Compositions and methods for ovarian cancer therapy and diagnosis

Information

  • Patent Grant
  • 6468758
  • Patent Number
    6,468,758
  • Date Filed
    Thursday, September 16, 1999
    25 years ago
  • Date Issued
    Tuesday, October 22, 2002
    22 years ago
Abstract
Compositions and methods for the therapy and diagnosis of cancer, such as ovarian cancer, are disclosed. Compositions may comprise one or more ovarian carcinoma proteins, immunogenic portions thereof, polynucleotides that encode such portions or antibodies or immune system cells specific for such proteins. Such compositions may be used, for example, for the prevention and treatment of diseases such as ovarian cancer. Methods are further provided for identifying tumor antigens that are secreted from ovarian carcinomas and/or other tumors. Polypeptides and polynucleotides as provided herein may further be used for the diagnosis and monitoring of ovarian cancer.
Description




TECHNICAL FIELD




The present invention relates generally to ovarian cancer therapy. The invention is more specifically related to polypeptides comprising at least a portion of an ovarian carcinoma protein, and to polynucleotides encoding such polypeptides, as well as antibodies and immune system cells that specifically recognize such polypeptides. Such polypeptides, polynucleotides, antibodies and cells may be used in vaccines and pharmaceutical compositions for treatment of ovarian cancer.




BACKGROUND OF THE INVENTION




Ovarian cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and therapy of this cancer, no vaccine or other universally successful method for prevention or treatment is currently available. Management of the disease currently relies on a combination of early diagnosis and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. However, the use of established markers often leads to a result that is difficult to interpret, and high mortality continues to be observed in many cancer patients.




Immunotherapies have the potential to substantially improve cancer treatment and survival. Such therapies may involve the generation or enhancement of an immune response to an ovarian carcinoma antigen. However, to date, relatively few ovarian carcinoma antigens are known and the generation of an immune response against such antigens has not been shown to be therapeutically beneficial.




Accordingly, there is a need in the art for improved methods for identifying ovarian tumor antigens and for using such antigens in the therapy of ovarian cancer. The present invention fulfills these needs and further provides other related advantages.




SUMMARY OF THE INVENTION




Briefly stated, this invention provides compositions and methods for the therapy of cancer, such as ovarian cancer. In one aspect, the present invention provides polypeptides comprising an immunogenic portion of an ovarian carcinoma protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with ovarian carcinoma protein-specific antisera is not substantially diminished. Within certain embodiments, the ovarian carcinoma protein comprises a sequence that is encoded by a polynucleotide sequence selected from the group consisting of sequences recited in

FIGS. 5

,


8


,


13


,


16


A-


16


I and


17


A-


17


C (SEQ ID NOs:5, 8, 13, 19-68 and 69-85), SEQ ID NOs:130, 133, 135, 137, 138, 140, 142, 144-146, 148, 153, 155, 158, 159, 161, 163, 170, 174, 177, 178, 179, 180-182, 184, 187, 189, 190, 192, 195, 196, 198, 200, 207, 214-216, 220, 221, 222, 227, 228, 230, 231, 232, 234, 240-242, 243, 244-246, 250, 251, 253, 254, 256, 259, 261, 262, 264, 265, 272-275, 276, 278, 280, 281, 282, 283, 287, 288, 291, 292, 296, 297, 299, 301, 304-309, 311, 313, 314, 317, 323, 325 and 333, and complements of such polynucleotides.




The present invention further provides polynucleotides that encode a polypeptide as described above or a portion thereof, expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.




Within other aspects, the present invention provides pharmaceutical compositions and vaccines. Pharmaceutical compositions may comprise a physiologically acceptable carrier in combination with one or more of: (i) a polypeptide comprising an immunogenic portion of an ovarian carcinoma protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with ovarian carcinoma protein-specific antisera is not substantially diminished, wherein the ovarian carcinoma protein comprises an amino acid sequence encoded by a polynucleotide that comprises a sequence recited in any one of

FIGS. 5

,


8


,


13


,


16


A-


16


I and


17


A-


17


C (SEQ ID NOs: 5, 8, 13, 19-68 and 69-85), SEQ ID NOs:130, 133, 135, 137, 138, 140, 142, 144-146, 148, 153, 155, 158, 159, 161, 163, 170, 174, 177, 178, 179, 180-182, 184, 187, 189, 190, 192, 195, 196, 198, 200, 207, 214-216, 220, 221, 222, 227, 228, 230, 231, 232, 234, 240-242, 243, 244-246, 250, 251, 253, 254, 256, 259, 261, 262, 264, 265, 272-275, 276, 278, 280, 281, 282, 283, 287, 288, 291, 292, 296, 297, 299, 301, 304-309, 311, 313, 314, 317, 323, 325 or 333, or a complement of any of the foregoing sequences; (ii) a polynucleotide encoding at least 5 amino acid residues of such an ovarian carcinoma protein; (iii) an antibody that specifically binds to such an ovarian carcinoma protein; (iv) an antigen-presenting cell that expresses a polypeptide as described above and/or (v) a T cell that specifically reacts with such a polypeptide. Vaccines may comprise a non-specific immune response enhancer in combination with one or more of: (i) a polypeptide comprising an immunogenic portion of an ovarian carcinoma protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with ovarian carcinoma protein-specific antisera is not substantially diminished, wherein the ovarian carcinoma protein comprises an amino acid sequence encoded by a polynucleotide that comprises a sequence recited in any one of

FIGS. 5

,


8


,


13


,


16


A-


16


I and


17


A-


17


C (SEQ ID NOs: 5, 8, 13, 19-68 and 69-85), SEQ ID NOs:130, 133, 135, 137, 138, 140, 142, 144-146, 148, 153, 155, 158, 159, 161, 163, 170, 174, 177, 178, 179, 180-182, 184, 187, 189, 190, 192, 195, 196, 198, 200, 207, 214-216, 220, 221, 222, 227, 228, 230, 231, 232, 234, 240-242, 243, 244-246, 250, 251, 253, 254, 256, 259, 261, 262, 264, 265, 272-275, 276, 278, 280, 281, 282, 283, 287, 288, 291, 292, 296, 297, 299, 301, 304-309, 311, 313, 314, 317, 323, 325 or 333, or a complement of any of the foregoing sequences; (ii) a polynucleotide encoding at least 5 amino acid residues of such an ovarian carcinoma protein; (iii) an anti-idiotypic antibody that is specifically bound by an antibody that specifically binds to such a polypeptide; (iv) an antigen-presenting cell that expresses such a polypeptide and/or (v) a T cell that specifically reacts with such a polypeptide.




The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins.




Within related aspects, pharmaceutical compositions comprising a fusion protein or polynucleotide encoding a fusion protein in combination with a physiologically acceptable carrier are provided.




Vaccines are further provided, within other aspects, comprising a fusion protein or polynucleotide encoding a fusion protein in combination with a non-specific immune response enhancer.




Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition or vaccine as recited above.




The present invention further provides, within other aspects, methods for stimulating and/or expanding T cells, comprising contacting T cells with (a) a polypeptide comprising an immunogenic portion of an ovarian carcinoma protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with ovarian carcinoma protein-specific antisera is not substantially diminished, wherein the ovarian carcinoma protein comprises an amino acid sequence encoded by a polynucleotide that comprises a sequence recited in any one of SEQ ID NOs: 1-334; (b) a polynucleotide encoding such a polypeptide and/or (c) an antigen presenting cell that expresses such a polypeptide under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Such polypeptide, polynucleotide and/or antigen presenting cell(s) may be present within a pharmaceutical composition or vaccine, for use in stimulating and/or expanding T cells in a mammal.




Within other aspects, the present invention provides methods for inhibiting the development of ovarian cancer in a patient, comprising administering to a patient T cells prepared as described above.




Within further aspects, the present invention provides methods for inhibiting the development of ovarian cancer in a patient, comprising the steps of: (a) incubating CD4


+


and/or CD8


+


T cells isolated from a patient with one or more of: (i) a polypeptide comprising an immunogenic portion of an ovarian carcinoma protein, or a variant thereof that differs in one or more substitutions, deletions, additions and/or insertions such that the ability of the variant to react with ovarian carcinoma protein-specific antisera is not substantially diminished, wherein the ovarian carcinoma protein comprises an amino acid sequence encoded by a polynucleotide that comprises a sequence recited in any one of SEQ ID NOs:1-334; (ii) a polynucleotide encoding such a polypeptide; or (iii) an antigen-presenting cell that expresses such a polypeptide; such that T cells proliferate; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of ovarian cancer in the patient. The proliferated cells may be cloned prior to administration to the patient.




These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV2 (SEQ ID NO:1), and the amino acid sequence of the encoded polypeptide (SEQ ID NO:16).





FIG. 2

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV3 (SEQ ID NO:2), and the amino acid sequence of the encoded polypeptide (SEQ ID NO:17).





FIG. 3

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV6 (SEQ ID NO:3), and the amino acid sequence of the encoded polypeptide (SEQ ID NO:18).





FIG. 4

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV9 (SEQ ID NO:4).





FIG. 5

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV10 (SEQ ID NO:5).





FIG. 6

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV12 (SEQ ID NO:6).





FIG. 7

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV14 (SEQ ID NO:7).





FIG. 8

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV17 (SEQ ID NO:8).





FIG. 9

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV18 (SEQ ID NO:9).





FIG. 10

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV23 (SEQ ID NO:10).





FIG. 11

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV24 (SEQ ID NO:11).





FIG. 12

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV27 (SEQ ID NO:12).





FIG. 13

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV41 (SEQ ID NO:13).





FIG. 14

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV54 (SEQ ID NO:14).





FIG. 15

depicts a partial sequence of a polynucleotide encoding a ovarian carcinoma antigen designated OV57 (SEQ ID NO:15).





FIGS. 16A-16I

depict partial sequences of polynucleotides (SEQ ID NOs: 19-68) encoding further representative ovarian carcinoma antigens.





FIGS. 17A-17C

depict partial sequences of polynucleotides (SEQ ID NOs: 69-85) encoding further representative ovarian carcinoma antigens.





FIGS. 18A-18F

depict partial sequences of polynucleotides (SEQ ID NOs: 86-129) encoding further representative ovarian carcinoma antigens.











DETAILED DESCRIPTION OF THE INVENTION




As noted above, the present invention is generally directed to compositions and methods for the detection and therapy of cancer, such as ovarian cancer. The compositions described herein may include immunogenic polypeptides, polynucleotides encoding such polypeptides, binding agents such as antibodies that bind to a polypeptide, antigen presenting cells (APCs) and/or immune system cells (e.g., T cells).




Polypeptides of the present invention generally comprise at least an immunogenic portion of an ovarian carcinoma protein or a variant thereof. Certain ovarian carcinoma proteins have been identified using an immunoassay technique, and are referred to herein as ovarian carcinoma antigens. An “ovarian carcinoma antigen” is a protein that is expressed by ovarian tumor cells (preferably human cells) at a level that is at least two fold higher than the level in normal ovarian cells. Certain ovarian carcinoma antigens react detectably (within an immunoassay, such as an ELISA or Western blot) with antisera generated against serum from an immunodeficient animal implanted with a human ovarian tumor. Such ovarian carcinoma antigens are shed or secreted from an ovarian tumor into the sera of the immunodeficient animal. Accordingly, certain ovarian carcinoma antigens provided herein are secreted antigens. Certain nucleic acid sequences of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of such a polypeptide, or that is complementary to such a sequence.




The present invention further provides ovarian carcinoma sequences that are identified using techniques to evaluate altered expression within an ovarian tumor. Such sequences may be polynucleotide or protein sequences. Ovarian carcinoma sequences are generally expressed in an ovarian tumor at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in normal ovarian tissue, as determined using a representative assay provided herein. Certain partial ovarian carcinoma polynucleotide sequences are presented herein. Proteins encoded by genes comprising such polynucleotide sequences (or complements thereof) are also considered ovarian carcinoma proteins.




Antibodies are generally immune system proteins, or antigen-binding fragments thereof, that are capable of binding to at least a portion of an ovarian carcinoma polypeptide as described herein. T cells that may be employed within the compositions provided herein are generally T cells (e.g., CD4


+


and/or CD8


+


) that are specific for such a polypeptide. Certain methods described herein further employ antigen-presenting cells (such as dendritic cells or macrophages) that express an ovarian carcinoma polypeptide as provided herein.




Ovarian Carcinoma Polynucleotides




Any polynucleotide that encodes an ovarian carcinoma protein or a portion or other variant thereof as described herein is encompassed by the present invention. Preferred polynucleotides comprise at least 15 consecutive nucleotides, preferably at least 30 consecutive nucleotides, and more preferably at least 45 consecutive nucleotides, that encode a portion of an ovarian carcinoma protein. More preferably, a polynucleotide encodes an immunogenic portion of an ovarian carcinoma protein, such as an ovarian carcinoma antigen. Polynucleotides complementary to any such sequences are also encompassed by the present invention. Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.




Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes an ovarian carcinoma protein or a portion thereof) or may comprise a variant of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the immunogenicity of the encoded polypeptide is not diminished, relative to a native ovarian carcinoma protein. The effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native ovarian carcinoma protein or a portion thereof.




The percent identity for two polynucleotide or polypeptide sequences may be readily determined by comparing sequences using computer algorithms well known to those of ordinary skill in the art, such as Megalign, using default parameters. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A “comparison window” as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, or 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Optimal alignment of sequences for comparison may be conducted, for example, using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters. Preferably, the percentage of sequence identity is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the window may comprise additions or deletions (i.e., gaps) of 20% or less, usually 5 to 15%, or 10 to 12%, relative to the reference sequence (which does not contain additions or deletions). The percent identity may be calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.




Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or complement thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence encoding a native ovarian carcinoma protein (or a complementary sequence). Suitable moderately stringent conditions include prewashing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C., 5×SSC, overnight; followed by washing twice at 65° C. for 20 minutes with each of 2×, 0.5× and 0.2×SSC containing 0.1% SDS.




It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).




Polynucleotides may be prepared using any of a variety of techniques. For example, an ovarian carcinoma polynucleotide may be identified, as described in more detail below, by screening a late passage ovarian tumor expression library with antisera generated against sera of immunocompetent mice after injection of such mice with sera from SCID mice implanted with late passage ovarian tumors. Ovarian carcinoma polynucleotides may also be identified using any of a variety of techniques designed to evaluate differential gene expression. Alternatively, polynucleotides may be amplified from cDNA prepared from ovarian tumor cells. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.




An amplified portion may be used to isolate a full length gene from a suitable library (e.g., an ovarian carcinoma cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5′ and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5′ sequences.




For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with


32


P) using well known techniques. A bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al.,


Molecular Cloning: A Laboratory Manual,


Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences are then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.




Alternatively, there are numerous amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68° C. to 72° C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.




One such amplification technique is inverse PCR (see Triglia et al.,


Nucl. Acids Res.


16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Additional techniques include capture PCR (Lagerstrom et al.,


PCR Methods Applic.


1:111-19, 1991) and walking PCR (Parker et al.,


Nucl Acids. Res.


19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.




In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.




Certain nucleic acid sequences of cDNA molecules encoding portions of ovarian carcinoma proteins are provided in

FIGS. 1-15

,


16


A-


16


I,


17


A-


17


C and


18


A-


18


F (SEQ ID NOs:1-15, 19-68, 69-85 and 86-129). Other such nucleic acid sequences are provided in SEQ ID NOs:130-334. These polynucleotides were isolated by serological screening of an ovarian tumor cDNA expression library. The library was prepared from unamplified cDNA derived from a human ovarian tumor OV9334 grown in a SCID mouse, in the vector pScreen. Sera from human patients with ovarian cancer were pooled for the screen.




The polynucleotides recited herein, as well as full length polynucleotides comprising such sequences, other portions of such full length polynucleotides, and sequences complementary to all or a portion of such full length molecules, are specifically encompassed by the present invention. It will be apparent to those of ordinary skill in the art that this technique can also be applied to the identification of antigens that are secreted from other types of tumors.




Any of a variety of well known techniques may be used to evaluate tumor-associated expression of a cDNA. For example, hybridization techniques using labeled polynucleotide probes may be employed. Alternatively, or in addition, amplification techniques such as real-time PCR may be used (see Gibson et al.,


Genome Research


6:995-1001, 1996; Heid et al.,


Genome Research


6:986-994, 1996). Real-time PCR is a technique that evaluates the level of PCR product accumulation during amplification. This technique permits quantitative evaluation of mRNA levels in multiple samples. Briefly, mRNA is extracted from tumor and normal tissue and cDNA is prepared using standard techniques. Real-time PCR may be performed, for example, using a Perkin Elmer/Applied Biosystems (Foster City, Calif.) 7700 Prism instrument. Matching primers and fluorescent probes may be designed for genes of interest using, for example, the primer express program provided by Perkin Elmer/Applied Biosystems (Foster City, Calif.). Optimal concentrations of primers and probes may be initially determined by those of ordinary skill in the art, and control (e.g., β-actin) primers and probes may be obtained commercially from, for example, Perkin Elmer/Applied Biosystems (Foster City, Calif.). To quantitate the amount of specific RNA in a sample, a standard curve is generated alongside using a plasmid containing the gene of interest. Standard curves may be generated using the Ct values determined in the real-time PCR, which are related to the initial cDNA concentration used in the assay. Standard dilutions ranging from 10-10


6


copies of the gene of interest are generally sufficient. In addition, a standard curve is generated for the control sequence. This permits standardization of initial RNA content of a tissue sample to the amount of control for comparison purposes.




Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al.,


DNA


2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding an ovarian carcinoma antigen, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6). Certain portions may be used to prepare an encoded polypeptide, as described herein. In addition, or alternatively, a portion may be administered to a patient such that the encoded polypeptide is generated in vivo.




A portion of a sequence complementary to a coding sequence (i.e., an antisense polynucleotide) may also be used as a probe or to modulate gene expression. cDNA constructs that can be transcribed into antisense RNA may also be introduced into cells or tissues to facilitate the production of antisense RNA. An antisense polynucleotide may be used, as described herein, to inhibit expression of an ovarian carcinoma protein. Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr,


Molecular and Immunologic Approaches,


Futura Publishing Co. (Mt. Kisco, N.Y.; 1994). Alternatively, an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.




Any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends; the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.




Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors. In general, a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.




Within certain embodiments, polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those of ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector such as, but not limited to, adenovirus, adeno-associated virus, retrovirus, or vaccinia or other pox virus (e.g., avian pox virus). Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. A retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.




Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.e., an artificial membrane vesicle). The preparation and use of such systems is well known in the art.




Ovarian Carcinoma Polypeptides




Within the context of the present invention, polypeptides may comprise at least an immunogenic portion of an ovarian carcinoma protein or a variant thereof, as described herein. Certain ovarian carcinoma proteins are ovarian carcinoma antigens that are expressed by ovarian tumor cells and react detectably within an immunoassay (such as an ELISA) with antisera generated against serum from an immunodeficient animal implanted with an ovarian tumor. Other ovarian carcinoma proteins are encoded by ovarian carcinoma polynucleotides recited herein. Polypeptides as described herein may be of any length. Additional sequences derived from the native protein and/or heterologous sequences may be present, and such sequences may (but need not) possess further immunogenic or antigenic properties.




An “immunogenic portion,” as used herein is a portion of an antigen that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Such immunogenic portions generally comprise at least 5 amino acid residues, more preferably at least 10, and still more preferably at least 20 amino acid residues of an ovarian carcinoma protein or a variant thereof. Preferred immunogenic portions are encoded by cDNA molecules isolated as described herein. Further immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul,


Fundamental Immunology,


3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with ovarian carcinoma protein-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are “ovarian carcinoma protein-specific” if they specifically bind to an ovarian carcinoma protein (i.e., they react with the ovarian carcinoma protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera, antibodies and T cells may be prepared as described herein, and using well known techniques. An immunogenic portion of a native ovarian carcinoma protein is a portion that reacts with such antisera, antibodies and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length protein. Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988. For example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example,


125


I-labeled Protein A.




As noted above, a composition may comprise a variant of a native ovarian carcinoma protein. A polypeptide “variant,” as used herein, is a polypeptide that differs from a native ovarian carcinoma protein in one or more substitutions, deletions, additions and/or insertions, such that the immunogenicity of the polypeptide is not substantially diminished. In other words, the ability of a variant to react with ovarian carcinoma protein-specific antisera may be enhanced or unchanged, relative to the native ovarian carcinoma protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native ovarian carcinoma protein. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with ovarian carcinoma protein-specific antibodies or antisera as described herein. Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other preferred variants include variants in which a small portion (e.g. 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.




Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the native polypeptide. Preferably, a variant contains conservative substitutions. A “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.




As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.




Polypeptides may be prepared using any of a variety of well known techniques. Recombinant polypeptides encoded by DNA sequences as described above may be readily prepared from the DNA sequences using any of a variety of expression vectors known to those of ordinary skill in the art. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are


E. coli,


yeast or a mammalian cell line such as COS or CHO. Supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.




Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield,


J Am. Chem. Soc.


85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc. (Foster City, Calif.), and may be operated according to the manufacturer's instructions.




Within certain specific embodiments, a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises one polypeptide as described herein and a known tumor antigen, such as an ovarian carcinoma protein or a variant of such a protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the protein.




Fusion proteins may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion protein is expressed as a recombinant protein, allowing the production of increased levels, relative to a non-fused protein, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3′ end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5′ end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion protein that retains the biological activity of both component polypeptides.




A peptide linker sequence may be employed to separate the first and the second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al.,


Gene


40:39-46, 1985; Murphy et al.,


Proc. Natl. Acad. Sci. USA


83:8258-8262, 1986; U.S. Pat. Nos. 4,935,233 and 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.




The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5′ to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3′ to the DNA sequence encoding the second polypeptide.




Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al.


New Engl. J. Med.,


336:86-91, 1997).




Within preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in


E. coli


(thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen present cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.




In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from


Streptococcus pneumoniae,


which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene;


Gene


43:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of


E. coli


C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see


Biotechnology


10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.




In general, polypeptides (including fusion proteins) and polynucleotides as described herein are isolated. An “isolated” polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally-occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment.




Binding Agents




The present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to an ovarian carcinoma protein. As used herein, an antibody, or antigen-binding fragment thereof, is said to “specifically bind” to an ovarian carcinoma protein if it reacts at a detectable level (within, for example, an ELISA) with an ovarian carcinoma protein, and does not react detectably with unrelated proteins under similar conditions. As used herein, “binding” refers to a noncovalent association between two separate molecules such that a “complex” is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to “bind,” in the context of the present invention, when the binding constant for complex formation exceeds about 10


3


L/mol. The binding constant maybe determined using methods well known in the art.




Binding agents may be further capable of differentiating between patients with and without a cancer, such as ovarian cancer, using the representative assays provided herein. In other words, antibodies or other binding agents that bind to a ovarian carcinoma antigen will generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, leukophoresis, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.




Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.




Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein,


Eur. J. Immunol.


6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.




Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.




Within certain embodiments, the use of antigen-binding fragments of antibodies may be preferred. Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.




Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include


90


Y,


123


I,


125


I,


131


I,


186


Re,


188


Re,


211


At, and


212


Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.




A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.




Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.




It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.




Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Pat. No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Pat. No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Pat. No. 4,569,789, to Blattler et al.).




It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.




A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Pat. No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Pat. No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Pat. Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Pat. No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Pat. No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.




A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.




Also provided herein are anti-idiotypic antibodies that mimic an immunogenic portion of an ovarian carcinoma protein. Such antibodies may be raised against an antibody, or antigen-binding fragment thereof, that specifically binds to an immunogenic portion of an ovarian carcinoma protein, using well known techniques. Anti-idiotypic antibodies that mimic an immunogenic portion of an ovarian carcinoma protein are those antibodies that bind to an antibody, or antigen-binding fragment thereof, that specifically binds to an immunogenic portion of an ovarian carcinoma protein, as described herein.




T Cells




Immunotherapeutic compositions may also, or alternatively, comprise T cells specific for an ovarian carcinoma protein. Such cells may generally be prepared in vitro or ex vivo, using standard procedures. For example, T cells may be present within (or isolated from) bone marrow, peripheral blood or a fraction of bone marrow or peripheral blood of a mammal, such as a patient, using a commercially available cell separation system, such as the CEPRATE™ system, available from CellPro Inc., Bothell Wash. (see also U.S. Pat. Nos. 5,240,856; 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human animals, cell lines or cultures.




T cells may be stimulated with an ovarian carcinoma polypeptide, polynucleotide encoding an ovarian carcinoma polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide. Preferably, an ovarian carcinoma polypeptide or polynucleotide is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.




T cells are considered to be specific for an ovarian carcinoma polypeptide if the T cells kill target cells coated with an ovarian carcinoma polypeptide or expressing a gene encoding such a polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al.,


Cancer Res.


54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with an ovarian carcinoma polypeptide (200 ng/ml-100 μg/ml, preferably 100 ng/ml-25 μg/ml) for 3-7 days should result in at least a two fold increase in proliferation of the T cells and/or contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-γ) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. 1, Wiley Interscience (Greene 1998). T cells that have been activated in response to an ovarian carcinoma polypeptide, polynucleotide or ovarian carcinoma polypeptide-expressing APC may be CD4





and/or CD8


+


. Ovarian carcinoma polypeptide-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from a patient or a related or unrelated donor and are administered to the patient following stimulation and expansion.




For therapeutic purposes, CD4


+


or CD8


+


T cells that proliferate in response to an ovarian carcinoma polypeptide, polynucleotide or APC can be expanded in number either in vitro or in vivo. Proliferation of such T cells in vitro may be accomplished in a variety of ways. For example, the T cells can be re-exposed to an ovarian carcinoma polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize an ovarian carcinoma polypeptide. Alternatively, one or more T cells that proliferate in the presence of an ovarian carcinoma polypeptide can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution. Following expansion, the cells may be administered back to the patient as described, for example, by Chang et al.,


Crit. Rev. Oncol. Hematol.


22:213, 1996.




Pharmaceutical Compositions and Vaccines




Within certain aspects, polypeptides, polynucleotides, binding agents and/or immune system cells as described herein may be incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds or cells and a physiologically acceptable carrier. Vaccines may comprise one or more such compounds or cells and a non-specific immune response enhancer. A non-specific immune response enhancer may be any substance that enhances an immune response to an exogenous antigen. Examples of non-specific immune response enhancers include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Pat. No. 4,235,877). Vaccine preparation is generally described in, for example, M. F. Powell and M. J. Newman, eds., “Vaccine Design (the subunit and adjuvant approach),” Plenum Press (NY, 1995). Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive. For example, one or more immunogenic portions of other tumor antigens may be present, either incorporated into a fusion polypeptide or as a separate compound within the composition or vaccine.




A pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al.,


PNAS


86:317-321, 1989; Flexner et al.,


Ann. N.Y. Acad. Sci.


569:86-103, 1989; Flexner et al.,


Vaccine


8:17-21, 1990; U.S. Pat. Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Pat. No.4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner,


Biotechniques


6:616-627, 1988; Rosenfeld et al.,


Science


252:431-434, 1991; Kolls et al.,


PNAS


91:215-219, 1994; Kass-Eisler et al.,


PNAS


90:11498-11502, 1993; Guzman et al.,


Circulation


88:2838-2848, 1993; and Guzman et al.,


Cir. Res.


73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be “naked,” as described, for example, in Ulmer et al.,


Science


259:1745-1749, 1993 and reviewed by Cohen,


Science


259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.




While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.




Such compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide) and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate. Compounds may also be encapsulated within liposomes using well known technology.




Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A,


Bortadella pertussis


or


Mycobacterium tuberculosis


derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Mich.), Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.), alum, biodegradable microspheres, monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.




Within the vaccines provided herein, the adjuvant composition is preferably designed to induce an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6, IL-10 and TNF-β) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman,


Ann. Rev. Immunol.


7:145-173, 1989.




Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt. MPL adjuvants are available from Ribi ImmunoChem Research Inc. (Hamilton, Mont.; see U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). Also preferred is AS-2 (SmithKline Beecham). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555. Another preferred adjuvant is a saponin, preferably QS21, which may be used alone or in combination with other adjuvants. For example, an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprises an oil-in-water emulsion and tocopherol. A particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210. Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immune response enhancer and a suitable carrier or excipient.




The compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule or sponge that effects a slow release of compound following administration). Such formulations may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.




Any of a variety of delivery vehicles may be employed within pharmaceutical compositions and vaccines to facilitate production of an antigen-specific immune response that targets tumor cells. Delivery vehicles include antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.




Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman,


Nature


392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy,


Ann. Rev. Med.


50:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro) and based on the lack of differentiation markers of B cells (CD19 and CD20), T cells (CD3), monocytes (CD14) and natural killer cells (CD56), as determined using standard assays. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (see Zitvogel et al.,


Nature Med.


4:594-600, 1998).




Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce maturation and proliferation of dendritic cells.




Dendritic cells are conveniently categorized as “immature” and “mature” cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcγ receptor, mannose receptor and DEC-205 marker. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MIHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80 and CD86).




APCs may generally be transfected with a polynucleotide encoding a ovarian carcinoma antigen (or portion or other variant thereof) such that the antigen, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo. In vivo and ex vivo transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al.,


Immunology and cell Biology


75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.




Cancer Therapy




In further aspects of the present invention, the compositions described herein may be used for immunotherapy of cancer, such as ovarian cancer. Within such methods, pharmaceutical compositions and vaccines are typically administered to a patient. As used herein, a “patient” refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. Within certain preferred embodiments, a patient is afflicted with ovarian cancer. Such cancer may be diagnosed using criteria generally accepted in the art, including the presence of a malignant tumor. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs.




Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the in vivo stimulation of the endogenous host immune system to react against tumors with the administration of immuno response-modifying agents (such as tumor vaccines, bacterial adjuvants and/or cytokines).




Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (such as CD8


+


cytotoxic T lymphocytes and CD4





T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Pat. No. 4,918,164) for passive immunotherapy.




Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known in the art. For example, antigen-presenting cells can be transfected with a polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term in vivo. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al.,


Immunological Reviews


157:177, 1997).




Alternatively, a vector expressing a polypeptide recited herein may be introduced into stem cells taken from a patient and clonally propagated in vitro for autologous transplant back into the same patient.




Routes and frequency of administration, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration), orally or in the bed of a resected tumor. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g. more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 100 μg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.




In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to an ovarian carcinoma antigen generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.




Methods for Detecting Cancer




In general, a cancer may be detected in a patient based on the presence of one or more ovarian carcinoma proteins and/or polynucleotides encoding such proteins in a biological sample (such as blood, sera, urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as ovarian cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of protein that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, an ovarian carcinoma-associated sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue.




There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane,


Antibodies: A Laboratory Manual,


Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.




In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length ovarian carcinoma proteins and portions thereof to which the binding agent binds, as described above.




The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term “immobilization” refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 μg, and preferably about 100 ng to about 1 μg, is sufficient to immobilize an adequate amount of binding agent.




Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).




In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.




More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, Mo.). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with ovarian cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.




Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20™. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.




The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.




To determine the presence or absence of a cancer, such as ovarian cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al.,


Clinical Epidemiology: A Basic Science for Clinical Medicine,


Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.




In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 μg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.




Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use ovarian carcinoma polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such ovarian carcinoma protein specific antibodies may correlate with the presence of a cancer.




A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with an ovarian carcinoma protein in a biological sample. Within certain methods, a biological sample comprising CD4


+


and/or CD8


+


T cells isolated from a patient is incubated with an ovarian carcinoma protein, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37° C. with an ovarian carcinoma protein (e.g., 5-25 μg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of ovarian carcinoma protein to serve as a control. For CD4


+


T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8


+


T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.




As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding an ovarian carcinoma protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of an ovarian carcinoma protein cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (i.e., hybridizes to) a polynucleotide encoding the ovarian carcinoma protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding an ovarian carcinoma protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.




To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding an ovarian carcinoma protein that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes hybridize to a polynucleotide encoding a polypeptide described herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence provided herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al.,


Cold Spring Harbor Symp. Quant. Biol.,


51:263, 1987; Erlich ed.,


PCR Technology,


Stockton Press, N.Y., 1989).




One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample such as a biopsy tissue and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.




In another embodiment, ovarian carcinoma proteins and polynucleotides encoding such proteins may be used as markers for monitoring the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide detected by the binding agent increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide either remains constant or decreases with time.




Certain in vivo diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.




As noted above, to improve sensitivity, multiple ovarian carcinoma protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.




Diagnostic Kits




The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to an ovarian carcinoma protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.




Alternatively, a kit may be designed to detect the level of mRNA encoding an ovarian carcinoma protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding an ovarian carcinoma protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding an ovarian carcinoma protein.




The following Examples are offered by way of illustration and not by way of limitation.




EXAMPLES




Example 1




Identification of Ovarian Tumor Antigen cDNAs




This Example illustrates the identification of cDNA molecules encoding ovarian tumor antigens.




Patient sera (from two human patients with ovarian cancer) was adsorbed against


E. coli


and used at a 1:200 dilution in a serological expression screen performed as described in Sambrook et al.,


Molecular Cloning: A Laboratory Manual,


Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989. The library screened was made from a SCID-derived human ovarian tumor (OV9334) using a directional RH oligo(dT) priming cDNA library construction kit and the λScreen vector (Novagen). Approximately 600,000 pfu of the amplified OV9334 library were screened.




In a first screen, three novel clones were identified (OV10, OV17 and OV41), and the partial sequences are provided in

FIGS. 5

,


8


and


13


(SEQ ID NOs: 5, 8 and 13), respectively. Additional sequences matched previously identified genes, which were not previously known to be associated with ovarian carcinoma. These sequences are identified in Table I.












TABLE 1











Additional Ovarian Carcinoma Antigen Partial Sequences














Sequence




Match











OV6 (SEQ ID NO:3)




High Mobility Group Protein 14







OV2 (SEQ ID NO:1)




Hypothetical 33.4 kD Protein







OV3 (SEQ ID NO:2)




High Mobility Group Protein 17







OV9 (SEQ ID NO:4)




Integrin Alpha-3







OV12 (SEQ ID NO:6)




Filamental Protein







OV14 (SEQ ID NO:7)




Ubiquitin-Conjugating Enzyme







OV18 (SEQ ID NO:9)




Alpha-Glucosidase I







OV23 (SEQ ID NO:10)




Ribosomal Protein L10







OV24 (SEQ ID NO:11)




Mitochondrial Gene







OV27 (SEQ ID NO:12)




Ribonucleoprotein







OV54 (SEQ ID NO:14)




Ribosomal Protein L18







OV57 (SEQ ID NO:15)




Ribosomal Protein S10















Within a second screens further clones were identified. Homologies for these clones are provided in Table II. Sequences of novel clones are provided in

FIGS. 16A-16I

(SEQ ID NOs:19-68). Those clones for which homology was found in the DNA sequence, but not the protein sequence, are provided in

FIGS. 17A-17C

(SEQ ID NOs:69-85), and those that matched previously identified DNA and protein sequences, which were not previously known to be associated with ovarian carcinoma, are provided in

FIGS. 18A-18F

(SEQ ID NOs:86-129).












TABLE II











Further Ovarian Carcinoma Antigen Partial Sequences















SEQ








Sequence




ID




DNA Homology




Protein Homology

















OVp2-1




86




AND-1




AND-1






OVp2-2




19




Novel




Novel






OVp2-4




87




Topoisom. II




Topoisom. II






OVp2-5




88




cAMP phosphodiesterase




cAMP phosphodiesterase






OVp2-6




89




P1




P1






OVp2-9




90




kinase PRKAR1A




kinase PRKAR1A






OVp2-10




91




Human RNA polym. II




Human RNA polym. II






OVp2-11




92




Mu. p162




Mu. p162






OVp2-13




20




Novel




Novel






OVp2-14




21




Novel




Novel






OVp2-15




69




Hu. BAC G5541B18




Novel






OVp2-16




93




Hu. fanconi anemia mRNA




FAA






OVp2-17




94




Hu. histone H1




Histone H1






OVp2-20




22




Novel




Novel






OVp2-21




23




Novel




Novel






OVp2-22




70




Hu K1AA0642 mRNA




Novel






OVp2-23




95




Hu. lysophospholipase mRNA




Hu. lysophospholipase mRNA






OVp2-24




71




Hu. Chrom 16 cosmid clone




Novel








400D1






OVp2-25




24




Novel




Novel; similar to PHD finger









protein






OVp2-27




25




Novel




Novel






OVp2-28




26




Novel




Novel






OVp2-29




27




Novel




Novel






OVp2-31




28




Novel




Novel






OVp2-37




29




Novel




Novel






OVp2-38




30




Novel




Novel






OVp2-39




96




Human Tumor protein




Human Tumor protein






OVp2-40




31




Novel




Novel






OVp2-42




32




Novel




Novel






OVp2-43




97




nucleophosmin




nucleophosmin






OVp2-47




72




Hu PAC DJ0751H13




Novel; zinc finger-like






OVp2-48




98




Human Carbonyl Reductase




Carbonyl Reductase






OVp2-52




33




Novel




Novel






OVp2-54




99




Mu., Hu. chromatin structrl pro.




Mu., Hu. chromatin structrl pro.






OVp2-55




73




Hu. mRNA clone A33187




Novel; similar to laminin






OVp2-56




34




Novel




Novel






OVp2-58




100




H3.3 Histone




H3.3 Histone






OVp2-59




101




cyt.C oxidase subunit




cyt.C oxidase subunit






OVp2-60




35




Novel




Novel






OVp2-66




102




alpha-CP1; rnp-assoc.




alpha-CP1; rnp-assoc.






OVp2-69




36




Novel




Novel






OVp2-71




37




Novel




Novel






OVp2-81




74




HuCpG DNA clone 11B11




Novel






OVp2-82




103




Human KIAA0111 gene




Euk Init'n Factor 4A-like






OVp2-83




38




Novel




Novel






OVp2-84




39




Novel




Novel






OVp2-85




40




Novel




Novel






OVp2-87




41




Novel




Novel






OVp2-88




42




Novel




Novel






OVp2-90




43




Novel




Novel






OVp2-91




104




Mu, Hu cathepsinC




Mu, Hu cathepsinC






OVp2-93




44




Novel




Novel






OVp2-94




45




Novel




Novel






OVp2-98




46




Novel; Carbonyl Reductase (pig)




Novel






OVp2-99




47




Novel




Novel






OVp2-100




75




Human K1AA0788




Novel






OVp2-103




105




Human tra gp96




tra gp96






OVp2-104




76




Hu BAC clone 78c6




Novel






OVp2-106




106




Ubiq-conj. enz; carcinoma




Ubiquitin-conjugating enzyme






OVp2-108




77




KIAA0249




Novel






OVp2-109




107




Mu.p162




Mu.p162






OVp2-110




48




Novel




Novel






OVp3-2




108




Mu. Acyl-CoA dehydrog.




Mu. Acyl-CoA dehydrog.






OVp3-3




78




Hu. Chrom 17, hRPC.117




Novel






OVp3-4




49




Novel




Novel






OVp3-5




79




Unkn. Hu. DNA;




Novel






OVp3-6




109




Mu. retrotranspsn.




Mu. ORF; carcinoma






OVp3-7




110




Hu. glypican4




Glypican precursor






OVp3-8




50




Novel




Novel






OVp3-9




80




Mu. entactin




Novel






OVp3-11




51




Novel




Novel






OVp3-17




111




Elongation Factor 1 alpha




EF-1 alpha






OVp3-19




52




Novel




Novel






OVp3-23




81




Hu. RES4-4 (brain)




Novel






OVp3-24




112




Hu. P8; mitogen




Hu. P8






OVp3-26




113




Hu ribosomal. L18




Hu ribosomal. L18






OVp3-28




114




Hu KS/14 antigen




Tumor-assoc. glycoprotein






OVp3-29




115




Hu. Actin-binding




Hu. Actin-binding






OVp3-31




53




Novel




Novel






OVp3-34




116




Hu DPM1




Hu DPM1






OVp3-36




117




Hu PAC DJ269O05




Hu. Line-1 homolog; putative p150






OVp3-37




118




Mu. fibronectin/precursor (Hu)




fibronectin






OVp3-38




54




Novel




Novel






OVp3-40




55




Novel




Novel






OVp3-41




56




Novel




Novel






OVp3-44




57




Novel




Novel






OVp3-47




58




Novel




Novel






OVp3-50




82




Chrom.; PAC




Novel; similar to p40, 40 kD






OVp3-51




59




Novel; 86% Mu. oncogene ect2




Novel; Mu ect2






OVp3-52




119




RAC3 (Hu Rac3)




Ras-like; G protein; Rac3






OVp3-53




120




(Hu) alpha-enolase




alpha-enolase; carbonate









hydratase(Hu)






OVp3-54




121




Hu. Nuclr. NP220




NP220






OVp3-64




60




Novel




Novel






OVp3-66




83




Hu. mitochond. DNA




Novel; similar to cyt.C oxidase









subunit






OVp3-70




61




Novel




Novel






OVp3-71




62




Novel




Novel






OVp3-81




63




Novel




Novel






OVp3-83




122




RNA binding factor




Unknown






OVp3-84




84




Hu PAC RPC13-197B17




Novel






OVp3-86




123




Cathepsin C




Cathepsin C






OVp3-87




64




Novel




Novel






OVp3-88




65




Novel




Novel






OVp3-90




124




Human EF-1 alpha




Human EF-1 alpha






OVp3-91




125




Human nuclear factor NF-IL6




similar to Hu. nuclear factor NF-









IL6






OVp3-94




126




Hu. polyadenylate-binding




polyadenylate-binding








PAIP1






OVp3-95




127




Human TAK1-binding




Unknown






OVp3-97




128




Hu ribosomal L27




Hu ribosomal L27






OVp3-101




129




Human cytoskeletal g-actin




Unknown






OVp3-104




85




mitochondrial; Hu. clone 23884




Novel






OVp3-107




66




Novel




Novel






OVp3-110




67




Novel




Novel






OVp3-127




68




Novel




Novel; 50% homology to human









hepatoma-derived growth factor














Still further ovarian carcinoma sequences are presented in Table III and SEQ ID NOs: 130-334.












TABLE III











Further Ovarian Carcinoma Antigen Partial Sequences














Clone No.




Sequence




SEQ ID NO




Homology

















OVp2-3




15674.2




130




Novel






OVp2-8




15679.2




131




A.t BAC F21E10; ESTs






OVp2-26




20045.1




132




Human 1-mf; ETS






OVp2-33




20047.1




133




Novel; ESTs






OVp2-34




20056.1




134




BiP, GRP; ESTs






OVp2-45




17295.1




135




Human Chrom 16; ESTs






OVp2-49




20209.1




136




Human C90RF3 short isoform; ESTs






OVp2-53




16111.2




137




Novel; ESTs






OVp2-61




22421.1




138




Novel






OVp2-62




22422.1




139




TNF-α stimulated ATP-binding; ESTs






OVp2-63




22423.1




140




Human.DNA from phage pTELchrom.









16p13.3; ESTs






OVp2-64




22424.1




141




Human mRNA for fibronectin; ESTs






OVp2-65




22425.1




142




Novel; ESTs






OVp2-74




22428.1




143




Human deoxyhypusine synthase mRNA;









ESTs






OVp2-75




22430.1




144




Novel






OVp2-76




22431.1




145




Novel; ESTs






OVp2-77




22432.1




146




Novel; ESTs






OVp2-78




22433.1




147




Human.cDNA DKFZp586E0518; ESTs






OVp2-79




22434.1




148




Human DNA cosmid U131B10






OVp2-95




20213.1




149




Hu. Protective protein; ESTs






OVp2-97




20214.1




150




Plasma protein S; ESTs






OVp2-107




20216.1




151




Human epiderm al carcinoma mRNA for









E2; ESTs






OVp2-113




20496.1




152




Human Histone H1′; ESTs






OVp2-114




20497.1




153




Novel






OVp2-116




18077.1




154




Human Pyruvate dehydrogenase kinase;









EST






OVp2-119




18078.1




155




Human K1AA0803, BAC clone; ESTs






OVp2-121




20498.1




156




Murine DNA-binding, Zn Finger; ESTs






OVp2-122




18085.1




157




Rat trg






OVp2-124




20500.1




158




Novel; ESTs






OVp2-127




18084.1




159




Human Cosmid F23149






OVp2-128




20501.1




160




Human GlcNac 1-P transferase; ESTs






OVp2-129




20502.1




161




Novel; EST






OVp2-131




18573.2




162




Human laminin alpha 5 chain; ESTs






OVp2-133




18574.1




163




Novel






OVp2-134




18345.1




164




Human tazarotene-induced gene 2; ESTs






OVp2-135




18575.1




165




Actin-binding P57, coronin-like; ESTs






OVp2-139




18728.1




166




Human clone 1033D10; includes BING5;









ESTs






OVp2-141




18577.1




167




Human cosmid F23149; EST






OVp2-143




18881.1




168




c-myc proto-oncogene; ESTs






OVp2-144




18882.1




169




Murine, Human nucleic acid-binding









protein; ESTs






OVp2-146




18884.1




170




Novel; ESTs






OVp2-147




18885.1




171




Human B23 nucleophosmin; ESTs






OVp2-148




18886.1




172




cation-dependent Human, Murine MP-6R;









ESTs






OVp2-150




18889.1




173




Human FXR1; ESTs






OVp2-152




18891.1




174




Human KIAA0465; ESTs






OVp2-153




18892.1




175




Human α-2macroglobin receptor assoc;









ESTs






OVp2-158




20027.1




176




Topoisomerase II; ESTs






OVp2-160




20028.1




177




Novel






OVp2-162




20029.1




178




Novel






OVp2-167




20035.1




179




K1AA0630; ESTs






OVp2-169




20037.1




180




Novel






OVp2-171




20039.1




181




Novel; ESTs






OVp2-172




20072.1




182




Novel






OVp2-174




20031.1




183




mig-2; ESTs






OVp2-179




20040.1




184




Novel; ESTs






OVp2-180




20041.1




185




Antiquin; turgor protein; ESTs






OVp2-184




20044.1




186




Human ribosomal P1; ESTs






OVp2-185




20057.1




187




Novel; ESTs






OVp2-187




20074.1




188




MuLV env






OVp2-188




20075.1




189




Novel; EST






OVp2-189




20058.1




190




Novel; EST






OVp2-190




20059.1




191




Gonadotropin-Reg Hormone Producing;









ESTs






OVp2-191




21502.1




192




Novel; ESTs






OVp2-192




21503.1




193




18S rRNA, DNA; ESTs






OVp2-193




21504.1




194




Arg-rich Nuclear Protein; ESTs






OVp2-194




21505.1




195




Novel; ESTs






OVp2-195




21506.1




196




Novel; ESTs






OVp2-196




21507.1




197




Human Clone 406A7; ESTs






OVp2-197




21508.1




198




Novel; ESTs






OVp2-204




22128.1




199




Human Mitochondrial DNA; ESTs






OVp2-206




22129.1




200




Human chrom. DNA for RAD23A; ESTs






OVp2-207




22130.1




201




Human clone 24921 mRNA; ESTs






OVp2-208




22131.1




202




Human 4F5rel mRNA; ESTs






OVp2-209




22133.1




203




Human ribosomal pro. S6









kinase.SW1/SNF related; ESTs






OVp2-211




22134.1




204




Human beta-glucuronidase (BG) mRNA;









ESTs






OVp2-212




22135.1




205




Human DNA for hnRNP protein A2/B1;









ESTs






OVp2-215




22137.1




206




Human translocation protein 1; ESTs






OVp2-216




22138.1




207




Human chromosone X orf5; ESTs






OVp2-217




22139.1




208




Human ribosomal protein S19; ESTs






OVp2-218




22140.1




209




Murine mRNA for histone H3.3A; ESTs






OVp2-220




22141.1




210




Human PAC 434P1; ESTs






OVp2-221




22142.1




211




Human AKAP450.K1AA0803.Hyperion;









ESTs






OVp2-222




22144.1




212




Human HRFX2 mRNA, DNA binding






OVp2-223




22145.1




213




Human NF-kappa-B transcrip'n factor









p65; ESTs






OVp2-225




22146.1




214




Novel






OVp2-226




22147.1




215




Novel






OVp2-228




22148.1




216




Novel; ESTs






OVp2-229




22149.1




217




Human mitochondrial genes; ESTs






OVp2-230




22150.1




218




O. cuniculus endooligopeptidase A related









protein; ESTs






OVp2-232




22152.1




219




Human clone A9A2BR11; Mu Zfr






OVp2-233




22153.1




220




Human KIAA0098; Murine chaperonin









containg TCP-1; ESTs






OVp2-238




22154.1




221




human DNA seq. from PAC 93H18; ESTs






OVp2-239




22155.1




222




Novel






OVp2-241




22156.1




223




Human glutathione S-transferase theta 1;









ESTs






OVp2-243




22157.1




224




Human TCB.OIP3, pyruvate kinase; ESTs






OVp2-244




22158.1




225




Human mRNA for KIAA0250 gene; EST






OVp2-250




22160.1




226




Human complement component C4A









mRNA; EST






OVp2-251




22161.1




227




Novel; EST






OVp2-252




22162.1




228




Novel; EST






OVp2-253




22163.1




229




Human. G protein Golf alpha gene; ESTs






OVp2-254




22164.1




230




Novel; ESTs






OVp2-257




22897.1




231




Novel; ESTs






OVp2-258




22440.1




232




Human chrom 16. cosmid clone 399H11;









ESTs






OVp2-259




22441.1




233




human cDNA DKFZp564B112; ESTs






OVp2-260




22898.1




234




Novel; ESTs






OVp2-262




22442.1




235




Human mRNA for ribosomal protein L31;









ESTs






OVp2-265




22899.1




236




Human TNF receptor mRNA; ESTs






OVp2-266




22445.1




237




Human 12q13.1 PAC RPC11-228P16






OVp2-270




22447.1




238




Hu. cDNA DKFZp586F1523; ESTs






OVp2-273




22450.1




239




Homo sapiens cytochrome b-245; ESTs






OVp2-276




22451.1




240




Novel; ESTs






OVp2-279




22454.1




241




Novel; ESTs






OVp2-282




22903.1




242




Novel; ESTs






OVp2-283




22904.1




243




Human K1AA9001 mRNA,R1N63; ESTs






OVp2-284




22905.1




244




Novel; ESTs






OVp2-285




22906.1




245




Novel; ESTs






OVp2-287




22907.1




246




Novel






OVp3-15




20048.1




247




JM26; ESTs






OVp3-27




20049.1




248




mult. Human BAC; Linel; ESTs






OVp3-42




20050.1




249




Tyrosine phosphatase; ESTs






OVp3-58




20052.1




250




Novel; ESTs






OVp3-61




20060.1




251




Novel; ESTs






OVp3-73




20064.1




252




glypican-4






OVp3-74




20065.1




253




Novel; ESTs






OVp3-78




20069.1




254




Novel






OVp3-80




20053.1




255




MLN 50 RNA; EST






OVp3-89




20217.1




256




Novel






OVp3-108




20222.1




257




Human parathymosin; ESTs






OVp3-109




20223.1




258




Human eryth/α-adductin; ESTs






OVp3-114




18080.1




259




Novel






OVp3-115




20225.1




260




Human JM26; ESTs






OVp3-116




20226.1




261




Novel; ESTs






OVp3-120




20503.1




262




Human K1AA0875; ESTs






OVp3-121




20227.1




263




Human Guanine-binding; ESTs






OVp3-122




20228.1




264




Novel; ESTs






OVp3-123




18086.1




265




Novel






OVp3-124




18087.1




266




Human transposon L1.2; ESTs






OVp3-127




18089.1




267




low sim. to Mu. Hepatoma GF; ESTs






OVp3-129




20504.1




268




Human β spectrin (actin-binding); ESTs






OVp3-130




18347.1




269




BAC GS083B20; Linel, p150; ESTs






OVp3-131




18348.1




270




glutathione S-transferase; ESTs






OVp3-132




18349.1




271




Human mRNA KIAA0710; EST






OVp3-136




20506.1




272




Novel; ESTs






OVp3-137




18731.1




273




Novel; ESTs






OVp3-142




20508.1




274




Novel






OVp3-144




18735.1




275




Novel; EST






OVp3-147




18738.1




276




K1AA0941, PGEMEX; ESTs






OVp3-148




20510.1




277




Polyubiquitin; ESTs






OVp3-149




18894.1




278




Novel; ESTs






OVp3-150




18895.1




279




Human SWI/SNF; ESTs






OVp4-1




20017.1




280




Novel; EST






OVp4-2




20018.1




281




Human KIAA0241; ESTs






OVp4-4




20019.1




282




Novel; ESTs






OVp4-6




20020.1




283




Novel; ESTs






OVp4-7




20021.1




284




laminin-binding; ESTs






OVp4-8




20022.1




285




okadaic-acid-inducible; ESTs






OVp4-10




20023.1




286




MAC25; ESTs






OVp4-13




20054.1




287




Novel; ESTs






OVp4-14




20055.1




288




Novel






OVp4-15




20076.1




289




Human HSP; ESTs






OVp4-16




20077.1




290




Clathrin; δ3A (AP-3 complex); ESTs






OVp4-18




20078.1




291




Novel; ESTs






OVp4-20




20070.1




292




Novel






OVp4-22




20229.1




293




Human β-Catenin; ESTs






OVp4-22A




20511.1




294




llPPL1 (51C); DNA repair; ESTs






OVp4-23




20230.1




295




Transcrp'n Fact. AP-1, JUN A, C-JUN;









ESTs






OVp4-24




20231.1




296




Novel; ESTs






OVp4-25




20512.1




297




Novel; ESTs






OVp4-26




20232.1




298




ribosomal P0; ESTs






OVp4-26A




20538.1




299




Novel; ESTs






OVp4-28




20234.1




300




Transcrp'n Factor S-II; ESTs






OVp4-29




20235.1




301




Novel; ESTs






OVp4-30




20236.1




302




Human AHNAK; neuroblast diff'n.; ESTs






OVp4-31




20237.1




303




CD81(TAPA-1) cell surface; ESTs






OVp4-33




20545.1




304




Novel; ESTs






OVp4-34




20546.1




305




Novel






OVp4-35




20547.1




306




Novel; ESTs






OVp4-36




21510.1




307




Novel






OVp4-37




20548.1




308




Novel; ESTs






OVp4-38




22166.1




309




Novel; ESTs






OVp4-40




20549.1




310




Human Profilin; EST






OVp4-43




20551.1




311




Novel






OVp4-44




20552.1




312




Human 30M3; ESTs






OVp4-45




20553.1




313




Chrom. 14 specific cosmid






OVp4-46




20554.1




314




Novel; ESTs






OVp4-47




20555.1




315




EF-1 α; ESTs






OVp4-48




20556.1




316




B-CAM mRNA; EST






OVp4-49




20557.1




317




Novel






OVp4-51




20559.1




318




Human N-cadherin; ESTs






OVp4-52




20560.1




319




Human p16INK4/MTS1; ESTs






OVp4-53




20561.1




320




Human RNA helicase






OVp4-54




20562.1




321




Murine Fibronectin; ESTs






OVp4-55




20778.1




322




RibosomalS6(kinase substrate); ESTs






OVp4-56




20779.1




323




Novel; ESTs






OVp4-58




20781.1




324




CPG island DNA; EST






OVp4-59




20782.1




325




Human KIAA 0241; ESTs






OVp4-61




20784.1




326




Human PAC; EST






OVp4-62




20785.1




327




Na/H reg. factor; ESTs






OVp4-63




20786.1




328




Ferritin Heavy Chain; ESTs






OVp4-64




20787.1




329




MHC -1 H2; ESTs






OVp4-66




20789.1




330




RNA Helicase-related; ESTs






OVp4-70




20793.1




331




BC-2protein RNA; ESTs






OVp4-72




20795.1




332




Phosphorylase Kinase; ESTs






OVp4-73




20796.1




333




Novel






OVp4-74




20797.1




334




Human clone 327J16; ESTs














From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.







334




1


514


DNA


Homo sapien



1
ctccttctcg tcacacacca ggtccccgcg gaagccgcgg tgtcggcgcc atggcggagc 60
tgacggctct tgagagtctc atcgagatgg gcttccccag gggacgcgcg gagaaggctc 120
tggccctcac agggaaccag ggcatcgagg ctgcgatgga ctggctgatg gagcacgaag 180
acgaccccga tgtggacgag cctttagaga ctccccttgg acatatcctg ggacgggagc 240
ccacttcctc agagcaaggc ggccttgaag gatctggttc tgctgccgga gaaggcaaac 300
ccgctttgag tgaagaggaa agacaggaac aaactaagag gatgttggag ctggtggccc 360
agaagcagcg ggagcgtgaa gaaagagagg aacgggaggc attggaacgg gaacggcagc 420
gcaggagaca agggcaagag ttgtcagcag cacgacagcg gctacaggaa gatgagatgc 480
gccgggctgc tgaggagagg cggagggaaa aggc 514




2


461


DNA


Homo sapien



2
gagaacgacc cccggaccga ccaaagcccg cgcgccgctg catcccgcgt ccagcaccta 60
cgtcccgctg ccgtcgccgc cgccaccatg cccaagagaa aggctgaagg ggatgctaag 120
ggagataaag caaaggtgaa ggacgaacca cagagaagat ccgcgaggtt gtctgctaaa 180
cctgctcctc caaagccaga gcccaagcct aaaaaggccc ctgcaaagaa gggagagaag 240
gtacccaaag ggaaaaaggg aaaagctgat gctggcaagg aggggaataa ccctgcagaa 300
aatggagatg ccaaaacaga ccaggcacag aaagctgaag gtgctggaga tgccaagtga 360
agtgtgtgca tttttgataa ctgtgtactt ctggtgactg tacagtttga aatactattt 420
tttatcaagt tttataaaaa tgcagaattt tggtttactt t 461




3


436


DNA


Homo sapien



3
gaggagtggc agcggcaagg cagcccagtt tcgcgaaggc tgtcggcgcg ccgcggcccg 60
caggcacccg gcacgcgcct tccccgcagg cacccggcac gcgccttccc cgccgccacg 120
atgcccaaga ggaaggtcag ctccgccgaa ggcgccgcca aggaagagcc caagaggaga 180
tcggcgcggt tgtcagctaa acctcctgca aaagtggaag cgaagccgaa aaaggcagca 240
gcgaaggata aatcttcaga caaaaaagtg caaacaaaag ggaaaagggg agcaaaggga 300
aaacaggccg aagtggctaa ccaagaaact aaagaagact tacctgcgga aaacggggaa 360
acgaagactg aggagagtcc agcctctgat gaagcaggag agaaagaagc caagtctgat 420
taataaccat atacca 436




4


75


DNA


Homo sapien



4
ggaattccct ccccctcctt gtgccttctt tgtatatagg cttctcacgg cgaccaataa 60
acagctccca gtttg 75




5


222


DNA


Homo sapien



5
ccggggctga aaacggtggc agaaagtgag caacttaggg agacagaaag agcgcagaac 60
tcgaaattcc gaggcagaga gagcggaggg caagccgtgg gtagaaacgc gccgaggcga 120
ggacgaaggc cttggcccgc ggagacgcag gcacccgcgg agaacgcttc ggatccgtca 180
cggttttgcc tcatttggaa gatattactt cgcccctgaa aa 222




6


147


DNA


Homo sapien



6
cctgaaagga ccttgggtgg taaagctgta cttggtggga gtgagggcgt ggggaggaac 60
catgcaaatc gccttccatg gtttttaaat gcagtaaata acatttctgg atgagacttg 120
tttccaaaat aaaccagcta tatctgt 147




7


952


DNA


Homo sapien



7
ggggagcgga gcggggccgc cggggcctct ccagggccgc agcggcagca gttgggcccc 60
ccgccccggc cggcggaccg aagaacgcag gaagggggcc ggggggaccc gcccccggcc 120
ggccgcagcc atgaactcca acgtggagaa cctacccccg cacatcatcc gcctggtgta 180
caaggaggtg acgacactga ccgcagaccc acccgatggc atcaaggtct ttcccaacga 240
ggaggacctc accgacctcc aggtcaccat cgagggccct gaggggaccc catatgctgg 300
aggtctgttc cgcatgaaac tcctgctggg gaaggacttc cctgcctccc cacccaaggg 360
ctacttcctg accaagatct tccacccgaa cgtgggcgcc aatggcgaga tctgcgtcaa 420
cgtgctcaag agggactgga cggctgagct gggcatccga cacgtactgc tgaccatcaa 480
gtgcctgctg atccacccta accccgagtc tgcactcaac gaggaggcgg gccgcctgct 540
cttggagaac tacgaggagt atgcggctcg ggcccgtctg ctcacagaga tccacggggg 600
cgccggcggg cccagcggca gggccgaagc cggtcgggcc ctggccagtg gcactgaagc 660
ttcctccacc gaccctgggg ccccaggggg cccgggaggg gctgagggtc ccatggccaa 720
gaagcatgct ggcgagcscg ataagaagct ggcggccaac aaaaacacgg acaacaagcg 780
ggcgctgcgg cggctgtagt gggctctctt cctccttcca ccgtgacccc aacctytcct 840
gtcccctccc tccaactctg tctytaagtt atttaaatta tggctggggt cggggagggt 900
acagggggca ctgggacctg gatttgtttt tctaaataaa gttggaaaag ca 952




8


859


DNA


Homo sapien



8
ctcatgcctg taatcccagc actttggaag gcaggagcca ccaagcgcag ccatgattta 60
ttagatcact tctaaaagcc ctctctccat ctccaagcca gcaagtgctt ctttgcaccc 120
cagctctaaa acaaagccct tggggacaca atcaaagaca gtagttgcca agaggaatag 180
ggagcatgga aagaaggtgc tggatgtgca tacagctaac ctggtaactc caaactggat 240
gagctcattc cttgagactg gaattacaaa attggaacag ctcactaata attgaagatg 300
atttgggaaa accattatcc ttcctcaggt tttacaaggt ttttatgact catttataag 360
gtcctacagc taaaaaaaat catgctgtat ttcagagaag tttaacttga aaatattttt 420
ttcactaatt aaaaattccc attatacctt atagttgcaa ttgtatcctt attgctgaaa 480
gatatccata ctacctacca cttctttaaa atttaaaaaa ttctataaat aaaaaatata 540
acaattgcaa atatgtaaat aacttccaac ataaaacaaa atttatagta attataagaa 600
gttcttttat actaaaaatt aagttgtaat tatgatagaa ataatctgta aaaggtattt 660
ttagcaaaat ttattaatac gggtagcaat aataataccc aattatatat gcatattgtt 720
tgtattttag aacctgtgac aaatgaaaat ggttttccta gataagaacg aaactgtgtt 780
gggtggctaa caagatygaa actcatctga ctttgagaaa taaatcaatt tggtttgttt 840
atttaaaaaa aaaaagctt 859




9


289


DNA


Homo sapien



9
gaggcatggg ctgccgccct ttccacggct ggaccagcct tgtcttactg gccatggctg 60
aagactactg aagggaggga gaggagggga gccaagacac tcatgccact ctggctctga 120
agggacaaag gcttctggct tttgccccca gccccttgga taccagtaat tcaaaccttc 180
ctcatttcat ctcaggtgtc tccttgctgt catcccacat agccctgggg tgaatgtgaa 240
tccagagtct atttttctaa ataaattgga aaaaacaaaa aaaaagctt 289




10


328


DNA


Homo sapien



10
tgggttggtg aagattccac atacaaattt tttgaggtta tcctcattga tccattccat 60
aaagctatca gaagaaatcc tgacacccag tggatcacca aaccagtcca caagcacagg 120
gagatgcgtg ggctgacatc tgcaggccga aagagccgtg gccttggaaa gggccacaag 180
ttccaccaca ctattggtgg ctctcgccgg gcagcttgga gaaggcgcaa tactctccag 240
ctccaccgtt accgctaata taagtaaagt ttgtaaaatt catacttaat aaacaattta 300
ggacagtcaa aaaaaaaaaa aaagcttg 328




11


386


DNA


Homo sapien



11
gcagtacatg ctaagacttc accagtcaaa gcgaactact atactcaatt gatccaataa 60
cttgaccaac ggaacaagtt accctaggga taacagcgca atcctattct agagtccata 120
tcaacaatag ggtttacgac ctcgatgttg gatcaggaca tcccgatggt gcagccgcta 180
ttaaaggttc gtttgttcaa cgattaaagt cctacgtgat ctgagttcag accggagtaa 240
tccaggtcgg tttctatcta cttcaaattc ctccctgtac gaaaggacaa gagaaataag 300
gcctacttca caaagcgcct tcccccgtaa atgatatcat ctcaacttag tattataccc 360
acacccaccc aagaacaggg tttgtt 386




12


231


DNA


Homo sapien



12
gacggctacc tggctccgga gaatgggtat ttgatggagg ctgcgccgga gtgaagaggt 60
cgtcctctcc atctgctgtg tttggacgcg ttcctgccca gccccttgct gtcatcccct 120
cccccaacct tggccacttg agtttgtcct ccaagggtag gtgtctcatt tgttctggcc 180
ccttggattt aaaaataaaa ttaatttcct gtaaaaaaaa aaaaaaagct t 231




13


84


DNA


Homo sapien



13
ctacacacca aatctgctag ttccttgatc tccgacctct caagctctag aactgctaga 60
aataaatttc tatttttata agct 84




14


91


DNA


Homo sapien



14
ccacgcttca ccaccaagag gcccaacacc ttcttctagg tgcagggccc tcgtccgggt 60
gtgccccaaa taaactcagg aacgccccgg t 91




15


168


DNA


Homo sapien



15
gctgacagag atacctacag acggagtgct gtgccacctg gtgccgacaa gaaagccgag 60
gctggggctg ggtcagcaac cgaattccag tttagaggcg gatttggtcg tggacgtggt 120
cagccacctc agtaaaattg gagaggattc ttttgcattg aataaact 168




16


154


PRT


Homo sapien



16
Met Ala Glu Leu Thr Ala Leu Glu Ser Leu Ile Glu Met Gly Phe Pro
1 5 10 15
Arg Gly Arg Ala Glu Lys Ala Leu Ala Leu Thr Gly Asn Gln Gly Ile
20 25 30
Glu Ala Ala Met Asp Trp Leu Met Glu His Glu Asp Asp Pro Asp Val
35 40 45
Asp Glu Pro Leu Glu Thr Pro Leu Gly His Ile Leu Gly Arg Glu Pro
50 55 60
Thr Ser Ser Glu Gln Gly Gly Leu Glu Gly Ser Gly Ser Ala Ala Gly
65 70 75 80
Glu Gly Lys Pro Ala Leu Ser Glu Glu Glu Arg Gln Glu Gln Thr Lys
85 90 95
Arg Met Leu Glu Leu Val Ala Gln Lys Gln Arg Glu Arg Glu Glu Arg
100 105 110
Glu Glu Arg Glu Ala Leu Glu Arg Glu Arg Gln Arg Arg Arg Gln Gly
115 120 125
Gln Glu Leu Ser Ala Ala Arg Gln Arg Leu Gln Glu Asp Glu Met Arg
130 135 140
Arg Ala Ala Glu Glu Arg Arg Arg Glu Lys
145 150




17


90


PRT


Homo sapien



17
Met Pro Lys Arg Lys Ala Glu Gly Asp Ala Lys Gly Asp Lys Ala Lys
1 5 10 15
Val Lys Asp Glu Pro Gln Arg Arg Ser Ala Arg Leu Ser Ala Lys Pro
20 25 30
Ala Pro Pro Lys Pro Glu Pro Lys Pro Lys Lys Ala Pro Ala Lys Lys
35 40 45
Gly Glu Lys Val Pro Lys Gly Lys Lys Gly Lys Ala Asp Ala Gly Lys
50 55 60
Glu Gly Asn Asn Pro Ala Glu Asn Gly Asp Ala Lys Thr Asp Gln Ala
65 70 75 80
Gln Lys Ala Glu Gly Ala Gly Asp Ala Lys
85 90




18


100


PRT


Homo sapien



18
Met Pro Lys Arg Lys Val Ser Ser Ala Glu Gly Ala Ala Lys Glu Glu
1 5 10 15
Pro Lys Arg Arg Ser Ala Arg Leu Ser Ala Lys Pro Pro Ala Lys Val
20 25 30
Glu Ala Lys Pro Lys Lys Ala Ala Ala Lys Asp Lys Ser Ser Asp Lys
35 40 45
Lys Val Gln Thr Lys Gly Lys Arg Gly Ala Lys Gly Lys Gln Ala Glu
50 55 60
Val Ala Asn Gln Glu Thr Lys Glu Asp Leu Pro Ala Glu Asn Gly Glu
65 70 75 80
Thr Lys Thr Glu Glu Ser Pro Ala Ser Asp Glu Ala Gly Glu Lys Glu
85 90 95
Ala Lys Ser Asp
100




19


244


DNA


Homo sapien



19
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttac 244




20


241


DNA


Homo sapien



20
tcaacctcct cctccaagcc ctttctcagt acaagctttc aataaagggg caagttgcag 60
tgcccaagga tttgactatg gcctgggaaa taacaaacgt gacagaggaa ctatctcaac 120
atcttcaaga ccagtgtcca catcagggaa gtcagagctg ccctctaagc acagcaggtc 180
agttaaaccc gacgggcatg tgagccggac tcctgctgac cagaagaagc cacgggggac 240
a 241




21


220


DNA


Homo sapien



21
caaaattcta acctgtatca gaggagtgaa atgccccgtg aattgaggca actgtagata 60
ttcgaaatgc ttctaaaaag gctgtgaggt tatgtccttt actgcatgtc attggtaggt 120
catctcaaaa tggcactcga gctttggaag ggtgagaact attgctagat ttggtagggg 180
gtctgcatct atgggcccga gtcctccatc tccacaagct 220




22


240


DNA


Homo sapien



22
atctgcttta agtaactaca tgaaatatct caagccccaa gtaactatac ccagaaccag 60
caccaaccga ggcttctgaa caaaaacaac ctcacaaagc aatttaccca gaaagcaaca 120
tttctaagac aggagactgc ctcctccaaa tggctcactc cattgaaaaa acgccatctg 180
ccagaggcag acaccaaata aaaggcactt ggacatcagg atttgtaaaa aaacaagtac 240




23


221


DNA


Homo sapien



23
ggattttttt atacaacctt agaccacctt ctttagcttt aggcgtctgc ggttgccctt 60
ggatctgttc tcaatcctca gtgtgtgtgg cagcatgtga tcatagagag ctgggcaaag 120
ttcactttct ctttgctgac agtctcacct tttctcactg ggaagctgca caggagcctt 180
tgggctggtt cagcccagag gcccctgttc tcctgccttc c 221




24


248


DNA


Homo sapien



24
atggcgcccc gcgcccggag ggccccttct gagcgccccg gcccctccct ccgcgctccc 60
cctcctcccc gcggcgcccc cgccccgccc cgcccccgcc gagaccccga ccccggcccc 120
acgggcggac actcggccgg gcagccgcgg gccgagcgca gccgctccgc accgatgcgc 180
ctggtggcag actccaagtg ggaccggcgg acacgcagcc tcgcgtgtca ggggaagctg 240
atggagaa 248




25


248


DNA


Homo sapien



25
tgccggggag gctgaacagg agggttagga ataaaatcag ggcttaagca gagctggtcc 60
attcctcagt cctctcacgc ccctgttttc tgagcacggg cgttctgact cagttttaac 120
tttgaattta ggagataaca caacatttgt tccttgccca ttaaaaaaaa aaaaaaacaa 180
gtaacttttt ttgctccagc tgtactcaac ctggttgact aatgctcact gtagagctag 240
aaaaccaa 248




26


248


DNA


Homo sapien



26
gaataggaac taaaatgtaa atctgtctta aacatctgtg aaaaagatgg tacttttgac 60
aacatttatc tgcatgtcca gatcagcaat gagtcggcaa ttgacttcta caggaagttt 120
ggcctttgag attattgaga caaagaagaa ctactataag aggatagagc ccgcagatgc 180
tcatgtgctg cagaaaaacc tcaaagttcc ttctggtcag aatgcagatg tgcaaaagac 240
agacaact 248




27


178


DNA


Homo sapien



27
aaaaagatgg tacttttgac aacatttatc tgcatgtcca gatcagcaat gagtcggcaa 60
ttgacttcta caggaagttt ggctttgaga ttattgagac aaagaagaac tactataaga 120
ggatagagcc cgcagatgct catgtgctgc agaaaaacct caaagttcct tctggtca 178




28


240


DNA


Homo sapien



28
ccgaggggct gcaagcccgg gagggcccct gtaggagccc agcgcgtggc ggggactgca 60
gcaggaactc ctgcctggcg tggcatcgcg gggcgcccgc tggggagacg ccacccgtgt 120
gtgacccctg tccggagcgg atccagaacc acccccggac tcaactgtgt gaggtccaca 180
cggactgttg gccgtgccaa ccagggactg gcgctccgac ctgcccgagg accccaaagc 240




29


443


DNA


Homo sapien



29
ctgtttcaaa caaaaccaaa aacctaagta gagcattaca ggcctctgtg gctgctgcgt 60
ttctgtagaa agcaacttat tttattgact tttttttttt aaggaaaaga aataaaaaga 120
ccccagcaag caaaaacatt taaaaaatga ttttttttcc tcctacttaa gtggttcttt 180
ctccctttgc tctacttttg gagaatgaac ttaacatccc ggcttctttt gttaagccat 240
agctgacctt aatctgtggt tagtttatta aaataattaa aaatactttc taagaagaga 300
tatttttgat attaggactg atgttgaaac atataggggc aatttataaa aaggtagtta 360
gagaaatata ttttagtgaa ctataaccac agagcacaga tgactcccaa tgagctgatc 420
tgtctttagg tttctccctt tcc 443




30


451


DNA


Homo sapien



30
ttgccgaacc gctttcttac cctccgcacc cgttaagttc tccggtcggg cggcagtctc 60
tgaacactta gccgcgccat ccggggtcac accgcctgga aggaggtgac gggggcggcg 120
cggggcgcgg acactccccg ctgagagtcc gcctgccatg gactcggaat attacagcgg 180
cgaccagtca gatgatggtg gtgctacccc agtacaggat gaacgggatt cagggtcaga 240
cggtgaggat gatgtaaatg agcaacactc cggatcagac actggaagtg tagaacgtca 300
ttcagagaat gaaactagtg atcgagaaga tggcctcccc aaaggacatc atgtgacaga 360
ctctgagaac gatgagccct taaatcttaa tgctagtgac tctgaaagtg aggagcttca 420
caggcaaaag gacagcgact ctgaatctga g 451




31


444


DNA


Homo sapien



31
aaacaatact atcttataaa atagtactgt tgaattattc caagcctccc taggtttgct 60
ctcaaatgtc atttacagat tgggctaacg acctagaatc tatatataaa gactttctga 120
agaactctgt attatagcaa taccaaacga gtgctgtgtg tgcaaacagt ctggcgttgc 180
tttttatgtt gatatttatc ctagaacact gaaagagaat atgccagtga taactcactt 240
tacttcagtc atttcaacac agaaaatgct tctctagcat ttttcttttg tagtgttaac 300
attttgaaat tcatgtttca gaggcttcat catcacagaa tttactcttg ctccatgaaa 360
aaaaattaaa taccttcaga ggaatattta agttgtaaac tatgaaactt gagaaatcct 420
cttgagataa aaggctgcca aatc 444




32


451


DNA


Homo sapien



32
gatccaattc caacaatcta tcttataaaa tagactgttg aattattcca agcctcccta 60
ggtttgctct caaatgtcat ttacagattg ggctaacgac ctaaaatcta tatataaaga 120
ctttctgaag aactctgtat tatagcaata ccaaacgagt gctgtgtgtg caaacagtct 180
ggcgttgctt tttatgttga tatttatcct agaacactga aagagaatat gccagtgata 240
actcacttta cttcagtcat ttcaacacag aaaatgcttc tctagcattt ttcttttgta 300
gtgttaacat tttgaaattc atgtttcaga ggcttcatca tcacagaatt tactcttgct 360
ccatgaaaaa aaattaaata ccttcagagg aatatttaag ttgtaaacta tgaaacttga 420
gaaatcctct tgagataaaa ggctgccaaa t 451




33


224


DNA


Homo sapien



33
cgcgagtgct gtctccgcag ccgcgcggta gacggccgcg ttccagccct gctggcgacc 60
cccggagttg agcctgcgag ttgggtgcgg gaacaccggc cctgggtggc cgggaaccct 120
aaggccacca ccgcgatccg caggtcaaac gtgacggggc tccctcctgg atagggtcgg 180
tcgggaagtt gatggagact cgacaggcct aagtgtccac catc 224




34


1231


DNA


Homo sapien



34
atccgcggcc aaccagagcg cgcgcgcggc acaacctcat cccaggctcg cgtgcgcagc 60
agctggagca gatccgcagg gacatccgag acttccggtc tagcgcgggg ctggacaaag 120
tcatagtgct gtggacggcg aacacggagc gcttctgtga ggtgattcca ggcctcaacg 180
acacagccga gaacctgctg cgcaccattg agctcggtct ggaggtgtcg ccctccacgc 240
tcttcgccgt ggccagcatc ctggagggct gtgccttcct caatgggtct ccgcagaaca 300
ccctggtgcc cggagctctt gagctcgcgt ggcagcaccg ggtttttgtg ggcggagatg 360
acttcaagtc aggccagacc aaagtcaagt ccgtgcttgt ggacttcctc attggctccg 420
gcctcaagac catgtccatc gtgagttaca accacctggg caacaacgat ggggagaacc 480
ctatcggcgc cattgcagtt ccgctctaag gaggtgtcca agagcaacgt ggtggacgac 540
atggtgcaga gcaacccagt gctctatacg cccggcgaag agcctgacca ctgcgtggtc 600
atcaagtatg tgccgtacgt gggtgacagc aagcgcgcgc tggatgagta tacctcggag 660
ctgatgctgg gcggaaccaa cacactggtg ctgcacaaca cgtgtgagga ctcgctgctg 720
gccgcaccca tcatgctgga cctagcgctg ctgaccgagc tgtgccagcg cgtgagcttc 780
tgcactgaca tggaccccga gccgcagacc ttccaccccg tgctgtccct gctcagcttc 840
ctcttcaagg cgccactagt gccgcccggc agcccggtgg tcaatgcgct tttccgccag 900
cgcagctgca tcgagaacat cctcagggcc tgcgtggggc tcccgccaca gaaccacatg 960
ctcctggaac acaaaatgga gcgcccaggg cccagcctca agcgagttgg acccgtggct 1020
gccacctacc ctatgttgaa caagaaagga ccggtacccg ctgccaccaa tggctgcacc 1080
ggtgatgcca atgggcatct gcaagaggag cccccaatgc ccaccacctg aggccccggt 1140
cacacagttt ctcggctctt cctccccgct gccccccacg accctacctt gaaggccccc 1200
acaaataaag gcgctgccac tcaaaaaaaa a 1231




35


234


DNA


Homo sapien




misc_feature




(1)...(234)




n = A,T,C or G





35
actgacccca cccaggatca aggctcanga tgcaatgaca aataacgcta ccactaggca 60
gaacttgacc cgtgtgtagg aggatagtgg gaaaagcact tagaggccgg ggtcagtaac 120
aacatcagcc aacagggatg accacgcccg ctgggcttca gcatggaggt gaaacaagca 180
gccctggctc ctgccctgcg ggcacctctg tctgggaggg gcaggagggg cttc 234




36


234


DNA


Homo sapien



36
tcagagccca cccggcatgt acaactgtga aaggccttgg aaaactggag cgatgagagc 60
ggtgaatcgt gttggtctca ttggagaccc gcagattggg agattctgga accaggacga 120
ccttgcccct cacctgcagc agaagccccc ggaaacgccc ggccccgacc cggacctgag 180
ccgcctgggg gcccaaggga agctgaacgc ccggtgggct cccgcgatgg ttct 234




37


246


DNA


Homo sapien



37
gattcgagag agggaaatct cacttccacc ttattttcac taaattttct gaaacagaca 60
aaatgtgtag tgttgacagg gccaatctcc gtgacttttg ttcatatgct tttatttatc 120
catgatttcc aagacactgg gcttcccatt ctcacttccc ctcatcaatc cctttccttt 180
ctttagaagg gggcttatgt atgagactgg tgaagtccag tgaagctaag taaaggggca 240
agatgg 246




38


244


DNA


Homo sapien



38
agcagaggag gttcgattaa aactggaaga gaccagagag gtacagaact tgaggaagag 60
gcccaacggg gtgagtgctg tggccttgct ggtgggagag aaggtacaag aggagaccac 120
tctagtggat gatccctttc agatgaagac aggtggtatg gtggatatga agaaactgaa 180
ggaaaggggc aaagataaga tcagtgagga ggaggacctg cacctgggga catcgttttc 240
tgca 244




39


242


DNA


Homo sapien




misc_feature




(1)...(242)




n = A,T,C or G





39
caacaatctt ctntaaaata gactgttgaa ttattccaag cctccctagg tttgctctca 60
aatgtcattt acagattggg ctaacgacct agaatctata tataaagact ttctgaagaa 120
ctctgtatta tagcaatacc aaacgagtgc tgtgtgtgca aacagtctgg cgttgctttt 180
tatgttgata tttatcctag aacactgaaa gagaatatgc cagtgataac tcactttact 240
tc 242




40


241


DNA


Homo sapien




misc_feature




(1)...(241)




n = A,T,C or G





40
accagaactg aaacagagga ctgtgctgaa tctctaaatc atgttgatag tgatgtacca 60
ccttctaata ccatgagtgn ttttaacacc tctgattacc gctttgagtg tatatgtggt 120
gaacttgatc agatagatcg taagcctcgt gttcaatgcc tgaagtgtca cctgtggcaa 180
catgcaaagt gtgtgaatta tgatgagaaa aatctgaaga tcaagccttt ttactgcccc 240
c 241




41


245


DNA


Homo sapien



41
agcgagagga agagaggaga agaaagagaa accagggggg cgaggcgccg tccaatgaca 60
aagcccaggg gtgggcgccg gccgccatct tgtaccgggc agcaggatat tcgcccgcgt 120
cctccgccct cggaggggga ggggcggcgg cggaggcgag aaaagtagcg agagacgcca 180
gcagcagccg ccgccgcgga gccaacgcgg actgggacgg cggcggcagt agtgggaccc 240
ggcga 245




42


241


DNA


Homo sapien




misc_feature




(1)...(241)




n = A,T,C or G





42
agccnagact ttagattgcc cggaggaagc aaactcttcg tataaaaaaa agcaggccat 60
ctgcttaacc cttggctcca ccataaggca ctgggactcg gatttctcta tctgatagag 120
gtattttctg tggccctggg agctgtctgt ctttccccta cccccaagga tgccaggaag 180
acgtccacca ttagccatgt ggcaaccttt acttctatgc ctcacaagtg cctttcagag 240
a 241




43


245


DNA


Homo sapien



43
gcatgcccct tggagtggaa ggaagctgga cagggcaggc ctctggggac gggacacagg 60
gaagcccgaa ggggcgcctt ggccaggtct gccatctcct ccagcgaggc tctggccagc 120
actgggtgag agtggggagg gggcactggc ctttgcagca cagtaaaaca tggtccagac 180
aacctgtggc cccggcctca tgagcacccc ctgcacaggc ccagcccaag ccaggcgcta 240
gaagg 245




44


238


DNA


Homo sapien



44
gatgcccctt ggagtggaag gaagctggac agggcaggcc tctggggacg ggacacaggg 60
aagcccgaag gggcgccttg gccaggtctg ccatctcctc cagcgaggct ctggccagca 120
ctgggtgaga gtggggaggg ggcactggcc tttgcagcac agtaaaacat ggtccagaca 180
acctgtggcc ccggcctcat gagcaccccc tgcacaggcc cagcccaagc caggcgct 238




45


247


DNA


Homo sapien



45
gcctttgcgc accgtttctt ccctccgcac ccgttaagtt ctccggtcgg gcggcagtct 60
ctgaacactt agccgcgcca tccggggtca caccgcctgg aaggaggtga cgggggcggc 120
gcggggcgcg gacactcccc gctgagagtc cgcctgccat ggactcggaa tattacagcg 180
gcgaccagtc agatgatggt ggtgctaccc cagtacagga tgaacgggat tcagggtcag 240
acggtga 247




46


225


DNA


Homo sapien



46
gcccgcgcac cctctctcgg ggctggtggc ctgcgtgggc ggccgggtgg tcggcagagc 60
cgccggggcc cccgggctca gaaagaggcc gaaatggctg cgaagcaggc cccgggcagg 120
agtcgctcgg gcgcagggag gaagtgaacc ggccggaggt agcgcccggc tgctggcccc 180
acagtcccga caccttcgga actcctaact cctttacttg tccgg 225




47


227


DNA


Homo sapien



47
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgcca 227




48


537


DNA


Homo sapien



48
gccgcccggg ccctggatcc tgcaccgagg ccgcaaaaag gccacaggca gcgcagtgtc 60
catcttcgtg tatgatgtga aaccgggagc tgaagagcag acccaggtgg ccaaagctgc 120
cttcaaacgc ctcaaaactc tccgacaccc caacatcctg gcctatatcg atgggttgga 180
gacagaaaag tgcctccaca tcgtgacaga ggctgtgacc cccctgggaa catacctcaa 240
gggctggcga gtggaaactt gggggtctgg actacatgta ctcggcacag ggcaacggcg 300
ggggaccacc cagcaagggg atcccggagc tcgagcagta tgatcccccg gagctggctg 360
acagcagtag cagagcagtc agagagaagt ggtcagcaga catgtggcgc ttgggctgcc 420
tcatctggga agttttcaat gggtctctac ctcgggcagc tgccctgcgc aaccctggga 480
agatccccaa atccctggtg acccattact gtgaactggt gggagctaac ccaaaag 537




49


336


DNA


Homo sapien



49
aagcgtctct tttccactgt tgcagtgagc tgagaccatg ccactgtact ctagcctggg 60
taacagccag accctgtctc aaaaaaaaaa acaatttttt tcataacata attcccattt 120
ttatttattt tgagtcactc ataattaatt gccaaaaaag cattttatac attgagttgg 180
ggggtagtgg atcttagtgt ggtgttgcat ggaggggcga gattttatat ttataatcaa 240
cacgtgggtt aacatgtttt tttgaaatcc aagcaataca caggaaattt aagtagaata 300
aaaattgcag cccatttttg aaatgtcagc atgtgc 336




50


247


DNA


Homo sapien




misc_feature




(1)...(247)




n = A,T,C or G





50
cagctgngaa tctgactggt cctgnacttt ttttggctgg ngggctatta antatatcct 60
cagtttcaga gcctgttatt ggtctattca nggattcaac ttcttccttg nttantcttg 120
ggagggggta tgtgtccang aatttatcca tttcttctan attttctagc ttatttgtgt 180
acagatgttt atagtattca ttctctgatg ggagnttgta tttctgtggg atcagnggtg 240
atatccc 247




51


243


DNA


Homo sapien




misc_feature




(1)...(243)




n = A,T,C or G





51
ctggctgctt ttttgctgng ggtagatggt gggaatactt ctggtctaga tataacttac 60
cactaagaaa cccccagtat gtcaccactg cctaaatcta actagaccag ggtccaaatg 120
ccatccaggc caggcaggaa atatacctca tgtgaaagac agtaaggagt tgtgggcagt 180
gtaacaaaca ggagagctat gccccaacta aaaggagcag ctgctactgc ttagtttcag 240
cca 243




52


944


DNA


Homo sapien



52
ccaaacaccc gaaagacaca aaccagaatt gagccctact ccccaaaatg tacaaacaga 60
tgatacgctt aactttttgg acacctgtga tttgcatact gagcatataa agccatcttt 120
acgcacgtcc atcggtgaaa gaaaacggtc tctttcacca ctaattaagt tttctccagt 180
ggaacaaaga ttgagaacca caatagcatg tagtcttgga gaactaccta atttaaagga 240
agaagacatt ttgaataaga gccttgatgc aaaagaacca ccgtctgact tgacaagatg 300
aagacgtacc catttaatat aactatgatg cacttaaatt gaagctatgc cacaggatag 360
aaaatgaatt acaacttaaa tacatgttgg aagtgtaaca ctgtttttca agggttaaaa 420
aaattcctaa tgccttttag ccttctttaa tatttttagg taaggaaagt atgtttggat 480
tttttcctct ttgtaggtat atgagattga aatgtgaagt atttggacaa caaacgtcaa 540
gcaatgggaa gccattttga tttcttgagt aatcttgtaa gcattaagtg aatgacaaag 600
tagtagtgta acttatttct tatgttataa cttcagtcaa ttaatataag gatagttttt 660
gttgtatgtt cactaaatgg ttaatataat agccattgaa tatactaatc tttcatctta 720
gagaactata caacttttat tgtttcttaa tggaacattc tggctaacca gaaaaagtga 780
gaaaagtagt acccttggga tgtgtagtca agatgacaaa ttttaagact ggaaaagctc 840
taaacaggct taatgattct tcaggtagaa tgatcctgag aaggtgatgt ttgatggaat 900
aaagtgcatg tgatgattaa gtgaagactg gggcagaatg attt 944




53


230


DNA


Homo sapien



53
taaagataat gattgataag ctagaacttt ctgatgtagt cattacatga aaccccttgt 60
cactggtttg tgtgttcaga ggaagccatg gccgagatag ctttcctgaa ataaaccagt 120
agcttttcag attgacgttc ttgctacaat tgtaccatct ggtaattcct gaaaatgtca 180
atttttttgt gttaatattt ttggtttcaa acaataacaa atgtctctag 230




54


242


DNA


Homo sapien



54
ggaagaagga gaagcaattc tattccaagg ccaagaccta ctggaaacaa atcccaccca 60
cggtggacgg catgcttggg gggtatggcc acatctccag catcgacatc aacagctccc 120
ggaagtttct gcagaggttt ttgagggaag gcccgaacaa gacaggaacg tcctgtgccc 180
tggactgtgg agctggcatt gggaggatca ccaagcggct gctcctgccg ctgttcagag 240
ag 242




55


246


DNA


Homo sapien



55
ccaaacaccc gaaagacaca aaccagaatt gagccctact ccccaaaatg tacaaacaga 60
tgatacgctt aactttttgg acacctgtga tttgcatact gagcatataa agccatcttt 120
acgcacgtcc atcggtgaaa gaaaacggtc tctttcacca ctaattaagt tttctccagt 180
ggaacaaaga ttgagaacca caatagcatg tagtcttgga gaactaccta atttaaagga 240
agaaga 246




56


241


DNA


Homo sapien



56
tttggagctt caaagaggca aagtgactaa ggaggaaatt agtaaagagt ttatgttaag 60
cgcagattgt cttctctttt taagatgcct tgtgaatatc tctccttgga tgcaatggag 120
aaatggatca tctgtaagta accgagctag ctagggctgt ctcttgtgtt taagctttaa 180
tgagggaatg cctgtttctg ccttagctct gcccttcacc ctgcaatgac acctgtgtgc 240
t 241




57


246


DNA


Homo sapien



57
ccaaacaccc gaaagacaca aaccagaatt gagccctact ccccaaaatg tacaaacaga 60
tgatacgctt aactttttgg acacctgtga tttgcatact gagcatataa agccatcttt 120
acgcacgtcc atcggtgaaa gaaaacggtc tctttcacca ctaattaagt tttctccagt 180
ggaacaaaga ttgagaacca caatagcatg tagtcttgga gaactaccta atttaaagga 240
agaaga 246




58


244


DNA


Homo sapien



58
attgcatcgt tttccaacat acttttagat ttacaaagta aaaccaacca tggatctgcc 60
tatcttggtg tgtcgatctt gtaattttat ctttgtgtgt gtgtgtgtgt gtgtgtgtgc 120
actcactggg gcctaagctc agaacctcac acaggcagag tatacacacg ccctgcaact 180
aaactgcatc tctagtccct atacatgtgt cctactcatc cttcaaagtg agtccctagg 240
ggat 244




59


1737


DNA


Homo sapien



59
cggtatttgt gagaggagtc ggcgtttgaa gaggtggaac tcctagggct tttttgagag 60
tgctgattta gaagaataca aatcatggct gaaaatagtg tattaacatc cactactggg 120
aggactagct tggcagactc ttccattttt gattctaaag ttactgagat ttccaaggaa 180
aacttactta ttggatctac ttcatatgta gaagaagaga tgcctcagat tgaaacaaga 240
gtgatattgg ttcaagaagc tggaaaacaa gaagaactta taaaagcctt aaaggacatt 300
aaagtgggct ttgtaaagat ggagtcagtg gaagaatttg aaggtttgga ttctccggaa 360
tttgaaaatg tatttgtagt cacggacttt caggattctg tctttaatga cctctacaag 420
gctgattgta gagttattga cacagttgta ttaaattgtt cacaaaaagg agagcctttg 480
ccattttcat gtcgcccgtt gtattgtaca agtatgatga atctagtact atgctttact 540
ggatttagga aaaaagaaga actagtcagg ttggtgacat tggtccatca catgggtgga 600
gttattcgaa aagactttaa ttcaaaagtt acacatttgg tggcaaattg tacacaagga 660
gaaaaattca gggttgctgt gagtctaggt actccaatta tgaagccaga atggatttat 720
aaagcttggg aaaggcggaa tgaacaggat ttctatgcag cagttgatga ctttagaaat 780
gaatttaaag ttcctccatt tcaagattgt attttaagtt tcctgggatt ttcagatgaa 840
gagaaaacca atatatggaa gaaatgactg aaatgcaagg aggtaaatat ttaccgcttg 900
gagatgaaag atgcactcac cttgtagttg aagagaatat agtaaaagat cttccctttg 960
aaccttcaaa gaaactttat gttgtcaagc aagagtggtt ctggggaagc attcaaatgg 1020
atgcccgagc tggagaaact atgtatttat atgaaaaggc aaatactcct gagctcaaga 1080
aatcagtgtc aatgctttct ctaaataccc ctaacagcaa tcgcaaacga cgtcgtttaa 1140
aagaaacact tgctcagctt tcaagagaga cagacgtgtc accatttcca ccccgtaagc 1200
gcccatcagc tgagcattcc ctttccatag ggtcactcct agatatctcc aacacaccag 1260
agtctagcat taactatgga gacaccccaa agtcttgtac taagtcttct aaaagctcca 1320
ctccagttcc ttcaaagcag tcagcaaggt ggcaagttgc aaaagagctt tatcaaactg 1380
aaagtaatta tgttaatata ttggcaacaa ttattcagtt atttcaagta ccattggaag 1440
aggaaggaca acgtggtgga cctatccttg caccagagga gattaagact atttttggta 1500
gcatcccaga tatctttgat gtacacacta agataaagga tgatcttgaa gaccttatag 1560
ttaattggga tgagagcaaa agcattggtg acatttttct gaaatattca aaagatttgg 1620
taaaaaccta ccctcccttt gtaaacttct ttgaaatgag caaggaaaca attattaaat 1680
gtgaaaaaca gaaaccaaga tttcatgctt ttctcaagat aaaccaagca aaaccag 1737




60


249


DNA


Homo sapien



60
tcaaaagcaa caagattaaa aagattagaa tgcagtggaa ttgtagcttt aagacgctga 60
atgtgattct gtatcattta agagagaaag tagaattaac acatgttcac acacagaaag 120
aatctactct ttgtacaacc tttgctgaaa gaactttgaa agacttcagt aaaaacaaag 180
ttaaatccag aaaagacaag atcaaacaag caatggtgag caaaaaacct agcaaacgtg 240
gcactaaac 249




61


243


DNA


Homo sapien



61
ttgtttatca tggagctaat aatcctaaag gattgctgga agttcgggaa gccctggaaa 60
aggtacacaa agtagaagac cttcttccga ttatgaagtt taatactaaa acgaaggatg 120
ggttcaccgt gaacacaaaa gttcccagcc ttaaagacca agggaaggaa tatgatggat 180
tcacaatcac gattacagga gacaaagttg gcaatatatt attttctgtg gaaactcaaa 240
cca 243




62


240


DNA


Homo sapien



62
gttgttgccc tgtgattagt tctgcttttt aacccactcc ctggatgcat ttttccctcc 60
ttgcatttcc ctcttttcct ggagttcata ctagagaatc tgcactatgt ttttcccttt 120
ttgtcttgag atgaaagttt taaaataatc cacctctgtc atttccactc tctgaacatc 180
ccaagctgta tccctggcct cttttctcag actatgtttc tttacttggg acctagaact 240




63


245


DNA


Homo sapien




misc_feature




(1)...(245)




n = A,T,C or G





63
agcccncctg aagcgccgcg gcgccgctat cgagcttcct gcantggtgg ccacccgagc 60
aagtgccgtg gcgggggcgg agagcggcca cggcggcggc gcctccccaa gtggcccgtt 120
gcgtccgacc ccgcgtgaaa gatatcaagt tattctagta caaccatata aataaataat 180
acctgaagtc tcagtgtaac atggacaatt aacagtgatg acagataaat acagacgcat 240
gggga 245




64


299


DNA


Homo sapien



64
tgccagagca gctgggaagg tgtggaagga gcagttccgg gtgaggtggc cttcccttat 60
gaaacactac agccccaccg actacgtcaa ttggttggaa gagtataaag ttcggcaaaa 120
agctgggtta gaagcgcgga agattgtagc ctcgttctca aagaggttct tttcagagca 180
cgttccttgt aatggcttca gtgacattga gaaccttgaa ggaccagaga ttttttttga 240
ggatgaactg gtgtgtatcc taaatatgga aggaagaaaa gctttgacct ggaaatact 299




65


246


DNA


Homo sapien



65
agccgggccc gagctgggct ctgcgaggtg caagaaagcc tttgaggtga aggtgtatga 60
aagtcatcat aacagatgtt ttccaaaaac ttgtagaagg ttgtgaaaaa actactagga 120
tcacgcggca tgtattgagg tgtggcatgc agcattttgg aaggaaaatt gaagacgtgt 180
tcaagaaaac atgaacagaa gcaaatgatg aaaatcagca ttttacttga tgttgataac 240
atcaca 246




66


528


DNA


Homo sapien



66
agtccctaaa tacatgaggc tgggtgagca gatgaaaccg gtagccactg tgctgatgca 60
tgtgactcca ttcagttggg gattttggtt ccatgtggat ccatactaag tattcttcag 120
tcagtggatt ttagcaaggg gaggtaggag tggaagagag gtgtgaagaa acctctccga 180
acaaatgaac cagcagtaag tttctaaaaa tcagaatcta gatagaagtt ctgcaatatg 240
aaatgagcac attctttgat aaggcgtatc tattcatgct tttgtaccac tgttttgtac 300
ctgactccct gaccgatttg tattttttat atacaactag aaggaagtca caagattgcc 360
ttctacagtg tgccatttcc aaatggatct gttgttggag gaaactggtt gctagtcaat 420
gttctatatt taatgaatgt gtgataaatc atcctgtaat cagtatggag taacctgttt 480
ttgtagtttg gatgaatatg tcctgagaaa tttccatcca ctttggtt 528




67


536


DNA


Homo sapien



67
gttctgcatc ctccaggctc tggttcccat gcagcagctg tcagcgttca gacaacccct 60
cagaacgtgc ccagccggtc aggcctgccc cacatgcact cccagctgga gcatcgcccc 120
agccagagga gcagctcccc tgtgggcctt gccaaatggt ttggctcaga tgtgctacag 180
caacccctgc cctccatgcc cgccaaagtt atcagtgtag atgaattgga ataccgacag 240
tgagcagggc aggcagactc aactaagccc ggacctgtgg tggcacactg ggcaggaccc 300
tgcttcatct cgggttggtt tatgggcttt tactttggag cactctgtgt gaagctgttt 360
ggtggaaccc atgcatctgg tgtggtccgc attatgatgg aaggatctta accagtcgag 420
tggagtgtac attgtctgaa tacaggatgc acaatgttgt caatcctgga aatggtcttt 480
cttttttgta agatatgtga atgaagtgtt ggtgtcctca ccaagaggtg gcacct 536




68


1664


DNA


Homo sapien



68
attgatgaac tcccagaggg ccggccagtg cgggtagccc ggattgatga actcccagag 60
ggcgctgtga agcctccagc aaacaagtat cctatcttct tttttggcac ccatgaaact 120
gcatttctag gtcccaaaga cctttttcca tataaggagt acaaagacaa gtttggaaag 180
tcaaacaaac ggaaaggatt taacgaagga ttgtgggaaa tagaaaataa cccaggagta 240
aagtttactg gctaccaggc aattcagcaa cagagctctt cagaaactga gggagaaggt 300
ggaaatactg cagatgcaag cagtgaggaa gaaggtgata gagtagaaga agatggaaaa 360
ggcaaaagaa agaatgaaaa agcaggctca aaacggaaaa agtcatatac ttcaaagaaa 420
tcctctaaac agtcccggaa atctccagga gatgaagatg acaaagactg caaagaagag 480
gaaaacaaaa gcagctctga gggtggagat gcgggcaacg acacaagaaa cacaacttca 540
gacttgcaga aaaccagtga agggacctaa ctaccataat gaatgctgca tattaagaga 600
aaccacaaga aggttatatg tttggttgtc taatattctt ggatttgata tgaaccaaca 660
catagtcctt gttgtcattg acagaacccc agtttgtatg tacattattc atattcctct 720
ctgttgtgtt tcggggggaa aagacatttt agcctttttt aaaagttact gatttaattt 780
catgttattt ggttgcatga agttgccctt aaccactaag gattatcaag atttttgcgc 840
agacttatac atgtctagga tccttttatc aaggcagtta tgatcatcgt tttcctgcct 900
tgaccccacc atcatcaaac actcagttaa atataaatta acatttttta gatgaccact 960
caacataatg cttaagaatg gaatttcctc tctgtgacag aacccaggaa ttaattccta 1020
aatacataac gttggtatat tgaagacgaa attaaaattg tccttcagtt ttgaggccat 1080
gtgtaaagtt tacccatatt gtaaaatatc tattccggta ttagaaatag ctagttgaca 1140
gcttatactt ctcaaaattc atattgttat gtacacaaac taagtttcta tatgtgaagt 1200
tagtgagtct ttttgtgtta ctccaaaata aaggcaatga tttatttttt tcccagtgcc 1260
aatacaattt tgagctaagc actcaaggtg gatactttac attttaaagc tggaatcagc 1320
aacagcccta tgggaaacca gacaaagcat tgacttttaa atgtagactt ttaaaataaa 1380
ctgttttctt ttggaactac aattagaata gttaatattc atccttaaac cattattatg 1440
tgtacattat tgttgctatt gtgataatag agaattttat ttatttttat gccagcttat 1500
attgtgagaa cacatttagt cagtttgggt tttatcaatc ctgttaatgc ttgtccttgg 1560
aacatctttc gcgtattcac ggtttgtagt tgaaaagttt actgtaaaaa aatcaaaaac 1620
aaaaaaatgt attgttttta cagaataaat ttattggaat gtgt 1664




69


218


DNA


Homo sapien



69
taatgagcca accacgtggg agcttaacca gtgatagaac tagaaattgg gttcttcaac 60
agaaaataga agggagaaac aaaagaatca aactacgcta aattgattga aatgaatgga 120
ggaggaaccg gctgtaatca tgaattagaa atgatcagac aaaagcttca atgtgtagct 180
tcaaaactac aggttctacc ccagaaagcc tctgagag 218




70


241


DNA


Homo sapien



70
aacaaataaa aaataaaaac aacgccagtc tcagtaaatc tgtaggtgtg tctaaccggc 60
agaataagaa agtagaagaa gaagaaaagt tgctgaagct ctttcaggga gtaaataaag 120
cccaagatgg atttacgcag tgggtgtgaa cagatgcttc atgcccttaa tacggcaaat 180
aacttggatg ttcccacatt tgtttctttc ctgaaagaag tagaatctcc ttatgaggtc 240
c 241




71


224


DNA


Homo sapien



71
agactgacca ccggcctccc gcctgcaggt cagaggctct gacactgtct ggtttccaat 60
gcttctggag acttcctgcc taggcctcat cctcctcttt gccagtcacc tgattaacca 120
attctccagc attaggactt acctccttct ttttgtaagg tctcttgtat gttgttaaat 180
gtttggctta aacaatttat aaaagccttt ctagaaggca gact 224




72


250


DNA


Homo sapien




misc_feature




(1)...(250)




n = A,T,C or G





72
gcgatgagtg cgcccccaaa ggggcaccct cgctgcggtg canacactgg tgcgtggcga 60
ggttctcccc tttgggtgcg atgagtgcgc actgggcgcc accgtggatg cccccgccgc 120
caagcccctg gccagcgcgc ctggcggacc gggctgcggc ccaggatccg atcccgtggt 180
gccccagcgc gccccctcgg gcgagcggtc cttcttctgc ccggactgcg ggcgcggctt 240
ctcccatggg 250




73


227


DNA


Homo sapien



73
tacttcactc acctaattgt gatgttcaag tcccccaggc cggctgccat ggtgctggac 60
cgctcccagg actttgggaa aacatggaag ccttataagt actttgcgac taactgctcc 120
gctacatttg gcctggaaga tgatgttgtc aagaagggcg ctatttgtac ttctaaatac 180
tccagtcctt ttccatgcac tggaggagag gttattttca aagcttt 227




74


260


DNA


Homo sapien




misc_feature




(1)...(260)




n = A,T,C or G





74
atgcgtnttc ggcggccgcg gcggaccatg gccctggccc ggcgtcgctg ggctttcctc 60
acggcgtccc cgagcagcgt cgcagagcgg gccgacttcc gggaaggaac tgaccagcga 120
ctgagcggcg gccggcgcgc ttagcgccct gaacatgcgg cagtccctgc gggcgacccc 180
gggctccgga caggcggcgg cggaggcggc ggctcgggag ggaaggaggc ggcggcgccg 240
gcggaggtgg cggcggagac 260




75


204


DNA


Homo sapien



75
gtggggacca ggtctgtggg cctcaggtct ggccagccag ggctggtgct gtccccgcct 60
acctccactt cctttccctt gctcactctg gatccagtga cagcaggtgt catgggtcaa 120
gcataaatca tatatagcat tttcaggcat gttcctggta gttcttttga gtctgacatt 180
ctaataaaat aatttgtaga aacc 204




76


227


DNA


Homo sapien



76
aaccacacat tggaaaaatc agtttaccct agaatctagt tattgttgtg gtacagttta 60
atttttgtca aataattctt tctaaaattt ctaatgtaag tctttaattt tcaagatatt 120
ttgcttagaa gatgatatgg tttggctgtg tccccaccca aatctcacct tgaattccca 180
cgtgttgtag ggggcaggtc tttcctgtgc tgttcttgtg aaagtga 227




77


528


DNA


Homo sapien



77
tagtacagca gccatgcagc caccttattt catagatgcc atctgtgtgt cctcttgact 60
accttctatt tagaggaaga atgagagctt tgtgtgttta actgagctta tagtaggact 120
tctttgcata tgtatggtac tgaaaaatct taatatacat ctttaatcct ttttaggttg 180
tcctttaaag agtttttgac tagtttcttt ttcttgacag ctcttctctt tggacacatg 240
ggccttctta gagggttcag tctaggaccc ggctctcctg gccctgtgtt gagggtagct 300
ggtccctctg tccctgtgtc tgctagcact agactttgtt gctgcagatt gatccagtgg 360
gtacataggc taattaatgt gagtcttttt ccttgtttaa aggagtccct cttgctgaaa 420
gtagagtgat tactattgct gtagtgctag gaaagtatta agtttgtgct gaaaatccat 480
tgccatttgg tacaaatgac attgttcttt ctgtgaaaga gatgccct 528




78


241


DNA


Homo sapien




misc_feature




(1)...(241)




n = A,T,C or G





78
aatgcgggcc gcgtgcgtgc tgtgcggggc ngccggcggt cgcccagagc ggagcatccg 60
gcccccggca ctcccttccc cagcaggcct agggagctgc gcgcgggggc agtgcgtgac 120
ctggagaccc gggccctggt ggattgggag tcgggcnggg gggagcaggt catgctaggg 180
tggtctccgg ccaagggagc gatgaaggtc aggcgcggcg agcggggctg ggaggcgggg 240
c 241




79


247


DNA


Homo sapien



79
agaatattaa gaaaatgaag taactgattt tctaaaaaaa aaaaaaaaaa aatttctaca 60
ttataactca cagcattgtt ccattgcagg ttttgcaatg tttgggggta aagacagtag 120
aaatattatt cagtaaacaa taatgtgtga acttttaaga tggataatag ggcatggact 180
gagtgctgct atcttgaaat gtgcacaggt acacttacct tttttttttt tttttttaac 240
tttttcc 247




80


246


DNA


Homo sapien




misc_feature




(1)...(246)




n = A,T,C or G





80
cttgttccct ctccaagtat ttcatagtaa cactctactt gaagtgactt gatccagact 60
gaaaagtgtc ctgcagtgga atgaccacca ggcccagatc tagcctagcc tgagctctca 120
caacctctcc ttaaccttcc ctagaacaat tacctttagc tcagtaatgg gaaaatctct 180
accctaacat gagggcagga cacacacaca cacacacaca ccctttgatc tcagtcttta 240
nacaag 246




81


223


DNA


Homo sapien



81
ggctcagggc tccttccatt ctaaccttga gccacagtgt cactcttcag ggctctgctc 60
ctggctctat tttgttaagg tgtcatcagc cttcaacctc catttatata tttttataat 120
gttaagccac tgaccaactt tttcatagaa acaactatca gattcgaggg ctccctttgt 180
ccccctgacc tgggcacagg catgggcgat ggctccctct tcc 223




82


235


DNA


Homo sapien



82
caccatcatc aaagaccaaa ggtagataaa accacaaaga tgggaaaaaa aacagagcag 60
aaaagctgaa aattctaaaa atcagagcgc ctctcctcct ccaaaggaac acagctcctt 120
gccagcaatg gaacaaagct ggacagagaa tgactttgac aagttgagag aagaaggctt 180
gagatgatca aacttctccg agctaaagga ggaagtttga acccatagca aagaa 235




83


245


DNA


Homo sapien



83
tccgtttatc acagtccact taaaaaatga tgatgatgat aaaaaccatg acccaccaat 60
cacatgccta tcatatagta aaacccagcc catgacccct aacaggggcc ctctcagccc 120
tcctaatgac ctccggccta accatgtgat ttcacttcca ctccataacg ctcctcatac 180
taggcctact aaccaacaca ctaaccatat accaatgatg gcgcgatgta acacgagaaa 240
gcaca 245




84


244


DNA


Homo sapien



84
agccagatga cctttttccc caagtgatac tccaagagca aaagtattga aaatagaaga 60
agtcagtgat acttcatccc tgcaacctca agccagtttg aagcaggatg tatgtcagtc 120
ttacagcgag aaaatgccca tagagataga acaaaaacct gctcagtttg ccacaactgt 180
tcttcctcca attcctgcaa actcgttcca gctcgaatct gatttcagac aattgaaaag 240
ttct 244




85


219


DNA


Homo sapien



85
gtcactgagc ctgccaacca cgctgtggca ggtacctcca gccccagaca cctgcagcct 60
ccactgaaag ctcaatggca gcctcatgag accctggacc ggaaccaccc actacctaaa 120
aaatcccaaa catataactg aactccttat acccaattgg accaatctat caccctatag 180
aagaactaat gttagtataa gtaacatgaa aacattctc 219




86


241


DNA


Homo sapien



86
agcacgttca actaatattt tagacaatat gggcaaatca tccaagaaat ccactgcact 60
tagtcgaact acaaataatg aaaagtctcc cattataaag cctctgattc caaagccgaa 120
gcctaagcag gcatctgcag catcctattt ccagaaaaga aattctcaaa ctaataaaac 180
tgaggaagtg aaagaagaaa atcttaaaaa tgtattatct gaaaccccag ctatatgtcc 240
t 241




87


224


DNA


Homo sapien



87
cctgccaaaa ccaagaatcg ccgcagaagg aagccatcca cttctgatga ttctgactct 60
aattttgaga aaattgtttc gaaagcagtc acaagcacta aatccaacgg ggagagtgat 120
gacttccata tggactttga ctcagctgtg gctcctcggg caaaatctgt acgggcaaag 180
aaacctataa agtacctgga agagtcagat gaagatgatc tgtt 224




88


241


DNA


Homo sapien



88
aattcttcca tcaaggagat atagaaaaaa aatatcattt gggtgtgagt ccactttgcg 60
atcagtcaca ctgaatctat tgccaacatc cagattggtt ttatgactta cctagtggag 120
cctttattta cagaatgggc caggttttcc aatacaaggc tatcccagac aatgcttgga 180
cacgtggggc tgaataaagc cagctggaag ggactgcaga gagaacagtc gagcagtgag 240
g 241




89


237


DNA


Homo sapien



89
gtccttccga ggaagctaag gctgcgttgg ggtgaggccc tcacttcatc cggcgactag 60
caccgcgtcc ggcagcgcca gccctacact cgcccgcgcc atggcctctg tctccgagct 120
cgcctgcatc tactcggccc tcattctgca cgacgatgag gtgacagtca cggaggataa 180
gatcaatgcc ctcattaaag cagccggtgt aaatgttgag cctttttggc ctggctt 237




90


242


DNA


Homo sapien




misc_feature




(1)...(242)




n = A,T,C or G





90
aatgcaaaat gcttgcangt cactcccaaa tataacccta cattacctta tatataaatc 60
acaatgaaaa taaaagtgcc tacattacag aactgtgaaa ttttgtttaa aaaaataata 120
aaaataaact gttgggtatc attggaataa tgtaacacat aaggctggaa aatactgaaa 180
tacagttaag actcaataca caagtttact ttaaaaaaga aaagaaagaa aagtttgcca 240
ga 242




91


239


DNA


Homo sapien



91
acaagatcat cattcgtgtg cagaccaccc cagactacag tccccaggag gctttcacca 60
acgccatcac agacctcatc agcgagctct cccttctgga ggagcgattc cgggtggcca 120
tcaaggacaa gcaagaagga attgagtagc agctgaaaga agcgttgctt agtggctgga 180
aggctggcac atactcctca gggcccttca gtttaccaca tggcgacagc cactctcag 239




92


242


DNA


Homo sapien



92
tttaatgttg tctcaccata acacaaaaag catgaacttg tattaatcat atataataga 60
ttgatcatgc actgtattca caggaggttg gaaaaccatg ccattttctg gaacttaagg 120
tgttgcatta tttcatcaat catttgttaa aaaaaaccaa aaaaataaaa atgtgaaccc 180
ttcaggtgta aacaccttat cttggtatac aattgatctt tttgttttgt tttgaagtat 240
ca 242




93


221


DNA


Homo sapien



93
gggagaatgt gcacctgcag gtaccgggga gactcacaag gcacgagttc tgacaagaac 60
gtaaacagga agaccagggc cttcttgctg cagccatggt agcctcgtgt gctcccaaag 120
gaggccttga accagtctgc atatgacagg aacgcagagg ggccctccag tgctgcctgg 180
cgcacaacca ggaacgcagt gaccatgctg tccagctggc a 221




94


229


DNA


Homo sapien



94
cacgtccgcc cctgcggcca agcccaagcg ggccaagggc ctccaagaag tccacagacc 60
accccaagta ttcagacatg atcgtggctg ccatccaggc cgagaagaac cgcgctggct 120
cctcgcgcca gtccattcag aagtatatca agagccacta caaggtgggt gagaacgctg 180
actcgcagat caagttgtcc atcaagcgcc tggtcaccac cggtgtcct 229




95


224


DNA


Homo sapien



95
gctagtcaga accctatacc atgaagtgta gttaccatac agattaatat gtagcaaaaa 60
tgtatgcttg atatttctca actgtgttaa tttttctgct gtattccagc tgaccaaaac 120
aatattaaga atgcatcttt ataaatgggt gctaattgat aatggaaata atttagtaat 180
ggactataca ggatgttaat aatgaagcca tatgtttatg tctg 224




96


446


DNA


Homo sapien



96
agctcaagat acatgaaatc aatcaaaggg aaacttgaag aacagagacc agaaagagta 60
aaacctttta tgacaggggc tgcagaacaa atcaagcaca tccctgctaa tttcaaaaac 120
taccagttct ttattggtga aaacatgaat ccagatggca tggttgctct attggactac 180
cgtgaggatg gtgtgacccc atatatgatt ttctttaagg atggtttaga aatggaaaaa 240
tgttaacaaa tgtggcaatt attttggatc tatcacctgt catcataact ggcttctgct 300
tgtcatccac acaacaccag gacttaagac aaatgggact gatgtcatct tgagctcttc 360
atttattttg actgtgattt atttggagtg gaggcattgt ttttaagaaa aacatgtcat 420
gtaggttgtc taaaaataaa atgcat 446




97


352


DNA


Homo sapien



97
aattcagcct tcctccctgc cagagatctc tttaagaaaa tagtttaaac aatttgttaa 60
aaaattttcc gtcttatttc atttctgtaa cagttgatat ctggctgtcc tttttataat 120
gcagagtgag aactttccct accgtgtttg ataaatgttg tccaggttct attgccaaga 180
atgtgttgtc caaaatgcct gtttagtttt taaagatgga actccaccct ttgcttggtt 240
ttaagtatgt atggaatgtt atgataggac atagtagtag cggtggtcag acatggaaat 300
ggtggggaga caaaaatata catgtgaaat aaaactcagt attttaataa ag 352




98


248


DNA


Homo sapien




misc_feature




(1)...(248)




n = A,T,C or G





98
cggccgacag anctgaggcg gagggcctga gcccgcgctt ccaccagctg gacatcgacg 60
atctgcagag catccgcgcc ctgcgcgact tcctgcgcaa ggagtacggg ggcctggacg 120
tgctggtcaa caacgcgggc atcgccttca aggttgctga tcccacaccc tttcatattc 180
aagctgaagt gacgatgaaa acaaatttct ttggtacccg agatgtgtgc acagaattac 240
tccctcta 248




99


224


DNA


Homo sapien




misc_feature




(1)...(224)




n = A,T,C or G





99
agnaagagac aatgaactca taggccagac tgtgcgtatc tcccagggac cctacaaagg 60
ctacattggt gtggtgaagg atgccacaga gtccacggcc agagtagaac tgcattctac 120
ctgccagacc atctctgtgg atcgccagcg gctcaccacg gtcgactccc agcgtccagg 180
tggcatgacc tctacatatg gacggactcc catgtatggc tctc 224




100


236


DNA


Homo sapien




misc_feature




(1)...(236)




n = A,T,C or G





100
ctgtggcgct ccgtgaaatt agacgttatc agaagtncac tgaacttctg attcgcaaac 60
ttcccttcca gcgtctggng cgagaaattg ctcaggactt taaaacagat ctgcgcttcc 120
agagcgcagc tatcggtgct ttgcaggagg caagtgaggc ctatctggtt ggcctttttg 180
aagacaccaa cctgtgtgct atccatgcca aacgtgtaac aattatgcca aaagac 236




101


243


DNA


Homo sapien



101
cttcctgacc ttgggctacg gctgaccgtt tttttgtggt gtactccgtg ccatcatgtc 60
cgtcctgacg ccgctgctgc tgcggggctt gacaggctcg gcccggcggc tcccagtgcc 120
gcgcgccaag atccattcgt tgccgccgga ggggaagctt gggatcatgg aattggccgt 180
tgggcttacc tcctgcttcg tgaccttcct cctgccagcg ggctggatcc tgtcacacct 240
gga 243




102


234


DNA


Homo sapien




misc_feature




(1)...(234)




n = A,T,C or G





102
ccgganncgn caccgccgcg cnntcgccca cccgcccgcc cgccgctccc ggccccgctc 60
gccccctccg ccgccgccgc ccgcccctgc gactacgctg cggcctcccg cccgctcccg 120
ctcgctcccg cggccctcgc tcgcctcgcg ccggcagttt tgggcctaca cctcccctcc 180
ccccgccagc cgccaaagac ttgaccacgt aacgagccca actcccccga acgc 234




103


247


DNA


Homo sapien



103
cagcgccagc gaggtcggag cggacagcga ggtcggcagc ggcacagcga ggtcggcagc 60
ggcacagcga ggtcggcagt ggcagcgagg tcggcagcgg cacagcgagg tcggcagcgg 120
cagcgaggtc ggcagcggcg cgcgctgtgc tcttccgcgg actctgaatc atggcgacca 180
cggccacgat ggcgacctcg ggctcggcgc gaaagcggct gctcaaagag gaagacatga 240
ctaaagt 247




104


247


DNA


Homo sapien



104
gattaaccac aattctcaga cccaatcctg agtcctcagg aggttgtatc ttgcagcccc 60
tatgcccaag gttgtgatgg tggattccca tacctcattg cagggaagta tgcccaagat 120
tttggggtgg tggaagaaag ctgctttccc tacacagcca aagattctcc atgcaaacca 180
agggagaatt gcctccgtta ctattcttct gactactact atgtgggtgg tttctatggt 240
ggctgca 247




105


224


DNA


Homo sapien



105
agagaaagaa gaatctgatg atgaagctgc agtagaggaa gaagaagaag aaaagaaacc 60
aaagactaaa aaagttgaaa aaactgtctg ggactgggaa cttatgaatg atatcaaacc 120
aatatggcag agaccatcaa aagaagtaga agaagatgaa tacaaagctt tctacaaatc 180
attttcaaag gaaagtgatg accccatggc ttatattcac ttta 224




106


522


DNA


Homo sapien




misc_feature




(1)...(522)




n = A,T,C or G





106
cggagccgga gacaagagca gaggccgaac tcgggatctg acaagatggc cgggctgccc 60
cgcangatca tcaaggaaac ccagcgtttg ctggcagaac cagttcctgg cattaaagca 120
gaaccagatg agagcaacgc ccgttatttt catgtggtca ttgctggccc ccaggattcc 180
ccctttgagg gagggacttt taaacttgaa ctattccttc cagaagaata cccaatggca 240
gcacctaaag tacgtttcat gaccaaaatt tatcatccta atgtagacaa gttgggaaga 300
atatgtttag atattttgaa aggtaagtgt tgtttgtcac cctgtgcttt attaacgtgt 360
cctttttgtc ctaagcattc tacatttaga atgtaagcat tggaatctca ctgtatgcta 420
acagccccag agtgtgtggg agggaagtgc agcagttctg ggcctgttgt ccatgcttta 480
tcatatactg ggcctgttac cttcatagat aagtggtccc ca 522




107


526


DNA


Homo sapien



107
tttaatgttg tctcaccata acacaaaaag catgaacttg tattaatcat atataataga 60
ttgatcatgc actgtattca caggaggttg gaaaaccatg ccattttctg gaacttaagg 120
tgttgcatta tttcatcaat catttgttaa aaaaaaacta aaaaataaaa atgtgaaccc 180
ttcaggtgta aacaccttat cttggtatac aattgatctt tttgttttgt tttgaagtat 240
cagatattaa tttggaataa ggtaaggttc tcttgaaaca tttgaaaacc ctttaagcca 300
actgatctga cagctttccc atcagtagaa gtgggaacat accttcttag gtatttacta 360
ttaactacat gtaggcagtt tatagcttct gatcagtgta gtagacatta caaacactgg 420
ttgtaatggg gttttctgta gactttactt gagaggtgag tataaagcat tttttagtca 480
tcatcatgac gatgctgctc aagtgcagat ccagaacagt acagcg 526




108


243


DNA


Homo sapien




misc_feature




(1)...(243)




n = A,T,C or G





108
aatgcccatc atggcagcgg cgttccgcag aggctgcagg gtcctgagaa gtgtttctca 60
ttttgagtgt cgaacacaac actcgaaagc ggctcacaag caggagcccg gattagggtt 120
tagttttgag ttgacnggaa cagcagaaag agtttcaagc aactgcccgc aagtttgcca 180
gagaggagat tatccccgtc gccccggaat atgacaaaag cggggaggtg ggtatcgggt 240
tgc 243




109


242


DNA


Homo sapien




misc_feature




(1)...(242)




n = A,T,C or G





109
cgngaacaac gccctanaaa aaacaagaag gtaatccctc aacaaaccta aaagaagaca 60
gccacaagaa cagaatgcaa gagatggaag agagaatctc aggtgcagaa gattccatag 120
agaacatcgg cacaacaatc aaagaaaatg gaaaatgcaa aaagatccta actcaaaata 180
tccaggaaat ccaggacaca ataagaagac caaacgtacg gataatagga gtggatgaga 240
ag 242




110


246


DNA


Homo sapien



110
ttcagataac tacttgaaat atgcagagaa atccctgaat gatatgtttg tgaagacata 60
tggccattta tacatgcaaa attctgagct atttaaagat ctcttcgtag agttgaaacg 120
ttactacgtg gtgggaaatg tgaacctgga agaaatgcta aatgacttct gggctcgcct 180
cctggagcgg atgttccgcc tggtgaactc ccagtaccac tttacagatg agtatctgga 240
atgtgt 246




111


238


DNA


Homo sapien



111
ccaaaatggg aaaggaaaag actcatatca acattgtcgt cattggacac gtagattcgg 60
gcaagtccac cactactggc catctgatct ataaatgcgg tggcatcgac aaaagaacca 120
ttgaaaaatt tgagaaggag gctgctgaga tgggaaaggg ctccttcaag tatgcctggg 180
tcttggataa actgaaagct gagcgtgaac gtggtatcac cattgatatc tccttgtg 238




112


242


DNA


Homo sapien




misc_feature




(1)...(242)




n = A,T,C or G





112
agagaggaag aagcganggg cacggcgctg agacagagct ggagatgagg ccagaccatg 60
gacactacac ccagcaatag agacgggact gcggaggaag gaggacccag gacaggatcc 120
aggccggctt gccacacccc ccacccctag gacttattcc cgctgactga gtctctgagg 180
ggctaccagg aaagcgcctc caaccctagc aaaagtgcaa gatggggagt gagaggctgg 240
ga 242




113


225


DNA


Homo sapien



113
cgaacgcgga gagcacgcca tgaaggcctc gggcacgcta cgagagtaca aggtagtggg 60
tcgctgcctg cccaccccca aatgccacac gccgcccctc taccgcatgc gaatctttgc 120
gcctaatcat gtcgtcgcca agtcccgctt ctggtacttt gtatctcagt taaagaagat 180
gaagaagtct tcaggggaga ttgtctactg tgggcaggtg tttga 225




114


231


DNA


Homo sapien



114
tcaatgcagg gtctaaaagc tggtgttatt gctgttattg tggttgtggt gatagcagtt 60
gttgctggaa ttgttgtgct ggttatttcc agaaagaaga gaatggcaaa gtatgagaag 120
gctgagataa aggagatggg tgagatgcat agggaactca atgcataact atataatttg 180
aagattatag aagaagggaa atagcaaatg gacacaaatt acaaatgtgt g 231




115


226


DNA


Homo sapien



115
gtgcagcggg cagaccctgt ggccgtcacg ccctgccgct ccagggaagg gagccaggct 60
gagcctctgc cacgtgggag aggggctgtt tccagccacc acccaaaaaa acaccacaag 120
ggtcagtcct agcccacccg acagcttccc ttcccaagca ggggtttcgg ggacagtgca 180
ccagggaggg ccactgacag gcttgggaca tgtgcccagc tctcct 226




116


230


DNA


Homo sapien



116
ttctaagacc cgagagaaaa agttgggact aggaactgca tatattcatg gaatgaaaca 60
tgccacagga aactacatca ttattatgga tgctgatctc tcacaccatc caaaatttat 120
tcctgaattt attaggaagc aaaaggaggg taattttgat attgtctctg gaactcgcta 180
caaaggaaat ggaggtgtat atggctggga tttgaaaaga aaaataatca 230




117


225


DNA


Homo sapien



117
tggtggtagg gtgtcaattt tagatctctc ctgctttctc ttgtgggcat ttagtgctat 60
acatttccct ctacaccctg ctttaaatgt gtcccagaga ttctggtaca ttgtgtcttt 120
gttctcattg gtttcaaaga acatctttat ttctgcgttc atttcattat ttacccacta 180
gtcattcagg agcaggttgt tcagtttcca tgtagttgtg tggtt 225




118


247


DNA


Homo sapien



118
aagtgtgatc cccatgaagc aacgtgctat gacgatgggg agacctacca tgtaggagaa 60
cagtggcaga aagaatatct cggagccatt tgctcctgca cgtgtttcgg aggccagcgg 120
ggctggcgct gtgacaactg ccgtagacct ggggctgctg aacccagtcc cgatggcacc 180
accggccaca cctacaacca gtatacacag agatacaatc agagaacaaa cactaacgta 240
aattgcc 247




119


227


DNA


Homo sapien



119
gaccaccacg cacttgatgg cctgcgacgg cgccgtgggg aagacatgct tgctgatcag 60
ctacacgacc aacgccttcc ccggagagta catccccacc gtttttgaca actactctgc 120
caacgtgatg gtggacggga aaccagtcaa cttggggctg tgggacacag cgggtcagga 180
ggactacgat cggctgcggc cactctccta cccccaaact gacgtct 227




120


235


DNA


Homo sapien



120
ctttgccggc ctgccgggcc tgcagctcct ggacctgtca cagaaccaga tcgccagcct 60
gcccagcggg gtcttccagc cactcgccaa cctcaggagc acggagatct cgccggcttt 120
acgttcacct cggtgtctgc agcaccctcc gcttcctctc ctaggcgacg agacccagtg 180
gctagaagtt caccatgtct attctcaaga tccatgccag ggagatcttt gactc 235




121


226


DNA


Homo sapien



121
ctttgaggtt cctttcttct gcaaacacac tgtcagatgg taacaatgct gttttagggt 60
taataatttc tgcccctttc ttctccaagt cactgttaaa catctgctga tttaaagcac 120
actcctcggc attttcagtg aattgttcaa tactgactga agcggatgct acaagaggaa 180
tttcttcttt gacctcctct ccttgagttt caagctccaa agtttc 226




122


245


DNA


Homo sapien



122
agctcccaca acaggtggct aagggaaaag gaggtagatg atggcaaaat aagatttagt 60
tgtgttttct cagagccgcc acaagattga acaaaatgtt ttctgtttgg gcatcctgag 120
gaagttgtat tagctgttaa tgctctgtga gtttagaaaa agtcttgata gtaaatctag 180
tttttgacac agtgcatgaa ctaagtagtt aaatatttac atattcagaa aggaatagtg 240
gaaaa 245




123


246


DNA


Homo sapien



123
gattaaccac aattctcaga cccaatcctg agtcctcagg aggttgtatc ttgcagcccc 60
tatgcccaag gttgtgatgg tggattccca tacctcattg cagggaagta tgcccaagat 120
tttggggtgg tggaagaaag ctgctttccc tacacagcca aagattctcc atgcaaacca 180
agggagaatt gcctccgtta ctattcttct gactactact atgtgggtgg tttctatggt 240
ggctgc 246




124


245


DNA


Homo sapien



124
agcccaaatg gaaaggaaaa gactcatatc aaacattgtc gtcattggac acgtagattc 60
gggcaagtcc accactactg gccatctgat ctataaatgc ggtggcatcg acaaaagaac 120
cattgaaaaa tttgagaagg aggctgctga gatgggaaag ggctccttca agtatgcctg 180
ggtcttggat aaactgaaag ctgagcgtga acgtggtatc accattgata tctccttgtg 240
gaaat 245




125


242


DNA


Homo sapien



125
gttaagcaga aggtggagag ctgtcgcgcg agctcagcac cctgcggaac ttgttcaagc 60
agctgcccga gcccctgctc gcctcctccg gccactgcta gcgcggcccc cgcgcgcgtc 120
cccctgccgg ccggggctga gactccgggg agcgcccgcg cccgcgccct cgcccccgcc 180
cccggcggcg ccggcaaaac tttggcactg gggcacttgg cagcgcgggg agcccgtcgg 240
ta 242




126


245


DNA


Homo sapien



126
agcctggagc ggcgggtgct cgggctgcgt ccgctccgca gaagcaccga gcagccgagc 60
cggggcccgc cgccctcctc ctccatgagg cccgagtgag gcgcggcggc tatagccgac 120
ccgcggcgcc ttccccccgc gtcctatcgc gagcgcagcg gcagcggccc ctggaggagg 180
aggcggagga ggaggagcat gtcggacggt ttcgatcggg ccccagagca aacgaggccc 240
ctgag 245




127


246


DNA


Homo sapien



127
agcccccggt gggctgaggc aggggccgct gtcgtcaggc ctgagccagg gtgagctggt 60
gcctgccttg cattttcctt ctggtgctgt gaagaccata ggctggcagg cagctgagat 120
gaactgtctt taccactgat gaggggcctc tgccggctga gggtagcaag caggggttgt 180
gagtcaggct gggggacttg tttgaaagaa agaggagtgg aaaatggttc caggagggaa 240
gaggtt 246




128


224


DNA


Homo sapien



128
ccgaaatggg caagttcatg aaacctggga aggtggtgct tgtcctggct ggacgctact 60
ccggacgcaa agctgtcatc gtgaagaaca ttgatgatgg cacctcagat cgcccctaca 120
gccatgctct ggtggctgga attgaccgct acccccgcaa agtgacagct gccatgggca 180
agaagaagat cgccaagaga tcaaagataa aatcttttgt gaaa 224




129


228


DNA


Homo sapien




misc_feature




(1)...(228)




n = A,T,C or G





129
ctttgctttc taaactcttc cagaaaggac tgtgagcaag atgaatttac ttttcttaaa 60
aaaaaaaaaa aacagggttg gaaagtccaa gccgtaggac ccagtttcct ttcttagctg 120
atgtctttgg ccagaacacc gngggctgtt acttgctttg aggnggaagc ggtttgcatt 180
tacgcctgta aatgtattca ttcttaattt atgtaaggtt ttttttgt 228




130


443


DNA


Homo sapien



130
cagagcaaga ctccgtccca aaaaaaaaaa aaaaaaaaaa tacatatata tatatgtata 60
tgtatgtatg tatgtatgtg agtgaaatcc tcatctttta tggtagagag tcaatgacat 120
tatctaaaag gtgataaatt tggaaataga tatgtaagca tattatatat tatctagagt 180
tactgtcata attcttagta ataatagaga gaaatatgaa agaactaagc aagaattatt 240
tagaagagtt tgtctctggg tataaatagg acagatcttg gttctaatca caccactgat 300
ttgtcaacca caggcaagta ttaataaaaa ctcataaaaa gtaaatgttc taaaactgct 360
ctaaaaaata aagtcttaaa aaaaggtaaa tgttttggaa taaacagaca attacaataa 420
caatgacatt aaccccgaag tct 443




131


444


DNA


Homo sapien



131
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaaggctgcc aaat 444




132


424


DNA


Homo sapien



132
aaggaagggg cgaacggcgt gagctggcgc cgaaatggga gaaagcagcg agtgagatgg 60
gaaggggcgc caggcgagca cccgggagcc agcgggacct gggcaggggc gcccggagca 120
ggcgcgcatg gcgggccccg cgcggggatc cggctggaag agagcgtagc acggctcgca 180
cgagtccggg gccgatgtac caggtgagcg gccagcgccc ctctggctgc gacgcgccct 240
atggagcccc cagcgcagcc ccgggcccag gccagcctca ggggaacccc ttgggctgca 300
ccccacttct gccgaatgac tctggccacc cctcagagct gggcggcacc agacgggcgg 360
ggaatggtgc cctgggtggc cccaaggccc accggaagtt gcagacacac ccatctctcg 420
ccag 424




133


424


DNA


Homo sapien



133
tacagtgcgt gttcaggacc cccgattgca gaatgagggc tcctggaact cttatgtgga 60
ttataagata ttcctccata ccaacagcaa agcctttact gccaagactt cctgtgtgcg 120
gcgccgctac cgtgagttcg tgtggctgag aaagcagcta cagagaaatg ctggtttggt 180
gcctgttcct gaacttcctg ggaagtcaac cttcttcggc acctcagatg agttcattga 240
gaagcgacga caaggtctgc agcacttcct tgaaaaggtc ctgcagagtg tggttctcct 300
gtcagacagc cagttgcacc tattcctgca aagccagctc tcggtgcctg agatagaagc 360
ctgtgtccag ggccgaagta ccatgactgt gtctgatgcc attcttcgat atgctatgtc 420
aaac 424




134


426


DNA


Homo sapien




misc_feature




(1)...(426)




n = A,T,C or G





134
gggaagcgcc gcggcctgta tttctnnacc tgcccttcgc ctggttcgtg gcgccttntg 60
accccgggcc cctgccgcct gcaagtcgga aacngcgctg tgctcctgtg ctacggcctg 120
tggctggact gcctgctgct gcccaactgg ctggcaagat gaagctctcc ctggtggccg 180
cgatgctgct gctgctcagc gcggcgcggg ccgaggagga ggacaagaag gaggacgtgg 240
gcacggtggt cggcatcgac ctggggacca cctactcctg cgtcggcgtg ttcaagaacg 300
gccgcgtgga gatcatcgcc aacgatcagg gcaaccgcat cacgccgtcc tatgtcgcct 360
tcactcctga aggggaacgt ctgattggcg atgccgccaa gaaccagctc acctccaacc 420
ccgaga 426




135


422


DNA


Homo sapien



135
gactcctgtg aggatgcagc actccctggc aggtcagacc tatgccgtgc ccttcatcca 60
gccagacctg cggcgagagg aggccgtcca gcagatggcg gatgccctgc agtacctgca 120
gaaggtctct ggagacatct tcagcaggta gagcagagcc ggagccaggt gcaggccatt 180
ggagagaagg tctccttggc ccaggccaag attgagaaga tcaagggcag caagaaggcc 240
atcaaggtgt tctccagtgc caagtaccct gctccagggc gcctgcagga atatggctcc 300
atcttcacgg gcgcccagga ccctggcctg cagagacgcc cccgccacag gatccagagc 360
aagcaccgcc ccctggacga gcgggccctg caggagaagc tgaaggactt tcctgtgtgc 420
gt 422




136


233


DNA


Homo sapien




misc_feature




(1)...(233)




n = A,T,C or G





136
gctgctctga gattnngagt tcttctgcag agatgattaa atatatccaa gagacattgg 60
aaaacnggnt gaacatttta cattggtctg ctcagcacat ggctggatgc ggatatttct 120
ataattccag aaagtcacac agctcctctg tatgagacca gtgggcgcca tttaaaagaa 180
caggatgaga atctaagata tattattaat aaatgtaatg gatttttttt tgt 233




137


427


DNA


Homo sapien




misc_feature




(1)...(427)




n = A,T,C or G





137
taaagcataa tgattgataa gctagaactt tctgatgtag tcattacatg aaaccccttg 60
tcactggttt gtgtgttcag aggaagccat ggccgagata gctttcctga aataaaccag 120
tagcttttca gattgacgtt cttgctacaa ttgtaccatc tggtaattcc tgaaaatgtc 180
aatttttttg tgttaatatt tttggtttca aacaataaca aatgtctcta gaaagaaatt 240
ttaagaaagc ttaattaata gtaaaaatgc ctttcctgaa ataatcttgg aaaatttttt 300
aaatggcaaa aatggatgaa gtcatgctta atacattgan gggttggttt tttggtttgg 360
ttnggttggt tnggttttga aaacagaagt tcgctcttgg tgcccangct ggaagtgcaa 420
tggcacg 427




138


456


DNA


Homo sapien



138
taagttcctg aagtgcagaa ctcccagaca aattatgtta gagcctgatt gttagttcag 60
gaggagcttc cactgctaac tcccatcctc ctactcagtt ctaggccact ggtacccact 120
tgagggtaga gttgtattta caaatacttg gagtgatttt atgcaacaaa ctgcacagag 180
gattatagac tcagttaata ggggagtgga gaatgccagc aagcccctga gttagagtga 240
atggccttca actgtgctta ccaattgtgg aacaaaagcc agctagaacc ctagcaatat 300
agtagggtta tgggatcttt ggagtgttgc ttttctggct ggatacctcc gtggacagtg 360
gggcctttgc ctgagttctt gtcctgtgtc caggaagaat gaggtatgca gacaagtgga 420
gggtgagcaa gatgaagaga agctttattg agtgtt 456




139


456


DNA


Homo sapien




misc_feature




(1)...(456)




n = A,T,C or G





139
tancaggagg agagtctaag gcanatgatc cctatgctca tcttagcaaa aaggagaaga 60
aaaagctgaa aaaacagatg gagtatgagc gccaagtggc ttcattaaaa gcagccaatg 120
cagctgaaaa tgacttctcc gtgtcccagg cggagatgtc ctcccgccaa gccatgttag 180
aaaatgcatc tgacatcaag ctggagaagt tcagcatctc cgctcatggc aaggagctgt 240
tcgtcaatgc agacctgtac attgtagccg gccgccgcta cgggctggta ggacccaatg 300
gcaagggcaa gaccacactc ctcaagcaca ttgccaaccg agccctgagc atccctccca 360
acattgatgt gttgctgtgt gagcaggagg tggtagcaga tgagacacca gcagtccagg 420
ctgttcttcg agctgacacc aagcgattga agctgc 456




140


452


DNA


Homo sapien



140
ggagcttccg ggagggcggc tcgcaggcac catgactcct gtgaggatgc agcactccct 60
ggcaggtcag acctatgccg tgcccctcat ccagccagac ctgcggcgag aggaggccgt 120
ccagcagatg gcggatgccc tgcagtacct gcagaaggtc tctggagaca tcttcagcag 180
gtagagcaga gccggagcca ggtgcaggcc attggagaga aggtctcctt ggcccaggcc 240
aagattgaga agatcaaggg cagcaagaag gccatcaagg tgttctccag tgccaagtac 300
cctgctccag agcgcctgca ggaatatggc tccatcttca cgggcgccca ggaccctggc 360
ctgcagagac gcccccgcca caggatccag agcaagcacc gccccctgga cgagcgggcc 420
ctgcaggaga agctgacttt cctgtgtgcg tg 452




141


451


DNA


Homo sapien




misc_feature




(1)...(451)




n = A,T,C or G





141
agggtacacn aatagnctat tcgccatcag tagaaggtag cagcacagaa ctcaaccttc 60
ctgaaactgc aaactccgtc accctcagtg acttgcaacc tggtgttcag tataacatca 120
ctatctatgc tgtggaagaa aatcaagaaa gtacacctgt tgtcattcaa caagaaacca 180
ctggcacccc acgctcagat acagtgccct ctcccaggga cctgcagttt gtggaagtga 240
cagacgtgaa ggtcaccatc atgtggacac cgcctgagag tgcagtgacc ggctaccgtg 300
tggatgtgat ccccgtcaac ctgcctggcg agcacgggca gaggctgccc atcagcagga 360
acacctttgc agaagtcacc gggctgtccc ctggggtcac ctattacttc aaagtctttg 420
cagtgagcca tgggagggag agcaagcctc t 451




142


463


DNA


Homo sapien



142
gaattccaaa caatactatc ttataaaata gtactgttga attattccaa gcctccctag 60
gtttgctctc aaatgtcatt tacagattgg gctaacgacc taaaatctat atataaagac 120
tttctgaaga actctgtatt atagcaatac caaacgagtg ctgtgtgtgc aaacagtctg 180
gcgttgcttt ttatgttgat atttatccta gaacactgaa agagaatatg ccagtgataa 240
ctcactttac ttcagtcatt tcaacacaga aaatgcttct ctagcatttt tcttttgtag 300
tgttaacatt ttgaaattca tgtttcagag gcttcatcat cacagaattt actcttgctc 360
catgaaaaaa aattaaatac cttcagagga atatttaagt tgtaaactat gaaacttgag 420
aaatcctctt gagataaaag gctgccaaat ccagtattat aaa 463




143


368


DNA


Homo sapien



143
caccacattg ccaatgccaa cctcatgcgg aacggggccg actacgctgt ttacatcaac 60
acagcccagg agtttgatgg ctctgactca ggtgcccgac cagacgaggc tgtctcctgg 120
ggcaagatcc gggtggatgc acagcccgtc aaggtctatg ctgacgcctc cctggtcttc 180
cccctgcttg tggctgaaac ctttgcccag aagatggatg ccttcatgca tgagaagaac 240
gaggactgag cggctgcggt cccaggaagg tcttaccccc tcttctattt attaatttgc 300
agacccagcc cctcccctac tttttggtca gctacgtctc tagaataaga tggtatctga 360
agtccttc 368




144


452


DNA


Homo sapien



144
cttgattcaa aagaatcaaa atgggtattt tgaagagaga cctgtactgc tagtgttcct 60
tgcagcactg ttcacaatag ccaagtgaac agataaagaa aatgaagtgt atacctgcag 120
taggatgctg tgcgtgcagc ctgaaagaag gaaatcctgc cattcgtgac aacgtgggtg 180
accatgaagg agattatgca aaatgaaata agccagacac agaaagaaac tgcatggttc 240
cacttaaatg tgatatccag catagactca cagaagtaaa gggtggaatg gcggtcatca 300
ggggattggg ggagagggaa atggggagct acttaatcaa tgggatgaaa tttcattaaa 360
caagatgaga atgttctaga gatatgccgt actacatggt acctgtagtc aacaataatg 420
tagacttaga aatgtgttaa gcggtggctc tc 452




145


456


DNA


Homo sapien



145
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaaggctgcc aaatccagta ttataa 456




146


210


DNA


Homo sapien



146
ggagagccca agggtctaac ggttaagggg acccacatac cagtgccaag ggggatgtca 60
agtggtgatg tcgttgtgct cccctccccc agagcgggtg ggcggggggt gaatatggtt 120
ggcctgcatc aggtggcctt cccatttaag tgccttctct gtgactgaga gccctagtgt 180
gatgagaact aaagagaaag ccagacccct 210




147


452


DNA


Homo sapien



147
ataccccaga gcacagtccc agcttcacca acttcagggt cagcacctcg agatcaagca 60
ggcagttgat tcctttaaat actgctgaaa gtctctctct ccagcatagt gaatctaaga 120
gaagaggcag gaaaagacaa tctacagagt catctcctgt accactgaat cgaagaagtt 180
ctggcaggca aggaggtgtc catgaactgt ctgcttttga acaacttgtc gtggaactgg 240
tacggcatga tgatagctgg ccctttttga aactggtttc taaaatccag gtcccagact 300
actatgacat cattaagaag cccattgcct taaatataat tcgagaaaaa gtaaataaat 360
gtgaatataa attagcatct gagtttattg atgatattga gttaatgttt tcaaactgct 420
ttgaatacaa ccctcggaac acaagtgaag ca 452




148


453


DNA


Homo sapien



148
caagaggaga aagggactct ccctggacta catgatgact caatggacaa gctaagagtt 60
gaaagcaaca ggaaagttca cgaatcttgg tggtagtaac agtggcagct gtgatgttgg 120
ctatataggc ctgagtctag ttctccagtc cagctggtga ttttgtgagc tattcaatat 180
gctttcaata tatacgtttt ctgccaccaa gaggagaaag ggactctccc tggactacat 240
gatgactcaa tggacaagct aagagttgaa agcaacagga aagttcacga atcttgggcc 300
attaccagat cacctcccta gcactagtga gtgcctacca ccaccactct aactgccatc 360
agtgttaact cagattctcc aaggagcaga tactaagatg gaattagata tgcaagagat 420
tgattgaggg aaatgcccat gacagaaagc gtg 453




149


445


DNA


Homo sapien




misc_feature




(1)...(445)




n = A,T,C or G





149
ggacactgtt gtggtccagg atttgggcaa catcttcact cgcctgccac tcaagcggat 60
gtggcatnag gcactgctgc gctcagggga taaagtgcgc atggaccccc cctgaccaac 120
acaacagctg cttccaccta cctcaacaac ccgtacgtgc ggaaggccct caacatcccg 180
gagcagctgc cacaatggga catgtgcaac tttctggtaa acttacagta ccgccgtctc 240
taccgaagca tgaactccca gtatctgaag ctgcttagct cacagaaata ccagatccta 300
ttatataatg gagatgtaga catggcctgc ttgttcagga agcgggagaa catggtgaag 360
gcagcgaggg gcttgtcggt gggaaccatg tggccggcgc ccttgatcgt gagaaagctt 420
gcggccgcac tcgagcccgg gtgaa 445




150


446


DNA


Homo sapien




misc_feature




(1)...(446)




n = A,T,C or G





150
tttgtctttt nncaaactga tggacatgag tgagctctaa tatcattatg tttagaaatg 60
gcttcatcca gatccaactg tacaccatta atattcactt ccatgcagcc attataaaag 120
gcattcactg gtgtggcact gaatggaaca tctggaaggc cacccaggta tgtggccact 180
tttgctttca ttgctttgtc caagacggca agttgtcttt gaaggtcttc atgggagatg 240
gtttctattt taagtggtgt cgacaactcc agattgtttc tgttgactct aaattccaga 300
tgagattgtt gatcggaaca tagacttagg gcctgtatcc gatatattac agtattttca 360
acagataaca gaatatcctg tgatttttca gaggtggagt ccaccaagga cacagcaaag 420
ggcactgtgt tgttaccaga aaccaa 446




151


444


DNA


Homo sapien




misc_feature




(1)...(444)




n = A,T,C or G





151
cggagacgag agcagaggcc naactcnnga tctgacaaga tggccgggct gccccgcagg 60
atcatcnggg aaacccancg tttgctggca gaaccagttc ctggcattaa agcanaacca 120
gatgagagca acgcccgtta ttttcatgtg gtcattgctg gcccccagga ttcccccttt 180
gagggaggga cttttaaact tgaactattc cttccagaag aatacccaat ggcagcacct 240
aaagtacgtt tcatgaccaa aatttatcat cctaatgtag acaagttggg aagaatntgn 300
ttagatnttt ttgaaaggat aagtggtncc cnatnnctgc agatccgcac aggtcttgct 360
atcaatcnan gctttnttna gtctcctntt ncanatgatc catngncnaa ccatatngnc 420
gcncccttgt antgggcnca nctn 444




152


444


DNA


Homo sapien



152
ccgtccgccc ctgcggccaa gcccaagcgg gccaaggcct ccaagaagtc cacagaccac 60
cccaagtatt cagacatgat cgtggctgcc atccaggccg agaagaaccg cgctggctcc 120
tcgcgccagt ccattcagaa gtatatcaag agccactaca aggtgggtga gaacgctgac 180
tcgcagatca agttgtccat caagcgcctg gtcaccaccg gtgtcctcaa gcagaccaaa 240
ggggtggggg cctcggggtc cttccggcta gccaagagcg acgaacccaa gaagtcagtg 300
gccttcaaga agaccaagaa ggaaatcaag aaggtagcca cgccaaagaa ggcatccaag 360
cccaagaagg ctgcctccaa agccccaacc aagaaaccca aagccacccc ggtcaagaag 420
gccaagaaga agctggctgc cacg 444




153


441


DNA


Homo sapien




misc_feature




(1)...(441)




n = A,T,C or G





153
tgctggatct ggagtcagga gaaatgtgga taaagtttta gtgataaatt ctgctcaaag 60
ttagggtgaa tgcagacatc ctagactgta ctttgggtgg ggtaagaaga aggggggtga 120
ctagacatat acttgcatcc agaggccaga ggtcaatgct gggtgtcttt cttgaccgtt 180
gtcttgtttt gaatggagtg atggagatta aatttaaggc ttttctacca cagagctaca 240
actccagcct ttagtaacag actttctcat tgaatctgga attggcaaga ttggctggtc 300
cccgggcccc acctgtcccc acctccctag tactgggaat ccaggcacgt gccaccatac 360
ccagcttctt acacggctgc tgaaactcag gccctcacgt ttgtgccacg tggagatgcc 420
tcccnatncc catacactat c 441




154


425


DNA


Homo sapien



154
acaacaccaa ccacgaggct gacgactggt gcgtccccag cagagaaccc aaagacatga 60
cgacgttccg cagtgcctag acacacttgg gacatcggaa aatccaaatg tggcttttgt 120
attaaatttg gaaggtccgt aaaagccctg ggctcagcca gagcagggca gaggatgacg 180
ggatgaccag ctgcagagag gagtactcta ctgataactg gagacgatgg gcgaccacct 240
tcagagagaa actgttagca gagaggagct gccctctgct gagagcttca gagacctgca 300
gacatctgaa tgacttgcct gcagagagga gccactcttt tcagggcctt ctctcagctg 360
agagctgaac acccaatggg ataattgcct acagagagga gccacccact cctctgagct 420
gttcc 425




155


428


DNA


Homo sapien



155
tgtatcagaa ccttaatgag ccaaccacgt ggagcttaac cagtgataga actagaaatt 60
gggttcttca acagaaaata gaaggagaaa caaaagaatc aaactacgct aaattgattg 120
aaatgaatgg aggaggaacc ggctgtaatc atgaattaga aatgatcaga caaaagcttc 180
aatgtgtagc ttcaaaacta caggttctac cccagaaagc ctctgagaga ctacagtttg 240
aaacagcaga tgatgaagat ttcatttggg ttcaggaaaa tattgatgaa attattttac 300
aactacagaa attaactggc cagcaaggtg aagagcccag cttggtgtcc ccaagtactt 360
cttgtggctc attgactgaa agactactga gacaaaatgc tgagctgaca gggcatatca 420
gtcaactg 428




156


440


DNA


Homo sapien



156
gaagaagaaa cagatgatag tgacacttgg gaacctccac gacatgtgaa acggaagctg 60
tctaaatcag atgactgaaa tctgcctaaa acgttgaagg agaatcaatt cttcaactca 120
agatgtctga tttactgtga atttgcccaa tctttgatga cattgaaaac gttttggggc 180
atacacactc aaaaagcagg atccaatacc caaaagaaat ggaacttaat gttgtgccaa 240
agttaaacta ctgcagttgg tggaagttct gcaatgtaaa tagaacacta attaaaaaac 300
aacttgtaaa aatgcaattt aaattttaat acagtacatt tttcttctaa tatgatggag 360
acattctgaa tcttagactt tctgaggggg tttaatgacc actagagctt gtcctcatat 420
tcagtccagt ttaatactgt 440




157


1031


DNA


Homo sapien



157
accagattgg cctgttagtt cagtgtagtg cagcacaaat cccagtgact aaacaccttg 60
gaagtaagaa tccttgacct ggatttggaa gacctgggct gtgatctctg gcgttttgct 120
tattggctct tcaaacttca acaggcccct aagttttcca agcattggtt tcttcttaca 180
taaagtaaac catcatcaca agtgccctga agatggctga gatcatggaa tcaagtggtg 240
tgcaacagag tgagctttgt ggtttctttt tgggcttaag ttcctggaag gcagggattg 300
tgagtagctc acgcgaacgg gctttttagt gcctgcaaac tgaaactgag cagatggtca 360
tggtgatttt cttcctagtg gaactgaaaa tctttgttct ttgtctaggt caatgctggc 420
ccactagcat atgcgcgagc tttcttagat gatacaaaca caaagcgata tcctgacaat 480
aaagtgaagc tgcttaagga agttttcagg caatttgtgg aagcttgcgg tcaagcctta 540
gcggtaaacg aacgtctgat taaagaagac cagctcgagt atcaggaaga aatgaaagcc 600
aactacaggg aaatggcgaa ggagctttct gaaatcatgc atgagcaggt gagggccgca 660
ctggctccaa caacttggag ttcttggtta ggggtttcaa gtacacccta tcatgactta 720
ggccgcctga tatccttcca gaactgtgac atctgaagga gaatgtagca taccacactc 780
ctgccatgct ctagccccag gtcatttggg aacagctaac agattgccca tatgctgtta 840
tctacggcaa gcaggggaga gcgggcccgc ctcctcgtgg ctctaagagg tggccatgtt 900
tcctaagctt tctctctccc cacccccgtc tagccaaaaa gaaaagaaag gaaaaactca 960
cacgaaaata tccatactgt tctgacaact ttattccttt aatcctttga aaaaagcagg 1020
acttgccaac c 1031




158


445


DNA


Homo sapien



158
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaaggctgcc aaatc 445




159


1071


DNA


Homo sapien



159
tcatcaatcc tgacacctac cgcatcgacc ccaatgttct tctagatcca gctgatgaga 60
aacttttgga agaggagatt caggccccca ccagctccaa gagatcccag cagcacgcga 120
aggtggtgcc atggatgcga aagacagagt acatctccac tgagttcaac cgttatggca 180
tctccaatga gaagcctgag gtcaagattg gggtttctgt gaagcagcag tttaccgagg 240
aagaaatata caaagacagg gatagccaga tcacagccat tgagaagact tttgaggatg 300
cccagaaatc aatctcacag cattacagca aaccccgagt cacaccggtg gaggtcatgc 360
ctgtcttccc agactttaag atgtggatca atccatgtgc tcaggtgatc tttgactcag 420
acccagcccc caaggacacg agtggtgcag ctgcgttgga gatgatgtct caggccatga 480
ttaggggcat gatggatgag gaagggaacc agtttgtggc ctatttcctg cctgtagaag 540
agacgttgaa gaaacgaaag cgggaccagg aggaggagat ggactatgca ccagatgatg 600
tgtatgacta caaaattgct cgggagtaca actggaacgt gaagaacaaa gctagcaagg 660
gctatgagga aaactacttc ttcatcttcc gagagggtga cggggtttac tacaatgagt 720
tggaaaccag ggtccgcctt agtaagcgcc gggccaaggc tggggttcag tcaggcacca 780
acgccctgct tgtggtcaaa catcgggaca tgaatgagaa ggaactggaa gctcaggagg 840
cacggaaggc ccagctagaa aaccacgaac cggaggagga agaggaagag gagatggaga 900
cagaagagaa agaagctggg ggctcagatg aggagcagga gaagggcagc agcagtgaga 960
aggagggcag tgaagatgag cactcgggca gcgagagtga acgggaggaa ggtgacaggg 1020
acgaggccaa gtgacaagag tggcagtggt gaggacgaga gcagcgagga t 1071




160


444


DNA


Homo sapien



160
actgaatgta acaacatgac cctcatcaac ttgctactta aagtccttgg gcccatacat 60
gagagaaacc tcacattgct cctgctgctg ctgcaggtga ggatgggaat cgagtttata 120
cctccgtgtc tccctttctg cgtgattctt actccagtcc atttctcctt gcagatcctg 180
ggcagtgcca tcaccttctc cattcgatat cagctcgttc gactcttcta tgatgtctga 240
gtcccttgat cattgtcctt tacctcacag tctctaggat tcctgactca ggctgacctc 300
tctctctggt cccagactgc ctccttgccc aggcctctct cactcttcat actcctccag 360
attttgttct cagcattttc ctttctctgt gatcattggc atcctgggcg tttcttgccc 420
tctgctgact actgattgga tttt 444




161


444


DNA


Homo sapien



161
ccttcaacct gcatttcctc ctcctgcagg gcctccaggg aatccagggt cccaagggct 60
tggatggagc aaagggagag aagggtgcgt cgggtgagag aggccccagc ggcctgcctg 120
ggccagttgg cccaccgggc cttattgggc tgccaggaac caaaggagag aagggcagac 180
ccggggagcc aggactagat ggtttccctg gaccccgagg agagaaaggt gatcggagcg 240
agcgtggaga gaagggagaa cgaggggtcc ccggccggaa aggagtgaag ggccagaagg 300
gcgagccggg accaccaggc ctggaccagc cgtgtcccgt ggagaatccc acgtgcggag 360
gccggagagg ggcaccaggc tggcggggcc ctgcgagggg caatgggcca tgccctgcgg 420
gccccgacgg gctgcctgtg cctg 444




162


435


DNA


Homo sapien



162
caccgacgtg tgtgacagcg actacagcgc cagccgctgg aaggcgtcgt cgggggcgcc 60
attcctcgaa tgatgtaggg cctgtacggt ctcgcagtgg ccggaatgtt tgaagagtag 120
aacatgtcca tgttgtacag ggaggggtcc gtggccgcgc agagcaacca caccgtgggc 180
cccttgctgg cggctgcagc tggtgcccca gcccctctgt acctcggggg cctgcctgag 240
cccatggccg tgcagccctg gccccccgcc tactgcggct gcatgaggag gctggcggtg 300
aaccggtccc ccgtcgccat gactcgctct gtggaggtcc acggggcagt gggggccagt 360
ggctgcccag ccgcctagga cacagccaac cccggcccct ggtcaggccc ctgcagctgc 420
ctcacaccgc ccctt 435




163


437


DNA


Homo sapien



163
ggacagcgag gcgcactggg gcctcccagc gcggggccgg ccgcgccgtc cagcccgagg 60
tctacggctt tgcgctccga gcccagagga agatgcctgc cggcaccgag ctcgggctgc 120
ggggctgaac gcctgtcttc caggcgcagc ggcagcactg ccctcggccg gtgtcggtag 180
cggcactcgg cgtgccccgg gcggacgaag agcgcaggct gggtacacct tgcccgaatc 240
ggcggagttc gcagctagcg agggcgggcc ggccggcccg gatgggcgcg gggtttgcgg 300
cccccgccgg gtgctccgga gcggcccggg caccgggggc acgctgagtg ccggagccgc 360
ggccgcagag agaacttggg gcgggggcca tgccccggtg cggagtctag agccgagcgg 420
agcgccccgc gggcccg 437




164


439


DNA


Homo sapien



164
aagatttcag ctgcgggacg gtcaggggag acctccaggc gcagggaagg acggccaggg 60
tgacacggaa gcatgcgacg gctgctgatc cctctggccc tgtggctggg tgcggtgggc 120
gtgggcgtcg ccgagctcac ggaagcccag cgccggggcc tgcaggtggc cctggaggaa 180
tttcacaagc acccgcccgt gcagtgggcc ttccaggaga ccagtgtgga gagcgccgtg 240
gacacgccct tcccagctgg aatatttgtg aggctggaat ttaagctgca gcagacaagc 300
tgccggaaga gggactggaa gaaacccgag tgcaaagtca ggcccaatgg gaggaaacgg 360
aaatgcctgg cctgcatcaa actgggctct gaggacaaag ttctgggccg gttggtccac 420
tgccccatag agacccaag 439




165


361


DNA


Homo sapien



165
gctggggggt cgggatgctg ggcccctcct catctccctc aaggatggct acgtaccccc 60
aaagagccgg gagctgaggg tcaaccgggg cctggacacc gggcgcagga gggcagcacc 120
agaggccagt ggcactccca gctcggatgc cgtgtctcgg ctggaggagg agatgcggaa 180
gctccaggcc acggtgcagg agctccagaa gcgcttggac aggctggagg agacagtcca 240
ggccaagtag agccccgcag ggcctccagc agggtcagcc attcacaccc atccactcac 300
ctcccattcc cagccacatg gcagagaaaa aaatcataat aaaatggctt tattttctgg 360
t 361




166


326


DNA


Homo sapien



166
atcacgaagt gatatccaac tccccaagtt gcagtggttc ctggagccca ggaccacccg 60
ccagcgggcc ctcttcctcc tccatatctg aggtcccagc ccgcaacacc agttcccggg 120
ccgcagccgc catggtcgca gcggcggcca ttccccgcag cctcacttcc ggcaactgtc 180
agtcccggcg agtccgttcc ccggagtgga gctacaagtc ccaaagggtc ttcctcagcg 240
cgaaatcgtt cccagatatt tgagttaagt tgtttgactc cagctgtccc ctttcagctc 300
taaccacttc acccaactgc aaatgg 326




167


471


DNA


Homo sapien



167
caaggccatg gcgatatcgg atccgaattc aagctcatca atcctgacac ctaccgcatc 60
gaccccaatg ttcttctaga tccagctgat gagaaacttt tggaagagga gattcaggcc 120
cccaccagct ccaagagatc ccagcagcac gcgaaggtgg tgccatggat gcgaaagaca 180
gagtacatct ccactgagtt caaccgttat ggcatctcca atgagaagcc tgaggtcaag 240
attggggttt ctgtgaagca gcagtttacc gaggaagaaa tatacaaaga cagggatagc 300
cagatcacag ccattgagaa gacttttgag gatgcccaga aatcaatctc acagcattac 360
agcaaacccc gagtcacacc ggtggaggtc atgcctgtct tcccagactt taagatgtgg 420
atcaatccat gtgctcaggt gatctttgac tcagacccag cccccaagga c 471




168


438


DNA


Homo sapien



168
caaacctcct cacagcccac tggtcctcaa gaggtgccac gtctccacac atcagcacaa 60
ctacgcagcg cctccctcca ctcggaagga ctatcctgct gccaagaggg tcaagttgga 120
cagtgtcaga gtcctgagac agatcagcaa caaccgaaaa tgcaccagcc ccaggtcctc 180
ggacaccgag gagaatgtca agaggcgaac acacaacgtc ttggagcgcc agaggaggaa 240
cgagctaaaa cggagctttt ttgccctgcg tgaccagatc ccggagttgg aaaacaatga 300
aaaggccccc aaggtagtta tccttaaaaa agccacagca tacatcctgt ccgtccaagc 360
agaggagcaa aagctcattt ctgaagagga cttgttgcgg aaacgacgag aacagttgaa 420
acacaaactt gaacagct 438




169


437


DNA


Homo sapien



169
ctcgcgcctg cagtttttgg ctttcacccc caaccagtga ccaaagactt gaccactcaa 60
agtccagctc cccagaacac tgctcgacat ggacaccggt gtgattgaag gtggattaaa 120
tgtcactctc accatccggc tacttatgca tggaaaggaa gttggcagta tcatcggaaa 180
gaaaggagaa tcagttaaga agatgcgcga ggagagtggt gcacgtatca acatctcaga 240
agggaattgt cctgagagaa ttatcacttt ggctggaccc actaatgcca tcttcaaagc 300
ctttgctatg atcattgaca aactggaaga ggacataagc agctctatga ccaatagcac 360
agctgccagt agacccccgg tcaccctgag gctggtggtc cctgctagtc agtgtggctc 420
tctcattgga aaaggtg 437




170


435


DNA


Homo sapien



170
ccgtccggcc tccctgacat gcttccctct ggaccccgag gttggaccct actgtgacac 60
acctaccatg cggacactct tcaacctcct ctggcttgcc ctggcctgca gccctgttca 120
cactaccctg tcaaagtcag atgccaaaaa agccgcctca aagacgctgc tggagaagag 180
tcagttttca gataagccgg tgcaagaccg gggtttggtg gtgacggacc tcaaagctga 240
gagtgtggtt cttgagcatc gcagctactg ctcggcaaag gcccgggaca gacactttgc 300
tggggatgta ctgggctatg tcactccatg gaacagccat ggctacgatg tcaccaaggt 360
ctttgggagc aagttcacac agatctcacc cgtctggctg cagctgaaga gacgtggccg 420
tgagatgttt gaggt 435




171


435


DNA


Homo sapien



171
cagatgtata gattgtgaag atgtttgctt attctgtggg tgtgaatgtt ataattaagg 60
agatttgtag ggagattagt atagagaggt agagtttttt tcgtgatagt ggttcactgg 120
ataagtggcg ttggcttgcc atgattgtga ggggtaggag tcaggtagtt agtattagga 180
ggaggatgtg aaactcttaa gtatatctgg aaagcggtct gcccctggag gtggtagcaa 240
ggttccacag aaaaaagtaa aacttgctgc tgatgaagat gatgacgatg atgatgaaga 300
ggatgatgat gaagatgatg atgatgatga ttttgatgat gaggaagctg aagaaaaagc 360
gccagtgaag aaatctatac gagatactcc agccaaaaat gcacaaaagt caaatcagaa 420
tggaaaagac tcaaa 435




172


435


DNA


Homo sapien



172
gcacagcgag gcgctagggg gaacgctggc ctctgaaact agctctggga ccggggtctg 60
cggccggccc ctagctggcc ccgtctccca tccccagaag ggtattcact ggggattctg 120
agctttggct actccagttt cccacgacac gatgttccct ttctacagct gctggaggac 180
tggactgcta ctactactcc tggctgtggc agtgagagaa tcctggcaga cagaagaaaa 240
aaacttgcga cttggtagga gaaaagggta aagagtcaga gaaagagttg gctctagtga 300
agaggctgaa accactgttt aataaaagct ttgagagcac tgtgggccag ggttcagaca 360
catacatcta catcttcagg gtgtgccggg aagctggcaa ccacacttct ggggcaggcc 420
tggtgcaaat caaca 435




173


450


DNA


Homo sapien




misc_feature




(1)...(450)




n = A,T,C or G





173
attcaagagc aaatgaccaa nagccatgtg ggnggnggtt ggctaaagtt cggatgatga 60
aaggagaatt ttatgtcatt gaatatgctg cttgtgacgc tacttacaat gagaatagtc 120
acatttgaac gacttcggcc tgtcaatcaa aataaaactg tcaaaaaaaa taccttcttt 180
aaatgcacag tggatgttcc tgaggatttg agagaggcgt gtgctaatga aaatgcacat 240
aaagatttta agaaagcagt aggagcatgc agaatttttt accatccaga aacaacacag 300
ctaatgatac tgtctgccag tgaagcaact gtgaagagag taaacatctt aagtgacatg 360
catttgcgaa gtattcgtac gaagttgatg cttatgtcca gaaatgaaga ggccactaag 420
catttagaat gcacaaaaca acttgcagca 450




174


307


DNA


Homo sapien




misc_feature




(1)...(307)




n = A,T,C or G





174
cacgagcctg ttctgaaaat gtggacgtaa nacaaacacg tgctcgtcct ttaatggagt 60
tcaccagcac acttgttaac cagtcctgtt tgctttcgtc tttttttgtg cgtaataaag 120
tcaactgacc aagtgaccat gaaaaggggc tgtctggggc tcctgttttt tagctgctgt 180
tcttcagctc cgaccatgtt gctgtgtgat tatctcaatt ggttttaatt gaggcagaaa 240
ctgaanctnt accaatgaac tgnttanaaa caagacacac ttttgtatta aaattgcttg 300
cagtaac 307




175


449


DNA


Homo sapien



175
gtttctgcgc gggctcccgg cgctgctact gctgctgctc ttcctcgggc cctggcccgc 60
tgcgagccac ggcggcaagt actcgcggga gaagaaccag cccaagccgt ccccgaaacg 120
cgagtccgga gaggagttcc gcatggagaa gttgaaccag ctgtgggaga aggcccagcg 180
actgcatctt cctcccgtga ggctggccga gctccacgct gatctgaaga tacaggagag 240
ggacgaactc gcctggaaga aactaaagct tgacggcttg gacgaagatg gggagaagga 300
agcgagactc atacgcaacc tcaatgtcat cttggccaag tatggtctgg acggaaagaa 360
ggacgctcgg caggtgacca gcaactccct cagtggcacc caggaagacg ggctggatga 420
ccccaggctg gaaaagctgt ggcacaagg 449




176


443


DNA


Homo sapien



176
tggtgtctct caaaagcctg atcctgccaa aaccaagaat cgccgcaaaa ggaagccatc 60
cacttctgat gattctgact ctaattttga gaaaattgtt tcgaaagcag tcacaagcaa 120
gaaatccaag ggggagagtg atgacttcca tatggacttt gactcagctg tggctcctcg 180
ggcaaaatct gtacgggcaa agaaacctat aaagtacctg gaagagtcag atgaagatga 240
tctgttttaa aatgtgaggc gattatttta agtaattatc ttaccaagcc caagactggt 300
tttaaagtta cctgaagctc ttaacttcct cccctctgaa tttagtttgg ggaaggtgtt 360
tttagtacaa gacatcaaag tgaagtaaag cccaagtgtt ctttagcttt ttataatact 420
gtctaaatag tgaccatctc atg 443




177


440


DNA


Homo sapien



177
gctgcacccg ccgggaaagt ggcgagagcc acctcggcgc ttgggcgctc agtcgcagga 60
ggcgctcctt ggcggtgcct ggagcccggg cgcaccccac cgctcccggg acctgttggg 120
ggctggcccg aaccgtcgtc gaagggagcc gctcggccac ccccgacgtt cctcgccccg 180
cccgacgttc cctcaagtgg ccgaaccagc cggacgagcc aaactcgccg ggcctcccgg 240
cggcagcagg tggccccgtc cttccaggga gggccctgcg ccccgcggcg ctccggagcc 300
ctctcggccg cccccgccag gcgggatgga ggcggatggg gacggagagg agctggcccg 360
gctgcgctca gtcttcgccg cctgcgacgc gaaccgctcg gggcgcctgg agcgcgagga 420
gttccgggca ctgtgcacgg 440




178


442


DNA


Homo sapien



178
aggaagaaaa attaaagcca tttgaaaagt tcttgctgaa gctagaaggg caattactgg 60
atggaatgat attccaggcc tgtatagaac aacaatttga ttctctcaat ggaggagtat 120
ctgtgtcaaa aaatagtact tttgctgagg aatttgcaca tagtattcgg tcaatttttg 180
caaatgtaga agccaaactt ggagaacctt ctgaaattga ccagagagac aagtatgttg 240
gaatttgtgg actctttgta ttgcactttc agatttttcg aactattgat aaaaagtttt 300
ataagtcttt attggacatt tgtaagaagg taccagccat cactctaact gctaatatta 360
tttggtttcc tgataatttt ctgatccaga aaataccagc agctgccaaa ctgctagaca 420
gaaaaagtct tcaagccatt aa 442




179


434


DNA


Homo sapien



179
ctcccaggag gtgatattat ttttagtgct cagctgaaat accaacccca ggaataagaa 60
ctccatttca aacagttctg gccattctga gcctgctttt gtgattgctc atccattgtc 120
ctccactaga ggggctaagc ttgactgccc ttagccaggc aagcacagta atgtgtgttt 180
tgttcagcat tattatgcaa aaattcacta gttgagatgg tttgttttag gataggaaat 240
gaaattgcct ctcagtgaca ggagtggccc gagcctgctt cctattttga tttttttttt 300
ttttaactga tagatggtgc agcatgtcta catggttgtt tgttgctaaa ctttatataa 360
tgtgtggttt caattcagct tgaaaaataa tctcactaca tgtagcagta cattatatgt 420
acattatatg taat 434




180


440


DNA


Homo sapien



180
cgcaagcggc ctgggccgag cgccgtttcc aggccctcgc caggtctttg aactgcaggt 60
aaagtggcag gaacgtcttc cgtctgctca gcgtttgggg atttagactc ctaaagccag 120
tacctgcccc gtttcccccc caggttccgt cctgcccgcg cccggtctca gggtggcggc 180
cccggacacg gcccgtcccc acagacgagg tctccggcct gagctgtcgc acctggcgcg 240
gaggtcgccc ggggtgccct ggctgggtga gaggtggcct ggcgggcgga gcttgccaag 300
aatcacggcc agtccttaag tggatggtgg ggcccagcag ctgctctgtc ccccttaaca 360
aaccaggggg catggagggg cctagggcac cgccccccta ccaggctcag gccctccaag 420
gagaacctgc tgagacccct 440




181


438


DNA


Homo sapien




misc_feature




(1)...(438)




n = A,T,C or G





181
caaacaatac tatcttataa aatagtnttg ttgaattatt ccaagcctcc ctaggtttgt 60
tctcaaatgt catttacaga ttgggctaac gacctggaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaaggctg 438




182


423


DNA


Homo sapien




misc_feature




(1)...(423)




n = A,T,C or G





182
cagagaagga taaatatttg aaaggttttt gaggggaaga aactctccaa cactgggttt 60
accaatttga caaagggaac aaggagaaaa aaaantatag gacaatttac agctttttgt 120
ctatgtcatt aggtagatag tggtgacatt caaaaataag gaaataaaag caggaacaag 180
actaaaggaa aattcataat tcaatttaga atacattgaa tttgtagagt ctatagacat 240
gcgacttgac atcaaaaacc ccgataaatt accaaagaaa actcttttcc aactataatg 300
cgataacttt ctaacagctt aatcatgagt aaaaatcaga gaaaggcatg gttatataaa 360
atattttaca gaatgaatac caacaaaact aagattaaag tagactatta tagaattgaa 420
taa 423




183


437


DNA


Homo sapien



183
catggctctg gacgggataa ggatgccaga tggctgctac gcggacggga cgtgggaact 60
gagtgtccat gtgacggacc tgaaccgcga tgtcaccctg agagtgaccg gcgaggtgca 120
cattggaggc gtgatgctta agctggtgga gaaactcgat gtaaaaaaaa gattggtctg 180
accatgctct ctggtgggaa aagaagagaa cttggcttct gaagacacat tggaccttag 240
ataagtatgg tattcaggca gatgctaagc ttcagttcac ccctcagcac aaactgctcc 300
gcctgcagct tcccaacatg aagtatgtga aggtgaaagt gaatttctct gatagagtct 360
tcaaagctgt ttctgacatc tgtaagactt ttaatatcag acaccccgaa gaactttctc 420
tcttaaagaa acccaga 437




184


442


DNA


Homo sapien




misc_feature




(1)...(442)




n = A,T,C or G





184
ccaaccacca gaggatcatt caccaatntc ccgaaaggaa tttgttcgat ttctgctggc 60
cactccaacc aagtcagagc tgcgctgcca gtgtgcaaat ctccagggag tcaagatgct 120
ctgctcaaac gcagaaggcg catccctgag gctctgtaat tttgaggatc cttcgggtct 180
taaagccaac ttagagggtg ctaatctgaa aggtgtggac atggaaggaa gccagatgac 240
agggattaac ctcagagttg ccaccttaaa aaatgcaaaa ctgaagaact gtaatctcag 300
aggagcaact ctggcaggaa ccgatttaga aaactgtgat ttgtcggggt gtgacctcca 360
ggaagccaac ctgagaggct ccaatgtgaa gggtgccata tttgaagaga tgctgacacc 420
attacatatg tcccagagtg tc 442




185


433


DNA


Homo sapien



185
gaacctgctg tccttcactg ggagcactca ggtgggaaaa caggtgggcc tgatggtgca 60
ggagaggttt gggagaagtc tgttggaact tggaggaaac aatgccatta ttgcctttga 120
agatgcagac ctcagcttag ttgttccatc agctctcttc gctgctgtgg gaacagctgg 180
ccagaggtgt accactgcga ggcgactgtt tatacatgaa agcatccatg atgaggttgt 240
aaacagactt aaaaaggcct atgcacagat ccgagttggg aacccatggg accctaatgt 300
tctctatggg ccactccaca ccaagcaggc agtgagcatg tttcttggag cagtggaaga 360
agcaaagaaa gaaggtggca cagtggtcta tgggggcaag gttatggatc gccctggaaa 420
ttatgtagaa ccg 433




186


422


DNA


Homo sapien




misc_feature




(1)...(422)




n = A,T,C or G





186
cttccgagga agctaaggct gcgttngggt gaggccctca cttcatccgg cgactagntc 60
cgcgtccggc agcgccagcc ctacactcgc ccncgccatg gcctctgtct ccgagctcgc 120
ctgcatctac tcggccctca ttctgcacga cgatgaggtg acagtcacgg aggataagat 180
caatgccctc attaaagcag ccggtgtaaa tgttgagcct ttttggcctg gcttgtttgc 240
aaaggccctg gccaacgtca acattgggag cctcatctgc aatgtagggg ccggtggacc 300
tgctccagca gctggtgctg caccagcagg aggtcctgcc ccctccactg ctgctgctcc 360
agctgaggag aagaaagtgg aagcaaagaa agaagaatcc gaggagtctg atgatgacat 420
gg 422




187


436


DNA


Homo sapien



187
attccaaaca atactatctt ataaaatagt actgttgaat tattccaagc ctccctaggt 60
ttgctttcaa atgtcattta cagattgggc taacgaccta aaatctatat ataaagactt 120
tctgaagaac tctgtattat agcaatacca aacgagtgct gtgtgtgcaa acagtctggc 180
gttgcttttt atgttgatat ttatcctaga acactgaaag agaatatgcc agtgataact 240
cactttactt cagtcatttc aacacagaaa atgcttctct agcatttttc ttttgtagtg 300
ttaacatttt gaaattcatg tttcagaggc ttcatcatca cagaatttac tcttgctcca 360
tgaaaaaaaa ttaaatacct tcagaggaat atttaagttg taaactatga aacttgagaa 420
atcctcttga gataaa 436




188


436


DNA


Homo sapien



188
tcaagccctc aacctcacca gtcctgataa aacccaagag tgctggttat gcctagtatc 60
gggaccccca tactacgagg gggttgccgt cctaggtacc tactccaacc atacttctgc 120
cccagctaac tgctctgtgg cctctcaaca caaattgacc ttgtccgaag tgaccggaca 180
gggactctgc ataggagcgg tccctaaaac ccatcaagtc ttgtgtaata ccacccaaaa 240
gacaagcgat gggtcctact atttggccgc tcccacagga actacctggg cttgtagtac 300
tggactcact ccctgtatct caaccaccat acttgacctc accaccgatt actgtgtcct 360
ggtcgagctt tggccaaggg tgacctacca ttcccctagt tatgtttacc accaatttga 420
aagacgagcc agatat 436




189


422


DNA


Homo sapien



189
ggaagatata acctcatcag atcagggaac ctccaatagc acaaagagga catcgctgag 60
ccgagggatc tctgtcacat ccaacctgga agaatggcac gccctgttgg tcgagtccaa 120
aacctaccta gaggaagagg aggatgagga aagcctggaa aaaatcattt tccaaactga 180
caagcttcag agcattgaca gccactccat ggaggaagtt ggagaggtgg aaaacaaccc 240
agtgagcaaa gcaatcgctc accacctggg cattgacatt tctgcagaag gccgcctggc 300
caagaaccgg aaaggcatcg ccattatcat tcacgggaca cccttgtcag gaaagtcagc 360
caatgccgtt agcgtggcca agtactacaa cgcagcctgc ctgagcatcg actccattgt 420
gc 422




190


426


DNA


Homo sapien




misc_feature




(1)...(426)




n = A,T,C or G





190
ggaagatata acctcatcag atcannttaa cctccaatag cacaaagagg acatcgcttt 60
ccgagggatc tctgtcacat ccaacctgga agaccggcac gccctgttgg tcgagtccaa 120
aacctaccta gaggaagagg aggatgagga aagcctggaa aaaatcattt tccaaactga 180
caagcttcag agcattgaca gccactccat ggaggaagtt ggagaggtgg aaaacaaccc 240
agtgagcaaa gcaatcgctc accacctggg cattgacatt tctgcagaag gccgcctggc 300
caagaaccgg aaaggcatcg ccattatcat tcacgggaca cccttgtcag gaaagtcagc 360
caatgccgtt agcgtggcca agtactacaa cgcagcctgc ctgagcatcg actccattgt 420
gctgga 426




191


432


DNA


Homo sapien




misc_feature




(1)...(432)




n = A,T,C or G





191
ccgagccggg gttctggcgg agcgcttngg ccctgaagga cgccgccgag caccgcgagc 60
tgatggcctg gaaccaggcg gagaaccggc ggctgcacga gctgcggata gcgaggctgc 120
ggcaggagga gcgggagcag gagcagcggc aggcgttgga gcaggcccgc aaggccgaag 180
aggtgcaggc ctgggcgcag cgcaaggagt gggaagtgct gcagctgcag gaagaggtga 240
aaaacttcat cacccgagag aacctggagg cacgggtgga agcagcattg gactcccgga 300
agaactacaa ctgggccatc accagagagg ggctggtggt caggccacaa cgcagggact 360
cctaggggcc cagtaaggac agtgcccgcc agggaccatg tatgtatcat ggcggaagag 420
ttggccctga cc 432




192


440


DNA


Homo sapien



192
caagagcaga ggccgaactc gggatctgac aagatggccg ggctgccccg caggatcatc 60
aaggaaaccc agcgtttgct ggcagaacca gttcctggca ttaaagcaga accagatgag 120
agcaacgccc gttattttca tgtggtcatt gctggccccc aggattcccc ctttgaggga 180
gggactttta aacttgaact attccttcca gaagaatacc caatggcagc acctaaagta 240
cgtttcatga ccaaaattta tcatcctaat gtagacaagt tgggaagaat atgtttagat 300
attttgaaag gtaagtgttg tttgtcaccc tgtgctttat taacgtgtcc tttttgtcct 360
aagcattcta catttagaat gtaagcattg gaatctcact gtatgctaac agccccagag 420
tgtgtgggag ggaagtgcag 440




193


477


DNA


Homo sapien




misc_feature




(1)...(477)




n = A,T,C or G





193
cggcgacgac ccattcgaac gtctgcccta tcaactttcg atggtagtcg ccgtgcctac 60
catggtgacc acgggtgacg gggaatcagg gttcgattcc ggagagggag cctgagaaac 120
ggctaccaca tccaaggaag gcagcaggcg cgcaaattac ccactcccga cccggggagg 180
tagtgacgaa aaataacaat acaggactct ttcgaggccc tgtaattgga atgagtccac 240
tttaaatcct ttaacgagga tccattggag ggcaagtctg gtgccagcag ccgcggtaat 300
tccagctcca atagcgtata ttaaagttgc tgcagttaaa aagctcgtag ttggatcttg 360
ggagcgggcg ggcggtccgc cgcgaggcga gccaccgccc gtncccgccc cttgcctctc 420
ggngccccct cgatgctctt agctgagtgt cccgcggggc ccnaancgtt nactttg 477




194


443


DNA


Homo sapien




misc_feature




(1)...(443)




n = A,T,C or G





194
aagcctcatt ccaganaaag aggtagaagg tcntaggagc acatcaaaaa caagagacaa 60
aaagaaagaa gacaaagaaa agaaacgttc taaaacacca ccaaaaagtt acagcacagc 120
cagacgttct agaagtgcaa gcagagagag acgacgacga agaagcagga gtggcacaag 180
atctcctaaa aagcctcggt ctcctaaaag aaaattgtcc cgctcaccat cccctaggag 240
acataaaaag gagaagaaga aagataaaga caaagaaaga agtagggatg aaagagaacg 300
atcaacaagc aagaagaaga agagtaaaga taaggaaaag gaccgggaaa gaaaatcaga 360
gagtgataaa gatgtaaaac aggttcacgg gattatgtga agaggaacag gggtatgcag 420
tgagaaagag aaaaaagaag aga 443




195


428


DNA


Homo sapien



195
aattcacatc tctcagaggt tcaccgtaga cagctttgga aactacgctt cctgtggaca 60
aattgacttc tcctgaggtg gatcttggaa agcactagaa actaaacatc ttcaccaggt 120
gctgaagaaa agtgtcttcg ttttaattgc caagcaggga tgtggacatt tggatggtga 180
cttccctggg tggttcccca tagattcacc attgcctcta atggtgtcta cacccgtcat 240
actaccagct gagatggtgg tgggcataag gagaatttgt gtctataacc cttagtgtgt 300
tctggttttt tttcttttaa tttttaaatt gtcgtaaaat actcataaaa catactgtct 360
tcaccatttt taagtgcaca gttcagtaac gttaactgtt aatacattca taatgctgtg 420
tggccgtc 428




196


423


DNA


Homo sapien



196
aaaaagatac aagtttataa catcttataa aaactaccat ttaaaagtga tcttgtccat 60
ttgatattcc cctcccccat agcaaaatat tatttaaaaa aaaaaaaaca aaaaacaggg 120
tggagaggag gataggaagg ggacagttga taaaacccca gggccacagc agaggcaaag 180
ggcatctggg gagagggttc gaagctgtgg cggactccac taatgtaacc ctccaatgtc 240
aagccatggg cgtgatcagt agctaagtga tgacaaggct gttgggggtg gacggaaaag 300
acttggggca aagcagactg tttatagcct gagctggtag ggcctggtgc agcagcctac 360
ccggaactgg cactactctt tcccaggttc cctgactctc tatcctggtc tctgagagcg 420
tgc 423




197


427


DNA


Homo sapien



197
caggcacctt cctggcagta gagttcacca ctttggcgga ctatttgcat ctgttgcagg 60
ctgcggccca ggcactcaat ccgctaggcc cttctgcgat gttttacctg gctgcggctg 120
tgtcagattt ctatgttcct gtctctgaaa tgcctgaaca caagatccag tcatctgggg 180
gcccactgca gataacaatg aagatggtgc caaaactgct ttctcctttg gttaaagatt 240
gggctcccaa agcatttata atttccttta agttggagac tgaccccgcc attgtaatta 300
atcgagctcg gaaggctttg gaaatttatc agcatcaagt ggtggtggct aatatccttg 360
agtcacgaca gtcctttgtg tttattgtaa ccaaagactc ggaaaccaag ttattgctat 420
cagagga 427




198


427


DNA


Homo sapien



198
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaaatta aataccttca gaggaatatt taagttgtaa actatgaaac ttgagaaatc 420
ctcttga 427




199


442


DNA


Homo sapien



199
actccacctt actaccagac aaccttagcc aaaccattta cccaaataaa gtataggcga 60
tagaaattga aacctggcgc aatagatata gtaccgcaag ggaaagatga aaaattataa 120
ccaagcataa tatagcaagg actaacccct ataccttctg cataatgaat taactagaaa 180
taactttgca aggagagcca aagctaagac ccccgaaacc agacgagcta cctaagaaca 240
gctaaaagag cacacccgtc tatgtagcaa aatagtggga agatttatag gtagaggcga 300
caaacctacc gagcctggtg atagctggtt gtccaagata gaatcttagt tcaactttaa 360
atttgcccac agaaccctct aaatcccctt gtaaatttaa ctgttagtcc aaagaggaac 420
agctctttgg acactaggaa aa 442




200


353


DNA


Homo sapien




misc_feature




(1)...(353)




n = A,T,C or G





200
ggcaggactg ggaggcgaca gatgggcccc tcttggcctc tgtcccagct ctctgcagcc 60
agacggaaag gcggctgctt gcctctccat cctccgaaaa acccctgagg accccccccc 120
atcctcttct aggatgaggg gaagctggag ccccaacttt gatcctccat tggagtggcc 180
caaatctttc catctagggc aagtcctgaa aggcccaagg ccccctcccc agnntagcct 240
tggcctccag cctggagaag ggctaacatc agctcattgt caaggccacc cccaccccag 300
aacagaaccg tgtctctgat aaaggttttg aagtgaataa agttttaaaa act 353




201


443


DNA


Homo sapien



201
actaagaggt gcttagacaa gggctggtgc ccggcccagg gtgcccagcg gggccatgcc 60
atggcagata aagctcagga cgtcaaaaac tcaccatgga ccccaaggca gaaaccaaga 120
actgtctgca ggcaaataag cacccagcac ccatcctggc tgccggtgcc ccgtaccctg 180
tatttattct tttaacaata acaaaagcca tttatttatt ccatctagaa aggaaaccct 240
gtttcagtcc cctctctctg gctgttctgt tactttcctt ccacctgtgc cctccctggg 300
atatgtatgc ctcgcccgcc ctccctgggc acatgtgcac acgtgcccag gcacaagtat 360
gtctctgggt cccttgccct gcagtttcca gggggctctg ctccaagttc cctagcgggc 420
ccctcaggga gaaatagcct cac 443




202


443


DNA


Homo sapien




misc_feature




(1)...(443)




n = A,T,C or G





202
cccgcggtaa ccagcgtgag ctcgcccncc agaagaatat gaaaaagcag agcgactcgg 60
ttaagggaaa gcgccgagat gacgggcttt ctgctgccgc ccgcaagcag agggactcgg 120
agatcatgca gcagaancag aaaaaggcaa acgagaagaa ggaggaaccc aagtagcttt 180
gtggcttcgt gtccaaccct cttgcccttc gcctgtgtgc ctggagccag tcccaccacg 240
ctcgcgtttc ctcctgtagt gctcacaggt cccagcaccg atggcattcc ctttgccctg 300
agtctgcagc gggtcccttt tgtgcttcct tcccctcagg tagcctctct ccccctgggc 360
cactcccggg ggtgaggggg ttaccccttc ccagtgnttt tttattcctg gnggggctna 420
ccccnangtn ttaaaagtng ctt 443




203


432


DNA


Homo sapien



203
taccagaggt aaaaggagga gctggtacca ttccttctga aactattcca atcaatagaa 60
aaagagggaa tcctccctaa ctcatttttt gaggccagca tcatcctgat accaaagctg 120
ggcagagaca caacgaaaaa agagaatttt agacgaatat ccttcatgaa cattgatgca 180
aaaatcctca ataaaatact ggcaaaccga atccagcagc acatcaaaaa gcttttccac 240
catgatcaag tgggcttcat ccctgggatg caaggctggt tcaacatatg caaatcaata 300
aatgtaatcc agcatataaa cagaaccaaa gacaaaaacc acatgattat ctcaatagat 360
gcagaaaagg cctttgacaa aattcaacaa aattcatgct aaaaactctc aataaatgag 420
gtattgatgg ga 432




204


230


DNA


Homo sapien




misc_feature




(1)...(230)




n = A,T,C or G





204
cgagtatgga gcagaaacga ttgcagggtt tnaccaggat ccacctctga tgttcactga 60
agagnaccag aaaagnctgc tagagcagtn ccatctgggt ctngatccca aacgcagaaa 120
atacntggtn ggagagctna nntggaatac tantgatttc atgactgaac agtcaccgac 180
tagagtgctg gggntggcaa acnggatctt cactcggcag agacaacctt 230




205


431


DNA


Homo sapien



205
ggaaattaca atgattttgg aaattataac cagcaacctt ctaactacgg tccaatgaag 60
agtggaaact ttggtggtag caggaacatg gggggaccat atggtggagg aaactatggt 120
ccaggaggca gtggaggaag tgggggttat ggtgggagga gccgatactg agcttcttcc 180
tatttgccat gggtaagtag cttttgagtt ttacaattat tattatcttg ggagacatag 240
ctgcaggagt aaaagctttt taggatcatg ttatctttcc ttaaaatctg gttagatgga 300
taatttcata acctattttt tttttactct ttacttctgt tgaaacaggc ttcactgtat 360
aaataggaga ggatgagagc ccagaggtaa cagaacagct tcaggttatc gaaataacaa 420
tgttaaggaa a 431




206


427


DNA


Homo sapien



206
ggaaagaaga agataaaaag agcaagaaag aaaatataaa ggatgagaag acaaaaaaag 60
aaaaagagaa aaaaaaagat ggtgaaaagg aagaatccaa aaaggaggaa actccaggaa 120
ctcctaaaaa gaaggaaact aagaaaaaat tcaaacttga gccacatgat gatcaggttt 180
ttctggatgg aaatgaggtg tatgtatgga tctatgaccc agttcacttt aaaacatttg 240
tcatgggatt aattcttgtg attgcagtaa tagcggccac cctcttcccc ctttggccag 300
cagaaatgag agtaggtgtt tattacctca gtgtgggtgc aggctgtttt gtagccagta 360
ttcttctcct tgctgttgct cgatgcattc tatttctcat catttggctc ataactggag 420
gaaggca 427




207


432


DNA


Homo sapien




misc_feature




(1)...(432)




n = A,T,C or G





207
acaagcacca agagattgaa acaaaagaaa tttatgctca aaggcaactt ttactaaaag 60
atatggattt gctaagagga agagaagcag agctgaagca aagagttgaa gcttttgaat 120
tgaaccagaa gctccaggaa gaaaaacata aaagcataac tgaggcactt aggagacagg 180
agcagaatat aaagagtttt gaggagacct atgaccgaaa gctcaagaat gaacttctaa 240
agtatcaact tgaactgaag gatgactaca tcattagaac taatcgactg attgaagatg 300
aaaggaagaa taaagaaaaa gctgttcatt tgcaagagga gctcatagct attaattcaa 360
aaaaggagga actcaatcaa tctgtaaatc gtgtgaaaga acttgagctt gaattagaag 420
tctgtcaaan cc 432




208


431


DNA


Homo sapien



208
cgcggaggcc gcacgatgcc tggagttact gtaaaagacg tgaaccagca ggagttcgtc 60
agagctctgg cagccttcct caaaaagtcc gggaagctga aagtccccga atgggtggat 120
accgtcaagc tggccaagca caaagagctt gctccctacg atgagaactg gttctacacg 180
cgagctgctt ccacagcgcg gcacctgtac ctccggggtg gcgctggggt tggctccatg 240
accaagatct atgggggacg tcagagaaac ggcgtcatgc ccagccactt cagccgaggc 300
tccaagagtg tggcccgccg ggtcctccaa gccctggagg ggctgaaaat ggtggaaaag 360
gaccaagatg gcggccgcaa actgacacct cagggacaaa gagatctgga cagaatcgcc 420
ggacaggtgg c 431




209


427


DNA


Homo sapien



209
ctggtactgt ggccctccgt gaaatcagac gctatcagaa gtccactgaa cttctgatcc 60
gcaagctccc ctttcagcgt ctggtgcgag aaattgctca ggacttcaaa acagatctgc 120
gcttccagag tgcagctatt ggtgctttgc aggaggcaag tgaggcctat ctggttggcc 180
tttttgaaga taccaatctg tgtgctatcc atgccaaacg tgtaacaatt atgccaaaag 240
atatccagct agcacgccgc atacgcggag aacgtgctta agagtccact atgaggggaa 300
acatttcatt ctcaaaaaaa ttttttttcc tcttcttcct gttatcagta gttctgaatg 360
ttagatattt tttccatggg gtcaaaggta cctaagtata tgattgcgag tggaaacata 420
ggggaca 427




210


427


DNA


Homo sapien



210
atttatacct acaaaaagaa aacaagatga tggtatcaaa aggacaattt acaaactaag 60
aatagtaaca tagctttcag catcctgtgc ctgaacatca cacatctaca agtctttcaa 120
gtcttaatgc aacaggaatg tgtctggaga ccagcaagaa catcaataga gagcactgat 180
cccaagcaaa agccactaac cttttagatg agaagtccac acaacgaatt gttagggagg 240
attggggaga agcagcccat tgcttaatac attggaaccc tttccctaag ttgagtttca 300
accatgaatg caataactag cataaaacga ttcttctgct catgttctga agccaacagc 360
agaacctgaa ttataagtga cagacatgga ggcagaagag ttaaactctg ctagatttca 420
gctgtgc 427




211


429


DNA


Homo sapien



211
tgtatcagaa ccttaatgag ccaaccacgt ggagcttaac cagtgataga actagaaatt 60
gggttcttca acagaaaata gaaggagaaa caaaagaatc aaactacgct aaattgattg 120
aaatgaatgg aggaggaacc ggctgtaatc atgaattaga aatgatcaga caaaagcttc 180
aatgtgtagc ttcaaaacta caggttctac cccagaaagc ctctgagaga ctacagtttg 240
aaacagcaga tgatgaagat ttcatttggg ttcaggaaaa tattgatgaa attattttac 300
aactacagaa attaactggc cagcaaggtg aagagcccag cttggtgtcc ccaagtactt 360
cttgtggctc attgactgaa agactactga gacaaaatgc tgagctgaca gggcatatca 420
gtcaactga 429




212


426


DNA


Homo sapien



212
agaacatctg tttctgggcc cccatccacc gtggccttcc agttgtccac ggtgtcctaa 60
gagcctcgcc atttctgatg ttcccgtgtt cctcccccag atgtctccca cgtcttcccc 120
gagttcccag cgcccgacct gggcagcttc ctgctgcagg acggcgtcac actgcacgac 180
gtcaaggccc tgcagctggt gtacagacgg cactgcgagg tgaccgcccc agcccaggca 240
ggcagctcct gcgtgtccct cccgggaacc gccagcgctc aggccaggcg tccccgggtg 300
acgctgagga gctggagccc cgagcccccc aacaagcatc ctctctgaag cagcagcccc 360
tccgcatcca tgtccatcgc ctgctcctct cctctctgtg gcctcccttg ggattccagg 420
gcaccc 426




213


430


DNA


Homo sapien




misc_feature




(1)...(430)




n = A,T,C or G





213
gctcaagatc tgccgagtaa accggaactc tnggagctgc ctcggtgggg atgagatctt 60
nttgctgtgc gacaaggtgc anaaagaana cattgangng tatttcacgg gaccaggctg 120
ggaggcacga ggctcctttt ctcaagctga tgtgcatcgg caagtggcca ttgtgttccg 180
gactcctccg tacgccgacc ccagcctcca ggctcctgtt cgagtctcca tgcagctacg 240
gcggccttct gatcgcgagc tcagtgagcc catggagttc cagtacttgc cagacacaga 300
tgatcgccac cggattgaag agaagcgcaa aaggacctat gagaccttca agagtatcat 360
gaagaagagt cctttcaatg gaccaactga accccggcct ccaacccggc gtattgctgt 420
gcctacccga 430




214


431


DNA


Homo sapien



214
gttccctggg ctccccccat cacatcccag cccctctggg ctgaccctgt ctagagatgc 60
atctgtcccc tccttggact gggagctcca aggacagggc caggggtcgt ctccccatcc 120
cagtgattct ggaattgtcc agggcagggc cgggcgcagg acagacgttt tgtggaacta 180
atgcaggggt gaattagtgg attcatgggg ccaaagatgt ggcgtcagcg cagatgaggg 240
tggcgcttcc ccacctctgt cctggtcgct ccccaacctg ctcacacctc tctctctctc 300
tctccctgac agcatttctt cacttccttt ggggcccgtg accgctgctt cctcctcatc 360
ttccgcctct ggcagaatgc actgcttgaa aagacgctga gtccccgcga gctctggcac 420
ctggtgcatc a 431




215


436


DNA


Homo sapien



215
tcatcatagt tgggagccat tggatgcccc agagggtaag ctgcaaggct ctaggtgtga 60
caacagcagt tgcagcaagc tccctccaca agaaggaaga ggcattgctc aagaacagct 120
gttccaagaa aagaaggatc ctgctaaccc ctccccggtg atgcctggaa tagccacctc 180
tgagaggggt gatgaacaca gcctaggctg tagtccttca aattcatcag ctcagcccag 240
ccttcccctg tatagaacct gccaccccat aatgcctgtt gcttcttcat ttgtgcttca 300
ctgtcctgat cctgtgcaga aaactaacca atgcctccaa ggccaaagcc tcaaaacttc 360
attgacttta aaagtggaca gaggcagtga ggagacctat aggccagagt ttcccagcac 420
aaaggggctt gtccgt 436




216


427


DNA


Homo sapien



216
gatatgttga atacaccttt gtgtccttca cacagcagtt tacatccagt gctgttacct 60
tcagatgtat ttgaccaacc acaacctgta ggtaacaaaa gaattgaatt ccatatatct 120
accgacatgc cagctgcatt taagaaagat ttagaaaagg aacaaaattg tgaggaaaaa 180
aatcatgatt tacctgctac tgaagttgat gcatccaata taggatttgg aaaaatcttc 240
cccaaaccta atttggacat cacagaggag attaaagaag actctgatga aatgccttca 300
gaatgtattt ctagaaagga attggaaaag ggcagaattt ctagagaaga aatggaaaca 360
ctttcagttt tcagaagtta tgaaccgggt gaaccaaact gtagaattta tgtaaagaat 420
ttagcta 427




217


399


DNA


Homo sapien



217
acccaacctc cgagcagtac atgctaagac ttcaccagtc aaagcgaact actatactca 60
attgatccaa taacttgacc aacggaacaa gttaccctag ggataacagc gcaatcctat 120
tctagagtcc atatcaacaa tagggtttac gacctcgatg ttggatcagg acatcccgat 180
ggtgcagccg ctattaaagg ttcgtttgtt caacgattaa agtcctacgt gatctgagtt 240
cagaccggag taatccaggt cggtttctat ctacttcaaa ttcctccctg tacgaaagga 300
caagagaaat aaggcctact tcacaaagcg ccttcccccg taaatgatat catctcaact 360
tagtattata cccacaccca cccaagaaca gggtttgtt 399




218


426


DNA


Homo sapien



218
cgcggaggta cgctgagtgg agctcggggc tgcgtagggg agctgagccg agcggctggg 60
cgggcctggc cgggccagcg gaggggagac gtcggttgag cggcggcgaa catgcgcttt 120
tgacacattg gaggctttct tgatcatgga tggtgaagat ataccagatt tttcaagttt 180
aaaggaggaa actgcttatt ggaaggaact ttccttgaag tataagcaaa gcttccagga 240
agctcgggat gagctagttg aattccagga aggaagcaga gaattagaag cagagttgga 300
ggcacaatta gtacaggctg aacaaagaaa tagagacttg caggctgata accaaagact 360
gaaatatgaa gtggaggcat taaaggagaa gctagagcat caatatgcac agagctataa 420
gcaggt 426




219


427


DNA


Homo sapien



219
cggcggcggc tgcggcccaa tatagccagc agccagcttc gggtgtagcc tattctcatc 60
caactacagt tgctagctac actgtccatc aggctccagt agctgctcac acagttactg 120
ctgcctatgc accagcagcc gccacagttg cagttgccag gcctgctcca gtagctgttg 180
cagctgctgc aacagctgct gcttatggag gctaccccac tgcacacaca gcaactgact 240
atggttatac tcagaggcaa caagaagcac caccaccacc acccccagct actacacaaa 300
actaccagga ttcatactca tatgtaaggt ccacagctcc tgctgtagct tatgatagta 360
agcaatacta ccaacaacca acagcagcaa cagaagcagg cagcagcagc agctgctgct 420
gctgctg 427




220


428


DNA


Homo sapien



220
ctctgtcgaa gattataaag cccttcagaa atacgaaaag gagaaatttg aagagatgat 60
tcaacaaatt aaagagactg gtgctaacct agcaatttgt cagtggggct ttgatgatga 120
agcaaatcac ttacttcttc agaacaactt gcctgcggtt cgctgggtag gaggacctga 180
aattgagctg attgccatcg caacaggagg gcggatcgtc cccaggttct cagagctcac 240
agccgagaag ctgggctttg ctggtcttgt acaggagatc tcatttggga caactaagga 300
taaaatgctg gtcatcgagc agtgtaagaa ctccagagct gtaaccattt ttattagagg 360
aggaaataag atgatcattg aggaggcgaa acgatccctt cacgatgctt tgtgtgtcat 420
ccggaacc 428




221


422


DNA


Homo sapien



221
aaaagcctga agaatacaat tctgagaaat ataaaaaaat tttaatggta tactcatgtt 60
gaaagataaa tgttgctaag tcctggtatg atggtgtgag cttccttggg gaagtacttc 120
ttgagttatg taactaacag gatgttttac tacagatctg gatggctatt cagataacat 180
ggcaaaaaat gatagcagaa gatcattaaa aacttaaaat atattttatt agaaaacatt 240
tatctatgaa tgaatatttc cttgatgctg gtctctgcac acatatgctt ggttacttgc 300
atgcattcat tggttgttca ataagtgaga tgattacaga taacttaata ctgtattttc 360
cttatatgga aaaccgttat agacccaata acaactaaac ctttcaaaag aaaatatttt 420
ct 422




222


47


DNA


Homo sapien



222
aagccgcccg gccagccgcc ccgtccggga gggaggtggg ggggtca 47




223


432


DNA


Homo sapien



223
ctgcaggccc gtgcccgtgt ggatgagtac ctggcatggc agcacacgac tctgcggaga 60
agctgcctcc gggccttgtg gcataaggtg atgttccctg ttttcctggg tgagccagta 120
tctccccaga cactggcagc caccctggca gagttggatg tgaccctgca gttgctcgag 180
gacaagttcc tccagaacaa ggccttcctt actggtcctc acatctcctt agctgacctc 240
gtagccatca cggagctgat gcatcccgtg ggtgctggct gccaagtctt cgaaggccga 300
cccaagctgg ccacatggcg gcagcgcgtg gaggcagcag tgggggagga cctcttccag 360
gaggcccatg aggtcattct gaaggccaag gacttcccac ctgcagaccc caccataaag 420
cagaagctga tg 432




224


428


DNA


Homo sapien



224
cccagcccat ccattaggct gggggaaggg ggtgggacag gggctggagg aggggctctg 60
gggtccatca cggcacagga acaacacgca tggtgttggt gaagccggag ccagggcgcc 120
atccggtcag cacaatgacc acatctccct tcttgaagaa gcctcgggcc ttgccaacat 180
tcatggcaaa gttcacccgg aggtccacgt cctcagccca tccattaggc cagcaacgct 240
tgtagaactc actctgggct gtaacgtggc actggtaggt tgggacacca gggaagaaga 300
tcaacgcctc actgaaacat ggctgtgttt gcagcctgct ctagtgggac agcccagagc 360
ctggctgccc atcatgtggc cccacccaat caagggaaga aggaggaatg ctggactgga 420
ggcccctg 428




225


428


DNA


Homo sapien



225
ggccagcaac gacgaatacg acagcaacgc ttgatctcta taggcaaatg gattgctgat 60
aatcagccaa ggctgattca gtgtgaaaat gaggtaggga aattgttgtt tatcacagaa 120
atcccagaat taatactgga agaccccagt gaagccaaag agaacctcat tctgcaagaa 180
acatctgtga tagagtcgct ggctgcagat gggagcccag ggctaaaatc agtgctatct 240
acaagccgaa atttaagcaa caactgtgac acaggagaga agccagtggt taccttcaaa 300
gaaaacatta agacacgaga agtgaacaga gaccaaggaa gaagttttcc tcccaaagag 360
gtaaaatccc agacagaact aagaaagact ccagtgtctg aagccagaaa aacacctgta 420
actcaaac 428




226


249


DNA


Homo sapien



226
cttgctgcct gcagcataca gagctgtgtc caaggctccc agcgccacca gggctaggga 60
gtcggtttct aagtggagct tcacggactc cccgttccgg tactgcttgg caccgtccac 120
gctgagctcc agcttgccct cgcaggcccc agcctggaca tccactcgca gggagttggc 180
cactgggtgg tctccatggt agtagaaggc cacaaagtag aaggagggtg ccaggtgatg 240
gtccacccc 249




227


433


DNA


Homo sapien



227
agcaacagat gatacgctta actttttgga cacctgtgat ttgcatactg agcatataaa 60
gccatcttta cgcacgtcca tcggtgaaag aaaacggtct ctttcaccac taattaagtt 120
ttctccagtg gaacaaagat tgagaaccac aatagcatgt agtcttggag aactacctaa 180
tttaaaggaa gaagacattt tgaataagag ccttgatgca aaagaaccac cgtctgactt 240
gacaagatga agacgtaccc atttaatata actatgatgc acttaaattg aagctatgcc 300
acaggataga aaatgaatta caacttaaat acatgttgga agtgtaacac tgtttttcaa 360
ggtttaaaaa aattcctaat gccttttagc cttctttaat atttttaggt aaggaaagta 420
tgtttggatt ttt 433




228


428


DNA


Homo sapien



228
ccccttcgcc cggctgcacg agtgctatgg ccaggagatc cgggccctgc gtggccagtg 60
gctcagcagc cgggtccagc cctgaggcca ccagggcgcc tgttttaggg ggacacaagc 120
tctatgccct ctgggacagg ccgggtcctg gagagactgg gggagcagat cctgagggaa 180
atcatgggca aggctggccc ccaggccctg agtggcctgg ttttggggga tgcaggctct 240
gagaaggtgc tggattctga gtgggccttt aggaccatgt gacccagaag gcctaccctt 300
gaggggaacg tcacgtgcaa cactaaggag aatccagggc ctgaggggga ggtttcctga 360
gaactccggc cccaggctgg cctgagctgc cgggcagagg cctgtgctgg caacaggcat 420
tgccgggc 428




229


422


DNA


Homo sapien



229
gtttcagaaa atgttcagac acccaagtca tgtacagctg aaggtagttg ctggaaacca 60
tgacattggc ttccattatg agatgaacac atacaaagta gaacgctttg agaaagtgtt 120
cagctctgaa agactgtttt cttggaaagg cattaacttt gtgatggtca acagcgtggc 180
gctgaacggg gatggctgtg gcatctgctc tgaaacagaa gcagagctca ttgaagtttc 240
tcacagactg aactgctccc gagaggcacg tggctccagc cggtgtggac ctgggcctct 300
gctgcccacg tctgcccctg tcctcctgca gcattatcct ctgtatcgga gaagtgatgc 360
taactgttct ggggaagacg ctgctcctcc agaggaaagg gacatcccat ttaaggagaa 420
ct 422




230


431


DNA


Homo sapien



230
tccagacatt aataattttg accctaggaa agctatccat ttatggaatg caagaacacc 60
gtcttcaact ggtgacacaa gatctaattc agattgctca tcaaactcag aaaatgaaag 120
tgattagcaa tatgcaaatg ttgacatttt tgttgcttag caatgtagct cttttgcata 180
gtaaaaaata aaataaaata aatggtttcc agaagcctgg aatttaaaag taaaacagta 240
acttctcttc acatcaaaca aaaggcattt ggcttcttcc aaacatacag agtaaaaagc 300
ccaagattgt ttcttctata gctttctaac ttcacttatg tattcctgtg ttctttcaca 360
ctcttttggt ggagctgtat gctgctacac aatggtgtta ttttgatgtc atttttttca 420
gttattccta a 431




231


435


DNA


Homo sapien



231
gcctttgccg ctaccgcttt cttaccctcc gcacccgtta agttctccgg tcgggcggca 60
gtctctgaac acttagccgc gccatccggg gtcacaccgc ctggaaggag gtgacggggg 120
cggcgcgggg cgcggacact ccccgctgag agtccgcctg ccatggactc ggaatattac 180
agcggcgacc agtcagatga tggtggtgct accccagtac aggatgaacg ggattcaggg 240
tcagacggtg aggatgatgt aaatgagcaa cactccggat cagacactgg aagtgtagaa 300
cgtcattcag agaatgaaac tagtgatcga gaagatggcc tccccaaagg acatcatgtg 360
acagactctg agaacgatga gcccttaaat cttaatgcta gtgactctga aagtgaggag 420
cttcacaggc aaaag 435




232


452


DNA


Homo sapien



232
gtcccgggat gcccctgccc gagcccagcg agcaggaggg tgagagtgtg aaggccagcc 60
aggagccatc ccccaagcca ggcacagaag tcatcccggc agcccccagg aagcccagaa 120
agttctccaa actggtcctg ctcacagcct ccaaagacag caccaaggtg gcgggggcca 180
agcgcaaggg tgtgcactgt gtcatgtccc tgggggtgcc cggccccgcc acccttgcca 240
aggccctcct ccagacccac cccgaggccc agcgggccat tgaggcagcc cctcaggagc 300
ctgagcagaa acggagcagg caggacccag gcacagacag aacagaagac agtggattag 360
cagcggggcc tcctgaggct gctggggaga actttgcccc ctgctctgtg gcgcccggca 420
agtccctgta accttgacaa caggcgcatc ct 452




233


452


DNA


Homo sapien




misc_feature




(1)...(452)




n = A,T,C or G





233
ggcgcgggag cagctcggcc ggctgggtct tcatcctcat tgtactccct tggcatntca 60
tggtgacgtg acttaaaagg tggtgcagag acgtttgaaa ctattgcttt gctgaaaaca 120
tctgactgcc aggctaggat gtgacactta agggaccagg gatcatttac atactgnggn 180
cttgcattac tgcgatgaaa tcttccacca ctcccaccac ccactacaag agatggaatt 240
aattgaaact acagccttca agagacattt ggagcaatac tcttccagtt ctttcttcca 300
cattttattt gtgggtacag cgtctcccag gatgtagtgt gctgtaatta ttcttccacc 360
cttttatttt ctgggagttt ctctatctga atagcacaga aatattagtg gataggaagg 420
gaatataata ttctatccat ctgaaaatta ac 452




234


434


DNA


Homo sapien



234
caaacaatac tatcttataa aatagtactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctagaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaag 434




235


312


DNA


Homo sapien



235
tgggcttcaa gaagcgtgca cctcgggcac tcaaagagat tcggaaattt gccatgaagg 60
agatgggaac tccagatgtg cgcattgaca ccaggctcaa caaagctgtc tgggccaaag 120
gaataaggaa tgtgccatac cgaatccgtg tgcggctgtc cagaaaacgt aatgaggatg 180
aagattcacc aaataagcta tatactttgg ttacctatgt acctgttacc actttcaaaa 240
atctacagac agtcaatgtg gatgagaact aatcgctgat cgtcagatca aataaagtta 300
taaaattgcc tt 312




236


427


DNA


Homo sapien



236
cgcccacaag ccacagagcc tagacactga tgaccccgcg acgctgtacg ccgtggtgga 60
gaacgtgccc ccgttgcgct ggaaggaatt cgtgcggcgc ctagggctga gcgaccacga 120
gatcgatcgg ctggagctgc agaacgggcg ctgcctgcgc gaggcgcaat acagcatgct 180
ggcgacctgg aggcggcgca cgccgcggcg cgaggccacg ctggagctgc tgggacgcgt 240
gctccgcgac atggacctgc tgggctgcct ggaggacatc gaggaggcgc tttgcggccc 300
cgccgccctc ccgcccgcgc ccagtcttct cagatgaggc tgcgcccctg cgggcagctc 360
taaggaccgt cctgcgagat cgccttccaa ccccactttt ttctggaaag gaggggtcct 420
gcagggg 427




237


452


DNA


Homo sapien



237
gtgatttttc catcccattc ccccaaaaat gtgcctcata cactggacaa gacttctact 60
gtgactattc ttggcacaag aaaaaaactt caaacaattc ccaaaaaaaa gcactcactc 120
caaaaaaaaa aaaaaaaaaa aaaggatgtc cctcacccct aagctgaaaa gcagtctctc 180
tcttcagctt agggatgtcc ctcacccctt tcacagcacc aaagttgaag agagagactg 240
cttttcactt cttcagttct gccatcttgt tttcaaaggg ctccagcctc actcagtccc 300
taattatggg actgagaaaa gcttggaaag aatcttggtt tcatataaat tcttgttgtt 360
aggccttact aagaagtagg aaagggcatg ggcaaaaggt agggataaaa accaccagca 420
tatacatgga catacacaca cacccacaca ca 452




238


453


DNA


Homo sapien




misc_feature




(1)...(453)




n = A,T,C or G





238
agccgaccgt gattccctct actacanata ttatgtcttg taagttagca tttttagcac 60
acaggagaaa tnttatgtaa taaaattact gtatcttttg gatttaacaa atttgtattt 120
gaaacacatt ctatgtctga taattcttaa tggcactttt actaatttat ttggggatct 180
tgggtacatt cttaatttgt gtttattctt cacgcttgac ttgcaagtgg gatattcccc 240
tgccacaagt gtcaaacagt gatattcttc ctgtgttgtg actggacagt tttccagatc 300
ttttttggga gattttccta cagcttggtt gtatgtnttg agataacacc accaaacagc 360
tctcagaaat tcttttttga ttgatcagna gctatgatga ttctcctcca tgacactaag 420
gattagttta tatatnnnag agaaanangg gct 453




239


453


DNA


Homo sapien




misc_feature




(1)...(453)




n = A,T,C or G





239
cgtgtttgtg tgcctgctgg agtacccccg ggggaagagg aagaagggct ccaccatgga 60
gcgctgggga cagaagcaca tgaccgccgt ggtgaagctg ttcgggccct ttaccaggaa 120
ttactatgtt cgggccgtcc tgcatctcct gctctcggtg cccgccggct tcctgctggc 180
caccatcctt ggggccgcct gcctggccat tgcgagcggc atctacctac tggcggctgt 240
gcgtggcgag cagtggacgc ccatcgagcc caagccccgg gagcggccgc agatcggagg 300
caccatcaag cagccgccca gcaacccccc gccgcggccc ccggccgagg cccgcaagaa 360
gcccagcgag gaggaggctg cggcggcggc ggggggaccc ccgggaggtc cccaggncaa 420
ccccatcccg gtgaccgacg aggncgtgtg acc 453




240


453


DNA


Homo sapien



240
ggctcatctt cgcagacggg ctcctctact gtcccgtggc cttcctcagc ttcgcctcca 60
tgctgggcct cttccctgtc acgcccgagg ccgtcaagtc tgtcctgctg gtggtgctgc 120
ccctgcctgc ctgcctcaac ccactgctgt acctgctctt caacccccac ttccgggatg 180
accttcggcg gcttcggccc cgcgcagggg actcagggcc cctagcctat gctgcggccg 240
gggagctgga gaagagctcc cgtgattcta cccaggccct ggtagccttc tctgatgtgg 300
atctcattct ggaagcttct gaagctgggc ggccccctgg gctggagacc tatggcttcc 360
cctcagtgac cctcatctcc tgtcagcagc caggggcccc caggctggag ggcaagccat 420
tgtgtagagc cagaggggaa ccactttggg aac 453




241


453


DNA


Homo sapien




misc_feature




(1)...(453)




n = A,T,C or G





241
aagcaacggc aagggccgca gccagcnccg ggcggagagg gctaccatgg ggaaaatcgc 60
gctgcaactc aaagccacgc tggagaacat caccaacctc cggcccgtgg gcgaggactt 120
ccggtggtac ctgaagatga aatgtggcaa ctgtggtgag atttcggaca agtggcagta 180
catccggctg atggacagtg tggcactgaa ggggggccgt ggcagtgctt ccatggtcca 240
gaagtgcaag ctgtgtgcaa gagaaaattc catcgagatt ttaagcagca ccatcaagcc 300
ttacaatgct gaagacaatg agaacttcaa gacaatagtg gagtttgagt gccggggcct 360
tgaaccagtt gatttccagc cgcaggctgg gtttgctgct gaaggtgtgg agtcagggac 420
agccttcagt gacattaatc tgcaggagaa gga 453




242


441


DNA


Homo sapien




misc_feature




(1)...(441)




n = A,T,C or G





242
tcctatggcn cgncntnnaa gcggcggcgg nnatnagncn aaagcactac cttgaggctg 60
cagcgcgggg actgcacgac agctgcccgg gccaagcccg ntacctnctc tgggcctaca 120
cttngncgca cgatgataag agcacttttg aagaaacgtg tccatactgt ttccagctgt 180
tggttctgga taactctcga gtgcgtctca aacccaaagc caggttgaca cccaaaatac 240
agaaacttct taatcgagaa gcgagaaact atacactcag ttttaaagaa gcaaaaatgg 300
tgaaaaagtt caaagactcc aaaagtgtat tgttgatcac ttgtaaaaca tgcaacagaa 360
cagtgaaaca tcatggtaaa agtagaagct ttgtgtcaac attgaagagc aatcctgcca 420
ctcctgcaag taaactcagc c 441




243


429


DNA


Homo sapien



243
gaaaaaggaa aaaaagaaga aacggaaggc agagaaacat cgtggccgaa ttgggatcga 60
tgaagatgat aaggggccta gggcacctcg cccacctcag cccaagaaat ctaagaaagc 120
aggtggtggg ggtagcaatg ctactacact cagccatcct ggctttggga cttccggagg 180
aagtagcaac aagctaccta aaaagtctca aaagacagct ccacctgtcc ttcccactgg 240
ctatgattct gaggaggagg aagaaagcag gcccatgagt tatgatgaga agagacagtt 300
aagcctggat atcaataagt tacctgggga aaagctgggt cgagtagtac atatcatcca 360
agccagggaa ccctctctac gtgattcaaa tccagaagaa attgagattg attttgaaac 420
actcaagcc 429




244


433


DNA


Homo sapien




misc_feature




(1)...(433)




n = A,T,C or G





244
caaacaatac tatcttatan aatagnactg ttgaattatt ccaagcctcc ctaggtttgc 60
tctcaaatgt catttacaga ttgggctaac gacctaaaat ctatatataa agactttctg 120
aagaactctg tattatagca ataccaaacg agtgctgtgt gtgcaaacag tctggcgttg 180
ctttttatgt tgatatttat cctagaacac tgaaagagaa tatgccagtg ataactcact 240
ttacttcagt catttcaaca cagaaaatgc ttctctagca tttttctttt gtagtgttaa 300
cattttgaaa ttcatgtttc agaggcttca tcatcacaga atttactctt gctccatgaa 360
aaaaaattaa ataccttcag aggaatattt aagttgtaaa ctatgaaact tgagaaatcc 420
tcttgagata aaa 433




245


430


DNA


Homo sapien



245
gatgcccctt ggagtggcaa ggaagctgga cagggcaggc ctctggggac gggacacagg 60
gaagcccgaa ggggcgcctt ggccaggtct gccatctcct ccagcgaggc tctggccagc 120
actgggtgag agtggggagg gggcactggc ctttgcagca cagtaaaaca tggtccagac 180
aacctgtggc cccggcctca tgagcacccc ctgcacaggc ccagcccaag ccaggcgcta 240
gaagggctgg ttgtggagtg cttatccttg acaggtatgg ggccaggtga gggcagggga 300
caaggtgcag ctgaggccga gcccaactag gtcctgggca cccctgcagg tgggagtggt 360
ccttgtcctc ctggtatcca gcagacaccc ccctctcccc accagcccca ttctcaggtc 420
ctttcctctt 430




246


428


DNA


Homo sapien



246
cctgcccagc aaggacatct gtccagggtg gcacatggac atgttgagcc cccgcagcag 60
gggatggtgc cccatggcct gcaccagggg gtcatgtccc ctccacaagg cctcatgacc 120
cagcagaatt tcatgctgat gaagcagcgg ggcgtggggg gcgaggtcta cagccagccg 180
ccccacatgc tctccccgca gggctccctc atgggccccc cgccccagca gaacctcatg 240
gtgtcccacc cccttcggca gcgcagtgtg tccctggaca gccagatggg ctacctcccg 300
gcaccaggcg gcatggccaa cctgcccttc tagaagtcgc tgccagggct ggagccgggg 360
caatgttgca aatacgataa ccttaacaaa gttcttcccc tcaatgttgg gatggcctgg 420
gtcgtggg 428




247


428


DNA


Homo sapien




misc_feature




(1)...(428)




n = A,T,C or G





247
gacaagtcgg acaggggcca tgacntntcg gaccgcagcc atgagaaact agacaggtgc 60
cacgacaagt cagaccgggg ccacgacaag tctnacaggg atcgagagcg tggctatgac 120
aaggtagaca gagagagaga gcgagacagg gaacgggatc gggaccgcgg gtatgacaag 180
gcagaccggg aagagggcaa agaacggcgc caccatcgcc gggaggagct ggctccctat 240
cccaagagca agaaggcagt aagccgaaag gatgaagagt tagaccccat ggaccctagc 300
tcatactcag acgccccccg gggcacgtgg tcaacaggac tccccaagcg gaatgaggcc 360
aagactggcg ctgacaccac agcagctggg cccctcttcc agcagcggcc gtatccatcc 420
ccaggggc 428




248


430


DNA


Homo sapien




misc_feature




(1)...(430)




n = A,T,C or G





248
ggctgtgaat ccatctggtc ccggactntt tttggttggt aaactattga ttattgccac 60
nttttcagct cctgttattg gtctattcag agatacncct tcttcctggt ttagtcttgg 120
gagagtgtat gtgtcgagga atgtatccat ttcttctaga ttttctagtt tatttgcgta 180
gaggtgtttg tagtattctc tgatggtagt ttgtatttct gtgggatcgg tggtgatatc 240
ccctttatca ttttttattg tgtctatttg attcttctct ctttttttct ttattagtct 300
tgctagcggt ctatcaattt tgttgatcct ttcaaaaaac cagctcctgg attcattgat 360
tttttgaagg gtttttgtgt ctctatttcc ttcagttcct gctctgatnt tagtnatttc 420
ttgccttctg 430




249


425


DNA


Homo sapien




misc_feature




(1)...(425)




n = A,T,C or G





249
gtcgccgccg ccgccaccgc taccgtcgcc gccgccgccg ccgaggtgac tgaggagaga 60
ggcgcctcct cgctcccgcc accgccggac ttcnatgccc agtccccagc tcgccagcgt 120
ttttcgttgg aatatacgtt gcacatttat ggcgattctg agtgtgaggg cagacttctg 180
ccaggctcag cacagcattt tcgctgacaa gtgagcttgg aggttctatg tgccataatt 240
aacattgcct tgaagactcc tggacaccga gactggcctc agaaatagtt ggcttttttt 300
tttttttaat tgcaagcata tttcttttaa tgactccagt aaaattaagc atcaagtaaa 360
caagtggaaa gtgacctaca cttttaactt gtctcactag tgcctaaatg tagtaaaggc 420
tgctt 425




250


424


DNA


Homo sapien




misc_feature




(1)...(424)




n = A,T,C or G





250
gttctggtcc acaataaaat gccatngatg gctcaagcaa agcacattaa agccttctta 60
agcttttaaa tgcattccac tattcatttt caanttacct ttaaaatttc catttttacc 120
atgttcacac aagtatgaca cttaatcgcc tcaggttata acaagagata ctgtgaaatc 180
attgaaactt taagagggga aaccctaaaa taagtcaaca tacacatttt ccttctcacc 240
tttttcagga tgttctggtt ctggctgatt actactgctt gagctcacac tggcatcaaa 300
acctgctggc gagctattcc cttcagactg gaggtcttgg agctccccag caacactatc 360
cacctcaatt gtgctatcag tttcactctt gatacttcga acctcttctt ggtttggagc 420
cagt 424




251


426


DNA


Homo sapien



251
attttgatct gtatctacac cacccaaagt taggcctcct ataatgtcca aaacattcct 60
tttagccttt ttatttctta ctgtactgtc tcttactgta ctgtctatct gcagtaattg 120
aggacccata aaatttagat aactacatgt ctttgctctt agaattgtca ctcagcataa 180
tgagcattta acatacaaag gcaatgtact gttttgtgtt gatctatgta aaagaataca 240
attctttttt acataattag tgaaatttta ttttttatta ggaaacacta aatagtgtaa 300
tatttctttt gcttttaaaa aaattcctgg tagcaaatca agataaataa ttgcttcatt 360
ttcttgagca atactgaagc aggatgaagt aagaggaatg cattcattta aacatgcttt 420
gcttta 426




252


429


DNA


Homo sapien




misc_feature




(1)...(429)




n = A,T,C or G





252
ttcaaagaac tacttgaaaa tgcagagant tccctgaatg atatgtttgt gaagacatat 60
ggncatttat acatgcaaaa ttctgagcta tttaaaganc tcttcgtaga gttgaaacgt 120
tactacgtgg tgggaaatgt gaacctggaa gaaatgctaa atgacttctg ggctcgcctc 180
ctggagcgga tgttccgcct ggtgaactcc cagtaccact ttacagatga gtatctggaa 240
tgtgtgagca agtatacgga gcagctgaag cccttcggag atgtccctcg caaattgaag 300
ctccaggtta ctcgtgcttt tgtagcagcc cgtactttcg ctcaaggctt agcggttgcg 360
ggagatgtcg tgagcaaggt ctccgtggta aaccccacag cccagtgtac ccatgccctg 420
ttgaagatg 429




253


436


DNA


Homo sapien




misc_feature




(1)...(436)




n = A,T,C or G





253
agcgaattgg tagcaaaaag ggtggaggnt ngaactggag aaaaggaagg atgaaattga 60
acnagaagtt ctccgaaggg tggaggaagc caaacgcatc atggaaaagc agttgctcga 120
agaactcgag cgacagagac aagctgagct tgccgcacaa aaagctagag aggaggaaga 180
acgtgcaaaa cgtgaggagc tagagcgaat actggaagag aataaccgaa aaattgcaga 240
agcacaagcc aaactggccg aagaacagtt gagaattgtt gaagaacaaa gaaagattca 300
tgaggaaagg atgaaactag aacaagaacg acaacgtcaa caaaaagaag aacaaaaaat 360
tatcctgggc aaggggaagt ccaggccaaa actgtccttc tcattaaaaa cccaggatta 420
aattgcaaac tctgaa 436




254


430


DNA


Homo sapien




misc_feature




(1)...(430)




n = A,T,C or G





254
ccaagatggt caactagaag tagctngtgt ttgtggctct cacagaaaca aatggaagga 60
gagagtaaat aacagcacct tcaactgaaa catgccggta gtcactttgg gaataatcaa 120
ggaaacaacc cacaaagaac agagaaaagc aaggcaggaa aatggcccat ctggaagcag 180
cacagagcca agggagcctc ccctgcccag ggaagtggtg aatgagtgtg tcaccccggg 240
aacccacact tctctcacag atctttgcaa cccttgggtt gggagatcct gtcgtgaacc 300
catttcacca gggctttcag tctgactgac acacagagct acagggagtc tcagcagagg 360
ccccacaaag ggacacatgg agacttggga gccttagata ctagatggct ttctgggcat 420
cccagcaaaa 430




255


436


DNA


Homo sapien




misc_feature




(1)...(436)




n = A,T,C or G





255
ttcatcccct ccccgcgcgt tccttcgcac antgtgattt tgccctcctg cccacgcaga 60
cctgtngcgg gcaaagagct cccgaggaag cacagcttgg gtcaggttct tgcctttctt 120
aattttagag acagctaccg gaaggagggg aacaaggagt tctcttccgc agcccctttc 180
cccacgccca cccccagtct ccagggaccc ttgcctgcct cctaggctgg aagccatggt 240
cccgaagtgt agggcaaggg tgcctcagga ccttttggtc ttcagcctcc ctcagccccc 300
aggatctggg ttaggtggcc gctcctccct gctcctcatg ggaagatgtc tcagagcctt 360
ccatgacctc ccctccccag cccaatgcca agtggacttg gagctgcaca aagtcagcag 420
ggaccactaa atctcc 436




256


442


DNA


Homo sapien




misc_feature




(1)...(442)




n = A,T,C or G





256
gaattnccaa ccccacgagc tgctccctct ttccgcaaac ctcctaaccc cggggttttt 60
ccataagggn gtttacttcg tccacgccag cctgcgaagt tccaaaatgg agtctgggcc 120
acgccggcgt tctgggcacg actacggtct cttgaaaaga tttggaattg accatgtaga 180
taatctctga gagcagttct taaagtgtaa tccagaaccg gtggaacttg ctagaaacgc 240
atattcttcg gaccccctcc aaatctgctg aatctgagat tgtggaggcc attcaatgtc 300
ccttcttcag gaatttggaa aaaggatgga gagatctctc tgagctagac tcttcagtgg 360
aggaaatgtt acaactcatg gacagtggca ttaccatctg ccttaggaac ggagcagcct 420
ctgtcttcaa agaaaaaaga at 442




257


436


DNA


Homo sapien




misc_feature




(1)...(436)




n = A,T,C or G





257
gcggccaccc tccgccgtcc agggcccctc cgtctcggcc ccgggacccc ggctccccgc 60
cagccccggc cccggccccg gcaccatgtc ngataaaagc gtggaggcag cggccgagtt 120
gagcgccaag gacctgaagg agaagaagga gaaggtggag gagaaggcaa gccggaaaga 180
gcgaaagaaa gaagtggtgg aggaggagga gaacggggct gaggaggaag aagaagaaac 240
tgccgaggat ggagaggagg aagatgaagg ggaagaagaa gatgaggaag aagaagaaga 300
ggatgatgaa gggcccgcgc tgaagagagc tgccgaagag gaggatgaag cggatcccaa 360
acggcagaag acagaaaatg gggcatcggc gtgagcccct gccaacaggc tggggttggg 420
aggcctctct gggcct 436




258


436


DNA


Homo sapien



258
ggccagggga cgggggcgga gccggagccg gagccgacgg gcggtggccg cactgggacc 60
ccggaatccc gcgcgctgcc cacgattcgc ttctgaggaa cctataaaga ttgtacaatg 120
aatggtgatt ctcgtgctgc ggtggtgacc tcaccacccc cgaccacagc ccctcacaag 180
gagaggtact tcgaccgagt agatgagaac aacccagagt acttgaggga gaggaacatg 240
gcaccagacc ttcgccagga cttcaacatg atggagcaaa agaagagggt gtccatgatt 300
ctgcaaagcc ctgctttctg tgaagaattg gaatcaatga tacaggagca atttaagaag 360
gggaagaacc ccacaggcct attggcatta cagcagattg cagattttat gaccacgaat 420
gtaccaaatg tctacc 436




259


341


DNA


Homo sapien




misc_feature




(1)...(341)




n = A,T,C or G





259
aaaaaatcta gagagaatat aaagaaattt aaagattgaa aagtgaaata ctctcaccta 60
ctcntcagtt aacaaatatt aactcatatg aagtgaatat tatgtagcac atgttattct 120
gtacactgaa gatataggga tgacaaagaa attagagttc tggcctaaag gagtttacat 180
attttaaaag gatacagata ttaaccattt atacataaac acataagatt tcttgttctg 240
agtgctaaga acaagagtct aaggaggcat ttgactgaga gtggctaatg agagatttct 300
cctttagcta gcgttgtcag gaagataaaa ccctaatgat g 341




260


313


DNA


Homo sapien



260
aaaccaagat ctgggtaccc gacgacgacg acaaggccat ggcgatatcg gatccgaatt 60
caagcgaccc catggaccct agctcatact cagacgcccc ccggggcacg tggtcaacag 120
gactccccaa gcggaatgag gccaagactg gcgctgacac cacagcagct gggcccctct 180
tccagcagcg gccgtatcca tccccagggg ctgtgctccg ggccaatgca gaggcctccc 240
gaaccaagca gcaggattga agcttcggcc tccctggccc tgggttaaaa taaaagcttt 300
ctggtgatcc tgc 313




261


446


DNA


Homo sapien



261
gaattctgtc cagtctcaga gagttggaaa gtgctttgca acaaatttta gaaaaagtaa 60
aaactcctgc ttcacccatt cctctggccc caaaaactag ttagcagtat gccttgtggg 120
gaggagccaa gatggccgaa taggaacagc tcccgtctgc agctcccagc atgagcgatg 180
cagaagatgg gtgatttctg catttccaac tgagctttga agagagtagt ggttctccca 240
gcatgtagct tgagatctga gaacgggcag actgcctcct caagtgggtc cctgacccga 300
gtagcctaac tgggaggcac cccccagtac gggcggactg acacctcaca cggccgggta 360
ctcctctgag acaaaacttt cagaagaacg atcaggcagc agcatttgcg gttcaccaat 420
atacactatt ctgcagccac cgctgc 446




262


453


DNA


Homo sapien



262
ccggatccga attcaagcgg cggcagcagt cgacagcgcg atggaggtgg tgccggcgct 60
ggcggaggag gccgcgccgg aggtagcggg cctcagctgc ctcgtcaacc tgccgggtga 120
ggtgctggag tacatcctgt gctgcggctc gctgacggcc gccgacatcg gccgtgtctc 180
cagcaactgc cggcggctgc gcgagctgtg ccagagcagc gggaaggtgt ggaaggagca 240
gttccgggtg aggtggcctt cccttatgaa acactacagc cccaccgact acgtcaattg 300
gttggaagag tataaagttc ggcaaaaagc tgggttagaa gcgcggaaga ttgtagcctc 360
gttctcaaag aggttctttt cagagcacgt tccttgtaat ggcttcagtg acattgagaa 420
ccttgaagga ccagagattt tttttgagga tga 453




263


403


DNA


Homo sapien



263
gaattcaagc acccacgcgt gacccgggcc aagtacttca ttcgagacga gtttctgagg 60
atcagcactg ccagtggaga tgggcgtcac tactgctacc ctcatttcac ctgcgctgtg 120
gacactgaga acatccgccg tgtgttcaac gactgccgtg acatcattca gcgcatgcac 180
cttcgtcagt acgagctgct ctaagaaggg aacccccaaa tttaattaaa gccttaagca 240
caattaatta aaagtgaaac gtaattgtac aagcagttaa tcacccacca tagggcatga 300
ttaacaaagc aacctttccc ttcccccgag tgattttgcg aaaccccctt ttcccttcag 360
cttgcttaga tgttccaaat ttagaaagct taaggcggcc tac 403




264


446


DNA


Homo sapien



264
gaattcattc gtgcacaatt cattaaatga acgtctcaaa aattaaaaaa attataagat 60
acgtatttct ttaggccttt gtgtttttaa attaaaacca acaaaaagaa gtctccctct 120
ccactccacc cagcagcaag ggcagccgga acgcttcgct ccagctacct ggcctcccgc 180
aagagggttc ccccatgaga ccgttagtct ctctttgcct ggctgactac ctgcatacag 240
taggcactca ctgctggagt gaggcactga ctcctccaaa gattgcaggg ggcggaggag 300
ggaaccacga aggcctggga gggggcatct ttggccccca ctaaccatct ccctatttct 360
gcatcctggt gaccgtcagc aagagatgag tcggggagac cctctcctgg agttctagcc 420
cctaattctg ggctttctat atgaga 446




265


245


DNA


Homo sapien




misc_feature




(1)...(245)




n = A,T,C or G





265
cagggctccc tcatgggccc cccgccccag cagaacctca tggtgtccca cccccttcgg 60
cagngcagtg tgtccctgga cagccagatg ggctacctcc cggcaccagg cggcatggcc 120
aacctgccct tctagaagtc gctgccaggg ctggagccgg ggcaatgttg caaatacgat 180
aaccttaaca aagttcttcc cctcaatgtt gggatggcct gggtcgtggg gtggggtgga 240
ggggg 245




266


1238


DNA


Homo sapien



266
caaaaaccca tctgtacatc accatcatca aagaccaaaa gtagataaaa ccacaaagat 60
ggggaaaaaa cagaacagaa aaactggaaa ctctaaaacg cagagcgcct ctcctcctcc 120
aaaggaacgc agttcctcac cagcaacaga acaaagctgg atggagaatg attttgacga 180
gctgagagaa gaaggcttca gacgatcaaa ttactctgag ctacgggagg acattcaaac 240
caaaggcaaa gaagttgaaa actttgaaaa aaatttagaa gaatgtataa ctagaataac 300
caatacagag aagtgcttaa aggagctgat ggagctgaaa accaaggctc gagaactacg 360
tgaagaatgc ataagcctca ggagccgatg cgatcaactg gaagaaaggg tatcagcaat 420
ggaagatgaa atgaatgaaa tgaagcgaga agggaagttt agagaaaaaa gaataaaaag 480
aaatgagcaa agcctccaag aaatatggga ctatgtgaaa agaccaaatc tacgtctgat 540
tggtgtacct gaaagtgatg tggagaatgg aaccaagttg gaaaacactc tgcaggatat 600
tatccaggag aacttcccca atctagcaag gcaggccaac gttcagattc aggaaataca 660
gagaacgcca caaagatact cctcgagaag agcaactcca agacacataa ttgtcagatt 720
caccaaagtt gaaatgaagg aaaaaatgtt aagggcaacc agagagaaag gtcgggttac 780
cctcaaagga aagcccatca gactaacagc ggatctctcg gcagaaaccc tacaagccag 840
aagagagtgg gggccaatat tcaacattct taaagaaaag aattttcaac ccagaatttc 900
atatccagcc aaactaagct tcataagtga aggagaaata aaatacttta tagacaagca 960
aatgctgaga gattttgtca ccaccaggcc tgccctaaaa gagctcctga aggaagcgct 1020
aaacatggaa aggaacaacc ggtaccagcc gctgcaaaat catgccaaaa tgtaaagacc 1080
atcgagacta ggaagaaact gcatcaacta atgagcaaaa tcaccagcta acatcataat 1140
gacaggatca aattcacaca taacaatatt aactttaaat ataaatggac taaattctgc 1200
aattaaaaga cacagactgg caagttggat aaagagtc 1238




267


1664


DNA


Homo sapien



267
attgatgaac tcccagaggg ccggccagtg cgggtagccc ggattgatga actcccagag 60
ggcgctgtga agcctccagc aaacaagtat cctatcttct tttttggcac ccatgaaact 120
gcatttctag gtcccaaaga cctttttcca tataaggagt acaaagacaa gtttggaaag 180
tcaaacaaac ggaaaggatt taacgaagga ttgtgggaaa tagaaaataa cccaggagta 240
aagtttactg gctaccaggc aattcagcaa cagagctctt cagaaactga gggagaaggt 300
ggaaatactg cagatgcaag cagtgaggaa gaaggtgata gagtagaaga agatggaaaa 360
ggcaaaagaa agaatgaaaa agcaggctca aaacggaaaa agtcatatac ttcaaagaaa 420
tcctctaaac agtcccggaa atctccagga gatgaagatg acaaagactg caaagaagag 480
gaaaacaaaa gcagctctga gggtggagat gcgggcaacg acacaagaaa cacaacttca 540
gacttgcaga aaaccagtga agggacctaa ctaccataat gaatgctgca tattaagaga 600
aaccacaaga aggttatatg tttggttgtc taatattctt ggatttgata tgaaccaaca 660
catagtcctt gttgtcattg acagaacccc agtttgtatg tacattattc atattcctct 720
ctgttgtgtt tcggggggaa aagacatttt agcctttttt aaaagttact gatttaattt 780
catgttattt ggttgcatga agttgccctt aaccactaag gattatcaag atttttgcgc 840
agacttatac atgtctagga tccttttatc aaggcagtta tgatcatcgt tttcctgcct 900
tgaccccacc atcatcaaac actcagttaa atataaatta acatttttta gatgaccact 960
caacataatg cttaagaatg gaatttcctc tctgtgacag aacccaggaa ttaattccta 1020
aatacataac gttggtatat tgaagacgaa attaaaattg tccttcagtt ttgaggccat 1080
gtgtaaagtt tacccatatt gtaaaatatc tattccggta ttagaaatag ctagttgaca 1140
gcttatactt ctcaaaattc atattgttat gtacacaaac taagtttcta tatgtgaagt 1200
tagtgagtct ttttgtgtta ctccaaaata aaggcaatga tttatttttt tcccagtgcc 1260
aatacaattt tgagctaagc actcaaggtg gatactttac attttaaagc tggaatcagc 1320
aacagcccta tgggaaacca gacaaagcat tgacttttaa atgtagactt ttaaaataaa 1380
ctgttttctt ttggaactac aattagaata gttaatattc atccttaaac cattattatg 1440
tgtacattat tgttgctatt gtgataatag agaattttat ttatttttat gccagcttat 1500
attgtgagaa cacatttagt cagtttgggt tttatcaatc ctgttaatgc ttgtccttgg 1560
aacatctttc gcgtattcac ggtttgtagt tgaaaagttt actgtaaaaa aatcaaaaac 1620
aaaaaaatgt attgttttta cagaataaat ttattggaat gtgt 1664




268


436


DNA


Homo sapien



268
cggtcacccc gtcatccacc acctcttcca cccgtgccac cccagcccct tctgctccag 60
cagctgcctc agcaactagc ccgagccccg cgcccagttc cgggaatgga gccatcacca 120
gcgagtccag tcccggcaag cgggaaaagg acaaagagaa agacaaagag aagcggttca 180
gcctttttgg caaaaagaaa tgaactcctt tccttcacct cctgcccttc tcttaccttt 240
tcagtgaaat tccagcatgc aagctcagaa ccaacacatt actctctgtg cctaatgttc 300
ctcaatgtgg ttgatttttt ttttttttaa tttatagagc atttcggggg gggtggggga 360
aacacaccta aacactttat ctccaagtta caaaagtttg aggtgcagag ggaaggccag 420
attttttttt taatga 436




269


439


DNA


Homo sapien




misc_feature




(1)...(439)




n = A,T,C or G





269
ggctgtgaat ctatctggtc ctggactctt tttggttggt aagctattga ttattgccac 60
aatttcagat cctgttattg gtctattcag agattcaact tcttccttgt ttagtctttg 120
gagggtgtat gtgtcaagga atttatccat ttcttctaga ttttctagtt tatttgcgta 180
gaggtgtttg tagtattctc tgatggtagt ttgtatttct gtgggatcgg tggtgatatc 240
ccctttatca ttttttattg cgtctatttg attcttctct ctttttttct ttattagtct 300
tgctagcggt ctatcaattn tgttgatcct ttcaaaaaac cagctcctgg attcattaat 360
ttttttgaag ggttttttgt gnctctattt ccttcagttc tgctctgatt ttagttattt 420
cttgccttct gctagcttt 439




270


418


DNA


Homo sapien



270
ggaggacctc cgctgcaaat acatctccct catctacacc aactatgagg cgggcaagga 60
tgactatgtg aaggcactgc ccgggcaact gaagcctttt gagaccctgc tgtcccagaa 120
ccagggaggc aagaccttca ttgtgggaga ccagatctcc ttcgctgact acaacctgct 180
ggacttgctg ctgatccatg aggtcctagc ccctggctgc ctggatgcgt tccccctgct 240
ctcagcatat gtggggcgcc tcagtgcccg gcccaagctc aaggccttcc tggcctcccc 300
tgagtacgtg aacctcccca tcaatggcaa cgggaaacag tgagggttgg ggggactctg 360
agcgggaggc agagtttgcc ttcctttctc caggaccaat aaaatttcta agagagct 418




271


438


DNA


Homo sapien



271
cctagatggg ctaggatgga gataacccac cctggtcccc catcccccat acccccaact 60
ccctgtcctc tgtccccatt cccctccctt ccccatcctt aaacttagct tagcagcctg 120
ggtacccccc tcacagtggg gcccagccag ggcagaggag gagcatggtg tctatgtgta 180
tgacctgatg gctactgtgg tacacatcct ggactcacgc acagggggca gcctggtggc 240
tcacatcaaa gttggagaga cctaccacca gcgcaaggag ggcgttactc accagcagtg 300
gtatctgttc aatgactttc ttattgaacc tattgataag catgaagctg tgcagtttga 360
catgaattgg aaagtacctg caatccttta ttatgtcaaa cggaatctca attccagata 420
caacctgaac atcaagaa 438




272


443


DNA


Homo sapien




misc_feature




(1)...(443)




n = A,T,C or G





272
taaagataat gattgataag ctagaacttt ctgatgtagt cattacatga aaccccttgt 60
cactggtttg tgtgttcaga ggaagccatg gccgagatag ctttcctgaa ataaaccagt 120
agcttttcag attgacgttc ttgctacaat tgtaccatct ggtaattcct gaaaatgtca 180
atttttttgt gttaatattt ttggtttcaa acaaataaca aatgtctcta gaaagaaaat 240
tttaagaaag cttaattaat agtaaaaatg cctttcctga aataattctt ggaaaatttt 300
ttaaatgtca aaatgatgag tcatgctaaa tacatttgag gggttggttt tttggttggt 360
tggttggttg gtttttgaga cagagtttcc ntcttggttg cccaggctng gagtggcaat 420
ggggcccgaa ccttnaanng tta 443




273


439


DNA


Homo sapien



273
gaattggtag caaaaagggt ggaggaagaa ctggagaaaa ggaaggatga aattgaacga 60
gaagttctcc gaagggtgga ggaagccaaa cgcatcatgg aaaagcagtt gctcgaagaa 120
ctcgagcgac agagacaagc tgagcttgcc gcacaaaaag ctagagagga ggaagaacgt 180
gcaaaacgtg aggagctaga gcgaatactg gaagagaata accgaaaaat tgcagaagca 240
caagccaaac tggccgaaga acagttgaga attgttgaag aacaaagaaa gattcatgag 300
gaaaggatga aactagaaca agaacgacaa cgtcaacaaa aagaagaaca aaaaattatc 360
ctgggcaagg ggaagtccag gccaaaactg tccttctcat taaaaaccca ggattaaatt 420
gcaaactctg aacttttta 439




274


445


DNA


Homo sapien




misc_feature




(1)...(445)




n = A,T,C or G





274
aaaggagacg agtcagccaa ccacagctac atttcaggct ttctcccctg acacttttac 60
agttatcttg gacttcgtat attctggcaa actgtctctt actggtcaga atgtcataga 120
agtgatgtcg gctgctagct tccttcagat gactgatgtc ataagtgtat gtaagacttt 180
tattaaatct tccttagaca ttagtgagaa agaaaaagat cgcntatttc agtctctcag 240
ataaagatgc caattctaat ggtgtagaac cgttcctctt tttatagtgg tggctggcaa 300
gaaggaagca gttctccacg ttctcaccta agcccagagc aaggaacagg tataataagt 360
ggaaaatctt ggaataagta taattatcat ccancctccc anaanaatac tcaacaaccc 420
ttggccaagc atgaaccaag gaaag 445




275


441


DNA


Homo sapien



275
ggctcccaag aacatggcga cttccacacc tgtggctcgt ggtggtggtt tgccagctac 60
gttcaacaaa aacactccta agacctttac tcctgaatgt gaaaatcaga aggacccttt 120
ggtcaacact gttgttgttt atgattgtga tgtttgttcg tttgcaagcc ccaacatgca 180
ttctgtcttg gttcattatc agaagaaaca ccccgaagaa aaggcttcct actttaggat 240
ccagaaaact atgcgaatgg tgtctgtgga caggggctct gccctttctc aattatcatt 300
tgaggtgggt gctccaatgt ctcccaaaat gtccaacatg ggttccccac ccccccccca 360
caacccccgc caccagacct cagtactgag ctttactact gcaaacactg ttcctacagc 420
aatcggtcag ttgtgggagt g 441




276


436


DNA


Homo sapien



276
gaaacgccca gtattctcag agtgccatat gaaccatcca ggaaagctgg caaattctct 60
aacagttaat aaagccaatt gtattgtatt gataattgga caaagagaga gaaagaaaga 120
aggaaggaag gaaaaacttg ttactgaaag agactacact atcaggtttc attacatatt 180
ctccttcatt gagaatctgg cccattttca atttaagctt gcggccgcac tcgagcccgg 240
gtgaatgatt gagtttaaac cgctgagcaa taactagcat aaccccttgg ggcctctaaa 300
cgggtcttga ggggtttttt gctgaaagga ggaactatat ccggataacc tggcgtaata 360
gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat ggcgaatgga 420
cgcgccctgt agcggc 436




277


440


DNA


Homo sapien




misc_feature




(1)...(440)




n = A,T,C or G





277
caaatcttcg tgaagacact cactggcaag accatcaccc ttgaggtcga gcccagtgac 60
actatcgaga acgtcaaagc aaagatccaa gacaaggaag gcattcctcc tgaccagcag 120
aggttgatct ttgccggaaa gcagctggaa gatgggcgca ccctgtctga ctacaacatc 180
cagaaagagt ctaccctgca cctggtgctc ccgtctcaga ggtgggatgc agatcttcgt 240
gaagactctg actggtaaga ccatcaccct cgaggtngag cccagtgaca ccatcgagaa 300
tgtcaaggca aagatccaag ataaggaagg catccctcct gaccagcaga ggctgatctt 360
tgctggaaaa cagctggaag atgggcgcac cctgtctgac tacaacatcc anaaagagtc 420
caccctgcac ctgntnctcc 440




278


306


DNA


Homo sapien




misc_feature




(1)...(306)




n = A,T,C or G





278
gagcgngcgg ccgcnctaaa gattcnctcg cacacacaat aagnctttct ctccgaaacc 60
ggaagtaaat ntatatctgt tagaaataat gtagccaaaa gaatgtaaat ttgaggattt 120
ttttgccaat agtttataga aaatatatga accaaagtga tttgagtttg taaaaatgta 180
aaatagtatg aacaaaattt gcactctacc agatttgaac atctagtgag gttcacattc 240
atactaagtt ttcaacattg tgttcttttt gcattcattt tttactttta ttaaaggttc 300
aaaacc 306




279


450


DNA


Homo sapien




misc_feature




(1)...(450)




n = A,T,C or G





279
gagcgggcgg ccgngctccg ggccggggtc ccgggggagc agatcctcan aatggccctt 60
ggtgctgcag gcgcggtggg ctccgggccc aggcaccgag ggggcactgg atgactctcc 120
aggtgcagga ccctgccatc tatgactcca ggtcttcagc acccacccac cgtggtacag 180
cgccccggga tgccgtctgg agcccggatg ccccaccagg gggcgcccat gggccccccg 240
ggctccccgt acatgggcag ccccgccgtg cgacccggcc tggcccccgc gggcatggag 300
cccgcccgca agcgagcagc gcccccgccc gggcagagcc aggcacagag ccagggccag 360
ccggtgccca ccgcccccgc gcggagccgc agtgccaaga ggaggaagat ggctgacaaa 420
atcctccctc aaaggattcg ggagctggtc 450




280


435


DNA


Homo sapien



280
gcagctccga gtggcggcgc gcgggccagg gccggggccg gggccggggc cggagccgga 60
gccggggccg ggcggcgcgc ctgtggagcg ctgggggcgg cctggggctg agcatggagc 120
agcgcggcgg aggtcgcctg cgaggccgct ggccaggcct gagcctctgc caccatggcc 180
attgtgcaga ctctgccagt gccactggag cctgctcctg aagctgccac tgccccacaa 240
gctccagtca tgggtagtgt gagcagcctt atctcaggcc ggccctgtcc cggggggcca 300
gctcctcccc gccaccacgg ccctcctggg cccaccttct tccgccagca ggatggcctg 360
ctacggggtg gctatgaggc acaggagccg ctgtgcccag ctgtgccccc taggaaggct 420
gtccctgtca ccagc 435




281


443


DNA


Homo sapien



281
ttttagaaag ggattagaat tttactctgc tagttacaag ttttaaagtc acgctacggc 60
attatcaccc tggcaggtag gttttgttat tgttttacat tttgtgaaaa aaagttttgt 120
agaagttaca gctagtggtc ttttccctcc agagccagtg atgagtgtgg gagcacttca 180
gctctgtaag gggccagcgt tctgaccttt aaccacatga actaacctgc gtcagcagtt 240
gcagaaagta gcctgttagg acagcagctg ctaagcgttg cctggtattt tagtggggag 300
aaggctggga ctcttcatgg catcaacact tgcatgctct gaatctttga tcagagatga 360
ggtgccattt ttggcatttc caccccgtct cgtggtagcc tttaaaagtg gtagaagatg 420
ctgccctaat tccccgagga tga 443




282


435


DNA


Homo sapien




misc_feature




(1)...(435)




n = A,T,C or G





282
gacactcaag ccgaacatca gacnttaaga tgcagcaggt ctcgggacca caaaaggtca 60
cgaagtagag aaagaaggcg gagcagaagt agagatcgac gaagaagcag aagccatgat 120
cgatcagaaa gaaaacacag atctcgaagt cgggatcgta gaagaattaa aagaaaagtt 180
aaggaaaaga accgaagaac ctgatcgtga tgagcgtcta aaaaaggaga agcaagaaag 240
agaagaaaga gaaaaagaac gggagagaga aagggaagaa agagaaagga aaagacgaag 300
ggaagaggaa gaaagagaaa aagaaagggc tcgtgacaga gaaagaagaa agagaagtcg 360
ttcacgaagt agacactcaa gccgaacatc agacagaaga tgcagcaggt ctcgggacca 420
caaaaggtca cgaag 435




283


437


DNA


Homo sapien



283
agaaaaaaat ttaaactgct ttttcggaag aacaacaaca aaaaagaggt aaagacgaat 60
ctataaagta ccgagacttc ctgggcaaag aatggacaat cagtttcctt cctgtgtcga 120
tgtcgatgtt gtctgtgcag gagatgcagt ttttgtgtag agaatgtaaa ttttctgtaa 180
ccttttgaaa tctagttact aataagcact actgtaattt agcacagttt aactccaccc 240
tcatttaaac ttcctttgat tctttccgac catgaaatag tgcatagttt gcctggagaa 300
tccactcacg ttcataaaga gaatgttgat ggcgccgtgt agaagccgct ctgtatccat 360
ccacgcgtgc agagctgcca gcagggagct cacagaaggg gagggagcac caggccagct 420
gagctgcacc cacagtc 437




284


174


DNA


Homo sapien



284
caattcccta ctgaagactg gagcgctcag cctgccacgg aagactggtc tgcagctccc 60
actgctcagg ccactgaatg ggtaggagca accactgact ggtcttaagc tgttcttgca 120
taggctctta agcagcatgg aaaaatggtt gatggaaaat aaacatcagt ttct 174




285


440


DNA


Homo sapien



285
gagaagaaag agaaaaagaa cgggagagag aaagggaaga aagagaaagg aaaagacgaa 60
gggaagagga agaaagagaa aaagaaaggg ctcgtgacag agaaagaaga aagagaagtc 120
gttcacgaag tagacactca agccgaacat cagacagaag atgcagcagg tctcgggacc 180
acaaaaggtc acgaagtaga gaaagaaggc ggagcagaag tagagatcga cgaagaagca 240
gaagccatga tcgatcagaa agaaaacaca gatctcgaag tcgggatcga agaagatcaa 300
aaagccggga tcgaaagtca tataagcaca ggagcaaaag tcgggacaga gaacaagata 360
gaaaatccaa ggagaaagaa aagaggggat ctgatgataa aaaaagtagt gtgaagtccg 420
gtagtcgaga aaagcagagt 440




286


242


DNA


Homo sapien



286
aagcggtaaa aaggggtcac tatggagttc aaaggacaga actcctgcct ggtgaccggg 60
acaacctggc cattcagacc cggggtggcc cagaaaagca tgaagtaact ggctgggtgc 120
tggtatctcc tctaagtaag gaagatgctg gagaatatga gtgccatgca tccaattccc 180
aaggacaggc ttcagcatca gcaaaaatta cagtggttga tgccttacat gaaataccag 240
tg 242




287


429


DNA


Homo sapien



287
tttcagggtt gcattatgca accagtaaat gacctcttga aaggacagag tcgtctgatt 60
tttacttacg ggctaaccaa ttcaggaaaa acatatccat ttcaagggac agaagaaaat 120
attggcattc tgcctcgaac tttgaatgta ttatttgata gtcttcaaga aagactgtat 180
acaaagatga accttaaacc acatagatcc agagaatact taaggttatc atcagaacaa 240
gagaaagaag aaattgctag caaaagtgca ttgcttcggc aaattaaaga ggttactgtg 300
cataatgata gtgatgatac tctttatgga agtttaacta actctttgaa tatctcagag 360
tttgaagaat ccataaaaga ttatgaacaa gccaacttga atatggctaa tagtataaaa 420
ttttctgtg 429




288


436


DNA


Homo sapien




misc_feature




(1)...(436)




n = A,T,C or G





288
tcaagcctca gagcttcaaa gagcaggact antcctaaga actgtctgtg atatttgacc 60
agaggtgcag cctagctgcc attcttcctc accctgtgga agacattaaa gggagaatga 120
aagtagctgt agaattacct ttgggggaag aagccacttg gtgaacttgg caaacacccg 180
tgtttgaggg gtcacccagg gtgtcatgag ctgggccgga ggggatggat tgattacttg 240
tcttgtttgc ttgtttctgt tgtaagtcag ggcccctcag cagaaggcag aacagaaccg 300
agttccttta gaatgctggt ttttgtgtgg agtgaggaag gaccgtgagt gtggtcagtt 360
tccaacctga caggacctgc tcccgttggc caggactgca gcttgttact ttgaccctgg 420
gaagaaggta agtgtt 436




289


425


DNA


Homo sapien



289
tataagagct tgaccaatga ctgggaagat cacttggcag tgaagcattt ttcagttgaa 60
ggacagttgg aattcagagc ccttctattt gtcccacgac gtgctccttt tgatctgttt 120
gaaaacagaa agaaaaagaa caatatcaaa ttgtatgtac gcagagtttt catcatggat 180
aactgtgagg agctaatccc tgaatatctg aacttcatta gaggggtggt agactcggag 240
gatctccctc taaacatatc ccgtgagatg ttgcaacaaa gcaaaatttt gaaagttatc 300
aggaagaatt tggtcaaaaa atgcttagaa ctctttactg aactggcgga agataaagag 360
aactacaaga aattctatga gcagttctct aaaaacataa agcttggaat acacgaagac 420
tctca 425




290


426


DNA


Homo sapien




misc_feature




(1)...(426)




n = A,T,C or G





290
gctcccggag gcgaggctcg cgcgntcgcc cccgccctgg ccccagcgcc cacccggttn 60
gccccggccc agccatgatc aaggccatcc tcancttcaa caaccacggg aagccgcggc 120
tctccaagtt ctaccagccc tatagtgaag acacgcaaca gcaaatcatc agggagactt 180
tccatttggt gtctaagcgc gatgagaacg tttgtaattt cctagaagga ggattattaa 240
ttggaggctc tgacaacaag ctcatttaca gacattatgc aacactatat tttgtcttct 300
gtgtggactc ctcagaaagt gaacttggca ttttagatct aattcaagta tttgtggaaa 360
cattagacaa atgttttgaa aatgtttgtg aactggattt aatattccat gtagacaagg 420
ttcata 426




291


426


DNA


Homo sapien




misc_feature




(1)...(426)




n = A,T,C or G





291
gagaagcaag aaagagaaga aagattttaa gaacgggaga gagaaaggga agaaagantt 60
tggaaaagac gaagggaaga ggaagaaaga gaaancnnaa agggctcgtg acagagaaag 120
aagaaagaga agtcgttcac gaagtagaca ctcaagccga acatcagaca gaagatgcag 180
caggtctcgg gaccacaaaa ggtcacgaag tagagaaaga aggcggagca gaagtagaga 240
tcgacgaaga agcagaagcc atgatcgatc agaaagaaaa cacagatctc gaagtcggga 300
tcgaagaaga tcaaaaagcc gggatcgaaa gtcatataag cacaggagca aaagtcggga 360
cagagaacaa gatagaaaat ccaaggagaa agaaaagagg ggatctgatg ataaaaaaag 420
tagtgt 426




292


426


DNA


Homo sapien




misc_feature




(1)...(426)




n = A,T,C or G





292
ctgggacgtg gaagtggcga ggtgcntgct gccccaggaa gccccctcag cactaggcna 60
tgggctgcaa ggggtaaggc gctcttcacc tganaacgtt ccctcaagct gcacagcctt 120
tcagagcagc aggaccctgc ggtgacatcg aaatgaaaca gaaatagaac ttctgcggtg 180
ggtgagtgat gtgctgggcc tgaaggtgga ctggccaggg accccacagt ggactcgtga 240
ggagggctcg acagacactg gcccagaggg ggctcttgcc tggtggtggg ctgcatgcag 300
cgggaggtca cctaggagca gggtggcccc agccaggctg atgccgtaga aaggactgca 360
ggctctaact ttgagcattt tctcgtgctt gggcatgggt gctgattttg cctgtcaatg 420
ctgatg 426




293


436


DNA


Homo sapien



293
ggaagaaata gttgaaggtt gtaccggagc ccttcacatc ctagctcggg atgttcacaa 60
ccgaattgtt atcagaggac taaataccat tccattgttt gtgcagctgc tttattctcc 120
cattgaaaac atccaaagag tagctgcagg ggtcctctgt gaacttgctc aggacaagga 180
agctgcagaa gctattgaag ctgagggagc cacagctcct ctgacagagt tacttcactc 240
taggaatgaa ggtgtggcga catatgcagc tgctgttttg ttccgaatgt ctgaggacaa 300
gccacaagat tacaagaaac ggctttcagt tgagctgacc agctctctct tcagaacaga 360
gccaatggct tggaatgaga ctgctgatct tggacttgat attggtgccc agggagaacc 420
ccttggatat cgccag 436




294


439


DNA


Homo sapien




misc_feature




(1)...(439)




n = A,T,C or G





294
ccggctcaca agcgcctcct tctggacacc ctgcagctca gcaagtgata gcggaggcac 60
cacgaagctg tgaactcaga gcccctccct gctaccaagg cccagctatg gccccagggt 120
tgaaaagtta tgagggtcag ggcagtatct ctctgcctat ttattggggt gcctatttat 180
tggggatctg cattccccgc tgcccaatca ntttgcaatg ccctaattag ggcatcctgc 240
ccctcgcctt ttaggctcag gacggaaggt cagttgccat ggttaccgag gaccctggtt 300
actctggtgc tgtcctcttt tactggaccc cgcctcccag ccccaggggt gcctgtgggg 360
gtccatntgg gtacgtctgg gcccccactt tcaccagttt ctgcggcctt ccaccgggcc 420
tgaaccacan cggaggagc 439




295


434


DNA


Homo sapien



295
cactacaccg acccccaccc agttcttgtg ccccaagaac gtgaccgacg agcaggaggg 60
cttcgccgag ggcttcgtgc gcgccctggc tgaactgcat agccagaaca cgcttcccag 120
tgtcacctcc gcggcacagc cggtcagcgg ggcgggcatg gtggctcccg cggtggcctc 180
agtagcaggc gctggcggcg gtggtggcta cagcgccagc ctgcacagtg agcctccggt 240
ctacgccaac ctcagcaact tcaacccggg tgcgctgagc agcggcggtg gggcgccctc 300
ctatggcgcg gccgggctgg cctttccctc gcagccgcag cagcagcagc agccgcctca 360
gccgccgcac cacttgcccc aacagatccc ggtgcagcac ccgcggctgc aagccctgaa 420
ggaagagccg caga 434




296


433


DNA


Homo sapien



296
caaatacgaa atcttaacaa agaaaaacca aactataaaa aaggaccaac tgaaaattct 60
agaaaaagtg caatatctac tatttttaaa aaattggaga gtttaacaac agagtaaaga 120
tggcataaga aaaaaatcag tataagtaaa agtagatcaa gactagttat gcaattaaaa 180
aacagaggaa taaaaagact ttccagaatt gcctgtacaa cagtaatctc ctttctgtcc 240
tggtgtagat tttttaacca gcttgttggc cctggtcatt ttggccacat ttgtgaccat 300
cataaaagct aagtggtatt tctgtgtagt ttccgtctgg aactgctttc ccattcccgg 360
gaacccatag ccgggccagc cagggtcccg aacacaggcc caaagtttat taaaccccga 420
tcataacctc cag 433




297


440


DNA


Homo sapien




misc_feature




(1)...(440)




n = A,T,C or G





297
ctgcggcggc gcggggactg tgaggctgcc gagcggacag cgactcccgg ggaagcccgc 60
gctccgggag cgggagcggg agcaggagca ggagcagcgc cgtcccaggc cagaggcgag 120
cgccgggcgc cgggagagcg gagagcccgg gcagctgccg gagcgcgggg gcgcggcccg 180
aggaaaccac agagcgagcc caggcctggg ggagggcgcc gaacatctga ggcggcttcg 240
cgggagacaa agccgcgcgt agagacgcga tgccccgccg atcgcgagcc cggccggcga 300
gggcgcgggg actgcggcgt ctgagcgcgc caagccgtgc gcccgcgggg acgccgagcc 360
ccggggccgg tgcgggcggc ggcgggcggg gcccangtgc gcccggccgc gtcgggcccg 420
tgactgctcg gggggcggnc 440




298


435


DNA


Homo sapien




misc_feature




(1)...(435)




n = A,T,C or G





298
gctggccaat aaggtgccag ctgctgcccg tgctggtgcc attgccccat gtgaagtcac 60
tgtgccagcc cagaacactg gtctcgggcc cgagaagacc tcctttttcc aggctttagg 120
tatcaccact aaaatctcca ggggcaccat tgaaatcctg agtgatgtgc agctgatcaa 180
gactggagac aaagtgggag ccagcgaagc cacgctgctg aacatgctca acatctcccc 240
cttctccttt gggctggtca tccagcaggt gttcgacaat ggcagcatct acaaccctga 300
agtgcttgat atcacagagg aaactctgca ttctcgcttc ctggagggtg tccgcaatgt 360
tgccagtgtc tgtctgcaga ttggctaccc aactgntgca tcagtacccc attctatcat 420
caacgggtac aaacg 435




299


441


DNA


Homo sapien



299
aatgaatatg ccaaatcgta cttatttcag agtaagtttt tcattttttt aggttgtagg 60
gagttttttt cctactgagt gttattagat tattttaatg ttactattgt tattaggcaa 120
ttaaaatgtt tttaagcaag ctttaaggca ttaacctccc ccttcagata agtatacata 180
aattggttct aaaagttaat aagaagtttt ctgaaaccag ggaacttttt ttttcctgaa 240
acatttttag tagtttccca aggcatattt tttggaactg agttctttta ggcatctctg 300
atgttggtga gatgctttat taactgaatg gatgtaggct tccttttacg ttgaagttga 360
ttacatggag taagtttttg ttttctattt gaaattaaat ggaatctgtt ggagggttat 420
caaaattgtt tgcatcacaa a 441




300


434


DNA


Homo sapien



300
aaaagaagaa agaacctgca attacatcgc agaacagccc tgaggcaaga gaagaaagta 60
cttccagcgg caatgtaagc aacagaaagg atgagacaaa tgctcgagat acttatgttt 120
catcctttcc tcgggcacca agcacttctg attctgtgcg gttgaagtgt agggagatgc 180
ttgctgcagc tcttcgaaca ggggatgact acattgcaat tggagctgat gaggaagaat 240
taggatctca aattgaagaa gctatatatc aagaaataag gaatacagac atgaaataca 300
aaaatagagt acgaagtagg atatcaaatc ttaaagatgc aaaaaatcca aatttaagga 360
aaaatgtcct ctgtgggaat attcctcctg acttatttgc tagaatgaca gcagaggaaa 420
tggctagtga tgag 434




301


434


DNA


Homo sapien



301
agaaaggaaa agacgaaggg aagaggaaga aagagaaaaa gaaagggctc gtgacagaga 60
aagaagaaag agaagtcgtt cacgaagtag acactcaagc cgaacatcag acagaagatg 120
cagcaggtct cgggaccaca aaaggtcacg aagtagagaa agaaggcgga gcagaagtag 180
agatcgacga agaagcagaa gccatgatcg atcagaaaga aaacacagat ctcgaagtcg 240
ggatcgaaga agatcaaaaa gccgggatcg aaagtcatat aagcacagga gcaaaagtcg 300
ggacagagaa caagatagaa aatccaagga gaaagaaaag aggggatctg atgataaaaa 360
aagtagtgtg aagtccggta gtcgagaaaa gcagagtgaa gacacaaaca ctgaatcgaa 420
ggaaagtgat acta 434




302


437


DNA


Homo sapien



302
caaattctcc ttatttaaaa gtaagaagca tttgcctttc ggtgaagagg cttcggcctc 60
tgcctctcct tccagagagc ccaggcaaat tctccttatt taaaagtaag aagccacggc 120
accgctcaaa ttcattcagt gatgaaagag agttctctgg accttccacc ccgacgggga 180
cgctggagtt tgaaggtggg gaagtgtctc tggaaggtgg gaaagttaaa gggaaacacg 240
ggaagctgaa attcggtacc tttggtggat tggggtcaaa gagcaaaggt cattatgagg 300
tgactgggag cgatgatgag acaggcaagt tacaggggag tggggtgtcc ctggcctcta 360
agaagtcccg actgtcctcc tcttctagca atgacagtgg gaataaggtt ggcatccagc 420
ttcccgaggt ggagctg 437




303


436


DNA


Homo sapien



303
agactttcca tgagacgctc aactgttgtg gctccaacgc actgaccaca ctgactacca 60
ccatactgag gaacagcctg tgtccctcag gcggcaacat actcaccccc ttactgcagc 120
aagattgtca tcagaaaatc gatgagctct tctctgggaa gctgtacctc attggaattg 180
cagccattgt ggtagctgtc attatgatct ttgagatgat tctgagcatg gtgctgtgct 240
gtggcatccg gaacagctcc gtgtactgag gccctttgca ttgcaccaga ggatccctgg 300
agtgaccaga ggccaccttg ggggacatgg cctgtgtata taatatttct gtatcactct 360
gctacactta gtctttttac ttttgagttt tttgttttgt tttgttttgt ttttgtttta 420
gttttttttt tgtcct 436




304


440


DNA


Homo sapien



304
ctcagaggag gttcgattaa aactggaaga gaccagagag gtacagaact tgaggaagag 60
gcccaacggg gtgagtgctg tggccttgct ggtgggagag aaggtacaag aggagaccac 120
tctagtggat gatccctttc agatgaagac aggtggtatg gtggatatga agaaactgaa 180
ggaaaggggc aaagataaga tcagtgagga ggaggacctg cacctgggga catcgttttc 240
tgcagaaacc aaccgaaggg atgaggatgc agacatgatg aagtacattg agacagagct 300
aaagaagagg aaagggatcg tggaacatga ggaacagaaa gttaagccaa agaatgcaga 360
ggactgtctt tatgaacttc cagaaaacat ccgtgtttcc tcagcaaaga agaccgagga 420
gatgctttcc aaccagatgc 440




305


440


DNA


Homo sapien



305
aggagacgag tcagccaacc acagctacat ttcaggcttt ctcccctgac acttttacag 60
ttatcttgga cttcgtatat tctggcaaac tgtctcttac tggtcagaat gtcatagaag 120
tgatgtcggc tgctagcttc cttcagatga ctgatgtcat aagtgtatgt aagactttta 180
ttaaatcttc cttagacatt agtgagaaag aaaaagatcg ctatttcagt ctctcagata 240
aagatgccaa ttctaatggt gtagaacgtt cctcttttta tagtggtggc tggcaagaag 300
gaagcagttc tccacgttct cacctaagcc cagagcaagg aacaggtata ataagtggaa 360
aatcttggaa taagtataat tatcatccag cctcccagaa gaatactcaa caacccttgg 420
ccaagcatga accaaggaaa 440




306


437


DNA


Homo sapien



306
ctcagaggag gttcgattaa aactggaaga gaccagagag gtacagaact tgaggaagag 60
gcccaacggg gtgagtgctg tggccttgct ggtgggagag aaggtacaag aggagaccac 120
tctagtggat gatccctttc agatgaagac aggtggtatg gtggatatga agaaactgaa 180
ggaaaggggc aaagataaga tcagtgagga ggaggacctg cacctgggga catcgttttc 240
tgcagaaacc aaccgaaggg atgaggatgc agacatgatg aagtacattg agacagagct 300
aaagaagagg aaagggatcg tggaacatga ggaacagaaa gttaagccaa agaatgcaga 360
ggactgtctt tatgaacttc cagaaaacat ccgtgtttcc tcagcaaaga agaccgagga 420
gatgctttcc aaccaga 437




307


426


DNA


Homo sapien



307
cagactgaga aaacccatag ttaaagctct tggggtttct gagagctcag ctggaagtga 60
ctgggtgaca aggcgcacag gctcagccgt ggaagctcca tcatgattcc acaagtagtg 120
accagtgaga ctgtcacagt gatttcacca aatggaatca gctttcccca aacagacaaa 180
ccccagcctt cccaccagag ccaagacaga ctgaagaaac atctaaaggc tgagatcaaa 240
gtgatggcgg caatccagat catgtgtgct gtgatggtgt tgagtctggg aatcattttg 300
gcatctgttc cctccaatct acactttacc tcagtgtttt ccatcctgtt agaatctggc 360
tacccatttg taggagcttt gttttttgcc atctctggaa ttctgtctat tgtcacagag 420
aaaaag 426




308


439


DNA


Homo sapien



308
gctgctcgag gagctgctgc ccaaagggag caaggaggaa cagcgggatt acgtcttcta 60
cctggccgtg gggaactacc ggctcaagga atacgagaag gccttaaagt acgtccgcgg 120
gttgctgcag atagagcccc agaacaacca ggccaaggaa ctggagcggc tcattgacaa 180
ggccatgaag aaagatggac tcgtgggcat ggccatcgtg ggaggcatgg ccctgggtgt 240
ggcgggactg gccggactca tcggacttgc tgtgtccaag tccaaatcct gaaggagacg 300
cgggagccca cggagaacgc tccaggaggg cctgtccatc ctcgctgtcc tttccctgtt 360
ctccccctgc cccccgtctc tatcctctgt ggccttcagc taatttctgc tcccctgaga 420
ttcgtccttc agccccatc 439




309


347


DNA


Homo sapien




misc_feature




(1)...(347)




n = A,T,C or G





309
tcgtgactgg ccagttttgt gcacccagcg aaacttcatc catgctctgg caggacagga 60
aagcacccgg ccccttggga atatacaaat atttgccata ttctctttgc ttgttacaaa 120
aaacagttaa gaaagcttac agcagattat ttacaaacag tatcctggga tatgatgaag 180
gcagaggtgg gctggcttgg aggataggat ctgtgggggc agaggagcca cagcagccca 240
gagggtccca ggctgggcct tctccccagg cttcaggctc tgcaaggcac tggactctgc 300
tactgagaag gaggcttaat tcttcttgtg gagaaacttc nttttgt 347




310


438


DNA


Homo sapien



310
ctccgtctgg gccgccgtcc ccgggaaaac gttcgtcaac atcacgccag ctgaggtggg 60
tgtcctggtt ggcaaagacc ggtcaagttt ttacgtgaat gggctgacac ttgggggcca 120
gaaatgttcg gtgatccggg actcactgct gcaggatggg gaatttagca tggatcttcg 180
taccaagagc accggtgggg cccccacctt caatgtcact gtcaccaaga ctgacaagac 240
gctagtcctg ctgatgggca aagaaggtgt ccacggtggt ttgatcaaca agaaatgtta 300
tgaaatggcc tcccaccttc ggcgttccca gtactgacct cgtctgtccc ttccccttca 360
ccgctcccca cagctttgca cccctttcct ccccatacac acacaaacca ttttattttt 420
tgggccatta ccccatac 438




311


440


DNA


Homo sapien



311
ctcagagctt caaagagcag gactagccta agaactgtct gtgatatttg accagaggtg 60
cagcctagct gccattcttc ctcaccctgt ggaagacatt aaagggagaa tgaaagtagc 120
tgtagaatta cctttggggg aagaagccac ttggtgaact tggcaaacac ccgtgtttga 180
ggggtcaccc agggtgtcat gagctgggcc ggaggggatg gattgattac ttgtcttgtt 240
tgcttgtttc tgttgtaagt cagggcccct cagcagaagg cagaacagaa ccgagttcct 300
ttagaatgct ggtttttgtg tggagtgagg aaggaccgtg agtgtggtca gtttccaacc 360
tgacaggacc tgctcccgtt ggccaggact gcagcttgtt actttgaccc tgggaagaag 420
gtaagtgttc ccaagaaaag 440




312


268


DNA


Homo sapien



312
tgaaaacaca accataaatc atagttggtt tttctgtgac aatgatctag tacattattt 60
cctccacagc aaacctacct ttccagaagg tggaaattgt atttgcaaca atcagggcaa 120
aacccacact tgaaaagcat tttacaatat tatatctaag ttgcacagaa gaccccagtg 180
atcactagga aatctaccac agtccagttt ttctaatcca agaaggtcca aacttcgggg 240
aataatgtgt ccctcttctg ctgctgct 268




313


439


DNA


Homo sapien



313
ctgccccccg tttcccttcg tctataccac cctccacctc ggaagcgagg tcgcagtcgc 60
ccactggaca gtttgaagga gaccgcagat ttgcacccgt ttcccatggg cccagacacg 120
gcaggagttg cccaggccac tcctgcagac attggggcgt gggcgtgggg tccctgagcc 180
aggccatccg ctgggcctcc cgtggggttc cctgtgacct gatcggaggt gcctttgcct 240
cacaccagcc ccttggccaa ctgggaaggc cccgagtgca tttaatccca ctggctgtgc 300
gctaacaggt gtgtccagtt tctgttctgt ggattttacc acgataaaaa aaaaattggg 360
ggagaaaaag aatttttgta atatgacttt catacttaac acgtgttaca gattcgttta 420
attccctcag tgatagaac 439




314


439


DNA


Homo sapien



314
agttgatgag cggcgtgtcc cctctgcagc gcgcaccccg gcggggcttt ggctgtgacg 60
cggtcggggc gcggggctgg gctgtggccc cgcggcgccg cctcctccct ggtccctcga 120
aatcgtggca tctcacttct gagaacgaaa tctcgcttca gtcactctgc cgaaggcgct 180
gacggcatcg cggccggaac ctctgggccc ggcccctccc agggccgccg ctccgtggga 240
aaaaacagct cctccatttc cttgaaaact gaacgattat taaaaataga ttaaacttcg 300
ctggaaatga gtagccagga agttcagggg agggtgccgg gtccttcccg ggcctggcgt 360
gtcggagcca cccaggtccc gcagctgccg ctgagaaaat gcaaatattt gttgtgacaa 420
gaatcacata catttactt 439




315


437


DNA


Homo sapien



315
tcttgaagtc tggtgatgct gccattgttg atatggttcc tggcaagccc atgtgtgttg 60
agagcttctc agactatcca cctttgggtc gctttgctgt tcgtgatatg agacagacag 120
ttgcgtgggt gtcatcaaag cagtggacaa gaaggctgct ggagctggca aggtcaccaa 180
gtctgcccag aaagctcaga aggctaaatg aatattatcc ctaatacctg ccaccccact 240
cttaatcagt ggtggaagaa cggtctcaga actgtttgtt tcaattggcc atttaagttt 300
agtagtaaaa gactggttaa tgataacaat gcatcgtaaa accttcagaa ggaaaggaga 360
atgttttgtg gaccactttg gttttctttt ttgcgtgtgg cagttttaag ttattagttt 420
ttaaaatcag tactttt 437




316


434


DNA


Homo sapien




misc_feature




(1)...(434)




n = A,T,C or G





316
cccggacgca ccggcccagg cgcgcggggc cccgcggctg ctgttgctcg cagtcctgct 60
ggcggcgcac ccagatgccc aggcggaggt gcgcttgtct gtacccccgt ggtggaggtg 120
atcgaggaaa gtctgtcatt ctggactgca cccctacggg aacccacgac cattatatgc 180
tggaatggtt ccttaccgac cgctcgggag ctcgcccccg cctagcctcg gctgagatgc 240
agggctctga gcggtcggtc acaatgcacg acacccgggg ccgcagtccc ccataccagc 300
tggactccca ngggcgcctg gtgctggctg angcccangt gggcgacnag cgagactacn 360
tgtgcgtggt gagggcangg gcngcaggca ctgctgaggc cactgcncgg ctcaacgtgt 420
ttgcaaagcc anan 434




317


435


DNA


Homo sapien



317
aaagggagta ttatgaccat ttcaacttga gagatcgaaa cttgagaggt ttgataatat 60
cttggttaag atttttattt tgtatatgtg ggtgactggg tgggtgtggg tgtccacaga 120
aggagaaaag ggtattagat tcccgagagc tggagttaca ggcagttgtg agccactcgg 180
cattggtgtt gagaactgaa cataggccct ctggaagagc agcaagtact ctgagtgctg 240
agcagtctct ccagaagctt attgggtagc ccaggctggc tcacggctcc tcctcagctt 300
ctcctgtgtg cctccttttt ggttaataca actgaagaac ctttcaagtg tggggggaaa 360
ttacagaaga aaagaaaaat taccacttct aacaaccact gtaccatcgt gattctattc 420
ttagtgtctc tttat 435




318


436


DNA


Homo sapien



318
gtggagcctg atgccatcaa gcctgtggga atccgacgaa tggatgaaag acccatccac 60
gctgagcccc agtatccggt ccgatctgca gccccacacc ctggagactt ggggacttca 120
ttatgagggc cttaaagcgg ctgacaatga ccccacagct ccaccatatg actccctgtt 180
agtgtttgac tatgaaggca gtggctccac tgctgggtcc ttgagctccc ttaattcctc 240
aagtagtggt ggtgagcagg actatgatta cctgaacgac tgggggccac ggttcaagaa 300
acttgctgac atgtatggtg gaggtgatga ctgaacttca gggtgaactt ggtttttgga 360
caagtacaaa caatttcaac tgatattccc aaaaagcatt cagaagctag gctttaactt 420
tgtagtctac tagcac 436




319


442


DNA


Homo sapien




misc_feature




(1)...(442)




n = A,T,C or G





319
cgccgacccc gccactctca cccgacccgt gcacgacgct gcccgggagg gcttcctgga 60
cacgctggtg gtgctgcacc gggccggggc gcggctggac gtgcgcnatg cctggggccg 120
tctgccgtgg acctggctga ggagctgggc catcgcgatg tcgcacggta cctgcgcgcg 180
gctgcggggg gcaccagagg cagtaaccat gcccgcatag atgccgcgga aggtccctca 240
gacatccccg attgaaagaa ccagagaggc tctgagaaac ctccggaaac ttagatcatc 300
agtcaccgaa ggtcctacag ggccacaant tggccccgcc acaacccacc ccgctttcgt 360
agttttcatt tagaaaatag agcttttaaa aatgtcctgc cttttaacgt agatatatgc 420
cttcccccac taccgtaaat gt 442




320


451


DNA


Homo sapien




misc_feature




(1)...(451)




n = A,T,C or G





320
aaccggaaac ccggaaaccc ggnaaaccaa aagggggncc cccattgggg ggcccggaaa 60
ttaatttccc gggggnaatt ccccggaaaa tttncaaagn aattaattta aaaccctnca 120
aaaggccctt tgggtntnaa gnaagngggn cctttttttt ttaaaaaaaa attananana 180
agggntttgt atntncccgt ggncaaaagn agnagncaag nttacntggc tggctttacc 240
gttcagnaga cttacaggtg cttgcctgca ttgcaataaa ggactcattt attgagcaag 300
acttatattt atctcttcat tttggagagc ctaataaact gttattacag tttctctact 360
gactttcaaa agttttgaag tttgaaagac ctttgcaatt aaaacagcat gagcacggcc 420
agaacagaga accctgttat aatgggtctg t 451




321


440


DNA


Homo sapien



321
aagtgtgatc cccatgaagc aacgtgctat gacgatggga agacctacca tgtaggagaa 60
cagtggcaga aagaatatct cggagccatt tgctcctgca cgtgtttcgg aggcagcggg 120
gctggcgtgt gacaactgcc gtagacctgg ggctgctgaa cccagtcccg atggcaccac 180
cggccacacc tacaaccagt atacacagag atacaatcag agaacaaaca ctaacgtaaa 240
ttgccccatt gagtgcttca tgccgctaga tgtgcaagct gacagagacg attctcgaga 300
gtaatctttc cagccccacc ctacaagtgt ctctctacca aggtcaatcc acaccccagt 360
gatgttagca gaccctccat ctttgagtgg tcctttcacc cttaagcctt ttgctctgga 420
gccatgttct cagcttcagc 440




322


440


DNA


Homo sapien




misc_feature




(1)...(440)




n = A,T,C or G





322
aatctcttga cccatggncg ngtccgcctg ctactgagta aggggcattc ctgttacaga 60
ccaaggagaa ctggagaaag aaagagaaaa tcagttcgtg gttgcattgt ggatgcaaat 120
ctgagcgttc tcaacttggt tattgtaaaa aaaggagaga aggatattcc tggactgact 180
gatactacag tgcctcgccg cctgggcccc aaaagagcta gcagaatccg caaacttttc 240
aatctctcta aagaagatga tgtccgccag tatgttgtaa gaaagccctt aaataaagaa 300
ggtaagaaac ctaggaccaa agcacccaag attcagcgtc ttgttactcc acgtgtcctg 360
cagcacaaac ggcggcgtat tgctctgaag aagcagcgta ccaagaaaaa taaagaagag 420
gctgcagaat atgctaaact 440




323


373


DNA


Homo sapien



323
tctgtatact ttaaaggaga agcaaataga aataaagaga gagggtgata aaatctagat 60
tcatagaatt gtggaaacct tacttcattt taagagtgaa gaacccagtc tgattaaagg 120
aagttccgtg tttaaggcaa catgttgctt gtggcagatc tagactcaaa actgagattc 180
ctgcctctgt ccagtgcttt tttcacttca ttacattacg agccatctta actccattca 240
tgcaattctg gggtaagggg ttttgtcaga attccacctg accttcccta gagcagggtt 300
tggacaggat gagagacccc aatctctcag atttgaggct tcttttcaag atatctgttt 360
ttcccttttc ctt 373




324


439


DNA


Homo sapien



324
atacaaaaaa ctaggagcat actaggaact tgaaaaggaa gattgtaaga ttatagccat 60
ctttggtagg atcttggaag ctgattgcat ttaagccttg taactactat gtaaatcaag 120
tgtccaactt ggtaaactct gaggttggct ttgtttttta aagagcagat tataatagtt 180
ttgtctggga aagtgattta aacggcctct tcgttaagcc aaacgtgtga tttagggtag 240
agggaggctg ccaagcgcgt cgggtaagca ggggccccac gctcggcccc gcccaggtaa 300
cgctgccttc cgggctttgt taactcgcgc gcgctgcgtc gccaactcag cggcgggcag 360
ggggcggagc cgcagggcgg ggcggtgcgc gttgatgtga cgtccctgcg cgcgccgctt 420
tctgttgccg ggcgcaatg 439




325


442


DNA


Homo sapien



325
ttttagaaag ggattagaat tttactctgc tagttacaag ttttaaagtc acgctacggc 60
attatcaccc tggcaggtag gttttgttat tgttttacat tttgtgaaaa aaagttttgt 120
agaagttaca gctagtggtc ttttccctcc agagccagtg atgagtgtgg gagcacttca 180
gctctgtaag gggccagcgt tctgaccttt aaccacatga actaacctgc gtcagcagtt 240
gcagaaagta gcctgttagg acagcagctg ctaagcgttg cctggtattt tagtggggag 300
aaggctggga ctcttcatgg catcaacact tgcatgctct gaatctttga tcagagatga 360
ggtgccattt ttggcatttc caccccgtct cgtggtagcc tttaaaagtg gagaagatgc 420
tgccctaatt ccccgaggat ga 442




326


433


DNA


Homo sapien



326
cgacaggcca gagccccttg gggaggagcg gcggctggag gcgcgaggct cctccggatg 60
cccggagagc cgcttgcgac ttaactcccg cctctttccc agatgccgcg tcactgctcc 120
gccgccggct gctgcacacg ggacacgcgc gagacgcgca accgcggcat ctccttccac 180
agacttccca agaaggacaa cccgaggcga ggcttgtggc tggccaactg ccagcggctg 240
gaccccagcg gccagggcct gtgggacccg gcatccgagt acatctactt ctgctccaaa 300
cactttgagg aggactgctt tgagctggtg ggaatcagtg gatatcacag gctaaaggag 360
ggggcagtcc ccaccatatt tgagtctttc tccaagttgc gccggacaac caagaccaaa 420
ggacacagtt acc 433




327


436


DNA


Homo sapien



327
cggctgctgg tcgtggaccc cgagacagat gaacacttca agcggcttcg ggtcacaccc 60
accgaggagc acgtggaagg tcctctgccg tcacccgtca ccaatggaac cagccctgcc 120
cagctcaatg gtggctctgc gtgctcgtcc cgaagtgacc tgcctggttc cgacaaggac 180
actgaggatg gcagtgcctg gaagcaagat cccttccagg agagcggcct ccacctgagc 240
cccacggcgg ccgaggccaa ggagaaggct cgagccatgc gagtcaacaa gcgcgcgcca 300
cagatggact ggaacaggaa gcgtgaaatc ttcagcaact tctgagcccc ttcctgcctg 360
tctcgggacc ctgggacccc tcccgcacgg accttgggcc tcagcctgcc ccgagctccc 420
ccagcctcag tggact 436




328


440


DNA


Homo sapien



328
ggtaaacgta ggaggcgtag agctccaggt tgatctggcg gttgatggcg gcctctgagt 60
cctggtggta gttctggcgc acctgcgagg tggacgcggt cgtcatggcg gcgactaagg 120
agaggcggcg gcggcggcgg tggctgcgcg gcgctggagc ggcggcgggg gccttggggc 180
tttgaagaac tttgccaaat actttcttca ccaatctcat gaggagaggg aacatgctga 240
gaaactgatg aagctgcaga accaacgagg tggccgaatc ttccttcagg atatcaagaa 300
accagactgt gatgactggg agagcgggct gaatgcaatg gagtgtgcat tacatttgga 360
aaaaaatgtg aatcagtcac tactggaact gcacaaactg gccactgaca aaaatgaccc 420
ccatttgtgt gacttcattg 440




329


438


DNA


Homo sapien



329
cgcgacgctg ctgcgcacag attccccaaa ggcacatgtg acccatcacc ccagatctaa 60
aggtgaagtc accctgaggt gctgggccct gggcttctac cctgctgaca tcaccctgac 120
ctggcagttg aatggggagg agctgaccca ggacatggag cttgtggaga ccaggcctgc 180
aggggatgga accttccaga agtgggcatc tgtggtggtg cctcttggga aggagcagaa 240
ttacacatgc cgtgtgtacc atgaggggct gcctgagccc ctcaccctga gatgggagcc 300
tcctccgtcc actgactctt acatggtgat cgttgctgtt ctgggtgtcc ttggagctat 360
ggccatcatt ggagctgtgg tggcttttgt gatgaagaga aggagaaaca caggtggaaa 420
aggaggggac tatgctct 438




330


443


DNA


Homo sapien




misc_feature




(1)...(443)




n = A,T,C or G





330
tgttccaact aactcagcac aacagggcca taacagtcct gacagccccg tcaccagtgc 60
cgccaagggc atcccaggct ttggcaatac tggcaacatc agtggtgccc ctgtgaccta 120
cccgtctgcc ggagcccaag gagtcaacaa cacagcttca gggaataaca gccgagaagg 180
gactgggggc agcaacggga aaagagagag atatactgag aaccggggca gcagccgtca 240
cagtcacgga gagactggca atcggcatag cgatagncca cgtcacggag atggtggtcg 300
ccatggagat ggataccgcc atccagaaag cagcagccgt nntactgatg gncatcggcn 360
cggggagaac agacatggag gaagcgcagg ccggcatggg gagaaccggg gtgcaaatga 420
tggtcggaat ggggaaagca gga 443




331


176


DNA


Homo sapien



331
gctggtggga aaaaaagcag aggccgcagc ctcagcccta gctgatgctg atgcagacct 60
ggaggaacgg cttaagaacc tgcggaggga ctgagtgccc ctgccactcc gagataacca 120
gtggatgccc aggatctttt accacaaccc ctctgtaata aaagagattt gacact 176




332


437


DNA


Homo sapien



332
tcctgatgtt acgcatgatc atggagggcc agtaccagtt cagttccccc gagtgggatg 60
accgttccag cactgtcaaa gacctgatct ccaggctgct gcaggtggat cctgaggcac 120
gcctgacagc tgagcaggcc ctacagcacc ccttctttga gcgttgtgaa ggcagccaac 180
cctggaacct caccccccgc cagcggttcc gggtggcagt gtggacagtg ctggctgctg 240
gacgagtggc cctaagcacc catcgtgtac ggccactgac caagaatgca ctgttgaggg 300
acccttatgc gctgcggtca gtgcggcacc tcatcgacaa ctgtgccttc cggctctacg 360
ggcactgggt aaagaaaggg gagcagcaga accgggcggc tctctttcag caccggcccc 420
ctgggccttt tcccatc 437




333


440


DNA


Homo sapien



333
tacaattaca aagaaacaaa caaacaaaat ttgaccaacc caggcggtta aatttaaact 60
cttcaggaaa aatttaagct gttaaaatta ttctttttct aaatttctaa agtggaggga 120
cagaattttt cagatttaaa agggcctcct aggtgcccag aaaattagtg gaaagaacca 180
cgtctagacg catctttgat gtgtcagagt tccaaggata aaaagaaact tttaaagtct 240
tctatactca gccaggttat caatcaaata tgagggcaaa ataatatttt cagacagatt 300
ttaggcagtt tatcttccat atatcctttt ctttaagggt atttgtagat acactccaga 360
aaaacaagag tgaaatatga aggaagttgt ggggtccagc aaacagtgct tccaaatcag 420
acccctgata gaggtggaaa 440




334


439


DNA


Homo sapien



334
attcgtgcac aattcattaa atgaacgtct caaaaattaa aaaaattata agatacgtat 60
ttctttaggc ctttgtgttt ttaaattaaa accaacaaaa agaagtctcc ctctccactc 120
cacccagcag caagggcagc cggaacgctt cgctccagct acctggcctc ccgcaagagg 180
gttcccccat gagaccgtta gtctctcttt gcctggctga ctacctgcat acagtaggca 240
ctcactgctg gagtgaggca ctgactcctc caaagattgc agggggcgga ggagggaacc 300
acgaaggcct gggagggggc atctttggcc cccactaacc atctccctat ttctgcatcc 360
tggtgaccgt cagcaagaga tgagtcgggg agaccctctc ctggagttct agcccctaat 420
tctgggcttt ctatatgag 439






Claims
  • 1. A method for determining the presence or absence of a cancer in a patient, comprising the steps of:(a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide sequence selected from the group consisting of: (i) a polynucleotide recited in SEQ ID NO:87; and (ii) complement of the foregoing polynucleotide; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and (c) comparing the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient.
  • 2. A method according to claim 1, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a polymerase chain reaction.
  • 3. A method according to claim 1, wherein the amount of polynucleotide that hybridizes to the oligonucleotide is determined using a hybridization assay.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 09/246,429, filed Feb. 8, 1999, which is a continuation-in-part of U.S. application Ser. No. 09/159,320 filed Sep. 23, 1998, now abandoned.

Foreign Referenced Citations (7)
Number Date Country
WO 9421287 Sep 1994 WO
WO 9423728 Oct 1994 WO
WO 9511986 May 1995 WO
WO 9519783 Jul 1995 WO
WO 9702280 Jan 1997 WO
WO 9725426 Jul 1997 WO
WO 9734921 Sep 1997 WO
Non-Patent Literature Citations (7)
Entry
Bugg et al. Expression of a mutant DNA topoisomerase II in CCRF-CEM human leukemic cells selected for resistance to teniposide vol. 88 pp. 7654-7658 Sep. 1991.*
Database EMBL Nucleotide And Protein Sequences, Accession No. AA490863, Aug. 15, 1997.
Liang et al., “Differential Display and Cloning of Messenger RNAs from Human Breast Cancer versus Mammary Epithelial Cells,” Cancer Research 52:6966-6968, 1992.
Porter-Jordan and Lippman, “Overview of the Biological Markers of Breast Cancer,” Breast Cancer 8(1):73-100, 1994.
Schlom et al., “Strategies for the Development of Recombinant Vaccines for the Immunotherapy of Breast Cancer,” Breast Cancer Research and Treatment 38(1):27-39, 1996.
Watson and Fleming, “Isolation of Differentially Expressed Sequence Tags from Human Breast Cancer,” Cancer Research 54:4598-4602, 1994.
Yee et al., “Isolation of Tyrosinase-Specific CD8+ and Cd4+ T Cell clones from the Peripheral Blood of Melanoma Patients Following In Vitro Stimulation with Recombinant Vaccinia Virus,” The Journal of Immunology 157:4079-4086, 1996.
Continuation in Parts (2)
Number Date Country
Parent 09/246429 Feb 1999 US
Child 09/397787 US
Parent 09/159320 Sep 1998 US
Child 09/246429 US