Tunable nutrient and gas exchange is important for the development of biological components such as cells and tissues as well as the facilitation of chemical reactions or mixing of fluids at the microscale. Methods of constructing such systems are based on two-dimensional structures, highly uniform stacked structures, or random deposition of tubes and structures.
Biological structures and membrane structures with tunable properties such as size, capillary length, and three-dimensional complexity that allow changes in feature size and control of flow may allow for systems that promote component exchange with greater efficiency than random or simple repeated structures.
Terminal ended micro-structures of varied permeability may allow for removal or isolation of specific components. Examples of such structures are presented in biological tissues as terminal lymphatics but can also be applied in the creation of “smart” filters that are applicable in chemical processes, filtration, or isolation of specific components with high specificity and selectivity.
Controlled but varied surface area to volume ratios may be critical for maximizing diffusion and interactions of diffused glasses, liquids, proteins or other components. Furthermore, controlled but varied structures that can isolate, trap, or act as one-way conduits for materials can increase the efficiency and speed of materials recovery. This may be done with or without cells present, for example in the case of a filter that is built out of non-biological materials. Three dimensional volumes in which it is beneficial to have a controlled or tunable distributed oxygen, nutrients or other components benefit from the development of complex structures that have designed variation in surface to volume ratios as well as three-dimensional positioning such that the desired maximal distribution of the oxygen, nutrients or other components occurs at a specific location.
In an aspect, the present disclosure provides a method for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, comprising: (a) using at least a number of vessels coupled to the subunit over the surface to generate a computer model of the 3D structure comprising the subunit and the vessels; and (b) using one or more computer processors to print the 3D structure according to the computer model from (a), wherein the 3D structure is implantable in a subject.
In some embodiments, the biological material is a kidney. In some embodiments, the biological material is a lung. In some embodiments, the subunit is a glomerulus. In some embodiments, the subunit is a glomerulus with a Bowman's capsule around the glomerulus. In some embodiments, the subunit is an alveolus. In some embodiments, the biological function comprises an exchange of gasses. In some embodiments, the biological function comprises an exchange of a plurality of metabolically active compounds. In some embodiments, the plurality of metabolically active compounds are selected from the group consisting of nutrients, sugars, salts, amino acids, and metabolic wastes. In some embodiments, the biological function comprises a filtration of plasma. In some embodiments, the vessels comprise one or more blood vessels, or one or more lymphatic vessels, or both. In some embodiments, the one or more blood vessels comprise one or more capillaries.
In some embodiments, the subunit and the vessels, coupling to said subunit over said surface, form a superunit. In some embodiments, the generating a computer model of said 3D structure further comprises using one or more computer processors to combine said superunit with one or more other superunits, wherein said 3D structure corresponds to said biological material.
In some embodiments, the methods further comprise using one or more processors to add a plurality of drainage points to the computer model disclosed herein. In some embodiments, the plurality of drainage points is configured to maintain a net positive fluid pressure within the biological material. In some embodiments, the plurality of drainage points are placed based at least in part by a generative design algorithm. In some embodiments, the plurality of drainage points are placed based at least in part on a density of a plurality of capillaries. In some embodiments, the plurality of drainage points are placed based at least in part on a blood pressure of the 3D structure. In some embodiments, the method further comprises using at least in part a generalized location of the vessels coupling to the subunit, walls of the subunit, or both to identify the surface. In some embodiments, the method further comprises determining a surface area of the subunit having the surface. In some embodiments, the determining comprises using at least in part a plurality of three-dimensional estimations derived from a diameter approximation of the subunit or comparing a volume calculation of the 3D structure to a predetermined range of volumes of the biological material to determine the surface area.
In some embodiments, the vessel is a capillary, further comprising using a total surface area of a plurality of capillaries placed within a space to determine the number of vessels. In some embodiments, the vessel is a capillary, further comprising determining a length of the capillary comprising using an oxygen exchange rate between the capillary's volume of biological fluid and the subunit, wherein the subunit couples to the capillary. In some embodiments, the 3D structure is configured to maintain tissue circulatory homeostasis. In some embodiments, the 3D structure comprises a volume from about 0.125 cubic nanometers to about 1,000 cubic centimeters. In some embodiments the 3D structure is printed by: (a) providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors; and (b) directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with the computer model for printing the 3D structure in computer memory, to form at least a portion of the 3D structure comprising (i) at least a subset of the plurality of cells, and (ii) a polymer formed from the one or more polymer precursors. In some embodiments, the plurality of cells is selected from the group consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes.
In another aspect, the present disclosure provides a method for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, comprising: (a) using at least a number of vessels coupled to the subunit over the surface to generate a superunit comprising the subunit and the vessels in computer memory; and (b) using one or more computer processors to combine the superunit generated in (a) with one or more other superunits to generate a computer model of the 3D structure corresponding to the biological material.
In some embodiments, the biological material is a kidney. In some embodiments, the biological material is a lung. In some embodiments, the subunit is a glomerulus. In some embodiments, the subunit is a glomerulus with a Bowman's capsule around the glomerulus. In some embodiments, the subunit is an alveolus. In some embodiments, the biological function comprises an exchange of gasses. In some embodiments, the biological function comprises an exchange of a plurality of metabolically active compounds. In some embodiments, the plurality of metabolically active compounds are selected from the group consisting of nutrients, sugars, salts, amino acids, and metabolic wastes. In some embodiments, the biological function comprises a filtration of plasma. In some embodiments, the vessels comprise one or more blood vessels and one or more lymphatic vessels. In some embodiments, the one or more blood vessels comprise one or more capillaries.
In some embodiments, the method may further comprise using the one or more processors to add a plurality of drainage points to the computer model from (a). In some embodiments, the plurality of drainage points is configured to maintain a net positive fluid pressure within the biological material. In some embodiments, the plurality of drainage points are placed based at least in part by a generative design algorithm. In some embodiments, the plurality of drainage points are placed based at least in part on a density of a plurality of capillaries. In some embodiments, the plurality of drainage points are placed based at least in part on a blood pressure of the 3D structure. In some embodiments, the method further comprises using at least in part a generalized location of the vessels coupling to the subunit, walls of the subunit, or both to identify the surface. In some embodiments the method further comprises determining a surface area of the subunit having the surface. In some embodiments, the vessel is a capillary, further comprising using a total surface area of a plurality of capillaries placed within a space to determine the number of vessels.
In some embodiments, the determining comprises using at least in part a plurality of three-dimensional estimations derived from a diameter approximation of the subunit or comparing a volume calculation of the 3D structure to a predetermined range of volumes of the biological material to determine the surface area. In some embodiments, the vessel is a capillary, further comprising determining a length of the capillary comprising using an oxygen exchange rate between the capillary's volume of biological fluid and the subunit, wherein the subunit couples to the capillary. In some embodiments, the 3D structure is configured to maintain tissue circulatory homeostasis. In some embodiments, the 3D structure comprises a volume from about 0.125 cubic nanometers to about 1,000 cubic centimeters.
In some embodiments the 3D structure is printed by: (a) providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors; and (b) directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with the computer model for printing the 3D structure in computer memory, to form at least a portion of the 3D structure comprising (i) at least a subset of the plurality of cells, and (ii) a polymer formed from the one or more polymer precursors. In some embodiments, the plurality of cells is selected from the group consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes.
In another aspect, the present disclosure provides a system for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, comprising one or more computer processors that are individually or collectively programmed to: (a) use at least a number of vessels coupled to the subunit over the surface to generate a computer model of the 3D structure comprising the subunit and the vessels; and (b) transmit the computer model from (a) to a 3D printer for printing the 3D structure, wherein the 3D structure is implantable in a subject.
In another aspect, the present disclosure provides a system for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, comprising one or more computer processors that are individually or collectively programmed to: (a) use at least a number of vessels coupled to the subunit over the surface to generate a superunit comprising the subunit and the vessels in computer memory; and (b) combine the superunit generated in (a) with one or more other superunits to generate a computer model of the 3D structure corresponding to the biological material.
In another aspect, the present disclosure provides a method for using a three-dimensional (3D) cell-containing matrix, comprising: (a) providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors; and (b) directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with computer instructions for printing the 3D cell-containing medical device in computer memory, to form at least a portion of the 3D cell-containing matrix comprising (i) at least a subset of the plurality of cells, and (ii) a polymer formed from the one or more polymer precursors, wherein the 3D cell-containing matrix is implantable in a subject.
In some embodiments, the 3D cell-containing matrix is an alveolar structure. In some embodiments, the 3D cell-containing matrix is a nephron structure. In some embodiments, the 3D cell-containing matrix is a capillary structure. In some embodiments, the plurality of cells is from the subject. In some embodiments, the plurality of cells is selected from the group consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes. In some embodiments, the 3D cell-containing matrix forms a suture, stent, staple, clip, strand, patch, graft, sheet, tube, pin, or screws.
In some embodiments, the graft is selected from the list consisting of skin implant, uterine lining, neural tissue implant, bladder wall, intestinal tissue, esophageal lining, stomach lining, hair follicle embedded skin, and retina tissue. In some embodiments, the 3D cell-containing matrix comprises a volume from about 0.125 cubic nanometers to about 1,000 cubic centimeters. In some embodiments, the 3D cell-containing matrix further comprises an agent to promote growth of vasculature or nerves. In some embodiments, the agent is selected from the group consisting of growth factors, cytokines, chemokines, antibiotics, anticoagulants, anti-inflammatory agents, opioid pain-relieving agents, non-opioid pain-relieving agents, immune-suppressing agents, immune-inducing agents, monoclonal antibodies, and stem cell proliferating agents.
In another aspect, the present disclosure provides a method of using a three-dimensional (3D) cell-containing matrix, comprising printing the 3D cell-containing matrix comprising a plurality of cells, wherein the 3D cell-containing matrix is implantable in a subject.
In some embodiments, the 3D cell-containing matrix is an alveolar structure. In some embodiments, the 3D cell-containing matrix is a nephron structure. In some embodiments, the 3D cell-containing matrix is a capillary structure. In some embodiments, the plurality of cells is from the subject. In some embodiments, the plurality of cells is selected from the list consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes.
In some embodiments, the 3D cell-containing matrix forms a suture, stent, staple, clip, strand, patch, graft, sheet, tube, pin, or a screw. In some embodiments, the graft is selected from the list consisting of skin implant, uterine lining, neural tissue implant, bladder wall, intestinal tissue, esophageal lining, stomach lining, hair follicle embedded skin, and retina tissue. In some embodiments, the 3D cell-containing matrix comprises a volume from about 0.125 cubic nanometers to about 1,000 cubic centimeters. In some embodiments, the cell-containing matrix further comprises an agent to promote growth of vasculature or nerves. In some embodiments, the agent is selected from the group consisting of growth factors, cytokines, chemokines, antibiotics, anticoagulants, anti-inflammatory agents, opioid pain-relieving agents, non-opioid pain-relieving agents, immune-suppressing agents, immune-inducing agents, monoclonal antibodies, and stem cell proliferating agents.
In another aspect, the present disclosure provides a method for using a three-dimensional (3D) cell-containing matrix, comprising: (a) providing a media chamber comprising a first medium, wherein the first medium comprises a first plurality of cells and a first polymeric precursor; (b) directing at least one energy beam to the first medium in the media chamber along at least one energy beam path in accordance with computer instructions for printing the 3D cell-containing matrix in computer memory, to subject at least a portion of the first medium in the media chamber to form a first portion of the 3D cell-containing matrix; (c) providing a second medium in the media chamber, wherein the second medium comprises a second plurality of cells and a second polymeric precursor, wherein the second plurality of cells is of a different type than the first plurality of cells; and (d) directing at least one energy beam to the second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form a second portion of the 3D cell-containing matrix, wherein the 3D cell-containing matrix is implantable in a subject.
In some embodiments, the 3D cell-containing matrix is an alveolar structure. In some embodiments, the 3D cell-containing matrix is a nephron structure. In some embodiments, the 3D cell-containing matrix is a capillary structure. In some embodiments, the first and the second plurality of cells is from the subject. In some embodiments, the first and the second plurality of cells are selected from the group consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes.
In some embodiments, the 3D cell-containing matrix forms a suture, stent, staple, clip, strand, patch, graft, sheet, tube, pin, or a screw. In some embodiments, the graft is selected from the list consisting of skin implant, uterine lining, neural tissue implant, bladder wall, intestinal tissue, esophageal lining, stomach lining, hair follicle embedded skin, and retina tissue. In some embodiments, the 3D cell-containing matrix comprises a volume from about 0.125 cubic nanometers to about 1,000 cubic centimeters.
Another aspect of the present disclosure provides a non-transitory computer readable medium comprising machine executable code that, upon execution by one or more computer processors, implements any of the methods above or elsewhere herein.
Another aspect of the present disclosure provides a system comprising one or more computer processors and computer memory coupled thereto. The computer memory comprises machine executable code that, upon execution by the one or more computer processors, implements any of the methods above or elsewhere herein.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” and “FIG.” herein), of which:
While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
The terminology used herein is for the purpose of describing particular cases only and is not intended to be limiting. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
The term “about” or “approximately” refers to an amount that is near the stated amount by about 10%, 5%, or 1%, including increments therein. For example, “about” or “approximately” may mean a range including the particular value and ranging from 10% below that particular value and spanning to 10% above that particular value.
The term “biological material,” as used herein, generally refers to any material that may serve a chemical or biological function. Biological material may be biologically functional tissue or functional tissue, which may be a biological structure that is capable of serving, or serving, a biomechanical or biological function. Biologically functional tissue may comprise cells that are within diffusion distance from each other, comprises at least one cell type wherein each cell is within diffusion distance of a capillary or vascular network component, facilitates and/or inhibits the fulfillment of protein function, or any combination thereof. Biologically functional tissue may be at least a portion of tissue or an organ, such as a vital organ. In some examples, the biological material may advance drug development; for example, by screening multiple cells or tissue with different therapeutic agents.
Biological material may include a matrix, such as a polymeric matrix, biogel, hydrogel, or polymeric scaffold, including one or more other types of material, such as cells. Biological material may be an organ or organoid (e.g., a kidney, a lung). Biological material may include lymphoid organs and organoids. Biological material may be derived from human or animal sources of primary cells, cell lines, stem cells, stem cell lines, differentiated stem cells, transdifferentiated stem cells, autologous cells, allogeneic cells, pluripotent stem cells, embryonic stem cells, induced pluripotent stem cells, or any combination thereof. Biological material may be in various shapes, sizes or configurations. In some instances, biological material may be consumable by a subject (e.g., an animal), such as meat or meat-like material. In some instances, biological material is from a subject (e.g., a cell culture from a donor). Biological material may comprise one or more subunits configured to impart functionality to the biological material (e.g., the glomerulus of a kidney, the alveoli of the lungs). The biological material may comprise one or more superunits comprising one or more subunits (e.g., the nephron of a kidney comprising a glomerulus).
The term “three-dimensional printing” (also “3D printing”), as used herein, generally refers to a process or method for generating a 3D part (or object). Such process may be used to form a 3D part (or object), such as a 3D biological material.
The term “energy beam,” as used herein, generally refers to a beam of energy. The energy beam may be a beam of electromagnetic energy or electromagnetic radiation. The energy beam may be a particle beam. An energy beam may be a light beam (e.g., gamma waves, x-ray, ultraviolet, visible light, infrared light, microwaves, or radio waves). The light beam may be a coherent light beam, as may be provided by light amplification by stimulated emission of radiation (“laser”). In some examples, the light beam is generated by a laser diode or a multiple diode laser.
The term “allogenic,” as used herein, generally refers to the plurality of cells are obtained from a genetically non-identical donor. For example, allogenic cells are extracted from a donor and returned back to a different, genetically non-identical recipient.
The term “autologous,” as used herein, generally refers to the plurality of cells are obtained from a genetically identical donor. For example, autologous cells are extracted from a patient and returned back to the same, genetically identical individual (e.g., the donor).
The term “pluripotent stem cells” (PSCs), as used herein, generally refers to cells capable, under appropriate conditions, of producing different cell types that are derivatives of all of the 3 germinal layers (i.e., endoderm, mesoderm, and ectoderm). Included in the definition of pluripotent stem cells are embryonic stem cells of various types including human embryonic stem (hES) cells, human embryonic germ (hEG) cells; non-human embryonic stem cells, such as embryonic stem cells from other primates, such as Rhesus stem cells, marmoset stem cells; murine stem cells; stem cells created by nuclear transfer technology, as well as induced pluripotent stem cells (iPSCs).
The term “embryonic stem cells” (ESCs), as used herein, generally refers to pluripotent stem cells that are derived from a blastocyst before substantial differentiation of the cells into the three germ layers (i.e., endoderm, mesoderm, and ectoderm). ESCs include any commercially available or well established ESC cell line such as H9, H1, H7, or SA002.
The term “induced pluripotent stem cells” or “iPSCs,” as used herein, generally refers to somatic cells that have been reprogrammed into a pluripotent state resembling that of embryonic stem cells. Included in the definition of iPSCs are iPSCs of various types including human iPSCs and non-human iPSCs, such as iPSCs derived from somatic cells that are primate somatic cells or murine somatic cells.
The term “energy source,” as used herein, generally refers to a laser, such as a fiber laser, a short-pulsed laser, or a femto-second pulsed laser; a heat source, such as a thermal plate, a lamp, an oven, a heated water bath, a cell culture incubator, a heat chamber, a furnace, or a drying oven; a light source, such as white light, infrared light, ultraviolet (UV) light, near infrared (NIR) light, visible light, or a light emitting diode (LED); a sound energy source, such as an ultrasound probe, a sonicator, or an ultrasound bath; an electromagnetic radiation source, such as a microwave source; or any combination thereof.
The term “biogel,” as used herein, generally refers to a hydrogel, a biocompatible hydrogel, a polymeric hydrogel, a hydrogel bead, a hydrogel nanoparticle, a hydrogel microdroplet, a solution with a viscosity ranging from at least about 10×10−4 Pascal-second (Pa·s) to about 100 Pa·s or more when measured at 25 degrees Celsius (° C.), a hydrogel comprising non-hydrogel beads, nanoparticles, microparticles, nanorods, nanoshells, liposomes, nanowires, nanotubes, or a combination thereof a gel in which the liquid component is water; a degradable hydrogel; a non-degradable hydrogel; a resorbable hydrogel; a hydrogel comprising naturally-derived polymers; or any combination thereof.
As used herein, the term “non-biological structure” generally refers to a structure that does not contain living cells.
The term “superunit,” as used herein, generally refers to a unit of a biological material comprising one or more smaller subunit. For example, a superunit of a kidney can be a nephron, which comprises a glomerulus subunit. The term superunit and super-structure may be used interchangeably.
The present invention provides for the development of vascularized three dimensional complex, linked tubular micro-structures that are designed to promote the exchange or removal of liquids, gases, and, or nutrients in a tunable, controlled format.
Tissue structures require distribution of oxygen, nutrients and removal of by products produced by cellular metabolism. Structures that allow for distribution of nutrients and removal of wastes are maximally efficient with spacing that allows for uniform and complete diffusion of oxygen. Smaller diameter tubes allow for greater surface to volume ratios which facilitate nutrient exchange and waste removal. Placement and distribution of small diameter tubes allows for control of the rates of oxygen and nutrient exchange such that it can be tuned for specific cell types, to facilitate specific chemical reactions, or to introduce finely engineered and designed areas of hypoxia (low oxygen) or low flow.
The present disclosure provides methods and systems for printing a three-dimensional (3D) biological material. In an aspect, a method for printing the 3D biological material comprises providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors. Next, at least one energy beam may be directed to the medium in the media chamber along at least one energy beam path that is patterned into a 3D projection in accordance with computer instructions for printing the 3D biological material in computer memory. This may form at least a portion of the 3D biological material comprising (i) at least a subset of the plurality of cells, which at least the subset of the plurality of cells comprises cells of at least two different types, and (ii) a polymer formed from the one or more polymer precursors.
Methods and systems of the present disclosure may be used for constructing tubes and/or designing the organization of tubes that facilitate microcirculation of cells, oxygen, liquids, gasses or heterogeneous materials. Methods and systems of the present disclosure may be used for design and organization of capillaries on the order of living tissue for the purpose of gas or nutrient diffusion. In another aspect, the present disclosure provides methods and systems to print valves and channels on the scale of microns for the purpose of fluid dynamic control. In some examples, the channels may be one-way terminal ended channels of various sizes with engineered permeability for the purpose of fluid removal and fluid dynamic control, similar to terminal lymphatics.
Methods and systems of the present disclosure may be used to print multiple layers of a 3D object, such as a 3D biological material, at the same time. Such 3D object may be formed of a polymeric material, a metal, metal alloy, composite material, or any combination thereof. In some examples, the 3D object is formed of a polymeric material, in some cases including biological material (e.g., one or more cells or cellular components). In some cases, the 3D object may be formed by directing an energy beam (e.g., a laser) as a 3D projection (e.g., hologram) to one or more precursors of the polymeric material, to induce polymerization and/or cross-linking to form at least a portion of the 3D object. This may be used to form multiple layers of the 3D object at the same time.
As an alternative, the 3D object may be formed of a metal or metal alloy, such as, e.g., gold, silver, platinum, tungsten, titanium, or any combination thereof. In such a case, the 3D object may be formed by sintering or melting metal particles, as may be achieved, for example, by directing an energy beam (e.g., a laser beam) at a powder bed comprising particles of a metal or metal alloy. In some cases, the 3D object may be formed by directing such energy beam as a 3D projection (e.g., hologram) into the powder bed to facilitate sintering or melting of particles. This may be used to form multiple layers of the 3D object at the same time. The 3D object may be formed of an organic material such as graphene. The 3D object may be formed of an inorganic material such as silicone. In such cases, the 3D object may be formed by sintering or melting organic and/or inorganic particles, as may be achieved, for example, by directing an energy beam (e.g., a laser beam) at a powder bed comprising particles of an organic and/or inorganic material. In some cases, the 3D object may be formed by directing such energy beam as a 3D projection (e.g., hologram) into the powder bed to facilitate sintering or melting of organic and/or inorganic particles.
The depth of the energy beam penetration may be dictated by the interaction of the beam wavelength and the electron field of a given metal, metal alloy, inorganic material, and/or organic material. The organic material may be graphene. The inorganic material may be silicone. These particles may be functionalized or combined in to allow for greater interaction or less interaction with a given energy beam.
In some examples, the at least one energy beam is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, or more energy beams. The at least one energy beam may be or include coherent light. In some cases, the at least one energy beam is a laser beam.
The at least one energy beam may be directed as an image or image set. The image may be fixed with time or changed with time. The at least one energy beam may be directed as a video.
The computer instructions may correspond to a computer model or representation of the 3D biological material. The computer instructions may be part of the computer model. The computer instructions may comprise a set of images corresponding to the 3D biological material.
The at least one energy beam may be directed as a holographic image or video. This may enable different points in the medium to be exposed to the at least one energy beam at the same time, to, for example, induce formation of a polymer matrix (e.g., by polymerization) at multiple layers at the same time. In some cases, a 3D image or video may be projected into the medium at different focal points using, e.g., a spatial light modulator (SLM).
The computer instructions may include and/or direct adjustment of one or more parameters of the at least one energy beam as a function of time during formation of the 3D biological material, such as, for example, application of power to a source of the at least one energy beam (e.g., laser on/off). Such adjustment may be made in accordance with an image or video (e.g., holographic image or video) corresponding to the 3D biological material. Alternatively, or in addition to, the computer instructions may include and/or direct adjustment of a location of a stage upon which the 3D biological material is formed.
In some cases, during or subsequent to formation of the 3D biological material, at least a portion of the at least the subset of the plurality of cells may be subjected to differentiation to form the cells of the at least two different types. This may be employed, for example, by exposing the cells to an agent or subjecting the cells to a condition that induces differentiation. Alternatively, or in addition to, the cells may be subjected to de-differentiation or induction of cell quiescence.
Another aspect of the present disclosure provides a method for printing a 3D biological material, providing a media chamber comprising a first medium. The first medium may comprise a first plurality of cells and a first polymeric precursor. At least one energy beam may be directed to the first medium in the media chamber along at least one energy beam path in accordance with computer instructions for printing the 3D biological material, to subject at least a portion of the first medium in the media chamber to form a first portion of the 3D biological material. Next, a second medium may be provided in the media chamber. The second medium may comprise a second plurality of cells and a second polymeric precursor. The second plurality of cells may be of a different type than the first plurality of cells. Next, at least one energy beam may be directed to the second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D biological material.
In another aspect of the present disclosure, a system for printing a 3D biological material comprises a media chamber configured to contain a medium comprising a plurality of cells comprising cells of at least two different types and one or more polymer precursors; at least one energy source configured to direct at least one energy beam to the media chamber; and one or more computer processors operatively coupled to the at least one energy source, wherein the one or more computer processors are individually or collectively programmed to (i) receive computer instructions for printing the 3D biological material from computer memory; and (ii) direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the polymer precursors to form at least a portion of the 3D biological material.
In another aspect, a system for printing a 3D biological material, comprising: a media chamber configured to contain a medium comprising a plurality of cells and a plurality of polymer precursors; at least one energy source configured to direct at least one energy beam to the media chamber; and one or more computer processors operatively coupled to the at least one energy source, wherein the one or more computer processors are individually or collectively programmed to (i) receive computer instructions for printing the 3D biological material from computer memory; (ii) direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the polymer precursors to form at least a portion of the 3D biological material; and (iii) direct the at least one energy source to direct the at least one energy beam to a second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D biological material, wherein the second medium comprises a second plurality of cells and a second polymeric precursor, wherein the second plurality of cells is of a different type than the first plurality of cells.
In another aspect of the present disclosure, methods for printing a three-dimensional (3D) object, may comprise directing at least one energy beam into a medium comprising one or more precursors, to generate the 3D object comprising a material formed from the one or more precursors, wherein the at least one energy beam is directed into the medium as a 3D projection corresponding to the 3D object.
In another aspect, methods for printing a three-dimensional (3D) biological material, may comprise directing at least one energy beam to: 1) a first medium comprising a first plurality of cells and a first polymeric precursor, and 2) a second medium comprising a second plurality of cells and a second polymeric precursor, to generate a first portion of the 3D biological material and a second portion of the 3D biological material.
Referring to
Non-limiting examples of extracellular matrix components used to create cell containing structures may include proteoglycans such as heparan sulfate, chondroitin sulfate, and keratan sulfate, non-proteoglycan polysaccharide such as hyaluronic acid, collagen, and elastin, fibronectin, laminin, nidogen, or any combination thereof. These extracellular matrix components may be functionalized with acrylate, diacrylate, methacrylate, cinnamoyl, coumarin, thymine, or other side-group or chemically reactive moiety to facilitate cross-linking induced directly by multi-photon excitation or by multi-photon excitation of one or more chemical doping agents. In some cases, photopolymerizable macromers and/or photopolymerizable monomers may be used in conjunction with the extracellular matrix components to create cell-containing structures. Non-limiting examples of photopolymerizable macromers may include polyethylene glycol (PEG) acrylate derivatives, PEG methacrylate derivatives, and polyvinyl alcohol (PVA) derivatives. In some instances, collagen used to create cell containing structure may be fibrillar collagen such as type I, II, III, V, and XI collagen, facit collagen such as type IX, XII, and XIV collagen, short chain collagen such as type VIII and X collagen, basement membrane collagen such as type IV collagen, type VI collagen, type VII collagen, type XIII collagen, or any combination thereof.
Specific mixtures of monomeric units may be created to alter the final properties of the polymerized biogel. This base print mixture may contain other polymerizable monomers that are synthesized and not native to mammalian tissues, comprising a hybrid of biologic and synthetic materials. An example mixture may comprise about 0.4% w/v collagen methacrylate plus the addition of about 50% w/v polyethylene glycol diacrylate (PEGDA). Photoinitiators to induce polymerization may be reactive in the ultraviolet (UV), infrared (IR), or visible light range. Examples of two such photo initiators are Eosin Y (EY) and triethanolamine (TEA), that when combined may polymerize in response to exposure to visible light (e.g., wavelengths of about 390 to 700 nanometers). Non-limiting examples of photoinitiators may include azobisisobutyronitrile (AIBN), benzoin derivatives, benziketals, hydroxyalkylphenones, acetophenone derivatives, trimethylolpropane triacrylate (TPT), acryloyl chloride, benzoyl peroxide, camphorquinone, benzophenone, thioxanthones, and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone. Hydroxyalkylphenones may include 4-(2-hydroxyethylethoxy)-phenyl-(2-hydroxy-2-methyl propyl) ketone (Irgacure® 295), 1-hidroxycyclohexyl-1-phenyl ketone (Irgacure® 184) and 2,2-dimethoxy-2-phenylacetophenone (Irgacure® 651). Acetophenone derivatives may include 2,2-dimethoxy-2-phenylacetophenone (DMPA). Thioxanthones may include isopropyl thioxanthone.
Specific mixtures of monomeric units of biological materials may be created to alter the final properties of the polymerized biogel, an example mixture may include about 1 mg/mL type I collagen-methacrylate, about 0.5 mg/mL type III collagen, about 0.2 mg/mL methacrylated hyaluronic acid, about 0.1% Eosin Y, and about 0.1% triethanolamine.
In some cases, the polymerized biogel may comprise at least about 0.01% of a photoinitiator. In some cases, the polymerized biogel may comprise about 10% of a photoinitiator or more. In some cases, the polymerized biogel comprises about 0.1% of a photoinitiator. In some cases, the polymerized biogel may comprise about 0.01% to about 0.05%, about 0.01% to about 0.1%, about 0.01% to about 0.2%, about 0.01% to about 0.3%, about 0.01% to about 0.4%, about 0.01% to about 0.5%, about 0.01% to about 0.6%, about 0.7% to about 0.8%, about 0.9% to about 1%, about 0.01% to about 2%, about 0.01% to about 3%, about 0.01%% to about 4%, about 0.01% to about 5%, about 0.01% to about 6%, about 0.01% to about 7%, about 0.01% to about 8%, about 0.01% to about 9%, or about 0.01% to about 10% of a photoinitiator.
The polymerized biogel may comprise about 0.05% of a photoinitiator. The polymerized biogel may comprise 0.1% of a photoinitiator. The polymerized biogel may comprise about 0.2% of a photoinitiator. The polymerized biogel may comprise about 0.3% of a photoinitiator. The polymerized biogel may comprise about 0.4% of a photoinitiator. The polymerized biogel may comprise about 0.5% of a photoinitiator. The polymerized biogel may comprise about 0.6% of a photoinitiator. The polymerized biogel may comprise about 0.7% of a photoinitiator. The polymerized biogel may comprise about 0.8% of a photoinitiator. The polymerized biogel may comprise about 0.9% of a photoinitiator. The polymerized biogel may comprise about 1% of a photoinitiator. The polymerized biogel may comprise about 1.1% of a photoinitiator. The polymerized biogel may comprise about 1.2% of a photoinitiator. The polymerized biogel may comprise about 1.3% of a photoinitiator. The polymerized biogel may comprise about 1.4% of a photoinitiator. The polymerized biogel may comprise about 1.5% of a photoinitiator. The polymerized biogel may comprise about 1.6% of a photoinitiator. The polymerized biogel may comprise about 1.7% of a photoinitiator. The polymerized biogel may comprise about 1.8% of a photoinitiator. The polymerized biogel may comprise about 1.9% of a photoinitiator. The polymerized biogel may comprise about 2% of a photoinitiator. The polymerized biogel may comprise about 2.5% of a photoinitiator. The polymerized biogel may comprise about 3% of a photoinitiator. The polymerized biogel may comprise about 3.5% of a photoinitiator. The polymerized biogel may comprise about 4% of a photoinitiator. The polymerized biogel may comprise about 4.5% of a photoinitiator. The polymerized biogel may comprise about 5% of a photoinitiator. The polymerized biogel may comprise about 5.5% of a photoinitiator. The polymerized biogel may comprise about 6% of a photoinitiator. The polymerized biogel may comprise about 6.5% of a photoinitiator. The polymerized biogel may comprise about 7% of a photoinitiator. The polymerized biogel may comprise about 7.5% of a photoinitiator. The polymerized biogel may comprise about 8% of a photoinitiator. The polymerized biogel may comprise about 8.5% of a photoinitiator. The polymerized biogel may comprise about 9% of a photoinitiator. The polymerized biogel may comprise about 9.5% of a photoinitiator. The polymerized biogel may comprise about 10% of a photoinitiator.
In some cases, the polymerized biogel may comprise at least about 10% of a photopolymerizable macromer and/or photopolymerizable monomer. In some cases, the polymerized biogel may comprise about 99% or more of a photopolymerizable macromer and/or photopolymerizable monomer. In some cases, the polymerized biogel may comprise about 50% of a photopolymerizable macromer and/or photopolymerizable monomer. In some cases, the polymerized biogel may comprise about 10% to about 15%, about 10% to about 20%, about 10% to about 25%, about 10% to about 30%, about 10% to about 35%, about 10% to about 40%, about 10% to about 45%, about 10% to about 50%, about 10% to about 55%, about 10% to about 60%, about 10% to about 65%, about 10% to about 70%, about 10% to about 75%, about 10% to about 80%, about 10% to about 85%, about 10% to about 90%, about 10% to about 95%, or about 10% to about 99% of a photopolymerizable macromer and/or photopolymerizable monomer.
The polymerized biogel may comprise about 10% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 15% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 20% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 25% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 30% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 35% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 40% photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 45% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 50% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 55% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 60% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 65% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 70% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 75% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 80% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 85% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 90% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 95% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 96% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 97% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 98% of a photopolymerizable macromer and/or photopolymerizable monomer. The polymerized biogel may comprise about 99% of a photopolymerizable macromer and/or photopolymerizable monomer.
Two-photon absorption is non-linear and cannot be accurately predicted or calculated based on single photon absorption properties of a chemical. A photo-reactive chemical may have a peak, two-photon absorption at or around double the single photon absorption or be slightly-redshifted in absorption spectra. Therefore, wavelengths at or about 900 nanometers through about 1400 nanometers may be used for polymerization of monomeric materials by exciting mixtures of catalysts of the polymerization reaction, for example EY or TEA. Single wavelength polymerization may be sufficient for creating all structural elements, however to further speed up the printing process, multiple wavelengths may be employed simultaneously through the same printing apparatus and into the same printing chamber.
Premixing or pre-reacting of polymerizable monomeric units with catalysts comprising differing absorption bands may allow for printing at different wavelengths to form different substrate-based structural elements simultaneously within the media chamber 122. Thus, certain structural elements may be generated by tuning the excitation wavelength of the laser to a particular wavelength, and then other structural elements may be generated around the existing elements by tuning another or the same laser to a different excitation wavelength that may interact with a distinct photoinitiator that initiates polymerization of one material base with greater efficiency. Likewise, different wavelengths may be used for different structural elements, wherein increased rigidity is desired in some locations and soft or elastic structures are desired in other locations. Because of the different physical properties of polymerizable materials this may allow for potentially more rigid, soft, or elastic structures to be created in the same print step with the same cells by simply tuning the excitation wavelength of the laser electronically, by switching between different lasers, or by simultaneously projecting two different wavelengths.
Referring to
The first cell group and/or second cell group may comprise endothelial cells, microvascular endothelial cells, pericytes, smooth muscle cells, fibroblasts, endothelial progenitor cells, lymph cells, T cells such as helper T cells and cytotoxic T cells, B cells, natural killer (NK) cells, reticular cells, hepatocytes, or any combination thereof. The first cell group and/or second cell group may comprise exocrine secretory epithelial cells, hormone-secreting cells, epithelial cells, nerve cells, adipocytes, kidney cells, pancreatic cells, pulmonary cells, extracellular matrix cells, muscle cells, blood cells, immune cells, germ cells, interstitial cells, or any combination thereof.
The first cell group and/or second cell group may comprise exocrine secretory epithelial cells including but not limited to salivary gland mucous cells, mammary gland cells, sweat gland cells such as eccrine sweat gland cell and apocrine sweat gland cell, sebaceous gland cells, type II pneumocytes, or any combination thereof.
The first cell group and/or second cell group may comprise hormone-secreting cells including but not limited to anterior pituitary cells, intermediate pituitary cells, magnocellular neurosecretory cells, gut tract cells, respiratory tract cells, thyroid gland cells, parathyroid gland cells, adrenal gland cells, Leydig cells, theca interna cells, corpus luteum cells, juxtaglomerular cells, macula densa cells, peripolar cells, mesangial cells, pancreatic islet cells such as alpha cells, beta cells, delta cells, PP cells, and epsilon cells, or any combination thereof.
The first cell group and/or second cell group may comprise epithelial cells including but not limited to keratinizing epithelial cells such as keratinocytes, basal cells, and hair shaft cells, stratified barrier epithelial cells such as surface epithelial cells of stratified squamous epithelium, basal cells of epithelia, and urinary epithelium cells, or any combination thereof.
The first cell group and/or second cell group may comprise nerve cells or neurons including but not limited to sensory transducer cells, autonomic neuron cells, peripheral neuron supporting cells, central nervous system neurons such as interneurons, spindle neurons, pyramidal cells, stellate cells, astrocytes, oligodendrocytes, ependymal cells, glial cells, or any combination thereof.
The first cell group and/or second cell group may comprise kidney cells including but not limited to, parietal cells, podocytes, mesangial cells, distal tubule cells, proximal tubule cells, Loop of Henle thin segment cells, collecting duct cells, interstitial kidney cells, or any combination thereof.
The first cell group and/or second cell group may comprise pulmonary cells including, but not limited to type I pneumocyte, alveolar cells, capillary endothelial cells, alveolar macrophages, bronchial epithelial cells, bronchial smooth muscle cells, tracheal epithelial cells, small airway epithelial cells, or any combination thereof.
The first cell group and/or second cell group may comprise extracellular matrix cells including, but not limited to epithelial cells, fibroblasts, pericytes, chondrocytes, osteoblasts, osteocytes, osteoprogenitor cells, stellate cells, hepatic stellate cells, or any combination thereof.
The first cell group and/or second cell group may comprise muscle cells including, but not limited to skeletal muscle cells, cardiomyocytes, Purkinje fiber cells, smooth muscle cells, myoepithelial cells, or any combination thereof.
The first cell group and/or second cell group may comprise blood cells and/or immune cells including, but not limited to erythrocytes, megakaryocytes, monocytes, macrophages, osteoclasts, dendritic cells, microglial cells, neutrophils, eosinophils, basophils, mast cells, helper T cells, suppressor T cells, cytotoxic T cells, natural killer T cells, B cells, natural killer (NK) cells, reticulocytes, or any combination thereof.
In an aspect, the present disclosure provides systems for printing a three-dimensional (3D) biological material. The x, y, and z dimensions may be simultaneously accessed by the systems provided herein. A system for printing a 3D biological material may comprise a media chamber configured to contain a medium comprising a plurality of cells comprising cells and one or more polymer precursors. The plurality of cells may comprise cells of at least one type. The plurality of cells may comprise cells of at least two different types. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber and/or to the cell-containing chamber. The system may comprise one or more computer processors operatively coupled to the at least one energy source, wherein the one or more computer processors may be individually or collectively programmed to: receive computer instructions for printing the 3D biological material from computer memory; and direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the polymer precursors to form at least a portion of the 3D biological material.
In another aspect, the present disclosure provides an additional system for printing a 3D biological material, comprising a media chamber configured to contain a medium comprising a plurality of cells and a plurality of polymer precursors. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. In addition, the system may comprise one or more computer processors that may be operatively coupled to the at least one energy source. The one or more computer processors may be individually or collectively programmed to: (i) receive computer instructions for printing the 3D biological material from computer memory; (ii) direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the polymer precursors to form at least a portion of the 3D biological material; and (iii) direct the at least one energy source to direct the at least one energy beam to a second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D biological material, wherein the second medium comprises a second plurality of cells and a second polymeric precursor, wherein the second plurality of cells is of a different type than the first plurality of cells.
The one or more computer processors are individually or collectively programmed to generate a point-cloud representation or lines-based representation of the 3D biological material in computer memory, and use the point-cloud representation or lines-based representation to generate the computer instructions for printing the 3D biological material in computer memory. The one or more computer processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam along one or more additional energy beam paths to form at least another portion of the 3D biological material.
The system may comprise one or more computer processors operatively coupled to at least one energy source and/or to at least one light patterning element. The point-cloud representation or the lines-based representation of the computer model may be a holographic point-cloud representation or a holographic lines-based representation. The one or more computer processors may be individually or collectively programmed to use the light patterning element to re-project the holographic image as illuminated by the at least one energy source.
In some cases, one or more computer processors may be individually or collectively programmed to convert the point-cloud representation or lines-based representation into an image. The one or more computer processors may be individually or collectively programmed to project the image in a holographic manner. The one or more computer processors may be individually or collectively programmed to project the image as a hologram. The one or more computer processors may be individually or collectively programmed to project the image as partial hologram. In some cases, one or more computer processors may be individually or collectively programmed to convert the point-cloud representation or lines-based representation of a complete image set into a series of holographic images via an algorithmic transformation. This transformed image set may then be projected in sequence by a light patterning element, such as a spatial light modulator (SLM) or digital mirror device (DMD), through the system, recreating the projected image within the printing chamber with the projected light that is distributed in 2D and or 3D simultaneously. An expanded or widened laser beam may be projected onto the SLMs and/or DMDs, which serve as projection systems for the holographic image. In some cases, one or more computer processors may be individually or collectively programmed to project the image in a holographic manner. In some cases, one or more computer processors may be individually or collectively programmed to project the images all at once or played in series as a video to form a larger 3D structure in a holographic manner.
Holography is a technique that projects a multi-dimensional (e.g., 2D and/or 3D) holographic image or a hologram. When a laser that can photo-polymerize a medium is projected as a hologram, the laser may photopolymerize, solidify, cross-link, bond, harden, and/or change a physical property of the medium along the projected laser light path; thus, the laser may allow for the printing of 3D structures. Holography may require a light source, such as a laser light or coherent light source, to create the holographic image. The holographic image may be constant over time or varied with time (e.g., a holographic video). Furthermore, holography may require a shutter to open or move the laser light path, a beam splitter to split the laser light into separate paths, mirrors to direct the laser light paths, a diverging lens to expand the beam, and additional patterning or light directing elements.
A holographic image of an object may be created by expanding the laser beam with a diverging lens and directing the expanded laser beam onto the hologram and/or onto at least one pattern forming element, such as, for example a spatial light modulator or SLM. The pattern forming element may encode a pattern comprising the holographic image into a laser beam path. The pattern forming element may encode a pattern comprising a partial hologram into a laser beam path. Next, the pattern may be directed towards and focused in the medium chamber containing the printing materials (i.e., the medium comprising the plurality of cells and polymeric precursors), where it may excite a light-reactive photoinitiator found in the printing materials (i.e., in the medium). Next, the excitation of the light-reactive photoinitiator may lead to the photopolymerization of the polymeric-based printing materials and forms a structure in the desired pattern (i.e., holographic image). In some cases, one or more computer processors may be individually or collectively programmed to project the holographic image by directing an energy source along distinct energy beam paths.
In some cases, at least one energy source may be a plurality of energy sources. The plurality of energy sources may direct a plurality of the at least one energy beam. The energy source may be a laser. In some examples, the laser may be a fiber laser. For example, a fiber laser may be a laser with an active gain medium that includes an optical fiber doped with rare-earth elements, such as, for example, erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and/or holmium. The energy source may be a short-pulsed laser. The energy source may be a femto-second pulsed laser. The femtosecond pulsed laser may have a pulse width less than or equal to about 500 femtoseconds (fs), 250, 240, 230, 220, 210, 200, 150, 100, 50 fs, 40 fs, 30 fs, 20 fs, 10 fs, 9 fs, 8 fs, 7 fs, 6 fs, 5 fs, 4 fs, 3 fs, 2 fs, 1 fs, or less. The femtosecond pulsed laser may be, for example, a titanium:sapphire (Ti:Sa) laser. The at least one energy source may be derived from a coherent light source.
The coherent light source may provide light with a wavelength from about 300 nanometers (nm) to about 5 millimeters (mm). The coherent light source may comprise a wavelength from about 350 nm to about 1800 nm, or about 1800 nm to about 5 mm. The coherent light source may provide light with a wavelength of at least about 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 mm, 1.1 mm, 1.2, mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, 3 mm, 4 mm, 5 mm, or greater.
The computer processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam along one or more additional energy beam paths to form at least another portion of the 3D biological material. The one or more additional energy beam paths may be along an x axis, an x and y plane, or the x, y, and z planes. The one or more additional energy beam paths may be along an x axis. The one or more additional energy beam paths may be along a y axis. The one or more additional energy beam paths may be along a z axis. The energy beam path may converge with one or more other beams on the same axis. The one or more additional energy beam paths may be in the x and y plane. The one or more additional energy beam paths may be in the x and z plane. The one or more additional energy beam paths may be in the y and z plane. The one or more additional energy beam paths may be in the x, y, and z planes.
The system may further comprise at least one objective lens for directing the at least one energy beam to the medium in the media chamber. In some instances, at least one objective lens may comprise a water-immersion objective lens. In some instances, at least one objective lens may comprise a water-immersion objective lens. In some instances, at least one objective lens may comprise a water dipping objective lens. In some instances, at least one objective lens may comprise an oil immersion objective lens. In some instances, at least one objective lens may comprise an achromatic objective lens, a semi-apochromatic objective lens, a plans objective lens, an immersion objective lens, a Huygens objective lens, a Ramsden objective lens, a periplan objective lens, a compensation objective lens, a wide-field objective lens, a super-field objective lens, a condenser objective lens, or any combination thereof. Non-limiting examples of a condenser objective lens may include an Abbe condenser, an achromatic condenser, and a universal condenser.
The one or more computer processors may be individually or collectively programmed to receive images of the edges of the 3D biological material. The one or more computer processors may be individually or collectively programmed to receive images of the exterior surfaces of the 3D biological material. The one or more computer processors may be individually or collectively programmed to receive images of the interior surfaces of the 3D biological material. The one or more computer processors may be individually or collectively programmed to receive images of the interior of the 3D biological material.
The one or more computer processors may be individually or collectively programmed to direct linking of the 3D biological material with other tissue, which linking may be in accordance with the computer instructions. The one or more computer processors may be individually or collectively programmed to directly link, merge, bond, or weld 3D printed material with already printed structures, where linking is in accordance with the computer model. In some cases, linking of the 3D biological material with other tissue may involve chemical cross-linking, mechanical linking, and/or cohesively coupling.
In another aspect, the system may comprise a media chamber configured to contain a medium comprising a plurality of cells and a plurality of polymer precursors. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. The system may comprise one or more computer processors operatively coupled to at least one energy source, wherein the one or more computer processors are individually or collectively programmed to: receive a computer model of the 3D biological material in computer memory; generate a point-cloud representation or lines-based representation of the computer model of the 3D biological material in computer memory; direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer model of the 3D biological material, to subject at least a portion of the polymer precursors to form at least a portion of the 3D biological material; and direct the at least one energy source to direct the at least one energy beam to a second medium in the media chamber along at least one energy beam path in accordance with the computer model of the 3D biological material, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D biological material, wherein the second medium comprises a second plurality of cells and a second polymeric precursor, wherein the second plurality of cells is of a different type than the first plurality of cells.
In laser printing of cellular structures, rapid three-dimensional structure generation using minimally toxic laser excitation is critical for maintaining cell viability and in the case of functional tissue printing, necessary for large-format, high resolution, multicellular tissue generation. Other methods of two-photon printing may rely upon raster-scanning of two-photon excitation in a two-dimensional plane (x, y) (e.g., selective laser sintering), while moving the microscope or stage in the z direction to create a three-dimensional structure. This technique may be prohibitively slow for large format multicellular tissue printing such that cell viability may be unlikely to be maintained during printing of complex structures. Certain hydrogels with high rates of polymerization may also be utilized for two-dimensional projection of tissue sheets that are timed such that one slice of a structure is projected with each step in in an x, y, or z plane. Additionally, mixed plane angles representing a sheet or comprising an orthogonal slice may also be utilized. In the case of rapidly polymerizing hydrogels, these projections may work in time-scales that are compatible with tissue printing whereas laser sintering or raster scanning (e.g., layer-by-layer deposition) may be prohibitively slow for building a complex structure.
The laser printing system 110 of the present disclosure may be equipped with an objective lens 124 that may allow for focusing of the three-dimensional or two-dimensional holographic projection in the lateral and axial planes for rapid creation of cell containing structures. The objective lens 124 may be a water-immersion objective lens, an air objective lens, or an oil-immersion objective lens. In some cases, the laser printing system 110 may include a laser system 116 having multiple laser lines and may be capable of three-dimensional holographic projection of images for photolithography via holographic projection into cell containing media.
In some cases, spatial light modulators (SLMs) may be used to print a 3D biological material. In some cases, the method presented herein may comprise receiving a computer model of the 3D biological material in computer memory and further processing the computer model such that the computer model is “sliced” into layers, creating a two-dimensional (2D) image of each layer. The computer model may be a computer-aided design (CAD) model. The system disclosed herein may comprise at least one computer processor which may be individually or collectively programmed to calculate a laser scan path based on the “sliced” computer model, which determines the boundary contours and/or fill sequences of the 3D biological material to be printed. Holographic 3D printing may be used with one or more polymer precursors described herein. SLM may be used with two or more polymer precursors described herein.
A spatial light modulator (SLM) is an electrically programmable device that can modulate amplitude, phase, polarization, propagation direction, intensity or any combination thereof of light waves in space and time according to a fixed spatial (i.e., pixel) pattern. The SLM may be based on translucent, e.g., liquid crystal display (LCD) microdisplays. The SLM may be based on reflective, e.g., liquid crystal on silicon (LCOS) microdisplays. The SLM may be a microchannel spatial light modulator (MSLM), a parallel-aligned nematic liquid crystal spatial light modulator (PAL-SLM), a programmable phase modulator (PPM), a phase spatial light modulator (LCOS-SLM), or any combination thereof. An LCOS-SLM may comprise a chip that includes a liquid crystal layer arranged on top of a silicon substrate. A circuit may be built on the chip's silicon substrate by using semiconductor technology. A top layer of the LCOS-SLM chip may contain aluminum electrodes that are able to control their voltage potential independently. A glass substrate may be placed on the silicon substrate while keeping a constant gap, which is filled by the liquid crystal material. The liquid crystal molecules may be aligned in parallel by the alignment control technology provided in the silicon and glass substrates. The electric field across this liquid crystal layer can be controlled pixel by pixel. The phase of light can be modulated by controlling the electric field; a change in the electric field may cause the liquid crystal molecules to tilt accordingly. When the liquid crystal molecules tilt, the liquid crystal refractive indexes may change further changing the optical path length and thus, causing a phase difference.
An SLM may be used to print the 3D biological material. A liquid crystal on silicon (LCOS)-SLM may be used to print the 3D biological material. A liquid crystal SLM may be used to print the 3D biological material. The SLM may be used to project a point-cloud representation or a lines-based representation of a computer model of the 3D biological material. The methods disclosed herein may comprise converting the point-cloud representation or lines-based representation into a holographic image. The SLM may be used to project the holographic image of the computer model of the 3D biological material. The SLM may be used to modulate the phase of light of a point-cloud representation or a lines-based representation of a computer model of the 3D biological material. The SLM may be used to modulate the phase of light of the holographic image of the computer model of the 3D biological material.
Projection of multi-photon excitation in three dimensions may also be achieved with the use of a dual digital micromirror device (DMD) system alone or in combination with a spatial light modulator (SLM). A pair of DMDs may be used with a pair of SLMs to print a 3D material using the methods described herein. At least one SLM and at least one DMD may be used to print a 3D material using the methods described herein. A pair of SLMs may be used to print a 3D material using the methods described herein. A pair of DMDs may be used to print a 3D material using the methods described herein. At least one SLM may be used to print a 3D material using the methods described herein. At least one DMD may be used to print a 3D material using the methods described herein. A DMD is an electrical input, optical output micro-electrical-mechanical system (MEMS) that allows for high speed, efficient, and reliable spatial light modulation. A DMD may comprise a plurality of microscopic mirrors (usually in the order of hundreds of thousands or millions) arranged in a rectangular array. Each microscopic mirror in a DMD may correspond to a pixel of the image to be displayed and can be rotated about e.g., 10-12° to an “on” or “off” state. In the “on” state, light from a projector bulb can be reflected into the microscopic mirror making its corresponding pixel appear bright on a screen. In the “off” state, the light can be directed elsewhere (usually onto a heatsink), making the microscopic mirror's corresponding pixel appear dark. The microscopic mirrors in a DMD may be composed of highly reflective aluminum and their length across is approximately 16 micrometers (μm). Each microscopic mirror may be built on top of an associated semiconductor memory cell and mounted onto a yoke which in turn is connected to a pair of support posts via torsion hinges. The degree of motion of each microscopic mirror may be controlled by loading each underlying semiconductor memory cell with a “1” or a “0.” Next, a voltage is applied, which may cause each microscopic mirror to be electrostatically deflected about the torsion hinge to the associated +/−degree state via electrostatic attraction.
With reference to
In some cases, one or more light paths, such as the ones shown in
In some cases, a DMD may be used to print a 3D biological material. The DMD may be used to project a point-cloud representation or a lines-based representation of a computer model of the 3D biological material. The methods disclosed herein may comprise converting the point-cloud representation or lines-based representation into a holographic image. The DMD may be used to project the holographic image of the computer model of the 3D biological material. The DMD may be used to print the 3D biological material.
In some cases, a combination of at least one SLM and at least one DMD may be used in the methods disclosed herein to print the 3D biological material. The combination of at least one SLM and at least one DMD may be arranged in series. The combination of at least one SLM and at least one DMD may be arranged in parallel. The combination of any number of SLMs and any number of DMDs may be arranged in series when used to print the 3D biological material. The combination of any number of SLMs and any number of DMDs may be arranged in parallel when used to print the 3D biological material.
The combination of at least two SLMs and at least one DMD may be used to print the 3D biological material. The combination of at least three SLMs and at least one DMD may be used to print the 3D biological material. The combination of at least four SLMs and at least one DMD may be used to print the 3D biological material. The combination of at least five SLMs and at least one DMD may be used to print the 3D biological material. The combination of at least ten SLMs and at least one DMD may be used to print the 3D biological material. The combination of at least twenty SLMs and at least one DMD may be used to print the 3D biological material.
The combination of at least one SLM and at least two DMDs may be used to print the 3D biological material. The combination of at least one SLM and at least three DMDs may be used to print the 3D biological material. The combination of at least one SLM and at least four DMDs may be used to print the 3D biological material. The combination of at least one SLM and at least five DMDs may be used to print the 3D biological material. The combination of at least one SLM and at least ten DMDs may be used to print the 3D biological material. The combination of at least one SLM and at least twenty DMDs may be used to print the 3D biological material.
The combination of at least two SLMs and at least two DMDs may be used to print the 3D biological material. The combination of at least three SLMs and at least three DMDs may be used to print the 3D biological material. The combination of at least four SLMs and at least four DMDs may be used to print the 3D biological material. The combination of at least five SLMs and at least five DMDs may be used to print the 3D biological material. The combination of at least ten SLMs and at least ten DMDs may be used to print the 3D biological material. The combination of at least twenty SLMs and at least twenty DMDs may be used to print the 3D biological material.
A liquid crystal SLM may be used to print the 3D biological material. A plurality of SLMs may be used to print the 3D biological material. The plurality of SLMs can be arranged in series. The plurality of SLMs can be arranged in parallel. At least one or more SLMs may be used to print the 3D biological material. At least two or more SLMs may be used to print the 3D biological material. At least three or more SLMs may be used to print the 3D biological material. At least four or more SLMs may be used to print the 3D biological material. At least five or more SLMs may be used to print the 3D biological material. At least ten or more SLMs may be used to print the 3D biological material. At least twenty or more SLMs may be used to print the 3D biological material. At least one to about fifty or more SLMs may be used to print the 3D biological material. At least one to about twenty or more SLMs may be used to print the 3D biological material. At least one to about fifteen or more SLMs may be used to print the 3D biological material. At least one to about ten or more SLMs may be used to print the 3D biological material. At least one to about five or more SLMs may be used to print the 3D biological material.
A plurality of DMDs may be used to print the 3D biological material. The plurality of DMDs can be arranged in series. The plurality of DMDs can be arranged in parallel. At least one or more DMDs may be used to print the 3D biological material. At least two or more DMDs may be used to print the 3D biological material. At least three or more DMDs may be used to print the 3D biological material. At least four or more DMDs may be used to print the 3D biological material. At least five or more DMDs may be used to print the 3D biological material. At least ten or more DMDs may be used to print the 3D biological material. At least twenty or more DMDs may be used to print the 3D biological material. At least one to about fifty or more DMDs may be used to print the 3D biological material. At least one to about twenty or more DMDs may be used to print the 3D biological material. At least one to about fifteen or more DMDs may be used to print the 3D biological material. At least one to about ten or more DMDs may be used to print the 3D biological material. At least one to about five or more DMDs may be used to print the 3D biological material.
In this design, SLM may refer to liquid crystal SLM and the function of the DMD may be similar to the SLM. These lasers may be controlled by one or more computer inputs to address location and print timing of multiple laser lines. An example overall design for the light path, including optional in-series excitations paths is illustrated in
Two photon excitation pulses may be temporally controlled such that excitation at a single spot occurs with pulses that are femto- to nanosecond range in length (dependent on laser tuning) while the timing between these photon packets is three to six orders of magnitude longer than the pulse width. This may allow for minimal cross-path interference of laser excitations making use of multiple lasers for simultaneous printing possible when using multiple laser lines in series. An example of multiple laser projections at three different theoretical wavelengths for the purpose of structure deposition is presented in
A lens may be used to either widen or pre-focus the laser after the dual SLM or DMD combination. In addition, a laser attenuation device or filtering wheel that is computer controlled may be added prior to focusing optics to control the laser power output at the site of printing.
The energy source 1000 may be pulsed. The energy source 1000 may be pulsed at a rate of about 500 kilohertz (kHz). The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000,000 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100,000 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 10 micro joule (μJ) to 100 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 20 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 40 micro joule (μJ) to 80 μJ or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 120 micro joule (μJ) to 160 μJ or more.
The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 10 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 30 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 40 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 50 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 60 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 70 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 80 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 90 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 110 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 120 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 130 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 140 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 150 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 160 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 170 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 180 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 190 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 200 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20,000 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100,000 μJ. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 1,000,000 μJ.
The energy source 1000 (e.g., laser) may provide an energy beam (e.g., light beam) having a wavelength from, e.g., about at least 300 nm to about 5 mm or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about at least 600 to about 1500 nm or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from about at least 350 nm to about 1800 nm or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from about at least 1800 nm to about 5 mm or more. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 300 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 400 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 600 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 700 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 800 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 900 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1000 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1100 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1200 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1300 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1400 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1500 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1600 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1700 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1800 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1900 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 2000 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 3000 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 4000 nm. The energy source 1000 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 5000 nm.
As shown in
The laser beam 1002 may exit the rotating half-wave plate 1006 and may be directed through a polarizing beam splitter 1008. The polarizing beam splitter 1008 may split the laser beam 1002 into a first laser beam 1002a and a second laser beam 1002b. The first laser beam 1002a may be directed to a beam dump 1010. The beam dump 1010 is an optical element that may be used to absorb stray portions of a laser beam. The beam dump 1010 may absorb the first laser beam 1002a. The first laser beam 1002a may be a stray laser beam. The beam dump 1010 may absorb the second laser beam 1002b. The second laser beam 1002b may be a stray laser beam. The laser beam 1002 may be directed into the beam dump 1010 in its entirety and thus, may serve as a default “off” state of the printing system. The second laser beam 1002b may be directed to a beam expander 1012. The beam expander 1012 may expand the size of the laser beam 1002b. The beam expander 1012 may increase the diameter of the input second laser beam 1002b to a larger diameter of an output, expanded laser beam 1054. The beam expander 1012 may be a prismatic beam expander. The beam expander 1012 may be a telescopic beam expander. The beam expander 1012 may be a multi-prism beam expander. The beam expander 1012 may be a Galilean beam expander. The beam expander 1012 may provide a beam expander power of about 2×, 3×, 5×, 10×, 20×, or 40×. The beam expander 1012 may provide a beam expander power ranging from about 2× to about 5×. The beam expander 1012 may provide continuous beam expansion between about 2× and about 5×. The beam expander 1012 may provide a beam expander power ranging from about 5× to about 10×. The beam expander 1012 may provide continuous beam expansion between about 5× and about 10×. The expanded laser beam 1054 may be collimated upon exiting the beam expander 1012.
After exiting the beam expander 1012, the expanded laser beam 1054 may be directed to a first minor 1014a, which may re-direct the expanded laser beam 1054 to a spatial light modulator (SLM) 1016. The SLM 1016 may be controlled by a computer system 1101. The SLM 1016 may be directed to project a specific image or a specific portion of an image of a material to be printed using the methods and systems disclosed herein. The material to be printed may be a biological material. The biological material may be a three-dimensional biological material. The specific image or the specific portion of the image may be one-dimensional, two-dimensional, and/or three-dimensional. The SLM 1016 may be directed to project at least one image simultaneously in different wavelengths of light. The SLM 1016 may be directed to project different aspects of the material to be printed with the use of minors instead of with the use of a computer system 1101. In some cases, at least one mirror may be used to re-direct or turn “off” or “on” a particular light path or laser beam in order to print different aspects or portions of the material to be printed.
After exiting the SLM 1016, the expanded laser beam 1054 may be directed to an f1 lens 1018. The f1 lens 1018 may be a focusing lens. After exiting the f1 lens 1018, the expanded laser beam 1054 may be directed to blocking element 1020. The blocking element 1020 may be immovable. The blocking element 1020 may suppress illumination from a zero-order spot. A zero-order may be a part of the energy from the expanded laser beam 1054 that is not diffracted and behaves according to the laws or reflection and refraction. After exiting the blocking element 1020, the expanded energy beam 1054 may be directed through an f2 lens 1022. The f2 lens may be a focusing lens.
After exiting the f2 lens 1022, the expanded laser beam 1054 may be directed onto a second minor 1014b and may be subsequently directed onto a third mirror 1014c. The third mirror 1014c may re-direct the expanded laser beam 1054 through a long pass dichroic minor 1024. The first mirror 1014a, the second mirror 1014b, and/or the third mirror 1014c may comprise an infrared (IR) coating to improve reflectance. The first minor 1014a, the second mirror 1014b, and/or the third mirror 1014c may not comprise an infrared (IR) coating. Non-limiting examples of IR coatings include protected gold-based coatings and protected silver-based coatings. The first mirror 1014a, the second mirror 1014b, and/or the third mirror 1014c may be controlled with a computer system 1101. The computer system 1101 may turn the first mirror 1014a, the second mirror 1014b, and/or the third mirror 1014c “on” or “off” in order to re-direct the expanded laser beam 1054 as desired.
The dichroic mirror may be a short pass dichroic minor. The long pass dichroic mirror 1024 may reflect the expanded laser beam 1054 into the focusing objective 1032. In some instances, a beam combiner may be used to re-direct the expanded laser beam 1054 into the focusing objective 1032 instead of using the long pass dichroic minor 1024. The long pass dichroic mirror 1024 may be controlled with a computer system 1101 to re-direct the expanded laser beam 1054 into the focusing objective 1032. The focusing objective 1032 may concentrate the expanded laser beam 1054 as it is projected into the printing chamber 1034. The printing chamber 1034 may be a media chamber 122. The printing chamber 1034 may comprise a cell-containing medium, a plurality of cells, cell constituents (e.g., organelles), and/or at least one polymer precursor.
A light-emitting diode (LED) collimator 1040 may be used as a source of collimated LED light 1056. The LED collimator 1040 may comprise a collimating lens and an LED emitter. The LED may be an inorganic LED, a high brightness LED, a quantum dot LED, or an organic LED. The LED may be a single color LED, a bi-color LED, or a tri-color LED. The LED may be a blue LED, an ultraviolet LED, a white LED, an infrared LED, a red LED, an orange LED, a yellow LED, a green LED, a violet LED, a pink LED, or a purple LED. The LED collimator 1040 may project a beam of collimated LED light 1056 through an f4 lens 1038. The f4 lens 1038 may be a focusing lens. Once the collimated LED light 1056 is transmitted through the f4 lens 1038, the collimated LED light 1056 may be directed into a light focusing objective 1036. The light focusing objective 1036 may focus the collimated LED light 1056 into the printing chamber 1034. The light focusing objective 1036 may focus the collimated LED light 1056 in the sample medium. The light focusing objective 1036 may focus the collimated LED light 1056 in the cell-containing medium. The collimated LED light 1056 may be transmitted through the printing chamber 1034 and into the focusing objective 1032. Once the collimated LED light 1056 exits the focusing objective 1032, the collimated LED light 1056 may be directed onto the long pass dichroic mirror 1024. The collimated LED light 1056 that is reflected off of the long pass dichroic mirror 1024 may be the sample emission 1026. The long pass dichroic minor 1024 may re-direct the sample emission 1026 into an f3 lens 1028. The f3 lens 1028 may be a focusing lens. Once sample emission 1026 is transmitted through the f3 lens 1028, a detection system 1030 detects and/or collects the sample emission 1026 for imaging. The detection system 1030 may comprise at least one photomultiplier tube (PMT). The detection system 1030 may comprise at least one camera. The camera may be a complementary metal-oxide semiconductor (CMOS) camera, a scientific CMOS camera, a charge-coupled device (CCD) camera, or an electron-multiplying charge-coupled device (EM-CCD). The detection system 1030 may comprise at least one array-based detector.
The energy source 1100 may be pulsed. The energy source 1100 may be pulsed at a rate of about 500 kilohertz (kHz). The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000,000 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100,000 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 10 micro joule (μJ) to 100 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 20 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 40 micro joule (μJ) to 80 μJ or more. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 120 micro joule (μJ) to 160 μJ or more.
The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 10 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 30 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 40 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 50 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 60 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 70 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 80 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 90 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 110 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 120 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 130 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 140 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 150 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 160 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 170 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 180 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 190 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 200 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20,000 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100,000 μJ. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet).
The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from about 300 nm to 5 mm, 600 nm to 1500 nm, 350 nm to 1800 nm, or 1800 nm to 5 mm. The energy source 1100 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of at least about 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1 mm, 1.1 mm, 1.2, mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2 mm, 3 mm, 4 mm, 5 mm, or greater.
As shown in
The laser beam 1102 may exit the rotating half-wave plate 1106 and may be directed through a polarizing beam splitter 1108. The polarizing beam splitter 1108 may split the laser beam 1102 into a first laser beam 1102a and a second laser beam 1102b. The first laser beam 1102a may be directed to a beam dump 1110. The beam dump 1110 is an optical element that may be used to absorb stray portions of a laser beam. The beam dump 1110 may absorb the first laser beam 1102a. The first laser beam 1102a may be a stray laser beam. The beam dump 1110 may absorb the second laser beam 1102b. The second laser beam 1102b may be a stray laser beam. The laser beam 1102 may be directed into the beam dump 1110 in its entirety and thus, may serve as a default “off” state of the printing system. The second laser beam 1102b may be directed to a beam expander 1112. The beam expander 1112 may expand the size of the second laser beam 1102b. The beam expander 1112 may increase the diameter of the input, second laser beam 1102b to a larger diameter of an output, expanded laser beam 1154. The beam expander 1112 may be a prismatic beam expander. The beam expander 1112 may be a telescopic beam expander. The beam expander 1112 may be a multi-prism beam expander. The beam expander 1112 may be a Galilean beam expander. The beam expander 1112 may provide a beam expander power of about 2×, 3×, 5×, 10×, 20×, or 40×. The beam expander 1112 may provide a beam expander power ranging from about 2× to about 5×. The beam expander 1112 may provide continuous beam expansion between about 2× and about 5×. The beam expander 1112 may provide a beam expander power ranging from about 5× to about 10×. The beam expander 1112 may provide continuous beam expansion between about 5× and about 10×. The expanded laser beam 1154 may be collimated upon exiting the beam expander 1112.
After exiting the beam expander 1112, the expanded laser beam 1154 may be directed to a first mirror 1114a, which may re-direct the expanded laser beam 1154 to a first spatial light modulator (SLM) 1116a. After exiting the first SLM 1116, the expanded laser beam 1154 may be directed to an f1 lens 1118. The f1 lens 1118 may be a focusing lens. After exiting the f1 lens, the expanded laser beam 1154 may be directed to a grating 1142. The grating 1142 may be a diffractive laser beam splitter. The grating 1142 may be a holographic grating. The grating 1142 may be a ruled grating. The grating 1142 may be a subwavelength grating. The grating 1142 may split and/or diffract the expanded laser beam 1154 into a plurality of expanded laser beams (not shown in
After exiting the second SLM 1116b, the expanded laser beam 1154 may be directed to an f3 lens 1128. The f3 lens 1128 may be a focusing lens. After exiting the f3 lens, the expanded laser beam 1154 may be directed to blocking element 1120. The blocking element 1120 may be immovable. The blocking element 1120 may be used to suppress illumination from a zero-order spot. After exiting the blocking element 1120, the expanded energy beam 1154 may be directed through an f4 lens 1138. The f4 lens 1138 may be a focusing lens. After exiting the f4 lens 1138, the expanded laser beam 1154 may be directed onto a second mirror 1114b and may be subsequently directed onto a third mirror 1114c. The third mirror 1114c may re-direct the expanded laser beam 1154 through a long pass dichroic mirror 1124. The first mirror 1114a, the second mirror 1114b, and/or the third mirror 1114c may be controlled with a computer system 1101. The computer system 1101 may turn the first mirror 1114a, the second mirror 1114b, and/or the third mirror 1114c “on” or “off” in order to re-direct the expanded laser beam 1154 as desired. The dichroic mirror may be a short pass dichroic mirror. The long pass dichroic mirror 1124 may reflect the expanded laser beam 1154 into the focusing objective 1132. In some instances, a beam combiner may be used to re-direct the expanded laser beam 1154 into the focusing objective 1132 instead of using the long pass dichroic mirror 1124. The long pass dichroic mirror 1124 may be controlled with a computer system 1101 to re-direct the expanded laser beam 1154 into the focusing objective 1132. The focusing objective 1132 may concentrate the expanded laser beam 1154 as it is projected into the printing chamber 1134. The printing chamber 1134 may be a media chamber 122. The printing chamber 1134 may comprise a cell-containing medium, a plurality of cells, cell constituents (e.g., organelles), and/or at least one polymer precursor.
The printing chamber 1134 may be mounted on a movable stage 1146. The movable stage 1146 may be an xy stage, a z stage, and/or an xyz stage. The movable stage 1146 may be manually positioned. The movable stage 1146 may be automatically positioned. The movable stage 1146 may be a motorized stage. The movable stage 1146 may be controlled by the computer system 1101. The computer system 1101 may control the movement of the movable stage 1146 in the x, y, and/or z directions. The computer system 1101 may automatically position the movable stage 1146 in a desired x, y, and/or z position. The computer system 1101 may position the movable stage 1146 in a desired x, y, and/or z position with a positional accuracy of at most about 3 μm. The computer system 1101 may position the movable stage 1146 in a desired x, y, and/or z position with a positional accuracy of at most about 2 μm. The computer system 1101 may position the movable stage 1146 in a desired x, y, and/or z position with a positional accuracy of at most about 1 μm. The computer system 1101 may automatically adjust the position of the movable stage 1146 prior or during three-dimensional printing. The computer system 1101 may comprise a piezoelectric (piezo) controller to provide computer-controlled z-axis (i.e., vertical direction) positioning and active location feedback. The computer system 1101 may comprise a joystick console to enable a user to control a position of the movable stage 1146. The joystick console may be a z-axis console and/or an x-axis and y-axis console. The movable stage 1146 may comprise a printing chamber holder. The printing chamber holder may be a bracket, a clip, and/or a recessed sample holder. The movable stage 1146 may comprise a multi-slide holder, a slide holder, and/or a petri dish holder. The movable stage 1146 may comprise a sensor to provide location feedback. The sensor may be a capacitive sensor. The sensor may be a piezoresistive sensor. The movable stage 1146 may comprise at least one actuator (e.g., piezoelectric actuator) that moves (or positions) the movable stage 1146.
A light-emitting diode (LED) collimator 1140 may be used as a source of collimated LED light 1156. The LED collimator 1140 may comprise a collimating lens and an LED emitter. The LED may be an inorganic LED, a high brightness LED, a quantum dot LED, or an organic LED. The LED may be a single color LED, a bi-color LED, or a tri-color LED. The LED may be a blue LED, an ultraviolet LED, a white LED, an infrared LED, a red LED, an orange LED, a yellow LED, a green LED, a violet LED, a pink LED, or a purple LED. The LED collimator 1140 may project a beam of collimated LED light 1156 through an f6 lens 1148. The f6 lens 1148 may be a focusing lens. Once the collimated LED light 1156 is transmitted through the f6 lens 1148, the collimated LED light 1156 may be directed into a light focusing objective 1136. The light focusing objective 1136 may focus the collimated LED light 1156 into the printing chamber 1134. The light focusing objective 1136 may focus the collimated LED light 1156 in the sample medium. The light focusing objective 1136 may focus the collimated LED light 1156 in the cell-containing medium. The collimated LED light 1156 may be transmitted through the printing chamber 1134 and into the focusing objective 1132. Once the collimated LED light 1156 exits the focusing objective 1132, the collimated LED light 1156 may be directed onto the long pass dichroic mirror 1124. The collimated LED light 1156 that is reflected off of the long pass dichroic mirror 1124 may be the sample emission 1126. The long pass dichroic mirror 1124 may re-direct the sample emission 1126 into an f5 lens 1144. The f5 lens 1144 may be a focusing lens. Once sample emission 1126 is transmitted through the f5 lens 1144, a detection system 1130 detects and/or collects the sample emission 1126 for imaging. The detection system 1130 may comprise at least one photomultiplier tube (PMT). The detection system 1130 may comprise at least one camera. The camera may be a complementary metal-oxide semiconductor (CMOS) camera, a scientific CMOS camera, a charge-coupled device (CCD) camera, or an electron-multiplying charge-coupled device (EM-CCD). The detection system 1130 may comprise at least one array-based detector.
The energy source 1200 may be pulsed. The energy source 1200 may be pulsed at a rate of about 500 kilohertz (kHz). The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000,000 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100,000 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 1,000 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 100 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 10 micro joule (μJ) to 100 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 20 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 1 micro joule (μJ) to 50 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 40 micro joule (μJ) to 80 μJ or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) from about at least 120 micro joule (μJ) to 160 μJ or more.
The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 10 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 30 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 40 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 50 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 60 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 70 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 80 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 90 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 110 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 120 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 130 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 140 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 150 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 160 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 170 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 180 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 190 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 200 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 20,000 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet) of about 100,000 μJ. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having energy packets with pulsed energies (per packet).
The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from, e.g., about at least 300 nm to about 5 mm or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about at least 600 to about 1500 nm or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from about at least 350 nm to about 1800 nm or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength from about at least 1800 nm to about 5 mm or more. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 300 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 400 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 600 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 700 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 800 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 900 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1200 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1200 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1200 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1300 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1400 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1500 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1600 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1700 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1800 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 1900 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 2000 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 3000 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 4000 nm. The energy source 1200 (e.g., laser) may provide energy (e.g., laser beam) having a wavelength of about 5000 nm.
As shown in
The laser beam 1202 may exit the rotating half-wave plate 1206 and may be directed through a polarizing beam splitter 1208. The polarizing beam splitter 1208 may split the laser beam 1202 into a first laser beam 1202a and a second laser beam 1202b. The first laser beam 1202a may be directed to a beam dump 1210. The beam dump 1210 is an optical element that may be used to absorb stray portions of a laser beam. The beam dump 1210 may absorb the first laser beam 1202a. The first laser beam 1202a may be a stray laser beam. The beam dump 1210 may absorb the second laser beam 1202b. The second laser beam 1202b may be a stray laser beam. The laser beam 1202 may be directed into the beam dump 1210 in its entirety and thus, may serve as a default “off” state of the printing system. The second laser beam 1202b may be directed to a beam expander 1212. The beam expander 1212 may expand the size of the second laser beam 1202b. The beam expander 1212 may increase the diameter of the input, second laser beam 1202b to a larger diameter of an output, expanded laser beam 1254. The beam expander 1212 may be a prismatic beam expander. The beam expander 1212 may be a telescopic beam expander. The beam expander 1212 may be a multi-prism beam expander. The beam expander 1212 may be a Galilean beam expander. The beam expander 1212 may provide a beam expander power of about 2×, 3×, 5×, 10×, 20×, or 40×. The beam expander 1212 may provide a beam expander power ranging from about 2× to about 5×. The beam expander 1212 may provide continuous beam expansion between about 2× and about 5×. The beam expander 1212 may provide a beam expander power ranging from about 5× to about 10×. The beam expander 1212 may provide continuous beam expansion between about 5× and about 10×. The expanded laser beam 1254 may be collimated upon exiting the beam expander 1212.
After exiting the beam expander 1212, the expanded laser beam 1254 may be directed to a first mirror 1214a, which may re-direct the expanded laser beam 1254 to a first spatial light modulator (SLM) 1216a. After exiting the first SLM 1216, the expanded laser beam 1254 may be directed to an f1 lens 1218. The f1 lens 1218 may be a focusing lens. After exiting the f1 lens, the expanded laser beam 1254 may be directed to a mirror with blocking element 1250. The mirror with blocking element 1250 may be used to suppress illumination from a zero-order spot.
Once the expanded laser beam 1254 is reflected by the mirror with blocking element 1250, the expanded laser beam 1254 may be transmitted through an f2 lens 1222. The f2 lens 1222 may be a focusing lens. After exiting the f2 lens 1222, the expanded laser beam 1254 may be directed to a second SLM 1216b. The SLMs (i.e., the first SLM 1216a and the second SLM 1216b) may be controlled by a computer system 1101. The SLMs may perform all of the functions, as described supra, of the SLM 1016 and the SLM 1116, as presented in
After exiting the second SLM 1216b, the expanded laser beam 1254 may be directed to an f3 lens 1228. After exiting the f3 lens, the expanded laser beam 1254 may be directed to blocking element 1220. The blocking element 1220 may be immovable. The blocking element 1220 may be used to suppress illumination from a zero-order spot. After exiting the blocking element 1220, the expanded energy beam 1254 may be directed through an f4 lens 1238. The f4 lens 1238 may be a focusing lens. After exiting the f4 lens 1238, the expanded laser beam 1254 may be directed onto a second mirror 1214b and may be subsequently directed onto a third mirror 1214c. The third mirror 1214c may re-direct the expanded laser beam 1254 through a long pass dichroic mirror 1224. The first mirror 1214a, the second mirror 1214b, and/or the third mirror 1214c may be controlled with a computer system 1101. The computer system 1101 may turn the first mirror 1214a, the second mirror 1214b, and/or the third mirror 1214c “on” or “off” in order to re-direct the expanded laser beam 1254 as desired. The dichroic mirror may be a short pass dichroic mirror. The long pass dichroic mirror 1224 may reflect the expanded laser beam 1254 into the focusing objective 1232. In some instances, a beam combiner may be used to re-direct the expanded laser beam 1254 into the focusing objective 1232 instead of using the long pass dichroic mirror 1224. The long pass dichroic mirror 1224 may be controlled with a computer system 1101 to re-direct the expanded laser beam 1254 into the focusing objective 1232. The focusing objective 1232 may concentrate the expanded laser beam 1254 as it is projected into the printing chamber 1234. The printing chamber 1234 may be a media chamber 122. The printing chamber 1234 may comprise a cell-containing medium, a plurality of cells, cell constituents (e.g., organelles), and/or at least one polymer precursor.
The printing chamber 1234 may be mounted on a movable stage 1246. The movable stage 1246 may be an xy stage, a z stage, and/or an xyz stage. The movable stage 1246 may be manually positioned. The movable stage 1246 may be automatically positioned. The movable stage 1246 may be a motorized stage. The movable stage 1246 may be controlled by the computer system 1101. The computer system 1101 may control the movement of the movable stage 1246 in the x, y, and/or z directions. The computer system 1101 may automatically position the movable stage 1246 in a desired x, y, and/or z position. The computer system 1101 may position the movable stage 1246 in a desired x, y, and/or z position with a positional accuracy of at most about 3 μm. The computer system 1101 may position the movable stage 1246 in a desired x, y, and/or z position with a positional accuracy of at most about 2 μm. The computer system 1101 may position the movable stage 1246 in a desired x, y, and/or z position with a positional accuracy of at most about 1 μm. The computer system 1101 may automatically adjust the position of the movable stage 1246 prior or during three-dimensional printing. The computer system 1101 may comprise a piezo controller to provide computer-controlled z-axis (i.e., vertical direction) positioning and active location feedback. The computer system 1101 may comprise a joystick console to enable a user to control a position of the movable stage 1246. The joystick console may be a z-axis console and/or an x-axis and y-axis console. The movable stage 1246 may comprise a printing chamber holder. The printing chamber holder may be a bracket, a clip, and/or a recessed sample holder. The movable stage 1246 may comprise a multi-slide holder, a slide holder, and/or a petri dish holder. The movable stage 1246 may comprise a sensor to provide location feedback. The sensor may be a capacitive sensor. The sensor may be a piezoresistive sensor. The movable stage 1246 may comprise at least one actuator (e.g., piezoelectric actuator) that moves (or positions) the movable stage 1246.
A light-emitting diode (LED) collimator 1240 may be used as a source of collimated LED light 1256. The LED collimator 1240 may comprise a collimating lens and an LED emitter. The LED may be an inorganic LED, a high brightness LED, a quantum dot LED, or an organic LED. The LED may be a single color LED, a bi-color LED, or a tri-color LED. The LED may be a blue LED, an ultraviolet LED, a white LED, an infrared LED, a red LED, an orange LED, a yellow LED, a green LED, a violet LED, a pink LED, or a purple LED. The LED collimator 1240 may project a beam of collimated LED light 1256 through an f6 lens 1248. The f6 lens 1248 may be a focusing lens. Once the collimated LED light 1256 is transmitted through the f6 lens 1248, the collimated LED light 1156 may be directed into a light focusing objective 1236. The light focusing objective 1236 may focus the collimated LED light 1256 into the printing chamber 1234. The light focusing objective 1236 may focus the collimated LED light 1256 in the sample medium. The light focusing objective 1236 may focus the collimated LED light 1256 in the cell-containing medium. The collimated LED light 1256 may be transmitted through the printing chamber 1234 and into the focusing objective 1232. Once the collimated LED light 1256 exits the focusing objective 1232, the collimated LED light 1256 may be directed onto the long pass dichroic mirror 1224. The collimated LED light 1256 that is reflected off of the long pass dichroic mirror 1224 may be the sample emission 1226. The long pass dichroic mirror 1224 may re-direct the sample emission 1226 into an f5 lens 1244. The f5 lens may be a focusing lens. Once sample emission 1226 is transmitted through the f5 lens 1244, a detection system 1230 detects and/or collects the sample emission 1226 for imaging. The detection system 1230 may comprise at least one photomultiplier tube (PMT). The detection system 1230 may comprise at least one camera. The camera may be a complementary metal-oxide semiconductor (CMOS) camera, a scientific CMOS camera, a charge-coupled device (CCD) camera, or an electron-multiplying charge-coupled device (EM-CCD). The detection system 1230 may comprise at least one array-based detector.
In some designs, the optics may send the laser through a fiber optic cable for easier control of where the light is deposited in the tissue printing vessel.
The systems disclosed herein can utilize a range of focusing objectives, for example, with an increasingly lower magnification; the field of view may be increasingly larger. In some cases, the field of view may be the print area that the microscope is capable of, in a single projection area. In some cases, 5×, 10×, or 20× objectives may be employed. In some cases, objectives with high numerical apertures ranging between at least about 0.6 and about 1.2 or more may be employed. The systems disclosed herein may use an objective lens with a magnification ranging from e.g., about 1× to about 100×. The systems disclosed herein may use an objective lens with a magnification of about 1×. The systems disclosed herein may use an objective lens with a magnification of about 2×. The systems disclosed herein may use an objective lens with a magnification of about 3×. The systems disclosed herein may use an objective lens with a magnification of about 4×. The systems disclosed herein may use an objective lens with a magnification of about 10×. The systems disclosed herein may use an objective lens with a magnification of about 20×. The systems disclosed herein may use an objective lens with a magnification of about 40×. The systems disclosed herein may use an objective lens with a magnification of about 60×. The systems disclosed herein may use an objective lens with a magnification of about 100×.
To maintain structural fidelity of the printed tissues, a water-immersion objective lens may be ideal so as to substantially match the angle of incidence within the cell-containing liquid biogel media 126. A water-immersion objective lens corrected for refractive index changes may be used as printing takes place in liquid media which has a significantly different refractive index from air.
In order for a multi-photon based printer to switch from a printing mode to an imaging mode, x, y raster scanning may be engaged and the DMD or SLM paths may be bypassed or the devices rendered in an off or inactive position, or removing them from the light path such that there is only a single laser line hitting the x, y scanning optics. DMD or SLM paths may also in some instances be used for imaging.
Switching to imaging mode may have several uses during the printing process: 1) imaging can be used to monitor collagen generation rates as collagen naturally produces an emission via second harmonic generation, which is a process when two-photon excitation is scanned across the structures, 2) the edges of printed tissues can be found using imaging mode facilitating the proper linking of blood vessels and other tissue structures along edges of projection spaces, 3) printed tissue structures can be validated for structural integrity and fidelity to the projected images in real-time, and 4) if cells that are temporarily labeled are used, they can be located within the printed tissues for process validation or monitoring.
It may be appreciated that the laser system 116 of the above embodiments may have a variety of points of software control including, but not limited to: The CAD images may be projected by programing changes that are hardwired to the SLM and/or DMD devices; If TAG lenses are used to create a Bessel beam, the current generated to induce the tunable acoustic gradient (TAG) in the TAG lens may be under the control of computer software; The mirrors that direct the laser excitation in the single beam incarnation and may act as an off/on switch for the multi-laser design may be controlled by computer software; The laser intensity via an attenuation wheel and tuning to different frequencies may be controlled by software input; Microscope stage movement may be under software control; Movement of microscope objective or associated fiber optics may be under software control; Edge finding, illumination, and control of the inverted objective by movement or on/off status may be under software control; any imaging or light path controls (mirrors, shutters, scanning optics, SLMs, DMD etc.) may be under control of software.
To accommodate rapid printing, the objective 200 may be equipped with a fiber optic cable.
Depending upon the power input into the fiber optic cable, multi-photon lasers may be capable of inducing irreversible damage to the core of the fiber optic cable. Thus, in some cases, induced wavelength chirping by group delayed dispersion (GDD) may be provided to minimize this potential damage, by effectively dispersing the photons to elongate the laser pulse. This may be used to either minimize damage to cells in the print media or to extend the life of fiber optic cables. In such instances, a GDD device may be provided in the laser system 116 after the SLM or DMD and before entry to the print-head optics 118.
In some cases, three-dimensional printing of the desired tissue may be carried out with a single objective 200 or an objective 200 with an attached fiber optic accessory 250, wherein the one to three different configurations, each associated with a distinct laser line and representing a distinct shape or portion of the tissue may be pulsed though the same objective 200. In such cases, a timed shutter system may be installed such that there is no or minimal interference between images being projected. Thus, laser multiplexing may be employed to allow generation of portions of the tissue structure simultaneously at multiple points while utilizing the same CAD model of the tissue structure. Likewise, the laser multiplexing may utilize different but contiguous CAD based tissue models, minimizing the movement needed for larger structure printing while decreasing overall print time further. For example, a vascular bed may have internal structures such as valves in the larger blood vessels that prevent venous back flow in normal circulation. These valve structures may be printed simultaneously with the blood vessel walls. In such a case, the scaffolding associated with the valve structure and/or blood vessel walls may be difficult to print separately.
The instantaneously formed three-dimensional structure may be repeated throughout the print space during one round of printing. In biological systems, small units may often be repeated throughout the structure. Therefore, repeated generation of a same structure in one print round may be useful for generating functional tissues. Additional, non-repetitive, fine featured structures and subsequent structures from the same cell-print material may be created that line-up with or link to the first structure printed.
In some embodiments, the multi-photon tissue printing print-head 118 may include multiple printing “heads” or sources of multi-photon excitation via a first laser objective 200a, a second laser objective 200b, and a third laser objective 200c as illustrated in
In some embodiments, the multi-photon tissue printing print-head 118 may include a serial array of objectives comprising a first objective 200a, a second objective 200b, and a third objective 200c, as illustrated in
It may be appreciated that in the embodiments described herein, the microscope stage may be able to move, the microscope head may be able to move, and/or an associated fiber optic cable attached to the printing objective may be able to move in order to print larger spaces.
The present disclosure provides methods and systems of printing and using a three-dimensional cell-containing matrix. In an aspect, a method of using a three-dimensional (3D) cell-containing matrix comprises: providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors. Next, the method may comprise directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with computer instructions for printing the 3D cell-containing medical device in computer memory, to form at least a portion of the 3D cell-containing matrix comprising (i) at least a subset of the plurality of cells, and (ii) a polymer formed from the one or more polymer precursors. Next, the method may comprise positioning the 3D cell-containing matrix in a subject.
In another aspect, a method of using a three-dimensional (3D) cell-containing matrix, comprises (i) printing the 3D cell-containing matrix comprising a plurality of cells, and (ii) positioning the 3D cell-containing matrix in a subject.
In another aspect, a method for using a three-dimensional (3D) cell-containing matrix, comprises providing a media chamber comprising a first medium. The first medium may comprise a first plurality of cells and a first polymeric precursor. Next, the method may comprise directing at least one energy beam to the first medium in the media chamber along at least one energy beam path in accordance with computer instructions for printing the 3D cell-containing matrix in computer memory, to subject at least a portion of the first medium in the media chamber to form a first portion of the 3D cell-containing matrix. Next, the method may comprise providing a second medium in the media chamber. The second medium may comprise a second plurality of cells and a second polymeric precursor. The second plurality of cells may be of a different type than the first plurality of cells. Next, the method may comprise directing at least one energy beam to the second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form a second portion of the 3D cell-containing matrix. Next, the method may comprise positioning the first and second portions of the 3D cell-containing matrix in a subject.
In another aspect, a method of using a three-dimensional (3D) cell-containing matrix, comprises (i) printing the 3D cell-containing matrix comprising a first plurality of cells and a second plurality of cells. The first plurality of cells may be different from the second plurality of cells. Next, the method may comprise (ii) positioning the 3D cell-containing matrix in a subject.
The 3D cell-containing matrix may be an alveolar structure, as shown in
The present disclosure provides methods and systems of printing and using a three-dimensional matrix that does not contain cells. The three-dimensional matrix that does not contain cells may have the same structure, dimensions, and physical characteristics as the 3D cell-containing matrices described elsewhere herein.
In another aspect, the 3D cell-containing matrix may form a suture, stent, staple, clip, strand, patch, graft, sheet, tube, pin, or screws. The graft may be selected from the list consisting of skin implant, uterine lining, neural tissue implant, bladder wall, intestinal tissue, esophageal lining, stomach lining, hair follicle embed skin, and retina tissue.
The plurality of cells may be from a subject. The method plurality of cells may be selected from the list consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thin segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes.
The plurality of cells may further be selected from naïve B cells or other immature B cells, memory B cells, plasma B cells, helper T cells and subsets of the same, effector T cells and subsets of the same CD+8 T cells, CD4+ T cells, regulatory T cells, natural killer T cells, naïve T cells or other immature T cells, dendritic cells and subsets of the same, follicular dendritic cells, Langerhans dendritic cells, dermally-derived dendritic cells, dendritic cell precursors, monocyte-derived dendritic cells, monocytes and subsets of the same macrophages and subsets of the same, leukocytes and subsets of the same. The B cells may be selected from the list consisting of naïve B cells, mature B cells, plasma B cells, B1 B cells and B2 B cells. The T cells may be selected from the list consisting of CD8+ and CD4+.
The 3D cell-containing matrix may be from about 1 micrometer (μm) to about 10 centimeters (cm). The 3D cell-containing matrix may be from at least about 5 μm to about 10 cm or more. The 3D cell-containing matrix may be from at least about 10 μm to about 10 cm or more. The 3D cell-containing matrix may be from at least about 100 μm to about 10 cm or more. The 3D cell-containing matrix may be from at least about 500 μm to about 10 cm or more. The 3D cell-containing matrix may be from at least about 1000 μm to about 10 cm or more. The 3D cell-containing matrix may be from at least about 1 cm to about 10 cm or more. The 3D cell-containing matrix may be from about at least 5 to about 10 cm or more.
The 3D cell-containing matrix may be about 1 μm to about 1,000 μm. The 3D cell-containing matrix may be at least about 1 μm. The 3D cell-containing matrix may be at most about 1,000 μm. The 3D cell-containing matrix may be about 1 μm to about 5 μm, about 1 μm to about 10 μm, about 1 μm to about 100 μm, about 1 μm to about 1,000 μm, about 5 μm to about 10 μm, about 5 μm to about 100 μm, about 5 μm to about 1,000 μm, about 10 μm to about 100 μm, about 10 μm to about 1,000 μm, or about 100 μm to about 1,000 μm. The 3D cell-containing matrix may be about 1 μm, about 5 μm, about 10 μm, about 100 μm, or about 1,000 μm.
The 3D cell-containing matrix may be about 0.5 cm to about 10 cm. The 3D cell-containing matrix may be at least about 0.5 cm. The 3D cell-containing matrix may be at most about 10 cm. The 3D cell-containing matrix may be about 0.5 cm to about 1 cm, about 0.5 cm to about 2 cm, about 0.5 cm to about 3 cm, about 0.5 cm to about 4 cm, about 0.5 cm to about 5 cm, about 0.5 cm to about 6 cm, about 0.5 cm to about 7 cm, about 0.5 cm to about 8 cm, about 0.5 cm to about 9 cm, about 0.5 cm to about 10 cm, about 1 cm to about 2 cm, about 1 cm to about 3 cm, about 1 cm to about 4 cm, about 1 cm to about 5 cm, about 1 cm to about 6 cm, about 1 cm to about 7 cm, about 1 cm to about 8 cm, about 1 cm to about 9 cm, about 1 cm to about 10 cm, about 2 cm to about 3 cm, about 2 cm to about 4 cm, about 2 cm to about 5 cm, about 2 cm to about 6 cm, about 2 cm to about 7 cm, about 2 cm to about 8 cm, about 2 cm to about 9 cm, about 2 cm to about 10 cm, about 3 cm to about 4 cm, about 3 cm to about 5 cm, about 3 cm to about 6 cm, about 3 cm to about 7 cm, about 3 cm to about 8 cm, about 3 cm to about 9 cm, about 3 cm to about 10 cm, about 4 cm to about 5 cm, about 4 cm to about 6 cm, about 4 cm to about 7 cm, about 4 cm to about 8 cm, about 4 cm to about 9 cm, about 4 cm to about 10 cm, about 5 cm to about 6 cm, about 5 cm to about 7 cm, about 5 cm to about 8 cm, about 5 cm to about 9 cm, about 5 cm to about 10 cm, about 6 cm to about 7 cm, about 6 cm to about 8 cm, about 6 cm to about 9 cm, about 6 cm to about 10 cm, about 7 cm to about 8 cm, about 7 cm to about 9 cm, about 7 cm to about 10 cm, about 8 cm to about 9 cm, about 8 cm to about 10 cm, or about 9 cm to about 10 cm. The 3D cell-containing matrix may be about 0.5 cm, about 1 cm, about 2 cm, about 3 cm, about 4 cm, about 5 cm, about 6 cm, about 7 cm, about 8 cm, about 9 cm, or about 10 cm.
The 3D cell-containing matrix may be at least about 1 μm or more. The 3D cell-containing matrix may be at least about 5 μm or more. The 3D cell-containing matrix may be at least about 10 μm or more. The 3D cell-containing matrix may be at least about 50 μm or more. The 3D cell-containing matrix may be at least about 100 μm or more. The 3D cell-containing matrix may be at least about 1000 μm or more. The 3D cell-containing matrix may be at least about 0.5 cm or more. The 3D cell-containing matrix may be at least about 1 cm or more. The 3D cell-containing matrix may be at least about 5 cm or more. The 3D cell-containing matrix may be at least about 10 cm or more.
The media chamber comprising a medium of a plurality of cells and one or more polymer precursors may comprise a volume of at least about 0.1 cubic nanometers. The media chamber may comprise a volume of at least about 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, or more cubic nanometers. The media chamber may comprise a volume of at most about 1×1020, 1×1020, 1×1019, 1×1018, 1×1017, 1×1016, 1×1015, 1×1014, 1×1013, 1×1012, 1×1011, 1×109, 1×108, 1×107, 1×106, 1×105, 1×104, 1,000, 100, 90, 80, 70, 60, or less cubic nanometers.
The 3D cell-containing matrix may comprise an agent to promote growth of vasculature or nerves. The agent may be selected from the group consisting of growth factors, cytokines, chemokines, antibiotics, anticoagulants, anti-inflammatory agents, opioid pain-relieving agents, non-opioid pain-relieving agents, immune-suppressing agents, immune-inducing agents, monoclonal antibodies and stem cell proliferating agents.
Another aspect of the present disclosure provides a system for producing one or more 3D cell-containing matrices, comprising a media chamber configured to contain a first medium comprising a first plurality of cells and a first plurality of polymer precursors. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. The system may comprise one or more computer processors operatively coupled to the at least one energy source. The one or more computer processors may be individually or collectively programmed to receive computer instructions for printing a three-dimensional (3D) cell-containing matrices from computer memory. The one or more computer processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam to the first medium in the media chamber along at least one energy beam path in accordance with the computer instruction, to subject at least a portion of the first polymer precursors to form at least a portion of the 3D cell-containing matrices. The one or more computer processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam to a second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D cell-containing matrices. The second medium may comprise a second plurality of cells and a second plurality of polymeric precursors. The second plurality of cells may be of a different type than the first plurality of cell. The one or more computer processors may be individually or collectively programmed to subject the first and second portions of the 3D cell-containing matrices to conditions sufficient to stimulate production of the one or more immunological proteins. The one or more computer processors may be individually or collectively further programmed to extract the one or more immunological proteins from the first and second portions of the 3D cell-containing matrices.
Materials that may be used to print 3D cell-containing matrices or devices include degradable polymers, non-degradable polymers, biocompatible polymers, extracellular matrix components, bioabsorbable polymers, hydrogels, or any combination thereof. Non-limiting examples of bioasborbable polymers include polyesters, polyamino acids, polyanhydrides, polyorthoesters, polyurethanes, and polycarbonates. Non-limiting examples of biocompatible polymers include collagen, hyaluronic acid and other glycosaminoglycans, poly-dl-lactic-co-glycolic acid (PLGA), poly-1-lactic acid (PLLA), polyglycolic acid (PGA), alginate, gelatin, agar, or a combination thereof. The biocompatible polymer may comprise an extracellular matrix component. Non-limiting examples of extracellular matrix components may include proteoglycans such as heparan sulfate, chondroitin sulfate, and keratan sulfate, non-proteoglycan polysaccharide such as hyaluronic acid, collagen, and elastin, fibronectin, laminin, nidogen, or any combination thereof. These extracellular matrix components may be functionalized with acrylate, diacrylate, methacrylate, cinnamoyl, coumarin, thymine, or other side-group or chemically reactive moiety to facilitate cross-linking induced directly by multi-photon excitation or by multi-photon excitation of one or more chemical doping agents. In some cases, photopolymerizable macromers and/or photopolymerizable monomers may be used in conjunction with the extracellular matrix components to create cell-containing structures. Non-limiting examples of photopolymerizable macromers may include polyethylene glycol (PEG) acrylate derivatives, PEG methacrylate derivatives, and polyvinyl alcohol (PVA) derivatives. In some instances, collagen used to create cell containing structure may be fibrillar collagen such as type I, II, III, V, and XI collagen, facit collagen such as type IX, XII, and XIV collagen, short chain collagen such as type VIII and X collagen, basement membrane collagen such as type IV collagen, type VI collagen, type VII collagen, type XIII collagen, or any combination thereof.
The biocompatible polymer may comprise other polymerizable monomers that are synthesized and not native to mammalian tissues, comprising a hybrid of biologic and synthetic materials. The biocompatible polymer may comprise a photoinitiator. Non-limiting examples of photoinitiators may include azobisisobutyronitrile (AIBN), benzoin derivatives, benziketals, hydroxyalkylphenones, acetophenone derivatives, trimethylolpropane triacrylate (TPT), acryloyl chloride, benzoyl peroxide, camphorquinone, benzophenone, thioxanthones, and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone. Hydroxyalkylphenones may include 4-(2-hydroxyethylethoxy)-phenyl-(2-hydroxy-2-methyl propyl) ketone (Irgacure® 295), 1-hidroxycyclohexyl-1-phenyl ketone (Irgacure® 184) and 2,2-dimethoxy-2-phenylacetophenone (Irgacure® 651). Acetophenone derivatives may include 2,2-dimethoxy-2-phenylacetophenone (DMPA). Thioxanthones may include isopropyl thioxanthone.
Once in place, the device may bring two pieces of tissue together, the cells may migrate within or out of the device, interact with other cells locally to promote healing and tissue remodeling around or within the cell containing bio-resorbable device. The cell-containing, bio-resorbable medical devices may be sutures of any length or width, staples, stents of any length or width, clips which may be locking or compressible, patches and grafts of arbitrary shapes and sizes, and/or similar structures intended to be used in a living subject. Single or multi-layered patches and grafts of arbitrary shape and size can be created out of multiple different cells types to promote tissue development, augment tissue function, and/or healing. Grafts may include but are not limited to: skin implant, uterine lining, neural tissue implant, bladder wall, intestinal tissue, esophageal lining, stomach lining, hair follicle embedded skin, retina tissue, or any combination thereof.
The holographically printed grafts and/or patches may comprise a variety of shapes, such as but not limited to oblong, rectangular, oval, any other polygonal shape, or any amorphous shape required to repair or reinforce the site of injury or disease.
To enhance the structural integrity of some devices three-dimensionally printed materials may be thicker or denser and may or may not contain cells at all sites. These cells when printed are trapped in any size aperture to keep cells in place, or allow them to move from the site in which they were originally printed and interact with other cells within their own layer, cells in subsequently or previously printed layers, or with cells in the native tissue that they are eventually implanted in. Cells encapsulated, embedded, trapped, or contained within a mesh net, lattice, matrix, framework of any aperture size or density that allow cells to move through the apertures during the developmental process or be trapped in place. This makes up the base components of a larger structural architecture.
Three-dimensional lithography may be used to generate functional partial organs or organoids that may serve an augmenting or independent physiologic function not necessarily dependent upon site of implantation.
Non-limiting examples of tissues for augmentation or replacement of function include kidney or generative models of kidney tissues, lung tissue or partial or full lung lobes and generative models therein, neural tissues, pancreatic tissues, insulin producing beta islets and associated tissues, thyroid tissues, splenic tissues, liver tissues, tissues of the intestinal tract. All tissues listed necessarily include all structural components and accessory cells necessary to impart functional capabilities, included but not limited to, vasculature large and small as well as lymphatic drainage systems and all associated hollow structures, and nerve and, or immune cells necessary to impart functional capabilities.
In some embodiments, a printed kidney generative model is generated by the methods disclosed herein. The basic structural component of a kidney, including but not limited to: urine collecting ducts, vascularized and dense tissue surrounding urine collecting ducts, and kidney capsule may be separated into separate computer-aided design (CAD) files and printed sequentially, but in any order necessary, with automated computer control programs 1101. Printing may be achieved by signaling computer files to the laser printing system 110, and the structure that mimics the CAD files may be deposited sequentially, but in an order necessary, into the biogel and media chamber 122.
Three-dimensionally printed structures for implantation may be on the order of 1 micron to tens of centimeters or greater in volume. The surface area of complex tissue structures such as the lung take up several square meters and thus the external size of a large printed organ will be necessarily different from the surface area of the functional units. Therefore, the methods and systems provided herein may be designed to cover all structural components within the physiologic range of functional sizes and surface to volume ratios.
Laser-based holography may be used to near-instantaneously polymerize biomatrix materials in set patterns projected from computer aided design (CAD) files by a spatial light modulator or digital mirror device. Multiple print steps and positions may be required to build a full generative model.
Cells may be in any state of genetic or phenotypic differentiation, including undifferentiated, partially differentiated, fully differentiated. Examples of differentiation states include, but are not limited to pluripotent stem cells, totipotent stem cells. Cells may be autologous cells, sourced from a matched donor, cord blood, or an established cell line. Multiple cell types at the same and/or different differentiation state may be used within a single print layer and/or multiple iterative print layers. Cells may be genetically manipulated prior to, during, and, or after the printing process via optical switch technology, clustered regularly interspaced short palindromic repeats (CRISPR) technology, introduction of virus, or other approaches for genetic manipulation. Genetic manipulation is not limited to nuclear DNA and may include mitochondrial DNA or free-floating plasmids or viral DNA not intended for incorporation into nuclear DNA.
Printed structures may comprise cells at high density or variable, including lop-sided cell densities or controlled densities of cells to promote cellular expansion or niche development in specific sites of the device. High or low cell density may be used depending on tissue product needs. Low cell density may be as low as 10,000 cells per cubic centimeter of printed material and as high as 1 billion cells per cubic centimeter of printed materials. Cells may be of one type or mixed and printing may be performed in multiple layers.
Bioprinting materials may contain agents intended to promote growth of vasculature, including microvasculature, and nerves into the printed structure or into the surrounding native architecture. Such agents include but are not limited to: growth factors, cytokines, chemokines, antibiotics, anticoagulants, anti-inflammatory agents, opioid or non-opioid pain-relieving agents, immune-suppressing agents, immune-inducing agents, monoclonal antibodies, and/or stem cell proliferating agents.
The present disclosure provides methods and systems for using a three-dimensional (3D) matrix. In an aspect, a method for using a three-dimensional (3D) matrix comprises providing a media chamber comprising a medium comprising: a) a plurality of cells and a first polymeric precursor. Next, the method comprises b) directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with computer instructions for printing a 3D cell-containing matrix in computer memory. This may form at least a first portion of the 3D cell-containing matrix comprising. Next, the method may comprise providing a second medium in the media chamber, wherein the second medium comprises a second plurality of cells and a second polymeric precursor, wherein the second plurality of cells is of a different type than the first plurality of cells. Next, the method may comprise d) directing at least one energy beam to the second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form a second portion of the 3D cell-containing matrix. Next, the method may comprise e) positioning the first and second portions of the 3D cell-containing matrix in a subject.
The present disclosure provides a method of using a three-dimensional (3D) cell-containing matrix. In an aspect, the method comprises (i) printing the 3D cell-containing matrix comprising a first plurality of cells and a second plurality of cells, wherein the first plurality of cells is different from the second plurality of cells, and (ii) positioning the 3D cell-containing matrix in a subject.
Another aspect of the present disclosure provides a system for producing one or more 3D cell-containing matrix, comprising a media chamber configured to contain a medium comprising a plurality of cells and one or more polymer precursors. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. The system may comprise one or more computer processors operatively coupled to the at least one energy source. The one or more computer processors may be individually or collectively programmed to receive computer instructions for printing a three-dimensional (3D) cell-containing matrix from computer memory. The one or more computer processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam to the medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the polymer precursors to form at least a portion of the 3D cell-containing matrix. The one or more computer processors may be individually or collectively programmed to subject the at least portion of the 3D cell-containing matrix to conditions sufficient to stimulate production of the one or more immunological proteins. The one or more computer processors may be individually or collectively further programmed to extract one or more immunological proteins from the at least portion of the 3D cell-containing matrix.
Another aspect of the present disclosure provides a system for producing one or more 3D cell-containing matrices, comprising: a media chamber configured to contain a first medium comprising a first plurality of cells and a first plurality of polymer precursors. The system may comprise at least one energy source configured to direct at least one energy beam to the media chamber. The one or more computer processors operatively coupled to the at least one energy source, wherein the one or more computer processors are individually or collectively programmed to receive computer instructions for printing a three-dimensional (3D) cell-containing matrix from computer memory. The one or more computer processors are individually or collectively programmed direct the at least one energy source to direct the at least one energy beam to the first medium in the media chamber along at least one energy beam path in accordance with the computer instruction, to subject at least a portion of the first polymer precursors to form at least a portion of the 3D cell-containing matrix. The one or more processors may be individually or collectively programmed to direct the at least one energy source to direct the at least one energy beam to a second medium in the media chamber along at least one energy beam path in accordance with the computer instructions, to subject at least a portion of the second medium in the media chamber to form at least a second portion of the 3D cell-containing matrix, wherein the second medium comprises a second plurality of cells and a second plurality of polymeric precursors, wherein the second plurality of cells is of a different type than said first plurality of cell.
In an aspect, the present disclosure provides a method of printing an organ and/or an organoid. The method may comprise polymerization of a photopolymerizable material by a laser light source. The organ and/or the organoid may be two-dimensional or three-dimensional. The organ and/or the organoid may be a lymph node. The organoid may be an islet of Langerhans. The organoid may be a hair follicle. The organ and/or the organoid may be a tumor and/or a tumor spheroid. The organoid may be a neural bundle and support cells such as, but not limited to Schwann cells and glial cells including satellite cells, olfactory ensheathing cells, enteric glia, oligodendroglia, astroglia, and/or microglia. The organoid may be a nephron. The organoid may be an alveolus. The organoid may be a liver organoid. The organoid may be an intestinal crypt. The organ and/or the organoid may be a primary lymphoid organ, a secondary lymphoid organ such as a spleen, a liver, a pancreas, a gallbladder, an appendix, a brain, a small intestine, a large intestine, a heart, a lung, a bladder, a kidney, a bone, a cochlea, an ovary, a thymus, a trachea, a cornea, a heart valve, skin, a ligament, a tendon, a muscle, a thyroid gland, a nerve, and/or a blood vessel.
Organization of an organ or organoid through the printing process, disclosed herein, may require or be implemented by the sequential deposition of at least about 1, 10, 50, 100, 200, 300, 500, 600, 700, 800, 900, 1000, 10000, 100000, 1000000 or more layers of cells. Organization of a lymphoid organ through the printing process may require or be implemented by the sequential deposition of between 1 and 100 layers of cells. The size of a layer of cells may be tissue dependent. The size of a layer of cells may comprise a larger three-dimensional structure that may be one layer of cells or may comprise multiple layers of cells. The layer of cells may comprise about at least 10, 102, 103, 104, 105, 106, 107, 108, 109, 1010, or more cells. Where precise placement of each cell type relative to the other is desired, cells should be printed in sequential steps with a wash step in between to remove the previously used media. Alternately, two or more cell types of different sizes may be printed simultaneously using two photopolymerizable materials of different polymerization wavelength and pore size, such that the larger cell type may become encapsulated in the pore of larger size and the smaller cell type may become encapsulated in the pore of smaller size. Cells are encapsulated in pores in accordance with the size of their nucleus, as the cytoskeleton is able to remodel based on the available space.
The laser light source may use high-energy green, blue, white, or lower frequencies of ultraviolet light to induce polymerization of the photopolymerizable material, or a high-resolution multi-photon light source of any wavelength may be used. The high-resolution, non-toxic multi-photon projection technology is uniquely suited to print detailed germinal centers that allow for the development of light and dark zones that recapitulate natural B cell affinity maturation. This method may be used in combination with microfluidic manipulation of vasculature, whether lymphatic or circulatory, to create functional collagen-based organs and/or organoids, such as lymph node organoids. Nontoxic wavelengths of visible and ultraviolet light may alternatively be used to print cell-containing structures or biogels to be seeded with cells.
The present disclosure encompasses the printing of organs or organoids by two- or three-dimensional projection of a laser beam 1002 from an energy source 1000 (i.e., a laser, especially a high-resolution multi-photon laser beam but also including other possible light sources). The laser beam 1002 is intended to induce polymerization of a cell-containing media 126 in a predefined pattern to produce a final product that resembles in structure or function native, especially human organs or organoids. Human organs and organoids are herein defined as small, fully functional, immune cell-containing structures that are capable of mounting and carrying out a functional and complete biological response, e.g., gaseous exchange or filtration of a fluid such as, but not limited to a biological fluid.
Where cells are printed within a network, the network may be arranged in a reticular, amorphous, or organized net. An organized net is any net with a repeated geometric or other pattern, including hexagonal, square/rectangular, rhomboid, circular, semi-circular, spherical, semi-spherical, or any combination of shapes therein. A reticular or amorphous net is created without significant regard for geometric pattern, with the primary purpose of being created rapidly and being capable of encapsulating and containing cells. Additionally, some nets may appear amorphous to the untrained observer but, in fact, have a specific shape or design designed to facilitate cellular interactions or movement between or within cellular niches.
Native architecture may be obtained from imaging data and rendered into two- or three-dimensional images with defined edges and/or grey areas, which are edges that are not precisely defined, but fall somewhere within a designated range, for projection into a polymerizable hydrogel.
Multiple organoid units may be printed within a single structure to produce larger organs, up to and including a fully sized organ. Multiple organoids units may be printed within a single structure to produce larger organs, up to and including a fully sized nephron or alveolus. The limiting factor for size is vascularization, which is essential for tissues larger than 200 micron in width due to the diffusion limits of most gases and nutrients. The completed organ or organoid may be between 50 and 200 microns thick without vascularization. If vascularized, the tissue may be 50 microns to 10 cm thick, may be of any shape or size, and may contain both circulatory and lymphatic vasculature. Vasculature may include valves and/or sphincters. In some embodiments, vasculature may be achieved by printing endothelial cells or precursors thereof within a net intended to closely resemble native microvasculature, the structure of which is obtained from high-resolution imaging data. Capillary beds may branch from larger arterioles and arteries and branch into venules and veins in accordance with the relevant anatomy.
In an aspect, the present disclosure provides a method of producing a population of 3D matrices, e.g., a nephron structure, an alveolar structure, and/or a capillary structure. The method may comprise providing a medium. The medium may comprise a plurality of cells and one or more polymer precursors. The polymer precursors may be biogel precursors. The method may comprise depositing at least one layer of the medium onto a substrate. The substrate may be a media chamber. The substrate may be a tissue culture plate or well. The substrate may be a microfluidic chamber. The substrate may be a microfluidic chip. The substrate may be a polymeric scaffold.
The method may comprise subjecting the at least one layer of the medium to an energy source to form at least a portion of the 3D matrix and a biogel, formed from the one or more polymer precursors. In some examples, the 3D matrix may comprise at least a subset of the plurality of cells. Alternatively, in yet another example, the 3D matrix may not comprise a plurality of cells. The method may comprise a layer-by-layer deposition of the medium patterned according to a three-dimensional (3D) projection. The 3D projection may be in accordance with computer instructions for printing the 3D matrix in computer memory. The layer-by-layer deposition of the medium patterned according to a three-dimensional (3D) projection and formation of the biogel may be done by subjecting the medium to the energy source (e.g., a laser). For example, the laser may be projected along a light path in accordance to the 3D projection in order to polymerize the polymer precursors in the medium and form at least a portion of the 3D matrix comprising the plurality of cells and the biogel. In another aspect, the method may comprise a manual layer-by-layer deposition of the medium using a pipette or a capillary tube to deposit at least one microdroplet of the medium onto a substrate. In this example, a 3D projection comprising the pattern to be printed may not be necessary, rather the microdroplets of the medium may be subjected to an energy source (e.g., a heat or light source) once deposited, in order to form at least a portion of the 3D matrix comprising the biogel and the plurality of cells. In yet another aspect, the method may comprise a layer-by-layer deposition of the medium by use of a microfluidic device. The microfluidic device may control total volume of a microdroplet of the medium that is deposited in a layer-by-layer manner onto a substrate. The microfluidic device may control total number of cells per each microdroplet of the medium that is deposited in a layer-by-layer manner onto a substrate. In yet another aspect, the method may comprise a layer-by-layer deposition of the medium by use of a printer. The printer may be a laser printer, a layer-by-layer inkjet printer (e.g., a thermal inkjet printer or a piezoelectric inkjet printer), a layer-by-layer extrusion 3D printer (e.g., a pneumatic extrusion bioprinter or a mechanical extrusion bioprinter), or any combination thereof. Microdroplets of medium may be combined with other microdroplets such that cells may be organized into functional multi-cellular tissue niches.
Layered microdroplets may be cured, fused, solidified, gelled, crosslinked, polymerized, or photopolymerized in sequence or all at once using an energy source or via a chemical (e.g., a crosslinker or a photoinitiator). The energy source may be an energy beam, a heat source, or a light source. The energy source may be a laser, such as a fiber laser, a short-pulsed laser, or a femto-second pulsed laser. The energy source may be a heat source, such as a thermal plate, a lamp, an oven, a heated water bath, a cell culture incubator, a heat chamber, a furnace, a drying oven, or any combination thereof. The energy source may be a light source, such as white light, infrared light, ultraviolet (UV) light, near infrared (NIR) light, visible light, a light emitting diode (LED), or any combination thereof. The energy source may be a sound energy source, such as an ultrasound probe, a sonicator, an ultrasound bath, or any combination thereof. The energy source may be an electromagnetic radiation source, such as a microwave source, or any combination thereof.
The medium may be physically polymerized in order to form a biogel. The medium may be polymerized by a heat source in order to form a biogel. The medium may be chemically polymerized in order to form a biogel; for example, by use of a cross-linker. Non-limiting examples of cross-linkers include 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), glutaraldehyde, and 1-ethyl-3-3-dimethyl aminopropyl carbodiimide (EDAC). The medium may comprise a photoinitiator, a cross-linker, collagen, hyaluronic acid and other glycosaminoglycans, poly-dl-lactic-co-glycolic acid (PLGA), poly-1-lactic acid (PLLA), polyglycolic acid (PGA), alginate, gelatin, agar, or any combination thereof. The biogel may comprise a photoinitiator, a cross-linker, collagen, hyaluronic acid and other glycosaminoglycans, poly-dl-lactic-co-glycolic acid (PLGA), poly-1-lactic acid (PLLA), polyglycolic acid (PGA), alginate, gelatin, agar, or any combination thereof. The polymer precursor may be collagen, hyaluronic acid and other glycosaminoglycans, poly-dl-lactic-co-glycolic acid (PLGA), poly-1-lactic acid (PLLA), polyglycolic acid (PGA), alginate, gelatin, agar, or any combination thereof.
The biogel may be a hydrogel. The biogel may be a biocompatible hydrogel. The biogel may be a polymeric hydrogel. The biogel may be a hydrogel bead. The biogel may be a hydrogel nanoparticle. The biogel may be a hydrogel droplet. The biogel may be a hydrogel microdroplet.
The microdroplet may have a diameter measuring at least about 10 microns (μm) to about 1000 μm. The microdroplet may have a diameter measuring at least about 10 μm. The microdroplet may have a diameter measuring at most about 1,000 μm. The microdroplet may have a diameter measuring about 10 μm to about 50 μm, about 10 μm to about 100 μm, about 10 μm to about 200 μm, about 10 μm to about 300 μm, about 10 μm to about 400 μm, about 10 μm to about 500 μm, about 10 μm to about 600 μm, about 10 μm to about 700 μm, about 10 μm to about 800 μm, about 10 μm to about 900 μm, about 10 μm to about 1,000 μm, about 50 μm to about 100 μm, about 50 μm to about 200 μm, about 50 μm to about 300 μm, about 50 μm to about 400 μm, about 50 μm to about 500 μm, about 50 μm to about 600 μm, about 50 μm to about 700 μm, about 50 μm to about 800 μm, about 50 μm to about 900 μm, about 50 μm to about 1,000 μm, about 100 μm to about 200 μm, about 100 μm to about 300 μm, about 100 μm to about 400 μm, about 100 μm to about 500 μm, about 100 μm to about 600 μm, about 100 μm to about 700 μm, about 100 μm to about 800 μm, about 100 μm to about 900 μm, about 100 μm to about 1,000 μm, about 200 μm to about 300 μm, about 200 μm to about 400 μm, about 200 μm to about 500 μm, about 200 μm to about 600 μm, about 200 μm to about 700 μm, about 200 μm to about 800 μm, about 200 μm to about 900 μm, about 200 μm to about 1,000 μm, about 300 μm to about 400 μm, about 300 μm to about 500 μm, about 300 μm to about 600 μm, about 300 μm to about 700 μm, about 300 μm to about 800 μm, about 300 μm to about 900 μm, about 300 μm to about 1,000 μm, about 400 μm to about 500 μm, about 400 μm to about 600 μm, about 400 μm to about 700 μm, about 400 μm to about 800 μm, about 400 μm to about 900 μm, about 400 μm to about 1,000 μm, about 500 μm to about 600 μm, about 500 μm to about 700 μm, about 500 μm to about 800 μm, about 500 μm to about 900 μm, about 500 μm to about 1,000 μm, about 600 μm to about 700 μm, about 600 μm to about 800 μm, about 600 μm to about 900 μm, about 600 μm to about 1,000 μm, about 700 μm to about 800 μm, about 700 μm to about 900 μm, about 700 μm to about 1,000 μm, about 800 μm to about 900 μm, about 800 μm to about 1,000 μm, or about 900 μm to about 1,000 μm. The microdroplet may have a diameter measuring about 10 μm, about 50 μm, about 100 μm, about 200 μm, about 300 μm, about 400 μm, about 500 μm, about 600 μm, about 700 μm, about 800 μm, about 900 μm, or about 1,000 μm.
The microdroplet may have a volume of about 1 microliter (μl) to about 500 μl. The microdroplet may have a volume of at least about 1 μl. The microdroplet may have a volume of at most about 500 μl. The microdroplet may have a volume of about 1 μl to about 2 μl, about 1 μl to about 3 μl, about 1 μl to about 4 μl, about 1 μl to about 5 μl, about 1 μl to about 10 μl, about 1 μl to about 20 μl, about 1 μl to about 25 μl, about 1 μl to about 50 μl, about 1 μl to about 75 μl, about 1 μl to about 100 μl, about 1 μl to about 500 μl, about 2 μl to about 3 μl, about 2 μl to about 4 μl, about 2 μl to about 5 μl, about 2 μl to about 10 μl, about 2 μl to about 20 μl, about 2 μl to about 25 μl, about 2 μl to about 50 μl, about 2 μl to about 75 μl, about 2 μl to about 100 μl, about 2 μl to about 500 μl, about 3 μl to about 4 μl, about 3 μl to about 5 μl, about 3 μl to about 10 μl, about 3 μl to about 20 μl, about 3 μl to about 25 μl, about 3 μl to about 50 μl, about 3 μl to about 75 μl, about 3 μl to about 100 μl, about 3 μl to about 500 μl, about 4 μl to about 5 μl, about 4 μl to about 10 μl, about 4 μl to about 20 μl, about 4 μl to about 25 μl, about 4 μl to about 50 μl, about 4 μl to about 75 μl, about 4 μl to about 100 μl, about 4 μl to about 500 μl, about 5 μl to about 10 μl, about 5 μl to about 20 μl, about 5 μl to about 25 μl, about 5 μl to about 50 μl, about 5 μl to about 75 μl, about 5 μl to about 100 μl, about 5 μl to about 500 μl, about 10 μl to about 20 μl, about 10 μl to about 25 μl, about 10 μl to about 50 μl, about 10 μl to about 75 μl, about 10 μl to about 100 μl, about 10 μl to about 500 μl, about 20 μl to about 25 μl, about 20 μl to about 50 μl, about 20 μl to about 75 μl, about 20 μl to about 100 μl, about 20 μl to about 500 μl, about 25 μl to about 50 μl, about 25 μl to about 75 μl, about 25 μl to about 100 μl, about 25 μl to about 500 μl, about 50 μl to about 75 μl, about 50 μl to about 100 μl, about 50 μl to about 500 μl, about 75 μl to about 100 μl, about 75 μl to about 500 μl, or about 100 μL to about 500 μl. The microdroplet may have a volume of about 1 μl, about 2 μl, about 3 μl, about 4 μl, about 5 μl, about 10 μl, about 20 μl, about 25 μl, about 50 μl, about 75 μl, about 100 μl, or about 500 μl.
The biogel may be a solution with a viscosity ranging from at least about 1×10−3 Pascal-second (Pa·s) to about 100,000 Pa·s or more when measured at about 25 degrees Celsius (° C.). When measured at about 25 degrees Celsius (° C.), the biogel may have a viscosity of about 0.001 Pa·s to about 100,000 Pa·s. When measured at about 25 degrees Celsius (° C.), the biogel may have a viscosity of at least about 0.001 Pa·s. When measured at about 25 degrees Celsius (° C.), the biogel may have a viscosity of at most about 100,000 Pa·s. When measured at about 25 degrees Celsius (° C.), the biogel may have a viscosity of about 0.001 Pa·s to about 0.01 Pa·s, about 0.001 Pa·s to about 0.1 Pa·s, about 0.001 Pa·s to about 1 Pa·s, about 0.001 Pa·s to about 10 Pa·s, about 0.001 Pa·s to about 100 Pa·s, about 0.001 Pa·s to about 1,000 Pa·s, about 0.001 Pa·s to about 10,000 Pa·s, about 0.001 Pa·s to about 50,000 Pa·s, about 0.001 Pa·s to about 100,000 Pa·s, about 0.01 Pas to about 0.1 Pa·s, about 0.01 Pa·s to about 1 Pa·s, about 0.01 Pas to about 10 Pa·s, about 0.01 Pas to about 100 Pa·s, about 0.01 Pa·s to about 1,000 Pa·s, about 0.01 Pa·s to about 10,000 Pa·s, about 0.01 Pa·s to about 50,000 Pa·s, about 0.01 Pa·s to about 100,000 Pa·s, about 0.1 Pa·s to about 1 Pa·s, about 0.1 Pa·s to about 10 Pa·s, about 0.1 Pa·s to about 100 Pa·s, about 0.1 Pa·s to about 1,000 Pa·s, about 0.1 Pas to about 10,000 Pa·s, about 0.1 Pa·s to about 50,000 Pa·s, about 0.1 Pa·s to about 100,000 Pa·s, about 1 Pa·s to about 10 Pa·s, about 1 Pa·s to about 100 Pa·s, about 1 Pa·s to about 1,000 Pa·s, about 1 Pa·s to about 10,000 Pa·s, about 1 Pa·s to about 50,000 Pa·s, about 1 Pa·s to about 100,000 Pa·s, about 10 Pa·s to about 100 Pa·s, about 10 Pa·s to about 1,000 Pa·s, about 10 Pa·s to about 10,000 Pa·s, about 10 Pa·s to about 50,000 Pa·s, about 10 Pa·s to about 100,000 Pa·s, about 100 Pa·s to about 1,000 Pa·s, about 100 Pa·s to about 10,000 Pa·s, about 100 Pa·s to about 50,000 Pa·s, about 100 Pa·s to about 100,000 Pa·s, about 1,000 Pa·s to about 10,000 Pa·s, about 1,000 Pa·s to about 50,000 Pa·s, about 1,000 Pa·s to about 100,000 Pa·s, about 10,000 Pa·s to about 50,000 Pa·s, about 10,000 Pa·s to about 100,000 Pa·s, or about 50,000 Pa·s to about 100,000 Pa·s. When measured at about 25 degrees Celsius (° C.), the biogel may have a viscosity of about 0.001 Pa·s, about 0.01 Pa·s, about 0.1 Pa·s, about 1 Pa·s, about 10 Pa·s, about 100 Pa·s, about 1,000 Pa·s, about 10,000 Pa·s, about 50,000 Pa·s, or about 100,000 Pa·s.
The biogel may be a hydrogel comprising a plurality of cells. The biogel may be a hydrogel comprising a plurality of non-hydrogel beads. The biogel may be a hydrogel comprising a plurality of non-hydrogel nanoparticles. The biogel may be a hydrogel comprising a plurality of non-hydrogel microparticles. The biogel may be a hydrogel comprising a plurality of non-hydrogel nanorods. The biogel may be a hydrogel comprising a plurality of non-hydrogel nanoshells. The biogel may be a hydrogel comprising a plurality of liposomes. The biogel may be a hydrogel comprising a plurality of non-hydrogel nanowires. The biogel may be a hydrogel comprising a plurality of non-hydrogel nanotubes. The biogel may be a gel in which the liquid component is water. A biogel may be a network of polymer chains in which water is the dispersion medium. The network of polymer chains maybe a network of hydrophilic polymer chains. The network of polymer chains maybe a network of hydrophobic polymer chains. The biogel may be a degradable hydrogel. The biogel may be a non-degradable hydrogel. The biogel may be a resorbable hydrogel. The biogel may be a hydrogel comprising naturally-derived polymers such as collagen.
In some examples, the methods and systems provided herein are used to print three-dimensional (3D) non-biological structures. The 3D non-biological structure may be a “smart” filter. The 3D non-biological structure may be a bioreactor. The 3D non-biological structure may be a biofilter. As used herein, the term “non-biological structure” refers to a structure that does not contain living cells.
Surface area to volume changes can speed or slow a chemical reaction with larger surface area to volume ratios increasing the speed, lower surface area to volume ratios decreasing the speed. Increased surface area to volume ratios are used in devices such as catalytic converters and bioreactors for cell growth. Cell growth is often dependent on efficient distribution of oxygen and nutrients while wastes are removed. Therefore, three-dimensional multi-channeled systems, as described herein, provide improved efficiency for cell growth.
Reproducible, thin-walled materials of complex or multi-layered systems are difficult to create with consistency. Our process can produce layers of thin materials in a repeatable manner with numerous applications in smart filter, bio-filtration, and bioreactor devices designed for cell differentiation and or expansion. Smart filtration or bio-filtration systems benefit significantly from high surface area to volume ratios and can improve chemical processes such as osmosis, chemical separation, and chemical sequestration. Similarly, in biological processes such as cell growth and development highly porous and, or high surface-area to volume ratio structures that allow for gas and nutrient exchange promote cell growth and development.
Deposition of materials using three-dimensional lithography or holographic lithography improves consistency and surface area to volume ratios of small capillary beds relative to surrounding surface areas. Holographic lithography can quickly produce structures with numerous channels of various sizes in a given material or complex channel systems that allow for alterations in flow rate and sheer forces that inform cell development and division. In addition, chemical separation and distribution may be facilitated by complex channel and capillary systems. This represents an improvement over industrial processes to build these filters are based on random materials deposition and organization such that there can be heterogeneity, and or lack of control over small features that, when repeated improve performance of filtration, separation, or systems that require chemical reactions to occur.
In an aspect, the present disclosure provides methods and systems used to generate 3D structures comprising subtractive printing. In some examples, the subtractive printing is laser ablation. In some aspects, the subtractive printing is 3D holographic laser ablation.
Targeted laser-based ablation of materials is a useful manufacturing process. Channels, pores, holes and tubes can be built in a solid material using the process of laser ablation. Three-dimensional holographic laser ablation has numerous advantages over conventional methods, including increased speed and resolution of the ablation process.
The present disclosure provides methods for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function. A method for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, may comprise (a) using at least a number of vessels coupled to the subunit over the surface to generate a computer model of the 3D structure comprising the subunit and the vessels; and (b) using the computer model from (a) to print the 3D structure, which 3D structure is implantable in a body of a subject.
The present disclosure also provides methods for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function. A method for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function may comprise using at least a number of vessels coupled to the subunit over the surface to generate a superunit comprising the subunit and the vessels in computer memory; and using one or more computer processors to combine the superunit generated in (a) with one or more other superunits to generate a computer model of the 3D structure corresponding to the biological material.
The present disclosure also provides methods for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function. A three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function may comprise using at least a number of vessels coupled to said subunit over said surface to generate a computer model of said 3D structure comprising said subunit and said vessels; and using one or more computer processors to transmit said 3D structure to a printer to print said 3D structure according to said computer model from (a), wherein said 3D structure is implantable in a body of a subject.
The 3D structure may be printed using methods and systems described elsewhere herein based at least in part on a 3D model. The 3D model may comprise features of the 3D structure. For example, a 3D model of a kidney can have glomerulus subunits combined with other vasculature to form nephron superunits that can be combined to form a 3D model of a kidney. The 3D structure may correspond to the 3D model. For example, adding a plurality of capillaries to the 3D model can add the same capillaries to the 3D structure when it is printed.
The biological material may be a biological material found in an animal or a human. The biological material may be an organ or organoid as described elsewhere herein (e.g., a kidney, a lung, a pancreas, a thyroid). The biological material may comprise blood vessels. The subunits of the biological material may be named subunits (e.g., an alveolus, a glomerulus, a glomerulus with a Bowman's capsule around the glomerulus) or other subunits (e.g., a volume of a tissue that does not have a recognized name). The subunits may be of an organ or an organoid. Identification of one or more subunits may be determined by factors comprising capillary location, capillary density, lymphatic location, lymphatic density, association of one or more cells into a barrier (e.g., a wall of an artery), and the like. For example, finding a concentration of capillaries or other vessels in a kidney can indicate the presence of a nephron functional unit. The generating a computer model may further comprise using at least in part a generalized location of the vessels (e.g., capillaries) coupling to the subunit (e.g., glomerulus), the walls of the subunit (e.g., a Bowman's capsule), or both to identify the surface. The determining may comprise using at least in part a plurality of 3D estimations derived from a diameter approximation of the subunit or comparing a volume calculation of the 3D structure to a predetermined range of volumes of the biological material to determine the surface area. For example, the capillaries of a glomerulus may be destroyed in the process of preparing histological samples, so an estimation of the size of the glomerulus capillary knot can be generated using the void left behind in the histology sample. In another example, a computer based calculation of the total surface area of the lungs divided by the number of alveoli, taking into account the efficacy of each alveolus at exchanging gasses, can give an estimation of the active surface area of alveoli in the lungs. In another example, a series of different volumes of glomerulus can be screened against the total size of a kidney and a needed filtration rate, and the ideal volume can be selected based in part on those criteria. The vessel may be a capillary, and the method may further comprise determining a length of the capillary comprising using an oxygen exchange rate between the capillary's volume of blood and the subunit, where the subunit couples to the capillary. For example, knowing the size of an alveolus and that capillaries can exchange 0.2 mL of air over a 1 mm length, a length of capillary can be determined to provide a desired exchange volume.
The biological function may be at least a part of an overall function of an organ. The function may be an exchange of gasses. For example, providing a gas diffusion membrane is a function of alveoli, which is a part of the overall function of a lung. The gasses may be oxygen, nitrogen, carbon dioxide, and the like.
In some case, the function may be an exchange of metabolically active compounds. For example, a kidney uses a length of capillary blood vessels to remove waste from the blood stream for concentration and disposal. The metabolically active compounds may comprise nutrients, sugars, salts, amino acids, waste compounds, and the like. The nutrients may be vitamins, proteins, fats, minerals, and the like. The sugars may be monosaccharides (e.g., glucose, fructose), disaccharides (e.g., lactose, sucrose), or polysaccharides. The salts may be nutrient salts, mineral salts, waste salts, or the like. The amino acids may be naturally occurring amino acids (e.g., arginine, tyrosine) or non-natural amino acids. The waste compounds may be compounds generated by the subject (e.g., uric acid) or compounds from an external source (e.g., bacteria, toxins). The function may be a filtration of plasma. For example, a nephron can filter waste and toxins out of blood plasma.
The function may be generating one or more biologically relevant materials.
Biologically relevant materials may comprise hormones, antibodies, immunological proteins, and the like. The function may be a function of an organ. For example, the determination of the function of a lung can comprise properties such as the tidal volume of the lung. The method may comprise using at least in part a plurality of 3D estimations derived from a diameter approximation of the subunit, comparing a volume calculation of the 3D structure to a predetermined range of volumes of the biological material, and the like. The volume may comprise a tidal volume of air in a lung. The volume may comprise a residual volume of air in a lung.
The subunit may have a property related to the biological function of the subunit and such property may be used to determine a surface area of a subunit. The property of the one or more subunits of the biological material may relate to the function of the subunit. For example, the ability of a nephron to exchange nutrients and waste in blood can depend on the surface area of capillaries within a glomerulus within the nephron. In this example, the surface area is a property of the nephron subunit. The property may be a surface area, a density of cells, a density of functional components, and the like. The property may comprise a plurality of properties. The property may be used to determine a surface area of the subunit. For example, the total capillary surface area of a glomerulus can be determined by determining the amount of nutrient and waste exchange needed and dividing that by the nutrient and waste exchanged per unit surface area of the capillary. In another example, the surface area of an alveolus and its associated capillaries can be determined by finding the amount of gas exchange needed and dividing it by the gas exchange for a given unit area.
The property may be determined by measuring the property from a sample (e.g., a histology slide), using one or more computer processors to generate one or more parameters (e.g., a computer model generating a capillary density) or one or more estimations of the parameters, or a combination thereof. The one or more parameters may be filtrate volumes, ranges of structural sizes, packing densities, gross volume measurements, and the like. Filtrate volumes may be volumes required to filter an amount of a material out of a liquid (e.g., waste salts from blood). Ranges of structural sizes may be a range within which the subunit fits. Ranges of structural size may be at least about 10 nm, 100 nm, 1 μm, 10 μm, 25 μm, 50 μm, 75 μm, 100 μm, 150 μm, 200 μm, 250 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, 1 mm, 5 mm, 10 mm, or more. Ranges of structural size may be at most about 10 mm, 5 mm, 1 mm, 900 μm, 800 μm, 700 μm, 600 μm, 500 μm, 400 μm, 300 μm, 250 μm, 200 μm, 150 μm, 100 μm, 75 μm, 50 μm, 25 μm, 10 μm, 1 μm, 100 nm, 10 nm, or less. Ranges of structural size may be a range from any two proceeding values. For example, a range of structural size may be from 10 μm to 500 μm. The packing densities may be a density of at least one feature. Kidney structures that may have a structural size as described above may be glomerular capillary wall thickness, glomerular capillary inner diameter, glomerular capsule diameter, glomerular capsule wall thickness, glomerular capillary length, convoluted proximal tubule length, convoluted proximal tubule diameter, straight proximal tubule length, straight proximal tubule diameter, loop of Henle length, loop of Henle diameter, straight distal tubule length, straight distal tubule diameter, convoluted distal tube length, convoluted distal tubule diameter, and the like. The packing densities may be at least about 1 feature per 1 μm3, per 10 μm3, per 50 μm3, per 75 μm3, per 100 μm3, per 150 μm3, per 200 μm3, per 250 μm3, per 500 μm3, per 750 μm3, per 1,000 μm3, per 2,500 μm3, per 5,000 μm3, per 10,000 μm3, per 100,000 μm3, or more. The packing densities may be at most about 1 feature per 100,000 μm3, 10,000 μm3, per 5,000 μm3, per 2,500 μm3, per 1,000 μm3, per 750 μm3, per 500 μm3, per 250 μm3, per 200 μm3, per 150 μm3, per 100 μm3, per 75 μm3, per 50 μm3, per 10 μm3, per 1 μm3, or less. For example, a packing density of a 10 μm3 nephron can be 1 nephron per 10 μm3. Gross volume measurements may be measurements of a volume of an existing tissue. For example, the gross volume of a lung of a patient can be found by imaging the lung and extracting a volume based on the image.
The vessels may comprise one or more blood vessels. The vessels may comprise one or more lymphatic vessels. The blood vessels may comprise one or more capillary blood vessels. The blood vessels may comprise capillary blood vessels and larger blood vessels. For example, a 3D model corresponding to an arterial blood vessel can be formed with capillary blood vessels surrounding the arterial blood vessel. The blood vessels may be of a length up to the length of the 3D model. For example, a blood vessel can run the entire length of a 3D model corresponding to a kidney. The blood vessels may be configured to provide a similar oxygen exchange rate between the blood vessels and the surrounding tissue as blood vessels in a biological sample. For example, if a human thyroid has blood vessels that provide about 0.1 L/hr of oxygen to the thyroid tissue, the blood vessels in the 3D structure can be configured to also provide about 0.1 L/hr to the 3D structure.
The blood vessels may be placed on a subunit. For example, a series of capillaries can be placed to cover an alveolus. The blood vessels may be placed such that the blood vessels have a similar volume to a volume in a biological sample. For example, the coverage of a human alveolus in capillaries can be measured, and the 3D structure can have a number of capillaries that fill a volume that is equal to the capillaries on the human alveolus. The blood vessels may be configured to produce a similar function to blood vessels in the biological material.
The blood vessels may be configured to allow a subunit to share a blood flow with at least one other subunit. The sharing of blood flow may be through a larger blood vessel. For example, two adjacent nephrons can use one large blood vessel to supply blood to the capillaries of both nephrons. The vessel may be a capillary. The number of vessels coupling to the subunit may be determined by using a total surface area of a plurality of capillaries placed within a space. For example, the number of capillaries to be placed on a subunit can be determined by defining the surface area of the subunit and determining how many capillaries can fit in or around that surface area or around the space surrounding the surface area. In another example, the number of capillaries may be determined by determining the number of capillaries that will provide a certain level of oxygen to the subunit. The method may comprise determining a length of a vessel (e.g., a blood vessel, a lymphatic vessel). The method may comprise determining the length of a capillary using an oxygen exchange rate between the capillary's volume of blood and the subunit coupled to the capillary.
The superunit may be a combination of at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 100, 1,000, 10,000, 100,000, 1,000,000, or more subunits. The superunit may be generated by computing a packing density for a plurality of subunits. For example, the packing density of a subunit can be computed based on the shape and volume of the subunit, and a superunit can be formed that maximizes the packing of the subunits into a given space. The superunit may be generated by comping another parameter (e.g., exposure of the plurality of subunits to a membrane). For example, an alveolus can be combined with other alveoli to form an alveolar sac. In this example, the alveoli can be combined to maximize exposure to air.
The computer model of superunit may be combined with at least about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 50, 100, 1,000, 10,000, 100,000, 1,000,000, or more other computer models of superunits to generate a computer model of the 3D structure corresponding the biological material. A single superunit may generate a computer model of the 3D structure. The 3D structure may approximate the biological material. For example, 1.2 million nephrons can be combined to generate a structure corresponding to a kidney. The 3D structure may be configured to maintain a blood pressure within and/or outside the 3D structure. The maintenance of blood pressure may be important for making the 3D structure compatible with being implanted within a subject. The 3D structure may correspond to the biological material. The 3D structure may have structure derived from a structure found within a human. The 3D structure may be derived from images of a structure within a human, measurements of a structure outside a human, or a combination thereof. For example, measurements from histopathological slides can be combined with MRI images to form a 3D structure corresponding to a thyroid.
The combining of a superunit with the one or more additional superunits may comprise 3D space packing estimations based at least in part on a size of the superunits. The 3D space packing estimations may be based at least in part on known physiologic requirements. The known physiologic requirements may be physiologic requirements such as an exchange rate of gasses, filtration of plasma per unit volume, or other requirements that relate to the function of the biological material.
The 3D structure may comprise lymphatic vessels. The lymphatic vessels may comprise one or more drainage points. The drainage points may be a plurality of drainage points. The drainage points may be configured to function similarly to lymphatic drainage systems. The drainage points may be connected to a larger lymphatic system. The larger lymphatic system may be configured to be placed in a subject and attached to the lymphatic system of the subject. The drainage points may be configured to facilitate passive return of fluid that has leaked out of another blood vessel. The drainage points may be distributed at least in part based on the number of capillaries in the 3D structure. For example, an area with three capillaries can have one drainage point configured to return the blood leaked from the three capillaries. In another example, more drainage points can be placed in areas with more capillaries. The method may further comprise using the one or more processors to add a plurality of drainage points to the computer model. The drainage points may be distributed at least in part based on a system of generative design or a generative design algorithm. The system of generative design may avoid capillaries. The 3D structure may be configured to maintain tissue circulatory homeostasis. The system of generative 3D design may be configured to provide a high enough density of drainage points to maintain tissue homeostasis. The plurality of drainage points may be configured to maintain a net positive fluid pressure of the biological material or 3D structure. The drainage points may be placed in the 3D structure based at least in part on a capillary density. The capillary density may be a capillary density in developed tissue structures. The drainage points may be placed in the 3D structure by a generative design algorithm. The generative design algorithm may use a combination of one or more physiological parameters (e.g., parameters measured from a sample) and/or one or more generated parameters (e.g., parameters generated by a fluid simulation computer program). The drainage points may be distributed at least in part based on a blood pressure of the 3D structure. For example, the blood pressure across the 3D structure can be calculated, and more drainage points can be placed in areas that are expected to have a higher blood pressure.
The 3D structure with the plurality of drainage points may be output as a file format suitable for 3D printing. The file format may be a .stl file, a .obj file, a .vrml file, a .ply file, a .fbx file, or the like. The 3D structure with the plurality of drainage points may be printed using a 3D printer as described elsewhere herein. For example, the 3D structure with the plurality of drainage points can be printed by generating a 3D holographic array of points in a medium.
A plurality of cells may be cultured and/or in the 3D structure. The culturing of cells may generate an object with similar function as an organ. For example, a 3D structure corresponding to a kidney may be cultured with cells from a subject to form a replacement kidney for the subject. The cells may be at least partially encapsulated in the 3D structure.
The 3D structure may be printed according to the generated 3D model described herein. The printing may be using a 3D printer as described elsewhere herein. The 3D printer may be a light-based 3D printer. The 3D structure may be printed by (a) providing a media chamber comprising a medium comprising (i) a plurality of cells and (ii) one or more polymer precursors; and (b) directing at least one energy beam to the medium in the media chamber along at least one energy beam path that is patterned into a three-dimensional (3D) projection in accordance with the computer model for printing the 3D structure in computer memory, to form at least a portion of the 3D structure comprising (i) at least a subset of the plurality of cells, and (ii) a polymer formed from the one or more polymer precursors.
The plurality of cells may be selected form the group consisting of stromal endothelial cells, endothelial cells, follicular reticular cells or precursors thereof, epithelial cells, mesangial cells, kidney glomerulus parietal cells, kidney glomerulus podocytes, kidney proximal tubule brush border cells, Loop of Henle thing segment cells, thick ascending limb cells, kidney distal tubule cells, collecting duct principal cells, collecting duct intercalated cells, interstitial kidney cells, cuboidal cells, columnar cells, alveolar type I cells, alveolar type II cells, alveolar macrophages, and pneumocytes. The plurality of cells may be of one or more cell types. The plurality of cells may be of a subject. For example, a biopsy of a kidney can be taken, cells extracted from the biopsy, the cells added to the media chamber, a structure of a new kidney printed, and the cells cultured to generate a new kidney.
The present disclosure provides systems for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function. A system for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, may comprise one or more computer processors that are individually or collectively programmed to (a) use at least a number of vessels coupled to said subunit over said surface to generate a computer model of said 3D structure comprising said subunit and said vessels; and (b) transmit said computer model from (a) to a 3D printer for printing said 3D structure, which 3D structure is implantable in a body of a subject.
The present disclosure provides systems for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function. A system for generating a three-dimensional (3D) structure corresponding to a biological material comprising a subunit having a surface for performing a biological function, may comprise one or more computer processors that are individually or collectively programmed to (a) use at least a number of vessels coupled to said subunit over said surface to generate a superunit comprising said subunit and said vessels in computer memory; and (b) combine said superunit generated in (a) with one or more other superunits to generate a computer model of said 3D structure corresponding to said biological material
The present disclosure provides computer systems that are programmed to implement methods of the disclosure.
The computer system 1101 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 1105, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 1101 also includes memory or memory location 1110 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 1115 (e.g., hard disk), communication interface 1120 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 1125, such as cache, other memory, data storage and/or electronic display adapters. The memory 1110, storage unit 1115, interface 1120 and peripheral devices 1125 are in communication with the CPU 1105 through a communication bus (solid lines), such as a motherboard. The storage unit 1115 can be a data storage unit (or data repository) for storing data. The computer system 1101 can be operatively coupled to a computer network (“network”) 1130 with the aid of the communication interface 1120. The network 1130 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 1130 in some cases is a telecommunication and/or data network. The network 1130 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 1130, in some cases with the aid of the computer system 1101, can implement a peer-to-peer network, which may enable devices coupled to the computer system 1101 to behave as a client or a server.
The CPU 1105 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 1110. The instructions can be directed to the CPU 1105, which can subsequently program or otherwise configure the CPU 1105 to implement methods of the present disclosure. Examples of operations performed by the CPU 1105 can include fetch, decode, execute, and writeback.
The CPU 1105 can be part of a circuit, such as an integrated circuit. One or more other components of the system 1101 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).
The storage unit 1115 can store files, such as drivers, libraries and saved programs. The storage unit 1115 can store user data, e.g., user preferences and user programs. The computer system 1101 in some cases can include one or more additional data storage units that are external to the computer system 1101, such as located on a remote server that is in communication with the computer system 1101 through an intranet or the Internet.
The computer system 1101 can communicate with one or more remote computer systems through the network 1130. For instance, the computer system 1101 can communicate with a remote computer system of a user. Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), cloud based computing services (e.g., Amazon Web Services), or personal digital assistants. The user can access the computer system 1101 via the network 1130.
Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 1101, such as, for example, on the memory 1110 or electronic storage unit 1115. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 1105. In some cases, the code can be retrieved from the storage unit 1115 and stored on the memory 1110 for ready access by the processor 1105. In some situations, the electronic storage unit 1115 can be precluded, and machine-executable instructions are stored on memory 1110.
The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.
Aspects of the systems and methods provided herein, such as the computer system 1101, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.
Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
The computer system 1101 can include or be in communication with an electronic display 1135 that comprises a user interface (UI) 1140 for providing, for example, status of the printing process (e.g., displaying an illustration of the 3D lymphoid organoid and/or 3D cell-containing matrix representing the 3D tissue portions printed prior to completion of the process), manual controls of the energy beams (e.g., emergency stop buttons controlling the on/off states of the energy beam), and display indicators designed to e.g., display a remote oxygen concentration, a carbon dioxide concentration, a humidity measurement, and/or a temperature measurement within the media chamber. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.
The following examples are provided for illustrative purposes. These examples are not intended to be limiting.
In an example, a kidney nephron is printed using the methods and systems disclosed herein. First, a library of antibodies is produced in printed lymph node organoids. Three dimensional kidney nephron model, as shown in
In another example, glomerular capillaries are printed using the methods and systems disclosed herein.
In an example, a tube comprising channels with a bio-printed thin interface is printed using the methods and systems disclosed herein.
The unique feature of these tubes is that ultra-fine (micron-scale) walls between tubes can be created out of biological materials for the query of cell-cell interactions across barriers that are representative of human physiology; for example, blood-brain barrier, kidney nephron barriers, liver-blood barrier, or a tissue of any type barrier with blood.
In another example, a tube comprising channels and injection ports is printed using the methods and systems disclosed herein.
In another example, an alveolar structure with a shared capillary system is printed using the methods and systems described herein.
In another example, an alveolar structure was printed using the methods and systems described herein.
In another example, a basket structure was printed using the methods and systems described herein.
In another example, a capillary bed structure is printed using the methods and systems provided herein.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
In another example, a 3D structure corresponding to a kidney was printed using methods and systems described herein. The histopathological samples were analyzed for the location of the active components of the kidney, the nephrons, by looking at properties such as the location of capillary blood vessels, lymphatics, and the like. Further, the histopathological samples of human kidneys were taken and measured to determine estimations of properties such as the length of various components of the nephron (e.g., the straight proximal tubule length, the loop of Helene length). The measured estimations were combined with gross measurements of the kidney (e.g., total volume, filtering capacity) to further refine the estimations of the properties of the nephrons. For example, the glomerular capillary wall can be about 10 μm, the glomerular capillary inner diameter can be about 22 μm, the glomerular inner capsule diameter can be about 400 μm, the glomerular capsule wall can be about 50 μm thick, the glomerulus capillary can have a volume of about 5.14 μm′, and the glomerulus capillaries can have a length of about 13.53 mm. Additionally, the convoluted proximal tubule can be about 16.9 mm long, the convoluted proximal tubule can be about 63 μm in outer diameter and about 33 μm in inner diameter, the straight proximal tubule can be about 1.1 mm long the straight proximal tubule can have an inner and outer diameter of about 63 μm and about 33 μm respectively, the loop of Henle thin A and D limbs can be about 3.18 mm long, the loop of Henle thin A and D limbs can have about 40 μm outer diameter and a about 20 μm inner diameter, the straight distal tubule can be about 2.45 mm long, the straight distal tubule can have about a 55 outer diameter and about a 25 inner diameter, the convoluted distal tubule can be about 2.5 mm long, and the convoluted distal tubule can have an outer diameter of about 55 μm and an inner diameter of about 25 μm.
For the glomerulus, the portion of the kidney where filtration occurs, the observed volume of the glomerulus combined with the known physiologic filtrate exchange rate was used to determine the volume of capillary blood vessels to be placed in the glomerulus. The length of the capillaries was determined by the minimal length of capillary calculated to produce a desired amount of oxygen delivery to the tissue.
Once the properties of an individual nephron are determined, a plurality of nephrons were combined together. The nephrons were combined by taking into account blood delivery to the individual nephrons, such that a number of nephrons can use the same arterial blood delivery and venous return. Once the nephrons were combined in this way, there was an established arterial delivery and venous return system from the group of nephrons. The total size of the desired kidney was then determined (e.g., by measuring a kidney in a subject), and a blood vessel super-structure scheme is developed. The blood vessel super-structure was based on the vasculature of human kidneys. The group of nephrons was then queried for its ability to fit within the predetermined blood vessel super-structure. The combined nephron-blood vessel super-structure was designed to maintain a similar blood pressure to a human kidney, reducing the risk of complications due to intolerance to blood pressure fluctuations. The process of placing the groups of nephrons within the super-structure continued until enough nephrons have been added to replicate the functionality of a human kidney, typically over 1,000,000 nephrons in total.
With the nephrons in place within the super-structure, lymphatic system structure analogues were added to the super-structure to provide passive return of blood plasma that has leaked through the walls of the capillaries. The ends of the lymphatic analogues were of similar size to the capillaries in the kidney. The lymphatic analogues were distributed based at least in part on the local concentration of capillaries and expected regional blood pressures. The lymphatic analogues can be distributed and branched in part based on a generative 3D modeling program that places the analogues to avoid the capillaries and nephron structures already in the super-structure while ensuring enough lymphatic analogues to maintain circulatory homeostasis. Not including the lymphatic analogues can result in accumulation of fluids in the kidney, leading to possible rejection of the kidney or even subject death.
This application is the continuation of International Application No. PCT/US2019/061035, filed on Nov. 12, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/760,766, filed on Nov. 13, 2018, the contents of each are incorporated herein by reference in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62760766 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/061035 | Nov 2019 | US |
Child | 17318947 | US |