the different viruses. FIG. 12C shows Annexin V Apoptosis Muse assay results. Results represent % live cells in BS, μBS, and microglia samples after the different flavivirus treatments. FIG. 12D shows gene expression relative quantification for TNFα, CCL2, IL-1b, and IL-6 over the time. Statistical analysis was performed using the Dunnett's Test (*mean equal p<0.05 and **p<0.01) for two independent experiments, three biological replicates on each experiment.



FIGS. 13A-13C show an alternative protocol performed to incorporate microglia into BS 3D cultures. When NPCs reached 95% confluence, 1×106 microglia were added to the flask. After 24 h, the co-culture was detached mechanically with a cell scraper (Sarstedt, Newton, N.C., United States, 2-position, Blade 25, 83.1830), re-pipetted for disaggregation, and counted using the Countess Automated Cell Counter (Invitrogen, Carlsbad, Calif., United States). 2×106 cells per well were then plated in non-treated 6-well plates and cultured as BS for 8 weeks. The density was chosen to have approximately 10% microglia cells. FIG. 13A shows a diagrammatic representation for the alternative protocol. FIG. 13B is immunohistochemistry showing microglia marker (IBA1) and neuronal marker (NF200). FIG. 13C shows immunohistopathology characterization of the microglia incorporation for this method of μBS generation, markers are mentioned in Example





DETAILED DESCRIPTION

The present invention is based, at least in part, upon the discovery that brain microphysiological systems (BMPS) can be produced from induced pluripotent stem cells (iPSCs). Furthermore, the invention provides for reproducible BMPS that differentiate into mature neurons and glial cells (astrocytes and oligodendrocytes) in the central nervous system. This model is spontaneously electrophysiological active and may be reproduced with patient or genetically modified cells. The derivation of 3D BMPS from iPSCs has applications in the study and treatment of neurological and neurodevelopmental diseases. In some embodiments, the present disclosure provides for compositions and methods to study and/or treat neurodevelopmental and neurodegenerative disorders. In some cases, the neurodevelopmental and neurodegenerative disorders treated and/or studied by the present disclosure include, but are not limited to, autism, encephalitis, trauma, brain cancer, stroke, Amyotrophic lateral sclerosis, Huntington's Disease, muscular dystrophy, neurodegenerative disorder, neurodevelopmental disorder, Multiple Sclerosis, infection, Parkinson's Disease and Alzheimer's Disease.


As described herein, the present disclosure provides for the derivation of a multitude of identical brain microphysiological systems (BMPS) from stem cells, preferably of human origin, but including stem cells from animal origin. The preferred starting material are human induced pluripotent stem cells or embryonic stem cells, although other pluripotent stem cells such as, for example, neuronal precursor cells and mesenchymal stem cells may also be employed. Human in-vitro models of brain neurophysiology are needed to investigate molecular and cellular mechanisms associated with neurological disorders and neurotoxicity. The techniques herein provide a reproducible iPSC-derived human 3D BMPS that includes differentiated mature neurons and glial cells (astrocytes and oligodendrocytes) that reproduce neuronal-glial interactions and connectivity. BMPS mature over about eight weeks and show the critical elements of neuronal function including, but not limited to, synaptogenesis and neuron-to-neuron (e.g. spontaneous electric field potentials) and neuronal-glial interactions (e.g. myelination). Advantageously, the BMPS described herein include mature neurons (e.g., glutamatergic, dopaminergic and GABAergic neurons) and glial cells (e.g., astrocytes and oligodendrocytes). Quantification of the different cell types exhibited high reproducibility between experiments. Moreover, the BMPS disclosed herein present neuron and glial functions such as spontaneous electrical activity and axon myelination. The BMPS described herein are able to mimic the microenvironment of the central nervous system, which is a significant advance in the field of neurobiology as this ability has not been achieved at this level of functionality, reproducibility, and consistency in prior art in vitro systems.


In particular, the high amount of myelination of axons (up to 40%) in the disclosed BMPS represents a significant improvement over the prior art. Myelin pathology is a rather frequent condition in demyelinating and inflammatory disorders such as multiple sclerosis and post-infection diseases as well as other neurological diseases such as acute and post-traumatic brain injury, stroke and neurodegenerative disorders (see e.g., Fumagalli et al., 2016; Tse and Herrup, 2016). Moreover, the myelination process can be perturbed by exposure to chemicals and drugs (see e.g., Garcia et al., 2005; Brubaker et al., 2009; Creeley et al., 2013) during brain development and adulthood. For example, the BMPS disclosed herein show 40% overall myelination after 8 weeks of differentiation. Myelin was observed by immunohistochemistry and confirmed by confocal microscopy 3D reconstruction and electron microscopy. These findings are of particular relevance since myelin is crucial for proper neuronal function and development. The ability to assess oligodendroglia function and mechanisms associated with myelination in this BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating diseases. Thus, the BMPS provides a suitable and reliable model to investigate neuron-neuroglia function in neurotoxicology or other pathogenic mechanisms that has heretofore not been available in the prior art.


The method disclosed combines gyratory shaking or regular stirring and the addition of growth factors to obtain the basic model. Suitable conditions as to how to achieve reproducible brain composition are disclosed herein. In contrast to earlier models, identical units of BMPS are produced, which allow comparative testing for the purpose of product development or safety assessments.


According to the techniques herein, a number of additional measures complement the basic BMPS to increase their completeness in modeling the human brain and improve its usefulness for such testing, for example:


1. The addition of microglia: All stem-cell-derived brain models described so far lack micro-glia. The techniques herein provide that the addition of micro-glia precursor cells and suitable growth factors may allow microglia to be added to the model. Suitable cells may be monocytes (e.g., human monocytes), hematopoetic stem cells, respective (pro-)monocyte cell lines, and isolated microglia.


2. The addition of a blood-brain-barrier: The human brain is protected by a tight blood-brain-barrier that excludes many substances from the brain. For the first time, the techniques herein provide a method to form a blood-brain-barrier to the BMPS via cells such as, for example, human endothelial cells.


3. Addition of reporter and reporter cells: During the generation of the BMPS, cells carrying reporter for testing purposes may be used or added. These include, but are not limited to, fluorescent or luminescent markers to indicate a certain cell lineage or cell response. Genetic transient or permanent transfections are the primary, but not only, method of choice.


4. The BMPS may also be produced, entirely or in its components, from cells from a specific genetic background, e.g. from patients with a specific disease or after selective genetic manipulation of the cells.


5. The versatility of the BMPS may be improved by combining it with electrodes including, but not limited to, micro-electrode arrays (MEA).


6. The versatility of the BMPS may be improved by combining it with other MPS (organ models) platforms such as, for example, microfluidic human-on-chip systems, perfusion chambers and others.


7. Transportability of BMPS: Methods to cryopreserve BMPS were developed, which allow transport to other laboratories and testing or integration into multi-MPS platforms.


Simplified neural in vitro systems do not reflect physiology, interactions between different cell types, or human genetics. Induced pluripotent stem cells (iPSC)-derived human-relevant microphysiological systems (MPS) better mimic the organ level, but are too complex for chemical and drug screening. As described herein, a reproducible 3D brain MPS (BMPS) that differentiates into mature neurons and glial cells (astrocytes and oligodendrocytes), which reproduces the topology of neuronal-glial interactions and connectivity in the central nervous system was developed. BMPS from healthy donors or patients evolve from a period of differentiation to maturity over about 8 weeks, including synaptogenesis, neuron-neuron interactions (e.g. spontaneous electric field potentials) and neuronal-glial interactions (e.g. myelination of axons), which mimic the microenvironment of the central nervous system. Effects of substances on neurodevelopment may be studied during this phase of BMPS development. In an exemplary embodiment, the techniques herein were used to study Parkinson's disease (PD) by evaluating neurotoxicants with a link to PD pathogenesis. Exposure to 5 μM rotenone or 100 μM 1-methyl-4-phenylpyridinium (MPP+) (or 1 mM 1-methyl-4-phenylpyridinium (MPP+) for gene expression studies) disrupted dopaminergic neurons, as observed by immunohistochemistry and altered expression of PD-related genes (TH, TBR1, SNCA, KEAP1, NDU1-131, ATP5C1, ATP50 and CASP1), thus recapitulating hallmarks of PD pathogenesis linked to toxicant compounds in the respective animal models. The BMPS, as described herein, provide a suitable and reliable model to investigate neuron-neuroglia function in neurotoxicity or other pathogenic mechanisms.


There is growing concern about the continuing increase in neurodevelopmental and -degenerative disorders such as autism [1, 2], Parkinson's [3] and Alzheimer disease [4]. Although genetic factors play an important role, environmental factors such as pesticides, air pollution, cigarette smoke, and dietary toxicants appear to contribute [5, 6, 7]. Due to a lack of mechanistic understanding, it is difficult to study their contributions and interactions with respect to neurotoxicity and neurological disorders. The complexity of the CNS makes it challenging to find appropriate in vitro human-relevant models, ideally from different genetic backgrounds, that are able to recapitulate the relevant pathophysiology. The poor predictive ability of animal-based models for human health, which may fail to mimic human pathology as outlined in the costly and time-consuming current developmental neurotoxicity (DNT) guidelines, contributes to the lack of reliable information on DNT mechanisms [8]. At the same time, more than 90% of all drugs fail clinical trials after extensive animal testing [9] due, in part, to the fact that animal studies often do not reflect human physiology and inter-individual differences. Simple in vitro systems do not represent physiology and organ function [10], which creates a critical demand for better models in drug development, study of disease mechanisms and progression, bioengineering and toxicological testing.


Attempts to generate more complex organotypic cultures or microphysiological systems (MPS) [11, 12, 13, 14] have resulted in more physiological multicellular 3D co-culture models able to simulate a functional part of the brain [15, 16]. 3D MPS have shown increased cell survival, differentiation, cell-cell interactions and can reproduce the complexity of the organ more closely [18]. Recent US research programs by NIH, FDA, DARPA, and DTRA have initiated the systematic development of MPS, including the model presented here, and their combinations to human-on-a-chip technologies to assess the safety and efficacy of countermeasures to biological and chemical terrorism and warfare [19].


The discovery of induced pluripotent stem cells (iPSC) and new protocols to differentiate them into various cell types have boosted the development of human in vitro models [20, 21]. iPSC from healthy or patient donors with a specific disease [22, 23, 24, 12] used in MPS promise more human-representative models, e.g. the brain organoids by Lancaster et al. and Kadoshima et al., have been able to recapitulate features of human cortical development [15, 16]. These complex systems present novel tools to study biological mechanisms in the CNS, however, they have certain limitations: 1) an elaborate and complex protocol, 2) size differences between organoids, 3) necrosis in the center of the organoid, 4) low reproducibility in cell differentiation. The human BMPS described herein overcomes these limitations. The reproducible in vitro iPSC-derived human 3D brain microphysiological system (BMPS) is comprised of differentiated and mature neurons and glial cells (astrocytes and oligodendrocytes).


The techniques herein provide a reproducible BMPS that contains several different cell types of the human brain, such as glutamatergic, dopaminergic and GABAergic neurons, astrocytes and oligodendrocytes. Moreover, the system has shown neural functionality as observed by spontaneous electrical activity and myelination of axons. Furthermore, the BMPS is reproducible from batch to batch and displays differences between healthy and patient donors. In addition, the obtained results demonstrate the application of such BMPS to the study of neurological disorders such as, for example, Parkinson's Disease (PD).


The brain MPS described herein is a versatile tool for more complex testing platforms and strategies as well as research into neurotoxicity (e.g., developmental), CNS physiology and pathology. Some stem cell-derived brain microphysiological systems have been developed in the latest years showing the capability to recapitulate some of the in vivo biological process [36, 37, 38]. These models have an enormous advantage over the classical in vitro models to study various differentiation mechanisms, developmental processes and diseases [15]. However, they are mostly based on human embryonic stem cells raising ethical concerns and not allowing the use of patient cells. Moreover, they require complicated protocols that may reduce the reproducibility of the system and make it difficult to use in other fields such as chemical and drug screening. Some of these complex organoids have a large diameter, which can lead to extensive cell death, visible in the core of these tissues [15]. This may be due to insufficient diffusion of nutrients and oxygen in these non-vascularized systems, which may generate artifacts in toxicological and disease measurements and make it difficult to study different endpoints in a medium- to high-throughput manner. In addition, it will be challenging to adapt endpoints, established for relative simple 2D cultures, to such complex models. In the study described herein, the ability to generate a high number of viable (about 800 per batch), BMPS that are homogeneous in size (e.g., about 300 μm) and shape using iPSC by applying a constant or regular gyratory shaking or stirring technique as described earlier for rat re-aggregating brain cell cultures [40] is shown. Control of the size using specific shaker speed allowed the aggregates to be maintained below 350 μM in diameter (FIG. 1B) and avoid disparate morphology and/or necrosis in the middle of the organoids. Moreover, a spherical homogeneous shape facilitates fluorescent quantification and further imaging-based endpoints as well as reproducibility between aggregates. The BMPS had reproducible cell composition by immunomorphological quantification, assessment of imaging-based endpoints and neurophysiological testing.


The 3D differentiation protocol described herein covered stages from neuronal precursors to different cell types of the mature CNS. After 2 weeks, BMPS consisted of an immature population of cells, showing minimal neuronal networks, low percentage of mature astrocytes and oligodendrocytes, with no myelin basic protein expression (FIG. 1C). Cell populations in the BMPS were further differentiated and matured over time (FIG. 2A). Evidence of iPSC differentiation into mature BMPS was supported by decreased Nestin expression over time. Nestin is normally expressed in embryonic tissue and its expression decreases with age in humans, therefore its decrement is a sign of maturation towards the adult phenotype [41, 42]. Also, the increasing presence of mature neuronal and glial markers such as MAP2, GFAP, Olig1 and MBP corroborate differentiation of the system. Different markers of pluripotency and proliferation decreased during the differentiation process, indicating maturing of the in vitro system (FIGS. 1C and 1D). Neuronal precursor markers such as Nestin, SOX1, SOX2 and the proliferation marker Ki67 decreased at the gene expression level and in flow cytometry measurements during the differentiation process (FIGS. 1C and 1D). Gene expression studies, flow cytometry, image analysis, immunostaining and miRNA studies have demonstrated an increase of cell maturation markers, which follows the BMPS differentiation (FIGS. 1A-1D, 2A-2H and 9A-9C). Obtained data demonstrate that this simple protocol is sufficient to generate representative CNS cell phenotypes that can reproduce various stages of differentiation. The presence of GABAergic neurons, dopaminergic neurons and glutamatergic neurons was observed by immunohistochemistry and real-time-PCR data (FIG. 1C and FIG. 2B). In addition, miRNAs such as mir-124, mir-132, mir-128, mir-137 and mir133b with a role in nervous system differentiation and neuronal degeneration [43, 44] increased during differentiation in patterns consistent with the in vivo situation. Moreover, the BMPS described herein produced spontaneous electrical activity (FIG. 3) confirming neuronal functionality of the system. However, further optimizations of the electrophysiological measurements using MEAs in 3D systems are needed.


Most of the brain MPS published so far are entirely focused on neurons and not glia populations [45, 46]; the brain MPS described herein is the first 3D model with fully characterized mature human oligodendrocytes, astrocytes and neurons, derived from iPSC. Astrocytes and oligodendrocytes play an important role during neuronal development, plasticity and neuronal injury. Astrocytes have a role in protecting neurons, increasing neuronal viability and mitochondrial biogenesis from both exogenous (e.g. chemicals) or endogenous (such as glutamate-induced excitotoxicity or the Alzheimer related A131-42) toxicity [47, 48, 49, 50]. Astrocytes have an especially important role in neuroprotection from oxidative stress. Oxidative stress is known to be involved in a number of neuropathological conditions (such as neurodegenerative diseases) [51, 52, 53]. Thus, the presence of astrocytes in a biological system to study disease is crucial due to their role in detoxification and neuronal protection. Immunochemistry results from the iPSC-derived BMPS showed low numbers of astrocytes (GFAP-positive cells) at 2 weeks of differentiation, which increased continuously throughout differentiation (FIG. 2F-2H, and FIG. 2A). Real-time RT-PCR data supports these findings, as a continuous increase in both s100b and GFAP mRNA levels could be observed from 2 weeks up to 8 weeks old BMPS Immunohistochemistry and RT-PCR data results showed increasing numbers of astrocytes (GFAP-positive cells) in the BMPS model, reaching 19% astrocytes of the total cell population at 8 weeks. After 4 weeks of differentiation, astrocytes demonstrated increased positive staining for GFAP and the presence of glial network was observed (FIG. 2C, panels g, h). At the same time, the presence of oligodendrocytes and myelination of axons could be observed in the system described herein. This process is highly important, since it is known to be involved in many degenerative diseases such as multiple sclerosis [54], congenital hypomyelination [55], progressive multifocal leukoencephalopathy caused by JC virus infection [56], periventricular leukomalacia (PVL) [57] and Alzheimer's disease [58]. Moreover, several chemicals such as ethanol [59], tellurium [60] and lead [(61, 62, 63, 64, 65] have shown to have an effect on the myelination process.


The presence of astroglia and oligodendroglia in the model described herein brings the system closer to the in vivo brain physiology, which is a crucial component to study neurodegeneration and neurotoxicity. In addition, the system has shown functionality as seen by imaging of cell-cell junctions, myelination, a rich astroglial network and electrical activity (FIG. 3). These characteristics make the BMPS described herein a promising tool to study interactions between human neuronal cells in neurological diseases. The use of iPSCs makes it possible to study genetic factors and gene/environment interactions.


An assessment of the myelination process by quantification of MBP immunostaining along axons showed an increase over time reaching 42% of myelinated axons at 8 weeks (FIG. 2D). 3D reconstruction of confocal z-stacks images (FIGS. 2C and 2E) and electron microscopy confirmed the wrapping of axonal structures after 8 weeks of differentiation (FIG. 2C). These findings are of particular relevance since myelin is a critical element for proper neuronal function and development, the ensheathment of axons by myelin allows faster action potential transmission, reduces axonal energy consumption and protects the axons from degeneration[79]. Furthermore, recent evidence suggests that oligodendrocytes and myelin have a role in the metabolic support of axons independent of their role in action potential conduction, highlighting their importance in neuronal survival[80]. The ability of assessing oligodendroglia function and mechanisms associated with myelination in the BMPS model provide an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating disorders.


In one embodiment, the model described herein is useful for studying Parkinson's disease (PD). Traditionally, PD has been described as a pre-synaptic degenerative process that affects dopaminergic neurons and induces a fundamental motor disorder [66], however, non-motor symptoms can also be present [67]. Research in Parkinson's disease is experiencing an upswing at the moment, owing to a lack of curative drugs for the large number of patients. Drug testing is nearly exclusively performed in vivo in the so-called MPTP (the parent compound to the metabolite MPP+ used here), rotenone, methamphetamine and 6-hydroxydopamine models requiring tens of thousands of animals [68, 69, 70]. These model toxins are mainly used in mice and primates (and less in cell cultures) to model a disease state resembling PD. Human neurons, which would be most relevant, are not usually available and existing cell lines are only very poor substitutes. The model described herein shows that treatment with MPP+ or rotenone induced specific degeneration of dopaminergic neurons in agreement with Parkinson patients and current animal models of the disease (FIGS. 4E and 4F). The BMPS PD model has shown to recapitulate some of the molecular mechanisms of the human disease, e.g. increase in ROS production (FIGS. 4B and 3D) and changes in genes related to PD (FIG. 4G). BMPS treated with rotenone or MPP+ had decreased TH gene expression compared to controls, supporting the results presented in FIGS. 4E and 4F where the dopaminergic neuronal phenotype is altered after treatment with the two chemicals. TBR1 encodes a transcription factor involved in the regulation of developmental processes. It also plays a role in major neurological diseases such as Alzheimer Disease and PD [71]. This gene was down-regulated after treatment with non-cytotoxic concentrations of MPP+ and rotenone. At the same time, mRNA levels of SNAC were altered. α-Synucleinopathy (common in Parkinson) is a neurodegenerative disease, which consists of the abnormal accumulation of aggregates of alpha-synuclein protein in neurons, nerve fibers or glial cells [72]. Alpha-synuclein plays regulatory roles such as synaptic maintenance, mitochondrial homeostasis, proteasome function, dopamine metabolism [73]. Reduction of SNCA (the alpha-synuclein encoding gene) after treatment with 5 μM rotenone and to a lesser extent after 1 mM MPP+ exposure could be explained by the alteration of alpha-synuclein protein metabolism. However, it may be that longer exposure times are required to produce an increase in gene expression. Caspase-1 (CASP1) expression increased significantly after 24 h exposure to 1 μM MPP+. Recently, some studies have identified human enzyme caspase-1 as the protease that cleaves α-synuclein in vivo [74]. This cleavage generates α-synuclein fragments that are prone to toxic aggregate formation. Finally, effects upon genes related with mitochondrial function (such as NDUFB1, ATP5C1 and ATP50) were down-regulated, more strongly in BMPS treated with MPP+ than rotenone. Changes in NDUFB1, indicate an alteration in mitochondrial function, agreeing with the phenomena already described in Parkinson's disease. This downregulation is linked to the increase in KEAP1 expression (oxidative stress marker) after 24 h exposure to 1 mM MPP+. The high variability in some of the genes may be explained by the selective effects of these chemicals (especially MPP+) to dopaminergic neurons, which represent only a subpopulation within the BMPS. While rotenone and MPP+ alter gene expression of this cell population, the other populations presented in BMPS appear not to be affected. Further studies using cell sorting could identify cell-specific effects.


This disclosure provides for a description of a brain microphysiological system aiming to study various aspects of brain development, pathophysiology and disturbance by genetic and environmental factors. The possibilities to study developmental and neurodegenerative disorders, infections, toxicity and trauma are emerging with such a system. Furthermore, the potential to use iPSC from different donors adds a personalized component to these studies. The high reproducibility and relatively easy protocol, enables future higher throughput testing of chemicals, and drugs and their potential to induce or treat diseases.


Autism


Autism is a highly variable neurodevelopmental disorder that first appears during infancy or childhood, and generally follows a steady course without remission. Patients with autism may be severely impaired in some respects but normal, or even superior, in others. Overt symptoms gradually begin after the age of six months, become established by age two or three years, and tend to continue through adulthood, although often in more muted form.


It is distinguished not by a single symptom, but by a characteristic triad of symptoms: impairments in social interaction; impairments in communication; and restricted interests and repetitive behavior. Other aspects, such as atypical eating, are also common but are not essential for diagnosis. Autism's individual symptoms occur in the general population and appear not to associate highly, without a sharp line separating pathologically severe from common traits.


While autism is highly heritable, researchers suspect both environmental and genetic factors as causes. In rare cases, autism is strongly associated with agents that cause birth defects. Controversies surround other proposed environmental causes; for example, the vaccine hypotheses have been disproven. Autism affects information processing in the brain by altering how nerve cells and their synapses connect and organize; how this occurs is not well understood. It is one of three recognized disorders in the autism spectrum (ASDs), the other two being Asperger syndrome, which lacks delays in cognitive development and language, and pervasive developmental disorder, not otherwise specified (commonly abbreviated as PDD-NOS), which is diagnosed when the full set of criteria for autism or Asperger syndrome are not met.


Globally, autism is estimated to affect 21.7 million people as of 2013. As of 2010, the number of people affected is estimated at about 1-2 per 1,000 worldwide. It occurs four to five times more often in boys than girls. About 1.5% of children in the United States (one in 68) are diagnosed with ASD as of 2014, a 30% increase from one in 88 in 2012. The rate of autism among adults aged 18 years and over in the United Kingdom is 1.1%. The number of people diagnosed has been increasing dramatically since the 1980s, partly due to changes in diagnostic practice and government-subsidized financial incentives for named diagnoses; the question of whether actual rates have increased is unresolved.


Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by rare mutations with major effects, or by rare multigene interactions of common genetic variants. Complexity arises due to interactions among multiple genes, the environment, and epigenetic factors which do not change DNA but are heritable and influence gene expression. Studies of twins suggest that heritability is 0.7 for autism and as high as 0.9 for ASD, and siblings of those with autism are about 25 times more likely to be autistic than the general population. However, most of the mutations that increase autism risk have not been identified. Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to a single chromosome abnormality, and none of the genetic syndromes associated with ASDs have been shown to selectively cause ASD. Numerous candidate genes have been located, with only small effects attributable to any particular gene. The large number of autistic individuals with unaffected family members may result from copy number variations—spontaneous deletions or duplications in genetic material during meiosis. Hence, a substantial fraction of autism cases may be traceable to genetic causes that are highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome.


Several lines of evidence point to synaptic dysfunction as a cause of autism. Some rare mutations may lead to autism by disrupting some synaptic pathways, such as those involved with cell adhesion. Gene replacement studies in mice suggest that autistic symptoms are closely related to later developmental steps that depend on activity in synapses and on activity-dependent changes. All known teratogens (agents that cause birth defects) related to the risk of autism appear to act during the first eight weeks from conception, and though this does not exclude the possibility that autism can be initiated or affected later, there is strong evidence that autism arises very early in development.


Exposure to air pollution during pregnancy, especially heavy metals and particulates, may increase the risk of autism. Environmental factors that have been claimed to contribute to or exacerbate autism, or may be important in future research, include certain foods, infectious diseases, solvents, diesel exhaust, PCBs, phthalates and phenols used in plastic products, pesticides, brominated flame retardants, alcohol, smoking, illicit drugs, vaccines, and prenatal stress, although no links have been found, and some have been completely disproven.


Autism does not have a clear unifying mechanism at either the molecular, cellular, or systems level; it is not known whether autism is a few disorders caused by mutations converging on a few common molecular pathways, or is (like intellectual disability) a large set of disorders with diverse mechanisms. Autism appears to result from developmental factors that affect many or all functional brain systems, and to disturb the timing of brain development more than the final product. Neuroanatomical studies and the associations with teratogens strongly suggest that autism's mechanism includes alteration of brain development soon after conception. This anomaly appears to start a cascade of pathological events in the brain that are significantly influenced by environmental factors. Just after birth, the brains of children with autism tend to grow faster than usual, followed by normal or relatively slower growth in childhood. It is not known whether early overgrowth occurs in all children with autism. It seems to be most prominent in brain areas underlying the development of higher cognitive specialization. Hypotheses for the cellular and molecular bases of pathological early overgrowth include the following: an excess of neurons that causes local over connectivity in key brain regions, disturbed neuronal migration during early gestation, unbalanced excitatory—inhibitory networks, and abnormal formation of synapses and dendritic spines, for example, by modulation of the neurexing neuroligin cell-adhesion system, or by poorly regulated synthesis of synaptic proteins.


The immune system is thought to play an important role in autism. Children with autism have been found by researchers to have inflammation of both the peripheral and central immune systems as indicated by increased levels of pro-inflammatory cytokines and significant activation of microglia. Biomarkers of abnormal immune function have also been associated with increased impairments in behaviors that are characteristic of the core features of autism such as deficits in social interactions and communication. Interactions between the immune system and the nervous system begin early during the embryonic stage of life, and successful neurodevelopment depends on a balanced immune response. It is thought that activation of a pregnant mother's immune system such as from environmental toxicants or infection can contribute to causing autism through causing a disruption of brain development. This is supported by recent studies that have found that infection during pregnancy is associated with an increased risk of autism.


The relationship of neurochemicals to autism is not well understood; several have been investigated, with the most evidence for the role of serotonin and of genetic differences in its transport. The role of group I metabotropic glutamate receptors (mGluR) in the pathogenesis of fragile X syndrome, the most common identified genetic cause of autism, has led to interest in the possible implications for future autism research into this pathway. Some data suggests neuronal overgrowth potentially related to an increase in several growth hormones or to impaired regulation of growth factor receptors. Also, some inborn errors of metabolism are associated with autism, but probably account for less than 5% of cases.


The mirror neuron system (MNS) theory of autism hypothesizes that distortion in the development of the MNS interferes with imitation and leads to autism's core features of social impairment and communication difficulties. The MNS operates when an animal performs an action or observes another animal perform the same action. The MNS may contribute to an individual's understanding of other people by enabling the modeling of their behavior via embodied simulation of their actions, intentions, and emotions. Several studies have tested this hypothesis by demonstrating structural abnormalities in MNS regions of individuals with ASD, delay in the activation in the core circuit for imitation in individuals with Asperger syndrome, and a correlation between reduced MNS activity and severity of the syndrome in children with ASD. However, individuals with autism also have abnormal brain activation in many circuits outside the MNS and the MNS theory does not explain the normal performance of children with autism on imitation tasks that involve a goal or object.


The under connectivity theory of autism hypothesizes that autism is marked by under functioning high-level neural connections and synchronization, along with an excess of low-level processes. Evidence for this theory has been found in functional neuroimaging studies on autistic individuals and by a brainwave study that suggested that adults with ASD have local over connectivity in the cortex and weak functional connections between the frontal lobe and the rest of the cortex. Other evidence suggests the under connectivity is mainly within each hemisphere of the cortex and that autism is a disorder of the association cortex.


From studies based on event-related potentials, transient changes to the brain's electrical activity in response to stimuli, there is considerable evidence for differences in autistic individuals with respect to attention, orientation to auditory and visual stimuli, novelty detection, language and face processing, and information storage; several studies have found a preference for nonsocial stimuli. For example, magnetoencephalography studies have found evidence in children with autism of delayed responses in the brain's processing of auditory signals.


Relations have been found between autism and schizophrenia based on duplications and deletions of chromosomes; research showed that schizophrenia and autism are significantly more common in combination with 1q21.1 deletion syndrome. Research on autism/schizophrenia relations for chromosome 15 (15q13.3), chromosome 16 (16p13.1) and chromosome 17 (17p12) are inconclusive.


Diagnosis is based on behavior, not cause or mechanism. Under the DSM-5, autism is characterized by persistent deficits in social communication and interaction across multiple contexts, as well as restricted, repetitive patterns of behavior, interests, or activities. These deficits are present in early childhood, typically before age three, and lead to clinically significant functional impairment. Sample symptoms include lack of social or emotional reciprocity, stereotyped and repetitive use of language or idiosyncratic language, and persistent preoccupation with unusual objects. The disturbance must not be better accounted for by Rett syndrome, intellectual disability or global developmental delay. ICD-10 uses essentially the same definition. A pediatrician commonly performs a preliminary investigation by taking developmental history and physically examining the child. If warranted, diagnosis and evaluations are conducted with help from ASD specialists, observing and assessing cognitive, communication, family, and other factors using standardized tools, and taking into account any associated medical conditions. A pediatric neuropsychologist is often asked to assess behavior and cognitive skills, both to aid diagnosis and to help recommend educational interventions.


Clinical genetics evaluations are often done once ASD is diagnosed, particularly when other symptoms already suggest a genetic cause. Although genetic technology allows clinical geneticists to link an estimated 40% of cases to genetic causes, consensus guidelines in the US and UK are limited to high-resolution chromosome and fragile X testing. Metabolic and neuroimaging tests are sometimes helpful, but are not routine.


Many medications are used to treat ASD symptoms that interfere with integrating a child into home or school when behavioral treatment fails. More than half of US children diagnosed with ASD are prescribed psychoactive drugs or anticonvulsants, with the most common drug classes being antidepressants, stimulants, and antipsychotics. Antipsychotics, such as risperidone and aripiprazole, have been found to be useful for treating some conditions associated with autism, including irritability, repetitive behavior, and sleeplessness. A person with ASD may respond atypically to medications, the medications can have adverse effects, and no known medication relieves autism's core symptoms of social and communication impairments. Experiments in mice have reversed or reduced some symptoms related to autism by replacing or modulating gene function, suggesting the possibility of targeting therapies to specific rare mutations known to cause autism. Although many alternative therapies and interventions are available, few are supported by scientific studies. Some alternative treatments may place the child at risk. A 2008 study found that compared to their peers, autistic boys have significantly thinner bones if on casein-free diets; in 2005, botched chelation therapy killed a five-year-old child with autism. There has been early research looking at hyperbaric treatments in children with autism.


Parkinson's Disease


Parkinson's disease (PD, also known as idiopathic or primary parkinsonism, hypokinetic rigid syndrome (HRS), or paralysis agitans) is a degenerative disorder of the central nervous system mainly affecting the motor system. The motor symptoms of Parkinson's disease result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain. The causes of this cell death are poorly understood. Early in the course of the disease, the most obvious symptoms are movement-related; these include shaking, rigidity, slowness of movement and difficulty with walking and gait. Later, thinking and behavioral problems may arise, with dementia commonly occurring in the advanced stages of the disease, and depression is the most common psychiatric symptom. Other symptoms include sensory, sleep and emotional problems. Parkinson's disease is more common in older people, with most cases occurring after the age of 50; when it is seen in young adults, it is called young onset PD (YOPD).


The main motor symptoms are collectively called “parkinsonism,” or a “parkinsonian syndrome.” The disease can be either primary or secondary. Primary Parkinson's disease is referred to as idiopathic (having no known cause), although some atypical cases have a genetic origin, while secondary parkinsonism is due to known causes like toxins. The pathology of the disease is characterized by the accumulation of a protein into Lewy bodies in neurons, and insufficient formation and activity of dopamine in certain parts of the midbrain. Where the Lewy bodies are located is often related to the expression and degree of the symptoms of an individual. Diagnosis of typical cases is mainly based on symptoms, with tests such as neuroimaging being used for confirmation.


Diagnosis of Parkinson's disease involves a physician taking a medical history and performing a neurological examination. There is no lab test that will clearly identify the disease, but brain scans are sometimes used to rule out disorders that could give rise to similar symptoms. People may be given levodopa and resulting relief of motor impairment tends to confirm diagnosis. The finding of Lewy bodies in the midbrain on autopsy is usually considered proof that the person had Parkinson's disease. The progress of the illness over time may reveal it is not Parkinson's disease, and some authorities recommend that the diagnosis be periodically reviewed. Other causes that can secondarily produce a parkinsonian syndrome are Alzheimer's disease, multiple cerebral infarction and drug-induced parkinsonism. Parkinson plus syndromes such as progressive supranuclear palsy and multiple system atrophy must be ruled out. Anti-Parkinson's medications are typically less effective at controlling symptoms in Parkinson plus syndromes. Faster progression rates, early cognitive dysfunction or postural instability, minimal tremor or symmetry at onset may indicate a Parkinson plus disease rather than PD itself. Genetic forms are usually classified as PD, although the terms familial Parkinson's disease and familial parkinsonism are used for disease entities with an autosomal dominant or recessive pattern of inheritance.


The PD Society Brain Bank criteria require slowness of movement (bradykinesia) plus either rigidity, resting tremor, or postural instability. Other possible causes for these symptoms need to be ruled out prior to diagnosis with PD. Finally, three or more of the following features are required during onset or evolution: unilateral onset, tremor at rest, progression in time, asymmetry of motor symptoms, response to levodopa for at least five years, clinical course of at least ten years and appearance of dyskinesias induced by the intake of excessive levodopa. Accuracy of diagnostic criteria evaluated at autopsy is 75-90%, with specialists such as neurologists having the highest rates. Computed tomography (CT) and conventional magnetic resonance imaging (MRI) brain scans of people with PD usually appear normal. These techniques are nevertheless useful to rule out other diseases that can be secondary causes of parkinsonism, such as basal ganglia tumors, vascular pathology and hydrocephalus. A specific technique of MRI, diffusion MRI, has been reported to be useful at discriminating between typical and atypical parkinsonism, although its exact diagnostic value is still under investigation. Dopaminergic function in the basal ganglia can be measured with different PET and SPECT radiotracers. Examples are ioflupane (123I) (trade name DaTSCAN) and iometopane (Dopascan) for SPECT or fluorodeoxyglucose (18F) and DTBZ for PET. A pattern of reduced dopaminergic activity in the basal ganglia can aid in diagnosing PD.


Treatments, typically the medications L-DOPA and dopamine agonists, improve the early symptoms of the disease. As the disease progresses and dopaminergic neurons continue to be lost, these drugs eventually become ineffective at treating the symptoms and at the same time produce a complication marked by involuntary writhing movements. Surgery and deep brain stimulation have been used to reduce motor symptoms as a last resort in severe cases where drugs are ineffective. Although dopamine replacement alleviates the symptomatic motor dysfunction, its effectiveness is reduced as the disease progresses, leading to unacceptable side effects such as severe motor fluctuations and dyskinesias. Furthermore, there is no therapy that will halt the progress of the disease. Moreover, this palliative therapeutic approach does not address the underlying mechanisms of the disease.


The term parkinsonism is used for a motor syndrome whose main symptoms are tremor at rest, stiffness, slowing of movement and postural instability. Parkinsonian syndromes can be divided into four subtypes according to their origin: primary or idiopathic, secondary or acquired, hereditary parkinsonism, and Parkinson plus syndromes or multiple system degeneration. Usually classified as a movement disorder, PD also gives rise to several non-motor types of symptoms such as sensory deficits, cognitive difficulties or sleep problems. Parkinson plus diseases are primary parkinsonisms which present additional features. They include multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration and dementia with Lewy bodies.


In terms of pathophysiology, PD is considered a synucleiopathy due to an abnormal accumulation of alpha-synuclein protein in the brain in the form of Lewy bodies, as opposed to other diseases such as Alzheimer's disease where the brain accumulates tau protein in the form of neurofibrillary tangles. Nevertheless, there is clinical and pathological overlap between tauopathies and synucleinopathies. The most typical symptom of Alzheimer's disease, dementia, occurs in advanced stages of PD, while it is common to find neurofibrillary tangles in brains affected by PD. Dementia with Lewy bodies (DLB) is another synucleinopathy that has similarities with PD, and especially with the subset of PD cases with dementia. However, the relationship between PD and DLB is complex and still has to be clarified. They may represent parts of a continuum or they may be separate diseases.


Mutations in specific genes have been conclusively shown to cause PD. These genes encode alpha-synuclein (SNCA), parkin (PRKN), leucine-rich repeat kinase 2 (LRRK2 or dardarin), PTEN-induced putative kinase 1 (PINK1), DJ-1 and ATP13A2. In most cases, people with these mutations will develop PD. With the exception of LRRK2, however, they account for only a small minority of cases of PD. The most extensively studied PD-related genes are SNCA and LRRK2. Mutations in genes including SNCA, LRRK2 and glucocerebrosidase (GBA) have been found to be risk factors for sporadic PD. Mutations in GBA are known to cause Gaucher's disease. Genome-wide association studies, which search for mutated alleles with low penetrance in sporadic cases, have now yielded many positive results.


The role of the SNCA gene is important in PD because the alpha-synuclein protein is the main component of Lewy bodies. The histopathology (microscopic anatomy) of the substantia nigra and several other brain regions shows neuronal loss and Lewy bodies in many of the remaining nerve cells. Neuronal loss is accompanied by death of astrocytes (star-shaped glial cells) and activation of the microglia (another type of glial cell). Lewy bodies are a key pathological feature of PD.


Alzheimer's Disease


Alzheimer's disease (AD) accounts for 60% to 70% of cases of dementia. It is a chronic neurodegenerative disease that often starts slowly, but progressively worsens over time. The most common early symptom is short-term memory loss. As the disease advances, symptoms include problems with language, mood swings, loss of motivation, disorientation, behavioral issues, and poorly managed self-care. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the average life expectancy following diagnosis is three to nine years. The cause of Alzheimer's disease is poorly understood. About 70% of the risk is believed to be genetic with many genes involved. Other risk factors include a history of head injuries, hypertension, or depression. The disease process is associated with plaques and tangles in the brain.


Alzheimer's disease is characterized by loss of neurons and synapses in the cerebral cortex and certain subcortical regions. This loss results in gross atrophy of the affected regions, including degeneration in the temporal lobe and parietal lobe, and parts of the frontal cortex and cingulate gyrus Alzheimer's disease has been hypothesized to be a protein misfolding disease (proteopathy), caused by accumulation of abnormally folded A-beta and tau proteins in the brain. Plaques are made up of small peptides, 39-43 amino acids in length, called beta-amyloid (also written as A-beta or Aβ). Beta-amyloid is a fragment from a larger protein called amyloid precursor protein (APP), a transmembrane protein that penetrates through the neuron's membrane. APP is critical to neuron growth, survival and post-injury repair. In Alzheimer's disease, an unknown process causes APP to be divided into smaller fragments by enzymes through proteolysis. One of these fragments gives rise to fibrils of beta-amyloid, which form clumps that deposit outside neurons in dense formations known as senile plaques.


A probable diagnosis is based on the history of the illness and cognitive testing with medical imaging and blood tests to rule out other possible causes. Initial symptoms are often mistaken for normal ageing. Examination of brain tissue is needed for a definite diagnosis. Alzheimer's disease is diagnosed through a complete medical assessment. There is no one clinical test that can determine whether a person has Alzheimer's. Usually several tests are performed to rule out any other cause of dementia. The only definitive method of diagnosis is examination of brain tissue obtained from a biopsy or autopsy. Tests (such as blood tests and brain imaging) are used to rule out other causes of dementia-like symptoms. Laboratory tests and screening include: complete blood cell count; electrolyte panel; screening metabolic panel; thyroid gland function tests; vitamin B-12 folate levels; tests for syphilis and, depending on history, for human immunodeficiency antibodies; urinalysis; electrocardiogram (ECG); chest X-ray; computerized tomography (CT) head scan; and an electroencephalogram (EEG). A lumbar puncture may also be informative in the overall diagnosis.


There are no known medications or supplements that decrease risk of Alzheimer's. Additionally, no known treatments stop or reverse Alzheimer's progression, although some may temporarily improve symptoms.


This invention is further illustrated by the following examples, which should not be construed as limiting. The contents of all references, patents, and published patent applications cited throughout this application, as well as the figures, are incorporated herein by reference.


EXAMPLES
Example 1: Characterization of BMPS by Expression of Neural Specific Genes During Differentiation

According to the techniques herein, the BMPS model established herein follows a stepwise differentiation protocol (FIG. 1A). In the final step, cells were differentiated into various neuronal and glial cell types during constant gyratory shaking. Briefly, the BMPS were established as follows: cells were differentiated, by addition of B27, GDNF and BDNF and withdrawal of stempro, basic FGF and EGF, into different neuronal and glial cell types with CNS functions during constant gyratory shaking. Advantageously, the techniques herein provide that the BMPS that were produced were of a spherical shape and a consistent size. For example, the BMPS showed spherical shapes and controlled sizes that were below 350 μm after 17 days in culture, a size that avoids necrosis in the center of the aggregate (FIG. 1B) that occurs in larger spheroids (e.g., >350 μm) due to nutrient and oxygen deprivation. Nutrient and oxygen deprivation-induced necrosis could produce artifacts in the different endpoints measured, especially in disease and toxicity studies. Five days after initiation of aggregation in NPC medium, spheres were on average 130±5 μm in diameter; the size increased to 300±40 μm during the first 17 days in differentiation medium. From day 17 onwards size remained constant around 310 μm. Advantageously, this technique significantly increases throughput of BMPS production by allowing simultaneous production of several batches with different conditions. Without the shaking condition, aggregates tend to stick together, grow in different shapes, attach to the bottom and in some point get necrotic in the middle of the sphere. Thus, constant gyratory shaking technology is a suitable method to control the shape and size of BMPS.


In order to characterize different stages of the differentiation and maturation process, BMPS were collected every week up to 8 weeks of differentiation (FIGS. 1C1-C5). Analysis of different neuronal and glial cell-specific genes by real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to characterize the presence of neurons, astrocytes, oligodendrocytes and neural precursor cells (NPC). NPC are self-renewing and proliferating multi-potent cells able to generate different cell types of the central nervous system. The differentiation of NPC in 3D was initiated by changing the medium to differentiation medium. Gene expression of the cell proliferation marker Ki67 decreased 95% after 2 weeks of differentiation (FIG. 1C1, proliferation and stem cell markers). The remaining Ki67 expression appears to be due to the presence of a small population of NPC and other proliferating cell types such as oligodendrocytes and astrocytes (FIG. 1C2, astroglia and oligodendroglia). Astrocyte-specific genes (S100B and GFAP) showed a constant increase after two weeks, while, differentiation of oligodendrocytes was induced later, after six weeks of differentiation as shown by OLIG2 gene expression (FIG. 1C2).


Gene expression of specific neurotransmitters or their receptors was used to characterize the identity of different neuronal populations and the differentiation patterns of the human iPSC derived BMPS (FIG. 1C4, neuronal markers; right y-axis relative quantification of GRIN1 and GABRA1; MBP, FOXA2, and SLC1A3). GRIN1 encodes the essential Glutamate [NMDA] receptor subunit zeta-1 [25] was increased at very early stages of differentiation (one week after induction of differentiation) and continued to increase up to 5 weeks when it reached a plateau (FIG. 1C4). Similarly, GAD1, a GABAergic neuronal gene marker which encodes the Glutamate decarboxylase 1, and catalyzes decarboxylation of glutamate to GABA, showed an increase in expression during the first 4 weeks of differentiation, reaching a plateau thereafter (FIG. 1C4). The expression of tyrosine hydroxylase (TH) a gene, which identifies dopaminergic neurons, was observed first after three weeks, showing delayed differentiation compared to glutamatergic neurons. The expression of TH increased constantly thereafter reaching an 86-fold increase at seven weeks compared to NPC (week 0; FIG. 1C4). GABRA1, which encodes the gamma-aminobutyric acid (GABA) receptor, showed a steady increase of expression after 2 weeks and reached its maximum increase of a 150-fold change at 8 weeks compared to week 0 (FIG. 1C4). Moreover other markers for specific part of the brain, such as ventral midbrain neuron marker LMX1A, FOXO1 and FOXA2 (Hedlund et al., 2016; Stott et al., 2013), cerebral cortex marker FOXO4, or markers for myelination CNP and MBP (Li and Richardson, 2008; Agrawal et al., 1994) and L-glutamate transport SLC1A6 (Sery et al., 2015) has been studied (FIG. 1D d). Based on the patterns of expression of neuronal genes, the iPSC-derived BMPS model closely represents the different neuronal populations of different cortical and subcortical areas of the human CNS, suggesting that some of the mechanisms implicated in the early stages of nervous system development are reflected.


To prove that BMPS can be generated from different IPCs, another healthy line (IPS IMR90) and Down syndrome line (DYP0730) were used (FIG. 1C5). Both lines were able to generate BMPS and differentiated to neurons (MAP2 marker), astrocytes (GFAP marker) and oligodendrocytes (OLIG1 marker).


Example 2: Characterization of BMPS by Flow Cytometry Analysis Shows Neuronal Maturation of the Human Induced Pluripotent Stem Cells Over Time

In order to quantify cell populations in the iPSC-derived BMPS and verify the reproducibility between experiments and batches of the cell line (C1, CRL-2097), flow cytometry was performed using CNS-specific antibodies for identification of neural markers (Table 1). Flow cytometry allowed quantifying 60% of cells with proliferation marker (Ki67) at the NPCs stage (week 0), which was reduced during differentiation down to 9% at 2 weeks, 7% at 4 weeks and 1% at 8 weeks (FIG. 1D), indicating a fast reduction of proliferating cells after induction of differentiation. This confirms the gene expression data and indicates a fast reduction of proliferating cells after induction of differentiation. This result was confirmed by further analysis of NPC markers such as SOX1, SOX2 and Nestin. SOX1 and SOX2 are known to be involved in the maintenance of neural progenitor cell identity. The number of SOX1-, SOX2- and NES-positive (NPC marker) cells in the NPC population (week 0) was 46%, 68% and 60%, respectively. SOX1, SOX2 and NES expression was reduced dramatically with differentiation, showing very low positive populations at eight weeks (2%, 3% and 2%, respectively). This loss in the NPC population during differentiation was corroborated by Doublecortin (DCX), a microtubule-associated protein expressed in neuroblasts and immature neurons: the number of DCX-positive cells in NPC (week o) was around 30%, which reduced to 22% at two, 17% at four and 4% at eight weeks, respectively. On the other hand, the marker for mature neurons, Tuj1 (Neuron-specific class III beta-tubulin) presented the opposite pattern. Analysis showed low levels of Tuj1-positive cells at the NPC stage (week 0). The expression of this marker in the cell population increased to 70% after 2 weeks of differentiation and remained constant up to 8 weeks. These flow cytometry experiments indicate differentiation and maturation of the BMPS over time.


Quantification of the cell population in at least three independent experiments showed low variability between cultures, demonstrating the reproducibility of the system. The variation (standard deviation, SD) between experiments decreased with the cell differentiation process and was very small at the latest maturation stage (eight weeks); DCX SD 0.9%, Ki67 SD 0.2%, SOX1 SD 0.7%, SOX2 SD 1.2%, NES SD 0.7% and Tuj1 SD 9.8% (FIG. 1E). These results indicate that after eight weeks of differentiation the cellular composition is similar and shows high reproducibility between different BMPS experiments.









TABLE 1







Gene and miRNAs Taqman Assays. List of


the primers used for the experiments.














Catalog



Assay ID
Assay Type
Availability
Number
Assay Name










Gene Expression Taqman Primers











Hs01060665
TaqMan ® Gene
Inventoried
4331182
BACT



Expression Assay


Hs99999901
TaqMan ® Gene
Inventoried
4331182
18S



Expression Assay


Hs04187831
TaqMan ® Gene
Inventoried
4331182
NES



Expression Assay


Hs01032443
TaqMan ® Gene
Inventoried
4331182
Ki67



Expression Assay


Hs01088112
TaqMan ® Gene
Inventoried
4331182
PAX6



Expression Assay


Hs00909233
TaqMan ® Gene
Inventoried
4331182
GFAP



Expression Assay


Hs00300164
TaqMan ® Gene
Inventoried
4331182
OLIG2



Expression Assay


Hs00902901
TaqMan ® Gene
Inventoried
4331182
S100B



Expression Assay


Hs00609557
TaqMan ® Gene
Inventoried
4331182
GRIN1



Expression Assay


Hs00165941
TaqMan ® Gene
Inventoried
4331182
TH



Expression Assay


Hs00971228
TaqMan ® Gene
Inventoried
4331182
GABRA1



Expression Assay


Hs01065893
TaqMan ® Gene
Inventoried
4331182
GAD1



Expression Assay


Hs00199577
TaqMan ® Gene
Inventoried
4331182
SYN1



Expression Assay


Hs00232429
TaqMan ® Gene
Inventoried
4331182
TBR1



Expression Assay


Hs01003383
TaqMan ® Gene
Inventoried
4331182
SNCA



Expression Assay


Hs01003430
TaqMan ® Gene
Inventoried
4331182
KEAP1



Expression Assay


Hs00929425
TaqMan ® Gene
Inventoried
4331182
NDUFB1



Expression Assay


Hs01101219
TaqMan ® Gene
Inventoried
4331182
ATP5C1



Expression Assay


Hs00919163
TaqMan ® Gene
Inventoried
4331182
ATP50



Expression Assay


Hs00354836
TaqMan ® Gene
Inventoried
4331182
CASP1



Expression Assay


Hs00263981
TaqMan ® Gene
Inventoried
4331182
CNP



Expression Assay


Hs01054576
TaqMan ® Gene
Inventoried
4331182
FOXO1



Expression Assay


Hs00188193
TaqMan ® Gene
Inventoried
4331182
SLC1A3



Expression Assay


Hs00936217
TaqMan ® Gene
Inventoried
4331182
FOXO4



Expression Assay


Hs00892663
TaqMan ® Gene
Inventoried
4331182
LMX1A



Expression Assay


Hs00232764
TaqMan ® Gene
Inventoried
4331182
FOXA2



Expression Assay







miRNA Taqman Assays











1182
TaqMan ®
Inventoried
4427975
mmu-miR-



microRNA Assay


124a


2216
TaqMan ®
Inventoried
4427975
hsa-miR-



microRNA Assay


128a


457
TaqMan ®
Inventoried
4427975
hsa-miR-



microRNA Assay


132


2247
TaqMan ®
Inventoried
4427975
hsa-miR-



microRNA Assay


133b


1129
TaqMan ®
Inventoried
4427975
mmu-miR-



microRNA Assay


137


1094
Control miRNA
Inventoried
4427975
RNU44



Assay









Example 3: MicroRNAs as Neuronal Differentiation Markers in Human iPSC-Derived BMPS

MicroRNAs (miRNA), known as posttranscriptional regulators of developmental timing, have recently been established as markers to study the differentiation process [26]. Expression of neural-specific miRNAs showed strong induction of miRNAs involved in neurogenesis (FIG. 1C3, miRNA). mir-124, the most abundant brain miRNA, was strongly induced in the earlier stages of differentiation, then slightly down-regulated at eight weeks of differentiation. This finding correlates with previous studies, where mir-124 was shown to promote neuronal lineage commitment at earlier stages of neural stem cells specification by targeting anti-neuronal factors [26]. mir-128, a modulator of late neural differentiation, was strongly up-regulated after 5 weeks of differentiation. mir-137, the most induced miRNA over time in the system described herein, is known as a regulator of neural differentiation of embryonic stem cells (ESCs) [27]. mir-132 and mir-133b which are involved in regulation of dopaminergic neuron maturation and function, were induced in week three of differentiation, a finding which correlates with the expression pattern of TH. Moreover, mir-132 is involved in dendritic spine formation [28]. These results support the view of a coordinated mechanism of neuronal differentiation as reflected by the patterns of neuronal gene and miRNA expression and neuronal and neurotransmitter identity.


Example 4: Characterization of Human BMPS by Immunohistochemistry and Electron Microscopy Shows Evidence of Differentiation into Mature Brain Cell Types

In order to assess the cellular composition and the process of maturation of the cells within the human BMPS, the expression of markers for different CNS cell populations including neurons and glial cells at 2, 4 and 8 weeks of differentiation were evaluated using immunohistochemistry and electron microscopy techniques. A reproducible pattern of expression consistent with maturation of the BMPS towards mature neural phenotypes was found. After 4 weeks of differentiation, the BMPS showed positive staining for mature neuronal markers such as microtubule-associated protein 2 (MAP2), neurofilament-heavy chain (NF, SMI32) and synaptophysin (FIG. 2A, 2B). Furthermore, different neuronal subtypes in the BMPS including dopaminergic (TH-positive neurons), glutamatergic (VGLUT1-positive neurons) and GABAergic interneurons (calbindin-positive neurons) (FIG. 2B, FIG. 8A) were observed. Moreover, the BMPS matured over time of differentiation as seen by decreased NES-positive cells (FIG. 2A) and increased cell-cell interactions (neuron-neuron and neuron glia) as subsets of neurons showed several processes, which resembled dendritic and axonal projections (FIG. 8A).


A subset of neuronal cells exhibited immunoreactivity for markers such as NOGOA, 01, 02, and CNPase (FIG. 8B, panels a-j; FIG. 1C5), which identifies the presence of mature oligodendrocytes in the BMPS [31, 33]. Automatic image quantification showed that oligodendrocytes (CNPase, NOGOA, and Olig1) comprised 3, 9, and 11% of the total cell population, respectively, at 8 weeks of differentiation (FIG. 8C; FIG. 1C5). Similar to the in vivo physiology, these cells were immunoreactive for myelin basic protein (MBP) (FIG. 2), which characterizes myelinating oligodendrocytes [32]. Moreover, they had morphological features of normal human oligodendrocytes in vivo and appeared in close contact with neuronal processes (FIG. 8a-b, FIG. 2C, 2D) Similarly, populations of neuroglia such as astrocytes and oligodendrocytes were identified using specific antibody markers. A subset of neuroglial cells exhibit immunoreactivity for markers such as NOGOA, Olig1 and CNPase (FIG. 2C, panels a-f and 2C, panel i), which identify the presence of mature oligodendrocytes in the BMPS [29, 30, 31, 32]. This pattern of immunostaining suggests that oligodendrocytes within the BMPS are functional and myelinate axons. Similar to the in vivo physiology, these cells were also immunoreactive for myelin basic protein (MBP) (FIG. 2C panel i and 2C panel j), which characterizes myelinating oligodendrocytes [33, 30]. These cells had morphological features of normal human oligodendrocytes and appeared in close contact with neuron processes, which resemble axonal structures (FIG. 2C, panels j-m). In addition, a high number of mature astrocytes (FIG. 2Ca, 2Cb, 2Cg, 2Ch and 2F) at 4 and 8 weeks of differentiation were observed. Morphometric studies of neuronal processes identified by immunostaining with NF antibodies and MBP markers were used to estimate the percentage of myelinated axons within the BMPS with an average of 4% at 2 weeks, 25% at 4 weeks and 42% at 8 weeks of differentiation (p<0.001) (FIG. 2D). All analyzed BMPS showed similar extent of myelination at the same differentiation window. Percentages were calculated as the mean of at least 18 microscopy fields from at least 3 individual BMPS in 2 different experiments. Ultrastructural analysis by electron microscopy demonstrated cell projections, which enwrapped cell processes resembling axons after 8 weeks of differentiation (FIG. 2C).


GFAP-positive cells formed numerous cell processes organized in a network typical for human astrocyte glial processes in vivo, which established contacts with other glial cells and neurons (FIG. 2Cg, 2Ch, 2F, and FIG. 8B). Image quantification revealed 19% of astrocytes in the total population (FIG. 8C). Altogether, the patterns of cell morphology, immunostaining and cell-cell interactions shown by neuronal and glial cell populations demonstrates that the BMPS recapitulates the cellular types and pattern of interactions seen in the human CNS and is, therefore, considered organotypic.


The morphology of cell nuclei observed by immunocytochemistry and electron microscopy showed some variation in nuclear morphology attributed to (i) cell proliferation as seen by positive staining for Ki67 and Nestin markers, and (ii) nuclear fragmentation likely associated with apoptosis as indicated by caspase 3 staining (FIG. 2G, 2H) was observed. These observations were also confirmed by electron microscopy studies at 4 and 8 weeks of differentiation (FIG. 2H). The variation of nuclei morphology likely reflects the active stages of cell differentiation that BMPS exhibited during all stages of development. The presence of apoptotic nuclei likely resemble stages of cell death seen in normal neurodevelopment [34, 35]. Importantly, Caspase 3-positive nuclei did not concentrate in the center of the spheres and BMPS did not present necrosis in the center of the 3D structures (FIG. 2G). Thus, Caspase3-positive nuclei do not appear linked to deprivation of oxygen or nutrients. Caspase has been quantified at eight weeks in BMPS (FIG. 8C). Additionally, FIGS. 8D and 8E depict co-expression of mature oligodendroglia markers (MBP and 02) and expression of neuronal markers (VGLUT, TUJ1, SYN), respectively.


Further analysis of neuronal cell populations and morphology presented a pattern of evolution that suggests BMPS maturation as seen by Nestin-positive cells decreasing over time of differentiation while MBP expressing cells increased (FIG. 2A). There was also evidence of cell-cell interactions as subsets of neurons showed several processes, which resemble dendritic and axonal projections that interact with other neurons as well as glial cells (FIG. 2B, FIG. 2H). Furthermore, cells immunostained with myelin binding protein (MBP) antibodies issued projections, which appear to enwrap neuronal processes, which resemble axons (FIG. 2C, panels i-k, 2C, panel m). The pattern of immunostaining with MBP and its association with neuronal processes suggests that oligodendrocytes within the BMPS exhibit myelinating properties such as in the human CNS in vivo. Ultrastructural analysis by electron microscopy demonstrated cell projections, which enwrapped cell processes resembling axons (FIG. 2C, panel m).


Example 5: Microelectrode Array Recording of Spontaneous Electrical Activity of BMPS

To test the neurophysiological properties of the cells within the BMPS model, spontaneous electrical activity in BMPS was analyzed by micro-electrode array (MEA)(see FIG. 3 generally). BMPS were plated in 12-well or 48-well MEA plates at 8 weeks of differentiation. The aggregates were attached to the MEAs using Matrigel coating. Spontaneous electrical activity was measured starting one week after plating up to two weeks. The activity was measured for 20 minutes on 7 different days. Electrodes were considered active when the recorded activity was above 0.05 spikes/sec. FIG. 3A shows a representative heatmap of a 48-well MEA plate measurement from one 20 minute recording. The heatmap represents the spike amplitude (μV) with a minimum of 0 μV and maximum of 40 μV (FIG. 3A). The spikes showed a common waveform between different electrodes and measurements (FIG. 3B) and neurons were repeatedly firing. 25 electrodes, distributed over 19 wells, were included after the first step of data analysis. 20 to 40% of these 25 electrodes reached the threshold of 0.05 spikes/sec during each recording. FIG. 3F shows the spike events of active electrodes from one representative 20 minutes recording. These data show potential for the use of MEA to measure electrical activity of the 3D BMPS. Further optimization of the protocol may increase the measurement of the neuronal activity on the electrodes.


Example 6: A Human 3D Model to Study Parkinson's Disease

Due to the presence of TH-positive dopaminergic neurons in the iPSC-derived BMPS (FIG. 2B, panels k, 1, and FIG. 8), the possibility of using this model to study Parkinson's Disease (PD), a neurodegenerative disorder known to specifically affect dopaminergic neurons, was further explored. Two well-known neurotoxicants, which induce pathogenic processes resembling the mechanism associated with neurodegeneration in PD: the illicit drug MPTP's toxic metabolite MPP+ and the broadly used pesticide rotenone, were selected. Both MPP+ and rotenone interfere with oxidative phosphorylation in mitochondria by inhibiting complex I [36]. Initially, cytotoxicity experiments were performed to estimate sub-cytotoxic concentrations of these two compounds affecting only dopaminergic neurons (FIGS. 4A and 4C). Selective disruption of dopaminergic neurons but not of any other cell types in the systems described herein were observed with immunohistochemistry after exposure to 1 μM rotenone and 100 μM MPP+ for 24 h (FIGS. 4E and 4F). This effect was likely selective even at cytotoxic concentrations of 10 μM rotenone and 1000 μM MPP+ as these concentrations did not show any alterations in other neurofilament 200-positive neurons. Lower concentrations of these compounds may induce effects in dopaminergic neurons, however, the effect was not as obvious by immunocytochemistry. Higher concentrations of rotenone and MPP+(up to 50 μM and 5000 μM, respectively) led to general cytotoxicity and affected also other neuronal types stained positive for neurofilament 200 (FIGS. 4E and F). 5 μM of rotenone and 1000 μM of MPP+ were selected for further studies as these concentrations induced clear and selective dopaminergic effects. Reactive oxygen species (ROS) were measured in the cellular medium using the OxiSelect™ In Vitro ROS/RNS Assay Kit (Cellbiolabs, San Diego, Calif.) as an indication of oxidative stress. Exposure to rotenone at 5 μM and MPP+at 1000 μM showed an increase in ROS production after 24 hours exposure, while 12 hours showed no statistically significant changes. Real time RT-PCR was performed in order to determine effects of both chemicals on genes related to PD, mitochondrial dysfunction and oxidative stress. Tyrosine hydroxylase (TH, Dopaminergic neuronal marker) mRNA expression decreased by 84%±11 after exposure to 5 μM rotenone and 70%±9 after exposure to 1000 μM MPP+ for 24 hours. Additional genes related to PD also showed changes at sub-cytotoxic concentrations of MPP+ and rotenone. The expression of genes that encode T-box brain 1 (TBR1) and Alpha-synuclein (SNCA) protein decreased after 24 hours exposure. The reduction of TBR1 was 70±13% (rotenone) and 76±22% (MPP+) and the reduction of SNCA was 72±6% (rotenone) and 41±40% (MPP, however, BMPS exposed to 1 mM MPP+ led to no statistically significant changes in SNCA expression). Expression of genes related to mitochondrial function complex I (NDUFB1) or complex 0 (ATP5C1 or ATP50) tended to decrease in expression but these changes were not statistically significant. Caspase-1 gene expression, which has been related to SNCA, increased after 24 hours exposure to MPP+. These results demonstrate the potential of BMPS for studies elucidating molecular mechanisms of PD, lending itself to PD drug and neurotoxicity screening.


Example 7: Addition of Microglia

Peripheral blood mononuclear cells (PBMCs) are isolated from fresh or commercially available cryo-preserved whole blood of pooled healthy donors by Ficoll or Percoll gradient centrifugation. Monocyte populations are obtained by negative magnet-antibody selection after Ficoll or Percoll gradient and then re-suspend in RPMI 1640. Monocytes are cultured in macrophage serum-free medium, stimulated with a cocktail of cytokines, GM-CSF and IL-34. Monocytes may also be obtained by differentiation of iPSCs, hematopoetic or other stem cells. The microglia-like cells are combined with neuronal precursor cells in shaker cultures to preferably arrive at a final concentration of 5-8% microglia.


Primary monocytes or iPSC-derived monocytes may be incorporated into the system, both at early and later stages of BMPS differentiation. For the early stages, a number of 2×106 NPCs mixed with 2×104 monocytes are plated per 1 well (6 well-plate). Gyratory shaking is used at 88 rpms to generate spheres. After 2 days media are replaced with ½ CNS differentiation medial (Neurobasal® electro Medium (Gibco) supplemented with 5% B-27® Electrophysiology (Gibco), 1% glutamax (Gibco), 10 μg human recombinant GDNF (Gemini), 10 μg human recombinant BDNF (Gemini)) and ½ macrophage differentiation media (Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% FCS, 0.055 mM β-mercaptoethanol, M-CSF (50 ng/ml), and IL-3 (25 ng/ml) (R&D Systems). The medium is replaced every 3 days.


Monocytes can also be incorporated after BMPS differentiation. For that, BMPS are differentiated up to 8 weeks. BMPS spheres are separated in 500 μl Eppendorf tubes. 2×104 monocytes are added to the Eppendorf with the BMPS. Tubes are shaking manually every hour, up to 8 hours. After that, BMPS-monocytes are collected and plated in 6 well plates. Cells are kept on constant shaking until use.


The characterization of the immune-competent human organoids can be carried out by immunocytochemically assessing the presence of markers such as HLA-DR, and the ionized calcium-binding adapter molecule 1 (Iba1), specific microglial markers. Measures of cytokines and chemokines release and expression of receptors associated with microglia function (e.g., CCL2 and CX3CL) demonstrates successful engrafting of the microglia cells. This modified model is more suitable to investigate the neuroimmunological component associated with many substance exposures and diseases.


Example 8: Addition of a Blood Brain Barrier

The blood brain barrier (BBB) has a crucial role in neurotoxicity, being the last barrier for substances before reaching the brain. Moreover, the BBB is the bottleneck in brain drug development and is the single most important factor limiting the future growth of neurotherapeutics [81]. Most of the in vitro models do not incorporate BBB.


Human brain microvascular endothelial cells (hBMECs) from human iPSCs are incorporated into the BMPS by two techniques. In the first approach, mature BBB endothelial cells and neuronal precursors cells (NPCs) are combined in a single cells suspension in a ratio of 1:5, gyratory shaking or stirring are used to generated spheroids and aggregates are cultured up to 8 weeks. In the second technique, mature BMPS (8 weeks of differentiation) are covered by BBB endothelial cells using gravity systems (aggrewell, gravity well or hanging drops). Cells may be covered as well with other cell types, such as fluorescent LUHMES cells (FIG. 7).


Example 9: Addition of Reporters

The BMPS gives the opportunity to develop cell-based assays allowing for high-content imaging (HCI) that can be adapted to high-throughput platforms, to evaluate the effects of toxicants on key cellular processes of neural development and physiology in the culture system.


Example of establishing fluorescent iPSC cell line: Creation of reporter cells lines greatly assists imaging efforts by allowing us to avoid complications associated with staining 3D cultures, to image subsets of cells, and to perform functional assays. Differentiated 3D aggregates from iPSC cultures spiked with 1-2% of iPSCs ubiquitously expressing fluorescent protein allow visualizing individual cells within the aggregates aiding quantification of phenotypic parameters, including neurite outgrowth and migration. Lines expressing markers allow measurement of synapse formation (PSD95, Synapsin 1), proliferation (Ki67), glial maturation (GFAP), and calcium signaling (GCaMP). Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR) were used to create the various lines. Similar in function to the well-established zinc-finger (ZFNs) and TALEN nucleases, the Cas9-CRISPR system is a new entrant into the rapidly emerging field of genome engineering and has been quickly adopted and validated across a wide array of human stem cells. Gene-editing in hiPSCs has traditionally been a technically difficult task but with these advances it is now possible to generate reporter and mutant cell lines with genetically matched controls [83, 84, 85, 86]; essential tools not only for this project but also for the future success of using human iPSC-derived cells in quantitative live-cell phenotypic assays of toxicant testing.


Using the CRISPR-Cas9 system, fluorescent protein (FxP) reporter cell lines were generated by generating gRNAs targeting the gene of interested. In this system as described herein, an RNA guided Cas9 endonuclease is used in conjunction with customizable small guide RNAs (gRNAs) to target and cleave any DNA template with a GN21GG sequence; the first G is for the U6 polymerase promoter while the N21GG is for the protospacer adjacent motif (PAM) sequence requirement of Cas9 [86, 87, 89].


For reporter cell generation, homology-directed repair (HDR) guides the insertion of the appropriate DNA donor fragment into a target site at regions of homology between the donor fragment and the genomic DNA target. An ES line that ubiquitously expresses GFP was created by introducing CAG promoter-driven GFP into the AAVS1 safe harbor locus, and can use these constructs to transfect iPSC cells. For other reporters, constructs may be created that will direct the integration of a self-cleaving P2A peptide sequence [90] targeted fluorescent protein cassette in frame at the stop codon of the gene of interest. The P2A sequence engineered between the C-terminus of the endogenous protein and the fluorescent protein may minimize possible fusion protein functional defects. Plasmids encoding the Cas9 nuclease, the targeting gRNA, and appropriate donor DNA will be introduced by electroporation, recombinant hiPSC clones will be manually selected and screened for the desired insertion by PCR, and the genotype may be verified by sequencing. Reporter hiPSCs will be subjected to a differentiation protocol and expression of the reporter validated by examining expression patterns and through immunohistochemistry experiments where it may be determined whether the FxP expressing cells co-label with known markers.


Example 10: Using Cells with Specific Genetic Backgrounds

The use of iPSCs, as described herein, has created new opportunities to study human diseases and gene/environment interaction [20, 21]. Fibroblasts or other somatic cells from healthy and diseased individuals can be reprogrammed into iPSCs, and subsequently be differentiated into all neural cell types. Similarly, iPSC can be genetically modified before creating the BMPS. As a proof-of-principle, iPSCs were obtained from patients with Down's syndrome (FIGS. 1C5 and 5A-D), Rett Syndrome and from individuals with mutations in disrupted in schizophrenia 1 (DISCI). DISCI may have some functional overlap with TSC-iPSCs as both are involved in the mTOR cell signaling pathway.


The Down's syndrome model is further characterized (see FIGS. 5A-5D). Down's syndrome iPSCs have been successfully differentiated into neural precursor cells (NPCs). Currently the cells are differentiated in 3D and characterization by gene expression and immunohistochemistry is being performed. The Down's syndrome model has been exposed to compounds that induce oxidative stress (rotenone and paraquat). The response was compared to the model from healthy donors, which were more sensitive to these compounds than the healthy model.


Example 11: Combining the BMPS with Other Organoids

In some embodiments, BMPS may be combined with other organs and/or organ model systems. Several groups have been developing organ-on-a-chip platforms for different organs by using microfluidic techniques. Those platforms are designed to mimic in-vivo fluidic flows in the organs by separating cell culture chambers and perfusion channels, and successfully demonstrate recapitulation of iPSC-based organ functions. Together with other organ models on these platforms, the BMPS can be integrated, which allow us to untwine the complex toxicology from organ interactions. Such platforms allow (1) in-situ and high-throughput production of mini-brains on chip, (2) in-vivo like fluidic flow around mini-brains with enough supply of nutrient and small molecule through diffusion, (3) a large number of parallel test of toxic materials, and (4) a real-time monitoring of electrophysiological activities from BMPS with integrated electrodes. Companies such as TissUse GmbH have designed microfluidics platform that allow culture of floating spheres like the BMPS as described herein.


Example 12: Cryopreservation and Other Modes of Transportability

In order to e.g. incorporate the BMPS into platforms or enable any use in other laboratories, transportability of the system was optimized. Preliminary studies have shown possible recovery of the neuronal 3D aggregates after cryopreservation (FIG. 6). A human embryonal carcinoma stem cell line, (hNT2), and iPSC derived-aggregates were differentiated into mature neurons (8 weeks of differentiation for each cell line) and then cryopreserved with regular cryopreservation medium (95% FBS and 5% DMSO) or STEMdiff™ Neural Progenitor Freezing Medium (Stem cells technologies). After 2 days in liquid nitrogen, cells were thawed. Freezing media was removed and fresh media was added. One day later, viability was measured using the resazurin cell viability assay. hNT2 aggregates presented a 70% decrease in viability in both freezing medias while iPSC derived mini-brains showed a 20%-35% reduction in viability (FIG. 6). However, viability recovery of the 3D aggregates is currently optimized using other viability and functional assays. Optimization of this protocol will vary additives (DMSO, HES, glycerol, serum etc.), the cooling temperature gradient as well as thawing protocol.


Human iPSC derived mini-brains are kept in culture at 37° C. In order to transport the live mini-brains, temperature must be controlled. Different methods can be used to control temperature during transport. Heating pads combined with an insulated box have been used to transport live biological material. Disposable chemical pads employ a one-time exothermic chemical reaction such as catalyzed rusting of iron, or dissolving calcium chloride. The most common reusable heat pads are based on a chemical reaction that transforms a liquid into a solid thus releasing energy. Some new heating pads (such as Deltaphase Isothermal Pad 3SET, from Braintree Scientific, Inc.) have been able to maintain 37° C. for more than 6 hours. 3D mini-brains cultured up to 8 weeks are sent in an insulated material box with heating pads. After transport, viability may be measured.


Example 13: Overview

The techniques herein provide a human BMPS model that is a versatile tool for more complex testing platforms, as well as for research into CNS physiology, mechanisms associated with (developmental) neurotoxicity, and pathogenesis of neurological disorders. Prior art stem cell-derived brain model systems developed in the past few years have shown the capability to recapitulate some of the in vivo biological processes (Juraver-Geslin and Durand, 2015; Nakano et al., 2012; Krug et al., 2014) and have an advantage over other classical in vitro models as they facilitate the study of various differentiation mechanisms, developmental processes and diseases (Lancaster et al., 2013). Unfortunately, these prior art systems require complicated protocols that reduce the reproducibility of the system and make it difficult to use in other fields such as chemical toxicity and drug screening. Additionally, these prior art models are also limited by large diameters, which lead to extensive cell death in the interior regions due to insufficient diffusion of oxygen and nutrients (Lancaster et al., 2013) and other artifacts.


The techniques herein overcome the limitations of the prior art by developing a human in vitro model by the gyratory shaking technique that enables reliably generation of a high number (about 500 per six-well plate) of viable BMPS that are homogeneous in size and shape. Control of size makes it possible to keep cell aggregates below 350 μM in diameter (FIG. 1C) and thereby avoid disparate morphology and/or necrosis in the center of the spheres. Moreover, the BMPS showed reproducible cell composition by immunomorphological quantification, assessment of imaging-based endpoints and flow cytometry analysis.


As described herein, the 3D differentiation protocol for the BMPS covers stages from neuronal precursors to different cell types of the mature CNS. As discussed in detail above, at two weeks, BMPS consisted of an immature population of cells, showing minimal neuronal networks, a low percentage of mature astrocytes and oligodendrocytes, and minimal but early stages of myelin basic protein (MBP) expression. iPSC differentiation into mature BMPS was indicated by decreasing NES expression over time and a progressive expression of mature neuronal and glial markers such as MAP2, GFAP, 01 and MBP. Gene expression studies, flow cytometry, image analysis, immunostaining and miRNA studies have shown increase of cell maturation markers, which follow the BMPS differentiation. The presence of GABAergic neurons, dopaminergic neurons and glutamatergic neurons was documented by immunohistochemistry and real-time PCR data. Moreover, the BMPS showed spontaneous electrical activity, indicating neuronal functionality of the system.


Since astrocytes and oligodendrocytes play important roles during neuronal development, plasticity and injury, the presence of glial cell populations in the presently disclosed BMPS model provides an excellent opportunity for the evaluation of neuronal-glial interactions and the role of glia in pathogenesis and toxicity processes. Astrocytes have an important role in protecting neurons, increasing neuronal viability and mitochondrial biogenesis from both exogenous (e.g. chemicals) and endogenous toxicity (Shinozaki et al., 2014; Aguirre-Rueda et al., 2015), especially against oxidative stress (Shao et al., 1997; Schwab and McGeer, 2008). Thus, their presence in a biological system to study disease and neurotoxicity is crucial Immunohistochemistry and RT-PCR results showed increasing numbers of astrocytes (GFAP-positive cells) in the BMPS model reaching 19% astrocytes of the total cell population at eight weeks, which is earlier than in previously described cortical spheroids, where similar proportions of GFAP-positive cells were observed first at day 181, at day 86 the number of GFAP+ cells was below 10% (Pasca et al., 2015).


The most novel element of this BMPS is the presence of mature human oligodendrocytes with myelination properties, which has not been achieved in the prior art. Immunocytochemical and ultrastructural studies confirmed the morphological identity of these cells (FIG. 2D) as multiple markers for mature oligodendrocytes were expressed by rounded cells with branching processes and membrane sheaths that are similar to the ones found in humans in vivo. The structure and morphology was further confirmed by electron microscopy. Quantitative assessment of the myelination process of MBP immunostaining along axons showed an increase over time of differentiation reaching 42% of myelinated axons at eight weeks (FIG. 2D). 3D reconstruction of confocal z-stacks images (FIG. 2A) and electron microscopy confirmed the wrapping of axonal structures after eight weeks of differentiation (FIG. 2C). These findings are of particular relevance since myelin is a critical element for proper neuronal function and development, and the covering of axons by myelin allows faster action potential transmission, reduces axonal energy consumption and protects the axons from degeneration (Nave, 2010). Furthermore, recent evidence suggests that oligodendrocytes and myelin have a role in the metabolic support of axons independent of their role in action potential conduction, highlighting their importance in neuronal survival (Saab et al., 2013). This is the first time that a 3D human microphysiological system, consisting of different types of neurons and glial cells, has achieved such a high percentage of myelination. The ability to assess oligodendroglia function and mechanisms associated with myelination in this BMPS model provides an excellent tool for future studies of neurological disorders such as multiple sclerosis and other demyelinating disorders. As an illustration it was recently discovered that astroglia cells could promote oligodendrogenesis via secreted molecules (Jiang et al., 2016). A human BMPS that consist of neurons, astrocytes and oligodendrocytes is essential to evaluate this mechanism further and to develop a potential therapy for demyelinating disorders.


In conclusion, the techniques herein provide a BMPS that replicates crucial aspects of brain physiology and functionality. The potential for studying developmental and neurodegenerative disorders, brain infections, toxicity and trauma with such a system is growing. Furthermore, the potential to use iPSCs from different donors adds a personalized component to these studies. The high reproducibility and relatively simple protocol, enables future medium-throughput (96-well format) testing of chemicals, drugs and their potential to induce or treat diseases.


Methods and Materials


Chemicals


Rotenone and MPP+ were supplied from Sigma-Aldrich (St. Louis, Mo.). A 10 mM rotenone stock was prepared in DMSO Hybri-Max (Sigma) while MPP+ was diluted in water to a concentration of 30 mM.


iPSC Generation


CCD1079Sk (ATCC® CRL2097™), IPS IMR90 (WiCELL) and ATCCDYP0730 Human (IPS) Cells (ATCC® ACS1003™) fibroblasts were originally purchased from ATCC. All studies followed institutional IRB protocols approved by the Johns Hopkins University School of Medicine. Human fibroblasts and mouse embryonic fibroblasts (MEFs) were cultured in Dulbecco's modified Eagle's medium (DMEM, Mediatech Inc.) supplemented with 10% fetal bovine serum (FBS, HyClone) and 2 mM L-glutamine (Invitrogen). MEFs were derived from E13.5 CF-1 mouse embryos. Human iPCS cells were generated with the EBV-based vectors as previously described [75]. iPSC from other sources were used as well. Colonies of iPSCs were manually picked after 3-6 weeks for further expansion and characterization. iPSCs (passage ≤20) were cultured on irradiated MEFs in human embryonic stem cell (hESC) medium comprising D-MEM/F12 (Invitrogen), 20% Knockout Serum Replacement (KSR, Invitrogen), 2 mM L-glutamine (Invitrogen), 100 μM MEM NEAA (Invitrogen), 100 μM β-mercaptoethanol (Invitrogen), and 10 ng/mL human basic FGF (bFGF, PeproTech). Media were changed daily and iPSC lines were passaged using collagenase (Invitrogen, 1 mg/ml in D-MEM/F12 for 1 hr at 37° C.). These iPSC lines have been previously fully characterized [75].


Neuronal Progenitor Cells (NPC) Production


NPC generated followed the previous published protocol [75]. Briefly, iPSCs colonies were detached from the feeder layer with collagenase (1 mg/ml) treatment for 1 hr and suspended in EB medium, comprising of FGF-2-free hESC medium supplemented with Dorsomorphin (2 μM) and A-83 (2 μM), in non-treated polystyrene plates for 4 days with a daily medium change. After 4 days, EB medium was replaced by neural induction medium (hNPC medium) comprising of DMEM/F12, N2 supplement, NEAA, heparin (2 μg/ml) for 15 more days. The floating neurospheres were then dissociated to single cells in Accutase and plated in 175 mm flasks and were allowed to expand for 7 days. NPCs were expanded in poly-1-ornithine and laminin-coated 175 mm flask on StemPro® NSC SFM (Life Technologies). Half of the media was changed every day. Cultures were maintained at 37° C. in an atmosphere of 5% CO2. After NPC generation, iPSCs colonies were detached and NPCs were expanded in poly-1-ornithine and laminin-coated 175 mm flask in StemPro® NSC SFM (Life Technologies). Half of the media was changed every day. Cultures were maintained at 37° C. in an atmosphere of 5% CO2.


BMPS Differentiation


At 100% confluence NPCs were detached mechanically and counted. 2×106 cells per well were plated in 2 ml of medium in non-treated 6 well-plates. Cells were grown in NPC media for two days under constant gyratory shaking. Subsequently, medium was changed to differentiation medium (Neurobasal® electro Medium (Gibco) supplemented with 5% B-27® Electrophysiology (Gibco), 1% glutamax (Gibco), 0.02 μg/ml human recombinant GDNF (Gemini), 0.02 μg/ml human recombinant BDNF (Gemini)) Cultures were maintained at 37° C., 5% CO2 under constant gyratory shaking for up to 8 weeks. Differentiation medium was routinely changed every 2 days.


Size Measurement


Aggregates (n=20) from 3 independent experiments were randomly selected per time point for obtaining pictures and measuring size using SPOT software 5.0. Results were expressed as mean±SD. Cells were kept two days in NPC medium, indicated as NPC med. 2d in FIG. 1B.


RNA and miRNA Extraction


Total RNA was extracted from aggregates every week up to 8 weeks of differentiation using Tripure (Roche, Switzerland) according to Chomczynski and Sacchi (1987) [76]. The same RNA extraction method was used to isolate RNA after toxicant treatment. RNA quantity and purity was determined using NanoDrop 2000c (Thermo Scientific). One microgram of RNA was reverse-transcribed using the M-MI V Promega Reverse Transcriptase (Promega) according to the manufacturer's recommendations. For miRNA reverse-transcription 60 ng of RNA were reverse transcribed using TaqMan microRNA Reverse transcription kit in combination with miRNA specific stem-loop primers, which are a part of TaqMAn microRNA expression assay. Upto eight stem-loop primers were multiplexed in one reaction.


Quantitative RT-PCR


The expression of genes was evaluated using specific Taqman® gene expression assays (Life Technologies). miRNA expression was analyzed using TaqMAn microRNA expression assay in combination with TaqMan miRNA Reverse Transcription kit using protocol described in [77]. Table 1 shows a summary of the genes assayed. Real time RT-PCRs were performed using a 7500 Fast Real Time system machine (Applied Biosystems). Fold changes were calculated using the 2(−ΔΔCt) method [78]. β-actin and 18 s were used as a housekeeping genes for mRNA and RNU44 for miRNA. There were no statistically significant differences in expression for β-actin, 18s, and RNU44. Data were presented as mean±SD, normalized to housekeeping genes and week 0.


Immunocytochemistry of the BMPS


BMPS aggregates were collected at 2, 4 and 8 weeks. BMPS were fixed in 4% paraformaldehyde for 1 hour, washed 3 times in PBS, then incubated for 1 hour in blocking solution consisting of 5% normal goat serum (NGS) in PBS with 0.4% TritonX (Sigma). BMPS were then incubated at 4° C. for 48 hours with a combination of primary antibodies (Table 2) diluted in PBS containing 3% NGS and 0.1% TritonX. BMPS were washed in PBS 3 times after which they were incubated with the appropriate fluorophore-tagged secondary antibody for 1 hour in PBS with 3% NGS at room temperature. Double immunostaining was visualized using the proper combination of secondary antibodies (e.g., goat anti-rabbit secondary antibody conjugated with Alexa 594 and goat anti-mouse secondary antibody conjugated with Alexa 488 (Molecular Probes). Nuclei were counterstained with DRAQS dye (Cell Signaling; 1:5000 in 1×PBS) or NucRed Live (Molecular Probes) for 15 minutes before mounted on slides with coverslips and Prolong Gold antifade reagent (Molecular Probes); BMPS used as negative controls for immunostaining were processed omitting the primary antibody. Images were taken using a Zeiss UV-LSM 510 confocal microscope. The experiments were performed in duplicates; at least three different fields of view were analyzed for each combination of antibodies. 3D reconstruction was done using Imaris 7.6.4 software for scientific imaging.









TABLE 2







Primary Antibodies.











Antibody
Host
Type
Source
Dilution





NF-H
Rabbit
Polyclonal
Enzo
 1:1000


GFAP
Rabbit
Polyclonal
Dako
1:500


Olig 1
Mouse
Monoclonal
Millipore
1:500


CNPase
Mouse
Monoclonal
Millipore
1:500


Calbindin
Mouse
Monoclonal
SIGMA
1:500


NOGO-A
Rabbit
Polyclonal
Santa Cruz
1:500


Map2
Mouse
Monoclonal
Chemicon
 1:1000


MBP/SMI99
Mouse
Monoclonal
COVANCE
 1:1000


SMI-32
Mouse
Monoclonal
Stenberger
 1:2000





Monoclonals


Synaptophysin
Mouse
Monoclonal
SIGMA
1:500


VGLUT1
Rabbit
Polyclonal
Alpha Diagnostic
1:500


TH
Mouse
Monoclonal
Millipore
1:250


Nestin
Rabbit
Polyclonal
Millipore
1:200


Ki67
Rabbit
Polyclonal
abeam
1:100


Caspase3
Rabbit
Polyclonal
R&D
0.2 μg/ml


OLIG1
Mouse
Monoclonal
Millipore
1:200


TUJ1
Mouse
Monoclonal
Stemcell
1:200





technologies


S100B
Rabbit
Polyclonal
Santa Cruz
1:200









Automated Quantitation of Cell Types


BMPS was differentiated for 8 weeks. Randomly selected pictures from three experiments were acquired by confocal imaging and then analyzed with a custom algorithm created with the Cellomics TargetActivation (Thermo Fisher Scientific, Pittsburgh, Pa.) image-analysis software package. With this algorithm, cells were identified based on DRAQS stained nucleus and quantified oligodendrocytes and astrocytes based on staining of CNPase, NOGO1 and GFAP.


Myelination Assessment and Quantification


To calculate the percentage of axonal myelination, a semi-automated computer platform was used, termed computer-assisted evaluation of myelin formation (CEM) [82], which uses NIH Image J built-in tools as well as a Math lab processing functions. The results were generated as pixel counts and percent values. The percent of myelinated axons was calculated by dividing the pixel count for myelin by the pixel count for axons after cell body removal and multiplying by 100. For each time point at least 18 fields from at least two independent experiments were analyzed.


Electron Microscopy


BMPS aggregates were collected at 2, 4 and 8 weeks and were fixed in 2% glutaraldehyde and 4% formaldehyde in 0.1M Sodium Cacodylate buffer (EMS, electron microscopy sciences) pH 7.4 with 3% sucrose and 3 mM CaCl2). Post-fixation was done with 2% osmium for 2 hours. The BMPS aggregates were then stained en bloc with 2% uranyl acetate in distilled water for 30 min and subsequently dehydrated in graded ethanol. Embed 812 (EMS) was used as the embedding media. Thin sections (70-80 nm) were cut on a Reichert Jung Ultracut E microtome and placed on formvar coated 100 mesh copper grids. The grids were stained with uranyl acetate and followed by lead citrate. All imaging was performed on a Zeiss Libra 120 electron microscope with a Veleta (Olympus) camera.


Treatment and Cytotoxicity Assay


BMPS was exposed to different concentrations of rotenone and MPP+ for 24 and 48 hours after 4 weeks of differentiation. Rotenone working solutions were prepared in differentiation medium from 10 nM or 100 μM stocks to reach final concentrations of 0.1, 1, 10, 25 and 50 μM. DMSO was used as vehicle control. MPP+ working solutions were prepared in differentiation medium from 30 mM stocks to reach final concentrations of 10, 50, 100, 500, 1,000, 5,000 and 10,000 μM. Four independent experiments in 3 replicates were performed for each experimental condition (control and toxicant exposure for the different time points). Resazurin reduction assay was performed in order to determine cell viability after rotenone and MPP+ treatment. Resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide) is a blue dye that is reduced into red fluorescent resorufin by redox reactions in viable cells. 100 μl Resazurin (2 mg/ml stock) were added directly to the 6 well plates (2 ml/well). Plates were incubated for 3 h at 37° C., 5% CO2. Subsequently, 50 μl of medium were transferred from each well in triplicates to a 96-well plate and fluorescence was measured at 530 nm/590 nm (excitation/emission) using a multi-well fluorometric reader CytoFluor series 4000 (PerSeptive Biosystems, Inc). Data were presented as mean±SD. Statistical analysis was performed using Dunnett's test.


Reactive Oxygen Species Measurement


Reactive oxygen species (ROS) were measured in cell media collected 24 hours after treatment with 5 μM rotenone or 1,000 μM MPP+ using the OxiSelect™ In Vitro ROS/RNS Assay Kit (Cell Biolabs, San Diego, Calif.). This is a fluorescence-based assay measuring the presence of total free radicals within a sample and was used according to the manufacturer's protocol. The quenched fluorogenic dye dichlorodihydrofluorescin-DiOxyQ (DCFH-DiOxyQ) which is similar to the popular 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) is first primed with a quench removal reagent. The resulted highly reactive non-fluorescent DCFH can react with present ROS species in the cell supernatant and is then oxidized to the highly fluorescent DCF (2′,7′-dichlorodihydroxyfluorescein). At every time point, 50 μl of the cell supernatant was added to a 96-well plate in triplicates and was mixed and incubated with the DCFH-DiOxyQ for 45 minutes. The fluorescence intensity was measured with a fluorescence microplate reader at 480 nm/530 nm (excitation/emission) and was proportional to the total ROS/RNS levels within the sample.


Flow Cytometry


In order to quantify percentage of NPCs, and neurons within the aggregates, flow cytometry with NPC and neuronal markers was performed. Flow cytometry was performed according to previously published protocol [77] with some optimization steps for 3D cultures. Aggregates were washed once with PBS/1 mM EDTA and trypsinized directly in the well using TrypLE Express containing 4 units/ml DNAse for 30 min at 37° C. on the shaker. Pipetting the aggregates up and down with a 1 ml syringe and a 26G3/8 needle ensured generation of single cell suspension. Cells were counted, washed once with PBS/1 mM EDTA, fixed with 2% PFA for 20 min at 4° C., washed twice with PBS/1% BSA (wash solution I, WS I) and blocked for 30 min in blocking solution (PBS/1% BSA/0.15% saponin/10% NGS). 1×106 cells were stained for one hour at 4° C. with fluorochrome-conjugated antibodies dissolved in blocking solution (Table 3). Unstained cells as well as cells incubated with isotype controls were used as negative controls to set the gates for measurements. Cells were washed twice with PBS/1% BSA/0.15% saponin, once with PBS/1% BSA. Flow cytometry was performed using a Becton Dickinson FACSCalibur system by measuring 104 gating events per measurement. Data was analyzed using FlowJo v10 software.









TABLE 3







Antibodies for flow cytometry analysis











Antibodies
Host
type
Source
Dilution





Alexa Fluor ®
Mouse
Monoclonal,
BD Pharmingen
1:05


647 Nestin

clone 25


Alexa Fluor ®
Mouse
Monoclonal,
BD Pharmingen
1:05


488 β-III-

clone TUJ1


Tubulin


PerCP-Cy ™
Mouse
Monoclonal,
BD Pharmingen
1:20


5.5 Sox2

clone 030-678


PerCP-Cy ™
Mouse
Monoclonal,
BD Pharmingen
1:20


5.5 Sox1

clone N23-844


PE Doublecortin
Mouse
Monoclonal,
BD Pharmingen
1:20




clone 30


Alexa Fluor ®
Mouse
Monoclonal,
BD Pharmingen
1:20


647 Ki67

clone B56









Microelectrode Array (MEA) Recordings


After 8 weeks of differentiation, BMPS were plated on 48-well MEA plates previously coated with Matrigel. During two weeks spontaneous electrical activity was recorded using the ‘Maestro’ MEA platform and Axion's Integraded Studio (AXIS) software [Axion Biosystems inc.; Atlanta, US]. Each well of the 48-well MEA plate contains 16 individual microelectrodes (˜40-50 μm diameter, center-to-center spacing 350 μm) with integrated ground electrodes, resulting in a total of 768 electrodes/plate. The ‘Maestro’ MEA platform has an integrated heating system, which can be controlled by AXIS software. All recordings were performed at a constant temperature of 37° C. Prior to a twenty minutes recording, the MEA plates were placed in the Maestro MEA platform and equilibrated for five min. AXIS software was used to control heating system and monitor the recordings, which includes simultaneously sampling of the channels at 12.5 kHz/channel with a gain of 1200× and a band pass filter of 200-5000 Hz. The recordings were converted into RAW files. After a recording the RAW-files were re-recorded with AXIS to convert the data into a spike file, which includes spike timing and profile information. A variable threshold spike detector was used for the spike-file, it was set at 6 times standard deviations of the rms-noise on each channel. The spike file was later used for data analysis with NeuroExplorer® [Nex Technologies, Madison (AL), US] to convert data into Microsoft Excel files. Using the function rate histogram, a summary of the spikes of all electrodes of one plate was put into one Excel sheet. Only electrodes that recorded activity higher than 0.05 spikes/sec at least once over the time measured were included for data analysis.


Statistical Analysis


Statistical analysis was performed using GraphPad InStat 3. The Dunnett's test was applied to all the experiments shown here that compare to a control group. Statistically significant values (p<0.01) are marked with an asterisk (*). For myelination quantification at the different time points, a Kruskal-Wallis test was employed, statistical significance was considered for p values <0.05.


REFERENCES



  • 1. K. Y. Liu, M. King, P. S. Bearman. Social influence and the autism epidemic. AJS 115, 1387-434 (2010).

  • 2. M. Rutter. Incidence of autism spectrum disorders: changes over time and their meaning. Acta. Paediatr. 94, 2-15 (2005).

  • 3. S. K. Van Den Eeden, C. M. Tanner, A. L. Bernstein, R. D. Fross, A. Leimpeter, D. A. Bloch, L. M. Nelson. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015-22 (2003).

  • 4. W, A. Kukull, R. Higdon, J. D. Bowen, W. C. McCormick, L. Teri, G. D. Schellenberg, G. van Belle, L. Jolley, E. B. Larson. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch. Neurol. 59, 1737-46 (2002).

  • 5. C. Mo, A. J. Hannan, T. Renoir. Environmental factors as modulators of neurodegeneration: Insights from gene-environment interactions in Huntington's disease. Neurosci. Biobehav. Rev. 52, 178-192 (2015).

  • 6. S. Karama, S. Ducharme, J. Corley, F. Chouinard-Decorte, J. M. Starr, J. M. Wardlaw, M. E. Bastin, I. J. Deary. Cigarette smoking and thinning of the brain's cortex. Mol. Psychiatry. In press (2015).

  • 7. O. van de Rest, A. A. Berendsen, A. Haveman-Nies, L. C. de Groot. Dietary Patterns, Cognitive Decline, and Dementia: A Systematic Review. Adv. Nutr. 13, 154-168. (2015)

  • 8. L. Smirnova H. T. Hogberg, M. Leist and T. Hartung. Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156 (2014),

  • 9. T. Hartung. Look back in anger—what clinical studies tell us about preclinical work. ALTEX. 30, 275-91 (2013)

  • 10. T. Hartung. Food for thought . . . on cell culture. ALTEX. 24, 143-52 (2007)

  • 11. D. Huh, D. C. Leslie, B. D. Matthews, J. P. Fraser, S. Jurek, G. A. Hamilton, K. S. Thorneloe, M. A. McAlexander, D. E. Ingber. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 7, 4(159):159ra147 (2012).

  • 12. D. Pamies, T. Hartung, H. T. Hogberg. Biological and medical applications of a brain-on-a-chip. Exp. Biol. Med. 239,1096-107 (2014)

  • 13. A. Agarwal, J. A. Goss, A. Cho, M. L. McCain, K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab on a chip 13, 3599-3608 (2013).

  • 14. H. T. Hogberg, J. Bressler, K. M. Christian, G. Harris, G. Makri, C. O'Driscol, D. Pamies, L. Smirnova, Z. Wen, T. Hartung. Toward a 3D model of human brain development for studying gene/environment interactions. Stem. Cell. Res. Ther. 4 Suppl 1:S4 (2013).

  • 15. M. A. Lancaster, M. Renner, C. A. Martin, D. Wenzel, L. S. Bicknell, M. E. Hurles, T. Homfray, J. M. Penninger, A. P. Jackson, J. A. Knoblich. Cerebral organoids model human brain development and microcephaly. Nature 19, 373-9 (2013).

  • 16. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. USA. 110, 20284-9 (2013).

  • 17. D. Huh, H. J. Kim, J P Fraser, D. E. Shea, M. Khan, A. Bahinski, G. A Hamilton, D. E. Ingber. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135-57 (2013).

  • 18. N. Alépée, A Bahinski, M. Daneshian, B. De Wever, E. Fritsche, A. Goldberg, J. Hansmann, T. Hartung, J. Haycock, H. Hogberg, L. Hoelting, J. M. Kelm, S. Kadereit, E. McVey, R. Landsiedel, M. Leist, M. Lübberstedt, F. Noor, C. Pellevoisin, D. Petersohn, U. Pfannenbecker, K. Reisinger, T. Ramirez, B. Rothen-Rutishauser, M. Schäfer-Korting, K. Zeilinger, M. G. Zurich. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX. 31, 441-77 (2014).

  • 19. T. Hartung, J. Zurlo. Alternative approaches for medical countermeasures to biological and chemical terrorism and warfare. ALTEX. 29, 251-60 (2012).

  • 20. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872 (2007).

  • 21. J. Yu, M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917-1920 (2007)

  • 22. Y. Tsai, B. Lu, B. Bakondi, S. Girman, A. Sahabian, D. Sareen, C. N. Svendsen, S. Wang. Human iPSC-Derived Neural Progenitors Preserve Vision in an AMD-like Model. Stem. Cells. In press (2015).

  • 23. K. Nieweg, A. Andreyeva, B. van Stegen, G. Tanriöver, K. Gottmann Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell. Death. Dis. In press. (2015)

  • 24. S. Raitano, L. Ordovas, L. De Muynck, W. Guo, I. Espuny-Camacho, M. Geraerts, S. Khurana, K. Vanuytsel, B. I. Toth, T. Voets, R. Vandenberghe, T. Cathomen, L. Van Den Bosch, P. Vanderhaeghen, P. Van Damme, C. M. Verfaillie. Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia. Stem Cell Reports. 13, 16-24 (2015).

  • 25. H. Monyer, R. Sprengel, R. Schoepfer, A. Herb, M. Higuchi, H. Lomeli, N. Burnashev, B. Sakmann, P. H. Seeburg. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217-1221 (1992).

  • 26. X. Li, P. Jin. Roles of small regulatory RNAs in determining neuronal identity. Nat. Rev. Neurosci. 11, 329-38 (2010).

  • 27. C. Tarantino, G. Paolella, L. Cozzuto, G. Minopoli, L. Pastore, S. Parisi, T. Russo. miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. FASEB Journal 24, 3255-3263 (2010).

  • 28. D. Yang, T. Li, Y. Wang, Y. Tang, H. Cui, X. Zhang, D. Chen, N. Shen, W. Le W. miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurrl expression. Journal of Cell Science 125, 1673-1682 (2012).

  • 29. D. Edbauer, J. R. Neilson, K. A. Foster, C. F. Wang, D. P. Seeburg, M. N. Batterton, T. Tada, B. M. Dolan, P. A. Sharp, M. Sheng. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65, 373-384 (2010).

  • 30. S. U. Kim, F. A. McMorris, T. J. Sprinkle Immunofluorescence demonstration of 2′:3′-cyclic-nucleotide 3′-phosphodiesterase in cultured oligodendrocytes of mouse, rat, calf and human. Brain Res. 300, 195-9 (1984).

  • 31. W. Deng, R. D. Poretz. Oligodendroglia in developmental neurotoxicity. Neurotoxicology. 24, 161-78 (2003).

  • 32. S. P. Fancy, J. R. Chan, S. E. Baranzini, R. J. Franklin, D. H. Rowitch. Myelin Regeneration: A recapitulation of development? Annu. Rev. Neurosci. 34, 21-43 (2011)

  • 33. M. E. Schwab. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799-811 (2010).

  • 34. D. H. Meijer, M. F. Kane, S. Mentha, H. Liu, E. Harrington, C. M. Taylor, C. D. Stiles, D. H. Rowitch. Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat. Rev. Neurosci. 13, 819-31 (2012).

  • 35. Y. Yamaguchi, M. Miura. Programmed cell death in neurodevelopment. Dev. Cell. 32, 478-90 (2015).

  • 36. H. A. Juraver-Geslin, B. C. Durand. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis. 53, 203-24 (2015).

  • 37. A. K. Krug, S. Gutbier, L. Zhao, D. Pöltl, C. Kullmann, V. Ivanova, S. Forster, S. Jagtap, J. Meiser, G. Leparc, S. Schildknecht, M. Adam, K. Hiller, H. Farhan, T. Brunner, T. Hartung, A. Sachinidis, M. Leist. Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis. 5, e1222 (2014).

  • 38. T. Nakano, S. Ando, N. Takata, M. Kawada, K. Muguruma, K. Sekiguchi, K. Saito, S. Yonemura, M. Eiraku, Y. Sasai. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 14, 771-85 (2012)

  • 39. M. Eiraku, N. Takata, H. Ishibashi, M. Kawada, E. Sakakura, S. Okuda, K. Sekiguchi, T. Adachi, Y. Sasai. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472, 51-6 (2012).

  • 40. H. Suga, T. Kadoshima, M. Minaguchi, M. Ohgushi, M. Soen, T. Nakano, N. Takata, T. Wataya, K. Muguruma, H. Miyoshi, S. Yonemura, Y. Oiso, Y. Sasai. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 480, 57-62 (2011).

  • 41. E. van Vliet, S. Morath, C. Eskes, J. Linge, J. Rappsilber, P. Honegger, T. Hartung, S. Coecke. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology. 29, 1-12 (2008).

  • 42. J. Kim, K. Inoue, J. Ishii, W. B. Vanti, S. V. Voronov, E. Murchison, G. Hannon, A. Abeliovich. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220-1224 (2007).

  • 43. C. Wiese, A. Rolletschek, G. Kania, P. Blyszczuk, K. V. Tarasov, Y. Tarasova, R. P. Wersto, K. R. Boheler, A. M. Wobus. Nestin expression—a property of multi-lineage progenitor cells? Cell. Mol. Life. Sci. 61, 2510-22 (2004).

  • 44. C. Lépinoux-Chambaud, J. Eyer. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem. Cell. Biol. 140, 13-22 (2013).

  • 45. J. Park, B. K. Lee, G. S. Jeong, J. K. Hyun, C. J. Lee, S. H. Lee. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease. Lab Chip. 15, 141-50 (2015).

  • 46. J. P. Done, B. Morrison, R. S. Schloss, M. L. Yarmush. Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. Technology (Singap. World. Sci.). 2,106 (2014).

  • 47. S. J. Mullett, D. A. Hinkle. DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol. Dis. 33, 28-36 (2009).

  • 48. Y. Shinozaki, M. Nomura, K. Iwatsuki, Y. Moriyama, C. Gachet, S. Koizumi Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission. Sci. Rep. 4, 4329 (2014).

  • 49. D. Aguirre-Rueda, S, Guerra-Ojeda, M. Aldasoro, A. Iradi, E. Obrador, A. Ortega, M. D. Mauricio, J. M. Vila, S. L. Valles. Astrocytes protect neurons from A131-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1. Int. J. Med. Sci. 12, 48-56. (2015).

  • 50. R. Sattler, M. Tymianski. Molecular mechanisms of glutamate receptormediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107-129 (2001).

  • 51. Y. Shao, M. Gearing, S. S. Mirra. Astrocyte-apolipoprotein E associations in senile plaques in Alzheimer disease and vascular lesions: a regional immunohistochemical study. J. Neuropathol. Exp. Neurol. 56, 376-381 (1997)

  • 52. C. Schwab, P. L. McGeer. Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J. Alzheimers. Dis. 13, 359-369 (2008).

  • 53. P. Damier, E. C. Hirsch, P. Zhang, Y. Agid, F. Javoy-Agid. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience 52, 1-6 (1993).

  • 54. C. Xie, Y. Q. Liu, Y. T. Guan, G. X. Zhang. Induced Stem Cells as a Novel Multiple Sclerosis Therapy. Curr Stem Cell Res Ther. In press (2015).

  • 55. S. Wang, J. Bates, X. Li, S. Schanz, D. Chandler-Militello, C. Levine, N. Maherali, L. Studer, K. Hochedlinger, M. Windrem, S. A. Goldman. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 12, 252-64 (2013)

  • 56. M. Pinto, S. Dobson. BK and JC virus: a review. J. Infect. 68 Suppl 1:S2-8 (2014).

  • 57. X. B. Liu, Y. Shen, J. M. Plane, W. Deng. Vulnerability of premyelinating oligodendrocytes to white-matter damage in neonatal brain injury. Neurosci. Bull. 29, 229-38 (2013).

  • 58. G. Bartzokis. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease. Neurobiol. Aging. 25, 5-18 (2004).

  • 59. H. Okamoto, T. Miki, K. Y. Lee, T. Yokoyama, H. Kuma, Z. Y. Wang, H. Gu, H. P. Li, Y. Matsumoto, S. Irawan, K. S. Bedi, Y. Nakamura, Y. Takeuchi. Oligodendrocyte myelin glycoprotein (OMgp) in rat hippocampus is depleted by chronic ethanol consumption. Neurosci. Lett. 406, 76-80 (2006).

  • 60. T. W. Bouldin, G. Samsa, T. S. Earnhardt, M. R. Krigman. Schwann cell vulnerability to demyelination is associated with internodal length in tellurium neuropathy. J. Neuropathol. Exp. Neurol. 47, 41-47 (1988).

  • 61. P. David, K. Subramaniam. Prenatal alcohol exposure and early postnatal changes in the developing nerve-muscle system. Birth Defects Res. A. Clin. Mol. Teratol. 73, 897-903 (2005).

  • 62. G. J. Harry, A. D. Toews, M. R. Krigman, P. Morell. The effect of lead toxicity and milk deprivation of myelination in the rat. Toxicol. Appl. Pharmacol. 77, 458-464 (1985).

  • 63. S. J. Rothenberg, A. Poblano, S. Garza-Morales. Prenatal and perinatal low level lead exposure alters brainstem auditory evoked responses in infants. Neurotoxicology 15, 695-699 (1994).

  • 64. E. Tiffany-Castiglioni, J Zmudzki, G. R. Bratton. Cellular targets of lead neurotoxicity: in vitro models. Toxicology 42, 303-315 (1986).

  • 65. E. Tiffany-Castiglioni. Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology. 14, 513-36 (1993).

  • 66. J. Parkinson. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223-36 (2002)

  • 67. K. R. Chaudhuri, P. Odin. The challenge of non-motor symptoms in Parkinson's disease. Prog. Brain. Res. 184, 325-41 (2010).

  • 68. P. McGonigle. Animal models of CNS disorders. Biochem. Pharmacol. 87, 140-9 (2014).

  • 69. K. Tieu. A guide to neurotoxic animal models of Parkinson's disease. Cold. Spring. Harb. Perspect. Med. In press (2011).

  • 70. S. E. Cavanaugh, J. J. Pippin, N. D. Barnard. Animal models of Alzheimer disease: historical pitfalls and a path forward. ALTEX. 31, 279-302 (2014).

  • 71. A. Pombero, C. Bueno, L. Saglietti, M. Rodenas, J. Guimera, A. Bulfone, S. Martinez. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus. Development. 138, 4315-26 (2011).

  • 72. H. McCann, C. H. Stevens, H. Cartwright, G. M. Halliday. α-Synucleinopathy phenotypes. Parkinsonism. Relat. Disord. 20 Suppl 1, S62-7 (2014).

  • 73. V. N. Uversky. A protein-chameleon: conformational plasticity of alphasynuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn. 21, 211-34 (2003)

  • 74. G. A. Petsko and D. Ringer. Ice cleaved alpha-synuclein a biomarker. Patent WO2012061786 A1. (2012)

  • 75. Wen Z, Nguyen H N, Guo Z, Lalli M A, Wang X, Su Y, Kim N S, Yoon K J, Shin J, Zhang C, Makri G, Nauen D, Yu H, Guzman E, Chiang C H, Yoritomo N, Kaibuchi K, Zou J, Christian K M, Cheng L, Ross C A, Margolis R L, Chen G, Kosik K S, Song H, Ming G L. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014 Nov. 20; 515(7527):414-8.

  • 76. P. Chomczynski, N. Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-9 (1987).

  • 77. L. Smirnova, A. E. M. Seiler, A. Luch. microRNA profiling as tool for developmental neurotoxicity testing (DNT). Toxicol. 64:20.9.1-20.9.22, 2015

  • 78. K. J. Livak, T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 25, 402-8 (2001).

  • 79. Nave, K. A. Myelination and support of axonal integrity by glia. Nature 468, 244-252, (2010).

  • 80. Saab, A. S., Tzvetanova, I. D. & Nave, K. A. The role of myelin and oligodendrocytes in axonal energy metabolism. Current opinion in neurobiology 23, 1065-1072, (2013).

  • 81. Pardridge, W. M. Crossing the blood brain barrier: are we getting it right? Drug Disc. Today January 1; 6(1): 1-2, (2001).

  • 82. Kerman, B. E. et al. In vitro myelin formation using embryonic stem cells. Development 142, 2213-2225, (2015)

  • 83. Gaj T, Gersbach C A, Barbas C F 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. July; 31(7):397-405, (2013).

  • 84. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R C, Katibah G E, Amora R, Boydston E A, Zeitler B, Meng X, Miller J C, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. September; 27(9):851-7, (2009).

  • 85. Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. July 7; 29(8):731-4, (2011).

  • 86. Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. September; 31(9):833-8, (2013).

  • 87. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J W, Xi J J. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. April; 23(4):465-72, (2013).

  • 88. Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. February 15; 339(6121):819-23, (2013).

  • 89. Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. November; 8(11):2281-308, (2013).

  • 90. Kim W R, Sun W. 2011. Programmed cell death during postnatal development of the rodent nervous system. Development, growth &differentiation 53: 225-235, (2011).



Example 14

Human induced pluripotent stem cells (iPSCs), together with 21st century cell culture methods, have the potential to better model human physiology with applications in toxicology, disease modeling, and the study of host-pathogen interactions. Several models of the human brain have been developed recently, demonstrating cell-cell interactions of multiple cell types with physiologically relevant 3D structures. Most current models, however, lack the ability to represent the inflammatory response in the brain because they do not include a microglial cell population. Microglia, the resident immunocompetent phagocytes in the central nervous system (CNS), are not only important in the inflammatory response and pathogenesis; they also function in normal brain development, strengthen neuronal connections through synaptic pruning, and are involved in oligodendrocyte and neuronal survival. Here, we have successfully introduced a population of human microglia into 3D human iPSC-derived brain spheres (BrainSpheres, BS) through co-culturing cells of the Immortalized Human Microglia—SV40 cell line with the BS model (OS). We detected an inflammatory response to lipopolysaccharides (LPS) and flavivirus infection, which was only elicited in the model when microglial cells were present. A concentration of 20 ng/mL of LPS increased gene expression of the inflammatory cytokines interleukin-6 (IL-6), IL-10, and IL-1b, with maximum expression at 6-12 h post-exposure. Increased expression of the IL-6, IL-1b, tumor necrosis factor alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) genes was observed in μBS following infection with Zika and Dengue Virus, indicating a stronger inflammatory response in the model when microglia were present than when only astrocyte, oligodendrocyte, and neuronal populations were represented. Microglia innately develop within cerebral organoids (Nature communications)′, the findings indicate that the μBS model is more physiologically relevant and has potential applications in infectious disease and host-pathogen interactions research.


INTRODUCTION

Microphysiological systems and organotypic cell culture models are increasingly being used to model human physiology in vitro because these models better mimic the in vivo situation compared to traditional monolayer cell culture systems (Marx et al., 2016; Pamies and Hartung, 2017; Smirnova et al., 2018). In addition, such models allow for the mechanistic understanding of biological processes that would be challenging to study in vivo. In particular, the human brain is a highly complex structure that cannot easily be interrogated in vivo and has proven difficult to model in vitro. Recently, the first in vitro human organotypic models of the brain have been developed, including 3D structures and heterogeneous cell populations. Many of these models seek to represent key events in human brain development and cell-cell interactions between various cell types (Kadoshima et al., 2013; Lancaster et al., 2013; Pasca et al., 2015; Pamies et al., 2017; Sandstrom et al., 2017). The basis for the majority of these models is a neural progenitor cell (NPC) population; however, microglia, arise from erythromyeloid precursor cells in the embryonic yolk sac, unlike the other cell types in the brain which arise from the neuroectoderm (Alliot et al., 1999; Ginhoux et al., 2013; Kierdorf et al., 2013; Sousa et al., 2017). Thus, because microglia cannot be derived from NPCs, many of the current in vitro models of the human brain do not include a microglial cell population.


Microglia are the resident mononuclear phagocytic cells in the central nervous system (CNS) (Ginhoux et al., 2013). These cells are both neuroprotective and immunocompetent, as they play critical roles in brain development, strengthen neuronal connections through synaptic pruning, are involved in neuronal maintenance and support, and are responsible for the inflammatory response in the brain following an injury or pathogenic infection (Kettenmann et al., 2011; Paolicelli et al., 2011; Michell-Robinson et al., 2015; Thompson and Tsirka, 2017). In response to local alterations, lesions, or pathogen invasion, microglia become active. Microglial activation involves changes in morphology, the release of multiple substances such as proinflammatory cytokines, chemokines, and reactive oxygen species, migration to affected areas, proliferation, and phagocytosis of cell debris (Kettenmann et al., 2011; Boche et al., 2013; Thompson and Tsirka, 2017). This process is also a prominent feature of inflammation in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and infectious processes (Wang et al., 2015; Thompson and Tsirka, 2017). Various models have been developed to study neurological disorders and lipopolysaccharide (LPS) has been widely used as an inducer of neuroinflammation and neurotoxicity as it has been shown to act as a potent stimulator of microglia (Gao et al., 2002; Hu et al., 2012; Olajide et al., 2013; Kempuraj et al., 2017). Additionally, inflammation related neurodegeneration induced by LPS is a common approach to study mechanisms of cellular neuroimmunology (Hu et al., 2012). Neurotropic virus infections are major pathogens in the CNS and cause inflammation (Ludlow et al., 2016). The Flavivirus genus constitutes some of the most serious human pathogens, including Japanese encephalitis (JEV), dengue (DENV), zika (ZIKV), and yellow fever (YF), all of which are can invade the central and peripheral nervous system and are regarded as neurotropic viruses (Neal, 2014). The mechanisms by which flaviviruses alter the immune and the CNS have only recently been examined, but remain largely unclear (Daep et al., 2014). The NPC model has been used in ZIKV studies to understand mechanisms that govern neuropathogenesis and immunopathogenesis in CNS infection (Dang et al., 2016; Garcez et al., 2016; Tang et al., 2016; Qian et al., 2017), but these models do not contain microglia. We previously developed a 3D brain model (BrainSpheres, BS) derived from human-induced pluripotent stem cells (iPSCs) and demonstrated that this model is reproducible with respect to size and shape and is comprised of populations of neurons, astrocytes, and oligodendrocytes (Pamies et al., 2017). In addition, the model has been applied to the study of developmental neurotoxicity (Pamies et al., 2018). In this study, we introduced a population of human microglia into the BS model and compared the inflammatory response of BS without microglia to BS co-cultured with microglia (μBS) after treatment with LPS, ZIKV, or DENY. In addition, we quantified cell death following ZIKV infection because there is evidence that ZIKV infection can impair brain growth via cell death of developing neurons.


Materials and Methods


Induced Pluripotent Stem Cell Generation


Fibroblasts (American Type Culture Collection (ATCC), Manassas, Va., United States, CCD-1079Sk ATCC® CRL-2097™) were used to generate iPSCs as previously described (Wen et al., 2014; Pamies et al., 2017). iPSCs (passage ≤20) were cultured on irradiated MEFs in human embryonic stem cell (hESC) medium comprised of D-MEM/F12 (Invitrogen, Carlsbad, Calif., United States) 20% Knockout Serum Replacement (KSR, Invitrogen, Carlsbad, Calif., United States), 2 mM L-glutamine (Invitrogen, Carlsbad, Calif., United States), 100 μM MEM NEAA (Invitrogen, Carlsbad, Calif., United States), 100 μM β-mercaptoethanol (Invitrogen, Carlsbad, Calif., United States), and 10 ng/mL human basic FGF (bFGF, PeproTech, Rocky Hill, N.J., United States). Cell culture medium was changed daily. iPSCs were passaged using collagenase (Invitrogen, Carlsbad, Calif., United States, 1 mg/mL in D-MEM/F12 for 1 h at 37° C.).


Neural Progenitor Cell Production


NPC were generated following the previously published protocol (Wen et al., 2014). NPCs were cultured with StemPro® NSC SFM media (Life Technologies, Carlsbad, Calif., United States) in 175 cm2 flasks (Thermo Scientific, Waltham, Mass., United States, Nunc™ Filter Cap EasYFlask™) coated with Poly-L-ornithine hydrobromide (Sigma-Aldrich, St. Louis, Mo., United States, P3655) and laminin (Sigma-Aldrich, L2020, from Engelbreth-Holm-Swarm murine sarcoma basement membrane). Half of the media was changed daily. Cultures were maintained at 37° C. with 5% CO2. NPCs were passaged by mechanical detachment with a cell scraper (Sarstedt, N.C., United States, 2-position, Blade 25,83.1830).


BrainSpheres Differentiation


The production of BS was published previously (Pamies et al., 2017). Briefly, to produce BS, NPCs were detached mechanically with a cell scraper (Sarstedt, 2-position, Blade 25, 83.1830), re-pipetted for disaggregation, and counted using the Countess Automated Cell Counter (Invitrogen, Carlsbad, Calif., United States). 2×106 cells per well were plated in non-treated Falcon™ Polystyrene 6-well plates (Corning, Corning, N.Y., United States). Cells were grown in differentiation medium [Neurobasal® electro Medium (Gibco, Gaithersburg, Md., United States)] supplemented with 2% B-27® Electrophysiology (Gibco), 1% GlutaMAX (Gibco), 0.01 μg/mL human recombinant GDNF (Gemini, Woodland, Calif., United States), and 0.01 μg/mL human recombinant BDNF (Gemini). Cultures were maintained at 37° C. in an atmosphere of 5% CO2 under constant gyratory shaking (88 rpm) for 7 weeks. Differentiation medium was changed every 2 days.


Microglia Culture


Immortalized Human Microglia—SV40 (Applied Biological Materials Inc., Richmond, BC, Canada) were grown in non-treated 75 cm2 flasks (Thermo Scientific, Waltham, Mass., United States, Nunc™ Filter Cap EasYFlask™). Cells were expanded using Prigrow III medium (Applied Biological Materials Inc.) supplemented with 10% Fetal Bovine Serum (Gibco, Gaithersburg, Md., United States, Certified, Heat Inactivated, United States Origin) and 1% Penicillin-Streptomycin (Gibco, 10,000 U/mL). Microglia were passaged by mechanical detachment using a cell scraper (Sarstedt, 2-position, Blade 25, 83.1830). Cultures were maintained at 37° C. in an atmosphere of 5% CO2 immortalized Human Microglia—SV40 cell line was declared mycoplasma free by a mycoplasma testing using a PCR based MycoDtect kit from Greiner Bio-One (Genetic Resource Core Facility is a core resource of the Johns Hopkins School of Medicine, Institute of Genetic Medicine).


Formation of BS with Microglia (pBS)


The density of microglia added to the aggregates was studied previously and the optimal number of cells was chosen to avoid the formation of microglia-only spheres and to allow enough microglia attachment to aggregates. BS were differentiated for 7 weeks at which time, 3×105 microglia/well were added to the BS suspension. Upon addition of microglia, plates were kept in static conditions in the incubator at 37° C. with 5% CO2 for 24 h, with manual shaking of the plates every 6 h. This allowed for the attachment of the microglia to the surface of the BS while avoiding BS agglomeration. Microglia which did not attach to BS during this time attached to the bottom of the well. We then carefully removed aggregates from the well and transferred them to a new plate. μBS aggregates were then washed twice with PBS, and new differentiation media was added. After the incorporation of microglia, μBS were maintained in culture for one more week.


Histology and Immunohistochemistry


BS with and without incorporated microglia were fixed in 4% formalin/PBS. After fixation, spheres were carefully embedded into low-melting agarose and the solidified mixture was processed into paraffin blocks using an ASP300S dehydration machine (Leica, Wetzlar, Germany) and an EG1160 tissue embedding system (Leica, Wetzlar, Germany) Sections (2 μm) were stained with hematoxylin-eosin (H&E) or processed for immunohistochemistry as follows: After dewaxing and inactivation of endogenous peroxidases (PBS/3% hydrogen peroxide), antibody specific antigen retrieval was performed using the Ventana Benchmark XT machine (Ventana, Tucson, Ariz., United States). Sections were blocked (PBS/10% FCS) and afterward incubated with the primary antibodies TMEM119 (1:100; Sigma), Mertk (1:100; R&D), Ax1 (1:100; LSBio), CD11b (1:2,000; Abcam), and P2ry12 (1:100; Sigma). For double staining of microglia and neurons, microglia were detected with TMEM119 and visualized with DAB in brown, whereas neurons were stained with NeuN (1:50; Millipore) and incubated with anti-mouse AP-coupled secondary antibody and developed in red. Bound primary antibodies were detected with secondary antibodies using Histofine Simple Stain MAX PO immune-enzyme polymer (Nichirei Biosciences) and stained with 3,3′-Diaminobenzidine (DAB) substrate using the ultraView Universal DAB Detection Kit (Ventana). Tissues were counterstained with hematoxylin. Representative images were taken with a Leica DMD108 digital microscope.


Virus Propagation and Titering


Vero (ATCC, Manassas, Va., United States, ATCC® CCL81™) and BHK-21 (ATCC®, C-13 ATCC CCL-10) cell lines were cultured in D-MEM (Gibco) containing 10% Fetal Bovine Serum (Gibco, Certified, Heat Inactivated, United States Origin), 2 mM L-glutamine (Invitrogen), Penicillin-Streptomycin (Gibco 10,000 U/mL), and 10 mM Hepes buffer (Gibco) in an incubator at 37° C. with 5% CO2. Vero and BHK-21 cells were passaged 3 times a week. To passage Vero and BHK-21 cells, the cells were incubated with 0.05% trypsin (Gibco) in 1×PBS (Gibco) at 37° C. with 5% CO2 for 5 min, resuspended in 10 mL D-MEM, and centrifuged at 1200 rpm for 8 min. The supernatant is then removed and the cells were resuspended in fresh media and transferred to a new flask.


Two strains of ZIKV (ATCC, VR-1838™, Uganda 1947, ZIKV-UG, and Brazil 2015, ZIKV-BR) were propagated in Vero cells and Dengue Virus type 1 (ATCC, VR-1586™, DENV-1) was propagated in BHK-21 cells. ZIKV-BR was isolated from a febrile non-pregnant Brazilian woman with a rash in Paraiba, Brazil in 2015 and kindly provided by Professor Pedro Vasconcelos from the Instituto Evandro Chagas, Belem, State of Para, Brazil (Pompon et al., 2017). ZIKV-UG was isolated in 1947 from a rhesus macaque exposed to mosquitos in Uganda. The Viral stocks were prepared by infecting Vero or BHK-21 cells at 80-90% confluency in 25 cm2 flasks with 2 mL of virus dilution in OptiPro™ SFM media (Gibco) at a multiplicity of 0.1. The cells were incubated for 6 h at 37° C. with 5% CO2, then the supernatant was removed and the cell lines were washed two times with 1×PBS and replaced with 10 mL of D-MEM. The infected cells were further incubated for 5 days, and then the supernatants were collected and transferred to a 75 cm2 flask with respective cell lines at 90% confluence. The ZIKV-UG, ZIKVBR, and DENV-1 were collected after 7 days post-infection (p.i.), clarified by centrifugation at 500×g for 10 min, and filtered through a 0.22-μm membrane. All viral stocks were stored in 1 mL aliquots at −80° C. Virus titers used in the assays were determined by double-overlay plaque assay of Vero and BHK-21 cells to ZIKV and DENV, respectively, as previously described (Baer and Kehn-Hall, 2014).


Lipopolysaccharide Treatment


After 8 weeks of differentiation, 2 μl from a 10 μg/mL stock of LPS were added to 2 mL media containing ether the microglia, BS or μBS, obtaining a final concentration of 20 ng/mL. Samples were collected 3, 6, 12, and 24 h after the exposure. Time 0 refers to samples before LPS exposure. Samples were collected for qPCRs.


Viral Infection


Immortalized Human Microglia—SV40 were plated in 24-well plates at a density of 2.5×105 cells per well. The BS and μBS or microglia from one well were transferred to a 24-well-plate (and divided into triplicates) before infecting with ZIKV-UG, ZIKVBR, and DENV-1. A MOI of 0.1 for 6 h at 37° C. with 5% CO2 was used. Three wells of non-infected BS, μBS, and microglia were used as control (MOCK). The cells were washed 3 times with 500 μl PBS, and then 250 μl of supernatant were collected for each condition as time zero of infection. The PBS was totally removed and BS, μBS or microglia were re-suspended in fresh complete media. BS and μBS were then transferred back to a 6-well plate containing media. The plates containing the infected and uninfected cells were incubated at 37° C. with 5% CO2 for 24 to 72 h. The supernatant was collected at different times points 24, 48, and 72 h post infection (p.i.) to check viral load. The cells were collected at 48 and 72 h p.i. to analyze gene expression, Annexin-V, and cell cycle (3 technical replicates). One well of BS, μBS and microglia were used for confocal microscope analysis. All work with infectious ZIKV was performed in an approved BSL-3 facility.


Analysis of Cell Viability and Cytotoxicity Using Flow Cytometry


Apoptosis in microglia cells, BS, and μBS was assayed using the Muse Annexin V and Dead Cell kit (Millipore, Billerica, Mass., United States) according to the user guide and the manufacturer's instructions. After 72 h incubation at 37° C. in 5% CO2, microglia cells for all conditions were harvested through mechanical detachment with a cell scraper (Sarstedt, Blade 25, 83.1830) in 500 μl of the PBS, and centrifuged for 5 min at 2000 RPM. Two aggregates of BS and μBS were collected using a 1 mL micropipette. The pellet was resuspended in 100 μL of the PBS with 1% FBS, mixed with 100 μL of the Muse Annexin V and Dead Cell Reagent at room temperature. Tubes were mixed using a vortex for 10 s. Samples were incubated for 20 min at room temperature and protected from light. The percentages of apoptotic cells were analyzed by flow cytometry using Muse Cell Analyzer (Millipore, United States) system and values were expressed as mean of apoptotic cells relative to mock with error bars representing the SD. All values are expressed as mean±SD (n=3). Statistical significance (defined as P-value <0.05) was evaluated using multiple t-test to compare control and infected or treated cells (Graph Prism 7 Software, San Diego, Calif., United States).


Flow Cytometry Analysis of Cell Cycle


Microglia cells, BS and μBS (infected and uninfected) were cultivated in 6-well plates and incubated for 48 h. Microglia cells for all conditions were harvested through mechanical detachment with a cell scraper (Sarstedt, Blade 25, 83.1830) in 500 μl of the PBS, and centrifuged for 5 min at 2000 RPM. Two aggregates of BS and μBS were collected using a 1 mL micropipette. Obtained pellets were fixed with 70% ethanol. The cells were kept in −20° C. overnight. After ethanol removal, cells were suspended in 250 μL PBS and centrifuged for 5 min at 2000 RPM. Cell pellets were suspended in 200 μL of Muse Cell Cycle Reagent and were incubated for 30 min at room temperature and protected from light. The cell suspension was transferred to a 1.5 mL microcentrifuge tube prior to analysis on Muse Cell Analyzer. Cell cycle was assessed by fluorescence-activated cell analysis using a Muse Cell Analyzer (Merck, Millipore, United States). All values are expressed as mean±SEM (n=3). Statistical significance (defined as P-value <0.05) was evaluated using multiple t-test to compare control and infected or treated cells with LPS (Graph Prism 7 Software).


Viral RNA Extraction


Viral RNA for the real-time RT-PCR (qPCR) assays was purified from the culture supernatant of the uninfected and infected microglia, BS and μBS. The viral RNA was extracted from 240 μl of culture supernatant by using the QlAamp MinElute virus spin kit (Qiagen, Valencia, Calif., United States) according to the manufacturer's instructions, with the exception of the elution volume, which was 65 μl.


DENV-1 and ZIKV qPCR


RNA isolated from the supernatant after DENV-1 and ZIKV infections were used in qPCR independently. The MOCK samples were used as negative controls in both qPCRs. The QuantiTect One-Step RT-PCR kit (Qiagen, Hilden, Germany) was used with a 25 μl reaction mixture under the following conditions: 5 μl of kit master mixture (including Taq polymerase and RT enzyme), 1.25 μl of 10 μM of each primer, 0.5 μl of 10 μM of probe, 7 μl of RNA-free-water (Mol Bio grade, Hamburg, Germany), and 10 μl of the extracted sample. Each amplification run contained negative control (NC) of each experiment (MOCK); non-template control (NTC), and positive control (PC). The non-template control consisted of blank reagent and water. For the positive control, nucleic acid extracted from each virus stock were used after dilution 1:1000 to avoid cross-contamination. The protocol used to ZIKV and DENV-1 qPCR was the same conditions except primers and probes (Table 4) and cycling thermal. The DENV-1 qPCR was done as described previously (Johnson et al., 2005) with some modification; a single cycle of reverse transcription for 30 min at 50° C., 15 min at 95° C. for reverse transcriptase (RT) inactivation, and DNA polymerase activation followed by 45 amplification cycles of 15 s at 95° C. and 1 min 55° C. (annealing-extension step). The following thermal profile was used to ZIKV qPCR a single cycle of reverse transcription for 30 min at 50° C., 15 min at 95° C. for RT inactivation, and DNA polymerase activation followed by 40 amplification cycles of 15 s at 95° C. and 1 min 60° C. (annealing-extension step). For RNA standards, RNA was isolated from purified, titered stock of ZIKV-UG or DENV-1. RNA yield was quantified by spectrometry and the data was used to calculate genomes/μl. ZIKV-UG and DENY-1 RNA was serially diluted 1:10 in 8 points of dilution for standard curve (107 to 101). The standard curve was amplified in duplicate using primers and conditions described above for each specific qPCR. The number of infectious viral RNA transcripts detected was calculated by generating a standard curve from 10-fold dilutions of RNA isolated.









TABLE 4







Oligonucleotide primers and fluorogenic probes


used in DENV-1 and ZIKV virus qPCR assay.










Virus
Genome
posi-
Fluoro-


detection
Sequence 5′-3′
tion
phone





DENV-1 
CAAAAGGAAGTCGTGCAATA
8978-



reverse 

8993



primer








DENV-1 
CTGAGTGAATTCTCTCTACTGAACC
9084-



reverse 

9109



primer








DENV-1 
CATGTGGTTGGGAGCACGC
8998-
FAM/


probe

9017
BHQ-1





ZIKV 
AARTACACATACCARAACAAAGTGGT
9271-



forward 

9297



primer








ZIKV 
TCCRCTCC CYCTYTGGTCGGT
9352-



reverse 

9373



primer








ZIKV 
CTYAGACCAGCTGAAR
9304-
FAM/


probe

9329
BHQ-1









Analysis of Confocal Microscopy


After 72 h exposure BS and μBS were collected and fixed with PFA (4%) for 1 h at room temperature. Subsequently, BS, and μBS were washed twice with PBS (1×) and incubated with blocking solution (10% goat serum, 1% BSA, 0.15% saponin in PBS) at 4° C. for 1 h. The BS were washed with washing solution (1% BSA, 0.15% saponin in PBS), and incubated overnight at 4° C. with primary antibodies: Zika NS1 (OWL, 55788, 1:200, ZIKV) anti-NF200 (Sigma Aldrich, N4142, 1:200, neurofilament for all neurons), and IBA1 (WAKO, Richmond, Va., United States, 019-19741, 1:200, microglia) diluted in blocking solution. The next day the BS and μBS were washed twice with washing solution and incubated with the secondary antibody 568-Alexa anti-rabbit and 488-Alexa anti-mouse both 1:200 diluted in blocking solution for 24 h at 4° C. and protected from light. Thereafter, BS and μBS were washed twice again with washing solution. Nuclei were stained with Hoechst 33342, diluted 1:10,000 in PBS for 1 h. The BS were transferred to microscope glass slides and mounted with “Immuno mount” and imaged with a confocal microscope Zeiss LSM 510 Confocal III (Zeiss) with a 20× objective.


Cellular RNA Isolation and qPCR


Total RNA was extracted from microglia, BS and μBS 72 h post infection (p.i.) using RNAeasy Mini Kit (Qiagen, Hilden, Germany). RNA quantity and purity was determined using a NanoDrop 2000c (Thermo Scientific). 1 μg of RNA was reverse-transcribed using the MLV Promega RT (Promega) according to the manufacturer's recommendations. The expression of genes was evaluated using specific TaqMan® Gene Expression Assays (Life Technologies). Table 5 shows a summary of the assayed genes. qPCR was performed using a 7500 Fast Real Time system machine (Applied Biosystems). Fold changes were calculated using the 2 (−ΔΔCt) method (Livak and Schmittgen, 2001). β-actin and 18s were used as housekeeping genes for mRNA. Data are presented as mean±SD, normalized to housekeeping genes and MOCK.









TABLE 5





List of TaqMan assays used for QPCR analysis



















CCL2
Chemokine (C-C motif) ligand 2
Hs00234140_m1



TNF-α
Tumor necrosis factor alpha
Hs01113824_g1



IL10
Interleukin 10
Hs00961622_m1



IL6
Interleukin 6
Hs009S5839_m1



IL1b
Interleukin 1 beta
Hs01555410_m1



ACTB
Beta-actin
Hs01060665_g1










Results


Incorporation of SV40-Immortalized Human Microglial Cells Into a 3D BS Model


Microglia cells were added to the BS at 7 weeks of differentiation (FIG. 9A) and were able to attach to the surface of the BS. However, as the microglia cell line used for this study


is immortalized and proliferation takes place, we were only able to maintain (IBS (BS with microglia) for 1 week after incorporation for our experiments Immunohistochemistry of (IBS demonstrated they were positive for microglia markers such as TMEM19, Mertk, Ax1 (FIG. 9B), and IBA1 (FIG. 9C). Microglia grew on the surface of the μBS, forming a microglia protuberance on the sphere (FIGS. 9C,D). These formations appear in 50% of the aggregates, seemingly due to the co-culture technique.


Presence of Microglia in BS Alters Gene Expression of Cytokines in Response to Inflammatory Stimuli


Once microglial cells were successfully incorporated into BS, we evaluated whether the μIBS model would then respond to inflammatory stimuli in a distinct manner to BS. Microglial culture, BS, and μIBS were exposed to 20 ng/mL LPS, which is a potent activator of inflammatory pathways in myeloid cells (Fujihara et al., 2003). Cells were collected at 0, 3, 6, 12, and 24 h post-treatment (p.t.) and levels of CCL2, TNF-α, IL-1b, IL-6, and IL-10 RNA were quantitated by qPCR. In the absence of microglia, BS responded poorly to LPS (FIG. 10A). Conversely, cultures containing solely microglial cells responded to LPS by upregulating the expression of CCL2 and TNF-α 24 h p.t. No significant changes in the levels of IL-6, IL-1b, and IL-10 were observed. The mixing of both populations into uBSs, however, led to distinct responses against LPS, specifically for IL-1b, IL-6, and IL-10, which were all upregulated in the first 12 h p.t. and downregulated 24 h p.t. The increased RNA expression of CCL2 and TNF-α in sole microglia cultures was not observed in μBS cultures, indicating that the presence of other cell types in the BS indirectly (through secreted factors) or directly (by cell-to-cell interactions) altered the LPS-response, which was observed in myeloid cells. This indicates crosstalk between microglia and other cell populations in the μBS model. After LPS treatment, microglia showed an increase in dividing cells, characterized by a higher percentage of cells in S or G2/M phases when compared to non-treated microglia (FIG. 10B). In addition, cell viability decreased after LPS treatment in microglia and in μBS, indicating that microglia may play an important role in viral neurotoxicity (FIG. 10C).


The μBS Support Replication of Dengue 1 (DENV-1) and Zika Viruses (ZIKV)


Organoids have been previously used as models for virus pathogenesis (Gabriel et al., 2017; Salick et al., 2017; Watanabe et al., 2017). To evaluate whether the incorporation of microglial cells into BS would interfere with viral replication, microglia, BS, and μBS were infected with DENY-1 and two distinct strains of ZIKV (ZIKV-UG and ZIKV-BR). FIG. 11 represents immunohistochemistry on BS and μBS for control (mock) and treated samples (ZIKV-BR, ZIKV-UG, and DENY). Mock samples did not show any positive staining for ZIKV (FIG. 11) or DENY (data no shown). Cultured cells and aggregates were exposed to the three pathogens and viral growth in the supernatants was measured every 24 h for 3 days (FIG. 12A). Microglia and μBS showed higher replication efficiency in the first 48 h showing a significant difference after 72 h in microglia infected with ZIKV-UG and ZIKV-BR. However, DENY-1 did not show significant changes between models after 72 h (FIG. 12A). Viral infection was confirmed by immune staining (FIG. 11). Both BS and μBS were found to be infected by ZIKVBR, ZIKV-UG, and DENY which upon qualitatively analyzing the images, showed higher virus accumulation in microglia cells than in the other cell types (FIG. 11). This together with the replication results (FIG. 12A) indicate that these flavivirus infect microglia or that microglia internalize more viral particles via phagocytosis. DENY-1 infection led to a slight increase in dividing cells in BS and μBS, characterized by a higher percentage of cells in S or G2/M phases when compared to sole microglia (FIG. 12B). However, DENY-1 was slightly more cytotoxic to microglia and BS than μBS (FIG. 12C), indicating a protective role for microglial cells in the 3D model. Similar results were observed against ZIKV-UG, which appeared to be more cytotoxic to BS (FIG. 12C), despite no changes in the cell cycle among all conditions (FIG. 12B). This could be due to the protective capability of microglia and their role in internalizing viral particles. Interestingly, ZIKV-BR infection in μBS caused a significant increase in dividing cells concomitantly to a slight decrease in viability (not statistically significant), indicating that microglial cells contribute to higher cytotoxicity in response to a more aggressive ZIKV strain.


The Presence of Microglia Alters the Cytokine Gene Expression in Response to Flavivirus Infection


As part of the innate immune response, microglial cells respond to viral infection by secreting inflammatory cytokines. To determine whether the addition of microglial cells to BS modulates the immune response against flavivirus infection, the levels of intracellular TNF-α, CCL2, IL-1b, and IL-6 mRNA were measured in sole microglia, BS, and μBS 72 h after exposure to DENY-1, ZIKV-UG, and ZIKV-BR. After DENY-1 infection, cytokine expression was observed mostly in microglia and μBS, but not BS. Interestingly, the secretion pattern varied between the analytes (FIG. 12D). While TNF-α and IL-6 production increased in sole microglia post-infection, CCL2 and IL-1b, were upregulated only in μBS (FIG. 12D). The presence of microglia cells in μBS also led to an increase in ZIKV-induced cytokine production when compared to sole microglia and BS. Moreover, cytokine levels in μBS were significantly higher in response to ZIKV-BR than those observed with the Uganda strain.


Discussion

3D brain models have been increasingly used in the last years, primarily in ZIKV studies (Qian et al., 2016, 2017; Wells et al., 2016; Salick et al., 2017; Watanabe et al., 2017; Zhou et al., 2017). These studies, however, have mainly focused on neurogenesis. The relevance of other brain populations such as microglia has been highlighted, indicating that these tissue-resident brain macrophages are key players in brain homeostasis, development, and diseases (Derecki et al., 2014; Salter and Stevens, 2017). Microglia incorporation into 3D models has not been achieved previously. In this study, we have successfully introduced microglia into our 3D brain spheroids, and demonstrated they alter the response to viral infection. Two techniques were compared to establish the protocol: in the first approach, human microglia immortalized cells were added on top of the NPCs before the formation of the spheres, and then differentiated in 3D over 8 weeks (FIG. 13). Without wishing to be bound by theory, the nature of the microglia used (immortalized by SV40) made this initial protocol impossible due to the constant proliferation leading to a high microglia population. Immortalized cell lines tend to be used as a high-throughput model for experimentation as they are homogeneous in culture. The human microglia immortalized with SV-40 used in our study exhibits biological characteristics such as morphological, phenotypical, and functional properties similar to those documented in primary human microglia (Patel et al., 2016; Zhu et al., 2016; Sousa et al., 2017). Also, immortalized microglia demonstrate appropriate migratory and phagocytic activity, and can elicit the pro-inflammatory cytokine response, which is characteristic of human microglia (Garcia-Mesa et al., 2017). When adding microglia cells to NPCs (FIG. 13, cells added during the aggregation stage with the NPCs), around 50% of the spheres led to overgrowth of microglia and some neuronal cell death. The use of iPSC-derived microglia, however, could solve this problem in the future (Muffat et al., 2016). In order to avoid microglial proliferation, microglia cells were added after BS differentiation in the second regimen, after 7 weeks differentiation, and kept for a maximum of 1 week in co-culture (FIG. 9A). Microglia were then identified by using different markers such as TMEM119, Mertk, Ax1, and IBA1, showing their attachment and growth in the μBS (FIGS. 9B,C). The pro-inflammatory stimulus LPS from Gram-negative bacteria as used here and Gram-positive lipoteichoic acid as shown earlier (Kinsner et al., 2005, 2006; Boveri et al., 2006) activate microglia in infections. LPS was used to challenge the μBS system and to compare its effects with both BS and microglia cultures. In response to LPS, microglia produce large quantities of proinflammatory cytokines such as TNF-α, IL-1b, and IL-6. This is normally followed by the production of anti-inflammatory cytokine IL-10 (de WaalMalefyt et al., 1991; Randow et al., 1995). Microglia cultures showed no statistically significant changes neither in pro-inflammatory marker RNA levels (IL-6 and IL-1(3) or in the anti-inflammatory marker (IL-10). This could be due to the need of other CNS cell types such as astrocytes for the release of these specific cytokines. However, TNF-α and CCL2 were strongly upregulated 24 h after LPS treatment (FIG. 10A) since microglia is the major producer of TNFα and CCL2 is a gene that encodes a small cytokine that recruits monocytes between other inflammatory cells (such as memory T cells and dendritic cells) into the inflammation area. Microglia exposed to LPS showed higher expression (lower Ct values) of most of the genes studied compared to μBS and BS (data no shown). This indicates that microglia express higher levels of these genes, or that in the presence of other cell types in the μBS, these dilute the expression levels of these genes as other cells do not express them (but expression is normalized to housekeeping genes expressed by all cell types). Pro-inflammatory cytokine-encoding genes IL-6 and IL-1β showed a clear increase in expression (FIG. 10A) in μBS. Interestingly, the anti-inflammatory marker IL-10 was also upregulated after LPS treatment in μBS. Cytokines are released very rapidly after inflammatory stimuli and are regulated within a few hours, this could explain the observed co-expression of both anti- and pro-inflammatory genes. The TNF-α gene was not modified significantly after LPS exposure in μBS, BS, and microglia at the early time points. However, microglia exposed to LPS during 24 h LPS exposure showed a high up-regulation. BS and microglia cultures per se did not show statistically significant responses to IL6, IL10, and ILlb at the mRNA level, however, μBS were able to elicit a response which otherwise was not induced in BS after LPS treatment. This indicates that the interaction between microglia and CNS cells (such as neurons, astrocytes and oligodendrocytes) are required for a specific inflammatory response. This study demonstrates the importance of including microglial populations in in vitro models to better predict human pathogenicity.


Flavivirus (DENY-1, ZIKV-BR, and ZIKV-UG) infection induced different responses depending of the model used (microglia, BS or μBS). Flavivirus infection resulted in produced a higher number of RNA virus copies in microglia cells (FIG. 12A). Moreover, these viruses were also able to replicate in BS, which is rarely observed in vitro. There was an initial increase in viral replication when microglia were added to BS (FIG. 12A), however, levels of RNA copies/mL were similar between BS and μBS at 72 h. Microglia showed no changes in viability after virus infection (FIG. 12C). ZIKV-BR infection led to higher replication compared to ZIKV-UG and DENY-1 independent of the model, which could indicate that this flavivirus strain is more aggressive than the others (FIG. 12A). Moreover, ZIKV-BR infection showed a higher replication rate in microglia and μBS than in BS (FIG. 12A) indicating that microglia may somehow influence the replication rate.


Flavivirus infection in μBS and BS showed differences in the expression profile of the genes studied. After infection of μBS by ZIKV-BR and ZIKV-UG, upregulation of TNF-α, IL6, IL1b, and CCL2 was observed when compared with BS (FIG. 12D). Moreover, DENY-1 infection led to the upregulation of CCL2 and IL-1β in the presence of microglia (OS) and upregulation of TNF-α and IL-6 in microglia alone. The μBS model presented a stronger upregulation of all cytokines studied after ZIKV infection, indicating that the interaction between BS and microglia produce more drastic changes in gene expression, which is more relevant to study the physiological response to infection. Moreover, ZIKV-BR infection led to G2/M arrest in μBS when compared to ZIKV-UG and DENY-1 (FIG. 12B). Similar results have demonstrated that ZIKVBR infection deregulates the cell cycle, resulting in attenuated hNPC growth (Dang et al., 2016; Garcez et al., 2016; Tang et al., 2016; Ghouzzi et al., 2017). Furthermore, phagocytosis of apoptotic cells by microglia cells has been described as a general mechanism to clear these cells from tissues (Arandjelovic and Ravichandran, 2015). Duque and Descoteaux described that beside the secretion of cytokines, macrophages can increase their phagocytotic process, contributing to the defense against pathogens (Arango Duque and Descoteaux, 2014).


The findings indicate that the microglia-driven inflammatory response to ZIKV infection may be exacerbated by endogenous signaling molecules such as viral proteins that can contribute to the pathological damage of neurons. Based on these findings, the activated microglia in μBS play a potential role in enhancing the expression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and TNF-α in response to ZIKV-BR infection.


In conclusion, the incorporation of human microglia in BS produced an inflammatory response following LPS or flavivirus exposure. This has not been studied previously in a 3D in vitro brain model which includes a population of microglial cells. Both exposures produced changes in cell cycle and Annexin V analysis in presence of microglia, indicating that the microglia-driven inflammatory response induces cytotoxicity leading to a decrease in cell viability. Without being bound by theory, microglia derived from iPSC-derived microglia can represent an improvement of this model to limit proliferation and extend the co-culture period. As microglia occupy a central position in the defense and maintenance of the CNS, a 3D in vitro model including microglia can be fundamental for studies of the brain. Moreover, various anti-inflammatory drugs have been identified in treating microglia-mediated neuroinflammation in the CNS (Baby et al., 2014). Without wishing to be bound by theory, the disclosed model can serve as a potential tool for the screening of therapeutic targets in neurological disorders and recovery from brain injury. In conclusion, the findings indicate that the μBS model has potential applications as a physiologically relevant model to study infectious disease, host-pathogen interactions, and neuro-inflammation.


REFERENCES CITED IN THIS EXAMPLE



  • Alliot, F., Godin, I., and Pessac, B. (1999). Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117, 145-152. doi: 10.1016/S0165-3806(99)00113-3.

  • Arandjelovic, S., and Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907-917. doi: 10.1038/ni.3253.

  • Arango Duque, G., and Descoteaux, A. (2014). Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491. doi: 10.3389/fimmu.2014.00491.

  • Baby, N., Patnala, R., Ling, E. A., and Dheen, S. T. (2014). Nanomedicine and its application in treatment of microglia-mediated neuroinflammation. Curr. Med. Chem. 21, 4215-4226. doi: 10.2174/0929867321666140716101258.

  • Baer, A., and Kehn-Hall, K. (2014). Viral concentration determination through plaque assays: using traditional and novel overlay systems. J. Vis. Exp. 93:e52065. doi: 10.3791/52065.

  • Boche, D., Perry, V. H., and Nicoll, J. A. (2013). Review: activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol. 39, 3-18. doi: 10.1111/nan.12011.

  • Boveri, M., Kinsner, A., Berezowski, V., Lenfant, A. M., Draing, C., Cecchelli, R., et al. (2006). Highly purified lipoteichoic acid from gram-positive bacteria induces in vitro blood-brain barrier disruption through glia activation: role of pro-inflammatory cytokines and nitric oxide. Neuroscience 137, 1193-1209. doi: 10.1016/j.neuroscience.2005.10.011.

  • Daep, C. A., Munoz-Jordan, J. L., and Eugenin, E. A. (2014). Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol. 20, 539-560. doi: 10.1007/s13365-014-0285-z.

  • Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., et al. (2016). Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19, 258-265. doi: 10.1016/j.stem.2016.04.014. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., and de Vries, J. E. (1991). Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209-1220. doi: 10.1084/jem.174.5.1209.

  • Derecki, N. C., Katzmarski, N., Kipnis, J., and Meyer-Luehmann, M. (2014). Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol. 128, 333-345. doi: 10.1007/s00401-014-1321-z.

  • Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., and Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100, 171-194. doi: 10.1016/j.pharmthera.2003.08.003.

  • Gabriel, E., Ramani, A., Karow, U., Gottardo, M., Natarajan, K., Gooi, L. M., et al. (2017). Recent zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell Stem Cell 20, 397.e5-406.e5. doi: 10.1016/j.stem.2016.12.005.

  • Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S., and Liu, B. (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J. Neurochem. 81, 1285-1297. doi: 10.1046/j.1471-4159.2002.00928.x.

  • Garcez, P. P., Loiola, E. C., Madeiro da Costa, R., Higa, L. M., Trindade, P., Delvecchio, R., et al. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816-818. doi: 10.1126/science.aaf6116.

  • Garcia-Mesa, Y., Jay, T. R., Checkley, M. A., Luttge, B., Dobrowolski, C., Valadkhan, S., et al. (2017). Immortalization of primary microglia: a new platform to study HIV regulation in the central nervous system. J. Neurovirol. 23, 47-66. doi: 10.1007/s13365-016-0499-3.

  • Ghouzzi, V. E., Bianchi, F. T., Molineris, I., Mounce, B. C., Berto, G. E., Rak, M., et al. (2017). ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death Dis. 8:e2567. doi: 10.1038/cddis.2016.446.

  • Ginhoux, F., Lim, S., Hoeffel, G., Low, D., and Huber, T. (2013). Origin and differentiation of microglia. Front. Cell. Neurosci. 7:45. doi: 10.3389/fnce1.2013.00045.

  • Hu, X., Zhou, H., Zhang, D., Yang, S., Qian, L., Wu, H. M., et al. (2012). Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J. Neuroimmune Pharmacol. 7, 187-201. doi: 10.1007/s11481-011-9309-0.

  • Johnson, B. W., Russell, B. J., and Lanciotti, R. S. (2005). Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J. Clin. Microbiol. 43, 4977-4983. doi: 10.1128/JCM.43.10.4977-4983.2005.

  • Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., et al. (2013). Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl. Acad. Sci. U.S.A. 110, 20284-20289. doi: 10.1073/pnas.1315710110.

  • Kempuraj, D., Thangavel, R., Selvakumar, G. P., Zaheer, S., Ahmed, M. E., Raikwar, S. P., et al. (2017). Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 11:216. doi: 10.3389/fnce1.2017.00216.

  • Kettenmann, H., Hanisch, U. K., Noda, M., and Verkhratsky, A. (2011). Physiology of microglia. Physiol. Rev. 91, 461-553. doi: 10.1152/physrev.00011.2010.

  • Kierdorf, K., Erny, D., Goldmann, T., Sander, V., Schulz, C., Perdiguero, E. G., et al. (2013). Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273-280. doi: 10.1038/nn.3318.

  • Kinsner, A., Boveri, M., Hareng, L., Brown, G. C., Coecke, S., Hartung, T., et al. (2006). Highly purified lipoteichoic acid induced pro-inflammatory signaling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide. J. Neurochem. 99, 596-607. doi: 10.1111/j.1471-4159.2006.04085.x.

  • Kinsner, A., Pilotto, V., Deininger, S., Brown, G. C., Coecke, S., Hartung, T., et al. (2005). Inflammatory neurodegeneration induced by lipoteichoic acid from Staphylococcus aureus is mediated by glia activation, nitrosative and oxidative stress, and caspase activation. J. Neurochem. 95, 1132-1143. doi: 10.1111/j.1471-4159.2005.03422.x.

  • Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379. doi: 10.1038/nature12517.

  • Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2□11CT. Methods 25, 402-408. doi: 10.1006/meth.2001.1262.

  • Ludlow, M., Kortekaas, J., Herden, C., Hoffmann, B., Tappe, D., Trebst, C., et al. (2016). Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 131, 159-184. doi: 10.1007/s00401-015-1511-3.

  • Marx, U., Andersson, T. B., Bahinski, A., Beilmann, M., Beken, S., Cassee, F. R., et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272-321. doi: 10.14573/altex.1603161.

  • Michell-Robinson, M. A., Touil, H., Healy, L. M., Owen, D. R., Durafourt, B. A., Bar-Or, A., et al. (2015). Roles of microglia in brain development, tissue maintenance and repair. Brain 138, 1138-1159. doi: 10.1093/brain/awv066.

  • Muffat, J., Li, Y., Yuan, B., Mitalipova, M., Omer, A., Corcoran, S., et al. (2016). Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358-1367. doi: 10.1038/nm.4189.

  • Neal, J. W. (2014). Flaviviruses are neurotropic, but how do they invade the CNS? J. Infect. 69, 203-215. doi: 10.1016/j.jinf.2014.05.010.

  • Olajide, O. A., Bhatia, H. S., de Oliveira, A. C., Wright, C. W., and Fiebich, B. L. (2013). Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid. Based Complement. Ahern. Med. 2013:459723. doi: 10.1155/2013/459723.

  • Pamies, D., Barreras, P., Block, K., Makri, G., Kumar, A., Wiersma, D., et al. (2017). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX 34, 362-376. doi: 10.14573/altex.1609122.

  • Pamies, D., Block, K., Lau, P., Gribaldo, L., Pardo, C. A., Barreras, P., et al. (2018). Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol. Appl. Pharmacol. 354, 101-114. doi: 10.1016/j.taap.2018.02.003.

  • Pamies, D., and Hartung, T. (2017). 21st century cell culture for 21st century toxicology. Chem. Res. Toxicol. 30, 43-52. doi: 10.1021/acs.chemrestox.6b00269.

  • Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456-1458. doi: 10.1126/science.1202529.

  • Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671-678. doi: 10.1038/nmeth.3415.

  • Patel, A. B., Tsilioni, I., Leeman, S. E., and Theoharides, T. C. (2016). Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc. Natl. Acad. Sci. U.S.A. 113, E7049-E7058. doi: 10.1073/pnas.1604992113.

  • Pompon, J., Morales-Vargas, R., Manuel, M., Huat Tan, C., Vial, T., Hao Tan, J., et al. (2017). A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Sci. Rep. 7:1215. doi: 10.1038/s41598-017-01282-6.

  • Qian, X., Nguyen, H. N., Jacob, F., Song, H., and Ming, G. L. (2017). Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952-957. doi: 10.1242/dev.140707.

  • Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., et al. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238-1254. doi: 10.1016/j.cell.2016.04.032.

  • Randow, F., Syrbe, U., Meisel, C., Krausch, D., Zuckermann, H., Platzer, C., et al. (1995). Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor beta. J. Exp. Med. 181, 1887-1892. doi: 10.1084/jem.181.5.1887.

  • Salick, M. R., Wells, M. F., Eggan, K., and Kaykas, A. (2017). Modelling zika virus infection of the developing human brain in vitro using stem cell derived cerebral organoids. J. Vis. Exp. 127:e56404. doi: 10.3791/56404.

  • Salter, M. W., and Stevens, B. (2017). Microglia emerge as central players in brain disease. Nat. Med. 23, 1018-1027. doi: 10.1038/nm.4397.

  • Sandstrom, J., Eggermann, E., Charvet, I., Roux, A., Toni, N., Greggio, C., et al. (2017). Development and characterization of a human embryonic stem cell-derived 3D neural tissue model for neurotoxicity testing. Toxicol. In Vitro 38, 124-135. doi: 10.1016/j.tiv.2016.10.001.

  • Smirnova, L., Kleinstreuer, N., Corvi, R., Levchenko, A., Fitzpatrick, S. C., and Hartung, T. (2018). 3S-systematic, systemic, and systems biology and toxicology. ALTEX 35, 139-162. doi: 10.14573/altex.1804051.

  • Sousa, C., Biber, K., and Michelucci, A. (2017). Cellular and molecular characterization of microglia: a unique immune cell population. Front. Immunol. 8:198. doi: 10.3389/fimmu.2017.00198.

  • Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., et al. (2016). Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18, 587-590. doi: 10.1016/j.stem.2016.02.016.

  • Thompson, K. K., and Tsirka, S. E. (2017). The diverse roles of microglia in the neurodegenerative aspects of central nervous system (CNS) autoimmunity. Int. J. Mol. Sci. 18:504. doi: 10.3390/ijms18030504.

  • Wang, W. Y., Tan, M. S., Yu, J. T., and Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann. Transl. Med. 3:136. doi: 10.3978/j.issn.2305-5839.2015.03.49.

  • Watanabe, M., Buth, J. E., Vishlaghi, N., de la Torre-Ubieta, L., Taxidis, J., Khakh, B. S., et al. (2017). Self-organized cerebral organoids with human-specific features predict effective drugs to combat zika virus infection. Cell Rep. 21, 517-532. doi: 10.1016/j.celrep.2017.09.047.

  • Wells, M. F., Salick, M. R., Wiskow, O., Ho, D. J., Worringer, K. A., Ihry, R. J., et al. (2016). Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from zika virus infection. Cell Stem Cell 19, 703-708. doi: 10.1016/j.stem.2016.11.011.

  • Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414-418. doi: 10.1038/nature13716.

  • Zhou, T., Tan, L., Cederquist, G. Y., Fan, Y., Hartley, B. J., Mukherjee, S., et al. (2017). High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 21, 274.e-283.e. doi: 10.1016/j.stem.2017.06.017.

  • Zhu, W., Carney, K. E., Pigott, V. M., Falgoust, L. M., Clark, P. A., Kuo, J. S., et al. (2016). Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of NaC/HC exchanger isoform 1. Carcinogenesis 37, 839-851. doi: 10.1093/carcin/bgw068.



EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. An in vitro brain microphysiological system (BMPS), comprising at least one neural cell type aggregated into a spheroid mass; anda population of microglia-like cells, whereinthe in vitro BMPS is electrophysiologically active in a spontaneous manner.
  • 2. The BMPS of claim 1, wherein the micro-glia like cells comprise microglia, microglia precursor cells, or a combination thereof.
  • 3. The BMPS of claim 1, wherein the micro-glia like cells comprise monocytes, human monocytes, pro-monocyte cell lines, hematopoietic stem cells, isolated microglia, immortalized microglia, or combinations thereof.
  • 4. The BMPS of claim 3, where the monocytes comprise adult cell-derived monocytes, embryonic cell-derived monocytes, or a combination thereof.
  • 5. The BMPS of claim 4, wherein the monocytes comprise embryonic stem cell (ESC)-derived monocytes, induced pluripotent stem cell (iPSC)-derived monocytes, or a combination thereof.
  • 6. The BMPS of claim 3, wherein the isolated microglia comprise adult microglia, fetal microglia, or a combination thereof.
  • 7. The BMPS of claim 3, wherein the microglia-like cells are derived from somatic cells, neuronal cells, myeloid progenitor cells, or a combination thereof.
  • 8. The BMPS of claim 1, wherein the microglia-like cells express one or more of the following biomarkers: HLA-DR, Iba1, CD14, CX3CR1, F4/80, CD80, CD86, CD36, iNOS, COX2, ARG1, PPARγ, SOCS-3, TMEM119, Mertk, Ax1, CD11b, CD11c, P2RY12, CD45, CD68, CD40, B7, ICAM-1, or any combination thereof.
  • 9. The BMPS of claim 1, wherein the BMPS expresses receptors associated with microglia function.
  • 10. The BMPS of claim 9, wherein the receptors associated with microglia function comprise CCL2, CX3CL, RAGE, NLRP3, SR-AI, TREM2, FPRL1/FPR2, CD36, CD33, C5a, CR1, CR3/Mac-1, FcRs, FPRs, TLRs, or a combination thereof.
  • 11. The BMPS of claim 1, the BMPS being configured to elicit a pro-inflammatory response, an anti-inflammatory response, or a combination thereof.
  • 12. The BMPS of claim 11, the BMPS being configured to elicit a pro-inflammatory response to viral infection, LPS exposure, or a combination thereof.
  • 13. The BMPS of claim 11, the BMPS being configured to elicit an anti-inflammatory response to IL-3, IL-4, IL-10, IL-13, IL-1β, IL-6, TNF-α, TGF-β, or a combination thereof.
  • 14. The BMPS of claim 1, wherein the microglia-like cells comprise about 20% or less of the BMPS.
  • 15. The BMPS of claim 1, wherein the at least one neuronal cell type comprises a mature neuron, a glial cell, or a combination thereof.
  • 16. The BMPS of claim 15, wherein the at least one neural cell type further comprises astrocytes, polydendrocytes, oligodendrocytes, or combinations thereof.
  • 17. The BMPS of claim 1, wherein the in vitro BMPS has neural characteristics selected from the group consisting of synaptogenesis, neuron-neuron interactions, neuronal-glial interactions, axon myelination, cell migration, neurological development, disease phenotypes, and combinations thereof.
  • 18. The BMPS of claim 17, wherein disease process phenotypes comprise autophagy, integrated stress response, non-sense mediated decay, lesions, amyloid deposition, plaque formation, protein aggregation, or combinations thereof.
  • 19. The BMPS of claim 1, wherein the at least one neural cell type express one or more biomarker selected from the group consisting of MBP, PLP, NG2, Olig1, Olig2, Olig 3, OSP, MOG, SOX10, neurofilament 200 (NF200), GRIN1, GAD1, GABA, TH, LMX1A, FOXO1, FOXA2, FOXO4, CNP, TH, TUBIII, NEUN, SLC1A6, and any combination thereof.
  • 20. The BMPS of claim 1, wherein the at least one neuronal cell type comprises one or more genetically modified cells.
  • 21. The BMPS of claim 20, wherein the one or more genetically modified cells comprise one or more reporter genes.
  • 22. The in vitro BMPS of claim 1, wherein the spheroid mass comprises a diameter that is about 1000 μm or less.
  • 23. The in vitro BMPS of claim 22, wherein the spheroid mass comprises a diameter that is about 500 μm or less.
  • 24. The BMPS of claim 1, further comprising one or more endothelial cells, pericytes, or a combination thereof capable of forming a blood-brain-barrier.
  • 25. A method of reproducibly producing an in vitro brain microphysiological system (BMPS), comprising: inducing one or more pluripotent stem cell (PSC) types;differentiating the one or more PSC types to form one or more neural progenitor cell (NPC) types;exposing the one or more NPC types to gyratory shaking or stirring;differentiating the one or more NPC types into one or more neural cell types aggregated into a spheroid mass; andadding microglia-like cells.
  • 26. The method of claim 25, wherein the micro-glia like cells comprise mature microglia, monocytes, human monocytes, pro-monocyte cell lines, PSC-derived monocytes, hematopoetic stem cells, isolated microglia, immortalized microglia, or combinations thereof.
  • 27. The method of claim 25, wherein the one or more pluripotent stem cells are selected from the group consisting of human or animal embryonic stem cells, iPSC, adult stem cells, fibroblasts, embryonic fibroblasts, peripheral blood mononuclear cells, neuronal precursor cells, mesenchymal stem cells, neuronal cells, glial cells, and combinations thereof.
  • 28. The method of claim 25, wherein the microglia-like cells are added during an early stage (before BMPS differentiation) or late stage (after BMPS differentiation).
  • 29. The method of claim 25. wherein microglia are generated in parallel with the BMPS.
  • 30. The method of claim 25, wherein gyratory shaking comprises constant or regular gyratory shaking or stirring for 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, or 8 or more weeks.
RELATED APPLICATIONS

This application is a continuation application, filed under 35 U.S.C. § 120, of U.S. application Ser. No. 16/077,411, filed on Aug. 10, 2018, which is a national stage application, filed under 35 U.S.C. § 371, of International Stage Application No. PCT/US2017/017464, filed on Feb. 10, 2017, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/294,112, filed Feb. 11, 2016, all of which are incorporated herein by reference in their entireties.

STATEMENT AS TO FEDERALLY SPONSORED RESEARCH

The invention was made with government support under the following grant awarded by the National Institute of Health (NIH): U18TR000547. The government has certain rights in the invention.

Provisional Applications (1)
Number Date Country
62294112 Feb 2016 US
Continuations (1)
Number Date Country
Parent 16077411 Aug 2018 US
Child 16700750 US