COMPOSITIONS AND METHODS FOR PRODUCING ENHANCED CROPS WITH PROBIOTICS

Information

  • Patent Application
  • 20230309598
  • Publication Number
    20230309598
  • Date Filed
    December 16, 2022
    a year ago
  • Date Published
    October 05, 2023
    8 months ago
  • CPC
    • A23L33/135
  • International Classifications
    • A23L33/135
Abstract
The present invention relates to the identification of a group of microorganisms, which are relatively abundant in the microbial communities associated with fruits and vegetables typically consumed raw and therefore transient or permanent members of the human microbiota. The consumption of mixtures of these microbes at relevant doses will produce a beneficial health effect in the host. The present invention relates to methods of using these microbes to increase the presence of beneficial microbes in crops eaten raw.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated herein by reference in its entirety. Said XML copy, created on Jan. 11, 2023, is named SBI-006WOC1.xml, and is 290,532 bytes in size.


BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to methods and compositions useful for producing crops with enhanced microbial content, which are beneficial to the consumer of the crop and to the crop itself.


Description of the Related Art

Daily consumption of fresh fruits, vegetables, seeds and other plant-derived ingredients of salads and juices is recognized as part of a healthy diet and associated with weight loss, weight management and overall healthy lifestyles. This is demonstrated clinically and epidemiologically in the “China Study” (Campbell, T. C. and Campbell T. M. 2006. The China Study: startling implications for diet, weight loss and long-term health. Benbella books. pp 419) where a lower incidence of cardiovascular diseases, cancer and other inflammatory-related indications were observed in rural areas where diets are whole food plant-based. The benefit from these is thought to be derived from the vitamins, fiber, antioxidants and other molecules that are thought to benefit the microbial flora through the production of prebiotics. These can be in the form of fermentation products from the breakdown of complex carbohydrates and other plant-based polymers. There has been no clear mechanistic association between microbes in whole food plant-based diets and the benefits conferred by such a diet. The role of these microbes as probiotics, capable of contributing to gut colonization and thereby influencing a subject's microbiota composition in response to a plant-based diet, has been underappreciated.


While endophytic bacteria and fungi are ubiquitous in plants, the quantity, diversity, and species found are not always equivalent. Farming practices, growing region, and plant species characteristics, among other factors, influence the microbial content of any given plant. What is needed to optimize the probiotic effect of raw fruits and vegetables are methods and compositions for enhancing the microbial content of a given plant.


SUMMARY OF THE INVENTION

Provided herein is a nutritive food product comprising edible leaves of a microgreen plant, wherein at least a portion of the microgreen plant comprises a nutriobiotic comprising at least one heterologous microbe.


In some aspects, the microgreen plant is selected from an Amaranthaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Amaryllidaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Apiaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Asteraceae family microgreen plant. In some aspects, the microgreen plant is selected from an Brassicaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Cucurbitaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Lamiaceae family microgreen plant. In some aspects, the microgreen plant is selected from an Poaceae family microgreen plant.


In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least one heterologous microbe that benefits growth of the microgreen plant. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefit growth of the microgreen plant. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least one heterologous microbe that benefits resistance of the microgreen plant to abiotic stress selected from temperature and moisture level. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefits resistance of the microgreen plant to abiotic stress selected from temperature and moisture level. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefit growth of the microgreen plant.


In some aspects, the edible leaves are obtained from the microgreen plant under conditions such that the diversified microbial ecology is substantially retained in the edible leaves.


In some aspects, the diversified microbial ecology produces a heterologous metabolite or enhance the production of endogenous metabolites in a tissue of the microgreen plant.


In some aspects, the edible leaves comprise detectable amounts of the heterologous microbe.


In some aspects, the edible leaves comprise detectable amounts of heterologous microbes that colonize the microgreen plant.


Also provided herein is a nutritive food product comprising a macerated preparation derived from edible leaves of a microgreen plant selected from a member of the Eruca genus, wherein at least a portion of the microgreen plant comprises a diversified microbial ecology comprising at least one heterologous microbe.


In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table B. In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table E. In some aspects, the heterologous microbe comprises a nucleic acid sequence that has at least 97% identity to any one of the sequences shown in Table F. In some aspects, the heterologous microbe comprises a nucleic acid sequence selected from any one of the sequences shown in Table F.


Also provided herein is a seed or seedling of an agricultural microgreen plant having disposed on an exterior surface of the seed or seedling a formulation comprising an heterologous microbe, wherein the heterologous microbe is disposed on an exterior surface of the seed or seedling in an amount effective to colonize the plant, the formulation further comprising at least one member selected from the group consisting of an agriculturally compatible carrier, a tackifier, a microbial stabilizer, a fungicide, an antibacterial agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, and a nutrient.


Also provided herein is a seed or seedling of an agricultural microgreen plant having disposed on an exterior surface of the seed or seedling a formulation comprising an heterologous microbe, wherein the heterologous microbe is disposed on an exterior surface of the seed or seedling in an amount effective to colonize the plant, the formulation further comprising a polymeric and/or adhesive substance.


Also provided herein is a formulation comprising a heterologous microbe and a polymeric and/or adhesive substance. In some aspects, the polymeric substance comprises a vinyl pyrrolidone/vinyl acetate copolymer. In some aspects, the vinyl pyrrolidone/vinyl acetate copolymer comprises a Agrimer VA 6 polymer. In some aspects, the formulation is formulated as a spray.


In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table B. In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table E. In some aspects, n the heterologous microbe comprises a nucleic acid sequence that has at least 97% identity to any one of the sequences shown in Table F. In some aspects, the heterologous microbe comprises a nucleic acid sequence selected from any one of the sequences shown in Table F.


Also provided herein is a method of modulating the microbial composition of an edible leaves of a microgreen plant comprising heterologously disposing an heterologous microbe to the microgreen plant, seed, seedling, or seed-associated soil environment in an amount effective to alter the composition of the edible leaves produced by the microgreen plant relative to a reference microgreen plant, seed, seedling, or seed-associated soil environment not comprising the heterologous microbe.


Also provided herein is a nutritive food product comprising edible leaves of a herbaceous plant selected from a member of the Eruca genus, wherein at least a portion of the herbaceous plant comprises a diversified microbial ecology comprising at least one heterologous microbe.


In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least one heterologous microbe that benefits growth of the herbaceous plant. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefit growth of the herbaceous plant. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least one heterologous microbe that benefits resistance of the herbaceous plant to abiotic stress selected from temperature and moisture level. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefits resistance of the herbaceous plant to abiotic stress selected from temperature and moisture level. In some aspects, the edible leaves comprise a diversified microbial ecology comprising at least two heterologous microbes that synergistically benefit growth of the herbaceous plant.


In some aspects, the edible leaves are obtained from the herbaceous plant under conditions such that the diversified microbial ecology is substantially retained in the edible leaves.


In some aspects, the diversified microbial ecology produces a heterologous metabolite or enhance the production of endogenous metabolites in a tissue of the herbaceous plant.


In some aspects, the edible leaves comprise detectable amounts of the heterologous microbe.


In some aspects, the edible leaves comprise detectable amounts of heterologous microbes that colonize the herbaceous plant.


Also provided herein is a nutritive food product comprising a macerated preparation derived from edible leaves of a herbaceous plant selected from a member of the Eruca genus, wherein at least a portion of the herbaceous plant comprises a diversified microbial ecology comprising at least one heterologous microbe.


In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table B. In some aspects, the heterologous microbe comprises a microbial species selected from any one of the species shown in Table E. In some aspects, the heterologous microbe comprises a nucleic acid sequence that has at least 97% identity to any one of the sequences shown in Table F. In some aspects, the heterologous microbe comprises a nucleic acid sequence selected from any one of the sequences shown in Table F.


Also provided herein is a seed or seedling of an agricultural plant of the Eruca genus having disposed on an exterior surface of the seed or seedling a formulation comprising an heterologous microbe, wherein the heterologous microbe is disposed on an exterior surface of the seed or seedling in an amount effective to colonize the plant, the formulation further comprising at least one member selected from the group consisting of an agriculturally compatible carrier, a tackifier, a microbial stabilizer, a fungicide, an antibacterial agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, and a nutrient.


Also provided herein is a seed or seedling of an agricultural plant of the Eruca genus having disposed on an exterior surface of the seed or seedling a formulation comprising an heterologous microbe, wherein the heterologous microbe is disposed on an exterior surface of the seed or seedling in an amount effective to colonize the plant, the formulation further comprising a polymer. In some aspects, the polymeric substance comprises a vinyl pyrrolidone/vinyl acetate copolymer. In some aspects, the vinyl pyrrolidone/vinyl acetate copolymer comprises a Agrimer VA 6 polymer. In some aspects, the formulation is formulated as a spray.


Also provided herein is a method of modulating the microbial composition of an edible leaves of a herbaceous plant selected from a member of the Eruca genus, comprising heterologously disposing an heterologous microbe to the Eruca plant, seed, seedling, or seed-associated soil environment in an amount effective to alter the composition of the edible leaves produced by the Eruca plant relative to a reference Eruca plant, seed, seedling, or seed-associated soil environment not comprising the heterologous microbe.


The invention also relates to a probiotic composition comprising a plurality of viable microbes, comprising at least one microbe classified as a gamma proteobacterium, fungus, or lactic acid bacterium, optionally selected from Table B or Table E, at least one prebiotic, and an agriculturally acceptable carrier. In some aspects, the probiotic composition comprises a filamentous fungus or yeast. In some aspects, the probiotic composition comprises a lactic acid bacterium. In some aspects, the probiotic composition is substantially similar to that of an edible plant component that is beneficial for human health.


In some aspects, the plurality of purified microbes is present at an amount effective to improve the microbial content of an edible plant. In some aspects, the plurality of purified viable microbes produces more short chain fatty acids than the individual microbial entities grown in isolation. In some aspects, probiotic composition, applied to an edible portion of a plant, increases the amount of beneficial microbes in the edible portion of the plant treated with the probiotic composition. In some aspects, the microbial entities comprising the probiotic composition are amplified within a tissue of an edible plant.


The invention also relates to a method of improving the nutritional value of a first plant component, comprising i) applying to a second plant component an effective amount of a plurality of viable microbes, ii) allowing the first plant component to mature, and iii) harvesting the first plant component, wherein the plurality of microbes is present in the first plant component at harvest at higher amounts than in the first plant component allowed to mature without the addition of the effective amount of the plurality of microbes. In some aspects, this method includes a plurality of microbes containing two or more microbes listed in Table B or Table E. In some aspects, the plurality of microbes comprises three or more microbes listed in Table B or Table E.


In some aspects, the microbes are amplified or present in higher amounts compared to a reference sample in a part of a plant. In some aspects the plant component is a fruit, stem, leaf, root, tuber. In some aspects, the composition is applied to a part of a plant. In some aspects, the composition is applied to a seed, a flower, a root, a leaf, a stem, or a seedling.


In an aspect, the application of the methods of the invention can further result in improvement of a facet of the first plant component for human consumption. The improved facet can be nutritional value, taste, smell, texture, digestibility, and shelf-life.


The invention also relates to an agricultural seed preparation prepared by the methods of the invention. The invention also relates to a plant component wherein the microbial content of the plant component comprises higher microbial diversity or higher amounts by viable count or direct microscopy, as compared to a reference sample.


In an aspect, the plurality of viable microbes is obtained from a plant species or plant component other than the seeds to which the plurality of microbes is applied.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:



FIGS. 1A-1L show plots depicting the diversity of microbial species detected in samples taken from 12 plants usually consumed raw by humans.



FIG. 1A shows bacterial diversity observed in a green chard.



FIG. 1B shows bacterial diversity in red cabbage.



FIG. 1C shows bacterial diversity in romaine lettuce.



FIG. 1D shows bacterial diversity in celery sticks.



FIG. 1E shows bacterial diversity observed in butterhead lettuce grown hydroponically.



FIG. 1F shows bacterial diversity in organic baby spinach.



FIG. 1G shows bacterial diversity in green crisp gem lettuce



FIG. 1H shows bacterial diversity in red oak leaf lettuce.



FIG. 1I shows bacterial diversity in green oak leaf lettuce.



FIG. 1J shows bacterial diversity in cherry tomatoes.



FIG. 1K shows bacterial diversity in crisp red gem lettuce.



FIG. 1L shows bacterial diversity in broccoli juice.



FIGS. 2A-2C show graphs depicting the taxonomic composition of microbial samples taken from broccoli heads (FIG. 2A), blueberries (FIG. 2B), and pickled olives (FIG. 2C).



FIG. 3 shows a schematic describing a gut simulator experiment. The experiment comprised an in vitro system that represents various sections of the gastrointestinal tract. Isolates of interest are incubated in the presence of conditions that mimic particular stresses in the gastro-intestinal tract (such as low pH or bile salts), or heat shock. After incubation, surviving populations were recovered. Utilizing this system, the impact of various stressors alone or in combination with probiotic cocktails of interest on the microbial ecosystem is tested.



FIG. 4. Shows a fragment recruitment plot sample for the shotgun sequencing on fermented cabbage comparing to the reference genome of strain DP3 Leuconostoc mesenteroides-like and the 18× coverage indicating the isolated strain was represented in the environmental sample and it was largely genetically homogeneous.



FIG. 5. Genome-wide metabolic model for a DMA formulated in silico with 3 DP strains and one genome from a reference in NCBI. The predicted fluxes for acetate, propionate and butyrate under a nutrient-replete and plant fiber media are indicated.



FIG. 6. DMA experimental validation for a combination of strains DP3 and DP9 under nutrient replete and plant fiber media showing that the strains showed synergy for increased SCFA production only under plant fiber media but not under rich media.



FIG. 7A shows the relative microbial profiles in banana pulp. Relative abundances of microbial profiles at the genus level in SBP samples. Bacterial DNA was isolated from each SBP and sequenced using HiSeq X. Sequencing reads were trimmed and filtered based on quality. Filtered reads were mapped to plant genome database to discard the reads derived from plant. The remaining sequencing reads were classified by Kraken2 with Kraken database to assign taxonomy of each read. Relative abundance of each taxonomy was computed by Bracken using taxonomic labels assigned by Kraken2 Shannon diversity was calculated by using Vegan package in R. The number of reads at the genus level assigned by Kraken2 was used as an input.



FIG. 7B shows the relative microbial profiles in green olives. Relative abundances of microbial profiles at the genus level in SBP samples. Bacterial DNA was isolated from each SBP and sequenced using HiSeq X. Sequencing reads were trimmed and filtered based on quality. Filtered reads were mapped to plant genome database to discard the reads derived from plant. The remaining sequencing reads were classified by Kraken2 with Kraken database to assign taxonomy of each read. Relative abundance of each taxonomy was computed by Bracken using taxonomic labels assigned by Kraken2 Shannon diversity was calculated by using Vegan package in R. The number of reads at the genus level assigned by Kraken2 was used as an input.



FIG. 7C shows the relative microbial profiles in blueberries. Relative abundances of microbial profiles at the genus level in SBP samples. Bacterial DNA was isolated from each SBP and sequenced using HiSeq X. Sequencing reads were trimmed and filtered based on quality. Filtered reads were mapped to plant genome database to discard the reads derived from plant. The remaining sequencing reads were classified by Kraken2 with Kraken database to assign taxonomy of each read. Relative abundance of each taxonomy was computed by Bracken using taxonomic labels assigned by Kraken2 Shannon diversity was calculated by using Vegan package in R. The number of reads at the genus level assigned by Kraken2 was used as an input.



FIG. 8 shows a diagram demonstrating the genera common between a typical human gut microbiome and genera typically found in edible plants.



FIG. 9A-9B. Microbial abundance is greater in organically grown strawberries than in conventionally grown strawberries. Organic and conventional strawberries were blended with PBS, and the resulting material was filtered through meshes with pore sizes ranging from ˜1 mm to 40 μm. The filtrate was centrifuged to concentrate microbial cells, and the concentrated material was serially diluted and plated onto four different agar media types (MRS, TSA, PDA, YPD) under both aerobic and anaerobic conditions. (FIG. 9A) Colony forming units (CFUs) were counted, and average CFU/g was calculated. Error bars represent the standard deviation of two technical replicates. The dotted line indicates the limit of detection (5×101 CFU/g). (FIG. 9B) A visual comparison of organic vs conventional strawberry preparations plated onto agar media showed greater abundance of microbes in the organic preparation.



FIG. 9C-9D. Microbial diversity differs in organically vs conventionally grown blackberries. Organic and conventional blackberries were blended with PBS, and the resulting material was filtered through meshes with pore sizes ranging from ˜1 mm to 40 um. The filtrate was centrifuged to concentrate microbial cells, and the concentrated material was serially diluted and plated onto four different agar media types under both aerobic and anaerobic conditions. (FIG. 9C) Colony forming units (CFUs) were counted, and average CFU/g was calculated. Error bars represent the standard deviation of two technical replicates. The dotted line indicates the limit of detection (5×101 CFU/g). (FIG. 9D) A visual comparison of organic vs conventional blackberry preparations plated onto agar media showed that colony morphologies are distinct, indicating that the microbes present are different.



FIG. 10 shows a gene pathway analysis in 57 bacterial strains displaying the groups of enzymes relevant for plant fiber degradation and the potential role these can have to build defined microbial assemblages by incorporating the plant fiber and the microorganisms producing fermentable substrates from the plant fibers. An important group of enzymes, glycosyl hydrolases, are shown in green bars.



FIG. 11 demonstrates the results of dilution plating technique for colonization. DP102 inoculated plants (bottom) and mock treatment control (top) were diluted and plated on PDA containing chlorotetracycline. An aliquot of 5 μl for each 10-fold dilution was applied to a plate an held vertically to distribute the liquid along its length.



FIG. 12A shows PCR assay Controls. Primers were tested against microbial genomic DNA (positive control) and each mock-treated plant type to verify primer specificity. FIG. 12B shows the results of PCR assays for exemplary strains. Primers were tested against genomic DNA from the microbe of interest and other microbes to verify specificity. On the left gel, bands are visible in the DP102 control well and the DMA #1 lettuce well. DMA #1 contains DP102. For the center gel, bands are seen with DP5 positive control and the arugula samples with DMA #3 and DMA #4 treatment, both of which contain DP5. The gel on the right DP100 is detected from arugula treated with DP100 as well as the positive controls. The use of PCR probes for specific strains allows to detect colonization in the plant tissues and to confirm counts based on colony forming units.



FIG. 13A demonstrates the effects of seed polymer coating in combination with microbe inoculation and shows the effects of microbial inoculation and polymer coating on the colonization and biomass of arugula seedlings. The left graph demonstrates the level of colonization of these plants with each treatment. FIG. 13B demonstrates the effects of seed polymer coating in combination with microbe inoculation and shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Outredgeous lettuce seedlings. FIG. 13C demonstrates the effects of seed polymer coating in combination with microbe inoculation and shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Little Gem lettuce seedlings. FIG. 13D demonstrates the effects of seed polymer coating in combination with microbe inoculation and shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Black Seeded Simpson lettuce seedlings.



FIG. 14 demonstrates the effect of increasing inoculum on plant colonization level. Arugula seeds were inoculated with DP100 at levels from 1×103 up to 1×107 CFU/seed (dark gray bars) and compared to the CFU/g microbial output on the resultant seedlings.



FIG. 15A shows the levels of colonization of seedlings with single microbes or DMAs on a variety of plant types after seed inoculation and demonstrates colonization of seedlings with Debaryomyces hansenii DP5 expressed as average CFU per gram plant material. FIG. 15B shows the levels of colonization of seedlings with single microbes or DMAs on a variety of plant types after seed inoculation and demonstrates colonization of seedlings with Lactobacillus plantarum DP100 expressed as average CFU per gram plant material. FIG. 15C shows the levels of colonization of seedlings with single microbes or DMAs on a variety of plant types after seed inoculation and demonstrates colonization of seedlings with Leuconostoc mesenteroides DP93 expressed as average CFU per gram plant material. FIG. 15D shows the levels of colonization of seedlings with single microbes or DMAs on a variety of plant types after seed inoculation and demonstrates colonization of seedlings with DMA #2 expressed as average CFU per gram plant material.



FIG. 16A demonstrates colonization of seedlings with DMAs. Eight seed-types were inoculated with DMAs and colonization was examined and demonstrates colonization of seedlings with DMA #3. FIG. 16B demonstrates colonization of seedlings with DMAs. Eight seed-types were inoculated with DMAs and colonization was examined and demonstrates colonization of seedlings with DMA #4. FIG. 16C demonstrates colonization of seedlings with DMAs. Eight seed-types were inoculated with DMAs and colonization was examined and demonstrates colonization of seedlings with DMA #5. FIG. 16D demonstrates colonization of seedlings with DMAs. Eight seed-types were inoculated with DMAs and colonization was examined and demonstrates colonization of seedlings with DMA #6.



FIG. 17A demonstrates colonization and weights of hydroponically grown lettuces and shows the average colonization of per plant (dark grey bars) relative to the original seed inoculum (light gray bars). FIG. 17B demonstrates colonization and weights of hydroponically grown lettuces and shows box and whisker plots of lettuce plant masses. In general plant mass was unchanged by treatment type regardless of whether colonization was successful. FIG. 17C demonstrates colonization and weights of hydroponically grown lettuces and is a histogram depicting aggregate plant masses. The total mass of 12 plants per treatment was measured. Differences in total yield can be seen between lettuce types but not within each group.



FIGS. 18A-18B provide a microbial preparation of seeds can enhance tomato plant growth.



FIG. 19A shows germination rates under heat stress. Germination rates for each lettuce variety are displayed as percent germination (of 18 seeds) over time. FIG. 19B demonstrates total plant survival under heat stress. FIG. 19C demonstrates pro-Hex aggregate weights under heat stress. The total weight of all Outredgeous and Black Seeded Simpson lettuce plants harvested at 35 days post planting.



FIG. 20A shows that Little Gem seeds treated with microbes result in larger and more healthy plants when subjected to abiotic (heat) stress. Photographs of mature plants from mock-treated (left) and single microbe or DMA-treated seeds (right). FIG. 20B shows that Little Gem potted plant masses grown with heat stress. Box and whisker plot of masses from five lettuce plants harvested (left) and a histogram of aggregate plant masses (right).





DETAILED DESCRIPTION

Advantages and Utility


Edible crops contain a microbiota which is consumed and become transient, or permanent, members of the gut microbiome of the consumer. These comprise plant-associated bacteria and fungi that can serve as beneficial or pathogen roles. Most of what is known about the plant microbiota and the gut microbiota is for pathogens. The plant microbiota changes with the agricultural practices, for example organic farming promotes a greater diversity and abundance of microbes compared to conventional farming practices.


The plant microbiome can be enhanced to contain relevant members of the human gut by enriching the fresh fruits or vegetables during farming with beneficial microorganism. One example of this is the use of lactic acid bacteria that can be enhanced in strawberries or spinach to create a functional food where the consumer of the produce will receive a beneficial dose of probiotics that can improve wellness.


In addition to the beneficial microbiota enrichment there are other upgrading aspects for the crop by the inoculation and incorporation onto the edible tissues a target microbiota. For example, crop color in strawberries can be enhanced using Methylobacteria producing pigments. This can give the fruits a red color that can be more desirable for the consumer. In addition, there are other sensory features such as volatile compounds produced by yeast that can contribute to the fruit's aroma.


Methods and compositions for improving the microbial content of edible plants allow enhanced health benefits of consuming said edible plants. Consuming beneficial microbes at effective amounts as part of food eliminates the extraneous step of taking separately formulated probiotics, which is inconvenient and can be difficult to remember. Additionally, by enhancing the microbial content of the plants themselves, differences between similar plants, due to growth conditions, etc, can be reduced.


Definitions

Terms used in the claims and specification are defined as set forth below unless otherwise specified.


The term “ameliorating” refers to any therapeutically beneficial result in the treatment of a disease state, e.g., a metabolic disease state, including prophylaxis, lessening in the severity or progression, remission, or cure thereof.


The term “in situ” refers to processes that occur in a living cell growing separate from a living organism, e.g., growing in tissue culture.


The term “in vivo” refers to processes that occur in a living organism.


The term “mammal” as used herein includes both humans and non-humans and includes but is not limited to humans, non-human primates, canines, felines, murines, bovines, equines, and porcines.


The term “plant” or “plant component” as used herein includes entire plants, portions of plants which are generally known or known to those of skill in the art, which include, but are not limited to, roots, leaves, stems, fruit, tubers.


As used herein, the term “derived from” includes microbes immediately taken from an environmental sample and also microbes isolated from an environmental source and subsequently grown in pure culture.


The term “percent identity,” in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned for maximum correspondence, as measured using one of the sequence comparison algorithms described below (e.g., BLASTP and BLASTN or other algorithms available to persons of skill) or by visual inspection. Depending on the application, the percent “identity” can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared. In some aspects, percent identity is defined with respect to a region useful for characterizing phylogenetic similarity of two or more organisms, including two or more microorganisms. Percent identity, in these circumstances can be determined by identifying such sequences within the context of a larger sequence, that can include sequences introduced by cloning or sequencing manipulations such as, e.g., primers, adapters, etc., and analyzing the percent identity in the regions of interest, without including in those analyses introduced sequences that do not inform phylogenetic similarity.


For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al.).


One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol. 215:403-410 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.


The term “sufficient amount” means an amount sufficient to produce a desired effect, e.g., an amount sufficient to alter the microbial content of a subject's microbiota.


The term “therapeutically effective amount” is an amount that is effective to ameliorate a symptom of a disease. A therapeutically effective amount can be a “prophylactically effective amount” as prophylaxis can be considered therapy.


As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.


As used herein, the term “treating” includes abrogating, inhibiting substantially, slowing, or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition.


As used herein, the term “preventing” includes completely or substantially reducing the likelihood or occurrence or the severity of initial clinical or aesthetical symptoms of a condition.


As used herein, the term “about” includes variation of up to approximately +/−10% and that allows for functional equivalence in the product.


As used herein, the term “colony-forming unit” or “CFU” is an individual cell that is able to clone itself into an entire colony of identical cells.


As used herein all percentages are weight percent unless otherwise indicated.


As used herein, “viable organisms” are organisms that are capable of growth and multiplication. In some embodiments, viability can be assessed by numbers of colony-forming units that can be cultured. In some embodiments, viability can be assessed by other means, such as quantitative polymerase chain reaction.


The term “derived from” includes material isolated from the recited source, and materials obtained using the isolated materials (e.g., cultures of microorganisms made from microorganisms isolated from the recited source).


“Microbiota” refers to the community of microorganisms that occur (sustainably or transiently) in and on an animal or plant subject, typically a mammal such as a human, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses i.e., phage).


“Microbiome” refers to the genetic content of the communities of microbes that live in and on the human body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage), wherein “genetic content” includes genomic DNA, RNA such as ribosomal RNA, the epigenome, plasmids, and all other types of genetic information.


“Pure culture” as used herein indicates a microbe grown under conditions such that the resulting microbial culture is largely homogeneous, and largely free of contaminants.


As used herein, a Defined Microbial Assemblage (DMA) is a rationally designed synthetic consortium of heterogeneous microbes, and an optional plant fiber.


The term “subject” refers to any animal subject including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, and chickens), and household pets (e.g., dogs, cats, and rodents). The subject may be suffering from a dysbiosis, including, but not limited to, an infection due to a gastrointestinal pathogen or may be at risk of developing or transmitting to others an infection due to a gastrointestinal pathogen.


The “colonization” of a host organism includes the non-transitory residence of a bacterium or other microscopic organism. As used herein, “reducing colonization” of a host subject's gastrointestinal tract (or any other microbial niche) by a pathogenic bacterium includes a reduction in the residence time of the pathogen in the gastrointestinal tract as well as a reduction in the number (or concentration) of the pathogen in the gastrointestinal tract or adhered to the luminal surface of the gastrointestinal tract. Measuring reductions of adherent pathogens may be demonstrated, e.g., by a biopsy sample, or reductions may be measured indirectly, e.g., by measuring the pathogenic burden in the stool of a mammalian host.


A “combination” of two or more bacteria includes the physical co-existence of the two bacteria, either in the same material or product or in physically connected products, as well as the temporal co-administration or co-localization of the two bacteria.


As used herein “heterologous microbe” designates organisms to be administered that are not naturally present in the same proportions as in the therapeutic composition as in subjects to be treated with the therapeutic composition. These can be organisms that are not normally present in individuals in need of the composition described herein, or organisms that are not present in sufficient proportion in said individuals. These organisms can comprise a synthetic composition of organisms derived from separate plant sources or can comprise a composition of organisms derived from the same plant source, or a combination thereof.


As used herein “heterologous metabolite” refers to a metabolite present in a plant or seed colonized with a heterologous microbe, where the metabolite is not normally present and/or not naturally present in the same proportion as a reference plant not colonized with the heterologous microbe.


Controlled-release refers to delayed release of an agent, from a composition or dosage form in which the agent is released according to a desired profile in which the release occurs after a period of time.


The term “nutriobiotic” is a composition of a single microbe or a combination of two or more that are both beneficial to a plant when applied prior or during farming and/or provides a probiotic benefit to a mammal that consumes the final product.


The term “diversified microbial ecology” includes nutriobiotic compositions and optionally endogenous microbes that confer benefits, including agricultural benefits to the plant and/or probiotic benefits to a mammal that consumes the product.


Throughout this application, various embodiments of this invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.


As used herein GOS indicates one or more galacto-oligosaccharides and FOS indicates one or more fructo-oligosaccharide.


The following abbreviations are used in this specification and/or Figures: ac=acetic acid; but=butyric acid; ppa=propionic acid.


Methods of the Invention


Probiotics can be applied to plants of interest by several methods. These methods include, but are not limited to seed treatment, osmopriming, hydropriming, foliar application, soil inoculation, hydroponic inoculation, aeroponic inoculation, vector-mediated inoculation root wash, seedling soak, wound inoculation, and injection. These methods are further described in the examples section.


Compositions of the Invention


In certain embodiments, compositions of the invention comprise probiotic compositions formulated for administration or consumption, with a prebiotic and any necessary or useful excipient. In other embodiments, compositions of the invention comprise probiotic compositions formulated for consumption without a prebiotic. Probiotic compositions of the invention are, in some embodiments, isolated from foods normally consumed raw and isolated for cultivation. In some embodiments, microbes are isolated from different foods normally consumed raw, but multiple microbes from the same food source may be used.


It is known to those of skill in the art how to identify microbial strains. Bacterial strains are commonly identified by 16S rRNA gene sequence. Fungal species can be identified by sequence of the internal transcribed space (ITS) regions of rDNA or the 18S rRNA gene sequence.


One of skill in the art will recognize that the 16S rRNA gene and the ITS region comprise a small portion of the overall genome, and so sequence of the entire genome (whole genome sequence) may also be obtained and compared to known species.


Additionally, multi-locus sequence typing (MLST) is known to those of skill in the art. This method uses the sequences of 7 known bacterial genes, typically 7 housekeeping genes, to identify bacterial species based upon sequence identity of known species as recorded in the publicly available PubMLST database. Housekeeping genes are genes involved in basic cellular functions.


In certain embodiments, bacterial entities of the invention are identified by comparison of the 16S rRNA sequence to those of known bacterial species, as is well understood by those of skill in the art. In certain embodiments, fungal species of the invention are identified based upon comparison of the ITS sequence to those of known species (Schoch et al PNAS 2012). In certain embodiments, microbial strains of the invention are identified by whole genome sequencing and subsequent comparison of the whole genome sequence to a database of known microbial genome sequences. While microbes identified by whole genome sequence comparison, in some embodiments, are described and discussed in terms of their closest defined genetic match, as indicated by 16S rRNA sequence, it should be understood that these microbes are not identical to their closest genetic match and are novel microbial entities. This can be shown by examining the Average Nucleotide Identity (ANI) of microbial entities of interest as compared to the reference strain that most closely matches the genome of the microbial entity of interest. ANI is further discussed in example 6.


In other embodiments, microbial entities described herein are functionally equivalent to previously described strains with homology at the 16S rRNA or ITS region. In certain embodiments, functionally equivalent bacterial strains have 95% identity at the 16S rRNA region and functionally equivalent fungal strains have 95% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 96% identity at the 16S rRNA region and functionally equivalent fungal strains have 96% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 97% identity at the 16S rRNA region and functionally equivalent fungal strains have 97% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 98% identity at the 16S rRNA region and functionally equivalent fungal strains have 98% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 99% identity at the 16S rRNA region and functionally equivalent fungal strains have 99% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 99.5% identity at the 16S rRNA region and functionally equivalent fungal strains have 99.5% identity at the ITS region. In certain embodiments, functionally equivalent bacterial strains have 100% identity at the 16S rRNA region and functionally equivalent fungal strains have 100% identity at the ITS region.


16S rRNA sequences for strains tolerant of metformin or with probiotic potential (described in Table E) are found in Table F. 16S rRNA is one way to classify bacteria into operational taxonomic units (OTUs). Bacterial strains with 97% sequence identity at the 16S rRNA locus are considered to belong to the same OTU. A similar calculation can be done with fungi using the ITS locus in place of the bacterial 16S rRNA sequence. It is well within the level of ordinary skill of one in the art to isolate these species following the teachings of this specification. The successful isolation of these species can be determined by 16S sequence comparison to the reference sequences of these species provided herein (e.g., in Table F). In other embodiments, a person of ordinary skill can determine that substitutions for these novel species may be made using either or both of the most closely matching species by16S (such as to the reference sequences of these species provided herein, e.g., in Table F) or ANI sequence comparison. Further it is within the level of ordinary skill to distinguish operable from inoperable substitutions by assembling a substituted DMA and assaying for any one of the activities set forth, e.g., in any one of the working examples provided in this specification.


In some embodiments, the invention provides an enhanced or cultured probiotic composition for the enhancement of microbial content of edible plants comprising a mixture of Pediococcus pentosaceus and/or Leuconostoc mesenteroides, or a Lactobacillus species combined with non-lactic acid bacteria isolated or identified from samples described in Table A or described in Table B. In some embodiments, the invention provides an enhanced or cultured probiotic composition for the enhancement of microbial content of edible plants. In some embodiments, the invention provides an enhanced or cultured probiotic composition for the enhancement of microbial content of edible plants comprising a mixture of Pediococcus pentosaceus and/or Leuconostoc mesenteroides, or a Lactobacillus species. In some embodiments, the invention provides a fermented probiotic composition for the enhancement of microbial content of edible plants comprising a mixture of Pediococcus pentosaceus and/or Leuconostoc mesenteroides or a Lactobacillus species and at least one non-lactic acid bacterium, preferably a bacterium classified as a gamma proteobacterium or a filamentous fungus or yeast. Some embodiments comprise the fermented probiotic being in a capsule or microcapsule adapted for enteric delivery. In some embodiments, the probiotic regimen complements an anti-diabetic regimen.


The compositions disclosed herein are derived from edible plants and can comprise a mixture of microorganisms, comprising bacteria, fungi, archaea, and/or other endogenous or heterologous microorganisms, all of which work together to form a microbial ecosystem with a role for each of its members.


In some embodiments, species of interest are isolated from plant-based food sources normally consumed raw. These isolated compositions of microorganisms from individual plant sources can be combined to create a new mixture of organisms. Particular species from individual plant sources can be selected and mixed with other species cultured from other plant sources, which have been similarly isolated and grown. In some embodiments, species of interest are grown in pure cultures before being prepared for consumption or administration. In some embodiments, the organisms grown in pure culture are combined to form a synthetic combination of organisms.


In some embodiments, the microbial composition comprises proteobacteria or gamma proteobacteria. In some embodiments, the microbial composition comprises several species of Pseudomonas. In some embodiments, species from another genus are also present. In some embodiments, a species from the genus Duganella is also present. In some embodiments of said microbial composition, the population comprises at least three unique isolates selected from the group consisting of Pseudomonas, Acinetobacter, Aeromonas, Curtobacterium, Escherichia, Lactobacillus, Leuconostoc, Pediococcus, Serratia, Streptococcus, and Stenotrophomonas. In some embodiments of said microbial composition, the population comprises at least two unique isolates selected from the group consisting of Pseudomonas, Acinetobacter, Aeromonas, Curtobacterium, Escherichia, Lactobacillus, Leuconostoc, Pediococcus, Serratia, Streptococcus, and Stenotrophomonas. In some embodiments, the bacteria are selected based upon their ability to modulate production of one or more branch chain fatty acids, short chain fatty acids, and/or flavones in a mammalian gut.


In some embodiments the microbial compositions comprises several species of the yeast genera belonging to Debaromyces, Pichia and Hanseniaspora.


In some embodiments, microbial compositions comprise isolates that are capable of modulating production or activity of the enzymes involved in fatty acid metabolism, such as acetolactate synthase I, N-acetylglutamate synthase, acetate kinase, Acetyl-CoA synthetase, acetyl-CoA hydrolase, Glucan 1,4-alpha-glucosidase, or Bile acid symporter Acr3.


In some embodiments, the administered microbial compositions colonize the treated mammal's digestive tract. In some embodiments, these colonizing microbes comprise bacterial assemblages present in whole food plant-based diets. In some embodiments, these colonizing microbes comprise Pseudomonas with a diverse species denomination that is present and abundant in whole food plant-based diets. In some embodiments, these colonizing microbes reduce free fatty acids absorbed into the body of a host by absorbing the free fatty acids in the gastrointestinal tract of mammals. In some embodiments, these colonizing microbes comprise genes encoding metabolic functions related to desirable health outcomes such as increased efficacy of anti-diabetic treatments, lowered BMI, lowered inflammatory metabolic indicators, etc.


Prebiotics


Prebiotics, in accordance with the teachings of this invention, comprise compositions that promote the growth of beneficial bacteria in the intestines. Prebiotic substances can be consumed by a relevant probiotic, or otherwise assist in keeping the relevant probiotic alive or stimulate its growth. When consumed in an effective amount, prebiotics also beneficially affect a subject's naturally-occurring gastrointestinal microflora and thereby impart health benefits apart from just nutrition. Prebiotic foods enter the colon and serve as substrate for the endogenous bacteria, thereby indirectly providing the host with energy, metabolic substrates, and essential micronutrients. The body's digestion and absorption of prebiotic foods is dependent upon bacterial metabolic activity, which salvages energy for the host from nutrients that escaped digestion and absorption in the small intestine.


Prebiotics help probiotics flourish in the gastrointestinal tract, and accordingly, their health benefits are largely indirect. Metabolites generated by colonic fermentation by intestinal microflora, such as short-chain fatty acids, can play important functional roles in the health of the host. Prebiotics can be useful agents for enhancing the ability of intestinal microflora to provide benefits to their host.


Prebiotics, in accordance with the embodiments of this invention, include, without limitation, mucopolysaccharides, oligosaccharides, polysaccharides, amino acids, vitamins, nutrient precursors, proteins, and combinations thereof.


According to particular embodiments, compositions comprise a prebiotic comprising a dietary fiber, including, without limitation, polysaccharides and oligosaccharides. These compounds have the ability to increase the number of probiotics, and augment their associated benefits. For example, an increase of beneficial Bifidobacteria likely changes the intestinal pH to support the increase of Bifidobacteria, thereby decreasing pathogenic organisms.


Non-limiting examples of oligosaccharides that are categorized as prebiotics in accordance with particular embodiments include galactooligosaccharides, fructooligosaccharides, inulins, isomalto-oligosaccharides, lactilol, lactosucrose, lactulose, pyrodextrins, soy oligosaccharides, transgalacto-oligosaccharides, and xylo-oligosaccharides.


According to other particular embodiments, compositions comprise a prebiotic comprising an amino acid.


Prebiotics are found naturally in a variety of foods including, without limitation, cabbage, bananas, berries, asparagus, garlic, wheat, oats, barley (and other whole grains), flaxseed, tomatoes, Jerusalem artichoke, onions and chicory, greens (e.g., dandelion greens, spinach, collard greens, chard, kale, mustard greens, turnip greens), and legumes (e.g., lentils, kidney beans, chickpeas, navy beans, white beans, black beans). Generally, according to particular embodiments, compositions comprise a prebiotic present in a sweetener composition or functional sweetened composition in an amount sufficient to promote health and wellness.


In particular embodiments, prebiotics also can be added to high-potency sweeteners or sweetened compositions. Non-limiting examples of prebiotics that can be used in this manner include fructooligosaccharides, xylooligosaccharides, galactooligosaccharides, and combinations thereof.


Many prebiotics have been discovered from dietary intake including, but not limited to: antimicrobial peptides, polyphenols, Okara (soybean pulp by product from the manufacturing of tofu), polydextrose, lactosucrose, malto-oligosaccharides, gluco-oligosaccharides (GOS), fructo-oligosaccharides (FOS), xantho-oligosaccharides, soluble dietary fiber in general. Types of soluble dietary fiber include, but are not limited to, psyllium, pectin, or inulin. Phytoestrogens (plant-derived isoflavone compounds that have estrogenic effects) have been found to have beneficial growth effects of intestinal microbiota through increasing microbial activity and microbial metabolism by increasing the blood testosterone levels, in humans and farm animals. Phytoestrogen compounds include but are not limited to: Oestradiol, Daidzein, Formononetin, Biochainin A, Genistein, and Equol.


Dosage for the compositions described herein are deemed to be “effective doses,” indicating that the probiotic or prebiotic composition is administered in a sufficient quantity to alter the physiology of a subject in a desired manner. In some embodiments, the desired alterations include reducing obesity, and or metabolic syndrome, and sequelae associated with these conditions. In some embodiments, the desired alterations are promoting rapid weight gain in livestock. In some embodiments, the prebiotic and probiotic compositions are given in addition to an anti-diabetic regimen.


Functional Foods


Included within the scope of this disclosure are methods for use of enhanced plants to enhance wellness in a subject in need thereof. These methods utilize the enhanced plants as functional foods.


These methods optionally are used in combination with other treatments to reduce diabetes, obesity, digestive distress, chronic inflammation, bone density loss, and/or metabolic syndrome. Any suitable treatment for the reduction of diabetes, obesity, digestive distress, chronic inflammation, bone density loss, and/or metabolic syndrome can be used. In some embodiments the additional treatment is administered before, during, or after consumption of the microbially enhanced edible plant composition, or any combination thereof. In an embodiment, when diabetes, obesity, digestive distress, chronic inflammation, bone density loss, and/or metabolic syndrome are not completely or substantially completely eliminated by consumption of the microbially enhanced edible plant composition, the additional treatment is administered after prebiotic treatment is terminated. The additional treatment is used on an as-needed basis.


In an embodiment a subject to be treated for one or more symptoms of obesity, digestive distress, chronic inflammation, bone density loss, and/or metabolic syndrome is a human. In an embodiment the human subject is a preterm newborn, a full-term newborn, an infant up to one year of age, a young child (e.g., 1 yr to 12 yrs), a teenager, (e.g., 13-19 yrs), an adult (e.g., 20-64 yrs), a pregnant woman, or an elderly adult (65 yrs and older).


Additional Ingredients


In some embodiments, the compositions for treating plants in need of microbial augmentation include additional ingredients. Additional ingredients include ingredients to improve handling, preservatives, antioxidants, and the like. In an embodiment, the compositions include microcrystalline cellulose or silicone dioxide. Preservatives can include, for example, benzoic acid, alcohols, for example, ethyl alcohol, and hydroxybenzoates. Antioxidants can include, for example, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tocopherols (e.g., Vitamin E), and ascorbic acid (Vitamin C). In some embodiments, an additional agreement is an agriculturally acceptable carrier or excipient.


The carrier can be a solid carrier or liquid carrier, and in various forms including microspheres, powders, emulsions and the like. The carrier may be any one or more of a number of carriers that confer a variety of properties, such as increased stability, wettability, or dispersability. Wetting agents such as natural or synthetic surfactants, which can be nonionic or ionic surfactants, or a combination thereof can be included in a composition of the invention. Water-in-oil emulsions can also be used to formulate a composition that includes the purified population (see, for example, U.S. Pat. No. 7,485,451, which is incorporated herein by reference in its entirety). Suitable formulations that may be prepared include wettable powders, granules, gels, agar strips or pellets, thickeners, biopolymers, and the like, microencapsulated particles, and the like, liquids such as aqueous flowables, aqueous suspensions, water-in-oil emulsions, etc. The formulation may include grain or legume products, for example, ground grain or beans, broth or flour derived from grain or beans, starch, sugar, or oil.


In some embodiments, the agricultural carrier may be soil or a plant growth medium. Other agricultural carriers that may be used include water, fertilizers, plant-based oils, humectants, or combinations thereof. Alternatively, the agricultural carrier may be a solid, such as diatomaceous earth, loam, silica, alginate, clay, bentonite, vermiculite, seed cases, other plant and animal products, or combinations, including granules, pellets, or suspensions. Mixtures of any of the aforementioned ingredients are also contemplated as carriers, such as but not limited to, pesta (flour and kaolin clay), agar or flour-based pellets in loam, sand, or clay, etc. Formulations may include food sources for the cultured organisms, such as barley, rice, or other biological materials such as seed, plant elements, sugar cane bagasse, hulls or stalks from grain processing, ground plant material or wood from building site refuse, sawdust or small fibers from recycling of paper, fabric, or wood. Other suitable formulations will be known to those skilled in the art.


In an embodiment, the formulation can include a tackifier or adherent. Such agents are useful for combining the complex population of the invention with carriers that can contain other compounds (e.g., control agents that are not biologic), to yield a coating composition. Such compositions help create coatings around the plant or plant element to maintain contact between the endophyte and other agents with the plant or plant element. In one embodiment, adherents are selected from the group consisting of: alginate, gums, starches, lecithins, formononetin, polyvinyl alcohol, alkali formononetinate, hesperetin, polyvinyl acetate, cephalins, Gum Arabic, Xanthan Gum, carragennan, PGA, other biopolymers, Mineral Oil, Polyethylene Glycol (PEG), Polyvinyl pyrrolidone (PVP), Arabino-galactan, Methyl Cellulose, PEG 400, Chitosan, Polyacrylamide, Polyacrylate, Polyacrylonitrile, Glycerol, Triethylene glycol, Vinyl Acetate, Gellan Gum, Polystyrene, Polyvinyl, Carboxymethyl cellulose, Gum Ghatti, and polyoxyethylene-polyoxybutylene block copolymers. Other examples of adherent compositions that can be used in the synthetic preparation include those described in EP 0818135, CA 1229497, WO 2013090628, EP 0192342, WO 2008103422 and CA 1041788, each of which is incorporated herein by reference in its entirety.


It is also contemplated that the formulation may further comprise an anti-caking agent.


The formulation can also contain a surfactant, wetting agent, emulsifier, stabilizer, or anti-foaming agent. Non-limiting examples of surfactants include nitrogen-surfactant blends such as Prefer 28 (Cenex), Surf-N(US), Inhance (Brandt), P-28 (Wilfarm) and Patrol (Helena); esterified seed oils include Sun-It II (AmCy), MSO (UAP), Scoil (Agsco), Hasten (Wilfarm) and Mes-100 (Drexel); and organo-silicone surfactants include Silwet L77 (UAP), Silikin (Terra), Dyne-Amic (Helena), Kinetic (Helena), Sylgard 309 (Wilbur-Ellis) and Century (Precision), polysorbate 20, polysorbate 80, Tween 20, Tween 80, Scattics, Alktest TW20, Canarcel, Peogabsorb 80, Triton X-100, Conco NI, Dowfax 9N, Igebapl CO, Makon, Neutronyx 600, Nonipol NO, Plytergent B, Renex 600, Solar NO, Sterox, Serfonic N, T-DET-N, Tergitol NP, Triton N, IGEPAL CA-630, Nonident P-40, Pluronic. In one embodiment, the surfactant is present at a concentration of between 0.01% v/v to 10% v/v. In another embodiment, the surfactant is present at a concentration of between 0.1% v/v to 1% v/v. An example of an anti-foaming agent would be Antifoam-C.


In certain cases, the formulation includes a microbial stabilizer. Such an agent can include a desiccant. As used herein, a “desiccant” can include any compound or mixture of compounds that can be classified as a desiccant regardless of whether the compound or compounds are used in such concentrations that they in fact have a desiccating effect on the liquid inoculant. Such desiccants are ideally compatible with the population used and should promote the ability of the endophyte population to survive application on the seeds and to survive desiccation. Examples of suitable desiccants include one or more of trehalose, sucrose, glycerol, and methylene glycol. Other suitable desiccants include, but are not limited to, non-reducing sugars and sugar alcohols (e.g., mannitol or sorbitol). The amount of desiccant introduced into the formulation can range from 5% to 50% by weight/volume, for example, between 10% to 40%, between 15% and 35%, or between 20% and 30%.


In some cases, it is advantageous for the formulation to contain agents such as a fungicide, an anticomplex agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, a bactericide, a virucide, or a nutrient. Such agents are ideally compatible with the agricultural plant element or seedling onto which the formulation is applied (e.g., it should not be deleterious to the growth or health of the plant). Furthermore, the agent is ideally one which does not cause safety concerns for human, animal or industrial use (e.g., no safety issues, or the compound is sufficiently labile that the commodity plant product derived from the plant contains negligible amounts of the compound).


In the liquid form, for example, solutions or suspensions, endophyte populations of the present invention can be mixed or suspended in water or in aqueous solutions. Suitable liquid diluents or carriers include water, aqueous solutions, petroleum distillates, or other liquid carriers.


Solid compositions can be prepared by dispersing the endophyte populations of the invention in and on an appropriately divided solid carrier, such as peat, wheat, bran, vermiculite, clay, talc, bentonite, diatomaceous earth, fuller's earth, pasteurized soil, and the like. When such formulations are used as wettable powders, biologically compatible dispersing agents such as non-ionic, anionic, amphoteric, or cationic dispersing and emulsifying agents can be used.


The solid carriers used upon formulation include, for example, mineral carriers such as kaolin clay, pyrophyllite, bentonite, montmorillonite, diatomaceous earth, acid white soil, vermiculite, and pearlite, and inorganic salts such as ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, ammonium chloride, and calcium carbonate. Also, organic fine powders such as wheat flour, wheat bran, and rice bran may be used. The liquid carriers include vegetable oils (such as soybean oil, maize (corn) oil, and cottonseed oil), glycerol, ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, etc.


In an embodiment, the formulation is ideally suited for coating of a population of endophytes onto plant elements. The endophytes populations described in the present invention are capable of conferring many fitness benefits to the host plants. The ability to confer such benefits by coating the populations on the surface of plant elements has many potential advantages, particularly when used in a commercial (agricultural) scale.


The endophyte populations herein can be combined with one or more of the agents described above to yield a formulation suitable for combining with an agricultural plant element, seedling, or other plant element. Endophyte populations can be obtained from growth in culture, for example, using a synthetic growth medium. In addition, endophytes can be cultured on solid media, for example on petri dishes, scraped off and suspended into the preparation. Endophytes at different growth phases can be used. For example, endophytes at lag phase, early-log phase, mid-log phase, late-log phase, stationary phase, early death phase, or death phase can be used. Endophytic spores may be used for the present invention, for example but not limited to: arthospores, sporangispores, conidia, chlamydospores, pycnidiospores, endospores, zoospores.


Microgreens

Edible microgreens include any kind of vegetable or herb, grain, or grass, typically germinating from seeds. Exemplary microgreens include the Amaranthaceae family that includes amaranth, beets, chard, quinoa, and spinach; the Amaryllidaceae family that includes chives, garlic, leeks, and onions; the Apiaceae family that includes carrot, celery, dill, and fennel; the Asteraceae family that includes chicory, endive, lettuce, and radicchio; the Brassicaceae family that includes arugula, broccoli, cabbage, cauliflower, radish, and watercress; the Cucurbitaceae family that includes cucumbers, melons, and squashes; the Lamiaceae family that includes most common herbs like mint, basil, rosemary, sage, and oregano; the Poaceae family that includes grasses and cereals like barley, corn, rice, oats, and wheatgrass, as well as legumes including beans, chickpeas, and lentils.


Hydroponics

In an embodiment nutriobiotics can be applied to coated seeds to be germinated and grown hydroponically. This is relevant for indoor farming of fruits such as strawberries and vegetables such as lettuce. Seeds are planted in rockwool and exposed to a suitable growth media with nutrients required for plants including macro and micronutrients.


The nutrient solutions can be designed to optimize the use of the nutriobiotics where they can provide nitrogen nutrition in the case of using nitrogen fixing bacteria. Other nutritional requirements as in the case of vitamins can be provided by the nutriobiotics.


In another embodiment indoor and vertical farming can be enhanced by the application of nutriobiotics to the indoor crop where the crop was germinated and grown using an artificial illumination system over water tanks filled with nutrient solution. The crops can be grown to maturity and harvested.


In some embodiments the nutriobiotics are applied as seed coat in combination of a suitable seed coat polymer.


In other embodiments the nutriobiotics are applied in the nutrient solution and contacted with the crop through the root system.


In another embodiment the nutriobiotics are applied in the rockwool or substrate where the seed is being germinated.


For the indoor farming of strawberries or other fruits, the nutriobiotics can be applied during the flowering stage of the crop directly onto the flowers and with the use of a suitable delivery system such as agricultural polymers, or binding agents to improve the adhesion to the flower tissues.


In another embodiment the nutriobiotic is applied as a foliar product that can be used in combination with any of the other application modalities including seed coats, flower, germination substrate or nutrient solution. The foliar applications can be done at weekly intervals until the crop is harvested.


In another embodiment nutriobiotics can be applied in combination of a conventional agricultural product that can include agrochemicals, plant growth promoting agents or pesticides.


In another embodiment nutriobiotics can be applied to improved seeds that have been specifically selected or bred for growth in hydroponic systems.


The nutriobiotics dose ranges from 1×103 to 1×109 CFU/seed, 1×104 to 1×109 CFU/ml in nutrient solution, 1×103 to 1×109 CFU/cm2 of foliar biomass or 1×103 to 1×109 CFU/flower.


Tomatoes

Tomatoes are a very important crop with a wide range of varieties farmed around the world. Tomatoes are grown using different systems and it is critical to offer the most robust growth during the early stages. To enhance plant vigor and promote growth nutriobiotics can applied as seed coats to provide improved plant health that will result in higher yields. In one embodiment tomato seeds are coated with a suitable agricultural polymer and germinated on peat moss, potting soil, and combinations of these with perlite, vermiculite, turface or other suitable germination substrate. The seedlings are then transplanted to soil or into 1-to-5-gallon pots for growth. In one embodiment the seedlings are further treated with foliar applications of nutriobiotics. The fruits are colonized by the nutriobiotics but it is possible to detect the product in other plant tissues such as leaves, stems and roots.


Abiotic Stress Tolerance Through Application of Nutriobiotics (Heat)

Due to climate change, there is a relative increase in, drought, excessive rainfall, heat waves, and exposure to this stress for crops can cause significant losses. To protect against this abiotic stress, it is desirable to have crops resilient to these stressors and that can protect seedlings during germination and plants during growth and production. In one embodiment to protect lettuce seeds can be coated with DP3, DP5 or DP95 to improve germination under heat stress where the percent of germinated plants increases compared to non-treated plants.


In another embodiment a combination of strains from Table E can create a nutriobiotic that can be applied with a suitable seed coat polymer.


In another embodiment the nutriobiotics increase the overall plant yield in a leafy green measured as wet weight at harvest.


In another embodiment the plant appearance and size is improved by the use of a nutriobiotic compared to a non-treated plant after growth and prior to harvest.


In another embodiment seeds can be coated with a combination of strains from Table E with or without polymer to create a nutriobiotic that enhances germination in drought.


In another embodiment seeds can be coated with a combination of strains from Table E with or without polymer to create a nutriobiotic that enhances germination in excessive rain.


In another embodiment seeds can be coated with a combination of strains from Table E with or without polymer to create a nutriobiotic that enhances plant growth in drought.


In another embodiment seeds can be coated with a combination of strains from Table E with or without polymer to create a nutriobiotic that enhances plant growth in excessive rain.


Microgreens

In some embodiments the nutriobiotic is applied to microgreens to enhance the nutritional and beneficial attributes of the plant. Microgreens are young vegetables that are 1-3 inches tall and are harvested 7-21 days after planting. Microgreens have gained popularity due to their enhanced nutritional benefit over their mature counterparts. Microgreens are estimated to register a CAGR of 7.5% between 2021 and 2026. The short duration of growth and dense planting of the greens lends itself to cultivation in a variety of conditions such as greenhouses, vertical farming and urban farming. In some embodiments nutriobiotics can be applied to enhance growth in these environments.


In some embodiments, broccoli, arugula, radishes, cabbage, kale and beet or any conventional vegetable or herbaceous microgreens are seeded with nutriobiotic microbes.


In some embodiments the nutriobiotics are applied as seed coat in combination of a suitable seed coat polymer. In other embodiments no polymer is used. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/seed. In some embodiments DMA #3, #4, #5 and #6, or any single microbe or DMA made of microbes from Table E are used. As an example, application of 1×107 microbes to seeds results in 1×106 to 1×108 CFUs per gram of microgreen.


In other embodiments the nutriobiotics are applied in the nutrient solution and contacted with the crop through the root system. The nutriobiotics dose ranges from 1×104 to 1×109 CFU/ml in nutrient solution.


In further embodiments the nutribiotics are applied to the growth substrate (eg. soil, peat, gel). The nutriobiotics dose ranges from 1×104 to 1×109 CFU/g in growth substrate.


In another embodiment nutriobiotics can be applied to improved seeds that have been specifically selected or bred for growth in microgreen systems.


In another embodiment the nutriobiotic is applied as a foliar product that can be used in combination with any of the other application modalities including seed coats, flower, germination substrate or nutrient solution. The foliar applications can be done at weekly intervals until the crop is harvested. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/cm2 of foliar biomass.


Polymer Coating

In some embodiments the invention provides a cultured nutriobiotic for the enhancement of microbial content of edible plants including a single or multiple bacteria applied to a seed with a polymeric or adhesive substance as a seed coating to enhance growth of the resultant plant. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/seed. The seed coating is added as 10-50% weight of the total material added to the seeds.


Polymers can include vinyl pyrrolidone/vinyl acetate copolymers. As an example, suitable polymers include but are not limited to polymers produce by Ashland® (e.g., Agrimer VA 6W). Polymers can be applied to Arugula, Little Gem lettuce, and Black Seeded Simpson lettuce seeds prior to planting and can improve seedling biomass by 20-500%.


In other embodiments the invention provides a cultured nutriobiotic for the enhancement of microbial content of edible plants for probiotic benefit through use of a polymeric or adhesive substance added as part of a formulated spray to enhance microbial survival on fruits, flowers and leaves. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/cm2 of foliar biomass or 1×103 to 1×109 CFU/flower. The substance is added as 1-50% weight of the total material added to the spray.


In other embodiments the invention provides a cultured nutriobiotic for the enhancement of microbial content of edible plants through use of a polymeric or adhesive substance added as part of a formulated spray to reduce growth of plant pathogens on fruits, flowers and leaves. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/cm2 of foliar biomass or 1×103 to 1×109 CFU/flower. The substance is added as 1-50% weight of the total material added to the spray.


In other embodiments the invention provides a cultured nutriobiotic for the enhancement of microbial content of edible plants through use of a polymeric or adhesive substance added as part of a formulated spray to enhance growth of fruits, flowers and leaves. The nutriobiotics dose ranges from 1×103 to 1×109 CFU/cm2 of foliar biomass or 1×103 to 1×109 CFU/flower. The substance is added as 1-50% weight of the total material added to the spray.


In some embodiments the invention provides a cultured nutriobiotic for the enhancement of microbial content of edible plants including a single or multiple bacteria applied to a seed with a polymeric or adhesive substance as a seed coating to enhance growth of the resultant plant.


In other embodiments seed coating is used to enhance growth of the nutriobiotic on the plant and improve the probiotic benefit.


As an example, DMA #2, including L. plantarum, L. brevis, L. mesenteroides and P. kudriavzevii, applied to Little Gem Lettuce seeds with a polymer coating improved colonization of the seedling 4-fold and seedling biomass by 30% over the polymer coating alone.


As a further example, DMA #2, including L. plantarum, L. brevis, L. mesenteroides and P. kudriavzevii, applied to arugula seeds with a polymer coating improved colonization of the seedling 3-fold.


As a further example, DMA #2, including L. plantarum, L. brevis, L. mesenteroides and P. kudriavzevii, applied to Outredgeous seeds with a polymer coating improved colonization of the seedling by 60% and improved biomass over the polymer control by 97%.


As a further example, DMA #2, including L. plantarum, L. brevis, L. mesenteroides and P. kudriavzevii, applied to Outredgeous seeds with a polymer coating improved colonization of the seedling by 30%, improved biomass over the polymer control by 26%, and improved biomass over the non-polymer coated, DMA #2 treated control by 10%.


As a further example, DP100, made of L. plantarum applied to Outredgeous seeds with a polymer coating improved colonization of the seedling by 96%, improved biomass over the polymer control by 88%.


As a further example, DP100, made of L. plantarum applied to Black Seeded Simpson seeds with a polymer coating improved colonization of the seedling by 3.5-fold, improved biomass over the polymer control by 265%, and improved biomass over the non-polymer coated, DP-100 treated control by over 245%.


As a further example, DP100, made of L. plantarum applied to Little Gem seeds with a polymer coating improved colonization of the seedling by 96%, and improved biomass over the non-polymer coated, DP100-treated control by 88%.


As a further example, DP97, made of L. garvieae applied to Black Seeded Simpson seeds with a polymer coating improved colonization of the seedling by 12-fold, improved biomass over the polymer control by 30%, and improved biomass over the non-polymer coated, DP-100 treated control by over 40%.


Specificity of Microbes on Greens

In some embodiments probiotic microbes applied to fibrous plant material such as salad greens provides consumer benefit over conventional probiotic treatment through introduction of a substrate for protective transport and replication within the digestive tract. Application of probiotic microbes to seeds and replication of microbes on the resultant plants is demonstrated herein (Examples 13-16). Numerous probiotic microbes have been described, each with specific benefits that can be tailored to a given disorder or deficiency. In other embodiments, microbe or DMA Nutriobiotics used to enhance plants can be tailored for these disorders and deficiencies. In example 15, specificity between beneficial microbe and plant substrate for consumption was observed. For microbes applied to greens for use in salad such as arugula and varieties of lettuce, probiotic species selection is a critical component of the art.


As an example, Lactobacillus plantarum (DP100) is a bacterium that is commercially sold as a probiotic. Application of this microbe to seeds results in robust replication on Arugula crops where application of 1×107 bacteria per seed results in 1×108 CFUs per gram of green. Consumption of a salad containing 10-100 g of treated greens would provide microbial CFUs equivalent to current L. plantarum probiotics. This was not true of Outredgeous lettuce where replication of the microbe was 100-fold lower.


As a further example, Leuconostoc mesenteroides (DP93), a bacterium that is generally recognized as safe (GRAS), used in dairy fermentations, and is under investigation as a probiotic with potential use in hypercholesterolemia. Application of this microbe to seeds results in robust replication on Arugula and Little Gem lettuce crops, where application of 1×107 bacteria per seed results in 1×107 CFUs per gram of green. Consumption of a salad containing 100 g of treated greens would provide microbial CFUs equivalent to current L. plantarum probiotics.


As a further example, Debaryomyces hansenii (DP5) is a yeast that has been described as providing human benefit through described immunomodulation and reduction of pathogenic fungi on foods. Application of this microbe to seeds results in robust replication on crops including Arugula, Tomato plants and multiple types of lettuce, where application of 1×106 yeast per seeds results in 1×107 CFUs per gram of green. Consumption of a salad containing 100 g of treated greens would provide microbial CFUs equivalent to commercial yeast probiotics. This would not be true of Black Seeded Simpson lettuce where replication of the microbe was 10-fold lower.


As an example, DMA #2 is comprised of three lactic acid bacteria and a yeast that is under investigation as a therapeutic for bone health. Application of this DMA to seeds results in robust replication on Arugula and Little Gem lettuce crops where application of 1×107 bacteria per seed results in 1×107 CFUs per gram of green. Consumption of a salad containing 100 g of treated greens would provide microbial CFUs equivalent to current L. plantarum probiotics. This was not true of Outredgeous lettuce, where replication of the yeast portion of the DMA was poor or Black Seeded Simpson lettuce, where replication of the lactic acid bacteria was poor.


In other embodiments specific nutriobiotics of single microbes or DMAs from Table E are combined with specifically selected microgreens for maximum microbial replication and consumer benefit. For microbes applied to microgreens such as broccoli, arugula, radishes, cabbage, kale and beet or any conventional vegetable or herbaceous microgreens, probiotic species selection is a critical component of the art.


As an example, Broccoli microgreens are maximally colonized by DMA #5 and DMA #6 while colonization by DMA #3 and DMA #4 was 10-fold lower.


As a further example, Daikon radish microgreens were maximally colonized by DMA #4 whereas DMA #3 colonized to a level that was 10-fold lower and DMA #6 did not colonize at all.


As a further example, Arugula microgreens were maximally colonized by DMA #5 whereas DMA #4 colonized to a level that was 500-fold lower.


ADDITIONAL EMBODIMENTS

Provided below are enumerated embodiments describing specific embodiments of the invention:

    • Embodiment 1: A probiotic composition comprising a plurality of viable microbes, comprising
      • a. At least one microbe classified as a gamma proteobacterium, fungus, or lactic acid bacterium, optionally selected from Table B or Table E, and
      • b. At least one prebiotic, optionally wherein the prebiotic is a fiber; and
      • c. An agriculturally acceptable carrier
    • Embodiment 2: The probiotic composition of embodiment 1, wherein the probiotic composition comprises a filamentous fungus or yeast.
    • Embodiment 3: The probiotic composition of embodiment 1, wherein the probiotic composition comprises a lactic acid bacterium.
    • Embodiment 4: The probiotic composition of embodiment 1, wherein the probiotic composition is substantially similar to that of an edible plant component that is beneficial for human health.
    • Embodiment 5: The probiotic of embodiment 1, wherein the plurality of purified microbes is present at an amount effective to improve the microbial content of an edible plant.
    • Embodiment 6: The probiotic composition of embodiment 1, wherein the plurality of purified viable microbes produces more short chain fatty acids than the individual microbial entities grown in isolation.
    • Embodiment 7: The probiotic composition of embodiment 1, applied to an edible portion of a plant, wherein the probiotic composition increases the amount of beneficial microbes in the edible portion of the plant treated with the probiotic composition.
    • Embodiment 8: The probiotic composition of embodiment 1, wherein the microbial entities comprising the probiotic composition are amplified within a tissue of an edible plant.
    • Embodiment 9: A method of improving the nutritional value of a first plant component, comprising i) applying to a second plant component an effective amount of a plurality of viable microbes, ii) allowing the first plant component to mature, and iii) harvesting the first plant component, wherein the plurality of microbes is present in the first plant component at harvest at higher amounts than in the first plant component allowed to mature without the addition of the effective amount of the plurality of microbes.
    • Embodiment 10: The method of embodiment 9, wherein the plurality of microbes comprises two or more microbes listed in Table B or Table E.
    • Embodiment 11: The method of embodiment 9, wherein the plurality of microbes comprises three or more microbes listed in Table B or Table E.
    • Embodiment 12: The method of embodiment 9, wherein the first plant component is a fruit.
    • Embodiment 13: The method of embodiment 9, wherein the first plant component is a stem, leaf, root or tuber.
    • Embodiment 14: The method of embodiment 9, wherein the second plant component is a flower.
    • Embodiment 15: The method of embodiment 9, wherein the second plant component is a seed.
    • Embodiment 16: The method of embodiment 9, wherein the second plant component is a root.
    • Embodiment 17: The method of embodiment 9, wherein the second plant component is a leaf.
    • Embodiment 18: The method of embodiment 9, wherein the second plant component is a stem.
    • Embodiment 19: The method of embodiment 9, wherein the second plant component is a seedling.
    • Embodiment 20: The method of embodiment 9, further comprising improving a facet of the first plant component for human consumption.
    • Embodiment 21: The method of embodiment 20, wherein the improved facet is selected from the group consisting of: plant growth, germination efficiency, abiotic stress tolerance, nutritional value, taste, smell, texture, digestibility, and shelf-life.
    • Embodiment 22: An agricultural seed preparation prepared by the method of embodiment 9.
    • Embodiment 23: A plant component wherein the microbial content of the plant component comprises higher microbial diversity or higher amounts by viable count or direct microscopy, as compared to a reference sample.
    • Embodiment 24: The method of embodiment 9, wherein the plurality of viable microbes is obtained from a plant species or plant component other than the seeds to which the plurality of microbes is applied.


EXAMPLES

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.


Example 1: Microbial Preparations and Metagenomic Analyses

A sample set of 15 vegetables typically eaten raw was selected to analyze the microbial communities by whole genome shotgun sequencing and comparison to microbial databases. The 15 fruits and vegetable samples are shown in Table A and represent ingredients in typical salads or eaten fresh. The materials were sourced at the point of distribution in supermarkets selling both conventional and organic farmed vegetables, either washed and ready to eat or without washing.


The samples were divided into 50 g portions, thoroughly rinsed with tap water and blended for 30 seconds on phosphate buffer pH 7.4 (PBS) in a household blender. The resulting slurry was strained by serial use of a coarse household sieve and then a fine household sieve followed by filtration through a 40 μm sieve. The cell suspension containing the plant microbiota, chloroplasts and plant cell debris was centrifuged at slow speed (100×g) 5 minutes for removing plant material and the resulting supernatant centrifuged at high speed (4000× g) 10 minutes to pellet microbial cells. The pellet was resuspended in a plant cell lysis buffer containing a chelator such as EDTA 10 mM to reduce divalent cation concentration to less than, and a non-ionic detergent to lyse the plant cells without destroying the bacterial cells. The lysed material was washed by spinning down the microbial cells at 4000× g for 10 minutes, and then resuspended in PBS and repelleted as above. For sample #12 (broccoli) the cell pellet was washed and a fraction of the biomass separated and only the top part of the pellet collected. This was deemed “broccoli juice” for analyses. The resulting microbiota prep was inspected under fluorescence microscopy with DNA stains to visualize plant and microbial cells based on cell size and DNA structure (nuclei for plants) and selected for DNA isolation based on a minimum ratio of 9:1 microbe to plant cells. The DNA isolation was based on the method reported by Marmur (Journal of Molecular Biology 3, 208-218; 1961), or using commercial DNA extraction kits based on magnetic beads such as Thermo Charge Switch resulting in a quality suitable for DNA library prep and free of PCR inhibitors.


The DNA was used to construct a single read 150 base pair libraries and a total of 26 million reads sequenced per sample according to the standard methods done by CosmoslD (www.cosmosid.com) for samples #1 to #12 or 300 base pair-end libraries and sequenced in an Illumina NextSeq instrument covering 4 Gigabases per sample for samples #13 to #15. The unassembled reads were then mapped to the CosmoslD for first 12 samples or OneCodex for the last 3 samples databases containing 36,000 reference bacterial genomes covering representative members from diverse taxa. The mapped reads were tabulated and represented using a “sunburst” plot to display the relative abundance for each genome identified corresponding to that bacterial strain and normalized to the total of identified reads for each sample. In addition, phylogenetic trees were constructed based on the classification for each genome in the database with a curated review. There are genomes that have not been updated in the taxonomic classifier and therefore reported as unclassified here but it does not reflect a true lack of clear taxonomic position, it reflects only the need for manual curation and updating of those genomes in the taxonomic classifier tool.


In addition to the shotgun metagenomics survey relevant microbes were isolated from fruits and vegetables listed in Table A using potato dextrose agar or nutrient agar and their genomes sequenced to cover 50× and analyzed their metabolic potential by using genome-wide models. For example, a yeast isolated from blueberries was sequenced and its genome showed identity to Aureobasidium subglaciale assembled in contigs with an N50 of 71 Kb and annotated to code for 10, 908 genes. Similarly, bacterial genomes from the same sample were sequenced and annotated for strains with high identity to Pseudomonas and Rahnella.









TABLE A







Samples analyzed.








Sample number
sample description











1
chard


2
red cabbage


3
organic romaine


4
organic celery


5
butterhead organic lettuce


6
organic baby spinach


7
crisp green gem lettuce


8
red oak leaf lettuce


9
green oak leaf lettuce


10
cherry tomato


11
crisp red gem lettuce


12
broccoli juice


13
broccoli head


14
blueberries


15
pickled olives









Results

For most samples, bacterial abundances of fresh material contain 104 to 108 microbes per gram of vegetable as estimated by direct microscopy counts or viable counts. Diverse cell morphologies were observed including rods, elongated rods, cocci and fungal hyphae. Microorganisms were purified from host cells, DNA was isolated and sequenced using a shotgun approach mapping reads to 35,000 bacterial genomes using a k-mer method. All samples were dominated by gamma proteobacteria, primarily Pseudomonadacea, presumably largely endophytes as some samples were triple washed before packaging. Pseudomonas cluster was the dominant genera for several samples with 10-90% of the bacterial relative abundance detected per sample and mapped to a total of 27 different genomes indicating it is a diverse group. A second relevant bacterial strain identified was Duganella zoogloeoides ATCC 25935 as it was present in almost all the samples ranging from 1-6% of the bacterial relative abundance detected per sample or can reach 29% of the bacterial relative abundance detected per sample in organic romaine. Red cabbage was identified to contain a relatively large proportion of lactic acid bacteria as it showed 22% Lactobacillus crispatus, a species commercialized as probiotic and recognized relevant in vaginal healthy microbial community. Another vegetable containing lactic acid bacteria was red oak leaf lettuce containing 1.5% of the bacterial relative abundance detected per sample Lactobacillus reuteri. Other bacterial species recognized as probiotics included Bacillus, Bacteroidetes, Propionibacterium and Streptococcus. A large proportion of the abundant taxa in most samples was associated with plant microbiota and members recognized to act as biocontrol agents against fungal diseases or growth promoting agents such as Pseudomonas fluorescens. The aggregated list of unique bacteria detected by the k-mer method is 318 (Table B).


Blueberries contain a mixture of bacteria and fungi dominated by Pseudomonas and Propionibacterium but the yeast Aureobasidium was identified as a relevant member of the community. A lesser abundant bacterial species was Rahnella. Pickled olives are highly enriched in lactic acid bacteria after being pickled in brine allowing the endogenous probiotic populations to flourish by acidifying the environment and eliminating most of the acid-sensitive microbes including bacteria and fungi. This resulted in a large amount of Lactobacillus species and Pediococcus recognized as probiotics and related to obesity treatment.


The shotgun sequencing method allows for the analysis of the metagenome including genes coding for metabolic reactions involved in the assimilation of nutrient, fermentative processes to produce short chain fatty acids, flavonoids and other relevant molecules in human nutrition.









TABLE B







Bacteria identified in a 15 sample survey identified by whole genome


matching to reference genomes. The fruits and vegetables were selected


based on their recognition as part of the whole food plant-based diet


and some antidiabetic and anti -obesogenic properties. There is general


recognition of microbes in these vegetables relevant for plant health


but not previously recognized for their use in human health.









Strain identified by k-mer based on entire genome
Strain number
Collection






Acinetobacter baumannii






Acinetobacter soli





Acinetobacter 41764 Branch





Acinetobacter 41930 Branch





Acinetobacter 41981 Branch





Acinetobacter 41982 Branch





Acinetobacter baumannii 348935





Acinetobacter baumannii 40298 Branch





Acinetobacter beijerinckii 41969 Branch





Acinetobacter beijerinckii CIP 110307

CIP 110307
WFCC



Acinetobacter bohemicus ANC 3994





Acinetobacter guillouiae 41985 Branch





Acinetobacter guillouiae 41986 Branch





Acinetobacter gyllenbergii 41690 Branch





Acinetobacter haemolyticus TG19602





Acinetobacter harbinensis strain HITLi 7





Acinetobacter johnsonii 41886 Branch





Acinetobacter johnsonii ANC 3681





Acinetobacter junii 41994 Branch





Acinetobacter lwoffii WJ10621





Acinetobacter sp 41945 Branch





Acinetobacter sp 41674 Branch





Acinetobacter sp 41698 Branch





Acinetobacter sp ETR1





Acinetobacter sp NIPH 298





Acinetobacter tandoii 41859 Branch





Acinetobacter tjernbergiae 41962 Branch





Acinetobacter towneri 41848 Branch





Acinetobacter venetianus VE C3





Actinobacterium LLX17





Aeromonas bestiarum strain CECT 4227

CECT 4227
CECT



Aeromonas caviae strain CECT 4221

CECT 4221
CECT



Aeromonas hydrophila 4AK4





Aeromonas media 37528 Branch





Aeromonas media strain ARB 37524 Branch





Aeromonas salmonicida subsp 37538 Branch





Aeromonas sp ZOR0002





Agrobacterium 22298 Branch





Agrobacterium 22301 Branch





Agrobacterium 22313 Branch





Agrobacterium 22314 Branch





Agrobacterium sp ATCC 31749

ATCC 31749
ATCC



Agrobacterium tumefaciens 22306 Branch




Agrobacterium tumefaciens strain MEJ076





Agrobacterium tumefaciens strain S2





Alkanindiges illinoisensis DSM 15370

DSM 15370
WFCC


alpha proteobacterium L41A




Arthrobacter 20515 Branch





Arthrobacter arilaitensis Re117





Arthrobacter chlorophenolicus A6





Arthrobacter nicotinovorans 20547 Branch





Arthrobacter phenanthrenivorans Sphe3





Arthrobacter sp 20511 Branch





Arthrobacter sp PAO19





Arthrobacter sp W1





Aureimonas sp. Leaf427





Aureobasidium pullulans




Bacillaceae Family 24 4101 12691 Branch




Bacillus sp. LLO1





Bacillus 12637 Branch





Bacillus aerophilus strain C772





Bacillus thuringiensis serovar 12940 Branch





Brevundimonas nasdae strain TPW30





Brevundimonas sp 23867 Branch





Brevundimonas sp EAKA





Buchnera aphidicola str 28655 Branch




Burkholderiales Order 15 6136 Node 25777




Buttiauxella agrestis 35837 Branch





Candidatus Burkholderia verschuerenii





Carnobacterium 5833 Branch





Carnobacterium maltaromaticum ATCC 35586

ATCC 35586
ATCC



Chryseobacterium 285 Branch





Chryseobacterium daeguense DSM 19388

DSM 19388
WFCC



Chryseobacterium formosense





Chryseobacterium sp YR005





Clavibacter 20772 Branch





Clostridium diolis DSM 15410

DSM 15410
WFCC



Comamonas sp B 9





Curtobacterium flaccumfaciens 20762 Branch





Curtobacterium flaccumfaciens UCD AKU





Curtobacterium sp UNCCL17





Deinococcus aquatilis DSM 23025

DSM 23025
WFCC



Debaromyces hansenii ATCC 36239

ATCC 25935
ATCC



Duganella zoogloeoides ATCC 25935




Dyadobacter 575 Branch





Elizabethkingia anophelis





Empedobacter falsenii strain 282





Enterobacter sp 638




Enterobacteriaceae Family 9 3608 Node 35891



Enterobacteriaceae Family 9 593 Node 36513




Epilithonimonas lactis





Epilithonimonas tenax DSM 16811

DSM 16811
WFCC



Erwinia 35491 Branch





Erwinia amylovora 35816 Branch





Erwinia pyrifoliae 35813 Branch





Erwinia tasmaniensis Et1 99

DSM 17950
WFCC



Escherichia coli ISC11





Exiguobacterium 13246 Branch





Exiguobacterium 13260 Branch





Exiguobacterium sibiricum 255 15

DSM 17290
WFCC



Exiguobacterium sp 13263 Branch





Exiguobacterium undae 13250 Branch





Exiguobacterium undae DSM 14481

DSM 14481
WFCC



Flavobacterium 237 Branch





Flavobacterium aquatile LMG 4008

LMG 4008
WFCC



Flavobacterium chungangense LMG 26729

LMG 26729
WFCC



Flavobacterium daejeonense DSM 17708

DSM 17708
WFCC



Flavobacterium hibernum strain DSM 12611

DSM 12611
WFCC



Flavobacterium hydatis





Flavobacterium johnsoniae UW101

ATCC 17061D-5
ATCC



Flavobacterium reichenbachii





Flavobacterium soli DSM 19725

DSM 19725
WFCC



Flavobacterium sp 238 Branch





Flavobacterium sp EM1321





Flavobacterium sp MEB061





Hanseniaspora uvarum ATCC 18859





Hanseniaspora occidentalis ATCC 32053




Herminiimonas arsenicoxydans




Hymenobacter swuensis DY53





Janthinobacterium 25694 Branch





Janthinobacterium agaricidamnosum

DSM 9628
WFCC



Janthinobacterium lividum strain RIT308





Janthinobacterium sp RA13





Kocuria 20614 Branch





Kocuria rhizophila 20623 Branch





Lactobacillus acetotolerans





Lactobacillus brevis





Lactobacillus buchneri





Lactobacillus futsaii





Lactobacillus kefiranofaciens





Lactobacillus panis





Lactobacillus parafarraginis





Lactobacillus plantarum





Lactobacillus rapi





Lactobacillus crispatus 5565 Branch





Lactobacillus plantarum WJL





Lactobacillus reuteri 5515 Branch





Leuconostoc mesenteroides ATCC 8293





Luteibacter sp 9135




Massilia timonae CCUG 45783





Methylobacterium extorquens 23001 Branch





Methylobacterium sp 22185 Branch





Methylobacterium sp 285MFTsu5 1





Methylobacterium sp 88A





Methylotenera versatilis 7





Microbacterium laevaniformans OR221





Microbacterium oleivorans





Microbacterium sp MEJ108Y





Microbacterium sp UCD TDU





Microbacterium testaceum StLB037





Micrococcus luteus strain RIT304

NCTC 2665
NCTC



Mycobacterium abscessus 19573 Branch





Neosartorya fischeri




Oxalobacteraceae bacterium AB 14




Paenibacillus sp FSL 28088 Branch





Paenibacillus sp FSL H7 689





Pantoea sp. SL1 M5





Pantoea 36041 Branch





Pantoea agglomerans strain 4





Pantoea agglomerans strain 4





Pantoea agglomerans strain LMAE 2





Pantoea agglomerans Tx10





Pantoea sp 36061 Branch





Pantoea sp MBLJ3





Pantoea sp SL1 M5





Paracoccus sp PAMC 22219





Patulibacter minatonensis DSM 18081

DSM 18081
WFCC



Pectobacterium carotovorum subsp carotovorum




strain 28625 Branch



Pediococcus ethanolidurans





Pediococcus pentosaceus ATCC 33314





Pedobacter 611 Branch




Pedobacter agri PB92





Pedobacter borealis DSM 19626

DSM 19626
WFCC



Pedobacter kyungheensis strain KACC 16221





Pedobacter sp R20 19





Periglandula ipomoeae





Pichia kudriavzevii





Planomicrobium glaciei CHR43




Propionibacterium acnes





Propionibacterium 20955 Branch





Propionibacterium acnes 21065 Branch





Pseudomonas fluorescens





Pseudomonas sp. DSM 29167





Pseudomonas sp. Leaf15





Pseudomonas syringae





Pseudomonas 39524 Branch





Pseudomonas 39642 Branch





Pseudomonas 39733 Branch





Pseudomonas 39744 Branch





Pseudomonas 39791 Branch





Pseudomonas 39821 Branch





Pseudomonas 39834 Branch





Pseudomonas 39875 Branch





Pseudomonas 39880 Branch





Pseudomonas 39889 Branch





Pseudomonas 39894 Branch





Pseudomonas 39913 Branch





Pseudomonas 39931 Branch





Pseudomonas 39942 Branch





Pseudomonas 39979 Branch





Pseudomonas 39996 Branch





Pseudomonas 40058 Branch





Pseudomonas 40185 Branch





Pseudomonas abietaniphila strain KF717





Pseudomonas chlororaphis strain EA105





Pseudomonas cremoricolorata DSM 17059

DSM 17059
WFCC



Pseudomonas entomophila L48





Pseudomonas extremaustralis 14 3 substr 14 3b





Pseudomonas fluorescens BBc6R8





Pseudomonas fluorescens BS2

ATCC 12633
ATCC



Pseudomonas fluorescens EGD AQ6





Pseudomonas fluorescens strain AU 39831 Branch





Pseudomonas fluorescens strain AU10973





Pseudomonas fluorescens strain AU14440





Pseudomonas fragi B25

NCTC 10689
NCTC



Pseudomonas frederiksbergensis strain SI8





Pseudomonas fulva strain MEJ086





Pseudomonas fuscovaginae 39768 Branch





Pseudomonas gingeri NCPPB 3146

NCPPB 3146
NCPPB



Pseudomonas lutea





Pseudomonas luteola XLDN4 9





Pseudomonas mandelii JR 1





Pseudomonas moraviensis R28 S





Pseudomonas mosselii SJ10





Pseudomonas plecoglossicida NB 39639 Branch





Pseudomonas poae RE*1 1 14





Pseudomonas pseudoalcaligenes AD6





Pseudomonas psychrophila HA 4





Pseudomonas putida DOT T1E





Pseudomonas putida strain KF703





Pseudomonas putida strain MC4 5222





Pseudomonas rhizosphaerae





Pseudomonas rhodesiae strain FF9





Pseudomonas sp 39813 Branch





Pseudomonas simiae strain 2 36





Pseudomonas simiae strain MEB105





Pseudomonas sp 11 12A





Pseudomonas sp 2 922010





Pseudomonas sp CF149





Pseudomonas sp Eur1 9 41





Pseudomonas sp LAMO17WK12 I2





Pseudomonas sp PAMC 25886





Pseudomonas sp PTA1





Pseudomonas sp R62





Pseudomonas sp WCS374





Pseudomonas synxantha BG33R





Pseudomonas synxantha BG33R





Pseudomonas syringae 39550 Branch





Pseudomonas syringae 39596 Branch





Pseudomonas syringae 40123 Branch





Pseudomonas syringae CC 39499 Branch





Pseudomonas syringae pv panici str LMG 2367





Pseudomonas syringae strain mixed





Pseudomonas tolaasii 39796 Branch





Pseudomonas tolaasii PMS117





Pseudomonas veronii 1YdBTEX2





Pseudomonas viridiflava CC1582





Pseudomonas viridiflava strain LMCA8





Pseudomonas viridiflava TA043





Pseudomonas viridiflava UASWS0038





Rahnella 35969 Branch





Rahnella 35970 Branch





Rahnella 35971 Branch





Rahnella aquatilis HX2





Rahnella sp WP5





Raoultella ornithinolytica




Rhizobiales Order 22324 Branch




Rhizobium sp YR528





Rhodococcus fascians A76





Rhodococcus sp BS 15





Saccharomyces cerevisiae

DSM 10542
WFCC



Sanguibacter keddieii DSM 10542




Serratia fonticola AU 35657 Branch





Serratia fonticola AU AP2C





Serratia liquefaciens ATCC 27592

ATCC 27592
ATCC



Serratia sp H 35589 Branch





Shewanella 37294 Branch





Shewanella baltica 37301 Branch





Shewanella baltica 37315 Branch





Shewanella baltica OS 37308 Branch





Shewanella baltica OS 37312 Branch





Shewanella baltica OS185





Shewanella baltica OS223





Shewanella baltica OS678





Shewanella oneidensis MR 1





Shewanella putrefaciens HRCR 6





Shewanella sp W3 18 1





Sphingobacterium sp ML3W





Sphingobium japonicum BiD32





Sphingobium xenophagum 24443 Branch





Sphingomonas echinoides ATCC 14820

ATCC 14820
ATCC



Sphingomonas parapaucimobilis NBRC 15100

ATCC 51231
ATCC



Sphingomonas paucimobilis NBRC 13935

ATCC 29837
ATCC



Sphingomonas phyllosphaerae 5 2





Sphingomonas sp 23777 Branch





Sphingomonas sp STIS6 2





Staphylococcus 6317 Branch





Staphylococcus equorum UMC CNS 924





Staphylococcus sp 6275 Branch





Staphylococcus sp 6240 Branch





Staphylococcus sp OJ82





Staphylococcus xylosus strain LSR 02N





Stenotrophomonas 14028 Branch





Stenotrophomonas 42816 Branch





Stenotrophomonas maltophilia 42817 Branch





Stenotrophomonas maltophilia PML168





Stenotrophomonas maltophilia strain ZBG7B





Stenotrophomonas rhizophila





Stenotrophomonas sp RIT309





Streptococcus gallolyticus subsp gallolyticus




TX20005



Streptococcus infantarius subsp infantarius 2242




Branch



Streptococcus infantarius subsp infantarius ATCC

ATCC BAA 102
ATCC


BAA 102



Streptococcus macedonicus ACA DC 198

ATCC BAA-249
ATCC



Streptomyces olindensis





Variovorax paradoxus 110B





Variovorax paradoxus ZNC0006





Variovorax sp CF313





Vibrio fluvialis 44473 Branch





Xanthomonas campestris 37936 Branch





Xanthomonas campestris pv raphani 756C












FIGS. 1A-1L show bacterial diversity observed in a set of 12 plant-derived samples as seen by a community reconstruction based on mapping the reads from a shotgun sequencing library into the full genomes of a database containing 36,000 genomes by the k-mer method (CosmoslD). The display corresponds to a sunburst plot constructed with the relative abundance for each corresponding genome identified and their taxonomic classification. The genomes identified as unclassified have not been curated in the database with taxonomic identifiers and therefore not assigned to a group. This does not represent novel taxa and it is an artifact of the database updating process.


More specifically, FIG. 1A shows bacterial diversity observed in a green chard. The dominant group is gamma proteobacteria with different Pseudomonas species. The members of the group “unclassified” are largely gamma proteobacteria not included in the hierarchical classification as an artifact of the database annotation.



FIG. 1B shows bacterial diversity in red cabbage. There is a large abundance of Lactobacillus in the sample followed by a variety of Pseudomonas and Shewanella.



FIG. 1C shows bacterial diversity in romaine lettuce. Pseudomonas and Duganella are the dominant groups. A member of the Bacteroidetes was also identified.



FIG. 1D shows bacterial diversity in celery sticks. This sample was dominated by a Pseudomonas species that was not annotated yet into the database and therefore appeared as “unclassified” same for Agrobacterium and Acinetobacter.



FIG. 1E shows bacterial diversity observed in butterhead lettuce grown hydroponically. The sample contains relatively low bacterial complexity dominated by Pseudomonas fluorescens and other groups. Also, there was a 9% abundance of Exiguobacterium.



FIG. 1F shows bacterial diversity in organic baby spinach. The samples were triple-washed before distribution at the point of sale and therefore it is expected that must of the bacteria detected here are endophytes. Multiple Pseudomonas species observed in this sample including P. fluorescens and other shown as “unclassified.”



FIG. 1G shows bacterial diversity in green crisp gem lettuce. This variety of lettuce showed clear dominance of gamma proteobacteria and with Pseudomonas, Shewanella, Serratia as well as other groups such as Duganella.



FIG. 1H shows bacterial diversity in red oak leaf lettuce. There is a relative high diversity represented in this sample with members of Lactobacillus, Microbacterium, Bacteroidetes, Exiguobacterium and a variety of Pseudomonas.



FIG. 1I shows bacterial diversity in green oak leaf lettuce. It is dominated by a single Pseudomonas species including fluorescens and mostly gamma proteobacteria.



FIG. 1J shows bacterial diversity in cherry tomatoes. It is dominated by 3 species of Pseudomonas comprising more than 85% of the total diversity of which P. fluorescens comprised 28% of bacterial diversity.



FIG. 1K shows bacterial diversity in crisp red gem lettuce. Dominance by a single Pseudomonas species covering 73% of the bacterial diversity, of which P. fluorescens comprised 5% of bacterial diversity.



FIG. 1L shows bacterial diversity in broccoli juice. The sample is absolutely dominated by 3 varieties of Pseudomonas.



FIGS. 2A-2C show taxonomic composition of blueberries, pickled olives and broccoli head. More specifically, FIG. 2A shows taxonomic composition of broccoli head showing a diversity of fungi and bacteria distinct from the broccoli juice dominated by few Pseudomonas species.



FIG. 2B shows taxonomic composition of blueberries including seeds and pericarp (peel) as seen by shotgun sequencing showing dominance of Pseudomonas and strains isolated and sequenced.



FIG. 2C shows taxonomic composition of pickled olives showing a variety of lactic acid bacteria present and dominant Some of the species are recognized as probiotics.


Example 2: In Silico Modeling Outputs for Different Assemblages and DMA Formulation

To generate in silico predictions for the effect of different microbial assemblages with a human host a genome-wide metabolic analysis was performed with formulated microbial communities selected from the Agora collection (Magbustoddir et al. 2016) Generation of genome-sc ale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotech. 35, 81-89) and augmented with the genomes of bacterial members detected in the present survey. These simulations predict the “fermentative power” of each assemblage when simulated under different nutritional regimes including relatively high carbon availability (carbon replete) or carbon limited conditions when using plant fibers such as inulin, oligofructose and others as carbon source. Example 2.1. Metabolites in samples.


The method used for DNA sequencing the sample-associated microbiomes enabled to search for genes detected in the different vegetables related to propionate, butyrate, acetate and bile salt metabolism. This was done by mapping the reads obtained in the samples to reference genes selected for their intermediate role in the synthesis or degradation of these metabolites. There were organisms present in some of the 515 analyzed samples that matched the target pathways indicating their metabolic potential to produce desirable metabolites. Table C shows Metabolites in samples.









TABLE C







Predicted Metabolites Present in Sample Organisms












NAME OF
ASSOCIATED
GENE

E.C.



ENZYME
METABOLITE
SYMBOL
PATHWAY
NUMBER
COMMENTS





ACETOLACTATE
(S)-2-

BUTANOATE
2.2.1.6
BUTYRATE


SYNTHASE I
ACETOLACTATE

METABOLISM

PRODUCTION


ACETATE
PROPIONATE
ACKA
PROPANOATE
2.7.2.1
PROPIONATE


KINASE


METABOLISM


ACETYL-COA
PROPIONATE
AACS
PROPANOATE
6.2.1.1
PROPIONATE


SYNTHETASE


METABOLISM


ACETYL-COA
ACETATE

PYRUVATE
3.1.2.1
ACETATE


HYDROLASE


METABOLISM


BILE SALT
BILE SALTS
ACR3
BILE SALT

BILE SALT


TRANSPORTER


TRANSPORT

TOLERANCE









DMA Formulation


Microbes in nature generally interact with multiple other groups and form consortia that work in synergy exchanging metabolic products and substrates resulting in thermodynamically favorable reactions as compared to the individual metabolism. For example, in the human colon, the process for plant fiber depolymerization, digestion and fermentation into butyrate is achieved by multiple metabolic groups working in concert. This metabolic synergy is reproduced in the DMA concept where strains are selected to be combined based on their ability to synergize to produce an increased amount of SCFA when grown together and when exposed to substrates such as plant fibers.


To illustrate this process, a set of 99 bacterial and fungal strains were isolated from food sources and their genomes were sequenced. The assembled and annotated genomes were then used to formulate in silico assemblages considering the human host as one of the metabolic members. Assuming a diet composed of lipids, different carbohydrates and proteins the metabolic fluxes were predicted using an unconstrained model comparing the individual strain production of acetate, propionate and butyrate and compared to the metabolic fluxes with the assemblage.


In the first model, 4 strains were combined into a DMA. Strains 1-4 are predicted to produce acetate as single cultures but the combination into a DMA predicts the flux will increase when modeled on replete media and the flux decreases when modeled on plant fibers. Strain 4 is predicted to utilize the fibers better than the other 3 to produce acetate. Strain 1 is the only member of the assemblage predicted to produce propionate and when modeled with the other 3 strains the predicted flux doubles in replete media and quadruples in the fiber media illustrating the potential metabolic synergy from the assemblage. Strain 3 is the only member of the assemblage predicted to produce butyrate and when modeled with the other 3 strains the predicted flux increase slightly in replete media and doubled in the fiber media illustrating the potential metabolic synergy from the assemblage. Results are shown in FIG. 5.









TABLE D





Strains from first DMA model.

















Strain 1 - DP6 Bacillus cereus-like



Strain 2 - DP9 Pediococcus pentosaceus-like



Strain 3 - Clostridium butyricum DSM 10702



Strain 4 - DP1 Pseudomonas fluorescens-like










Substrate availability plays an important role in the establishment of synergistic interactions. Carbon limitation in presence of plant fibers favors fiber depolymerization and fermentation to produce SCFA. Conversely carbon replete conditions will prevent the establishment of synergistic metabolism to degrade fibers as it is not favored thermodynamically when the energy available from simple sugars is available. To illustrate this, we formulated a DMA containing two strains of lactic acid bacteria and run a metabolic prediction assuming a limited media with plant fibers. According to the model, Leuconostoc predicted flux is higher than Pediococcus and the DMA flux increases five times on the combined strains. When tested in the lab and measured by gas chromatography, the acetate production increases 3 times compared to the single strains. However, when grown on carbon replete media with available simple sugars, acetate production is correspondingly higher compared to the plant fiber media but there is no benefit of synergistic acetate production when the two strains are grown together into a DMA.


In addition to acetate, propionate, and butyrate some strains produce other isomers. For example, strains DP1 related to Pseudomonas fluorescens and DP5 related to Debaromyces hansenii (yeast) produce isobutyrate when grown in carbon-replete media as single strains, however there is metabolic synergy when tested together as DMA measured as an increase in the isobutyric acid production.


To describe experimentally the process of DMA validation the following method is applied to find other candidates applicable to other products:

    • 1. Define a suitable habitat where microbes are with desirable attributes are abundant based on ecological hypotheses. For example, fresh vegetables are known to have anti-inflammatory effects when consumed in a whole-food plant based diet, and therefore, it is likely they harbor microbes that can colonize the human gut.
    • 2. Apply a selection filter to isolate and characterize only those microbes capable of a relevant gut function. For example, tolerate acid shock, bile salts and low oxygen. In addition, strains need to be compatible with target therapeutic drugs. In type 2 diabetes metformin is a common first line therapy.
    • 3. Selected strains are then cultivated in vitro and their genomes sequenced at 100× coverage to assemble, annotate and use in predictive genome-wide metabolic models.
    • 4. Metabolic fluxes are generated with unconstrained models that consider multiple strains and the human host to determine the synergistic effects from multiple strains when it is assumed they are co-cultured under a simulated substrate conditions.
    • 5. Predicted synergistic combinations are then tested in the laboratory for validation. Single strains are grown to produce a biomass and the spent growth media removed after reaching late log phase. The washed cells are then combined in Defined Microbial Assemblages with 2-10 different strains per DMA and incubated using a culture media with plant fibers as substrates to produce short chain fatty acids to promote gut health.
    • 6. The DMAs are then analyzed by gas chromatography to quantify the short chain fatty acid production where the synergistic effect produces an increased production in the combined assemblage as compared to the individual contributions.


Example 3: Gut Simulation Experiments

The experiment comprises an in vitro, system that mimics various sections of the gastrointestinal tract. Isolates of interest are incubated in the presence of conditions that mimic particular stresses in the gastro-intestinal tract (such as low pH or bile salts), heat shock, or metformin. After incubation, surviving populations are recovered. Utilizing this system, the impact of various oral anti-diabetic therapies alone or in combination with probiotic cocktails of interest on the microbial ecosystem can be tested. Representative isolates are shown in Table E. Sequences associated with the isolates of Table E are shown in Table F.









TABLE E







Strains isolated from edible plants, listed with heat shock


tolerance, acid shock tolerance, and isolation temperature.












Strain
Heat
Isolation
Acid Shock




Number
Shock
Temperature
(pH 3) 2 hr
Genus
Species















DP39
No
25
No

Agrobacterium


tumefaciens



DP14
No
25
Yes

Arthrobacter


luteolus



DP52
No
25
No

Arthrobacter

sp.


DP28
No
25
Yes

Aureobasidium


pullulans



DP4
No
25
No

Aureobasidium


pullulans



DP10
Yes
25
No

Bacillus


velezensis



DP13
No
25
Yes

Bacillus


mycoides



DP48
Yes
25
No

Bacillus


paralicheniformis



DP49
Yes
25
No

Bacillus


gibsonii



DP55
Yes
25
No

Bacillus


megaterium



DP57
Yes
25
No

Bacillus


mycoides



DP6
Yes
25
No

Bacillus


cereus



DP60
Yes
25
No

Bacillus


simplex



DP65
No
25
No

Bacillus

sp.


DP67
Yes
25
No

Bacillus

sp.


DP68
Yes
25
No

Bacillus


atrophaeus



DP69
Yes
25
No

Bacillus

sp.


DP70
No
25
No

Bacillus


tequilensis



DP72
Yes
25
No

Bacillus

sp.


DP73
Yes
37
No

Bacillus


clausii



DP74
Yes
25
No

Bacillus


coagulans



DP81
Yes
37
No

Bacillus

sp.


DP82
Yes
37
No

Bacillus


clausii



DP83
Yes
37
No

Bacillus


clausii



DP86
No
30
No

Bacillus


velezensis



DP88
No
30
No

Bacillus


velezensis



DP89
No
30
No

Bacillus


subtilis



DP92
No
30
No

Bacillus


subtilis



DP77
Yes
25
No

Bacillus


megaterium



DP21
No
25
No

Candida


santamariae



DP41
Yes
37
No

Corynebacterium


mucifaciens



DP47
No
25
Yes

Cronobacter


dublinensis



DP15
No
25
No

Curtobacterium

sp.


DP19
No
25
No

Curtobacterium


pusillum



DP5
No
37
No

Debaromyces


hansenii



DP50
No
25
No

Enterobacter

sp.


DP85
No
30
No

Enterococcus


faecium



DP23
No
25
No

Erwinia


billingiae



DP33
No
25
No

Erwinia


persicinus



DP62
No
25
No

Erwinia

sp.


DP78
No
25
No

Erwinia


rhapontici



DP24
No
25
No

Filobasidium


globisporum



DP32
No
25
No

Hafnia


paralvei



DP2
No
37
No

Hanseniaspora


opuntiae



DP64
No
25
No

Hanseniaspora


uvarum



DP66
No
25
No

Hanseniaspora


occidentalis



DP8
No
25
No

Hanseniaspora


opuntiae



DP44
No
25
No

Herbaspirillum

sp.


DP43
No
25
No

Janthinobacterium

sp.


DP58
No
25
No

Janthinobacterium


svalbardensis



DP51
No
25
No

Klebsiella


aerogenes



DP59
No
25
No

Kosakonia


cowanii



DP100
No
30
No

Lactobacillus


plantarum



DP87
No
30
No

Lactobacillus


plantarum



DP90
No
30
No

Lactobacillus


plantarum



DP94
No
30
No

Lactobacillus


brevis



DP95
No
30
No

Lactobacillus


paracasei



DP96
No
30
No

Lactobacillus


paracasei



DP97
No
30
No

Lactococcus


garvieae



DP98
No
30
No

Lactococcus


garvieae



DP61
No
25
No

Lelliottia

sp.


DP3
No
25
No

Leuconostoc


mesenteroides



DP93
No
30
No

Leuconostoc


mesenteroides



DP26
No
25
No

Methylobacterium

sp.


DP54
No
25
No

Methylobacterium


adhaesivum



DP80
No
25
No

Methylobacterium


adhaesivum



DP12
No
25
Yes

Microbacterium

sp.


DP30
No
25
Yes

Microbacterium


testaceum



DP84
No
25
No

Microbacterium

sp.


DP76
No
25
No

Ochrobactrum

sp.


DP56
Yes
25
No

Paenibacillus


lautus



DP35
No
25
Yes

Pantoea


ananatis



DP36
No
25
Yes

Pantoea


vagans



DP40
No
37
No

Pantoea

sp.


DP46
No
25
Yes

Pantoea


agglomerans



DP101
No
30
No

Pediococcus


pentosaceus



DP9
No
25
No

Pediococcus


pentosaceus



DP102
No
30
No

Pichia


krudriavzevii



DP7
No
25
No

Pichia


fermentans



DP34
No
25
Yes

Plantibacter


flavus



DP29
No
25
Yes

Pseudoclavibacter


helvolus



DP1
No
25
No

Pseudomonas


fluorescens



DP11
No
25
No

Pseudomonas


putida



DP18
No
25
No

Pseudomonas

sp.


DP37
No
25
No

Pseudomonas


rhodesiae



DP42
No
37
No

Pseudomonas


lundensis



DP53
No
25
No

Pseudomonas


fragi



DP63
No
25
Yes

Pseudomonas


azotoformans



DP75
No
37
No

Pseudomonas


fluorescens



DP79
No
25
No

Pseudomonas


fragi



DP17
No
25
No

Rahnella


aquatilis



DP22
No
25
No

Rahnella

sp.


DP38
No
25
No

Rhodococcus

sp.


DP71
No
25
No

Rhodosporidium


babjevae



DP45
No
25
No

Sanguibacter


keddieii



DP27
No
25
No

Sphingomonas

sp.


DP31
No
25
Yes

Sporisorium


reilianum



DP20
No
25
No

Stenotrophomonas


rhizophila



DP99
No
30
No

Weissella


cibaria



















TABLE F





Seq




ID
Descrip-



No.
tion
Sequence

















1
DP1 16S
AGTCAGACATGCAAGTCGAGCGGTAGAGAGAAGCT



rRNA
TGCTTCTCTTGAGAGCGGCGGACGGGTGAGTAAAG




CCTAGGAATCTGCCTGGTAGTGGGGGATAACGTTC




GGAAACGGACGCTAATACCGCATACGTCCTACGGG




AGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCAG




ATGAGCCTAGGTCGGATTAGCTAGTTGGTGAGGTA




ATGGCTCACCAAGGCGACGATCCGTAACTGGTCTG




AGAGGATGATCAGTCACACTGGAACTGAGACACGG




TCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT




TGGACAATGGGCGAAAGCCTGATCCAGCCATGCCG




CGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACT




TTAAGTTGGGAGGAAGGGCATTAACCTAATACGTT




AGTGTTTTGACGTTACCGACAGAATAAGCACCGGC




TAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGG




TGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCG




CGCGTAGGTGGTTTGTTAAGTTGGATGTGAAATCC




CCGGGCTCAACCTGGGAACTGCATTCAAAACTGAC




TGACTAGAGTATGGTAGAGGGTGGTGGAATTTCCT




GTGTAGCGGTGAAATGCGTAGATATAGGAAGGAAC




ACCAGTGGCGAAGGCGACCACCTGGACTAATACTG




ACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGA




TTAGATACCCTGGTAGTCCACGCCGTAAACGATGT




CAACTAGCCGTTGGGAGCCTTGAGCTCTTAGTGGC




GCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTA




CGGCCGCAAGGTTAAAACTCAAATGAATTGACGGG




GGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTC




GAAGCAACGCGAAGAACCTTACCAGGCCTTGACAT




CCAATGAACTTTCTAGAGATAGATTGGTGCCTTCG




GGAACATTGAGACAGGTGCTGCATGGCTGTCGTCA




GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAA




CGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTA




ATGGTGGGCACTCTAAGGAGACTGCCGGTGACAAA




CCGGAGGAAGGTGGGGATGACGTCAAGTCATCATG




GCCCTTACGGCCTGGGCTACACACGTGCTACAATG




GTCGGTACAGAGGGTTGCCAAGCCGCGAGGTGGAG




CTAATCCCATAAAACCGATCGTAGTCCGGATCGCA




GTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTA




GTAATCGCGAATCAGAATGTCGCGGTGAATACGTT




CCCGGGCCTTGTACACACCGCCCGTCACACCATGG




GAGTGGGTTGCACCAGAAGTAGCTAGTCTAACCTT




CGGGAGGACGGTTACCACGGTGTGATTCATGACTG




GGGTGAAGTCGTAACAAGGTAGCCGTAGGGGAACC




TGCGGCTGGATCACCTCCTT





2
DP2 ITS
TTGTTGCTCGAGTTCTTGTTTAGATCTTTTACAAT



sequence
AATGTGTATCTTTAATGAAGATGNGNGCTTAATTG




CGCTGCTTTATTAGAGTGTCGCAGTAGAAGTAGTC




TTGCTTGAATCTCAGTCAACGTTTACACACATTGG




AGTTTTTTTACTTTAATTTAATTCTTTCTGCTTTG




AATCGAAAGGTTCAAGGCAAAAAACAAACACAAAC




AATTTTATTTTATTATAATTTTTTAAACTAAACCA




AAATTCCTAACGGAAATTTTAAAATAATTTAAAAC




TTTCAACAACGGATCTCTTGGTTCTCGCATCGATG




AAAAACGTACCGAATTGCGATAAGTAATGTGAATT




GCAAATACTCGTGAATCATTGAATTTTTGAACGCA




CATTGCGCCCTTGAGCATTCTCAAGGGCATGCCTG




TTTGAGCGTCATTTCCTTCTCAAAAAATAATTTTT




TATTTTTTGGTTGTGGGCGATACTCAGGGTTAGCT




TGAAATTGGAGACTGTTTCAGTCTTTTTTAATTCA




ACACTTANCTTCTTTGGAGACGCTGTTCTCGCTGT




GATGTATTTATGGATTTATTCGTTTTACTTTACAA




GGGAAATGGTAATGTACCTTAGGCAAAGGGTTGCT




TTTAATATTCATCAAGTTTGACCTCAAATCAGGTA




GGATTACCCGCTGAACTTAAGCATATCAATAAGCG




GAGGAAAAGAAACCAACTGGGATTACCTTAGTAAC




GGCGAGTGAAGCGGTAAAAGCTCAAATTTGAAATC




TGGTACTTTCAGTGCCCGAGTTGTAATTTGTAGAA




TTTGTCTTTGATTAGGTCCTTGTCTATGTTCCTTG




GAACAGGACGTCATAGAGGGTGAGANTCCCGTTTG




NNGAGGATACCTTTTCTCTGTANNACTTTTTCNAA




GAGTCGAGTTGNTTGGGAATGCAGCTCAAANNGGG




TNGNAAATTCCATCTAAAGCTAAATATTNGNCNAG




AGACCGANAGCGACANTACAGNGATGGAAAGANGA




AA





3
DP3 16S
ATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAACGCACAG




CGAAAGGTGCTTGCACCTTTCAAGTGAGTGGCGAA




CGGGTGAGTAACACGTGGACAACCTGCCTCAAGGC




TGGGGATAACATTTGGAAACAGATGCTAATACCGA




ATAAAACTCAGTGTCGCATGACACAAAGTTAAAAG




GCGCTTTGGCGTCACCTAGAGATGGATCCGCGGTG




CATTAGTTAGTTGGTGGGGTAAAGGCCTACCAAGA




CAATGATGCATAGCCGAGTTGAGAGACTGATCGGC




CACATTGGGACTGAGACACGGCCCAAACTCCTACG




GGAGGCTGCAGTAGGGAATCTTCCACAATGGGCGA




AAGCCTGATGGAGCAACGCCGCGTGTGTGATGAAG




GCTTTCGGGTCGTAAAGCACTGTTGTACGGGAAGA




ACAGCTAGAATAGGGAATGATTTTAGTTTGACGGT




ACCATACCAGAAAGGGACGGCTAAATACGTGCCAG




CAGCCGCGGTAATACGTATGTCCCGAGCGTTATCC




GGATTTATTGGGCGTAAAGCGAGCGCAGACGGTTG




ATTAAGTCTGATGTGAAAGCCCGGAGCTCAACTCC




GGAATGGCATTGGAAACTGGTTAACTTGAGTGCAG




TAGAGGTAAGTGGAACTCCATGTGTAGCGGTGGAA




TGCGTAGATATATGGAAGAACACCAGTGGCGAAGG




CGGCTTACTGGACTGTAACTGACGTTGAGGCTCGA




AAGTGTGGGTAGCAAACAGGATTAGATACCCTGGT




AGTCCACACCGTAAACGATGAACACTAGGTGTTAG




GAGGTTTCCGCCTCTTAGTGCCGAAGCTAACGCAT




TAAGTGTTCCGCCTGGGGAGTACGACCGCAAGGTT




GAAACTCAAAGGAATTGACGGGGACCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATCCTTTGAAGCTTT




TAGAGATAGAAGTGTTCTCTTCGGAGACAAAGTGA




CAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTG




AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC




TTATTGTTAGTTGCCAGCATTCAGATGGGCACTCT




AGCGAGACTGCCGGTGACAAACCGGAGGAAGGCGG




GGACGACGTCAGATCATCATGCCCCTTATGACCTG




GGCTACACACGTGCTACAATGGCGTATACAACGAG




TTGCCAACCCGCGAGGGTGAGCTAATCTCTTAAAG




TACGTCTCAGTTCGGATTGTAGTCTGCAACTCGAC




TACATGAAGTCGGAATCGCTAGTAATCGCGGATCA




GCACGCCGCGGTGAATACGTTCCCGGGTCTTGTAC




ACACCGCCCGTCACACCATGGGAGTTTGTAATGCC




CAAAGCCGGTGGCCTAACCTTTTAGGAAGGAGCCG




TCTAAGGCAGGACAGATGACTGGGGTGAAGTCGTA




ACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCA




CCTCCTTT





4
DP4 ITS
CTTTGTTGTTAAAACTACCTTGTTGCTTTGGCGGG



sequence
ACCGCTCGGTCTCGAGCCGCTGGGGATTCGTCCCA




GGCGAGCGCCCGCCAGAGTTAAACCAAACTCTTGT




TATTTAACCGGTCGTCTGAGTTAAAATTTTGAATA




AATCAAAACTTTCAACAACGGATCTCTTGGTTCTC




GCATCGATGAAGAACGCAGCGAAATGCGATAAGTA




ATGTGAATTGCAGAATTCAGTGAATCATCGAATCT




TTGAACGCACATTGCGCCCCTTGGTATTCCGAGGG




GCATGCCTGTTCGAGCGTCATTACACCACTCAAGC




TATGCTTGGTATTGGGCGTCGTCCTTAGTTGGGCG




CGCCTTAAAGACCTCGGCGAGGCCACTCCGGCTTT




AGGCGTAGTAGAATTTATTCGAACGTCTGTCAAAG




GAGAGGAACTCTGCCGACTGAAACCTTTATTTTTC




TAGGTTGACCTCGGATCAGGTAGGGATACCCGCTG




AACTTAAGCATATCAATAAGCGGAGGAAAAGAAAC




CAACAGGGATTGCCCTAGTAACGGCGAGTGAAGCG




GCAACAGCTCAAATTTGAAAGCTAGCCTTCGGGTT




CGCATTGTAATTTGTAGAGGATGATTTGGGGAAGC




CGCCTGTCTAAGTTCCTTGGAACAGGACGTCATAG




AGGGTGAGAATCCCGTATGTGACAGGAAATGGCAC




CCTATGTAAATCTCCTTCGACGAGTCGAGTTGTTT




GGGAATGCAGCTCTAAATGGGAGGTAAATTTCTTC




TAAAGCTAAATATTGGCGAGAGACCGATAGCGCAC




AAGTAGAGTGATCGAAAGATGAAAAGCACTTTGGA




AAGAGAGTTAAAAAGCACGTGAAATTGTTGAAAGG




GAAGCGCTTGCAATCAGACTTGTTTAAACTGTTCG




GCCGGT





5
DP5 ITS
GCGCTTATTGCGCGGCGAAAAAACCTTACACACAG



sequence
TGTTTTTTGTTATTACANNAACTTTTGCTTTGGTC




TGGACTAGAAATAGTTTGGGCCAGAGGTTACTAAA




CTAAACTTCAATATTTATATTGAATTGTTATTTAT




TTAATTGTCAATTTGTTGATTAAATTCAAAAAATC




TTCAAAACTTTCAACAACGGATCTCTTGGTTCTCG




CATCGATGAAGAACGCAGCGAAATGCGATAAGTAA




TATGAATTGCAGATTTTCGTGAATCATCGAATCTT




TGAACGCACATTGCGCCCTCTGGTATTCCAGAGGG




CATGCCTGTTTGAGCGTCATTTCTCTCTCAAACCT




TCGGGTTTGGTATTGAGTGATACTCTTAGTCGAAC




TAGGCGTTTGCTTGAAATGTATTGGCATGAGTGGT




ACTGGATAGTGCTATATGACTTTCAATGTATTAGG




TTTATCCAACTCGTTGAATAGTTTAATGGTATATT




TCTCGGTATTCTAGGCTCGGCCTTACAATATAACA




AACAAGTTTGACCTCAAATCAGGTAGGATTACCCG




CTGAACTTAAGCATATCAATAAGCGGAGGAAAAGA




AACCAACAGGGATTGCCTTAGTAACGGCGAGTGAA




GCGGCAAAAGCTCAAATTTGAAATCTGGCACCTTC




GGTGTCCGAGTTGTAATTTGAAGAAGGTAACTTTG




GAGTTGGCTCTTGTCTATGTTCCTTGGAACAGGAC




GTCACAGAGGGTGAGAATCCCGTGCGATGAGATGC




CCAATTCTATGTAAAGTGCTTTCGAAGAGTCGAGT




TGTTTGGGAATGCAGCTCTAAGTGGGTGGTAAATT




CCATCTAAAGCTAAATATTGGCGAGAGACCGATAG




CGAACAAGTACAGTGATGGAAAGATGAAAAGAACT




TTGAAAAGAGAGTGAAAAAGTACGTGAAATTGTTG




AAAGGGAAAGGGCTTGAGATCAGACTTGGTATTTT




GCGATCCTTTCCTTCTTGGTTGGGTTCCTCGCAGC




TTACTGGGNCAGCATCGGTTTGGATGG





6
DP6 16S
GAAAGGCGGCTTCGGCTGTCACTTATGGATGGACC



rRNA
CGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTC




ACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGT




GATCGGCCACACTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAA




TGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGT




GATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTA




GGGAAGAACAAGTGCTAGTTGAATAAGCTGCACCT




TGACGGTACCTAACCAGAAAGCCACGGCTAACTAC




GTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGC




GTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAG




GTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCT




CAACCGTGGAGGGTCATTGGAAACTGGGAGACTTG




AGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGC




GGTGAAATGCGTAGAGATATGGAGGAACACCAGTG




GCGAAGGCGACTTTCTGGTCTGTAACTGACACTGA




GGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATA




CCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAA




GTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTT




AACGCATTAAGCACTCCGCCTGGGGAGTACGGCCG




CAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCG




CACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCA




ACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG




AAAACCCTAGAGATAGGGCTTCTCCTTCGGGAGCA




GAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGT




GTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCG




CAACCCTTGATCTTAGTTGCCATCATTAAGTTGGG




CACTCTAAGGTGACTGCCGGTGACAAACCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GACCTGGGCTACACACGTGCTACAATGGACGGTAC




AAAGAGCTGCAAGACCGCGAGGTGGAGCTAATCTC




ATAAAACCGTTCTCAGTTCGGATTGTAGGCTGCAA




CTCGCCTACATGAAGCTGGAATCGCTAGTAATCGC




GGATCAGCAT





7
DP7 ITS
CCACNCTGCGTGGGCGACACGAAACACCGAAACCG




AACGCACGCCGTCAAGCAAGAAATCCACAAAACTT




TCAACAACGGATCTCTTGGTTCTCGCATCGATGAA




GAGCGCAGCGAAATGCGATACCTAGTGTGAATTGC




AGCCATCGTGAATCATCGAGTTCTTGAACGCACAT




TGCGCCCGCTGGTATTCCGGCGGGCATGCCTGTCT




GAGCGTCGTTTCCTTCTTGGAGCGGAGCTTCAGAC




CTGGCGGGCTGTCTTTCGGGACGGCGCGCCCAAAG




CGAGGGGCCTTCTGCGCGAACTAGACTGTGCGCGC




GGGGCGGCCGGCGAACTTATACCAAGCTCGACCTC




AGATCAGGCAGGAGTACCCGCTGAACTTAAGCATA




TCAATAAGCGGAGGAAAAGAAACCAACAGGGATTG




CCCCAGTAGCGGCGAGTGAAGCGGCAAAAGCTCAG




ATTTGGAATCGCTTCGGCGAGTTGTGAATTGCAGG




TTGGCGCCTCTGCGGCGGCGGCGGTCCAAGTCCCT




TGGAACAGGGCGCCATTGAGGGTGAGAGCCCCGTG




GGACCGTTTGCCTATGCTCTGAGGCCCTTCTGACG




AGTCGAGTTGTTTGGGAATGCAGCTCTAAGCGGGT




GGTAAATTCCATCTAAGGCTAAATACTGGCGAGAG




ACCGATAGCGAACAAGTACTGTGAAGGAAAGATGA




AAAGCACTTTGAAAAGAGAGTGAAACAGCACGTGA




AATTGTTGAAAGGGAAGGGTATTGCGCCCGACATG




GAGCGTGCGCACCGCTGCCCCTCGTGGGCGGCGCT




CTGGGCGTGCTCTGGGCCAGCATCGGTTTTTGCCG




CGGGAGAAGGGCGGCGGGCATGTAGCTCTTC





8
DP8 ITS
GTTGCTCGAGTTCTTGTTTAGATCTTTTACNATAA




TGTGTATCTTTAATGAAGATGTGCGCTTAATTGCG




CTGCTTTATTAGAGTGTCGCAGTAGAAGTAGTCTT




GCTTGAATCTCAGTCAACGTTTACACACATTGGAG




TTTTTTTACTTTAATTTAATTCTTTCTGCTTTGAA




TCGAAAGGTTCAAGGCAAAAAACAAACACAAACAA




TTTTATTTTATTATAATTTTTTAAACTAAACCAAA




ATTCCTAACGGAAATTTTAAAATAATTTAAAACTT




TCAACAACGGATCTCTTGGTTCTCGCATCGATGAA




AAACGTAGCGAATTGCGATAAGTAATGTGAATTGC




AAATACTCGTGAATCATTGAATTTTTGAACGCACA




TTGCGCCCTTGAGCATTCTCAAGGGCATGCCTGTT




TGAGCGTCATTTCCTTCTCAAAAGATAATTTTTTA




TTTTTTGGTTGTGGGCGATACTCAGGGTTAGCTTG




AAATTGGAGACTGTTTCAGTCTTTTTTAATTCAAC




ACTTANCTTCTTTGGAGACGCTGTTCTCGCTGTGA




TGTATTTATGGATTTATTCGTTTTACTTTACAAGG




GAAATGGTAATGTACCTTAGGCAAAGGGTTGCTTT




TAATATTCATCAAGTTTGACCTCAAATCAGGTAGG




ATTACCCGCTGAACTTAAGCATATCAATAAGCGGA




GGAAAAGAAACCAACTGGGATTACCTTAGTAACGG




CGAGTGAAGCGGTAAAAGCTCAAATTTGAAATCTG




GTACTTTCANNGCCCGAGTTGTAATTTGTAGAATT




TGTCTTTGATTAGGTCCTTGTCTATGTTCCTTGGA




NCAGGACGTCATANAGGGTGANTCCCNTTTGGCGA




NGANACCTTTTCTCTGTANACTTTTTCNANAGTCG




AGTTGTTTNGGATGCAGCTCNAAGTGGGGNGG





9
DP9 16S
ATGAGAGTTTGATCTTGGCTCAGGATGAACGCTGG



rRNA
CGGCGTGCCTAATACATGCAAGTCGAACGAACTTC




CGTTAATTGATTATGACGTACTTGTACTGATTGAG




ATTTTAACACGAAGTGAGTGGCGAACGGGTGAGTA




ACACGTGGGTAACCTGCCCAGAAGTAGGGGATAAC




ACCTGGAAACAGATGCTAATACCGTATAACAGAGA




AAACCGCATGGTTTTCTTTTAAAAGATGGCTCTGC




TATCACTTCTGGATGGACCCGCGGCGTATTAGCTA




GTTGGTGAGGCAAAGGCTCACCAAGGCAGTGATAC




GTAGCCGACCTGAGAGGGTAATCGGCCACATTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT




GGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGC




TCGTAAAGCTCTGTTGTTAAAGAAGAACGTGGGTA




AGAGTAACTGTTTACCCAGTGACGGTATTTAACCA




GAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG




TAATACGTAGGTGGCAAGCGTTATCCGGATTTATT




GGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCT




AATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA




TTGGAAACTGGGAGACTTGAGTGCAGAAGAGGACA




GTGGAACTCCATGTGTAGCGGTGAAATGCGTAGAT




ATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCT




GGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGG




TAGCGAACAGGATTAGATACCCTGGTAGTCCATGC




CGTAAACGATGATTACTAAGTGTTGGAGGGTTTCC




GCCCTTCAGTGCTGCAGCTAACGCATTAAGTAATC




CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAA




AAGAATTGACGGGGGCCCGCACAAGCGGTGGAGCA




TGTGGTTTAATTCGAAGCTACGCGAAGAACCTTAC




CAGGTCTTGACATCTTCTGACAGTCTAAGAGATTA




GAGGTTCCCTTCGGGGACAGAATGACAGGTGGTGC




ATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTATTACTAG




TTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTG




CCGGTGACAAACCGGAGGAAGGTGGGGACGACGTC




AAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTGCTACAATGGATGGTACAACGAGTCGCGAGACC




GCGAGGTTAAGCTAATCTCTTAAAACCATTCTCAG




TTCGGACTGTAGGCTGCAACTCGCCTACACGAAGT




CGGAATCGCTAGTAATCGCGGATCAGCATGCCGCG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGAGAGTTTGTAACACCCAAAGCCGGT




GGGGTAACCTTTTAGGAGCTAGCCGTCTAAGGTGG




GACAGATGATTAGGGTGAAGTCGTAACAAGGTAGC




CGTAGGAGAACCTGCGGCTGGATCACCTCCTT





10
DP10 16S
CAGATAGTTGGTGAGGTAACGGCTCACCAAGGCAA



rRNA
CGATGCGTAGCCGACCTGAGAGGGTGATCGGCCAC




ACTGGGACTGAGACACGGCCCAGACTCCTACGGGA




GGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAG




TCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTT




TTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACA




AGTGCCGTTCAAATAGGGCGGCACCTTGACGGTAC




CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGG




AATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCT




TAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGG




AGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA




GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATG




CGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG




ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAA




GCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG




TCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGG




GGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTA




AGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGA




AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG




TGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCTCTGACAATCCTA




GAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGA




TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTG




ATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAG




GTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGA




TGACGTCAAATCATCATGCCCCTTATGACCTGGGC




TACACACGTGCTACAATGGACAGAACAAAGGGCAG




CGAAACCGCGAGGTTAAGCCAATCCCACAAATCTG




TTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGC




GTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCA




TGCCGCGGTGAATACGTTCCCGGGCCTTGTACACA




CCGCCCGTCACACCACGAGAGTTTGTAACACCCGA




AGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCG




AAGGTGGGACAGATGATTGGGGTGAAGTCGTAACA




AGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCT




CCTTT





11
DP11 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGT




GAAAGCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACGAGCTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAATCCTTGAGATTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCCAGAGATGGATGGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ATCCCACACGAATTGCTTG





12
DP12 16S
TACGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGGTGA




AGCCAAGCTTGCTTGGTGGATCAGTGGCGAACGGG




TGAGTAACACGTGAGCAACCTGCCCTGGACTCTGG




GATAAGCGCTGGAAACGGCGTCTAATACTGGATAT




GAGCCTTCATCGCATGGTGGGGGTTGGAAAGATTT




TTTGGTCTGGGATGGGCTCGCGGCCTATCAGCTTG




TTGGTGAGGTAATGGCTCACCAAGGCGTCGACGGG




TAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGAATATTGCACAATGGGCGAAAGCCTGATG




CAGCAACGCCGCGTGAGGGATGACGGCCTTCGGGT




TGTAAACCTCTTTTAGCAGGGAAGAAGCGAAAGTG




ACGGTACCTGCAGAAAAAGCGCCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGT




TATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGC




GGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTCA




ACCTCGGGCCTGCAGTGGGTACGGGCAGACTAGAG




TGCGGTAGGGGAGATTGGAATTCCTGGTGTAGCGG




TGGAATGCGCAGATATCAGGAGGAACACCGATGGC




GAAGGCAGATCTCTGGGCCGTAACTGACGCTGAGG




AGCGAAAGGGTGGGGAGCAAACAGGCTTAGATACC




CTGGTAGTCCACCCCGTAAACGTTGGGAACTAGTT




GTGGGGACCATTCCACGGTTTCCGTGACGCAGCTA




ACGCATTAAGTTCCCCGCCTGGGGAGTACGGCCGC




AAGGCTAAAACTCAAAGGAATTGACGGGGACCCGC




ACAAGCGGCGGAGCATGCGGATTAATTCGATGCAA




CGCGAAGAACCTTACCAAGGCTTGACATACACCAG




AACGGGCCAGAAATGGTCAACTCTTTGGACACTGG




TGAACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTTCTATGTTGCCAGCACGTAATGGTGGG




AACTCATGGGATACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCGGTAC




AAAGGGCTGCAATACCGTGAGGTGGAGCGAATCCC




AAAAAGCCGGTCCCAGTTCGGATTGAGGTCTGCAA




CTCGACCTCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGT




CTTGTACACACCGCCCGTCAAGTCATGAAAGTCGG




TAACACCTGAAGCCGGTGGCCCAACCCTTGTGGAG




GGAGCCGTCGAAGGTGGGATCGGTAATTAGGACTA




AGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGC




TGGATCACCTCCTTT





13
DP13 16S
AGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAA



rRNA
CCTGCCTATAAGACTGGGATAACTCCGGGAAACCG




GGGCTAATACCGGATAACATTTTGCACCGCATGGT




GCGAAATTGAAAGGCGGCTTCGGCTGTCACTTATA




GATGGACCTGCGGCGCATTAGCTAGTTGGTGAGGT




AACGGCTCACCAAGGCGACGATGCGTAGCCGACCT




GAGAGGGTGATCGGCCACACTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATC




TTCCGCAATGGACGAAAGTCTGACGGAGCAACGCC




GCGTGAACGATGAAGGCTTTCGGGTCGTAAAGTTC




TGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAG




CTGGCACCTTGACGGTACCTAACCAGAAAGCCACG




GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG




GTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAG




CGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAG




CCCACGGCTCAACCGTGGAGGGTCATTGGAAACTG




GGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCC




ATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGA




ACACCAGTGGCGAAGGCGACTTTCTGGTCTGCAAC




TGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAG




GATTAGATACCCTGGTAGTCCACGCCGTAAACGAT




GAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGT




GCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGA




GTACGGCCGCAAGGCTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAA




TTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGA




CATCCTCTGAAAACCCTAGAGATAGGGCTTCCCCT




TCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCG




TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTGATCTTAGTTGCCATCAT




TAAGTTGGGCACTCTAAGGTGACTGCCGGTGACAA




ACCGGAGGAAGGTGGGGATGACGTCAAATCATCAT




GCCCCTTATGACCTGGGCTACACACGTGCTACAAT




GGACGGTACAAAGAGTCGCAAGACCGCGAGGTGGA




GCTAATCTCATAAAACCGTTCTCAGTTCGGATTGT




AGGCTGCAACTCGCCTACATGAAGCTGGAATCGCT




AGTAATCGCGGATCAGCATGCCGCGGTGAATACGT




TCCCGGGCCTTGTACACACCGCCCGTCACACCACG




AGAGTTTGTAACACCCGAAGTCGGTGGGGTAACCT




TTTGGAGCCAGCCGCCTAAGGTGGGACAGATGATT




GGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAG




GTGCGGCTGGATCACCTCCTTT





14
DP14 16S
TACGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGATGA




CTTCTGTGCTTGCACAGAATGATTAGTGGCGAACG




GGTGAGTAACACGTGAGTAACCTGCCCTTAACTTC




GGGATAAGCCTGGGAAACCGGGTCTAATACCGGAT




ACGACCTCCTGGCGCATGCCATGGTGGTGGAAAGC




TTTAGCGGTTTTGGATGGACTCGCGGCCTATCAGC




TTGTTGGTTGGGGTAATGGCCCACCAAGGCGACGA




CGGGTAGCCGGCCTGAGAGGGTGACCGGCCACACT




GGGACTGAGACACGGCCCAGACTCCTACGGGAGGC




AGCAGTGGGGAATATTGCACAATGGGCGAAAGCCT




GATGCAGCGACGCCGCGTGAGGGATGACGGCCTTC




GGGTTGTAAACCTCTTTCAGCAGGGAAGAAGCGAA




AGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACT




ACGTGCCAGCAGCCGCGGTAATACGTAGGGCGCAA




GCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGT




AGGCGGTTTGTCGCGTCTGCTGTGAAAGCCCGGGG




CTCAACCCCGGGTCTGCAGTGGGTACGGGCAGACT




AGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTA




GCGGTGAAATGCGCAGATATCAGGAGGAACACCGA




TGGCGAAGGCAGGTCTCTGGGCTGTAACTGACGCT




GAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGA




TACCCTGGTAGTCCATGCCGTAAACGTTGGGCACT




AGGTGTGGGGGACATTCCACGTTTTCCGCGCCGTA




GCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGG




CCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGC




CCGCACAAGCGGCGGAGCATGCGGATTAATTCGAT




GCAACGCGAAGAACCTTACCAAGGCTTGACATGAA




CCGGTAAGACCTGGAAACAGGTCCCCCACTTGTGG




CCGGTTTACAGGTGGTGCATGGTTGTCGTCAGCTC




GTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAG




CGCAACCCTCGTTCTATGTTGCCAGCGGGTTATGC




CGGGGACTCATAGGAGACTGCCGGGGTCAACTCGG




AGGAAGGTGGGGACGACGTCAAATCATCATGCCCC




TTATGTCTTGGGCTTCACGCATGCTACAATGGCCG




GTACAAAGGGTTGCGATACTGTGAGGTGGAGCTAA




TCCCAAAAAGCCGGTCTCAGTTCGGATTGAGGTCT




GCAACTCGACCTCATGAAGTTGGAGTCGCTAGTAA




TCGCAGATCAGCAACGCTGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCAAGTCACGAAAG




TTGGTAACACCCGAAGCCGGTGGCCTAACCCCTTG




TGGGAGGGAGCCGTCGAAGGTGGGACCGGCGATTG




GGACTAAGTCGTAACAAGGTAGCCGTACCGGAAGG




TGCGGCTGGATCACCTCCTTT





15
DP15 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGATGA




TCAGGAGCTTGCTCCTGTGATTAGTGGCGAACGGG




TGAGTAACACGTGAGTAACCTGCCCCTGACTCTGG




GATAAGCGTTGGAAACGACGTCTAATACTGGATAT




GATCACTGGCCGCATGGTCTGGTGGTGGAAAGATT




TTTTGGTTGGGGATGGACTCGCGGCCTATCAGCTT




GTTGGTGAGGTAATGGCTCACCAAGGCGACGACGG




GTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGAAAGCCTGAT




GCAGCAACGCCGCGTGAGGGATGACGGCCTTCGGG




TTGTAAACCTCTTTTAGTAGGGAAGAAGCGAAAGT




GACGGTACCTGCAGAAAAAGCACCGGCTAACTACG




TGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCG




TTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGG




CGGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTC




AACCTCGGGCTTGCAGTGGGTACGGGCAGACTAGA




GTGCGGTAGGGGAGATTGGAATTCCTGGTGTAGCG




GTGGAATGCGCAGATATCAGGAGGAACACCGATGG




CGAAGGCAGATCTCTGGGCCGTAACTGACGCTGAG




GAGCGAAAGCGTGGGGAGCGAACAGGATTAGATAC




CCTGGTAGTCCACGCCGTAAACGTTGGGCGCTAGA




TGTAGGGACCTTTCCACGGTTTCTGTGTCGTAGCT




AACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCG




CAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCG




CACAAGCGGCGGAGCATGCGGATTAATTCGATGCA




ACGCGAAGAACCTTACCAAGGCTTGACATACACCG




GAAACGGCCAGAGATGGTCGCCCCCTTGTGGTCGG




TGTACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTTCTATGTTGCCAGCGCGTTATGGCGGG




GACTCATAGGAGACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCGGTAC




AAAGGGCTGCGATACCGTAAGGTGGAGCGAATCCC




AAAAAGCCGGTCTCAGTTCGGATTGAGGTCTGCAA




CTCGACCTCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCAAGTCATGAAAGTCGG




TAACACCCGAAGCCGGTGGCCTAACCCTTGTGGAA




GGAGCCGTCGAAGGTGGGATCGGTGATTAGGACTA




AGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGC




TGGATCACCTCCTTT





16
DP17 16S
GTGATTGACGTTACTCGCAGAAGAAGCACCGGCTA



rRNA
ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTG




CAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCA




CGCAGGCGGTTTGTTAAGTCAGATGTGAAATCCCC




GCGCTTAACGTGGGAACTGCATTTGAAACTGGCAA




GCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGT




GTAGCGGTGAAATGCGTAGAGATCTGGAGGAATAC




CGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGAC




GCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATT




AGATACCCTGGTAGTCCACGCTGTAAACGATGTCG




ACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGG




AGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACG




GCCGCAAGGTTAAAACTCAAATGAATTGACGGGGG




CCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGA




TGCAACGCGAAGAACCTTACCTACTCTTGACATCC




ACGGAATTCGCCAGAGATGGCTTAGTGCCTTCGGG




AACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGC




TCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG




AGCGCAACCCTTATCCTTTGTTGCCAGCACGTAAT




GGTGGGAACTCAAAGGAGACTGCCGGTGATAAACC




GGAGGAAGGTGGGGATGACGTCAAGTCATCATGGC




CCTTACGAGTAGGGCTACACACGTGCTACAATGGC




ATATACAAAGAGAAGCGAACTCGCGAGAGCAAGCG




GACCTCATAAAGTATGTCGTAGTCCGGATTGGAGT




CTGCAACTCGACTCCATGAAGTCGGAATCGCTAGT




AATCGTAGATCAGAATGCTACGG





17
DP19 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGATGAA




AGGAGCTTGCTCCTGGATTCAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAC




AACGTTTCGAAAGGAACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTAAATTA




ATACTTTGCTGTTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGCCTTGAGCTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCCAGAGATGGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





18
DP18 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGATGA




TGCCCAGCTTGCTGGGTGGATTAGTGGCGAACGGG




TGAGTAACACGTGAGTAACCTGCCCCTGACTCTGG




GATAAGCGTTGGAAACGACGTCTAATACTGGATAT




GACTGCCGGCCGCATGGTCTGGTGGTGGAAAGATT




TTTTGGTTGGGGATGGACTCGCGGCCTATCAGCTT




GTTGGTGAGGTAATGGCTCACCAAGGCGACGACGG




GTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGAAAGCCTGAT




GCAGCAACGCCGCGTGAGGGATGACGGCCTTCGGG




TTGTAAACCTCTTTTAGTAGGGAAGAAGGGAGCTT




GCTCTTGACGGTACCTGCAGAAAAAGCACCGGCTA




ACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTG




CAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCT




CGTAGGCGGTTTGTCGCGTCTGCTGTGAAATCCCG




AGGCTCAACCTCGGGCTTGCAGTGGGTACGGGCAG




ACTAGAGTGCGGTAGGGGAGATTGGAATTCCTGGT




GTAGCGGTGGAATGCGCAGATATCAGGAGGAACAC




CGATGGCGAAGGCAGATCTCTGGGCCGTAACTGAC




GCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATT




AGATACCCTGGTAGTCCATGCCGTAAACGTTGGGC




GCTAGATGTAGGGACCTTTCCACGGTTTCTGTGTC




GTAGCTAACGCATTAAGCGCCCCGCCTGGGGAGTA




CGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGG




GGCCCGCACAAGCGGCGGAGCATGCGGATTAATTC




GATGCAACGCGAAGAACCTTACCAAGGCTTGACAT




ACACCGGAAACGGCCAGAGATGGTCGCCCCCTTGT




GGTCGGTGTACAGGTGGTGCATGGTTGTCGTCAGC




TCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG




AGCGCAACCCTCGTTCTATGTTGCCAGCGCGTTAT




GGCGGGGACTCATAGGAGACTGCCGGGGTCAACTC




GGAGGAAGGTGGGGATGACGTCAAATCATCATGCC




CCTTATGTCTTGGGCTTCACGCATGCTACAATGGC




CGGTACAAAGGGCTGCGATACCGTAAGGTGGAGCG




AATCCCAAAAAGCCGGTCTCAGTTCGGATTGAGGT




CTGCAACTCGACCTCATGAAGTCGGAGTCGCTAGT




AATCGCAGATCAGCAACGCTGCGGTGAATACGTTC




CCGGGCCTTGTACACACCGCCCGTCAAGTCATGAA




AGTCGGTAACACCCGAAGCCGGTGGCCTAACCCTT




GTGGAAGGAGCCGTCGAAGGTGGGATCGGTGATTA




GGACTAAGTCGTAACAAGGTAGCCGTACCGGAAGG




TGCGGCTGGATCACCTCCTTT





19
DP20 16S
TGAAGAGTTTGATCCTGGCTCAGAGTGAACGCTGG



rRNA
CGGTAGGCCTAACACATGCAAGTCGAACGGCAGCA




CAGTAAGAGCTTGCTCTTATGGGTGGCGAGTGGCG




GACGGGTGAGGAATACATCGGAATCTACCTTTTCG




TGGGGGATAACGTAGGGAAACTTACGCTAATACCG




CATACGACCTTCGGGTGAAAGCAGGGGACCTTCGG




GCCTTGCGCGGATAGATGAGCCGATGTCGGATTAG




CTAGTTGGCGGGGTAAAGGCCCACCAAGGCGACGA




TCCGTAGCTGGTCTGAGAGGATGATCAGCCACACT




GGAACTGAGACACGGTCCAGACTCCTACGGGAGGC




AGCAGTGGGGAATATTGGACAATGGGCGCAAGCCT




GATCCAGCCATACCGCGTGGGTGAAGAAGGCCTTC




GGGTTGTAAAGCCCTTTTGTTGGGAAAGAAAAGCA




GTCGGCTAATACCCGGTTGTTCTGACGGTACCCAA




AGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCG




CGGTAATACGAAGGGTGCAAGCGTTACTCGGAATT




ACTGGGCGTAAAGCGTGCGTAGGTGGTTGTTTAAG




TCTGTTGTGAAAGCCCTGGGCTCAACCTGGGAATT




GCAGTGGATACTGGGCGACTAGAGTGTGGTAGAGG




GTAGTGGAATTCCCGGTGTAGCAGTGAAATGCGTA




GAGATCGGGAGGAACATCCATGGCGAAGGCAGCTA




CCTGGACCAACACTGACACTGAGGCACGAAAGCGT




GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCA




CGCCCTAAACGATGCGAACTGGATGTTGGGTGCAA




TTTGGCACGCAGTATCGAAGCTAACGCGTTAAGTT




CGCCGCCTGGGGAGTACGGTCGCAAGACTGAAACT




CAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGA




GTATGTGGTTTAATTCGATGCAACGCGAAGAACCT




TACCTGGTCTTGACATGTCGAGAACTTTCCAGAGA




TGGATTGGTGCCTTCGGGAACTCGAACACAGGTGC




TGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTT




GGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCT




TAGTTGCCAGCACGTAATGGTGGGAACTCTAAGGA




GACCGCCGGTGACAAACCGGAGGAAGGTGGGGATG




ACGTCAAGTCATCATGGCCCTTACGACCAGGGCTA




CACACGTACTACAATGGTAGGGACAGAGGGCTGCA




AACCCGCGAGGGCAAGCCAATCCCAGAAACCCTAT




CTCAGTCCGGATTGGAGTCTGCAACTCGACTCCAT




GAAGTCGGAATCGCTAGTAATCGCAGATCAGCATT




GCTGCGGTGAATACGTTCCCGGGCCTTGTACACAC




CGCCCGTCACACCATGGGAGTTTGTTGCACCAGAA




GCAGGTAGCTTAACCTTCGGGAGGGCGCTTGCCAC




GGTGTGGCCGATGACTGGGGTGAAGTCGTAACAAG




GTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCC




TTT





20
DP22 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAGCGGTAGC




ACAGGAGAGCTTGCTCTCCGGGTGACGAGCGGCGG




ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGA




GGGGGATAACTACTGGAAACGGTAGCTAATACCGC




ATGACGTCGCAAGACCAAAGTGGGGGACCTTCGGG




CCTCACGCCATCGGATGTGCCCAGATGGGATTAGC




TAGTAGGTGAGGTAATGGCTCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAG




GGTTGTAAAGCACTTTCAGCGAGGAGGAAGGCGTT




GCAGTTAATAGCTGCAGCGATTGACGTTACTCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGT




CAGATGTGAAATCCCCGAGCTTAACTTGGGAACTG




CATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC




CTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCTGTAAACGATGTCGACTTGGAGGTTGTGCCCTT




GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGA




CCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA




AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGC




ATGTGGTTTAATTCGATGCAACGCGAAGAACCTTA




CCTACTCTTGACATCCAGAGAATTCGCTAGAGATA




GCTTAGTGCCTTCGGGAACTCTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTT




GTTGCCAGCACGTAATGGTGGGAACTCAAAGGAGA




CTGCCGGTGATAAACCGGAGGAAGGTGGGGATGAC




GTCAAGTCATCATGGCCCTTACGAGTAGGGCTACA




CACGTGCTACAATGGCATATACAAAGAGAAGCGAA




CTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCG




TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGA




AGTCGGAATCGCTAGTAATCGTAGATCAGAATGCT




ACGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTA




GGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTT




GTGATTCATGACTGGGGTGAAGTCGTAACAAGGTA




ACCGTAGGGGAACCTGCGGTTGGATCACCTCCTT





21
DP23 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAACGGTAGC




ACAGAGAGCTTGCTCTTGGGTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCCGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAATACCGCAT




AACGTCTTCGGACCAAAGTGGGGGACCTTCGGGCC




TCACACCATCGGATGTGCCCAGATGGGATTAGCTA




GTAGGTGGGGTAATGGCTCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGCGGGGAGGAAGGCGATAC




GGTTAATAACCGTGTCGATTGACGTTACCCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCA




GATGTGAAATCCCCGGGCTTAACCTGGGAACTGCA




TTTGAAACTGGCAGGCTTGAGTCTCGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




TGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGA




GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TGGCCTTGACATCCACAGAATTCGGCAGAGATGCC




TTAGTGCCTTCGGGAACTGTGAGACAGGTGCTGCA




TGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT




TGCCAGCGATTCGGTCGGGAACTCAAAGGAGACTG




CCGGTGATAAACCGGAGGAAGGTGGGGATGACGTC




AAGTCATCATGGCCCTTACGGCCAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAAGCGACCTC




GCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAG




TCCGGATCGGAGTCTGCAACTCGACTCCGTGAAGT




CGGAATCGCTAGTAATCGTAGATCAGAATGCTACG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGT




AGCTTAACCTTCGGGAGGGCGCTTACCACTTTGTG




ATTCATGACTGGGGTGAAGTCGTAACAAGGTAACC




GTAGGGGAACCTGCGGTTGGATCACCTCCTT





22
DP24 18S
CGGGGAATTAGGGTTCGATTCCGGAGAGGGAGCCT



rRNA
GAGAAACGGCTACCACATCCAAGGAAGGCAGCAGG




CGCGCAAATTACCCAATCCCGACACGGGGAGGTAG




TGACAATAAATAACAATACAGGGCCCTTTGGGTCT




TGTAATTGGAATGAGTACAATTTAAATCCCTTAAC




GAGGAACAATTGGAGGGCAAGTCTGGTGCCAGCAG




CCGCGGTAATTCCAGCTCCAATAGCGTATATTAAA




GTTGTTGCAGTTAAAAAGCTCGTAGTTGAACTTCA




GGCTTGGCGGGGTGGTCTGCCTCACGGTATGTACT




ATCCGGCTGAGCCTTACCTCCTGGTGAGCCTGCAT




GTCGTTTATTCGGTGTGTAGGGGAACCAGGAATTT




TACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCAT




ATGCCCGAATACATTAGCATGGAATAATAGAATAG




GACGTGCGGTTCTATTTTGTTGGTTTCTAGGATCG




CCGTAATGATTAATAGGGACGGTTGGGGGCATTAG




TATTCAGTTGCTAGAGGTGAAATTCTTAGATTTAC




TGAAGACTAACTACTGCGAAAGCATTTGCCAAGGA




CGTTTTCATTAATCAAGAACGAAGGTTAGGGGATC




AAAAACGATTAGATACCGTTGTAGTCTTAACAGTA




AACTATGCCGACTAGGGATCGGGCCACGTTCATCT




TTTGACTGGCTCGGCACCTTACGAGAAATCAAAGT




CTTTGGGTTCTGGGGGGAGTATGGTCGCAAGGCTG




AAACTTAAAGGAATTGACGGAAGGGCACCACCAGG




CGTGGAGCCTGCGGCTTAATTTGACTCAACACGGG




GAAACTCACCAGGTCCAGACATAGTAAGGATTGAC




AGATTGATAGCTCTTTCTTGATTCTATGGGTGGTG




GTGCATGGCCGTTCTTAGTTGGTGGAGTGATTTGT




CTGGTTAATTCCGATAACGAACGAGACCTTAACCT




GCTAAATAGTCCGGCCGGCTTCGGCTGGTCGCTGA




CTTCTTAGAGGGACTAACAGCGTTTAGCTGTTGGA




AGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAG




ATGTTCTGGGCCGCACGCGCGCTACACTGACTGAG




CCAGCGAGTTTATAACCTTGGCCGAAAGGTCTGGG




TAATCTTGTGAAACTCAGTCGTGCTGGGGATAGAG




CATTGCAATTATTGCTCTTCAACGAGGAATGCCTA




GTAAGCGTGAGTCATCAGCTCACGTTGATTACGTC




CCTGCCCTTTGTACACACCGCCCGTCGCTACTACC




GATTGAATGGCTTAGTGAGATCTCCGGATTGGCTT




TGGGAAGCTGGCAACGGCTACCTATTGCTGAAAAG




CTGATCAAACTTGGTCATTTAGAGGAAGTAAAAGT




CGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGG




ATCATT





23
DP26 16S
CTTGAGAGTTTGATCCTGGCTCAGAGCGAACGCTG



rRNA
GCGGCAGGCTTAACACATGCAAGTCGAGCGGGCAT




CTTCGGATGTCAGCGGCAGACGGGTGAGTAACACG




TGGGAACGTACCCTTCGGTTCGGAATAACGCTGGG




AAACTAGCGCTAATACCGGATACGCCCTTTTGGGG




AAAGGTTTACTGCCGAAGGATCGGCCCGCGTCTGA




TTAGCTAGTTGGTGGGGTAACGGCCTACCAAGGCG




ACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCA




CACTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGGACAATGGGCGCAA




GCCTGATCCAGCCATGCCGCGTGAGTGATGAAGGC




CTTAGGGTTGTAAAGCTCTTTTGTCCGGGACGATA




ATGACGGTACCGGAAGAATAAGCCCCGGCTAACTT




CGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAG




CGTTGCTCGGAATCACTGGGCGTAAAGGGCGCGTA




GGCGGCCATTCAAGTCGGGGGTGAAAGCCTGTGGC




TCAACCACAGAATTGCCTTCGATACTGTTTGGCTT




GAGTATGGTAGAGGTTGGTGGAACTGCGAGTGTAG




AGGTGAAATTCGTAGATATTCGCAAGAACACCGGT




GGCGAAGGCGGCCAACTGGACCATTACTGACGCTG




AGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAT




ACCCTGGTAGTCCACGCCGTAAACGATGAATGCCA




GCTGTTGGGGTGCTTGCACCTCAGTAGCGCAGCTA




ACGCTTTAAGCATTCCGCCTGGGGAGTACGGTCGC




AAGATTAAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAA




CGCGCAGAACCTTACCATCCCTTGACATGGCATGT




TACCCGGAGAGATTCGGGGTCCACTTCGGTGGCGT




GCACACAGGTGCTGCATGGCTGTCGTCAGCTCGTG




TCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCACGTCCTTAGTTGCCATCATTCAGTTGGGC




ACTCTAGGGAGACTGCCGGTGATAAGCCGCGAGGA




AGGTGTGGATGACGTCAAGTCCTCATGGCCCTTAC




GGGATGGGCTACACACGTGCTACAATGGCGGTGAC




AGTGGGACGCGAAGGAGCGATCTGGAGCAAATCCC




CAAAAACCGTCTCAGTTCAGATTGCACTCTGCAAC




TCGAGTGCATGAAGGCGGAATCGCTAGTAATCGTG




GATCAGCATGCCACGGTGAATACGTTCCCGGGCCT




TGTACACACCGCCCGTCACACCATGGGAGTTGGTC




TTACCCGACGGCGCTGCGCCAACCGCAAGGAGGCA




GGCGACCACGGTAGGGTCAGCGACTGGGGTGAAGT




CGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGG




ATCACCTCCTTT





24
DP27 16S
CTTGAGAGTTTGATCCTGGCTCAGAACGAACGCTG



rRNA
GCGGCATGCCTAACACATGCAAGTCGAACGATGCT




TTCGGGCATAGTGGCGCACGGGTGCGTAACGCGTG




GGAATCTGCCCTCAGGTTCGGAATAACAGCTGGAA




ACGGCTGCTAATACCGGATGATATCGCAAGATCAA




AGATTTATCGCCTGAGGATGAGCCCGCGTTGGATT




AGGTAGTTGGTGGGGTAAAGGCCTACCAAGCCGAC




GATCCATAGCTGGTCTGAGAGGATGATCAGCCACA




CTGGGACTGAGACACGGCCCAGACTCCTACGGGAG




GCAGCAGTGGGGAATATTGGACAATGGGCGCAAGC




CTGATCCAGCAATGCCGCGTGAGTGATGAAGGCCC




TAGGGTTGTAAAGCTCTTTTACCCGGGAAGATAAT




GACTGTACCGGGAGAATAAGCCCCGGCTAACTCCG




TGCCAGCAGCCGCGGTAATACGGAGGGGGCTAGCG




TTGTTCGGAATTACTGGGCGTAAAGCGCACGTAGG




CGGCTTTGTAAGTCAGAGGTGAAAGCCTGGAGCTC




AACTCCAGAACTGCCTTTGAGACTGCATCGCTTGA




ATCCAGGAGAGGTCAGTGGAATTCCGAGTGTAGAG




GTGAAATTCGTAGATATTCGGAAGAACACCAGTGG




CGAAGGCGGCTGACTGGACTGGTATTGACGCTGAG




GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATAC




CCTGGTAGTCCACGCCGTAAACGATGATAACTAGC




TGTCCGGGCACTTGGTGCTTGGGTGGCGCAGCTAA




CGCATTAAGTTATCCGCCTGGGGAGTACGGCCGCA




AGGTTAAAACTCAAAGGAATTGACGGGGGCCTGCA




CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAAC




GCGCAGAACCTTACCAGCGTTTGAC





25
DP28 18S
ATAGTCGGGGGCATCAGTATTCAATTGTCAGAGGT



rRNA
GAAATTCTTGGATTTATTGAAGACTAACTACTGCG




AAAGCATTTGCCAAGGATGTTTTCATTAATCAGTG




AACGAAAGTTAGGGGATCGAAGACGATCAGATACC




GTCGTAGTCTTAACCATAAACTATGCCGACTAGGG




ATCGGGCGATGTTATCATTTTGACTCGCTCGGCAC




CTTACGAGAAATCAAAGTCTTTGGGTTCTGGGGGG




AGTATGGTCGCAAGGCTGAAACTTAAAGAAATTGA




CGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTT




AATTTGACTCAACACGGGGAAACTCACCAGGTCCA




GACACAATAAGGATTGACAGATTGAGAGCTCTTTC




TTGATTTTGTGGGTGGTGGTGCATGGCCGTTCTTA




GTTGGTGGAGTGATTTGTCTGCTTAATTGCGATAA




CGAACGAGACCTTAACCTGCTAAATAGCCCGGCCC




GCTTTGGCGGGTCGCCGGCTTCTTAGAGGGACTAT




CGGCTCAAGCCGATGGAAGTTTGAGGCAATAACAG




GTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGC




GCGCTACACTGACAGAGCCAACGAGTTCATTTCCT




TGCCCGGAAGGGTTGGGTAATCTTGTTAAACTCTG




TCGTGCTGGGGATAGAGCATTGCAATTATTGCTCT




TCAACGAGGAATGCCTAGTAAGCGTACGTCATCAG




CGTGCGTTGATTACGTCCCTGCCCTTTGTACACAC




CGCCCGTCGCTACTACCGATTGAATGGCTGAGTGA




GGCCTTCGGACTGGCCCAGGGAGGTCGGCAACGAC




CACCCAGGGCCGGAAAGTTGGTCAAACTCCGTCAT




TTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTA




GGTGAACCTGCGGAAGGATCA





26
DP29 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGATGA




AGCCCAGCTTGCTGGGTTGATTAGTGGCGAACGGG




TGAGTAACACGTGAGCAACGTGCCCATAACTCTGG




GATAACCTCCGGAAACGGTGGCTAATACTGGATAT




CTAACACGATCGCATGGTCTGTGTTTGGAAAGATT




TTTTGGTTATGGATCGGCTCACGGCCTATCAGCTT




GTTGGTGAGGTAATGGCTCACCAAGGCGACGACGG




GTAGCCGGCCTGAGAGGGTGACCGGCCACACTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGAAAGCCTGAT




GCAGCAACGCCGCGTGAGGGATGACGGCATTCGGG




TTGTAAACCTCTTTTAGTAGGGAAGAAGCGAAAGT




GACGGTACCTGCAGAAAAAGCACCGGCTAACTACG




TGCCAGCAGCCGCTGTAATACGTAGGGTGCAAGCG




TTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGG




CGGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTC




AACCTCGGGTCTGCAGTGGGTACGGGCAGACTAGA




GTGTGGTAGGGGAGATTGGAATTCCTGGTGTAGCG




GTGGAATGCGCAGATATCAGGAGGAACACCGATGG




CGAAGGCAGATCTCTGGGCCATTACTGACGCTGAG




GAGCGAAAGCATGGGGAGCGAACAGGATTAGATAC




CCTGGTAGTCCATGCCGTAAACGTTGGGCGCTAGA




TGTGGGGACCATTCCACGGTTTCCGTGTCGTAGCT




AACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCG




CAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCG




CACAAGCGGCGGAGCATGCGGATTAATTCGATGCA




ACGCGAAGAACCTTACCAAGGCTTGACATATACCG




GAAACGTTCAGAAATGTTCGCC





27
DP30 16S
TACGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGGTGA




AGCCAAGCTTGCTTGGTGGATCAGTGGCGAACGGG




TGAGTAACACGTGAGCAACCTGCCCTGGACTCTGG




GATAAGCGCTGGAAACGGCGTCTAATACTGGATAT




GAGACGTGATCGCATGGTCGTGTTTGGAAAGATTT




TTCGGTCTGGGATGGGCTCGCGGCCTATCAGCTTG




TTGGTGAGGTAATGGCTCACCAAGGCGTCGACGGG




TAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGAATATTGCACAATGGGCGAAAGCCTGATG




CAGCAACGCCGCGTGAGGGATGACGGCCTTCGGGT




TGTAAACCTCTTTTAGCAGGGAAGAAGCGAAAGTG




ACGGTACCTGCAGAAAAAGCGCCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGT




TATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGC




GGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTCA




ACCTCGGGCCTGCAGTGGGTACGGGCAGACTAGAG




TGCGGTAGGGGAGATTGGAATTCCTGGTGTAGCGG




TGGAATGCGCAGATATCAGGAGGAACACCGATGGC




GAAGGCAGATCTCTGGGCCGTAACTGACGCTGAGG




AGCGAAAGGGTGGGGAGCAAACAGGCTTAGATACC




CTGGTAGTCCACCCCGTAAACGTTGGGAACTAGTT




GTGGGGACCATTCCACGGTTTCCGTGACGCAGCTA




ACGCATTAAGTTCCCCGCCTGGGGAGTACGGCCGC




AAGGCTAAAACTCAAAGGAATTGACGGGGACCCGC




ACAAGCGGCGGAGCATGCGGATTAATTCGATGCAA




CGCGAAGAACCTTACCAAGGCTTGACATATACGAG




AACGGGCCAGAAATGGTCAACTCTTTGGACACTCG




TAAACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTTCTATGTTGCCAGCACGTAATGGTGGG




AACTCATGGGATACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCGGTAC




AAAGGGCTGCAATACCGTGAGGTGGAGCGAATCCC




AAAAAGCCGGTCCCAGTTCGGATTGAGGTCTGCAA




CTCGACCTCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGT




CTTGTACACACCGCCCGTCAAGTCATGAAAGTCGG




TAACACCTGAAGCCGGTGGCCCAACCCTTGTGGAG




GGAGCCGTCGAAGGTGGGATCGGTAATTAGGACTA




AGTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGC




TGGATCACCTCCTTT





28
DP31 16S
CAGCCGGGGGCATTAGTATTTGCACGCTAGAGGTG



rRNA
AAATTCTTGGATTGTGCAAAGACTTCCTACTGCGA




AAGCATTTGCCAAGAATGTTTTCATTAATCAAGAA




CGAAGGTTAGGGTATCGAAAACGATTAGATACCGT




TGTAGTCTTAACAGTAAACTATGCCGACTCCGAAT




CGGTCGATGCTCATTTCACTGGCTCGATCGGCGCG




GTACGAGAAATCAAAGTTTTTGGGTTCTGGGGGGA




GTATGGTCGCAAGGCTGAAACTTAAAGAAATTGAC




GGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTA




ATTTGACTCAACACGGGAAAACTCACCGGGTCCGG




ACATAGTAAGGATTGACAGATTGATGGCGCTTTCA




TGATTCTATGGGTGGTGGTGCATGGCCGTTCTTAG




TTGGTGGAGTGATTTGTCTGGTTAATTCCGATAAC




GAACGAGACCTTGACCTGCTAAATAGACGGGTTGA




CATTTTGTTGGCCCCTTATGTCTTCTTAGAGGGAC




AATCGACCGTCTAGGTGATGGAGGCAAAAGGCAAT




AACAGGTCTGTGATGCCCTTAGATGTTCCGGGCTG




CACGCGCGCTACACTGACAGAGACAACGAGTGGGG




CCCCTTGTCCGAAATGACTGGGTAAACTTGTGAAA




CTTTGTCGTGCTGGGGATGGAGCTTTGTAATTTTT




GCTCTTCAACGAGGAATTCCTAGTAAGCGCAAGTC




ATCAGCTTGCGTTGACTACGTCCCTGCCCTTTGTA




CACACCGCCCGTCGCTACTACCGATTGAATGGCTT




AGTGAGGACTTGGGAGAGTACATCGGGGAGCCAGC




AATGGCACCCTGACGGCTCAAACTCTTACAAACTT




GGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTA




TCTGTAGGTGAACCTGCAGATGGATCATTTC





29
DP32 16S
ACTGAGCATTGACGTTACTCGCAGAAGAAGCACCG



rRNA
GCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAG




GGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAG




CGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT




CCCCGAGCTTAACTTGGGAACTGCATTTGAAACTG




GCAAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCC




AGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA




ATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGAC




TGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAG




GATTAGATACCCTGGTAGTCCACGCTGTAAACGAT




GTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTT




CCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAG




TACGGCCGCAAGGTTAAAACTCAAATGAATTGACG




GGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAAT




TCGATGCAACGCGAAGAACCTTACCTACTCTTGAC




ATCCAGAGAATTCGCTAGAGATAGCTTAGTGCCTT




CGGGAACTCTGAGACAGGTGCTGCATGGCTGTCGT




CAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGC




AACGAGCGCAACCCTTATCCTTTGTTGCCAGCGAG




TAATGTCGGGAACTCAAAGGAGACTGCCGGTGATA




AACCGGAGGAAGGTGGGGATGACGTCAAGTCATCA




TGGCCCTTACGAGTAGGGCTACACACGTGCTACAA




TGGCATATACAAAGAGAAGCGAACTCGCGAGAGCA




AGCGGACCTCATAAAGTATGTCGTAGTCCGGATTG




GAGTCTGCAACTCGACTCCATGAAGTCGGAATCGC




TAGTAATCGTAGATCAGAATGCTACGGTGAATACG




TTCCCGGGCCTTGTACACACCGCCCGTCACACCAT




GGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACC




TTCGGGAGGGCGCTTACCACTTTGTGATTCATGAC




TGGGGTGAAGTCGTAACAAGGTAACCGTAGGGGAA




CCTGCGGTTGGATCACCTCCTT





30
DP33 16S
GGAGGAAGGCGTAGAGATCTGGAGGAATACCGGTG



rRNA
GCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCA




GGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATA




CCCTGGTAGTCCACGCCGTAAACGATGTCGACTTG




GAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTA




ACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGC




AAGGTTAAAACTCAAATGAATTGACGGGGGCCCGC




ACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAA




CGCGAAGAACCTTACCTGGCCTTGACATCCACGGA




ATTCGGCAGAGATGCCTTAGTGCCTTCGGGAACCG




TGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTG




TTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTATCCTTTGTTGCCAGCACGTAATGGTGG




GAACTCAAAGGAGACTGCCGGTGATAAACCGGAGG




AAGGTGGGGATGACGTCAAGTCATCATGGCCCTTA




CGGCCAGGGCTACACACGTGCTACAATGGCGCATA




CAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCT




CATAAAGTGCGTCGTAGTCCGGATCGGAGTCTGCA




ACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCG




TAGATCAGAATGCTACGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCACACCATGGGAGTGGG




TTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGG




GCGCTTACCACTTTGTGATTCATGACTGGGGTGAA




GTCGTAACAAGGTAACCGTAGGGGAACCTGCGGTT




GGATCACCTCCTT





31
DP34 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGATGA




AGCCCAGCTTGCTGGGTGGATTAGTGGCGAACGGG




TGAGTAACACGTGAGTAACCTGCCCTTGACTCTGG




GATAAGCGTTGGAAACGACGTCTAATACCGGATAC




GAGCTTCCACCGCATGGTGAGTTGCTGGAAAGAAT




TTTGGTCAAGGATGGACTCGCGGCCTATCAGCTTG




TTGGTGAGGTAATGGCTCACCAAGGCGACGACGGG




TAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGAATATTGCACAATGGGCGAAAGCCTGATG




CAGCAACGCCGCGTGAGGGACGACGGCCTTCGGGT




TGTAAACCTCTTTTAGCAGGGAAGAAGCGAAAGTG




ACGGTACCTGCAGAAAAAGCACCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGT




TGTCCGGAATTATTGGGCGTAAAGAGCTCGTAGGC




GGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTCA




ACCTCGGGTCTGCAGTGGGTACGGGCAGACTAGAG




TGCGGTAGGGGAGATTGGAATTCCTGGTGTAGCGG




TGGAATGCGCAGATATCAGGAGGAACACCGATGGC




GAAGGCAGATCTCTGGGCCGCTACTGACGCTGAGG




AGCGAAAGGGTGGGGAGCAAACAGGCTTAGATACC




CTGGTAGTCCACCCCGTAAACGTTGGGCGCTAGAT




GTGGGGACCATTCCACGGTTTCCGTGTCGTAGCTA




ACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGC




AAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCGGCGGAGCATGCGGATTAATTCGATGCAA




CGCGAAGAACCTTACCAAGGCTTGACATATACGAG




AACGGGCCAGAAATGGTCAACTCTTTGGACACTCG




TAAACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTTCTATGTTGCCAGCACGTAATGGTGGG




AACTCATGGGATACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGACGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCAGTAC




AAAGGGCTGCAATACCGTAAGGTGGAGCGAATCCC




AAAAAGCTGGTCCCAGTTCGGATTGAGGTCTGCAA




CTCGACCTCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCAAGTCATGAAAGTCGG




TAACACCCGAAGCCAGTGGCCTAACCGCAAGGATG




GAGCTGTCTAAGGTGGGATCGGTAATTAGGACTAA




GTCGTAACAAGGTAGCCGTACCGGAAGGTGCGGCT




GGATCACCTCCTTT





32
DP35 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGGACGGTAGC




ACAGAGAGCTTGCTCTTGGGTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGGATCTGCCCGATAGAGG




GGGATAACCACTGGAAACGGTGGCTAATACCGCAT




AACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCC




TCTCACTATCGGATGAACCCAGATGGGATTAGCTA




GTAGGCGGGGTAATGGCCCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGCGGGGAGGAAGGCGATGA




GGTTAATAACCGCGTCGATTGACGTTACCCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCA




GATGTGAAATCCCCGGGCTTAACCTGGGAACTGCA




TTTGAAACTGGCAGGCTTGAGTCTTGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGA




GGAGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TACTCTTGACATCCAGCGAACTTAGCAGAGATGCT




TTGGTGCCTTCGGGAACGCTGAGACAGGTGCTGCA




TGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT




TGCCAGCGATTCGGTCGGGAACTCAAAGGAGACTG




CCGGTGATAAACCGGAGGAAGGTGGGGATGACGTC




AAGTCATCATGGCCCTTACGAGTAGGGCTACACAC




GTGCTACAATGGCGCATACAAAGAGAAGCGACCTC




GCGAGAGCAAGCGGACCTCACAAAGTGCGTCGTAG




TCCGGATCGGAGTCTGCAACTCGACTCCGTGAAGT




CGGAATCGCTAGTAATCGTGGATCAGAATGCCACG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGT




AGCTTAACCTTCGGGAGGGCGCTTACCACTTTGTG




ATTCATTACTGGGGTGAAGTCGTAACAAGGTAACC




GTAGGGGAACCTGCGGTTGGATCACCTCCTT





33
DP36 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGGACGGTAGC




ACAGAGAGCTTGCTCTTGGGTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGGATCTGCCCGATAGAGG




GGGATAACCACTGGAAACGGTGGCTAATACCGCAT




AACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCC




TCTCACTATCGGATGAACCCAGATGGGATTAGCTA




GTAGGCGGGGTAATGGCCCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGCGGGGAGGAAGGCGATGC




GGTTAATAACCGCGTCGATTGACGTTACCCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGTCA




GATGTGAAATCCCCGGGCTTAACCTGGGAACTGCA




TTTGAAACTGGCAGGCTTGAGTCTTGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGA




GGAGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TACTCTTGACATC





34
DP37 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGAACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGGGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCCATTACCTA




ATACGTGATGGTTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGCCTTGAGCTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGGGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





35
DP38 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAGCGGTAA




GGCCTTTCGGGGTACACGAGCGGCGAACGGGTGAG




TAACACGTGGGTGATCTGCCCTGCACTCTGGGATA




AGCTTGGGAAACTGGGTCTAATACCGGATATGACC




ACAGCATGCATGTGTTGTGGTGGAAAGATTTATCG




GTGCAGGATGGGCCCGCGGCCTATCAGCTTGTTGG




TGGGGTAATGGCCTACCAAGGCGACGACGGGTAGC




CGACCTGAGAGGGTGACCGGCCACACTGGGACTGA




GACACGGCCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGCACAATGGGCGGAAGCCTGATGCAGC




GACGCCGCGTGAGGGATGAAGGCCTTCGGGTTGTA




AACCTCTTTCAGCAGGGACGAAGCGTGAGTGACGG




TACCTGCAGAAGAAGCACCGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGGTGCGAGCGTTGTC




CGGAATTACTGGGCGTAAAGAGTTCGTAGGCGGTT




TGTCGCGTCGTTTGTGAAAACCCGGGGCTCAACTT




CGGGCTTGCAGGCGATACGGGCAGACTTGAGTGTT




TCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAA




ATGCGCAGATATCAGGAGGAACACCGGTGGCGAAG




GCGGGTCTCTGGGAAACAACTGACGCTGAGGAACG




AAAGCGTGGGTAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGGTGGGCGCTAGGTGTGG




GTTCCTTCCACGGGATCTGTGCCGTAGCTAACGCA




TTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGC




TAAAACTCAAAGGAATTGACGGGGGCCCGCACAAG




CGGCGGAGCATGTGGATTAATTCGATGCAACGCGA




AGAACCTTACCTGGGTTTGACATACACCGGAAAAC




CGTAGAGATACGGTCCCCCTTGTGGTCGGTGTACA




GGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAG




ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTT




GTCTTATGTTGCCAGCACGTAATGGTGGGGACTCG




TAAGAGACTGCCGGGGTCAACTCGGAGGAAGGTGG




GGACGACGTCAAGTCATCATGCCCCTTATGTCCAG




GGCTTCACACATGCTACAATGGCCAGTACAGAGGG




CTGCGAGACCGTGAGGTGGAGCGAATCCCTTAAAG




CTGGTCTCAGTTCGGATCGGGGTCTGCAACTCGAC




CCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCA




GCAACGCTGCGGTGAATACGTTCCCGGGCCTTGTA




CACACCGCCCGTCACGTCATGAAAGTCGGTAACAC




CCGAAGCCGGTGGCCTAACCCCTTACGGGGAGGGA




GCCGTCGAAGGTGGGATCGGCGATTGGGACGAAGT




CGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGG




ATCACCTCCTTT





36
DP39 16S
CTTGAGAGTTTGATCCTGGCTCAGAACGAACGCTG



rRNA
GCGGCAGGCTTAACACATGCAAGTCGAACGCCCCG




CAAGGGGAGTGGCAGACGGGTGAGTAACGCGTGGG




AATCTACCGTGCCCTGCGGAATAGCTCCGGGAAAC




TGGAATTAATACCGCATACGCCCTACGGGGGAAAG




ATTTATCGGGGTATGATGAGCCCGCGTTGGATTAG




CTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGA




TCCATAGCTGGTCTGAGAGGATGATCAGCCACATT




GGGACTGAGACACGGCCCAAACTCCTACGGGAGGC




AGCAGTGGGGAATATTGGACAATGGGCGCAAGCCT




GATCCAGCCATGCCGCGTGAGTGATGAAGGCCTTA




GGGTTGTAAAGCTCTTTCACCGGAGAAGATAATGA




CGGTATCCGGAGAAGAAGCCCCGGCTAACTTCGTG




CCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTT




GTTCGGAATTACTGGGCGTAAAGCGCACGTAGGCG




GATATTTAAGTCAGGGGTGAAATCCCAGAGCTCAA




CTCTGGAACTGCCTTTGATACTGGGTATCTTGAGT




ATGGAAGAGGTAAGTGGAATTCCGAGTGTAGAGGT




GAAATTCGTAGATATTCGGAGGAACACCAGTGGCG




AAGGCGGCTTACTGGTCCATTACTGACGCTGAGGT




GCGAAAGCGTGGGGAGCAAACAGGATTAGATACCC




TGGTAGTCCACGCCGTAAACGATGAATGTTAGCCG




TCGGGCAGTATACTGTTCGGTGGCGCAGCTAACGC




ATTAAACATTCCGCCTGGGGAGTACGGTCGCAAGA




TTAAAACTCAAAGGAATTGACGGGGGCCCGCACAA




GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCG




CAGAACCTTACCAGCTCTTGACATTCGGGGTTTGG




GCAGTGGAGACATTGTCCTTCAGTTAGGCTGGCCC




CAGAACAGGTGCTGCATGGCTGTCGTCAGCTCGTG




TCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTCGCCCTTAGTTGCCAGCATTTAGTTGGGC




ACTCTAAGGGGACTGCCGGTGATAAGCCGAGAGGA




AGGTGGGGATGACGTCAAGTCCTCATGGCCCTTAC




GGGCTGGGCTACACACGTGCTACAATGGTGGTGAC




AGTGGGCAGCGAGACAGCGATGTCGAGCTAATCTC




CAAAAGCCATCTCAGTTCGGATTGCACTCTGCAAC




TCGAGTGCATGAAGTTGGAATCGCTAGTAATCGCA




GATCAGCATGCTGCGGTGAATACGTTCCCGGGCCT




TGTACACACCGCCCGTCACACCATGGGAGTTGGTT




TTACCCGAAGGTAGTGCGCTAACCGCAAGGAGGCA




GCTAACCACGGTAGGGTCAGCGACTGGGGTGAAGT




CGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGG




ATCACCTCCTTT





37
DP40 16S
TTGACGTTACCCGCAGAAGAAGCACCGGCTAACTC



rRNA
CGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAG




CGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA




GGCGGTCTGTTAAGTCAGATGTGAAATCCCCGGGC




TTAACCTGGGAACTGCATTTGAAACTGGCAGGCTT




GAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAG




CGGTGAAATGCGTAGAGATCTGGAGGAATACCGGT




GGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTC




AGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGAT




ACCCTGGTAGTCCACGCCGTAAACGATGTCGACTT




GGAGGTTGTTCCCTTGAGGAGTGGCTTCCGGAGCT




AACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCG




CAAGGTTAAAACTCAAATGAATTGACGGGGGCCCG




CACAAGCGGTGGAGCATGTGGTTTAATTCGATGCA




ACGCGAAGAACCTTACCTACTCTTGACATCCAGAG




AACTTTCCAGAGATGGATTGGTGCCTTCGGGAACT




CTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGT




GTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCG




CAACCCTTATCCTTTGTTGCCAGCGCGTGATGGCG




GGAACTCAAAGGAGACTGCCGGTGATAAACCGGAG




GAAGGTGGGGATGACGTCAAGTCATCATGGCCCTT




ACGAGTAGGGCTACACACGTGCTACAATGGCGCAT




ACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACC




TCACAAAGTGCGTCGTAGTCCGGATCGGAGTCTGC




AACTCGACTCCGTGAAGTCGGAATCGCTAGTAATC




GTGGATCAGAATGCCACGGTGAATACGT





38
DP41 16S
GTGGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCTTAACACATGCAAGTCGAACGGAAAG




GCCCAAGCTTGCTTGGGTACTCGAGTGGCGAACGG




GTGAGTAACACGTGGGTGATCTGCCCTGCACTTCG




GGATAAGCCTGGGAAACTGGGTCTAATACCGGATA




GGACGATGGTTTGGATGCCATTGTGGAAAGTTTTT




TCGGTGTGGGATGAGCTCGCGGCCTATCAGCTTGT




TGGTGGGGTAATGGCCTACCAAGGCGTCGACGGGT




AGCCGGCCTGAGAGGGTGTACGGCCACATTGGGAC




TGAGATACGGCCCAGACTCCTACGGGAGGCAGCAG




TGGGGAATATTGCACAATGGGCGCAAGCCTGATGC




AGCGACGCCGCGTGGGGGATGACGGCCTTCGGGTT




GTAAACTCCTTTCGCTAGGGACGAAGCGTTTTGTG




ACGGTACCTGGAGAAGAAGCACCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT




TGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGT




GGTTTGTCGCGTCGTTTGTGTAAGCCCGCAGCTTA




ACTGCGGGACTGCAGGCGATACGGGCATAACTTGA




GTGCTGTAGGGGAGACTGGAATTCCTGGTGTAGCG




GTGGAATGCGCAGATATCAGGAGGAACACCGATGG




CGAAGGCAGGTCTCTGGGCAGTAACTGACGCTGAG




GAGCGAAAGCATGGGTAGCGAACAGGATTAGATAC




CCTGGTAGTCCATGCCGTAAACGGTGGGCGCTAGG




TGTGAGTCCCTTCCACGGGGTTCGTGCCGTAGCTA




ACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGC




AAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCGGCGGAGCATGTGGATTAATTCGATGCAA




CGCGAAGAACCTTACCTGGGCTTGACATACACCAG




ATCGCCGTAGAGATACGGTTTCCCTTTGTGGTTGG




TGTACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTGTCTTATGTTGCCAGCACGTGATGGTGGG




GACTCGTGAGAGACTGCCGGGGTTAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCCAGGGCTTCACACATGCTACAATGGTCGGTAC




AACGCGCATGCGAGCCTGTGAGGGTGAGCGAATCG




CTGTGAAAGCCGGTCGTAGTTCGGATTGGGGTCTG




CAACTCGACCCCATGAAGTCGGAGTCGCTAGTAAT




CGCAGATCAGCAACGCTGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGGGAGT




GGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGG




AGGGCGCTTACCACTTTGTGAT





39
DP42 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGGTGCTTGCACCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCATTAACCTA




ATACGTTAGTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAACCTTGAGTTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCCAGAGATGGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCCTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





40
DP43 16S
CTGAGTTTGATCCTGGCTCAGATTGAACGCTGGCG



rRNA
GCATGCCTTACACATGCAAGTCGAACGGCAGCACG




GAGCTTGCTCTGGTGGCGAGTGGCGAACGGGTGAG




TAATATATCGGAACGTACCCTGGAGTGGGGGATAA




CGTAGCGAAAGTTACGCTAATACCGCATACGATCT




AAGGATGAAAGTGGGGGATCGCAAGACCTCATGCT




CGTGGAGCGGCCGATATCTGATTAGCTAGTTGGTA




GGGTAAAAGCCTACCAAGGCATCGATCAGTAGCTG




GTCTGAGAGGACGACCAGCCACACTGGAACTGAGA




CACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGG




AATTTTGGACAATGGGCGAAAGCCTGATCCAGCAA




TGCCGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAA




GCTCTTTTGTCAGGGAAGAAACGGTGAGAGCTAAT




ATCTCTTGCTAATGACGGTACCTGAAGAATAAGCA




CCGGCTAACTACGTGCCAGCAGCCGCGGTAATACG




TAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTA




AAGCGTGCGCAGGCGGTTTTGTAAGTCTGATGTGA




AATCCCCGGGCTCAACCTGGGAATTGCATTGGAGA




CTGCAAGGCTAGAATCTGGCAGAGGGGGGTAGAAT




TCCACGTGTAGCAGTGAAATGCGTAGATATGTGGA




GGAACACCGATGGCGAAGGCAGCCCCCTGGGTCAA




GATTGACGCTCATGCACGAAAGCGTGGGGAGCAAA




CAGGATTAGATACCCTGGTAGTCCACGCCCTAAAC




GATGTCTACTAGTTGTCGGGTCTTAATTGACTTGG




TAACGCAGCTAACGCGTGAAGTAGACCGCCTGGGG




AGTACGGTCGCAAGATTAAAACTCAAAGGAATTGA




CGGGGACCCGCACAAGCGGTGGATGATGTGGATTA




ATTCGATGCAACGCGAAAAACCTTACCTACCCTTG




ACATGGCTGGAATCCTTGAGAGATCAGGGAGTGCT




CGAAAGAGAACCAGTACACAGGTGCTGCATGGCTG




TCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTC




CCGCAACGAGCGCAACCCTTGTCATTAGTTGCTAC




GAAAGGGCACTCTAATGAGACTGCCGGTGACAAAC




CGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGG




CCCTTATGGGTAGGGCTTCACACGTCATACAATGG




TACATACAGAGCGCCGCCAACCCGCGAGGGGGAGC




TAATCGCAGAAAGTGTATCGTAGTCCGGATTGTAG




TCTGCAACTCGACTGCATGAAGTTGGAATCGCTAG




TAATCGCGGATCAGCATGTCGCGGTGAATACGTTC




CCGGGTCTTGTACACACCGCCCGTCACACCATGGG




AGCGGGTTTTACCAGAAGTAGGTAGCTTAACCGTA




AGGAGGGCGCTTACCACGGTAGGATTCGTGACTGG




GGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGT




GCGGCTGGATCACCTCCTTT





41
DP44 16S
TGGCGGCATGCCTTACACATGCAAGTCGAACGGCA



rRNA
GCATAGGAGCTTGCTCCTGATGGCGAGTGGCGAAC




GGGTGAGTAATATATCGGAACGTGCCCTAGAGTGG




GGGATAACTAGTCGAAAGACTAGCTAATACCGCAT




ACGATCTACGGATGAAAGTGGGGGATCGCAAGACC




TCATGCTCCTGGAGCGGCCGATATCTGATTAGCTA




GTTGGTGGGGTAAAAGCTCACCAAGGCGACGATCA




GTAGCTGGTCTGAGAGGACGACCAGCCACACTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATTTTGGACAATGGGGGCAACCCTGAT




CCAGCAATGCCGCGTGAGTGAAGAAGGCCTTCGGG




TTGTAAAGCTCTTTTGTCAGGGAAGAAACGGTTCT




GGATAATACCTAGGACTAATGACGGTACCTGAAGA




ATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGG




TAATACGTAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGTGCGCAGGCGGTTGTGTAAGTCA




GATGTGAAATCCCCGGGCTCAACCTGGGAATTGCA




TTTGAGACTGCACGGCTAGAGTGTGTCAGAGGGGG




GTAGAATTCCACGTGTAGCAGTGAAATGCGTAGAT




ATGTGGAGGAATACCGATGGCGAAGGCAGCCCCCT




GGGATAACACTGACGCTCATGCACGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CCTAAACGATGTCTACTAGTTGTCGGGTCTTAATT




GACTTGGTAACGCAGCTAACGCGTGAAGTAGACCG




CCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAG




GAATTGACGGGGACCCGCACAAGCGGTGGATGATG




TGGATTAATTCGATGCAACGCGAAAAACCTTACCT




ACCCTTGACATGGATGGAATCCCGAAGAGATTTGG




GAGTGCTCGAAAGAGAACCATCACACAGGTGCTGC




ATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAG




TTGCTACGAAAGGGCACTCTAATGAGACTGCCGGT




GACAAACCGGAGGAAGGTGGGGATGACGTCAAGTC




CTCATGGCCCTTATGGGTAGGGCTTCACACGTCAT




ACAATGGTACATACAGAGGGCCGCCAACCCGCGAG




GGGGAGCTAATCCCAGAAAGTGTATCGTAGTCCGG




ATTGGAGTCTGCAACTCGACTCCATGAAGTTGGAA




TCGCTAGTAATCGCGGATCAGCATGTCGCGGTGAA




TACGTTCCCGGGTCTTGTACACACCGCCCGTCACA




CCATGGGAGCGGGTTTTACCAGAAGTGGGTAGCCT




AACCGCAAGGAGGGCGCTCACCACGGTAGGATTCG




TGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATC




GGAAGGTGCGGCTGGATCACCTCCTTT





42
DP45 16S
TACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGGTGA




CGCTAGAGCTTGCTCTGGTTGATCAGTGGCGAACG




GGTGAGTAACACGTGAGTAACCTGCCCTTGACTCT




GGGATAACTCCGGGAAACCGGGGCTAATACCGGAT




ACGAGACGCGACCGCATGGTCGGCGTCTGGAAAGT




TTTTCGGTCAAGGATGGACTCGCGGCCTATCAGCT




TGTTGGTGAGGTAATGGCTCACCAAGGCGTCGACG




GGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGG




GACTGAGACACGGCCCAGACTCCTACGGGAGGCAG




CAGTGGGGAATATTGCACAATGGGCGAAAGCCTGA




TGCAGCGACGCCGCGTGAGGGATGAAGGCCTTCGG




GTTGTAAACCTCTTTCAGTAGGGAAGAAGCGAAAG




TGACGGTACCTGCAGAAGAAGCGCCGGCTAACTAC




GTGCCAGCAGCCGCGGTAATACGTAGGGCGCAAGC




GTTGTCCGGAATTATTGGGCGTAAAGAGCTCGTAG




GCGGTTTGTCGCGTCTGGTGTGAAAACTCAAGGCT




CAACCTTGAGCTTGCATCGGGTACGGGCAGACTAG




AGTGTGGTAGGGGTGACTGGAATTCCTGGTGTAGC




GGTGGAATGCGCAGATATCAGGAGGAACACCGATG




GCGAAGGCAGGTCACTGGGCCACTACTGACGCTGA




GGAGCGAAAGCATGGGGAGCGAACAGGATTAGATA




CCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAG




GTGTGGGGCTCATTCCACGAGTTCCGCGCCGCAGC




TAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCC




GCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCC




GCACAAGCGGCGGAGCATGCGGATTAATTCGATGC




AACGCGAAGAACCTTACCAAGGCTTGACATACACC




GGAATCATGCAGAGATGTGTGCGTCTTCGGACTGG




TGTACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTCCTATGTTGCCAGCACGTTATGGTGGG




GACTCATAGGAGACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCGGTAC




AAAGGGCTGCGATACCGCGAGGTGGAGCGAATCCC




AAAAAGCCGGTCTCAGTTCGGATTGGGGTCTGCAA




CTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCAAGTCACGAAAGTCGG




TAACACCCGAAGCCGGTGGCCTAACCCCTTGTGGG




ATGGAGCCGTCGAAGGTGGGATTGGCGATTGGGAC




TAAGTCGTAACAAGGTAGCCGTACCGGAAGGTGCG




GCTGGATCACCTCCTTT





43
DP46 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGGACGGTAGC




ACAGAGGAGCTTGCTCCTTGGGTGACGAGTGGCGG




ACGGGTGAGTAATGTCTGGGGATCTGCCCGATAGA




GGGGGATAACCACTGGAAACGGTGGCTAATACCGC




ATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGG




CCTCTCACTATCGGATGAACCCAGATGGGATTAGC




TAGTAGGCGGGGTAATGGCCCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCG




GGTTGTAAAGTACTTTCAGCGGGGAGGAAGGCGAC




AGGGTTAATAACCCTGTCGATTGACGTTACCCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTCTGTTAAGT




CAGATGTGAAATCCCCGGGCTTAACCTGGGAACTG




CATTTGAAACTGGCAGGCTTTAGTCTTGTAGAGTG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATGTGGAGGAACACCAGTGGCGAAGGCGGCTTT




TTGGTCTGTAACTGACGCTGAGGCGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCCGTAAACGATGAGTGCTAAGTGTT





44
DP47 16S
AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAA



rRNA
AGCGCGCGTAGGTGGTTTGTTAAGTTGAATGTGAA




ATCCCCGGGCTCAACCTGGGAACTGCATTTGAAAC




TGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATT




CCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAG




GAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAG




ACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC




AGGATTAGATACCCTGGTAGTCCACGCCGTAAACG




ATGTCAACTAGCCGTTGGAAGCCTTGAGCTTTTAG




TGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGG




AGTACGGCCGCAAGGTTAAAACTCAAATGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA




ATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTG




ACATCCAATGAACTTTCTAGAGATAGATTGGTGCC




TTCGGGAACATTGAGACAGGTGCTGCATGGCTGTC




GTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTGTCCTGTGTTGCCAGCG




CGTAATGGCGGGGACTCGCAGGAGACTGCCGGGGT




CAACTCGGAGGAAGGTGGGGATGACGTCAAATCAT




CATGCCCCTTATGTCTTGGGCTTCACGCATGCTAC




AATGGCCGGTACAAAGGGCTGCAATACCGTGAGGT




GGAGCGAATCCCAAAAAGCCGGTCCCAGTTCGGAT




TGAGGTCTGCAACTCGACCTCATGAAGTCGGAGTC




GCTAGTAATCGCAGATCAGCAACGCTGCGGTGAAT




ACGTTCCCGGGTCTTGTACACACCGCCCGTCAAGT




CATGAAAGTCGGTAACACCTGAAGCCGGTGGCCCA




ACCCTTGTGGAGGGAGCCGTCGAAGGTGGGATCGG




TAATTAGGACTAAGT





45
DP48 16S
CATGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACA




GATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACG




GGTGAGTAACACGTGGGTAACCTGCCTGTAAGACT




GGGATAACTCCGGGAAACCGGGGCTAATACCGGAT




GCTTGATTGAACCGCATGGTTCAATTATAAAAGGT




GGCTTTTAGCTACCACTTACAGATGGACCCGCGGC




GCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAG




GCAACGATGCGTAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACG




AAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAA




GGTTTTCGGATCGTAAAACTCTGTTGTTAGGGAAG




AACAAGTACCGTTCGAATAGGGCGGTACCTTGACG




GTACCTAACCAGAAAGCCACGGCTAACTACGTGCC




AGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT




CCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGT




TTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACC




GGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGC




AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGA




AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA




GGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGC




GAAAGCGTGGGGAGCGAACAGGATTAGATACCCTG




GTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTT




AGAGGGTTTCCGCCCTTTAGTGCTGCAGCAAACGC




ATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGA




CTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA




GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCG




AAGAACCTTACCAGGTCTTGACATCCTCTGACAAC




CCTAGAGATAGGGCTTCCCCTTCGGGGGCAGAGTG




ACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGT




GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACC




CTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTC




TAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG




GGGATGACGTCAAATCATCATGCCCCTTATGACCT




GGGCTACACACGTGCTACAATGGGCAGAACAAAGG




GCAGCGAAGCCGCGAGGCTAAGCCAATCCCACAAA




TCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGA




CTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATC




AGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTA




CACACCGCCCGTCACACCACGAGAGTTTGTAACAC




CCGAAGTCGGTGAGGTAACCTTTTGGAGCCAGCCG




CCGAAGGTGGGACAGATGATTGGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCA




CCTCCTTT





46
DP49 16S
TATGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACG




TTTTTGAAGCTTGCTTCAAAAACGTTAGCGGCGGA




CGGGTGAGTAACACGTGGGCAACCTGCCTTATCGA




CTGGGATAACTCCGGGAAACCGGGGCTAATACCGG




ATAATATCTAGCACCTCCTGGTGCAAGATTAAAAG




AGGGCCTTCGGGCTCTCACGGTGAGATGGGCCCGC




GGCGCATTAGCTAGTTGGAGAGGTAATGGCTCCCC




AAGGCGACGATGCGTAGCCGACCTGAGAGGGTGAT




CGGCCACACTGGGACTGAGACACGGCCCAGACTCC




TACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGG




ACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGAT




GAAGGGTTTCGGCTCGTAAAGCTCTGTTATGAGGG




AAGAACACGTACCGTTCGAATAGGGCGGTACCTTG




ACGGTACCTCATCAGAAAGCCACGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGT




TGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGC




GGCCTTTTAAGTCTGATGTGAAATCTTGCGGCTCA




ACCGCAAGCGGTCATTGGAAACTGGGAGGCTTGAG




TACAGAAGAGGAGAGTGGAATTCCACGTGTAGCGG




TGAAATGCGTAGATATGTGGAGGAACACCAGTGGC




GAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGG




CGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC




CTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGT




GTTAGGGGTTTCGATGCCCGTAGTGCCGAAGTTAA




CACATTAAGCACTCCGCCTGGGGAGTACGGCCGCA




AGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCA




CAAGCAGTGGAGCATGTGGTTTAATTCGAAGCAAC




GCGAAGAACCTTACCAGGTCTTGACATCCTTTGAC




CACTCTGGAGACAGAGCTTCCCCTTCGGGGGCAAA




GTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTGACCTTAGTTGCCAGCATTTAGTTGGGCA




CTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAG




GTGGGGATGACGTCAAATCATCATGCCCCTTATGA




CCTGGGCTACACACGTGCTACAATGGATGGTACAA




AGGGTTGCGAAGCCGCGAGGTGAAGCCAATCCCAT




AAAGCCATTCTCAGTTCGGATTGTAGGCTGCAACT




CGCCTGCATGAAGCTGGAATTGCTAGTAATCGCGG




ATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCACGAGAGTTTGTAA




CACCCGAAGTCGGTGAGGTAACCTTTTGGAGCCAG




CCGCCGAAGGTGGGACAGATGATTGGGGTGAAGTC




GTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGA




TCACCTCCTTT





47
DP50 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAACGGTAGC




ACAGAGAGCTTGCTCTTGGGTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCCGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAATACCGCAT




AACGTCGCAAGACCAAAGTGGGGGACCTTCGGGCC




TCACACCATCGGATGTGCCCAGATGGGATTAGCTA




GTAGGTGGGGTAATGGCTCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGCGAGGAGGAAGGCATTGT




GGTTAATAACCGCAGTGATTGACGTTACTCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCG




GATGTGAAATCCCCGGGCTCAACCTGGGAACTGCA




TTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGA




GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TACTCTTGACATCCACGGAATTTAGCAGAGATGCT




TTAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCA




TGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT




TGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTG




CCAGTGATAAACTGGAGGAAGGTGGGGATGACGTC




AAGTCATCATGGCCCTTACGAGTAGGGCTACACAC




GTGCTACAATGGCATATACAAAGAGAAGCGACCTC




GCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAG




TCCGGATCGGAGTCTGCAACTCGACTCCGTGAAGT




CGGAATCGCTAGTAATCGTAGATCAGAATGCTACG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGT




AGCTTAACCTTCGGGAGGGCGCTTACCACTTTGTG




ATTCATGACTGGGGTGAAGTCGTAACAAGGTAACC




GTAGGGGAACCTGCGGTTGGATCACCTCCTT





48
DP51 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAGCGGTAGC




ACAGGGAGCTTGCTCCTGGGTGACGAGCGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAATACCGCAT




AACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCC




TCTTGCCATCAGATGTGCCCAGATGGGATTAGCTA




GTAGGTGAGGTAATGGCTCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGCGAGGAGGAAGGCATTAA




GGTTAATAACCTTGGTGATTGACGTTACTCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGGGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTTTGTCAAGTCG




GATGTGAAATCCCCGGGCTCAACCTGGGAACTGCA




TTCGAAACGGGCAAGCTAGAGTCTTGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGA




GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TACTCTTGACATCCAGAGAACTTTCCAGAGATGGA




TTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCA




TGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT




TGCCAGCGAGTAATGTCGGGAACTCAAAGGAGACT




GCCAGTGACAAACTGGAGGAAGGTGGGGATGACGT




CAAGTCATCATGGCCCTTACGAGTAGGGCTACACA




CGTGCTACAATGGCATATACAAAGAGAAGCGACCT




CGCGAGAGCAAGCGGACCTCACAAAGTATGTCGTA




GTCCGGATCGGAGTCTGCAACTCGACTCCGTGAAG




TCGGAATCGCTAGTAATCGTAGATCAGAATGCTAC




GGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGG




TAGCTTAACCTTCGGGAGGGCGCTTACCACTTTGT




GATTCATGACTGGGGTGAAGTCGTAACAAGGTAAC




CGTAGGGGAACCTGCGGTTGGATCACCTCCTT





49
DP52 16S
ACGGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCTTAACACATGCAAGTCGAACGATGAT




CCCAGCTTGCTGGGGGATTAGTGGCGAACGGGTGA




GTAACACGTGAGTAACCTGCCCTTGACTCTGGGAT




AAGCCTGGGAAACTGGGTCTAATACCGGATATGAC




TGTCTGACGCATGTCAGGTGGTGGAAAGCTTTTGT




GGTTTTGGATGGACTCGCGGCCTATCAGCTTGTTG




GTGGGGTAATGGCCTACCAAGGCGACGACGGGTAG




CCGGCCTGAGAGGGTGACCGGCCACACTGGGACTG




AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTG




GGGAATATTGCACAATGGGCGCAAGCCTGATGCAG




CGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGT




AAACCTCTTTCAGTAGGGAAGAAGCGAAAGTGACG




GTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCC




AGCAGCCGCGGTAATACGTAGGGCGCAAGCGTTAT




CCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGT




TTGTCGCGTCTGCTGTGAAAGACCGGGGCTCAACT




CCGGTTCTGCAGTGGGTACGGGCAGACTAGAGTGC




AGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGA




AATGCGCAGATATCAGGAGGAACACCGATGGCGAA




GGCAGGTCTCTGGGCTGTAACTGACGCTGAGGAGC




GAAAGCATGGGGAGCGAACAGGATTAGATACCCTG




GTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTG




GGGGACATTCCACGTTTTCCGCGCCGTAGCTAACG




CATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAG




GCTAAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCGGCGGAGCATGCGGATTAATTCGATGCAACGC




GAAGAACCTTACCAAGGCTTGACATGAACCGGTAA




TACCTGGAAACAGGTGCCCCGCTTGCGGTCGGTTT




ACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGT




GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACC




CTCGTTCTATGTTGCCAGCGCGTTATGGCGGGGAC




TCATAGGAGACTGCCGGGGTCAACTCGGAGGAAGG




TGGGGACGACGTCAAATCATCATGCCCCTTATGTC




TTGGGCTTCACGCATGCTACAATGGCCGGTACAAA




GGGTTGCGATACTGTGAGGTGGAGCTAATCCCAAA




AAGCCGGTCTCAGTTCGGATTGGGGTCTGCAACTC




GACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGA




TCAGCAACGCTGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCAAGTCACGAAAGTTGGTAA




CACCCGAAGCCGGTGGCCTAACCCTTGTGGGGGGA




GCCGTCGAAGGTGGGACCGGCGATTGGGACTAAGT




CGTAACAAGGTAGCCGTACCGGAAGGTGCGGCTGG




ATCACCTCCTTT





50
DP53 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTA




ATACGTGATTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATG





51
DP54 16S
CATGCAAGTCGAGCGGGCACCTTCGGGTGTCAGCG



rRNA
GCAGACGGGTGAGTAACACGTGGGAACGTACCCTT




CGGTTCGGAATAACGCTGGGAAACTAGCGCTAATA




CCGGATACGCCCTTTTGGGGAAAGGTTTACTGCCG




AAGGATCGGCCCGCGTCTGATTAGCTAGTTGGTGG




GGTAACGGCCTACCAAGGCGACGATCAGTAGCTGG




TCTGAGAGGATGATCAGCCACACTGGGACTGAGAC




ACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGA




ATATTGGACAATGGGCGCAAGCCTGATCCAGCCAT




GCCGCGTGAGTGATGAAGGCCTTAGGGTTGTAAAG




CTCTTTTGTCCGGGACGATAATGACGGTACCGGAA




GAATAAGCCCCGGCTAACTTCGTGCCAGCAGCCGC




GGTAATACGAAGGGGGCTAGCGTTGCTCGGAATCA




CTGGGCGTAAAGGGCGCGTAGGCGGCCATTCAAGT




CGGGGGTGAAAGCCTGTGGCTCAACCACAGAATTG




CCTTCGATACTGTTTGGCTTGAGTTTGGTAGAGGT




TGGTGGAACTGCGAGTGTAGAGGTGAAATTCGTAG




ATATTCGCAAGAACACCAGTGGCGAAGGCGGCCAA




CTGGACCAATACTGACGCTGAGGCGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCCGTAAACGATGAATGCTAGCTGTTGGGGTGCTT




GCACCTCAGTAGCGCAGCTAACGCTTTAAGCATTC




CGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAA




AGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCA




TGTGGTTTAATTCGAAGCAACGCGCAGAACCTTAC




CATCCCTTGACATGTCGTGCCATCCGGAGAGATCC




GGGGTTCCCTTCGGGGACGCGAACACAGGTGCTGC




ATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCACGTCCTTAG




TTGCCATCATTTAGTTGGGCACTCTAGGGAGACTG




CCGGTGATAAGCCGCGAGGAAGGTGTGGATGACGT




C





52
DP55 16S
TCGGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGAACTG




ATTAGAAGCTTGCTTCTATGACGTTAGCGGCGGAC




GGGTGAGTAACACGTGGGCAACCTGCCTGTAAGAC




TGGGATAACTTCGGGAAACCGAAGCTAATACCGGA




TAGGATCTTCTCCTTCATGGGAGATGATTGAAAGA




TGGTTTCGGCTATCACTTACAGATGGGCCCGCGGT




GCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAG




GCAACGATGCATAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACG




AAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAA




GGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAG




AACAAGTACAAGAGTAACTGCTTGTACCTTGACGG




TACCTAACCAGAAAGCCACGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATC




CGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTT




TCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCG




TGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCA




GAAGAGAAAAGCGGAATTCCACGTGTAGCGGTGAA




ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG




GCGGCTTTTTGGTCTGTAACTGACGCTGAGGCGCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTA




GAGGGTTTCCGCCCTTTAGTGCTGCAGCTAACGCA




TTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGAC




TGAAACTCAAAGGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA




AGAACCTTACCAGGTCTTGACATCCTCTGACAACT




CTAGAGATAGAGCGTTCCCCTTCGGGGGACAGAGT




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCG




TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTGATCTTAGTTGCCAGCATTTAGTTGGGCACT




CTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGT




GGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTGCTACAATGGATGGTACAAAG




GGCTGCAAGACCGCGAGGTCAAGCCAATCCCATAA




AACCATTCTCAGTTCGGATTGTAGGCTGCAACTCG




CCTACATGAAGCTGGAATCGCTAGTAATCGCGGAT




CAGCATGCT





53
DP56 16S
ATTGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACC




TGATGGAGTGCTTGCACTCCTGATGGTTAGCGGCG




GACGGGTGAGTAACACGTAGGCAACCTGCCCTCAA




GACTGGGATAACTACCGGAAACGGTAGCTAATACC




GGATAATTTATTTCACAGCATTGTGGAATAATGAA




AGACGGAGCAATCTGTCACTTGGGGATGGGCCTGC




GGCGCATTAGCTAGTTGGTGGGGTAACGGCTCACC




AAGGCGACGATGCGTAGCCGACCTGAGAGGGTGAA




CGGCCACACTGGGACTGAGACACGGCCCAGACTCC




TACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGG




GCGAAAGCCTGACGGAGCAACGCCGCGTGAGTGAT




GAAGGTTTTCGGATCGTAAAGCTCTGTTGCCAAGG




AAGAACGTCTTCTAGAGTAACTGCTAGGAGAGTGA




CGGTACTTGAGAAGAAAGCCCCGGCTAACTACGTG




CCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTT




GTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCG




GTTCTTTAAGTCTGGTGTTTAAACCCGAGGCTCAA




CTTCGGGTCGCACTGGAAACTGGGGAACTTGAGTG




CAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTG




AAATGCGTAGATATGTGGAGGAACACCAGTGGCGA




AGGCGACTCTCTGGGCTGTAACTGACGCTGAGGCG




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCT




GGTAGTCCACGCCGTAAACGATGAATGCTAGGTGT




TAGGGGTTTCGATACCCTTGGTGCCGAAGTTAACA




CATTAAGCATTCCGCCTGGGGAGTACGGTCGCAAG




ACTGAAACTCAAAGGAATTGACGGGGACCCGCACA




AGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGC




GAAGAACCTTACCAAGTCTTGACATCCCTCTGAAT




CCTCTAGAGATAGAGGCGGCCTTCGGGACAGAGGT




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCG




TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTGATTTTAGTTGCCAGCACATCATGGTGGGCA




CTCTAGAATGACTGCCGGTGACAAACCGGAGGAAG




GCGGGGATGACGTCAAATCATCATGCCCCTTATGA




CTTGGGCTACACACGTACTACAATGGCTGGTACAA




CGGGAAGCGAAGCCGCGAGGTGGAGCCAATCCTAT




AAAAGCCAGTCTCAGTTCGGATTGCAGGCTGCAAC




TCGCCTGCATGAAGTCGGAATTGCTAGTAATCGCG




GATCAGCATGCCGCGGTGAATACGTTCCCGGGTCT




TGTACACACCGCCCGTCACACCACGAGAGTTTACA




ACACCCGAAGTCGGTGGGGTAACCCGCAAGGGAGC




CAGCCGCCGAAGGTGGGGTAGATGATTGGGGTGAA




GTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCT




GGATCACCTCCTTT





54
DP57 16S
ATTGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGAATG




GATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGA




CGGGTGAGTAACACGTGGGTAACCTGCCCATAAGA




CTGGGATAACTCCGGGAAACCGGGGCTAATACCGG




ATAACATTTTGCACCGCATGGTGCGAAATTCAAAG




GCGGCTTCGGCTGTCACTTATGGATGGACCCGCGT




CGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAA




GGCAACGATGCGTAGCCGACCTGAGAGGGTGATCG




GCCACACTGGGACTGAGACACGGCCCAGACTCCTA




CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGAC




GAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGA




AGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAA




GAACAAGTGCTAGTTGAATAAGCTGGCACCTTGAC




GGTACCTAACCAGAAAGCCACGGCTAACTACGTGC




CAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA




TCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGG




TTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAAC




CGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTG




CAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTG




AAATGCGTAGAGATATGGAGGAACACCAGTGGCGA




AGGCGACTTTCTGGTCTGTAACTGACACTGAGGCG




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCT




GGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGT




TAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACG




CATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAG




GCTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGC




GAAGAACCTTACCAGGTCTTGACATCCTCTGACAA




CCCTAGAGATAGGGCTTCCCCTTCGGGGGCAGAGT




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCG




TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTGATCTTAGTTGCCATCATTAAGTTGGGCACT




CTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGT




GGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTGCTACAATGGACGGTACAAAG




AGCTGCAAGACCGCGAGGTGGAGCTAATCTCATAA




AACCGTTCTCAGTTCGGATTGTAGGCTGCAACTCG




CCTACATGAAGCTGGAATCGCTAGTAATCGCGGAT




CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGT




ACACACCGCCCGTCACACCACGAGAGTTTGTAACA




CCCGAAGTCGGTGGGGTAACCTTTTTGGAGCCAGC




CGCCTAAGGTGGGACAGATGATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGAT




CACCTCCTTT





55
DP58 16S
AATGACGGTACCTGAAGAATAAGCACCGGCTAACT



rRNA
ACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAA




GCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGC




AGGCGGTTTTGTAAGTCTGATGTGAAATCCCCGGG




CTCAACCTGGGAATTGCATTGGAGACTGCAAGGCT




AGAATCTGGCAGAGGGGGGTAGAATTCCACGTGTA




GCAGTGAAATGCGTAGATATGTGGAGGAACACCGA




TGGCGAAGGCAGCCCCCTGGGTCAAGATTGACGCT




CATGCACGAAAGCGTGGGGAGCAAACAGGATTAGA




TACCCTGGTAGTCCACGCCCTAAACGATGTCTACT




AGTTGTCGGGTCTTAATTGACTTGGTAACGCAGCT




AACGCGTGAAGTAGACCGCCTGGGGAGTACGGTCG




CAAGATTAAAACTCAAAGGAATTGACGGGGACCCG




CACAAGCGGTGGATGATGTGGATTAATTCGATGCA




ACGCGAAAAACCTTACCTACCCTTGACATGGCTGG




AATCCTCGAGAGATTGGGGAGTGCTCGAAAGAGAA




CCAGTACACAGGTGCTGCATGGCTGTCGTCAGCTC




GTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAG




CGCAACCCTTGTCATTAGTTGCTACGAAAGGGCAC




TCTAATGAGACTGCCGGTGACAAACCGGAGGAAGG




TGGGGATGACGTCAAGTCCTCATGGCCCTTATGGG




TAGGGCTTCACACGTCATACAATGGTACATACAGA




GCGCCGCCAACCCGCGAGGGGGAGCTAATCGCAGA




AAGTGTATCGTAGTCCGGATTGTAGTCTGCAACTC




GACTGCATGAAGTTGGAATCGCTAGTAATCGCGGA




TCAGCATGTCGCGGTGAATACGTTCCCGGGTCTTG




TACACACCGCCCGTCACACCATGGGAGCGGGTTTT




ACCAGAAGTAGGTAGCTTAACCGTAAGGAGGGCGC




TTACCACGGTAGGATTCGTGACTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGAT




CACCTCCTTT





56
DP59 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAACGGTAAC




AGGAAGCAGCTTGCTGCTTTGCTGACGAGTGGCGG




ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGA




GGGGGATAACTACTGGAAACGGTAGCTAATACCGC




ATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGG




CCTCTTGCCATCAGATGTGCCCAGATGGGATTAGC




TAGTAGGTGGGGTAACGGCTCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCG




GGTTGTAAAGTACTTTCAGCGGGGAGGAAGGCGAT




GCGGTTAATAACCGCGTCGATTGACGTTACCCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGT




CGGATGTGAAATCCCCGGGCTCAACCTGGGAACTG




CATCCGAAACTGGCAGGCTTGAGTCTCGTAGAGGG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC




CTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTT




GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGA




CCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA




AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGC




ATGTGGTTTAATTCGATGCAACGCGAAGAACCTTA




CCTGGTCTTGACATCCACAGAACTTGGCAGAGATG




CCTTGGTGCCTTCGGGAACTGTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTT




GTTGCCAGCGGTTAGGCCGGGAACTCAAAGGAGAC




TGCCAGTGATAAACTGGAGGAAGGTGGGGATGACG




TCAAGTCATCATGGCCCTTACGACCAGGGCTACAC




ACGTGCTACAATGGCGCATACAAAGAGAAGCGATC




TCGCGAGAGCCAGCGGACCTCATAAAGTGCGTCGT




AGTCCGGATTGGAGTCTGCAACTCGACTCCATGAA




GTCGGAATCGCTAGTAATCGTGAATCAGAATGTCA




CGGTGAATACGTTCCCGGGCCTTGTACACACCGCC




CGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAG




GTAGCTTAACCTTCGGGAGGGCGCTTACCACTTTG




TGATTCATGACTGGGGTGAAGTCGTAACAAGGTAA




CCGTAGGGGAACCTGCGGTTGGATCACCTCCTT





57
DP60 16S
TCGGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGAATCG




ATGGGAGCTTGCTCCCTGAGATTAGCGGCGGACGG




GTGAGTAACACGTGGGCAACCTGCCTATAAGACTG




GGATAACTTCGGGAAACCGGAGCTAATACCGGATA




CGTTCTTTTCTCGCATGAGAGAAGATGGAAAGACG




GTTTTGCTGTCACTTATAGATGGGCCCGCGGCGCA




TTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCG




ACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCA




CACTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAA




GTCTGACGGAGCAACGCCGCGTGAACGAAGAAGGC




CTTCGGGTCGTAAAGTTCTGTTGTTAGGGAAGAAC




AAGTACCAGAGTAACTGCTGGTACCTTGACGGTAC




CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGG




AATTATTGGGCGTAAAGCGCGCGCAGGTGGTTCCT




TAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGG




AGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA




GAGGAAAGTGGAATTCCAAGTGTAGCGGTGAAATG




CGTAGAGATTTGGAGGAACACCAGTGGCGAAGGCG




ACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAA




GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAG




TCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAG




GGTTTCCGCCCTTTAGTGCTGCAGCTAACGCATTA




AGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGA




AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG




TGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCTCTGACAACCCTA




GAGATAGGGCGTTCCCCTTCGGGGGACAGAGTGAC




AGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT




TGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTA




AGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGG




GATGACGTCAAATCATCATGCCCCTTATGACCTGG




GCTACACACGTGCTACAATGGATGGTACAAAGGGC




TGCAAACCTGCGAAGGTAAGCGAATCCCATAAAGC




CATTCTCAGTTCGGATTGTAGGCTGCAACTCGCCT




ACATGAAGCCGGAATCGCTAGTAATCGCGGATCAG




CATGCCGCGGTGAATACGTTCCCGGGCCTTGTACA




CACCGCCCGTCACACCACGAGAGTTTGTAACACCC




GAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGC




CTAAGGTGGGACAGATGATTGGGGTGAAGTCGTAA




CAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCAC




CTCCTTT





58
DP61 16S
GGAAGGCGGTCTGTCAAGTCGGATGTGAAATCCCC



rRNA
GGGCTCAACCTGGGAACTGCATTCGAAACTGGCAG




GCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGT




GTAGCGGTGAAATGCGTAGAGATCTGGAGGAATAC




CGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGAC




GCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATT




AGATACCCTGGTAGTCCACGCCGTAAACGATGTCG




ACTTGGAGGTTGTTCCCTTGAGGAGTGGCTTCCGG




AGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACG




GCCGCAAGGTTAAAACTCAAATGAATTGACGGGGG




CCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGA




TGCAACGCGAAGAACCTTACCTACTCTTGACATCC




ACGGAATTTAGCAGAGATGCTTTAGTGCCTTCGGG




AACCGTGAGACAGGTGCTGCATGGCTGTCGTCAGC




TCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG




AGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGG




CCGGGAACTCAAAGGAGACTGCCAGTGATAAACTG




GAGGAAGGTGGGGATGACGTCAAGTCATCATGGCC




CTTACGAGTAGGGCTACACACGTGCTACAATGGCG




CATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGG




ACCTCATAAAGTGCGTCGTAGTCCGGATCGGAGTC




TGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTA




ATCGTAGATCAGAATGCTACGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGGGAG




TGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGG




GAGGGCGCTTACCACTTTGTGATTCATGACTGGGG




TGAAGTCGTAACAAGGTAACCGTAGGGGAACCTGC




GGTTGGATCACCTCCTT





59
DP62 16S
TGGCTCAGATTGAACGCTGGCGGCAGGCCTAACAC



rRNA
ATGCAAGTCGAACGGTAGCACAGAGGAGCTTGCTC




CTTGGGTGACGAGTGGCGGACGGGTGAGTAATGTC




TGGGAAACTGCCCGATGGAGGGGGATAACTACTGG




AAACGGTAGCTAATACCGCATAACGTCTTCGGACC




AAAGTGGGGGACCTTCGGGCCTCACACCATCGGAT




GTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAAT




GGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAG




AGGATGACCAGCCACACTGGAACTGAGACACGGTC




CAGACTCCTACGGGAGGCAGCAGTGGGGAATATTG




CACAATGGGCGCAAGCCTGATGCAGCCATGCCGCG




TGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTT




CAGTGGGGAGGAAGGCGTTAAGGTTAATAACCTTG




GCGATTGACGTTACCCGCAGAAGAAGCACCGGCTA




ACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTG




CAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCA




CGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCC




GGGCTCAACCTGGGAACTGCATTCGAAACTGGCAG




GCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGT




GTAGCGGTGAAATGCGTAGAGATCTGGAGGAATAC




CGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGAC




GCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATT




AGATACCCTGGTAGTCCACGCCGTAAACGATGTCG




ACTTGGAGGTTGTTCCCTTGAGGAGTGGCTTCCGG




AGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACG




G





60
DP63 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTTCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





61
DP64 ITS
GCTCGAGTTCTTGTTTAGATCTTTTACAATAATGT



sequence
GTATCTTTACTGAAGATGTGCGCTTAATTGCGCTG




CTTCTTTAGAGTGTCGCAGTGAAAGTAGTCTTGCT




TGAATCTCAGTCAACGCTACACACATTGGAGTTTT




TTTACTTTAATTTAATTCTTTCTGCTTTGAATCGA




AAGGTTCAAGGCAAAAAACAAACACAAACAATTTT




ATTTTATTATAATTTTTTAAACTAAACCAAAATTC




CTAACGGAAATTTTAAAATAATTTAAAACTTTCAA




CAACGGATCTCTTGGTTCTCGCATCGATGAAGAAC




GTAGCGAATTGCGATAAGTAATGTGAATTGCAGAT




ACTCGTGAATCATTGAATTTTTGAACGCACATTGC




GCCCTTGAGCATTCTCAGGGGCATGCCTGTTTGAG




CGTCATTTCCTTCTCAAAAGATAATTTATTATTTT




TTGGTTGTGGGCGATACTCAGGGTTAGCTTGAAAT




TGGAGACTGTTTCAGTCTTTTTTAATTCAACACTT




AGCTTCTTTGGAGACGCTGTTCTCGCTGTGATGTA




TTTATGGATTTATTCGTTTTACTTTACAAGGGAAA




TGGTAACGTACCTTAGGCAAAGGGTTGCTTTTAAT




ATTCATCAAGTTTGACCTCAAATCAGGTAGGATTA




CCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA




AAGAAACCAACTGGGATTACCTTAGTAACGGCGAG




TGAAGCGGTAAAAGCTCAAATTTGAAATCTGGTAC




TTTCAGTGCCCGAGTTGTAATTTGTAGAATTTGTC




TTTGATTAGGTCCTTGTCTATGTTCCTTGGNANCA




GGACGTCATAGAGGGTGAGAATCCCGTTTGGCGAG




GATACCTTTTCTCTGTAAGACTTTTTCGAANANTC




GAGTTGTTTGGGAATGCAGCTCAAAGTGGGTGGTA




AANTTCCATCTAAAGCTAAATNTTGGCGAGAGACC




GATAGCGAACNAGTACAGTGATGGAAAGATGAAAA




AGAANTTTN





62
DP65 16S
ATTGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGAATG




GATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGA




CGGGTGAGTAACACGTGGGTAACCTGCCCATAAGA




CTGGGATAACTCCGGGAAACCGGGGCTAATACCGG




ATAACATTTTGAACTGCATGGTTCGAAATTGAAAG




GCGGCTTCGGCTGTCACTTATGGATGGACCCGCGT




CGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAA




GGCAACGATGCGTAGCCGACCTGAGAGGGTGATCG




GCCACACTGGGACTGAGACACGGCCCAGACTCCTA




CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGAC




GAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGA




AGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAA




GAACAAGTGCTAGTTGAATAAGCTGGCACCTTGAC




GGTACCTAACCAGAAAGCCACGGCTAACTACGTGC




CAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTA




TCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGG




TTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAAC




CGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTG




CAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTG




AAATGCGTAGAGATATGGAGGAACACCAGTGGCGA




AGGCGACTTTCTGGTCTGTAACTGACACTGAGGCG




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCT




GGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGT




TAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACG




CATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAG




GCTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGC




GAAGAACCTTACCAGGTCTTGACATCCTCTGAAAA




CCCTAGAGATAGGGCTTCTCCTTCGGGAGCAGAGT




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCG




TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTGATCTTAGTTGCCATCATTAAGTTGGGCACT




CTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGT




GGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTGCTACAATGGACGGTACAAAG




AGCTGCAAGACCGCGAGGTGGAGCTAATCTCATAA




AACCGTTCTCAGTTCGGATTGTAGGCTGCAACTCG




CCTACATGAAGCTGGAATCGCTAGTAATCGCGGAT




CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGT




ACACACCGCCCGTCACACCACGAGAGTTTGTAACA




CCCGAAGTCGGTGGGGTAACCTTTTTGGAGCCAGC




CGCCTAAGGTGGGACAGATGATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGAT




CACCTCCTTT





63
DP66 ITS
GATTTTTTGGGGTTGCTTCGAACTTGCAGACAGAG



sequence
TGTCGAGACTTGTGAGCCTGCGCTTAATTGCGCGG




CCTAGAGTCGAGTGCTTGTTATTGGCTGCGAGGGA




CGAGTGCCTTTTGAAAAAATCCATTACACACTGTG




AAGATTTTTTTTCATACATTTTACTTCTTTGGGGC




TTTCGAGCTCCAAAGGCTATAAACACAAACCAAAC




TTTTTTTTTTATTATTTGTTAATCAAGAAATTTTC




TTATTGAAATTAAATATTTTAAAACTTTCAACAAC




GGATCTCTTGGTTCTCGCATCGATGAAGAACGTAG




CGAATTGCGATAAGTAATGTGAATTGCAGATTCTC




GTGAATCATTGAATTTTTGAACGCACATTGCGCCC




TCTGGTATTCCAGGGGGCATGCCTGTTTGAGCGTC




ATTTCCTTCTCAAAATCTCGATTTTGGTTGTGAGT




GATACTCTGTTACAGGGTTAACTTGAAAGTGCTAT




TGCCCTAGCTACTCTTTTTTTTACTTGCTAAGAAA




AAGATTTTTGGATAATTTCAATGTATTTAGGTATT




TATACCGACTTTCATTGGATGCTGAGAGTCTTGTC




TAAGCGCTTTTGTGAGATTGAGCAGAAGGGATTAA




CAGTATTCATAAAGTTTGACCTCAAATCAGGTAGG




ATTACCCGCTGAACTTAAGCATATCAATAAGCGGA




GGAAAAGAAACCAACCGGGATTGCCTCAGTAACGG




CGAGTGAAGCGGCAAAAGCTCAAATTTGAAATCTG




GCACTTTCAGTGTCCGAGTTGTAATTTGTAGAAGT




AGTTTTGGGACTGGTCCTTATCTATGTTTCTTGGA




ACAGGACGTCATAGAGGGTGAGANCCCGTATGATG




AGGCCCCCAGTCCTTTGTAAAACGCTNCGAAGAGT




CGAGTTGTTTGGGAATGCAGCTCTAAGTGGGTNGN




AATTNNTCTAAAGCTAAATNNNNNNNANACNNTNG




CGANAGTACNGTGATGNNGATGANNACTTTGAAAN




ANANTGAAAAGTACGTGAA





64
DP72 16S
TTCGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACA




GAAGGGAGCTTGCTCCCGGATGTTAGCGGCGGACG




GGTGAGTAACACGTGGGTAACCTGCCTGTAAGACT




GGGATAACTCCGGGAAACCGGAGCTAATACCGGAT




AGTTCCTTGAACCGCATGGTTCAAGGATGAAAGAC




GGTTTCGGCTGTCACTTACAGATGGACCCGCGGCG




CATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGG




CGACGATGCGTAGCCGACCTGAGAGGGTGATCGGC




CACACTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGA




AAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAG




GTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGA




ACAAGTGCGAGAGTAACTGCTCGCACCTTGACGGT




ACCTAACCAGAAAGCCACGGCTAACTACGTGCCAG




CAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCC




GGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTT




CTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGG




GGAGGGTCATTGGAAACTGGGAAACTTGAGTGCAG




AAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAA




TGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGG




CGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGA




AAGCGTGGGGAGCGAACAGGATTAGATACCCTGGT




AGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAG




GGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCAT




TAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACT




GAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATCCTCTGACAACCC




TAGAGATAGGGCTTTCCCTTCGGGGACAGAGTGAC




AGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT




TGATCTTAGTTGCCAGCATTTAGTTGGGCACTCTA




AGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGG




GATGACGTCAAATCATCATGCCCCTTATGACCTGG




GCTACACACGTGCTACAATGGACAGAACAAAGGGC




TGCGAGACCGCAAGGTTTAGCCAATCCCATAAATC




TGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACT




GCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAG




CATGCCGCGGTGAATACGTTCCCGGGCCTTGTACA




CACCGCCCGTCACACCACGAGAGTTTGCAACACCC




GAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGC




CGAAGGTGGGGCAGATGATTGGGGTGAAGTCGTAA




CAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCAC




CTCCTTT





65
DP73 16S
AACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACA




GAAGGGAGCTTGCTCCCGGACGTTAGCGGCGGACG




GGTGAGTAACACGTGGGCAACCTGCCCCTTAGACT




GGGATAACTCCGGGAAACCGGAGCTAATACCGGAT




AATCCCTTTCTCCACCTGGAGAGAGGGTGAAAGAT




GGCTTCGGCTATCACTAAGGGATGGGCCCGCGGCG




CATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGG




CGACGATGCGTAGCCGACCTGAGAGGGTGATCGGC




CACACTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGA




AAGTCTGACGGAGCAACGCCGCGTGAGTGAGGAAG




GCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGAAGA




AGCGGTGCCGTTCGAATAGGGCGGTACCTTGACGG




TACCTCACCAGAAAGCCACGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTC




CGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCT




TCTTAAGTCTGATGTGAAATCTCGGGGCTCAACCC




CGAGCGGCCATTGGAAACTGGGGAGCTTGAGTGCA




GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAA




ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG




GCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTA




G





66
DP74 16S
GCCTAATACATGCAAGTCGTGCGGACCTTTTAAAA



rRNA
GCTTGCTTTTAAAAGGTTAGCGGCGAACGGGTGAG




TAACACGTGGGCAACCTGCCTGTAAGATCGGGATA




ATGCCGGGAAACCGGGGCTAATACCGGATAGTTTT




TTCCTCCGCATGGAGGAAAAAGGAAAGACGGCTTC




GGCTGTCACTTACAGATGGGCCCGCGGCGCATTAG




CTTGTTGGTGGGGTAACGGCTCACCAAGGCAACGA




TGCGTAGCCGACCTGAGAGGGTGATCGGCCACATT




GGGACTGAGACACGGCCCAAACTCCTACGGGAGGC




AGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCT




GACGGAGCAACGCCGCGTGAGTGAAGAAGGCCTTC




GGGTCGTAAAACTCTGTTGCCGGGGAAGAACAAGT




GCCGTTCGAACAGGGCGGCGCCTTGACGGTACCCG




GCCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAAT




TATTGGGCGTAAAGCGCGCGCAGGCGGCTTCTTAA




GTCTGATGTGAAATCTTGCGGCTCAACCGCAAGCG




GTCATTGGAAACTGGGAGGCTTGAGTGCAGAAGAG




GAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGT




AGAGATGTGGAGGAACACCAGTGGCGAAGGCGGCT




CTCTGGTCTGTAACTGACGCTGAGGCGCGAAAGCG




TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC




ACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGT




TTCCGCCCTTTAGTGCTGCAGCTAACGCATTAAGC




ACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAAC




TCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGG




AGCATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGTCTTGACATCCTCTGACCTCCCTGGAG




ACAGGGCCTTCCCCTTCGGGGGACAGAGTGACAGG




TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGAT




GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGA




CCTTAGTTGCCAGCATTCAG





67
DP75 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGT




GAAAGCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACGAGCTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAATCCTTGAGATTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCCAGAGATGGATGGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAACGGGAGGACG




GTTACCACGGTGTGATTCATGACTGGGGTGAAGTC




GTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGGA




TCACCTCCTT





68
DP76 16S
CTTGAGAGTTTGATCCTGGCTCAGAACGAACGCTG



rRNA
GCGGCAGGCTTAACACATGCAAGTCGAGCGCCCCG




CAAGGGGAGCGGCAGACGGGTGAGTAACGCGTGGG




AATCTACCTTTTGCTACGGAACAACAGTTGGAAAC




GACTGCTAATACCGTATGTGCCCTTCGGGGGAAAG




ATTTATCGGCAAAGGATGAGCCCGCGTTGGATTAG




CTAGTTGGTGAGGTAAAGGCTCACCAAGGCGACGA




TCCATAGCTGGTCTGAGAGGATGATCAGCCACACT




GGGACTGAGACACGGCCCAGACTCCTACGGGAGGC




AGCAGTGGGGAATATTGGACAATGGGCGCAAGCCT




GATCCAGCCATGCCGCGTGAGTGATGAAGGCCCTA




GGGTTGTAAAGCTCTTTCACCGGTGAAGATAATGA




CGGTAACCGGAGAAGAAGCCCCGGCTAACTTCGTG




CCAGCAGCCGCGGTAATACGAAGGGGGCTAGCGTT




GTTCGGATTTACTGGGCGTAAAGCGCACGTAGGCG




GATTTTTAAGTCAGGGGTGAAATCCCGGGGCTCAA




CCCCGGAACTGCCTTTGATACTGGAAGTCTTGAGT




ATGGTAGAGGTGAGTGGAATTCCGAGTGTAGAGGT




GAAATTCGTAGATATTCGGAGGAACACCAGTGGCG




AAGGCGGCTCACTGGACCATTACTGACGCTGAGGT




GCGAAAGCGTGGGGAGCAAACAGGATTAGATACCC




TGGTAGTCCACGCCGTAAACGATGAATGTTAGCCG




TCGGGGGGTTTACCTTTCGGTGGCGCAGCTAACGC




ATTAAACATTCCGCCTGGGGAGTACGGTCGCAAGA




TTAAAACTCAAAGGAATTGACGGGGGCCCGCACAA




GCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCG




CAGAACCTTACCAGCCCTTGACATACCGGTCGCGG




ACACAGAGATGTGTCTTTCAGTTCGGCTGGACCGG




ATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTC




GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCTCGCCTTTAGTTGCCAGCATTTAGTTGGGCAC




TCTAAAGGGACTGCCAGTGATAAGCTGGAGGAAGG




TGGGGATGACGTCAAGTCCTCATGGCCCTTACGGG




CTGGGCTACACACGTGCTACAATGGTGGTGACAGT




GGGCAGCAAGCACGCGAGTGTGAGCTAATCTCCAA




AAGCCATCTCAGTTCGGATTGCACTCTGCAACTCG




AGTGCATGAAGTTGGAATCGCTAGTAATCGCGGAT




CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGT




ACACACCGCCCGTCACACCATGGGAGTTGGTTTTA




CCCGAAGGCACTGTGCTAACCGCAAGGAGGCAGGT




GACCACGGTAGGGTCAGCGACTGGGGTGAAGTCGT




AACAAGGTAGCCGTAGGGGAACCTGCGGCTGGATC




ACCTCCTTT





69
DP77 16S
TCGGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGAACTG




ATTAGAAGCTTGCTTCTATGACGTTAGCGGCGGAC




GGGTGAGTAACACGTGGGCAACCTGCCTGTAAGAC




TGGGATAACTTCGGGAAACCGAAGCTAATACCGGA




TAGGATCTTCTCCTTCATGGGAGATGATTGAAAGA




TGGTTTCGGCTATCACTTACAGATGGGCCCGCGGT




GCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAG




GCAACGATGCATAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACG




AAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAA




GGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAG




AACAAGTACAAGAGTAACTGCTTGTACCTTGACGG




TACCTAACCAGAAAGCCACGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATC




CGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGTT




TCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCG




TGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCA




GAAGAGAAAAGCGGAATTCCACGTGTAGCGGTGAA




ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG




GCGGCTTTTTGGTCTGTAACTGACGCTGAGGCGCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTA




GAGGGTTTCCGCCCTTTAGTGCTGCAGCTAACGCA




TTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGAC




TGAAACTCAAAGGAATTGACGGGGGCCCGCACAAG




CGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA




AGAACCTTACCAGGTCTTGACATCCTCTGACAACT




CTAGAGATAGAGCGTTCCCCTTCGGGGGACAGAGT




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCG




TGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACT




CTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGT




GGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTGCTACAATGGATGGTACAAAG




GGCTGCAAGACCGCGAGGTCAAGCCAATCCCATAA




AACCATTCTCAGTTCGGATTGTAGGCTGCAACTCG




CCTACATGAAGCTGGAATCGCTAGTAATCGCGGAT




CAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGT




ACACACCGCCCGTCACACCACGAGAGTTTGTAACA




CCCGAAGTCGGTGGAGTAACCGTAAGGAGCTAGCC




GCCTAAGGTGGGACAGATGATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATC




ACCTCCTTT





70
DP78 16S
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



rRNA
GCGGCAGGCCTAACACATGCAAGTCGAACGGTAGC




ACAGAGAGCTTGCTCTTGGGTGACGAGTGGCGGAC




GGGTGAGTAATGTCTGGGAAACTGCCCGATGGAGG




GGGATAACTACTGGAAACGGTAGCTAATACCGCAT




AACGTCTTCGGACCAAAGTGGGGGACCTTCGGGCC




TCACACCATCGGATGTGCCCAGATGGGATTAGCTA




GTAGGTGGGGTAATGGCTCACCTAGGCGACGATCC




CTAGCTGGTCTGAGAGGATGACCAGCCACACTGGA




ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGC




AGTGGGGAATATTGCACAATGGGCGCAAGCCTGAT




GCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGG




TTGTAAAGTACTTTCAGTGGGGAGGAAGGCGATGA




AGTTAATAGCTTCGTCGATTGACGTTACCCGCAGA




AGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG




TAATACGGAGGGTGCAAGCGTTAATCGGAATTACT




GGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCG




GATGTGAAATCCCCGGGCTCAACCTGGGAACTGCA




TTCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGG




GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAG




ATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT




GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGG




GAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGA




GGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACC




GCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAA




TGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAT




GTGGTTTAATTCGATGCAACGCGAAGAACCTTACC




TGGCCTTGACATCCACGGAATTCGGCAGAGATGCC




TTAGTGCCTTCGGGAACCGTGAGACAGGTGCTGCA




TGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGT




TGCCAGCGAGTAATGTCGGGAACTCAAAGGAGACT




GCCGGTGATAAACCGGAGGAAGGTGGGGATGACGT




CAAGTCATCATGGCCCTTACGGCCAGGGCTACACA




CGTGCTACAATGGCGCATACAAAGAGAAGCGACCT




CGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTA




GTCCGGATCGGAGTCTGCAACTCGACTCCGTGAAG




TCGGAATCGCTAGTAATCGTAGATCAGAATGCTAC




GGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGG




TAGCTTAACCTTCGGGAGGGCGCTTACCACTTTGT




GATTCATGACTGGGGTGAAGTCGTAACAAGGTAAC




CGTAGGGGAACCTGCGGTTGGATCACCTCCTT





71
DP79 16S
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



rRNA
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG




AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTA




ATACGTGACTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





72
DP80 16S
CTTGAGAGTTTGATCCTGGCTCAGAGCGAACGCTG



rRNA
GCGGCAGGCTTAACACATGCAAGTCGAGCGGGCAC




CTTCGGGTGTCAGCGGCAGACGGGTGAGTAACACG




TGGGAACGTACCCTTCGGTTCGGAATAACGCTGGG




AAACTAGCGCTAATACCGGATACGCCCTTTTGGGG




AAAGGTTTACTGCCGAAGGATCGGCCCGCGTCTGA




TTAGCTAGTTGGTGGGGTAACGGCCTACCAAGGCG




ACGATCAGTAGCTGGTCTGAGAGGATGATCAGCCA




CACTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGGACAATGGGCGCAA




GCCTGATCCAGCCATGCCGCGTGAGTGATGAAGGC




CTTAGGGTTGTAAAGCTCTTTTGTCCGGGACGATA




ATGACGGTACCGGAAGAATAAGCCCCGGCTAACTT




CGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTAG




CGTTGCTCGGAATCACTGGGCGTAAAGGGCGCGTA




GGCGGCCATTCAAGTCGGGGGTGAAAGCCTGTGGC




TCAACCACAGAATTGCCTTCGATACTGTTTGGCTT




GAGTTTGGTAGAGGTTGGTGGAACTGCGAGTGTAG




AGGTGAAATTCGTAGATATTCGCAAGAACACCAGT




GGCGAAGGCGGCCAACTGGACCAATACTGACGCTG




AGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGAT




ACCCTGGTAGTCCACGCCGTAAACGATGAATGCTA




GCTGTTGGGGTGCTTGCACCTCAGTAGCGCAGCTA




ACGCTTTAAGCATTCCGCCTGGGGAGTACGGTCGC




AAGATTAAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAA




CGCGCAGAACCTTACCATCCCTTGACATGTCGTGC




CATCCGGAGAGATCCGGGGTTCCCTTCGGGGACGC




GAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTG




TCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCACGTCCTTAGTTGCCATCATTTAGTTGGGC




ACTCTAGGGAGACTGCCGGTGATAAGCCGCGAGGA




AGGTGTGGATGACGTC





73
DP81 16S
AACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACA




GAAGGGAGCTTGCTCCCGGACGTTAGCGGCGGACG




GGTGAGTAACACGTGGGCAACCTGCCCCTTAGACT




GGGATAACTCCGGGAAACCGGAGCTAATACCGGAT




AATCCCTTTCTCCACCTGGAGAGAGGGTGAAAGAT




GGCTTCGGCTATCACTAGGGGATGGGCCCGCGGCG




CATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGG




CGACGATGCGTAGCCGACCTGAGAGGGTGATCGGC




CACACTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGA




AAGTCTGACGGAGCAACGCCGCGTGAGTGAGGAAG




GCTTTCGGGTCGTAAAGCTCTGTTGTGAGGGAAGA




AGCGGTACCGTTCGAATAGGGCGGTACCTTGACGG




TACCTCACCAGAAAGCCACGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTC




CGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCT




TCTTAAGTCTGATGTGAAATCTCGGGGCTCAACCC




CGAGCGGCCATTGGAAACTGGGGAGCTTGAGTGCA




GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAA




ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG




GCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTA




GGGGTTTCGATGCCCGTAGTGCCGAAGTTAACACA




TTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGC




TGAAACTCAAAGGAATTGACGGGGACCCGCACAAG




CAGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA




AGAACCTTACCAGGTCTTGACATCCTTTGACCACC




CAAGAGATTGGGCTTCCCCTTCGGGGGCAAAGTGA




CAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTG




AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC




TTGATCTTAGTTGCCAGCATTGAGTTGGGCACTCT




AAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGG




GGATGACGTCAAATCATCATGCCCCTTATGACCTG




GGCTACACACGTGCTACAATGGATGGTACAAAGGG




CAGCGAAACCGCGAGGTGAAGCCAATCCCATAAAG




CCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCC




TGCATGAAGCCGGAATTGCTAGTAATCGCGGATCA




GCATGCCGCGGTGAATACGTTCCCGGGTCTTGTAC




ACACCGCCCGTCACACCACGAGAGTTTGTAACACC




CGAAGTCGGTGAGGCAACCTTTTGGAGCCAGCCGC




CTAAGGTGGGACAAATGATTGGGGTGAAGTCGTAA




CAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCAC




CTCCTTT





74
DP82 16S
AACGGAGAGTTTGATCCTGGCTCAGGACGAACGCT



rRNA
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACA




GAAGGGAGCTTGCTCCCGGACGTTAGCGGCGGACG




GGTGAGTAACACGTGGGCAACCTGCCCCTTAGACT




GGGATAACTCCGGGAAACCGGAGCTAATACCGGAT




AATCCCTTTCTCCACCTGGAGAGAGGGTGAAAGAT




GGCTTCGGCTATCACTAAGGGATGGGCCCGCGGCG




CATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGG




CAACGATGCGTAGCCGACCTGAGAGGGTGATCGGC




CACACTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGA




AAGTCTGACGGAGCAACGCCGCGTGAGTGAGGAAG




GCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGAAGA




AGCGGTACCGTTCGAATAGGGCGGTACCTTGACGG




TACCTCACCAGAAAGCCACGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTC




CGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCT




TCTTAAGTCTGATGTGAAATCTCGGGGCTCAACCC




CGAGCGGCCATTGGAAACTGGGGAGCTTGAGTGCA




GAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAA




ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAG




GCGACTCTCTGGTCTGTAACTGACGCTGAGGCGCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTA




GGGGTTTCGATGCCCGTAGTGCCGAAGTTAACACA




TTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGC




TGAAACTCAAAGGAATTGACGGGGACCCGCACAAG




CAGTGGAGCATGTGGTTTAATTCGAAGCAACGCGA




AGAACCTTACCAGGTCTTGACATCCTTTGACCACC




CAAGAGATTGGGCTTCCCCTTCGGGGGCAAAGTGA




CAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTG




AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC




TTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCT




AAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGG




GGATGACGTCAAATCATCATGCCCCTTATGACCTG




GGCTACACACGTGCTACAATGGATGGTACAAAGGG




CAGCGAAACCGCGAGGTGAAGCCAATCCCATAAAG




CCATTCTCAGTTCGGATTGCAGGCTGCAACTCGCC




TGCATGAAGCCGGAATTGCTAGTAATCGCGGATCA




GCATGCCGCGGTGAATACGTTCCCGGGTCTTGTAC




ACACCGCCCGTCACACCACGAGAGTTTGTAACACC




CGAAGTCGGTGAGGCAACCTTTTGGAGCCAGCCGC




CTAAGGTGGGACAAATGATTGGGGTGAAGTCGTAA




CAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCAC




CTCCTTT





75
DP83 16S
ACGGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGGAGTT




TCAAGAAGCTTGCTTTTTGAAACTTAGCGGCGGAC




GGGTGAGTAACACGTGGGCAACCTGCCCCTTAGAC




TGGGATAACTCCGGGAAACCGGAGCTAATACCGGA




TAATCCCTTTCTCCACCTGGAGAGAGGGTGAAAGA




TGGCTTCGGCTATCACTAAGGGATGGGCCCGCGGC




GCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAG




GCAACGATGCGTAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACG




AAAGTCTGACGGAGCAACGCCGCGTGAGTGAGGAA




GGCCTTCGGGTCGTAAAGCTCTGTTGTGAGGGAAG




AAGCGGTACCGTTCGAATAGGGCGGTACCTTGACG




GTACCTCACCAGAAAGCCACGGCTAACTACGTGCC




AGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT




CCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGC




TTCTTAAGTCTGATGTGAAATCTCGGGGCTCAACC




CCGAGCGGCCATTGGAAACTGGGGAGCTTGAGTGC




AGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGA




AATGCGTAGAGATGTGGAGGAACACCAGTGGCGAA




GGCGACTCTCTGGTCTGTAACTGACGCTGAGGCGC




GAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG




GTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTT




AGGGGTTTCGATGCCCGTAGTGCCGAAGTTAACAC




ATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGG




CTGAAACTCAAAGGAATTGACGGGGACCCGCACAA




GCAGTGGAGCATGTGGTTTAATTCGAAGCAACGCG




AAGAACCTTACCAGGTCTTGACATCCTTTGACCAC




CCAAGAGATTGGGCTTCCCCTTCGGGGGCAAAGTG




ACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGT




GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACC




CTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTC




TAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTG




GGGATGACGTCAAATCATCATGCCCCTTATGACCT




GGGCTACACACGTGCTACAATGGATGGTACAAAGG




GCAGCGAAGCCGCGAGGTGAAGCCAATCCCATAAA




GCCATTCTCAGTTCGGATTGCAGGCTGCAACTCGC




CTGCATGAAGCCGGAATTGCTAGTAATCGCGGATC




AGCATGCCGCGGTGAATACGTTCCCGGGTCTTGTA




CACACCGCCCGTCACACCACGAGAGTTTGTAACAC




CCGAAGTCGGTGAGGCAACCTTTTGGAGCCAGCCG




CCTAAGGTGGGACAAATGATTGGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCA




CCTCCTTT





76
DP84 16S
TACGGAGAGTTTGATCCTGGCTCAGGATGAACGCT



rRNA
GGCGGCGTGCTTAACACATGCAAGTCGAACGGTGA




AGCCAAGCTTGCTTGGTGGATCAGTGGCGAACGGG




TGAGTAACACGTGAGCAACCTGCCCTGGACTCTGG




GATAAGCGCTGGAAACGGCGTCTAATACTGGATAT




GAGCTCTCATCGCATGGTGGGGGTTGGAAAGATTT




TTTGGTCTGGGATGGGCTCGCGGCCTATCAGCTTG




TTGGTGAGGTAATGGCTCACCAAGGCGTCGACGGG




TAGCCGGCCTGAGAGGGTGACCGGCCACACTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGAATATTGCACAATGGGCGAAAGCCTGATG




CAGCAACGCCGCGTGAGGGATGACGGCCTTCGGGT




TGTAAACCTCTTTTAGCAGGGAAGAAGCGAAAGTG




ACGGTACCTGCAGAAAAAGCGCCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGCGCAAGCGT




TATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGC




GGTTTGTCGCGTCTGCTGTGAAATCCCGAGGCTCA




ACCTCGGGCCTGCAGTGGGTACGGGCAGACTAGAG




TGCGGTAGGGGAGATTGGAATTCCTGGTGTAGCGG




TGGAATGCGCAGATATCAGGAGGAACACCGATGGC




GAAGGCAGATCTCTGGGCCGTAACTGACGCTGAGG




AGCGAAAGGGTGGGGAGCAAACAGGCTTAGATACC




CTGGTAGTCCACCCCGTAAACGTTGGGAACTAGTT




GTGGGGACCATTCCACGGTTTCCGTGACGCAGCTA




ACGCATTAAGTTCCCCGCCTGGGGAGTACGGCCGC




AAGGCTAAAACTCAAAGGAATTGACGGGGACCCGC




ACAAGCGGCGGAGCATGCGGATTAATTCGATGCAA




CGCGAAGAACCTTACCAAGGCTTGACATACACCAG




AACGGGCCAGAAATGGTCAACTCTTTGGACACTGG




TGAACAGGTGGTGCATGGTTGTCGTCAGCTCGTGT




CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTCGTTCTATGTTGCCAGCACGTAATGGTGGG




AACTCATGGGATACTGCCGGGGTCAACTCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GTCTTGGGCTTCACGCATGCTACAATGGCCGGTAC




AAAGGGCTGCAATACCGTGAGGTGGAGCGAATCCC




AAAAAGCCGGTCCCAGTTCGGATTGAGGTCTGCAA




CTCGACCTCATGAAGTCGGAGTCGCTAGTAATCGC




AGATCAGCAACGCTGCGGTGAATACGTTCCCGGGT




CTTGTACACACCGCCCGTCAAGTCATGAAAGGAGC




CGTCGAAGGTGGGATCGGTAATTAGGACTAAGTCG




TAACAAGGTAGCCGTACCGGAAGGTGCGGCTGGAT




CACCTCCTTT





77
DP85 16S
TGCAGTCGTACGCTTCTTTTTCCNCCGGAGCTTGC



rRNA
TCCACCGGAAAAAGAGGAGTGGCGAACGGGTGAGT




AACACGTGGGTAACCTGCCCATCAGAAGGGGATAA




CACTTGGAAACAGGTGCTAATACCGTATAACAATC




GAAACCGCATGGTTTTGATTTGAAAGGCGCTTTCG




GGTGTCGCTGATGGATGGACCCGCGGTGCATTAGC




TAGTTGGTGAGGTAACGGCTCACCAAGGCCACGAT




GCATAGCCGACCTGAGAGGGTGATCGGCCACATTG




GGACTGAGACACGGCCCAAACTCCTACGGGAGGCA




GCAGTAGGGAATCTTCGGCAATGGACGAAAGTCTG




ACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCG




GATCGTAAAACTCTGTTGTTAGAGAAGAACAAGGA




TGAGAGTAACTGTTCATCCCTTGACGGTATCTAAC




CAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTA




TTGGGCGTAAAGCGAGCGCAGGCGGTTTCTTAAGT




CTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGT




CATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGA




GAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAG




ATATATGGAGGAACACCAGTGGCGAAGGCGGCTCT




CTGGTCTGTAACTGACGCTGNNCTCGAAAGCGTGG




GGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGAGTGCTAAGTGTTGGAGGGTTTC




CGCCCTTCAGTGCTGCAGCTAACGCATTAAGCACT




CCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCA




AGGAATTGACGGGGGCCCGCACAGCGGTGGAGCAT




GNNGNTTANNGANCACGCGANANNTACNNNCTNAC




ATCNTTGACNCTCTANAGATAGAGCTTCCCTTCGG




GGCAAGTGACNG





78
DP86 16S
CGATGCGTAGCCGACCTGAGAGGGTGATCGGCCAC



rRNA
ACTGGGACTGAGACACGGCCCAGACTCCTACGGGA




GGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAG




TCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTT




TTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACA




AGTGCCGTTCAAATAGGGCGGCACCTTGACGGTAC




CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGG




AATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCT




TAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGG




AGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA




GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATG




CGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG




ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAA




GCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG




TCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGG




GGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTA




AGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGA




AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG




TGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCTCTGACAATCCTA




GAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGA




TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTG




ATCTTAGTTGCCAGCATTCAGTTGGGTGTTCTTTG




AAAACT





79
DP87 16S
TTTGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAACGAACTC




TGGTATTGATTGGTGCTTGCATCATGATTTACATT




TGAGTGAGTGGCGAACTGGTGAGTAACACGTGGGA




AACCTGCCCAGAAGCGGGGGATAACACCTGGAAAC




AGATGCTAATACCGCATAACAACTTGGACCGCATG




GTCCGAGCTTGAAAGATGGCTTCGGCTATCACTTT




TGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGG




GTAACGGCTCACCATGGCAATGATACGTAGCCGAC




CTGAGAGGGTAATCGGCCACATTGGGACTGAGACA




CGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAA




TCTTCCACAATGGACGAAAGTCTGATGGAGCAACG




CCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAAC




TCTGTTGTTAAAGAAGAACATATCTGAGAGTAACT




GTTCAGGTATTGACGGTATTTAACCAGAAAGCCAC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAA




GCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAA




GCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACT




GGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTC




CATGTGTAGCGGTGAAATGCGTAGATATATGGAAG




AACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAA




CTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACA




GGATTAGATACCCTGGTAGTCCATACCGTAAACGA




TGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAG




TGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGG




AGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA




ATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTG




ACATACTATGCAAATCTAAGAGATTAGACGTTCCC




TTCGGGGACATGGATACAGGTGGTGCATGGTTGTC




GTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATTATCAGTTGCCAGCA




TTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACA




AACCGGAGGAAGGTGGGGATGACGTCAAATCATCA




TGCCCCTTATGACCTGGGCTACACACGTGCTACAA




TGGATGGTACAACGAGTTGCGAACTCGCGAGAGTA




AGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTG




TAGGCTGCAACTCGCCTACATGAAGTCGGAATCGC




TAGTAATCGCGGATCAGCATGCCGCGGTGAATACG




TTCCCGGGCCTTGTACACACCGCCCGTCACACCAT




GAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACC




TTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGA




TTAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGA




ACCTGCGGCTGGATCACCTCCTT





80
DP88 16S
TAGTGGGTTTGATCCTGGCTCAGGACGAACGCTGG



rRNA
CGGCGTGCCTAATACATGCAAGTCGAGCGGACAGA




TGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGG




TGAGTAACACGTGGGTAACCTGCCTGTAAGACTGG




GATAACTCCGGGAAACCGGGGCTAATACCGGATGG




TTGTCTGAACCGCATGGTTCAGACATAAAAGGTGG




CTTCGGCTACCACTTACAGATGGACCCGCGGCGCA




TTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCG




ACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCA




CACTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAA




GTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGT




TTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAAC




AAGTGCCGTTCAAATAGGGCGGCACCTTGACGGTA




CCTAACCAGAAAGCCACGGCTAACTACGTGCCAGC




AGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCG




GAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTC




TTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGG




GAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGA




AGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAAT




GCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGC




GACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAA




AGCGTGGGGAGCGAACAGGATTAGATACCCTGGTA




GTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGG




GGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATT




AAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTG




AAACTCAAAGGAATTGACGGGGGCCCGCACAAGCG




GTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAG




AACCTTACCAGGTCTTGACATCCTCTGACAATCCT




AGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACA




GGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAG




ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTT




GATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAA




GGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGG




ATGACGTCAAATCATCATGCCCCTTATGACCTGGG




CTACACACGTGCTACAATGGACAGAACAAAGGGCA




GCGAAACCGCGAGGTTAAGCCAATCCCACAAATCT




GTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTG




CGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGC




ATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC




ACCGCCCGTCACACCACGAGAGTTTGTAACACCCG




AAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCC




GAAGGTGGGACAGATGATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACC




TCCTTT





81
DP89 16S
GTAACGGCTCACCAAGGCAACGATGCGTAGCCGAC



rRNA
CTGAGAGGGTGATCGGCCACACTGGGACTGAGACA




CGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAA




TCTTCCGCAATGGACGAAAGTCTGACGGAGCAACG




CCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGC




TCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATA




GGGCGGTACCTTGACGGTACCTAACCAGAAAGCCA




CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT




AGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAA




AGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAA




AGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAAC




TGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATT




CCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAG




GAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTA




ACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAAC




AGGATTAGATACCCTGGTAGTCCACGCCGTAAACG




ATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTA




GTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGG




GAGTACGGTCGCAAGACTGAAACTCAAAGGAATTG




ACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTT




AATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT




GACATCCTCTGACAATCCTAGAGATAGGACGTCCC




CTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGT




CGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCC




CGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGC




ATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGAC




AAACCGGAGGAAGGTGGGGATGACGTCAAATCATC




ATGCCCCTTATGACCTGGGCTACACACGTGCTACA




ATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTT




AAGCCAATCCCACAAATCTGTTCTCAGTTCGGATC




GCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCG




CTAGTAATCGCGGATCAGCATGCCGCGGTGAATAC




GTTCCCGGGCCTTGTACACACCGCCCGTCACACCA




CGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAAC




CTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATG




ATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGG




AAGGTGCGGCTGGATCACCTCCTTT





82
DP90 16S
TTTGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAACGAACTC




TGGTATTGATTGGTGCTTGCATCATGATTTACATT




TGAGTGAGTGGCGAACTGGTGAGTAACACGTGGGA




AACCTGCCCAGAAGCGGGGGATAACACCTGGAAAC




AGATGCTAATACCGCATAACAACTTGGACCGCATG




GTCCGAGCTTGAAAGATGGCTTCGGCTATCACTTT




TGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGG




GTAACGGCTCACCATGGCAATGATACGTAGCCGAC




CTGAGAGGGTAATCGGCCACATTGGGACTGAGACA




CGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAA




TCTTCCACAATGGACGAAAGTCTGATGGAGCAACG




CCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAAC




TCTGTTGTTAAAGAAGAACATATCTGAGAGTAACT




GTTCAGGTATTGACGGTATTTAACCAGAAAGCCAC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAA




GCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAA




GCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACT




GGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTC




CATGTGTAGCGGTGAAATGCGTAGATATATGGAAG




AACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAA




CTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACA




GGATTAGATACCCTGGTAGTCCATACCGTAAACGA




TGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAG




TGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGG




AGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA




ATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTG




ACATACTATGCAAATCTAAGAGATTAGACGTTCCC




TTCGGGGACATGGATACAGGTGGTGCATGGTTGTC




GTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATTATCAGTTGCCAGCA




TTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACA




AACCGGAGGAAGGTGGGGATGACGTCAAATCATCA




TGCCCCTTATGACCTGGGCTACACACGTGCTACAA




TGGATGGTACAACGAGTTGCGAACTCGCGAGAGTA




AGCTAATCTCTTAAAGCCATTCTCAGTTCGGATTG




TAGGCTGCAACTCGCCTACATGAAGTCGGAATCGC




TAGTAATCGCGGATCAGCATGCCGCGGTGAATACG




TTCCCGGGCCTTGTACACACCGCCCGTCACACCAT




GAGAGTTTGTAACACCCAAAGTCGGTGGGGTAACC




TTTTAGGAACCAGCCGCCTAAGGTGGGACAGATGA




TTAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGA




ACCTGCGGCTGGATCACCTCCTT





83
DP92 16S
CGATGCGTAGCCGACCTGAGAGGGTGATCGGCCAC



rRNA
ACTGGGACTGAGACACGGCCCAGACTCCTACGGGA




GGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAG




TCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTT




TTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACA




AGTACCGTTCGAATAGGGCGGTACCTTGACGGTAC




CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGG




AATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCT




TAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGG




AGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAA




GAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATG




CGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCG




ACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAA




GCGTGGGGAGCGAACAGGATTAGATACCCTGGTAG




TCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGG




GGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTA




AGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGA




AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGG




TGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCTCTGACAATCCTA




GAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGA




TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTG




ATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAG




GTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGA




TGACGTCAAATCATCATGCCCCTTATGACCTGGGC




TACACACGTGCTACAATGGACAGAACAAAGGGCAG




CGAAACCGCGAGGTTAAGCCAATCCCACAAATCTG




TTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGC




GTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCA




TGCCGCGGTGAATACGTTCCCGGGCCTTGTACACA




CCGCCCGTCACACCACGAGAGTTTGTAACACCCGA




AGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCG




AAGGTGGGACAGATGATTGGGGTGAAGTCGTAACA




AGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCT




CCTTT





84
DP93 16S
ATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAACGCACAG




CGAAAGGTGCTTGCACCTTTCAAGTGAGTGGCGAA




CGGGTGAGTAACACGTGGACAACCTGCCTCAAGGC




TGGGGATAACATTTGGAAACAGATGCTAATACCGA




ATAAAACTTAGTGTCGCATGACAAAAAGTTAAAAG




GCGCTTCGGCGTCACCTAGAGATGGATCCGCGGTG




CATTAGTTAGTTGGTGGGGTAAAGGCCTACCAAGA




CAATGATGCATAGCCGAGTTGAGAGACTGATCGGC




CACATTGGGACTGAGACACGGCCCAAACTCCTACG




GGAGGCTGCAGTAGGGAATCTTCCACAATGGGCGA




AAGCCTGATGGAGCAACGCCGCGTGTGTGATGAAG




GCTTTCGGGTCGTAAAGCACTGTTGTATGGGAAGA




ACAGCTAGAATAGGAAATGATTTTAGTTTGACGGT




ACCATACCAGAAAGGGACGGCTAAATACGTGCCAG




CAGCCGCGGTAATACGTATGTCCCGAGCGTTATCC




GGATTTATTGGGCGTAAAGCGAGCGCAGACGGTTT




ATTAAGTCTGATGTGAAAGCCCGGAGCTCAACTCC




GGAATGGCATTGGAAACTGGTTAACTTGAGTGCAG




TAGAGGTAAGTGGAACTCCATGTGTAGCGGTGGAA




TGCGTAGATATATGGAAGAACACCAGTGGCGAAGG




CGGCTTACTGGACTGCAACTGACGTTGAGGCTCGA




AAGTGTGGGTAGCAAACAGGATTAGATACCCTGGT




AGTCCACACCGTAAACGATGAACACTAGGTGTTAG




GAGGTTTCCGCCTCTTAGTGCCGAAGCTAACGCAT




TAAGTGTTCCGCCTGGGGAGTACGACCGCAAGGTT




GAAACTCAAAGGAATTGACGGGGACCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATCCTTTGAAGCTTT




TAGAGATAGAAGTGTTCTCTTCGGAGACAAAGTGA




CAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTG




AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC




TTATTGTTAGTTGCCAGCATTCAGATGGGCACTCT




AGCGAGACTGCCGGTGACAAACCGGAGGAAGGCGG




GGACGACGTCAGATCATCATGCCCCTTATGACCTG




GGCTACACACGTGCTACAATGGCGTATACAACGAG




TTGCCAACCCGCGAGGGTGAGCTAATCTCTTAAAG




TACGTCTCAGTTCGGATTGTAGTCTGCAACTCGAC




TACATGAAGTCGGAATCGCTAGTAATCGCGGATCA




GCACGCCGCGGTGAATACGTTCCCGGGTCTTGTAC




ACACCGCCCGTCACACCATGGGAGTTTGTAATGCC




CAAAGCCGGTGGCCTAACCTTTTAGGAAGGAGCCG




TCTAAGGCAGGACAGATGACTGGGGTGAAGTCGTA




ACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCA




CCTCCTTT





85
DP94 16S
ATCTGCCCAGAAGCAGGGGATAACACTTGGAAACA



rRNA
GGTGCTAATACCGTATAACAACAAAATCCGCATGG




ATTTTGTTTGAAAGGTGGCTTCGGCTATCACTTCT




GGATGATCCCGCGGCGTATTAGTTAGTTGGTGAGG




TAAAGGCCCACCAAGACGATGATACGTAGCCGACC




TGAGAGGGTAATCGGCCACATTGGGACTGAGACAC




GGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAAT




CTTCCACAATGGACGAAAGTCTGATGGAGCAATGC




CGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAACT




CTGTTGTTAAAGAAGAACACCTTTGAGAGTAACTG




TTCAAGGGTTGACGGTATTTAACCAGAAAGCCACG




GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG




GTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAG




CGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAG




CCTTCGGCTTAACCGGAGAAGTGCATCGGAAACTG




GGAGACTTGAGTGCAGAAGAGGACAGTGGAACTCC




ATGTGTAGCGGTGGAATGCGTAGATATATGGAAGA




ACACCAGTGGCGAAGGCGGCTGTCTAGTCTGTAAC




TGACGCTGAGGCTCGAAAGCATGGGTAGCGAACAG




GATTAGATACCCTGGTAGTCCATGCCGTAAACGAT




GAGTGCTAAGTGTTGGAGGGTTTCCGCCCTTCAGT




GCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGA




GTACGACCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAA




TTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGA




CATCTTCTGCCAATCTTAGAGATAAGACGTTCCCT




TCGGGGACAGAATGACAGGTGGTGCATGGTTGTCG




TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATTATCAGTTGCCAGCAT




TCAGTTGGGCACTCTGGTGAGACTGCCGGTGACAA




ACCGGAGGAAGGTGGGGATGACGTCAAATCATCAT




GCCCCTTATGACCTGGGCTACACACGTGCTACAAT




GGACGGTACAACGAGTTGCGAAGTCGTGAGGCTAA




GCTAATCTCTTAAAGCCGTTCTCAGTTCGGATTGT




AGGCTGCAACTCGCCTACATGAAGTTGGAATCGCT




AGTAATCGCGGATCAGCATGCCGCGGTGAATACGT




TCCCGGGCCTTGTACACACCGCCCGTCACACCATG




AGAGTTTGTAACACCCAAAGCCGGTGAGATAACCT




TCGGGAGTCAGCCGTCTAAGGTGGGACAGATGATT




AGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAAC




CTGCGGCTGGATCACCTCCTT





86
DP95 16S
TGCTAATACCGCATAGATCCAAGAACCGCATGGTT



rRNA
CTTGGCTGAAAGATGGCGTAAGCTATCGCTTTTGG




ATGGACCCGCGGCGTATTAGCTAGTTGGTGAGGTA




ATGGCTCACCAAGGCGATGATACGTAGCCGAACTG




AGAGGTTGATCGGCCACATTGGGACTGAGACACGG




CCCAAACTCCTACGGGAGGCAGCAGTAGGGAATCT




TCCACAATGGACGCAAGTCTGATGGAGCAACGCCG




CGTGAGTGAAGAAGGCTTTCGGGTCGTAAAACTCT




GTTGTTGGAGAAGAATGGTCGGCAGAGTAACTGTT




GTCGGCGTGACGGTATCCAACCAGAAAGCCACGGC




TAACTACGTGCCAGCAGCCGCGGTAATACGTAGGT




GGCAAGCGTTATCCGGATTTATTGGGCGTAAAGCG




AGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCC




CTCGGCTTAACCGAGGAAGCGCATCGGAAACTGGG




AAACTTGAGTGCAGAAGAGGACAGTGGAACTCCAT




GTGTAGCGGTGAAATGCGTAGATATATGGAAGAAC




ACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTG




ACGCTGAGGCTCGAAAGCATGGGTAGCGAACAGGA




TTAGATACCCTGGTAGTCCATGCCGTAAACGATGA




ATGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGC




CGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGT




ACGACCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATT




CGAAGCAACGCGAAGAACCTTACCAGGTCTTGACA




TCTTTTGATCACCTGAGAGATCAGGTTTCCCCTTC




GGGGGCAAAATGACAGGTGGTGCATGGTTGTCGTC




AGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA




ACGAGCGCAACCCTTATGACTAGTTGCCAGCATTT




AGTTGGGCACTCTAGTAAGACTGCCGGTGACAAAC




CGGAGGAAGGTGGGGATGACGTCAAATCATCATGC




CCCTTATGACCTGGGCTACACACGTGCTACAATGG




ATGGTACAACGAGTTGCGAGACCGCGAGGTCAAGC




TAATCTCTTAAAGCCATTCTCAGTTCGGACTGTAG




GCTGCAACTCGCCTACACGAAGTCGGAATCGCTAG




TAATCGCGGATCAGCACGCCGCGGTGAATACGTTC




CCGGGCCTTGTACACACCGCCCGTCACACCATGAG




AGTTTGTAACACCCGAAGCCGGTGGCGTAACCCTT




TTAGGGAGCGAGCCGTCTAAGGTGGGACAAATGAT




TAGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAA




CCTGCGGCTGGATCACCTCCTTT





87
DP96 16S
ACACGGCCCAAACTCCTACGGGAGGCAGCAGTAGG



rRNA
GAATCTTCCACAATGGACGCAAGTCTGATGGAGCA




ACGCCGCGTGAGTGAAGAAGGCTTTCGGGTCGTAA




AACTCTGTTGTTGGAGAAGAATGGTCGGCAGAGTA




ACTGTTGTCGGCGTGACGGTATCCAACCAGAAAGC




CACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC




GTAGGTGGCAAGCGTTATCCGGATTTATTGGGCGT




AAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTG




AAAGCCCTCGGCTTAACCGAGGAAGCGCATCGGAA




ACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAA




CTCCATGTGTAGCGGTGAAATGCGTAGATATATGG




AAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTG




TAACTGACGCTGAGGCTCGAAAGCATGGGTAGCGA




ACAGGATTAGATACCCTGGTAGTCCATGCCGTAAA




CGATGAATGCTAGGTGTTGGAGGGTTTCCGCCCTT




CAGTGCCGCAGCTAACGCATTAAGCATTCCGCCTG




GGGAGTACGACCGCAAGGTTGAAACTCAAAGGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGTC




TTGACATCTTTTGATCACCTGAGAGATCAGGTTTC




CCCTTCGGGGGCAAAATGACAGGTGGTGCATGGTT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGCAACGAGCGCAACCCTTATGACTAGTTGCCA




GCATTTAGTTGGGCACTCTAGTAAGACTGCCGGTG




ACAAACCGGAGGAAGGTGGGGATGACGTCAAATCA




TCATGCCCCTTATGACCTGGGCTACACACGTGCTA




CAATGGATGGTACAACGAGTTGCGAGACCGCGAGG




TCAAGCTAATCTCTTAAAGCCATTCTCAGTTCGGA




CTGTAGGCTGCAACTCGCCTACACGAAGTCGGAAT




CGCTAGTAATCGCGGATCAGCACGCCGCGGTGAAT




ACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGAGAGTTTGTAACACCCGAAGCCGGTGGCGTA




ACCCTTTTAGGGAGCGAGCCGTCTAAGGTGGGACA




AATGATTAGGGTGAAGTCGTAACAAGGTAGCCGTA




GGAGAACCTGCGGCTGGATCACCTCCTTT





88
DP97 16S
AATGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGATGAT




TAAAGATAGCTTGCTATTTTTATGAAGAGCGGCGA




ACGGGTGAGTAACGCGTGGGAAATCTGCCGAGTAG




CGGGGGACAACGTTTGGAAACGAACGCTAATACCG




CATAACAATGAGAATCGCATGATTCTTATTTAAAA




GAAGCAATTGCTTCACTACTTGATGATCCCGCGTT




GTATTAGCTAGTTGGTAGTGTAAAGGACTACCAAG




GCGATGATACATAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGG




CAACCCTGACCGAGCAACGCCGCGTGAGTGAAGAA




GGTTTTCGGATCGTAAAACTCTGTTGTTAGAGAAG




AACGTTAAGTAGAGTGGAAAATTACTTAAGTGACG




GTATCTAACCAGAAAGGGACGGCTAACTACGTGCC




AGCAGCCGCGGTAATACGTAGGTCCCAAGCGTTGT




CCGGATTTATTGGGCGTAAAGCGAGCGCAGGTGGT




TTCTTAAGTCTGATGTAAAAGGCAGTGGCTCAACC




ATTGTGTGCATTGGAAACTGGGAGACTTGAGTGCA




GGAGAGGAGAGTGGAATTCCATGTGTAGCGGTGAA




ATGCGTAGATATATGGAGGAACACCGGAGGCGAAA




GCGGCTCTCTGGCCTGTAACTGACACTGAGGCTCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAGCTGTAG




GGAGCTATAAGTTCTCTGTAGCGCAGCTAACGCAT




TAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTT




GAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATACTCGTGATATCC




TTAGAGATAAGGAGTTCCTTCGGGACACGGGATAC




AGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT




TATTACTAGTTGCCATCATTAAGTTGGGCACTCTA




GTGAGACTGCCGGTGATAAACCGGAGGAAGGTGGG




GATGACGTCAAATCATCATGCCCCTTATGACCTGG




GCTACACACGTGCTACAATGGATGGTACAACGAGT




CGCCAACCCGCGAGGGTGCGCTAATCTCTTAAAAC




CATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCT




GCATGAAGTCGGAATCGCTAGTAATCGCGGATCAG




CACGCCGCGGTGAATACGTTCCCGGGCCTTGTACA




CACCGCCCGTCACACCACGGAAGTTGGGAGTACCC




AAAGTAGGTTGCCTAACCGCAAGGAGGGCGCTTCC




TAAGGTAAGACCGATGACTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACC




TCCTTT





89
DP98 16S
AATGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAGCGATGAT




TAAAGATAGCTTGCTATTTTTATGAAGAGCGGCGA




ACGGGTGAGTAACGCGTGGGAAATCTGCCGAGTAG




CGGGGGACAACGTTTGGAAACGAACGCTAATACCG




CATAACAATGAGAATCGCATGATTCTTATTTAAAA




GAAGCAATTGCTTCACTACTTGATGATCCCGCGTT




GTATTAGCTAGTTGGTAGTGTAAAGGACTACCAAG




GCGATGATACATAGCCGACCTGAGAGGGTGATCGG




CCACACTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTAGGGAATCTTCGGCAATGGGGG




CAACCCTGACCGAGCAACGCCGCGTGAGTGAAGAA




GGTTTTCGGATCGTAAAACTCTGTTGTTAGAGAAG




AACGTTAAGTAGAGTGGAAAATTACTTAAGTGACG




GTATCTAACCAGAAAGGGACGGCTAACTACGTGCC




AGCAGCCGCGGTAATACGTAGGTCCCAAGCGTTGT




CCGGATTTATTGGGCGTAAAGCGAGCGCAGGTGGT




TTCTTAAGTCTGATGTAAAAGGCAGTGGCTCAACC




ATTGTGTGCATTGGAAACTGGGAGACTTGAGTGCA




GGAGAGGAGAGTGGAATTCCATGTGTAGCGGTGAA




ATGCGTAGATATATGGAGGAACACCGGAGGCGAAA




GCGGCTCTCTGGCCTGTAACTGACACTGAGGCTCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCCGTAAACGATGAGTGCTAGCTGTAG




GGAGCTATAAGTTCTCTGTAGCGCAGCTAACGCAT




TAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTT




GAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATACTCGTGATATCC




TTAGAGATAAGGAGTTCCTTCGGGACACGGGATAC




AGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT




TATTACTAGTTGCCATCATTAAGTTGGGCACTCTA




GTGAGACTGCCGGTGATAAACCGGAGGAAGGTGGG




GATGACGTCAAATCATCATGCCCCTTATGACCTGG




GCTACACACGTGCTACAATGGATGGTACAACGAGT




CGCCAACCCGCGAGGGTGCGCTAATCTCTTAAAAC




CATTCTCAGTTCGGATTGCAGGCTGCAACTCGCCT




GCATGAAGTCGGAATCGCTAGTAATCGCGGATCAG




CACGCCGCGGTGAATACGTTCCCGGGCCTTGTACA




CACCGCCCGTCACACCACGGAAGTTGGGAGTACCC




AAAGTAGGTTGCCTAACCGCAAGGAGGGCGCTTCC




TAAGGTAAGACCGATGACTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACC




TCCTTT





90
DP100 16S
TTTGAGAGTTTGATCCTGGCTCAGGACGAACGCTG



rRNA
GCGGCGTGCCTAATACATGCAAGTCGAACGAACTC




TGGTATTGATTGGTGCTTGCATCATGATTTACATT




TGAGTGAGTGGCGAACTGGTGAGTAACACGTGGGA




AACCTGCCCAGAAGCGGGGGATAACACCTGGAAAC




AGATGCTAATACCGCATAACAACTTGGACCGCATG




GTCCGAGCTTGAAAGATGGCTTCGGCTATCACTTT




TGGATGGTCCCGCGGCGTATTAGCTAGATGGTGGG




GTAACGGCTCACCATGGCAATGATACGTAGCCGAC




CTGAGAGGGTAATCGGCCACATTGGGACTGAGACA




CGGCCCAAACTCCTACGGGAGGCAGCAGTAGGGAA




TCTTCCACAATGGACGAAAGTCTGATGGAGCAACG




CCGCGTGAGTGAAGAAGGGTTTCGGCTCGTAAAAC




TCTGTTGTTAAAGAAGAACATATCTGAGAGTAACT




GTTCAGGTATTGACGGTATTTAACCAGAAAGCCAC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAA




GCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAA




GCCTTCGGCTCAACCGAAGAAGTGCATCGGAAACT




GGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTC




CATGTGTAGCGGTGAAATGCGTAGATATATGGAAG




AACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAA




CTGACGCTGAGGCTCGAAAGTATGGGTAGCAAACA




GGATTAGATACCCTGGTAGTCCATACCGTAAACGA




TGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAG




TGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGG




AGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA




ATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTG




ACATACTATGCAAATCTAAGAGATTAGACGTTCCC




TTCGGGGACATGGATACAGGTGGTGCATGGTTGTC




GTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATTATCAGTTGCCAGCA




TTAAGTTGGGCACTCTGGTGAGACTGCCGGTGACA




AACCGGAGGAAGGTGGGGATGACGTCAAATCATCA




TGCCCCTTATGACCTGGGCTACACACGTGCTACAA




TGG





91
DP101 16S
ATGAGAGTTTGATCTTGGCTCAGGATGAACGCTGG



rRNA
CGGCGTGCCTAATACATGCAAGTCGAACGAACTTC




CGTTAATTGATTATGACGTACTTGTACTGATTGAG




ATTTTAACACGAAGTGAGTGGCGAACGGGTGAGTA




ACACGTGGGTAACCTGCCCAGAAGTAGGGGATAAC




ACCTGGAAACAGATGCTAATACCGTATAACAGAGA




AAACCGCATGGTTTTCTTTTAAAAGATGGCTCTGC




TATCACTTCTGGATGGACCCGCGGCGTATTAGCTA




GTTGGTGAGGCAAAGGCTCACCAAGGCAGTGATAC




GTAGCCGACCTGAGAGGGTAATCGGCCACATTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT




GGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGC




TCGTAAAGCTCTGTTGTTAAAGAAGAACGTGGGTA




AGAGTAACTGTTTACCCAGTGACGGTATTTAACCA




GAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG




TAATACGTAGGTGGCAAGCGTTATCCGGATTTATT




GGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCT




AATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA




TTGGAAACTGGGAGACTTGAGTGCAGAAGAGGACA




GTGGAACTCCATGTGTAGCGGTGAAATGCGTAGAT




ATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCT




GGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGG




TAGCGAACAGGATTAGATACCCTGGTAGTCCATGC




CGTAAACGATGATTACTAAGTGTTGGAGGGTTTCC




GCCCTTCAGTGCTGCAGCTAACGCATTAAGTAATC




CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAA




AAGAATTGACGGGGGCCCGCACAAGCGGTGGAGCA




TGTGGTTTAATTCGAAGCTACGCGAAGAACCTTAC




CAGGTCTTGACATCTTCTGACAGTCTAAGAGATTA




GAGGTTCCCTTCGGGGACAGAATGACAGGTGGTGC




ATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTATTACTAG




TTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTG




CCGGTGACAAACCGGAGGAAGGTGGGGACGACGTC




AAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTGCTACAATGGATGGTACAACGAGTCGCGAGACC




GCGAGGTTAAGCTAATCTCTTAAAACCATTCTCAG




TTCGGACTGTAGGCTGCAACTCGCCTACACGAAGT




CGGAATCGCTAGTAATCGCGGATCAGCATGCCGCG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGAGAGTTTGTAAC





92
DP102 ITS
TCCGTAGGTGAACCTGCGGAAGGATCATTACTGTG



sequence
ATTTAGTACTACACTGCGTGAGCGGAACGAAAACA




ACAACACCTAAAATGTGGAATATAGCATATAGTCG




ACAAGAGAAATCTACGAAAAACAAACAAAACTTTC




AACAACGGATCTCTTGGTTCTCGCATCGATGAAGA




GCGCAGCGAAATGCGATACCTAGTGTGAATTGCAG




CCATCGTGAATCATCGAGTTCTTGAACGCACATTG




CGCCCCTCGGCATTCCGGGGGGCATGCCTGTTTGA




GCGTCGTTTCCATCTTGCGCGTGCGCAGAGTTGGG




GGAGCGGAGCGGACGACGTGTAAAGAGCGTCGGAG




CTGCGACTCGCCTGAAAGGGAGCGAAGCTGGCCGA




GCGAACTAGACTTTTTTTCAGGGACGCTTGGCGGC




CGAGAGCGAGTGTTGCGAGACAACAAAAAGCTCGA




CCTCAAATCAGGTAGGAATACCCGCTGAACTTAAG




CATATCAATAAGCGGAGGAAAAGAAACCAACAGGG




ATTGCCTCAGTAGCGGCGAGTGAAGCGGCAAGAGC




TCAGATTTGAAATCGTGCTTTGCGGCACGAGTTGT




AGATTGCAGGTTGGAGTCTGTGTGGAAGGCGGTGT




CCAAGTCCCTTGGAACAGGGCGCCCAGGAGGGTGA




GAGCCCCGTGGGATGCCGGCGGAAGCAGTGAGGCC




CTTCTGACGAGTCGAGTTGTTTGGGAATGCAGCTC




CAAGCGGGTGGTAAATTCCATCTAAGGCTAAATAC




TGGCGAGAGACCGATAGCGAACAAGTACTGTGAAG




GAAAGATGAAAAGCACTTTGAAAAGAGAGTGAAAC




AGCACGTGAAATTGTTGAAAGGGAAGGGTATTGCG




CCCGACATGGGGATTGCGCACCGCTGCCTCTCGTG




GGCGGCGCTCTGGGCTTTCCCTGGGCCAGCATCGG




TTCTTGCTGCAGGAGAAGGGGTTCTGGAACGTGGC




TCTTCGGAGTGTTATAGCCAGGGCCAGATGCTGCG




TGCGGGGACCGAGGACTGCGGCCGTGTAGGTCACG




GATGCTGGCAGAACGGCGCAACACCGCCCGTCTTG




AAACATGGACCAAGGAGTCTAACGTCTATGCGAGT




GTTTGGGTGTGAAACCCGTACGCGTAATGAAAGTG




AACGTAGGTCGGACCCCCTGCCCTCGGGGAGGGGA




GCACGATCGACCGATCCCGATGTTTATCGGAAGGA




TTTGAGTAGGAGCATAGCTGTTGGGACCCGAAAGA




TGGTGAACTATGCCTGAATAGGGTGAAGCCAGAGG




AAACTCTGGTGGAGGCTCGTAGCGGTTCTGACGTG




CAAATCGATCGTCGAATTTGGGTATAGGGGCGAAA




GACTAATCGAACCATCTAGTAGCTGGTTCCTGCCG




AAGTTTCCCTCAGGA





93
DP67 16S
TCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTT



rRNA
AGCGGCGGACGGGTGAGTAACACGTGGGTAACCTG




CCTGTAAGACTGGGATAACTCCGGGAAACCGGGGC




TAATACCGGATGCTTGTTTGAACCGCATGGTTCAA




ACATAAAAGGTGGCTTCGGCTACCACTTACAGATG




GACCCGCGGCGCATTAGCTAGTTGGTGAGGTAATG




GCTCACCAAGGCAACGATGCGTAGCCGACCTGAGA




GGGTGATCGGCCACACTGGGACTGAGACACGGCCC




AGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCC




GCAATGGACGAAAGTCTGACGGAGCAACGCCGCGT




GAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTT




GTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGG




CACCTTGACGGTACCTAACCAGAAAGCCACGGCTA




ACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG




CAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCT




CGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCC




CGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGA




ACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGT




GTAGCGGTGAAATGCGTAGAGATGTGGAGGAACAC




CAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGAC




GCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATT




AGATACCCTGGTAGTCCACGCCGTAAACGATGAGT




GCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTG




CAGCTAACGCATTAAGCACTCCGCCTGGGGAGTAC




GGTCGCAAGACTGAAACTCAAAGGAATTGACGGGG




GCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG




AAGCAACGCGAAGAACCTTACCAGGTCTTGACATC




CTCTGACACCCTAGAGATAGGGCTTCCCTTCGGGG





94
DP68 16S
TGCAGTCGAGCGGACAGATGGGAGCTTGCTCCCTG



rRNA
ATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTA




ACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC




GGGGCTAATACCGGATGCTTGTTTGAACCGCATGG




TTCAAACATAAAAGGTGGCTTCGGCTACCACTTAC




AGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGG




TAATGGCTCACCAAGGCAACGATGCGTAGCCGACC




TGAGAGGGTGATCGGCCACACTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT




CTTCCGCAATGGACGAAAGTCTGACGGAGCAACGC




CGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCT




CTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAG




GGCGGCACCTTGACGGTACCTAACCAGAAAGCCAC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAA




GGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAA




GCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACT




GGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTC




CACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGG




AACACCAGTGGCGAA





95
DP69 16S
TGCAGTCGAGCGGACAGATGGGAGCTTGCTCCCTG



rRNA
ATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTA




ACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC




GGGGCTAATACCGGATGCTTGTTTGAACCGCATGG




TTCAAACATAAAAGGTGGCTTCGGCTACCACTTAC




AGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGG




TAATGGCTCACCAAGGCAACGATGCGTAGCCGACC




TGAGAGGGTGATCGGCCACACTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAAT




CTTCCGCAATGGACGAAAGTCTGACGGAGCAACGC




CGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCT




CTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAG




GGCGGCACCTTGACGGTACCTAACCAGAAAGCCAC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAA




GGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAA




GCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACT




GGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTC




CACGTGTAGCGGTG





96
DP70 16S
TGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCT



rRNA
GATGTTAGCGGCGGACGGGTGAGTAACACGTGGGT




AACCTGCCTGTAAGACTGGGATAACTCCGGGAAAC




CGGGGCTAATACCGGATGGTTGTTTGAACCGCATG




GTTCAAACATAAAAGGTGGCTTCGGCTACCACTTA




CAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAG




GTAACGGCTCACCAAGGCAACGATGCGTAGCCGAC




CTGAGAGGGTGATCGGCCACACTGGGACTGAGACA




CGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAA




TCTTCCGCAATGGACGAAAGTCTGACGGAGCAACG




CCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGC




TCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATA




GGGCGGTACCTTGACGGTACCTAACCAGAAAGCCA




CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT




AGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAA




AGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAA




AGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAAC




TGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATT




CCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAG




GAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTA




ACTGACGCTGANGAGCGAAAGCGTGGGGAGCGAAC




AGGATTAGATACCCTGGTAGTCCACGCCGTAAACG




ATGAGTGCTAAGTGTTA





97
DP21 18S
TTACTTGGAGTCCGAACTCTCACTTTTTAACCCTG



rRNA
TGCATCTGTTAATTGGAATAGTAGCTCTTCGGAGT




GAACCACCATTCACTTATAAAACACAAAGTCTATG




AATGTATACAAATTTATAACAAAACAAAACTTTCA




ACAACGGATCTCTTGGCTCTCGCATCGATGAAGAA




CGCAGCGAAATGCGATACGTAATGTGAATTGCAGA




ATTCAGTGAATCATCGAATCTTTGAACGCACCTTG




CGCTCCTTGGTATTCCGAGGAGCATGCCTGTTTGA




GTGTCATGAAATCTTCAACCCACCTCTTTCTTAGT




GAATCTGGTGGTGCTTGGTTTCTGAGCGCTGCTCT




GCTTCGGCTTAGCTCGTTCGTAATGCATTAGCATC




CGCAACCGAACTTCGGATTGACTTGGCGTAATAGA




CTATTCGCTGAGGATTCTAGTTTACTAGAGCCGAG




TTGGGTTAAAGGAAGCTCCTAATCCTAAAGTCTAT




TTTTTGATTAGATCTCAAATCAGGTAGGACTACCC




GCTGAACTTAAGCATATCAATAAGCGGAGGAAAAG




AAACTAACAAGGATTCCCCTAGTAGCGGCGAGCGA




AGCGGGAAGAGCTCAAATTTATAATCTGGCACCTT




CGGTGTCCGAGTTGTAATCTCTAGAAGTGTTTTCC




GCGTTGGACCGCACACAAGTCTGTTGGAATACAGC




GGCATAGTGGTGAAACCCCCGTATATGGTGCGGAC




GCCCAGCGCTTTGTGATACACTTTCAATGAGTCGA




GTTGTTTGGGAATGCAGCTCAAATTGGGTGGTAAA




TTCCATCTAAAGCTAAATATTGGCGAGAGACCGAT




AGCGAACAAGTACCGTGAGGGAAAGATGAAAAGCA




CTTTGGAAAGAGAGTTAACAGTACGTGAAATTGTT




GGAA





98
DP71 16S
GGGGGCATCAGTATTCAGTTGTCAGAGGTGAAATT



rRNA
CTTGGATTTACTGAAGACTAACTACTGCGAAAGCA




TTTGCCAAGGACGTTTTCATTAATCAAGAACGAAA




GTTAGGGGATCGAAGATGATCAGATACCGTCGTAG




TCTTAACCATAAACTATGCCGACTAGGGATCGGGT




GTTGTTCTTTTTTTGACGCACTCGGCACCTTACGA




GAAATCAAAGTCTTTGGGTTCTGGGGGGAGTATGG




TCGCAAGGCTGAAACTTAAAGGAATTGACGGAAGG




GCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGA




CTCAACACGGGGAAACTCACCAGGTCCAGACACAA




TAAGGATTGACAGATTGAGAGCTCTTTCTTGATTT




TGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTG




GAGTGATTTGTCTGCTTAATTGCGATAACGAACGA




GACCTTAACCTACTAAATAGTGCTGCTAGCTTTTG




CTGGTATAGTCACTTCTTAGAGGGACTATCGATTT




CAAGTCGATGGAAGTTTGAGGCAATAACAGGTCTG




TGATGCCCTTAGACGTTCTGGGCCGCACGCGCGCT




ACACTGACGGAGCCAGCGAGTTCTAACCTTGGCCG




AGAGGTCTGGGTAATCTTGTGAAACTCCGTCGTGC




TGGGGATAGAGCATTGTAATTATTGCTCTTCAACG




AGGAATTCCTAGTAAGCGCAAGTCATCAGCTTGCG




TTGATTACGTCCCTGCCCTTTGTACACACCGCCCG




TCGCTACTACCGATTGAATGGCTTAGTGAGGCTTC




CGGATTGGTTTAAAGAAGGGGGCAACTCCATCTTG




GAACCGAAAAGCTAGTCAAACTTGGTCATTTAGAG




GAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAA




CCTGCGGAAGGATCATT





99
DP99 16S
GATTTGAAGAGCTTGCTCAGATATGACGATGGACA



rRNA
TTGCAAAGAGTGGCGAACGGGTGAGTAACACGTGG




GAAACCTACCTCTTAGCAGGGGATAACATTTGGAA




ACAGATGCTAATACCGTATAACAATAGCAACCGCA




TGGTTGCTACTTAAAAGATGGTTCTGCTATCACTA




AGAGATGGTCCCGCGGTGCATTAGTTAGTTGGTGA




GGTAATGGCTCACCAAGACGATGATGCATAGCCGA




GTTGAGAGACTGATCGGCCACAATGGGACTGAGAC




ACGGCCCATACTCCTACGGGAGGCAGCAGTAGGGA




ATCTTCCACAATGGGCGAAAGCCTGATGGAGCAAC




GCCGCGTGTGTGATGAAGGGTTTCGGCTCGTAAAA




CACTGTTGTAAGAGAAGAATGACATTGAGAGTAAC




TGTTCAATGTGTGACGGTATCTTACCAGAAAGGAA




CGGCTAAATACGTGCCAGCAGCCGCGGTAATACGT




ATGTTCCAAGCGTTATCCGGATTTATTGGGCGTAA




AGCGAGCGCAGACGGTTATTTAAGTCTGAAGTGAA




AGCCCTCAGCTCAACTGAGGAATTGCTTTGGAAAC




TGGATGACTTGAGTGCAGTAGAGG





100
DP3
AACGCACAGCGAAAGGTGCTTGCACCTTTCAAGTG



Reisolate
AGTGGCGAACGGGTGAGTAACACGTGGACAACCTG



#1
CCTCAAGGCTGGGGATAACATTTGGAAACAGATGC




TAATACCGAATAAAACTTAGTGTCGCATGACAAAA




AGTTAAAAGGCGCTTCGGCGTCACCTAGAGATGGA




TCCGCGGTGCATTAGTTAGTTGGTGGGGTAAAGGC




CTACCAAGACAATGATGCATAGCCGAGTTGAGAGA




CTGATCGGCCACATTGGGACTGAGACACGGCCCAA




ACTCCTACGGGAGGCTGCAGTAGGGAATCTTCCAC




AATGGGCGAAAGCCTGATGGAGCAACGCCGCGTGT




GTGATGAAGGCTTTCGGGTCGTAAAGCACTGTTGT




ATGGGAAGAACAGCTAGAATAGGAAATGATTTTAG




TTTGACGGTACCATACCAGAAAGGGACGGCTAAAT




ACGTGCCAGCAGCCGCGGTAATACGTATGTCCCGA




GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGC




AGACGGTTTATTAAGTCTGATGTGAAAGCCCGGAG




CTCAACTCCGGAATGGCATTGGAAACTGGTTAACT




TGAGTGCAGTAGAGGTAAGTGGAACTCCATGTGTA




GCGGTGGAATGCGTAGATATATGGAAGAACACC





101
DP3
ATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTG



Reisolate
GCGGCGTGCCTAATACATGCAAGTCGAACGCACAG



#2
CGAAAGGTGCTTGCACCTTTCAAGTGAGTGGCGAA




CGGGTGAGTAACACGTGGACAACCTGCCTCAAGGC




TGGGGATAACATTTGGAAACAGATGCTAATACCGA




ATAAAACTCAGTGTCGCATGACACAAAGTTAAAAG




GCGCTTTGGCGTCACCTAGAGATGGATCCGCGGTG




CATTAGTTAGTTGGTGGGGTAAAGGCCTACCAAGA




CAATGATGCATAGCCGAGTTGAGAGACTGATCGGC




CACATTGGGACTGAGACACGGCCCAAACTCCTACG




GGAGGCTGCAGTAGGGAATCTTCCACAATGGGCGA




AAGCCTGATGGAGCAACGCCGCGTGTGTGATGAAG




GCTTTCGGGTCGTAAAGCACTGTTGTACGGGAAGA




ACAGCTAGAATAGGGAATGATTTTAGTTTGACGGT




ACCATACCAGAAAGGGACGGCTAAATACGTGCCAG




CAGCCGCGGTAATACGTATGTCCCGAGCGTTATCC




GGATTTATTGGGCGTAAAGCGAGCGCAGACGGTTG




ATTAAGTCTGATGTGAAAGCCCGGAGCTCAACTCC




GGAATGGCATTGGAAACTGGTTAACTTGAGTGCAG




TAGAGGTAAGTGGAACTCCATGTGTAGCGGTGGAA




TGCGTAGATATATGGAAGAACACCAGTGGCGAAGG




CGGCTTACTGGACTGTAACTGACGTTGAGGCTCGA




AAGTGTGGGTAGCAAACAGGATTAGATACCCTGGT




AGTCCACACCGTAAACGATGAACACTAGGTGTTAG




GAGGTTTCCGCCTCTTAGTGCCGAAGCTAACGCAT




TAAGTGTTCCGCCTGGGGAGTACGACCGCAAGGTT




GAAACTCAAAGGAATTGACGGGGACCCGCACAAGC




GGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATCCTTTGAAGCTTT




TAGAGATAGAAGTGTTCTCTTCGGAGACAAAGTGA




CAGGTGGTGCATGGTCGTCGTCAGCTCGTGTCGTG




AGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCC




TTATTGTTAGTTGCCAGCATTCAGATGGGCACTCT




AGCGAGACTGCCGGTGACAAACCGGAGGAAGGCGG




GGACGACGTCAGATCATCATGCCCCTTATGACCTG




GGCTACACACGTGCTACAATGGCGTATACAACGAG




TTGCCAACCCGCGAGGGTGAGCTAATCTCTTAAAG




TACGTCTCAGTTCGGATTGTAGTCTGCAACTCGAC




TACATGAAGTCGGAATCGCTAGTAATCGCGGATCA




GCACGCCGCGGTGAATACGTTCCCGGGTCTTGTAC




ACACCGCCCGTCACACCATGGGAGTTTGTAATGCC




CAAAGCCGGTGGCCTAACCTTTTAGGAAGGAGCCG




TCTAAGGCAGGACAGATGACTGGGGTGAAGTCGTA




ACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCA




CCTCCTTT





102
DP3
GCAGTCGAACGCACAGCGAAAGGTGCTTGCACCTT



Reisolate
TCAAGTGAGTGGCGAACGGGTGAGTAACACGTGGA



#3
CAACCTGCCTCAAGGCTGGGGATAACATTTGGAAA




CAGATGCTAATACCGAATAAAACTCAGTGTCGCAT




GACACAAAGTTAAAAGGCGCTTTGGCGTCACCTAG




AGATGGATCCGCGGTGCATTAGTTAGTTGGTGGGG




TAAAGGCCTACCAAGACAATGATGCATAGCCGAGT




TGAGAGACTGATCGGCCACATTGGGACTGAGACAC




GGCCCAAACTCCTACGGGAGGCTGCAGTAGGGAAT




CTTCCACAATGGGCGAAAGCCTGATGGAGCAACGC




CGCGTGTGTGATGAAGGCTTTCGGGTCGTAAAGCA




CTGTTGTACGGGAAGAACAGCTAGAATAGGGAATG




ATTTTAGTTTGACGGTACCATACCAGAAAGGGACG




GCTAAATACGTGCCAGCAGCCGCGGTAATACGTAT




GTCCCGAGCGTTATCCGGATTTATTGGGCGTAAAG




CGAGCGCAGACGGTTGATTAAGTCTGATGTGAAAG




CCCGGAGCTCAACTCCGGAATGGCATTGGAAACTG




GTTAACTTGAGTGCAGTAGAGGTAAGTGGAACTCC




ATGTGTAGCGGTGGAATGCG





103
DP3
GTCGAACGCACAGCGAAAGGTGCTTGCACCTTTCA



Reisolate
AGTGAGTGGCGAACGGGTGAGTAACACGTGGACAA



#4
CCTGCCTCAAGGCTGGGGATAACATTTGGAAACAG




ATGCTAATACCGAATAAAACTCAGTGTCGCATGAC




ACAAAGTTAAAAGGCGCTTTGGCGTCACCTAGAGA




TGGATCCGCGGTGCATTAGTTAGTTGGTGGGGTAA




AGGCCTACCAAGACAATGATGCATAGCCGAGTTGA




GAGACTGATCGGCCACATTGGGACTGAGACACGGC




CCAAACTCCTACGGGAGGCTGCAGTAGGGAATCTT




CCACAATGGGCGAAAGCCTGATGGAGCAACGCCGC




GTGTGTGATGAAGGCTTTCGGGTCGTAAAGCACTG




TTGTACGGGAAGAACAGCTAGAATAGGGAATGATT




TTAGTTTGACGGTACCATACCAGAAAGGGACGGCT




AAATACGTGCCAGCAGCCGCGGTAATACGTATGTC




CCGAGCGTTATCCGGATTTATTGGGCGTAAAGCGA




GCGCAGACGGTTGATTAAGTCTGATGTGAAAGCCC




GGAGCTCAACTCCGGAATGGCATTGGAAACTGGTT




AACTTGAGTGCAGTAGAGGTAAGTGGAACTCCATG




TGTAGCGGTGGAATGCGTAGATATATGGAAGAACA




CCAGTGGCGAAGGCGGCTTACTGGACTGTAAC





104
DP9
ATGAGAGTTTGATCTTGGCTCAGGATGAACGCTGG



Reisolate
CGGCGTGCCTAATACATGCAAGTCGAACGAACTTC



#1
CGTTAATTGATTATGACGTACTTGTACTGATTGAG




ATTTTAACACGAAGTGAGTGGCGAACGGGTGAGTA




ACACGTGGGTAACCTGCCCAGAAGTAGGGGATAAC




ACCTGGAAACAGATGCTAATACCGTATAACAGAGA




AAACCGCATGGTTTTCTTTTAAAAGATGGCTCTGC




TATCACTTCTGGATGGACCCGCGGCGTATTAGCTA




GTTGGTGAGGCAAAGGCTCACCAAGGCAGTGATAC




GTAGCCGACCTGAGAGGGTAATCGGCCACATTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGC




AGTAGGGAATCTTCCACAATGGACGCAAGTCTGAT




GGAGCAACGCCGCGTGAGTGAAGAAGGGTTTCGGC




TCGTAAAGCTCTGTTGTTAAAGAAGAACGTGGGTA




AGAGTAACTGTTTACCCAGTGACGGTATTTAACCA




GAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGG




TAATACGTAGGTGGCAAGCGTTATCCGGATTTATT




GGGCGTAAAGCGAGCGCAGGCGGTCTTTTAAGTCT




AATGTGAAAGCCTTCGGCTCAACCGAAGAAGTGCA




TTGGAAACTGGGAGACTTGAGTGCAGAAGAGGACA




GTGGAACTCCATGTGTAGCGGTGAAATGCGTAGAT




ATATGGAAGAACACCAGTGGCGAAGGCGGCTGTCT




GGTCTGCAACTGACGCTGAGGCTCGAAAGCATGGG




TAGCGAACAGGATTAGATACCCTGGTAGTCCATGC




CGTAAACGATGATTACTAAGTGTTGGAGGGTTTCC




GCCCTTCAGTGCTGCAGCTAACGCATTAAGTAATC




CGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAA




AAGAATTGACGGGGGCCCGCACAAGCGGTGGAGCA




TGTGGTTTAATTCGAAGCTACGCGAAGAACCTTAC




CAGGTCTTGACATCTTCTGACAGTCTAAGAGATTA




GAGGTTCCCTTCGGGGACAGAATGACAGGTGGTGC




ATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTATTACTAG




TTGCCAGCATTAAGTTGGGCACTCTAGTGAGACTG




CCGGTGACAAACCGGAGGAAGGTGGGGACGACGTC




AAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTGCTACAATGGATGGTACAACGAGTCGCGAGACC




GCGAGGTTAAGCTAATCTCTTAAAACCATTCTCAG




TTCGGACTGTAGGCTGCAACTCGCCTACACGAAGT




CGGAATCGCTAGTAATCGCGGATCAGCATGCCGCG




GTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGAGAGTTTGTAAC





105
DP9
TGCAGTCGAACGAACTTCCGTTAATTGATTATGAC



Reisolate
GTACTTGTACTGATTGAGATTTTAACACGAAGTGA



#2
GTGGCGAACGGGTGAGTAACACGTGGGTAACCTGC




CCAGAAGTAGGGGATAACACCTGGAAACAGATGCT




AATACCGTATAACAGAGAAAACCGCATGGTTTTCT




TTTAAAAGATGGCTCTGCTATCACTTCTGGATGGA




CCCGCGGCGTATTAGCTAGTTGGTGAGGCAAAGGC




TCACCAAGGCAGTGATACGTAGCCGACCTGAGAGG




GTAATCGGCCACATTGGGACTGAGACACGGCCCAG




ACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCAC




AATGGACGCAAGTCTGATGGAGCAACGCCGCGTGA




GTGAAGAAGGGTTTCGGCTCGTAAAGCTCTGTTGT




TAAAGAAGAACGTGGGTAAGAGTAACTGTTTACCC




AGTGACGGTATTTAACCAGAAAGCCACGGCTAACT




ACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAA




GCGTTATCCGGATTTATTGGGCGTAAAGCGAGCGC




AGGCGGTCTTTTAAGTCTAATGTGAAAGCCTTCGG




CTCAACCGAAGAAGTGCATTGGAAACTGGGAGACT




TGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTA




GCGGTGAAATGCGTAGATATATGGAAGAACACCAG




TGGCGAAGGCGGCTGTCTGGTCTGCAACTGACGCT




GAGGCT





106
DP9
AGTCGAACGAACTTCCGTTAATTGATTATGACGTA



Reisolate
CTTGTACTGATTGAGATTTTAACACGAAGTGAGTG



#3
GCGAACGGGTGAGTAACACGTGGGTAACCTGCCCA




GAAGTAGGGGATAACACCTGGAAACAGATGCTAAT




ACCGTATAACAGAGAAAACCGCATGGTTTTCTTTT




AAAAGATGGCTCTGCTATCACTTCTGGATGGACCC




GCGGCGTATTAGCTAGTTGGTGAGGCAAAGGCTCA




CCAAGGCAGTGATACGTAGCCGACCTGAGAGGGTA




ATCGGCCACATTGGGACTGAGACACGGCCCAGACT




CCTACGGGAGGCAGCAGTAGGGAATCTTCCACAAT




GGACGCAAGTCTGATGGAGCAACGCCGCGTGAGTG




AAGAAGGGTTTCGGCTCGTAAAGCTCTGTTGTTAA




AGAAGAACGTGGGTAAGAGTAACTGTTTACCCAGT




GACGGTATTTAACCAGAAAGCCACGGCTAACTACG




TGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCG




TTATCCGGATTTATTGGGCGTAAAGCGAGCGCAGG




CGGTCTTTTAAGTCTAATGTGAAAGCCTTCGGCTC




AACCGAAGAAGTGCATTGGAAACTGGGAGACTTGA




GTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCG




GTGAAATGCGTAGATATATGGAAGAACACCAGTGG




CGAAG





107
DP9
TCGAACGAACTTCCGTTAATTGATTATGACGTACT



Reisolate
TGTACTGATTGAGATTTTAACACGAAGTGAGTGGC



#4
GAACGGGTGAGTAACACGTGGGTAACCTGCCCAGA




AGTAGGGGATAACACCTGGAAACAGATGCTAATAC




CGTATAACAGAGAAAACCGCATGGTTTTCTTTTAA




AAGATGGCTCTGCTATCACTTCTGGATGGACCCGC




GGCGTATTAGCTAGTTGGTGAGGCAAAGGCTCACC




AAGGCAGTGATACGTAGCCGACCTGAGAGGGTAAT




CGGCCACATTGGGACTGAGACACGGCCCAGACTCC




TACGGGAGGCAGCAGTAGGGAATCTTCCACAATGG




ACGCAAGTCTGATGGAGCAACGCCGCGTGAGTGAA




GAAGGGTTTCGGCTCGTAAAGCTCTGTTGTTAAAG




AAGAACGTGGGTAAGAGTAACTGTTTACCCAGTGA




CGGTATTTAACCAGAAAGCCACGGCTAACTACGTG




CCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTT




ATCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCG




GTCTTTTAAGTCTAATGTGAAAGCCTTCGGCTCAA




CCGAAGAAGTGCATTGGAAACTGGGAGACTTGAGT




GCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGT




GAAATGCG





108
DP9
TGCAGTCGAACGCATTTCCGTTAAAAGAATCAGAA



Reisolate
GTGCTTGCACGGAAGATGATTTTAACAATGAAATG



#5
AGTGGCGAACGGGTGAGTAACACGTGGGTAACCTG




CCCAGAAGAGGGGGATAACACTTGGAAACAGGTGC




TAATACCGCATAATAAAGAAAACCGCATGGTTTTC




CTTTAAAAGATGGTTTCGGCTATCACTTCTGGATG




GACCCGCGGCGTATTAGCTAGTTGGTAAGGTAAAG




GCTTACCAAGGCAGTGATACGTAGCCGACCTGAGA




GGGTAATCGGCCACATTGGGACTGAGACACGGCCC




AGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCC




ACAATGGACGAAAGTCTGATGGAGCAACGCCGCGT




GAGTGAAGAAGGGTTTCGGCTCGTAAAACTCTGTT




GTTAAAGAAGAACGTGGGTGAGAGTAACTGTTCAC




CCAGTGACGGTATTTAACCAGAAAGCCACGGCTAA




CTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC




AAGCGTTATCCGGATTTATTGGGCGTAAAGCGAGC




GCAGGCGGTCTTTTAAGTCTAATGTGAAAGCCTTC




GGCTCAACCGAAGAAGTGCATTGGAAACTGGGAGA




CTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTG




TAGCGGTGAAATGC





109
DP9
AGTCGAACGAACTCTGGTATTGATTGGTGCTTGCA



Reisolate
TCATGATTTACATTTGAGTGAGTGGCGAACTGGTG



#6
AGTAACACGTGGGAAACCTGCCCAGAAGCGGGGGA




TAACACCTGGAAACAGATGCTAATACCGCATAACA




ACTTGGACCGCATGGTCCGAGTTTGAAAGATGGCT




TCGGCTATCACTTTTGGATGGTCCCGCGGCGTATT




AGCTAGATGGTGGGGTAACGGCTCACCATGGCAAT




GATACGTAGCCGACCTGAGAGGGTAATCGGCCACA




TTGGGACTGAGACACGGCCCAAACTCCTACGGGAG




GCAGCAGTAGGGAATCTTCCACAATGGACGAAAGT




CTGATGGAGCAACGCCGCGTGAGTGAAGAAGGGTT




TCGGCTCGTAAAACTCTGTTGTTAAAGAAGAACAT




ATCTGAGAGTAACTGTTCAGGTATTGACGGTATTT




AACCAGAAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAT




TTATTGGGCGTAAAGCGAGCGCAGGCGGTTTTTTA




AGTCTGATGTGAAAGCCTTCGGCTCAACCGAAGAA




GTGCATCGGAAACTGGGAAACTTGAGTGCAGAAGA




GGACAGTGGAACTCCATGTGTAGCGGTG





110
DP53
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#1
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTA




ATACGTGATTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





111
DP53
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#2
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTATTAACCTA




ATACGTTAGTACTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACATAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





112
DP53
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#3
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTA




ATACGTGATTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATG





113
DP53
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#4
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCATTAACCTA




ATACGTTGGTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCCTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





114
DP53
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#5
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATACCTAGGAATCTGCCTGATAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCTACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGCAGTTACCTA




ATACGTGACTGTCTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGAATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATCCAA




AACTGGCAAGCTAGAGTATGGTAGAGGGTAGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACTACCTGGACT




GATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGGAGTCTTGAACTCT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCCAGAGATGGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTAATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGTGAATCAGAATGTCACGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGT





115
DP53
TGAATCAAGCAATTCGTGTGGGTGCTTGTGGAGTC



Reisolate
AGACTGATAGTCAACAAGATTATCAGCATCACAAG



#6
TTACTCCGCCGGACGGGTGAGTAATACCTAGGAAT




CTGCCTGATAGTGGGGGATAACGTTCGGAAACGGA




CGCTAATACCGCATACGTCCTACGGGAGAAAGCAG




GGGACCTTCGGGCCTTGCGCTATCAGATGAGCCTA




GGTCGGATTAGCTAGTTGGTGAGGTAATGGCTCAC




CAAGGCTACGATCCGTAACTGGTCTGAGAGGATGA




TCAGTCACACTGGAACTGAGACACGGTCCAGACTC




CTACGGGAGGCAGCAGTGGGGAATATTGGACAATG




GGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGA




AGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGG




GAGGAAGGGCATTAACCTAATACGTTAGTGTCTTG




ACGTTACCGACAGAATAAGCACCGGCTAACTCTGT




GCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGT




TAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGT




GGTTTGTTAAGTTGAATGTGAAATCCCCGGGCTCA




ACCTGGGAACTGCATCCAAAACTGGCAAGCTAGAG




TATGGTAGAGGGTAGTGGAATTTCCTGTGTAGCGG




TGAAATGCGTAGATATAGGAAGGAACACCAGTGGC




GAAGGCGACTACCTGGACTGATACTGACACTGAGG




TGCGAAAGCGTGGGGAGCAAACAGGATTAGATACC




CTGGTAGTCCACGCCGTAAACGATGTCAACTAGCC




GTTGGGAGTCTTGAACTCTTAGTGGCGCAGCTAAC




GCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAA




GGTTAAAACTCAAATGAATTGACGGGGGCCCGCAC




AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACG




CGAAGAACCTTACCAGGCCTTGACATCCAATGAAC




TTTCTAGAGATAGATTGGTGCCTTCGGGAACATTG




AGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTC




GTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAA




CCCTTGTCCTTAGTTACCAGCACGTAATGGTGGGC




ACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAA




GGTGGGGATGACGTCAAGTCATCATGGCCCTTACG




GCCTGGGCTACACACGTGCTACAATGGTCGGTACA




AAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCA




TAAAACCGATCGTAGTCCGGATCGCAGTCTGCAAC




TCGACTGCGTGAAGTCGGAATCGCTAGTAATCGTG




AATCAGAATGTCACGGTGAATACGTTCCCGGGCCT




TGTACACACCGCCCGTCACACCATGGGAGTGGGTT




GCACCAGAAGTAGCTAGTCTAACCTTCGGGAGGAC




GGTTACCACGGTGTGATTCATGACTGGGGTGAAGT




CGTAACAAGGTAGCCGTAGGGGAACCTGCGGCTGG




ATCACCTCCTT





116
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#1
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTTCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





117
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#2
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTTCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





118
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#3
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





119
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#4
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTG





120
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#5
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTTCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





121
DP1
TGAAGAGTTTGATCATGGCTCAGATTGAACGCTGG



Reisolate
CGGCAGGCCTAACACATGCAAGTCGAGCGGTAGAG



#6
AGAAGCTTGCTTCTCTTGAGAGCGGCGGACGGGTG




AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGAT




AACGTTCGGAAACGGACGCTAATACCGCATACGTC




CTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCG




CTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGG




TGAGGTAATGGCTCACCAAGGCGACGATCCGTAAC




TGGTCTGAGAGGATGATCAGTCACACTGGAACTGA




GACACGGTCCAGACTCCTACGGGAGGCAGCAGTGG




GGAATATTGGACAATGGGCGAAAGCCTGATCCAGC




CATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTA




AAGCACTTTAAGTTGGGAGGAAGGGTTGTAGATTA




ATACTCTGCAATTTTGACGTTACCGACAGAATAAG




CACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATA




CAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCG




TAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGT




GAAATCCCCGGGCTCAACCTGGGAACTGCATTCAA




AACTGACTGACTAGAGTATGGTAGAGGGTGGTGGA




ATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGG




AAGGAACACCAGTGGCGAAGGCGACCACCTGGACT




AATACTGACACTGAGGTGCGAAAGCGTGGGGAGCA




AACAGGATTAGATACCCTGGTAGTCCACGCCGTAA




ACGATGTCAACTAGCCGTTGGAAGCCTTGAGCTTT




TAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTG




GGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT




TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT




TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCC




TTGACATCCAATGAACTTTCTAGAGATAGATTGGT




GCCTTCGGGAACATTGAGACAGGTGCTGCATGGCT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGTAACGAGCGCAACCCTTGTTCTTAGTTACCA




GCACGTTATGGTGGGCACTCTAAGGAGACTGCCGG




TGACAAACCGGAGGAAGGTGGGGATGACGTCAAGT




CATCATGGCCCTTACGGCCTGGGCTACACACGTGC




TACAATGGTCGGTACAGAGGGTTGCCAAGCCGCGA




GGTGGAGCTAATCCCATAAAACCGATCGTAGTCCG




GATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGA




ATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGTGGGTTGCACCAGAAGTAGCTAGTC




TAACCTTCGGGAGGACGGTTACCACGGTGTGATTC




ATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GGGAACCTGCGGCTGGATCACCTCCTT





122
DP22
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



Reisolate
GCGGCAGGCCTAACACATGCAAGTCGAGCGGCAGC



#1
GGGAAGTAGCTTGCTACTTTGCCGGCGAGCGGCGG




ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGA




GGGGGATAACTACTGGAAACGGTAGCTAATACCGC




ATGACCTCGCAAGAGCAAAGTGGGGGACCTTCGGG




CCTCACGCCATCGGATGTGCCCAGATGGGATTAGC




TAGTAGGTGAGGTAATGGCTCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAG




GGTTGTAAAGCACTTTCAGCGAGGAGGAAGGGTTC




AGTGTTAATAGCACTGTGCATTGACGTTACTCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGT




CAGATGTGAAATCCCCGAGCTTAACTTGGGAACTG




CATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC




CTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCTGTAAACGATGTCGACTTGGAGGTTGTGCCCTT




GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGA




CCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA




AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGC




ATGTGGTTTAATTCGATGCAACGCGAAGAACCTTA




CCTACTCTTGACATCCAGAGAATTCGCTAGAGATA




GCTTAGTGCCTTCGGGAACTCTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTT




GTTGCCAGCACGTAATGGTGGGAACTCAAAGGAGA




CTGCCGGTGATAAACCGGAGGAAGGTGGGGATGAC




GTCAAGTCATCATGGCCCTTACGAGTAGGGCTACA




CACGTGCTACAATGGCATATACAAAGAGAAGCGAA




CTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCG




TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGA




AGTCGGAATCGCTAGTAATCGTAGATCAGAATGCT




ACGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTA




GGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTT




GTGATTCATGACTGGGGTGAAGTCGTAACAAGGTA




ACCGTAGGGGAACCTGCGGTTGGATCACCTCCTT





123
DP22
TGACGAGCGGCGGACGGGTGAGTAATGTCTGGGAA



Reisolate
ACTGCCTGATGGAGGGGGATAACTACTGGAAACGG



#2
TAGCTAATACCGCATGACGTCGCAAGACCAAAGTG




GGGGACCTTCGGGCCTCACGCCATCGGATGTGCCC




AGATGGGATTAGCTAGTAGGTGAGGTAATGGCTCA




CCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATG




ACCAGCCACACTGGAACTGAGACACGGTCCAGACT




CCTACGGGAGGCAGCAGTGGGGAATATTGCACAAT




GGGCGCAAGCCTGATGCAGCCATGCCGCGTGTGTG




AAGAAGGCCTTAGGGTTGTAAAGCACTTTCAGCGA




GGAGGAAGGCGTTGCAGTTAATAGCTGCAACGATT




GACGTTACTCGCAGAAGAAGCACCGGCTAACTCCG




TGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCG




TTAATCGGAATTACTGGGCGTAAAGCGCACGCAGG




CGGTTTGTTAAGTCAGATGTGAAATCCCCGAGCTT




AACTTGGGAACTGCATTTGAAACTGGCAAGCTAGA




GTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCG




GTGAAATGCGTAGAGATCTGGAGGAATACCGGTGG




CGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAG




GTGCGAAAGCGTGGGGAGCAAACAGGATTAGATAC




CCTGGTAGTCCACGCTGTAAACGATGTCGACTTGG




AGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAA




CGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCA




AGGTTAAAACTCAAATGAATTGACGGGGGCCCGCA




CAAGCGGTGGAGCATGTGGTTTAATTCGATGCAAC




GCGAAGAACCTTACCTACTCTTGACATCCAGAGAA




TTCGCTAGAGATAGCTTAGTGCCTTCGGGAACTCT




GAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGT




TGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTATCCTTTGTTGCCAGCACGTAATGGTGGG




AACTCAAAGGAGACTGCCGGTGATAAACCGGAGGA




AGGTGGGGATGACGTCAAGTCATCATGGCCCTTAC




GAGTAGGGCTACACACGTGCTACAATGGCATATAC




AAAGAGAAGCGAACTCGCGAGAGCAAGCGGACCTC




ATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAA




CTCGACTCCATGAAGTCGGAATCGCTAGTAATCGT




AGATCAGAATGCTACGGTGAATACGTTCCCGGGCC




TTGTACACACCGCCCGTCACACCATGGGAGTGGGT




TGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGG




CGCTTACCACTTTGTGATTCATGACTGGGGTGAAG




TCGTAACAAGGTAACCGTAGGGGAACCTGCGGTTG




GATCACCTCCTT





124
DP22
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



Reisolate
GCGGCAGGCCTAACACATGCAAGTCGAGCGGTAGC



#3
ACAGGAGAGCTTGCTCTCCGGGTGACGAGCGGCGG




ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGA




GGGGGATAACTACTGGAAACGGTAGCTAATACCGC




ATGATGTCGCAAGACCAAAGTGGGGGACCTTCGGG




CCTCACGCCATCGGATGTGCCCAGATGGGATTAGC




TAGTAGGTGAGGTAATGGCTCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAG




GGTTGTAAAGCACTTTCAGCGAGGAGGAAGGCGTT




GCAGTTAATAGCTGCAACGATTGACGTTACTCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGT




CAGATGTGAAATCCCCGAGCTTAACTTGGGAACTG




CATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC




CTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCTGTAAACGATGTCGACTTGGAGGTTGTGCCCTT




GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGA




CCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA




AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGC




ATGTGGTTTAATTCGATGCAACGCGAAGAACCTTA




CCTACTCTTGACATCCAGAGAATTCGCTAGAGATA




GCTTAGTGCCTTCGGGAACTCTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTT




GTTGCCAGCACGTAATGGTGGGAACTCAAAGGAGA




CTGCCGGTGATAAACCGGAGGAAGGTGGGGATGAC




GTCAAGTCATCATGGCCCTTACGAGTAGGGCTACA




CACGTGCTACAATGGCATATACAAAGAGAAGCGAA




CTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCG




TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGA




AGTCGGAATCGCTAGTAATCGTAGATCAGAATGCT




ACGGTGAATACGTTCCCGGGCCTTGTA





125
DP22
CGAGCGGCGGACGGGTGAGTAATGTCTGGGAAACT



Reisolate
GCCTGATGGAGGGGGATAACTACTGGAAACGGTAG



#4
CTAATACCGCATGACGTCGCAAGACCAAAGTGGGG




GACCTTCGGGCCTCACGCCATCGGATGTGCCCAGA




TGGGATTAGCTAGTAGGTGAGGTAATGGCTCACCT




AGGCGACGATCCCTAGCTGGTCTGAGAGGATGACC




AGCCACACTGGAACTGAGACACGGTCCAGACTCCT




ACGGGAGGCAGCAGTGGGGAATATTGCACAATGGG




CGCAAGCCTGATGCAGCCATGCCGCGTGTGTGAAG




AAGGCCTTAGGGTTGTAAAGCACTTTCAGCGAGGA




GGAAGGCGTTGCAGTTAATAGCTGCAGCGATTGAC




GTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGC




CAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTA




ATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGG




TTTGTTAAGTCAGATGTGAAATCCCCGAGCTTAAC




TTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTC




TTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTG




AAATGCGTAGAGATCTGGAGGAATACCGGTGGCGA




AGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTG




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCT




GGTAGTCCACGCTGTAAACGATGTCGACTTGGAGG




TTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGC




GTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGG




TTAAAACTCAAATGAATTGACGGGGGCCCGCACAA




GCGGTGGAGCATGTGGTTTAATTCGATGCAACGCG




AAGAACCTTACCTACTCTTGACATCCAGAGAATTC




GCTAGAGATAGCTTAGTGCCTTCGGGAACTCTGAG




ACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGT




GAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACC




CTTATCCTTTGTTGCCAGCACGTAATGGTGGGAAC




TCAAAGGAGACTGCCGGTGATAAACCGGAGGAAGG




TGGGGATGACGTCAAGTCATCATGGCCCTTACGAG




TAGGGCTACACACGTGCTACAATGGCATATACAAA




GAGAAGCGAACTCGCGAGAGCAAGCGGACCTCATA




AAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTC




GACTCCATGAAGTCGGAATCGCTAGTAATCGTAGA




TCAGAATGCTACGGTGAATACGTTCCCGGGCCTTG




TACACACCGCCCGTCACACCATGGGAGTGGGTTGC




AAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGC




TTACCACTTTGTGATTCATGACTGGGGTGAAGTCG




TAACAAGGTAACCGTAGGGGAACCTGCGGTTGGAT




CACCTCCTT





126
DP22
GTAATGTCTGGGAAACTGCCTGATGGAGGGGGATA



Reisolate
ACTACTGGAAACGGTAGCTAATACCGCATGATGTC



#5
GCAAGACCAAAGTGGGGGACCTTCGGGCCTCACGC




CATCGGATGTGCCCAGATGGGATTAGCTAGTAGGT




GAGGTAATGGCTCACCTAGGCGACGATCCCTAGCT




GGTCTGAGAGGATGACCAGCCACACTGGAACTGAG




ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGG




GAATATTGCACAATGGGCGCAAGCCTGATGCAGCC




ATGCCGCGTGTGTGAAGAAGGCCTTAGGGTTGTAA




AGCACTTTCAGCGAGGAGGAAGGCGTTGCAGTTAA




TAGCTGCAACGATTGACGTTACTCGCAGAAGAAGC




ACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATAC




GGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGT




AAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTG




AAATCCCCGAGCTTAACTTGGGAACTGCATTTGAA




ACTGGCAAGCTAGAGTCTTGTAGAGGGGGGTAGAA




TTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGG




AGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAA




AGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAA




ACAGGATTAGATACCCTGGTAGTCCACGCTGTAAA




CGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTG




GCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGG




GGAGTACGGCCGCAAGGTTAAAACTCAAATGAATT




GACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTT




TAATTCGATGCAACGCGAAGAACCTTACCTACTCT




TGACATCCAGAGAATTCGCTAGAGATAGCTTAGTG




CCTTCGGGAACTCTGAGACAGGTGCTGCATGGCTG




TCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTC




CCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAG




CACGTAATGGTGGGAACTCAAAGGAGACTGCCGGT




GATAAACCGGAGGAAGGTGGGGATGACGTCAAGTC




ATCATGGCCCTTACGAGTAGGGCTACACACGTGCT




ACAATGGCATATACAAAGAGAAGCGAACTCGCGAG




AGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGG




ATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAA




TCGCTAGTAATCGTAGATCAGAATGCTACGGTGAA




TACGTTCCCGGGCCTTGTACACACCGCCCGTCACA




CCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTT




AACCTTCGGGAGGGCGCTTACCACTTTGTGATTCA




TGACTGGGGTGAAGTCGTAACAAGGTAACCGTAGG




GGAACCTGCGGTTGGATCACCTCCTT





127
DP22
TTGAAGAGTTTGATCATGGCTCAGATTGAACGCTG



Reisolate
GCGGCAGGCCTAACACATGCAAGTCGAGCGGTAGC



#6
ACAGGAGAGCTTGCTCTCCGGGTGACGAGCGGCGG




ACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGA




GGGGGATAACTACTGGAAACGGTAGCTAATACCGC




ATGACGTCGCAAGACCAAAGTGGGGGACCTTCGGG




CCTCACGCCATCGGATGTGCCCAGATGGGATTAGC




TAGTAGGTGAGGTAATGGCTCACCTAGGCGACGAT




CCCTAGCTGGTCTGAGAGGATGACCAGCCACACTG




GAACTGAGACACGGTCCAGACTCCTACGGGAGGCA




GCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG




ATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTAG




GGTTGTAAAGCACTTTCAGCGAGGAGGAAGGCGTT




GCAGTTAATAGCTGCAGCGATTGACGTTACTCGCA




GAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC




GGTAATACGGAGGGTGCAAGCGTTAATCGGAATTA




CTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGT




CAGATGTGAAATCCCCGAGCTTAACTTGGGAACTG




CATTTGAAACTGGCAAGCTAGAGTCTTGTAGAGGG




GGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAG




AGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCC




CTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCTGTAAACGATGTCGACTTGGAGGTTGTGCCCTT




GAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTCGA




CCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA




AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGC




ATGTGGTTTAATTCGATGCAACGCGAAGAACCTTA




CCTACTCTTGACATCCAGAGAATTCGCTAGAGATA




GCTTAGTGCCTTCGGGAACTCTGAGACAGGTGCTG




CATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGG




GTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTT




GTTGCCAGCACGTAATGGTGGGAACTCAAAGGAGA




CTGCCGGTGATAAACCGGAGGAAGGTGGGGATGAC




GTCAAGTCATCATGGCCCTTACGAGTAGGGCTACA




CACGTGCTACAATGGCATATACAAAGAGAAGCGAA




CTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCG




TAGTCCGGATTGGAGTCTGCAACTCGACTCCATGA




AGTCGGAATCGCTAGTAATCGTAGATCAGAATGCT




ACGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTA




GGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTT




GTGATTCATGACTGGGGTGAAGTCGTAACAAGGTA




ACCGTAGGGGAACCTGCGGTTGGATCACCTCCTT









Example 4: Computation of Microbial Entity Average Nucleotide Identity (ANI)

We applied a whole-genome based method, the average nucleotide identity (ANI), to estimate the genetic relatedness among bacterial genomes and profile hundreds of microbial species at a higher resolution taxonomic level (i.e., species- and strain-level classification). ANI is based on the average of the nucleotide identity of all orthologous genes shared between a genome pair. Genomes of the same species present ANI values above 95% and of the same genus values above 80% (Jain et al. 2018).


Taxonomic annotation of the strains combined into DMAs using ANI and the NCBI RefSeq database indicated that these microbes represent species not present in the database and most likely are new bacterial species (Table G). Multiple independent isolates were obtained for all of DP1, DP3, DP9, DP22, and DP53, suggesting that it is well within the level of ordinary skill of one in the art to isolate these species following the teachings of this specification (16S sequence alignment identity of the multiple isolates is shown in Table G.1). The successful isolation of these species can be determined by 16S sequence comparison to the reference sequences of these species provided in Table F. In other embodiments, a person of ordinary skill can determine that substitutions for these novel species may be made using either or both of the most closely matching species set out in Table G, either by 16S or ANI sequence comparison. Further it is within the level of ordinary skill to distinguish operable from inoperable substitutions by assembling a substituted DMA and assaying for any one of the activities set forth, e.g., in any one of the working examples provided in this specification.









TABLE G







Predictive power of Average Nucleotide Identity (ANI) analysis.


ANI analysis demonstrates that the overall genome sequence


of the microbial entities isolated from plants and described


herein as compared to reference strains is different enough


in many cases to qualify as a different species.













16S






rRNA
Closest Reference


ID
NCBI match
gene (%)
genome at NCBI
ANI (%)














DP3

Leuconostoc

99

Leuconostoc

91.77




mesenteroides



pseudomesenteroides




(NR_074957.1.)

(JDVA01000001.1.)


DP9

Pediococcus

99

Pediococcus

99.6




pentosauceus



pentosauceus




(NR_042058.1.)

(NC_022780.1.)


DP53

Pseudomonas

99

Pseudomonas

86.82




helleri



psychrophile




(NR_148763.1.)

(NZ_LT629795.1.)


DP1

Pseudomonas

99

Pseudomonas

94.48




fluorescens



antarctica




(NR_115715.1.)

(NZ_CP015600.1.)


DP22

Rahnella aquatilis

98

Rahnella sp.

88.31



(NR_025337.1)

(NC_015061.1.)
















TABLE G.1







Sequence Identity of Additional Isolates













16S rRNA gene


ID
Reisolate #
Strain Name
(% Identity)













DP3
1

Leuconostoc mesenteroides

100



2

99.55



3

99.07



4

99


DP9
1

Pediococcus pentosauceus

100



2

100



3

100



4

100



5

100



6

97.38


DP53
1

Pseudomonas fragi

100



2

99.36



3

100



4

99.64



5

99.79



6

99.62


DP1
1

Pseudomonas fluorescens

98.89



2

98.89



3

98.96



4

98.87



5

100



6

98.89


DP22
1

Rahnella sp.

98.38



2

99.93



3

99.86



4

100



5

99.86



6

100





Alignment with respect to original isolate






Example 5: Methods of Plant Inoculation

Seed Disinfection by Chlorine Gas: Seeds can be surface-disinfected prior to inoculation by a modified the technique described for Arabidopsis seeds (Lindsey et al. “Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.” 2017. Jove). Seeds are placed within sterile containers and placed within an airtight jar inside of a chemical fume hood. A 250 ml bottle containing 200 ml bleach is added to the jar. 4 ml of 12N HCl is added to the bottle to generate the chlorine gas. The jar is sealed, and the seeds are incubated in the gas for 2-3 hrs before being ventilated inside the fume hood and then removed and kept in sterile containers.


Seed Treatment: A complex, fungal, or bacterial endophyte is inoculated onto seeds as a liquid or powder using a range of formulations including the following components: sodium alginate and/or methyl cellulose as stickers, talc and flowability polymers. Seeds are air dried after treatment and planted according to common practice for each crop type.


Seed Inoculation: Debaryomyces hansenii DP5, Pichia kudriavzevii DP102, Pseudomonas fluorescens DP1, Lactobacillus plantarum DP100, Lactobacillus brevis DP94, Lactococcus garvieae DP97, Lactobacillus paracasei DP95 and Leuconostoc mesenteroides DP93 are grown in appropriate medium, aerobically or anaerobically, at 30° C. or 37° C. depending on the strain. Strains are selected based on their known use as commercial probiotics, their safe use in human health and nutrition, and having originated from plant tissues. The strains are sourced from the samples as described in Example 1 based on predicted beneficial functionalities as described in Example 2. A fundamental feature for the selection of the strains and their testing as seed coatings is that the colonization should not result in yield drag as is the case in some agricultural products, but instead to serve as a plant growth promoting treatment. This results in a duality of product benefit for facilitating farming, improving yield by providing some type of stress resilience to the crop, and providing improved nutrition by the consumption of fresh plant products enriched in probiotic flora. This microbial benefit goes above the observed increased colonization and microbial diversity observed in organic products compared to the conventional equivalent product treated with agrochemicals.


Another important practice in vegetable farming are seed coatings with agrochemicals or microbes such as is the case with Rhizobium for legumes. In embodiments where a seed coat polymer was used (Ashland Seed Coating Polymer: Agrimer VA 6W, product number 847943), it is diluted 1:5 in sterile water and vortexed to mix. Cultures were diluted to the appropriate concentrations in either water or polymer solution to achieve 1×105-1×107 CFU/seed inoculum. Dilution calculations are based on either OD600 measurements or direct enumeration via Quantom TXTM (Logos biosystems). DMA preparations are generated by combining two or more microbes in a single treatment (See Table H) for a description of each DMA). Mock treatments are generated by adding an equivalent amount of sterile culture medium to the water or polymer solution to replace microbes. Seeds are incubated in sterile tubes containing the diluted microbes and water or polymer for 20 minutes, after which time they are removed and potted.









TABLE H







Strain composition for tested DMAs.










DMA #
DP Composition
Genus
Species





DMA #1
DP1

Pseudomonas


fluorescens




DP102

Pichia


krudriavzevii




DP100

Lactobacillus


plantarum




DP93

Leuconostoc


mesenteroides




DP94

Lactobacillus


brevis



DMA #2
DP102

Pichia


krudriavzevii




DP100

Lactobacillus


plantarum




DP93

Leuconostoc


mesenteroides




DP94

Lactobacillus


brevis



DMA #3
DP93

Leuconostoc


mesenteroides




DP5

Debaromyces


hansenii



DMA #4
DP94

Lactobacillus


brevis




DP5

Debaromyces


hansenii



DMA #5
DP100

Lactobacillus


plantarum




DP102

Pichia


krudriavzevii



DMA #6
DP95

Lactobacillus


paracasei




DP102

Pichia


krudriavzevii










Osmopriming and Hydropriming: A complex, fungal, or bacterial endophyte is inoculated onto seeds during the osmopriming (soaking in polyethylene glycol solution to create a range of osmotic potentials) and/or hydropriming (soaking in de-chlorinated water) process. Osmoprimed seeds are soaked in a polyethylene glycol solution containing a bacterial and/or fungal endophyte for one to eight days and then air dried for one to two days. Hydroprimed seeds are soaked in water for one to eight days containing a bacterial and/or fungal endophyte and maintained under constant aeration to maintain a suitable dissolved oxygen content of the suspension until removal and air drying for one to two days. Talc and or flowability polymer are added during the drying process.


Foliar Application: A complex, fungal, or bacterial endophyte is inoculated onto aboveground plant tissue (leaves and stems) as a liquid suspension in dechlorinated water containing adjuvants, sticker-spreaders and UV protectants. The suspension is sprayed onto crops with a boom or other appropriate sprayer.


Soil Inoculation: A complex, fungal, or bacterial endophyte is inoculated onto soils in the form of a liquid suspension either; pre-planting as a soil drench, during planting as an in furrow application, or during crop growth as a side-dress. A fungal or bacterial endophyte is mixed directly into a fertigation system via drip tape, center pivot or other appropriate irrigation system.


Hydroponic and Aeroponic Inoculation: A complex, fungal, or bacterial endophyte is inoculated into a hydroponic or aeroponic system either as a powder or liquid suspension applied directly to the rockwool substrate or applied to the circulating or sprayed nutrient solution.


Vector-Mediated Inoculation: A complex, fungal, or bacterial endophyte is introduced in power form in a mixture containing talc or other bulking agent to the entrance of a beehive (in the case of bee-mediation) or near the nest of another pollinator (in the case of other insects or birds. The pollinators pick up the powder when exiting the hive and deposit the inoculum directly to the crop's flowers during the pollination process.


Root Wash: The exterior surface of a plant's roots are contacted with a liquid inoculant formulation containing a purified bacterial population, a purified fungal population, a purified complex endophyte population, or a mixture of any of the preceding. The plant's roots are briefly passed through standing liquid microbial formulation or liquid formulation is liberally sprayed over the roots, resulting in both physical removal of soil and microbial debris from the plant roots, as well as inoculation with microbes in the formulation.


Seedling Soak: The exterior surfaces of a seedling are contacted with a liquid inoculant formulation containing a purified bacterial population, a purified fungal population, or a mixture of any of the preceding. The entire seedling is immersed in standing liquid microbial formulation for at least 30 seconds, resulting in both physical removal of soil and microbial debris from the plant roots, as well as inoculation of all plant surfaces with microbes in the formulation. Alternatively, the seedling can be germinated from seed in or transplanted into media soaked with the microbe(s) of interest and then allowed to grow in the media, resulting in soaking of the plantlet in microbial formulation for much greater time totaling as much as days or weeks. Endophytic microbes likely need time to colonize and enter the plant, as they explore the plant surface for cracks or wounds to enter, so the longer the soak, the more likely the microbes will successfully be installed in the plant.


Wound Inoculation: The wounded surface of a plant is contacted with a liquid or solid inoculant formulation containing a purified bacterial population, a purified fungal population, or a mixture of any of the preceding. Plant surfaces are designed to block entry of microbes into the endosphere, since pathogens attempting to infect plants in this way. In order to introduce beneficial endophytic microbes to plant endospheres, a way to access the interior of the plant is needed, which we can do by opening a passage by wounding. This wound takes a number of forms, including pruned roots, pruned branches, puncture wounds in the stem breaching the bark and cortex, puncture wounds in the tap root, puncture wounds in leaves, and puncture wounds seed allowing entry past the seed coat. Wounds are made using needles, hammer and nails, knives, drills, etc. Into the wound are then contacted with the microbial inoculant as liquid, as powder, inside gelatin capsules, in a pressurized capsule injection system, in a pressurized reservoir and tubing injection system, allowing entry and colonization by microbes into the endosphere. Alternatively, the entire wounded plant is soaked or washed in the microbial inoculant for at least 30 seconds, giving more microbes a chance to enter the wound, as well as inoculating other plant surfaces with microbes in the formulation—for example pruning seedling roots and soaking them in inoculant before transplanting is a very effective way to introduce endophytes into the plant.


Injection: Microbes are injected into a plant in order to successfully install them in the endosphere. Plant surfaces are designed to block entry of microbes into the endosphere, since pathogens attempting to infect plants in this way. In order to introduce beneficial endophytic microbes to endospheres, a way is needed to access the interior of the plant which we can do by puncturing the plant surface with a need and injecting microbes into the inside of the plant. Different parts of the plant are inoculated this way including the main stem or trunk, branches, tap roots, seminal roots, buttress roots, and even leaves. The injection is made with a hypodermic needle, a drilled hole injector, or a specialized injection system. Through the puncture wound the microbial inoculant as liquid, as powder, inside gelatin capsules, in a pressurized capsule injection system, in a pressurized reservoir and tubing injection system, is applied, allowing entry and colonization by microbes into the endosphere.


Example 6: Measuring Colonization of Plants with DMA Microbes

Culturing to Confirm Colonization of Plant by Bacteria: The presence of complex endophytes in whole plants or plant elements, such as seeds, roots, leaves, or other parts, is detected by isolating microbes from plant or plant element homogenates (optionally surface-sterilized) on antibiotic-free media and identifying visually by colony morphotype and molecular methods described herein. Representative colony morphotypes are also used in colony PCR and sequencing for isolate identification via ribosomal gene sequence analysis as described herein. These trials are repeated twice per experiment, with 5 biological samples per treatment.


Culture-Independent Methods to Confirm Colonization of the Plant or Seeds by Complex Endophytes: The presence of complex endophytes on or within plants or seeds is determined by using quantitative PCR (qPCR). Internal colonization by the complex endophyte is demonstrated by using surface-sterilized plant tissue (including seed) to extract total DNA, and isolate-specific fluorescent MGB probes and amplification primers are used in a qPCR reaction. An increase in the product targeted by the reporter probe at each PCR cycle therefore causes a proportional increase in fluorescence due to the breakdown of the probe and release of the reporter. Fluorescence is measured by a quantitative PCR instrument and compared to a standard curve to estimate the number of fungal or bacterial cells within the plant.


The design of both species-specific amplification primers and isolate-specific fluorescent probes are well known in the art. Plant tissues (seeds, stems, leaves, flowers, etc.) are pre-rinsed and surface sterilized using the methods described herein: Total DNA is extracted using methods known in the art, for example using commercially available Plant-DNA extraction kits, or the following method. 1) Tissue is placed in a cold-resistant container and 10-50 mL of liquid nitrogen is applied. Tissues are then macerated to a powder. 2) Genomic DNA is extracted from each tissue preparation, following a chloroform:isoamyl alcohol 24:1 protocol (Sambrook, Joseph, Edward F. Fritsch, and Thomas Maniatis. Molecular cloning. Vol. 2. New York: Cold spring harbor laboratory press, 1989.). Quantitative PCR is performed essentially as described by Gao, Zhan, et al. Journal of clinical microbiology 48.10 (2010): 3575-3581 with primers and probe(s) specific to the desired isolate using a quantitative PCR instrument, and a standard curve is constructed by using serial dilutions of cloned PCR products corresponding to the specie-specific PCR amplicon produced by the amplification primers. Data are analyzed using instructions from the quantitative PCR instrument's manufacturer software. As an alternative to qPCR, Terminal Restriction Fragment Length Polymorphism, (TRFLP) can be performed, essentially as described in Johnston-Monje D, Raizada M N (2011) PLoS ONE 6(6): e20396. Group specific, fluorescently labeled primers are used to amplify a subset of the microbial population, for example bacteria and fungi. This fluorescently labeled PCR product is cut by a restriction enzyme chosen for heterogeneous distribution in the PCR product population. The enzyme cut mixture of fluorescently labeled and unlabeled DNA fragments is then submitted for sequence analysis on a Sanger sequence platform such as the Applied Biosystems 3730 DNA Analyzer Immunological Methods to Detect Complex Endophytes in Seeds and Vegetative Tissues. A polyclonal antibody is raised against specific the host fungus or bacterium via standard methods. Enzyme-linked immunosorbent assay (ELISA) and immunogold labeling is also conducted via standard methods, briefly outlined below.


Immunofluorescence microscopy procedures involve the use of semi-thin sections of seed or seedling or adult plant tissues transferred to glass objective slides and incubated with blocking buffer (20 mM Tris (hydroxymethyl)-aminomethane hydrochloride (TBS) plus 2% bovine serum albumin, pH 7.4) for 30 min at room temperature. Sections are first coated for 30 min with a solution of primary antibodies and then with a solution of secondary antibodies (goat anti-rabbit antibodies) coupled with fluorescein isothiocyanate (FITC) for 30 min at room temperature. Samples are then kept in the dark to eliminate breakdown of the light-sensitive FITC. After two 5-min washings with sterile potassium phosphate buffer (PB) (pH 7.0) and one with double-distilled water, sections are sealed with mounting buffer (100 mL 0.1 M sodium phosphate buffer (pH 7.6) plus 50 mL double-distilled glycerine) and observed under a light microscope equipped with ultraviolet light and a FITC Texas-red filter.


Ultrathin (50- to 70-nm) sections for TEM microscopy are collected on pioloform-coated nickel grids and are labeled with 15-nm gold-labeled goat anti-rabbit antibody. After being washed, the slides are incubated for 1 h in a 1:50 dilution of 5-nm gold-labeled goat anti-rabbit antibody in IGL buffer. The gold labeling is then visualized for light microscopy using a BioCell silver enhancement kit. Toluidine blue (0.01%) is used to lightly counterstain the gold-labeled sections. In parallel with the sections used for immunogold silver enhancement, serial sections are collected on uncoated slides and stained with 1% toluidine blue. The sections for light microscopy are viewed under an optical microscope, and the ultrathin sections are viewed by TEM.


PCR Detection of Strains: PCR probes for bacterial and fungal strains are designed using species-specific genes reported for each strain. In summary, Primer3 v 0.4.4 (bioinfo.ut.ee/primer3-0.4.0/) is used to calculate the annealing temperature and primers were constructed in the Genewiz user interface. Table 12 lists the specific genes, primer sequences and conditions for each probe. The PCR reaction was optimized in a final volume of 25 μL as follows: 12.5 μL of GoTaq Colorless Master Mix (Promega M7132), 2.0 μL of 10 μM Forward Primer, 2.0 μL of 10 μM Reverse Primer, 7.5 μL of molecular grade water (depending on the amount of DNA template), and 1 μL of DNA template. Genomic DNA is normalized to 2 ng/μL DNA. For plant DNA extractions, the DNEAsy Plant Pro Kit (Qiagen) was used, and PCRs were performed with 5 μL of DNA template. PCR is carried out on a thermal cycler (Eppendorf Nexus Gradient Model No. 6331) and the PCR conditions and programs are mentioned in Table 12. PCR products are analyzed on a 2% agarose E-Gel (Invitrogen, USA) and visualized by UV transilluminator.









TABLE 12







PCR assays to detect applied microbes onto crops.














Product







size
PCR




Species
Gene
(bp)
conditions
Primer
Sequence
















L. plantarum

LPXTG-motif
724
94° C. for
Forward
TTCGTCGGGAAGTGATGGTG



(SEQ ID NO: 128)

10 min

(SEQ ID NO: 129)





94° C. for







30 s







60° C. for
Reverse
CTTGGTCGTGGCATCAGTCT





30 s

(SEQ ID NO: 130)





72° C. for







30 s







(35







cycles)







72° C. for







5 min








L. brevis

16S-23S ribosomal
558
94° C. for
Forward
TATGCCCATTGACCGCAAGG



RNA intergenic

5 min

(SEQ ID NO: 131)



spacer region

94° C. for







1 min







62° C. for
Reverse
AGCAAGCTTCCTGGTTTGGG





30 s

(SEQ ID NO: 132)





72° C. for







1 min







(35







cycles)







72° C. for







5 min








Leuconostoc

metK: S-
1,158
94° C. for
Forward
ATGGCAAAGTATTTCACATC



mesenteroides

adenosylmethionine

2 min

GG (SEQ ID NO: 133)



synthase

94° C. for







1 min







49° C. for
Reverse
TTAAAGTAAGTTTTTGATTT





1 min

CTTTCACCTT (SEQ ID NO:





72° C. for

134)





1 min







(35







cycles)







72° C. for







10 min








Pichia

Saps: Secreted
1,159
95° C. for
Forward
GGCGTTGTCCATCCAATG



kudriavzevii

Aspartic Proteinase

5 mim

(SEQ ID NO: 135)





95° C. for







30 s







60° C. for
Reverse
CAGGAGAATTGCTGTTCCC





30 s

(SEQ ID NO: 136)





72° C. for







30 s







(35







cycles)







72° C. for







8 min










FIGS. 12A-12B provide images of PCR detection of microbes on plants using species-specific primers. FIG. 12A shows PCR assay Controls. Primers were tested against microbial genomic DNA (positive control) and each mock-treated plant type to verify primer specificity. FIG. 12B shows PCR assays for exemplary microbes tested. Primers were tested against genomic DNA from the microbe of interest and other microbes to verify specificity. On the left gel, bands are visible in the DP102 control well and the DMA #1 lettuce well. DMA #1 contains DP102. For the center gel, bands are seen with DP5 positive control and the arugula samples with DMA #3 and DMA #4 treatment, both of which contain DP5. The gel on the right demonstrates that DP100 is detected from arugula treated with DP100 as well as the positive controls. The use of PCR probes for specific strains allows to detect colonization in the plant tissues and to confirm counts based on colony forming units.


Quantitation of Microbial Colonization of Plants: Bacteria and fungi are enumerated from plants by Colony Forming Units (CFU) plating and counting. Plants are harvested, roots are removed, and the plant mass is measured. The plant is then either sectioned and reweighed or ground whole with a mortar and pestle with added PBS until complete maceration and liquefaction is achieved. A series of 10-fold dilutions are made in PBS and each dilution was plated in triplicate onto non-selective medium such as tryptic soy agar (TSA), and medium selective for the microbe of interest such as De Man, Rogosa and Sharpe agar (MRS) or potato dextrose agar containing chlorotetracycline (PDA+CTET) aerobically or anaerobically, at 30° C. or 37° C. depending on the strain-specific requirements. The microbiological detection of strains using colony forming units allows to quantitate colonization with respect to the absolute number of cells applied to the seed or plant tissue. In addition, the colony features as well as taxonomic confirmation of the colonies resulted in a very effective way to measure colonization in treated plants and compare to mock plants where no microbes are applied. There is a very low or absent background for the target microorganism when plated in MRS agar media and incubated at 37° C. anaerobically given that most of the plant-associated microbiota grows at a lower temperature, aerobically and prefers other media formulations such as tryptic soy agar. Likewise, the use of PDA with antibiotics targeting lactic acid bacteria and others selects for the yeast applied (DP5 and DP102).



FIG. 11. Example of dilution plating technique for colonization. DP102 inoculated plants (bottom) and mock treatment control (top) were diluted and plated on PDA containing chlorotetracycline. An aliquot of 5 μL for each 10-fold dilution was applied to a plate an held vertically to distribute the liquid along its length.


Example 7: Beneficial Effects of Polymer Coating Seeds

Seed coating is widely used as a means of delivery for agriculture products. Here, seed coating was examined as a means to protect the seedling from environmental stress and to enhance colonization of seeds by the probiotic strains of interest. An oxygen permeable vinyl polymer with high adhesivity and evidence of improved rhizobia survival was selected for these experiments (Ashland Seed Coating Polymer: Agrimer VA 6W, product number 847943).


Little Gem (Johnny's Seeds Product No. 4120G.11), Black Seeded Simpson (Ferry Morse Product No. 2498), and Outredgeous (Johnny's Seeds Product No. 2208G.26), lettuce seeds and arugula (Johnny's Selected Seeds Cat no. 385.11) were disinfected and inoculated with L. plantarum DP100 L. brevis DP94, Leuconostoc mesenteroides DP93, DMA #1 or mock control with or without polymer. Seeds were planted in sterilized 36 mm peat pellets and placed within a Jiffy Seed Starting Greenhouse Kit (Ferry Morse) to germinate and grow. After 17-20 days growth, the seedlings were harvested, weighed, and colonization was assessed.


In general, colonization of the seedlings with the microbes tested was equal or greater with the addition of polymer. Most plants showed a 2-10-fold improvement in colonization when polymer was used in seed coating. In particular, DP100 exhibited the greatest benefit from polymer coating across multiple plant types. Average plant biomass and total microbial growth as measured by colony counts using TSA were improved with the addition of polymer whether or not microbes were added, suggesting that the polymer alone confers some growth advantage and when combined with the microbial treatment this advantage is amplified. For Outredgeous lettuce and arugula, the combination of DP97 and polymer conferred a greater biomass yield than the polymer alone. The same effect was seen with DMA #2 and the Little Gem and Black Seeded Simpson lettuce, suggesting some synergy between the polymer, specific plants, and specific microbes or DMAs. The selection of the best combinations will result in significantly higher agricultural yields as in the case of arugula and DP97, Outredgeous lettuce and DP97, Little Gem lettuce and DMA #2, and Black Seeded Simpson and DMA #2. It is clear there is a high degree of specificity in the crop, polymer and inoculant combination. Results are shown in FIGS. 13A-13D.



FIGS. 13A-13D. Demonstration of the effects of seed polymer coating in combination with microbe inoculation.



FIG. 13A Shows the effects of microbial inoculation and polymer coating on the colonization and biomass of arugula seedlings. The left graph demonstrates the level of colonization of these plants with each treatment. TSA incubated aerobically will grow microbes including endophytes natively present. Anaerobic incubation of TSA medium is selective for the microbes of interest as they are facultative anaerobes. Arugula was only colonized by DMA #2 by the end of the experiment, suggesting this DMA was capable of propagating on the plants under these conditions. The graph on the right shows the average biomass of the harvested plants. Note the strong biomass benefit seen with inoculation of polymer and DP97.



FIG. 13B Shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Outredgeous lettuce seedlings. The left graph demonstrates the level of colonization of these plants with each treatment. TSA incubated aerobically will grow microbes including endophytes natively present. MRS medium incubated anaerobically is selective for the microbes of interest as they are facultative anaerobes. Outredgeous lettuce was successfully colonized by all microbial treatments, suggesting these microbes were all capable of propagating on the plants under these conditions. The graph on the right shows the average biomass of the harvested plants. Note the strong biomass benefit seen with inoculation of polymer and DP97.



FIG. 13C Shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Little Gem lettuce seedlings. The left graph demonstrates the level of colonization of these plants with each treatment. TSA incubated aerobically will grow microbes including endophytes natively present. Anaerobic incubation of TSA medium is selective for the microbes of interest as they are facultative anaerobes. Little Gem lettuce was successfully colonized by all microbial treatments, suggesting these microbes were all capable of propagating on the plants under these conditions. The graph on the right shows the average biomass of the harvested plants. DMA #2 demonstrated the greatest benefit to biomass in these experiments regardless of polymer coating, indicating a specific synergy between this plant and DMA.



FIG. 13D Shows the effects of microbial inoculation and polymer coating on the colonization and biomass of Black Seeded Simpson lettuce seedlings. The left graph demonstrates the level of colonization of these plants with each treatment. TSA incubated aerobically will grow microbes including endophytes natively present. MRS medium incubated anaerobically is more selective for the microbes inoculated as they are facultative anaerobes. Outredgeous lettuce was successfully colonized by all microbial treatments, suggesting these microbes were all capable of propagating on the plants under these conditions. Of note, the mock treatment also had growth on the MRS plates which may indicate that the natural colonizers of these seeds include anaerobes. Upon inspection, the colonies observed in this treatment did not correspond to a background population of the inoculated microbes. The colonies were smaller and different in appearance than the inoculated strains. Only DP100 colonization showed a benefit with polymer coating for this type of lettuce. The right graph shows the average biomass of the harvested plants. Note the strong biomass benefit seen with inoculation of polymer and DP100. DMA #2, which contains DP100 also confers the same biomass benefit.


Example 8: Plant Colonization by Single Species and DMAs

To determine whether we could successfully colonize a variety of plant types by inoculation of seeds and identify what level of inoculum was ideal for maximal colonization, we performed a series of experiments growing plants from seeds in sterile environments (enclosed boxes with a gel-based medium). The plants were cultivated in this manner for one to three weeks which is long enough for a large variety of plants to reach the seedling stage.


For these experiments, Little Gem lettuce (Johnny's Seeds Product No. 4120G.11), Black Seeded Simpson lettuce (Ferry Morse Product No. 2498), and Outredgeous lettuce (Johnny's Seeds Product No. 2208G.26), arugula (Johnny's Selected Seeds Product No. 385.11), tomato, var. sweetie (Ferry Morse Product No. 1505), red cabbage (Johnny's Seeds Product No. 2230M.30), Red Arrow Radish (Johnny's Seeds Product No. 3111M.30), arugula for microgreens (Johnny's Seeds Product No. 385.30), Bright Green Curly Kale (Johnny's Seeds Product No. 4085M.30), Daikon Radish (Johnny's Seeds Product No. 2155MG.30), Broccoli (Johnny's Seeds Product No. 2290M.30), and Early Wonder Tall Top Beet (Johnny's Seeds Product No. 123M.30) seeds were disinfected by chlorine gas.


Seeds were inoculated in polymer with D. hansenii DP5, P. kudriavzevii DP102, P. fluorescens DP1, L. plantarum DP100, L. brevis DP94, L. garvieae DP97, L. paracasei DP95, Leuconostoc mesenteroides DP93, combinations thereof (DMAs), or mock control at concentrations ranging from 1×103-1×107 CFU per seed. Four to eight seeds per treatment were planted in autoclaved Magenta GA-7-3 Plant Culture boxes (Sigma Aldrich Catalog Number V8505) with sterile Murashige and Skoog basal medium (Sigma Aldrich M5519-50L) with 0.1% concentration of Phytagel (Sigma Aldrich P8169-250G). After 7-24 days growth the seedlings were harvested, photographed, and colonization was measured.


We performed an initial inoculum titration experiment to measure the dose response using a single strain (DP100) and seed type, arugula (FIG. 14). Increasing concentrations of seed inocula were tested with the highest 1×107 (E7) CFU/seed achieving the highest colonization at 1×108 CFU per gram. Interestingly, low microbial titers (E3-E5) CFU/seed resulted in colonization levels of approximately 1×106 CFU per gram, indicating replication of the microbe on the plants at a very high growth rate.


We further investigated titrations of microbes and their response to colonization using several crops and four single strain or DMA combinations. We compared inocula of 1×105 versus 1×107 CFU/seed for bacterial and DMA preparations and 1×105 versus 1×106 CFU/seed for yeast preparations. Overall, the vast majority of plant types were successfully colonized with the single microbes or DMAs used. Colonization was robust, equaling or exceeding the initial inoculum of the seeds, indicating propagation of the microbes or DMAs on the plants (FIGS. 15A-15D). DP5 colonized all plant types tested and achieved a high titer regardless of inoculum size. DP100 showed a stepwise increase in colonization with increased inoculum on arugula but achieved lower titers on Outredgeous lettuce, highlighting the specific relationship between arugula and this strain. DMA #2, which is comprised of three lactic acid bacteria and a yeast, exhibited increased colonization with increased inoculum for arugula and Little Gem lettuce. This DMA achieved high titers regardless of inoculum size on Outredgeous lettuce whereas colonization was poor for the lactic acid bacterial portion on Black Seeded Simpson lettuce, again demonstrating specificity between colonizers and plants.


Finally, as microgreens have become a popular, nutrient-rich source of plant intake, we examined colonization of these faster-to-market plants. We selected several varieties of microgreens, including arugula, kale, radishes, and broccoli and inoculated them with DMAs consisting of one bacterial strain (1×107 CFU/seed) and one yeast (1×106 CFU/seed). The combination of bacteria and yeast reflects their synergistic interactions to promote growth in the plant, protect against abiotic and biotic stresses such as fungal pathogens during farming, and also their potential to be synergistic in the gastrointestinal tract of an animal consuming the fresh crop. For example, by the enhanced production of short chain fatty acids that have anti-inflammatory effects in the human host. These greens were harvested 7-10 days after planting, in line with harvest times for conventionally grown microgreens.


Colonization was robust across all DMAs and plant types tested with the exception of DMA #6 on Daikon Radish where no colonization was seen (FIGS. 16A-16D). Despite a relatively high level of colonization throughout, microbial loads fluctuated as much as 1000-fold depending on the DMA and plant variety. These variances were specific to the DMA and plant combination, highlighting the importance of selecting the appropriate microbial inocula for a given plant and the impact of the selection in effective product development. Microbial loads at the 1×107 to 1×108 CFU/g level, as seen here, are equivalent to probiotic doses of commercial products sold as capsules and much higher than functional foods, for example yogurt, compared to the consumption of 10-100 grams of microgreens treated with the correct inocula.



FIG. 14 demonstrates the effect of increasing inoculum on plant colonization level. Arugula seeds were inoculated with DP100 at levels from 1×103 up to 1×107 CFU/seed (dark gray bars) and compared to the CFU/g microbial output on the resultant seedlings. Note the evident propagation of the microbe on the plants inoculated with low levels of microbe.



FIGS. 15A-15D shows the levels of colonization of seedlings with single microbes or DMAs on a variety of plant types after seed inoculation. Homogenized seedlings were diluted and plated on non-selective (TSA) medium and medium specific for lactic acid bacteria (MRS) and/or medium selective for yeast (PDA+CTET).



FIG. 15A. Colonization of seedlings with Debaryomyces hansenii DP5 expressed as average CFU per gram plant material. This microbe achieved a high titer on all plant types tested. The presence of growth on the mock treatment on non-selective medium indicates the presence of endophytic microbes.



FIG. 15B. Colonization of seedlings with Lactobacillus plantarum DP100 expressed as average CFU per gram plant material. This microbe achieved a high titer on arugula but not on Outredgeous lettuce. Growth of very small colonies, not resembling the strain of interest on MRS indicates the presence of endophytic microbes (white dotted bar).



FIG. 15C. Colonization of seedlings with Leuconostoc mesenteroides DP93 expressed as average CFU per gram plant material. This microbe achieved a high titer on arugula and Little Gem lettuce and only small increases were present with higher inoculum.



FIG. 15D. Colonization of seedlings with DMA #2 expressed as average CFU per gram plant material. This DMA achieved a high titer on arugula, Little Gem and Outredgeous lettuce. Of note, the bacterial component of the DMA (selected for on MRS) is impaired relative to the other groups for Black Seeded Simpson Lettuce. Growth of very small colonies, not resembling the strain of interest, on MRS for Outredgeous lettuce indicates the presence of endophytic microbes (white dotted bar).



FIGS. 16A-16D. Colonization of seedlings with DMAs. Eight seed-types were inoculated with DMAs and colonization was examined DMAs contained one lactic acid bacterium and one yeast and hence were plated on MRS (bacterial selection), TSA (all microbes), PDA with chlorotetracycline (yeast selection). Colonization is expressed as microbial CFUs per gram of plant material. Note the background colonization observed in the mock controls for Curly kale and Early Wonder beet. The microbes present here represent the naturally occurring endophytes of these plants different from the heterologous microbes added with the treatments.



FIG. 16A. Colonization of seedlings with DMA #3. High levels of colonization were achieved with this DMA on arugula and kale, but colonization was approximately 1000-fold lower on Daikon radish.



FIG. 16B. Colonization of seedlings with DMA #4. The microgreen variety of arugula, beet, and kale were all colonized strongly whereas the cabbage and conventional arugula were colonized less well.



FIG. 16C. Colonization of seedlings with DMA #5. Arugula, broccoli, and kale were all colonized to 1×108 CFU, however, the Daikon radish only achieved a 100-fold lower level of colonization.



FIG. 16D. Colonization of seedlings with DMA #6. The microgreen variety of arugula, broccoli, beet, and kale all exhibited a high degree of colonization, while the Red Arrow radish was colonized to a lower level. The Daikon radish was not colonized.


Example 9: Colonization and Plant Benefits Measured in Hydroponic Systems

Hydroponically grown plants represent an increasing share of agricultural crops as indoor farming provides a year-round production cycle and vertical farming offers an increased efficiency in land usage. In addition, these soil-less systems offer a great deal of control over the plant growth conditions but provide unique challenges for the agriculturalist and the plants themselves. In soil, many potentially pathogenic microbes are present which are often kept under control by the natural microbial symbionts of the plants. Pathogens may be less abundant in hydroponic systems, thus colonization by our microbes have the potential to be less beneficial to the plant. This reduces the need for agrochemicals such as fungicides that may be undesirable for the consumer. We aimed to determine if colonization could be achieved with hydroponically grown plants and if it could represent a benefit in the overall yield.


In order to examine whether colonization of plants could be successfully achieved in hydroponic systems, we selected three varieties of lettuce, Little Gem, Black Seeded Simpson, and Outredgeous, for colonization experiments. Surface-disinfected seeds were inoculated with DP100, DMA #1, or a mock condition. Inocula were combined with polymer prior to application to seeds. The seeds were then sent to Zea Biosciences (Walpole, MA), for growth aseptically using hydroponics. Twelve seedlings per condition were harvested 20 days later and plant colonization and weights were measured.


Colonization was achieved with at least one treatment for each type of lettuce, though to a lower level than the amount of inoculum used. The Black Seeded Simpson lettuce variety was exclusively colonized by DMA #1. The Little Gem lettuce was colonized by DP100. However, the Outredgeous lettuce was successfully colonized by both. Average and aggregate plant masses were unaffected by the colonization of the plants, indicating no detriment to growth.



FIGS. 17A-17C. Colonization and weights of hydroponically grown lettuces.



FIG. 17A. Shows the average colonization of per plant (dark grey bars) relative to the original seed inoculum (light gray bars). CFU plating was performed on MRS selective medium alone. Note the specificity between colonizer and lettuce type.



FIG. 17B. Box and whisker plots of lettuce plant masses. In general plant mass was unchanged by treatment type regardless of whether colonization was successful.



FIG. 17C. Histogram depicting aggregate plant masses. The total mass of 12 plants per treatment was measured. Differences in total yield can be seen between lettuce types but not within each group.


Example 10: Colonization and Plant Benefits Measured in Peat-Grown Systems

Peat moss is a common substrate on which to germinate seeds before planting in home gardens and commercially. We researched whether colonization with our microbes improved tomato plant vigor. For this study, Tomato seeds, var sweetie ((Ferry Morse Product Number: 1505), were disinfected and inoculated with L. plantarum DP100, P. kudriavzevii DP102, L. garvieae DP97 or mock control and planted in sterilized peat pellets and SUPERthrive Sample, 50 mm Pellets (Ferry Morse Product No. J616ST) and placed in Jiffy professional tomato and vegetable seed starting greenhouses. After 29 days of growth in a greenhouse the plants were harvested, photographed, weighed, and microbial colonization was measured.


After approximately a month of growth on peat pellets, seeds treated with single microbes were larger (FIG. 18A). Colonization by endophytes was apparent for each treatment group, as seen on TSA plates (FIG. 18B). Total plant colonization was higher in the treatment groups. Despite a lack of successful colonization, DP97 improved plant size. This effect is consistent with benefits conferred by the microbe at earlier stages of growth by priming some of the hormone systems in the plant and by improving colonization by native beneficial microbes. DP100 and DP102 were observed at harvest, indicating successful colonization.



FIGS. 18A-18B. Microbial preparation of seeds can enhance tomato plant growth. Tomato seeds were inoculated with three single microbe treatments or mock and grown on peat pellets for 29 days. Plants were harvested and photographed to demonstrate plant size (A). Colonization was measured on non-selective media (TSA) and media selective for DP100 and DP97 (MRS) and medium selective for DP102 (PDA+CTET)(B). DP100 and DP102 successfully colonized the tomato plants and DP97 did not. However, each treatment resulted in larger tomato plants. As it is the case in other agricultural systems tested, there is a high degree of specificity between crop and microbial inocula that will determine the best product efficacy. An early vigor increase can have a significant beneficial effect in total fruit yield.


Example 11: Germination and Plant Benefits Under Abiotic Stress (Heat) Measured in Soil

During cultivation, plants encounter many abiotic stressors such as drought, heat, cold, mineral toxicity, and salinity as well as biotic stresses primarily driven by fungal plant pathogens. Certain plant-symbiotic microbes are known to ameliorate some of the effects of these abiotic stressors so we tested whether our probiotic microbes could provide a similar benefit to seeds and plants exposed to heat stress. In this combination crop-probiotic product a double benefit system is sought on which the crop is farmed under a more sustainable practice by improving water use efficiency or nutrients, and the resulting crop is more nutritious from the perspective of the edible beneficial microbiota provided. It was recently recognized that fresh fruits and vegetables consumed raw carry viable bacteria and fungi, some of which can pass through the GI tract. Some of the probiotics are adapted to colonize crops effectively and also to survive the acidity, anaerobiosis, and bile salts on the mammalian GI tract. This reflects their evolution and co-adaptation to alternating plant and animal hosts in their life cycle and therefore provides help during plant stress exposures.


Little Gem, Black Seeded Simpson, and Outredgeous, lettuce seeds were disinfected and inoculated in polymer with L. plantarum DP100, D. hansenii DP5, P. kudriavzevii DP102, L. brevis DP94, Leuconostoc mesenteroides DP93, DMA #2 or mock control and potted in soil sterilized by autoclaving in Pro-Hex trays (Ferry Morse). Eighteen seeds were planted per treatment group. Germination, defined as the appearance of a plant shoot, was measured and recorded over four weeks. During this time the plants encountered 4 days of excessive heat (above 38° C.) at irregular intervals. After 35 days, plants were harvested and weighed to determine aggregate weights.


With each type of lettuce, one or more microbe treatments improved germination rates. Little Gem lettuce displayed the lowest heat-tolerance, with only a small percentage of plants germinating (FIG. 19A) and surviving (FIG. 19B), so aggregate weights were not measured due to small sample size. In spite of this, germination rates were improved for this lettuce with DP5, DP94, and DP93. Germination rates were lower than the mock control for DP100, indicating this microbe-plant pairing is not beneficial in this instance.


Outredgeous lettuce exhibited the greatest improvements in germination rates with microbe treatment under heat stress. Treatment with DP94 doubled the germination rate, while DP93 nearly tripled the number of germinated plants. Furthermore, plant survival was vastly improved all treatments except for DP100, indicating that microbial treatment is extremely beneficial in this context. Finally, aggregate plant masses were improved 5-6-fold with DP94 and DP93 seed treatment. This finding is important for agriculture in hot environments as revenue is generated from the number and total weight of plants harvested.


Black Seeded Simpson lettuce was the most heat-tolerant of the lettuce types tested (56% percent germination of the mock treatment group). Hence, the benefit of microbial treatment was diminished for this variety. Only DP100 demonstrated an improvement in germination under heat stress over the mock. This differs from the other two varieties where DP100 resulted in lower germination rates than the mock. Additionally, the aggregate weights of the DP100 lettuces were 10 times higher. This example highlights the specificity in relationship between plant and microbe. DP93 did not improve germination rates but did appear to improve plant aggregate weights, which may suggest that the benefits to the plant provided by this microbe are on growth rather than germination.


We also sought to examine the heat-tolerizing beneficial effects of our microbes on mature plants at harvest. Little Gem lettuce was selected because it displayed the least heat tolerance of the lettuces tested in the earlier study. To do this, Little Gem lettuce seeds were disinfected and inoculated in polymer with L. plantarum DP100, DMA #2 or mock control and given to Zea BioSciences to germinate in their hydroponic system. Three-week-old seedlings (five per treatment) were transplanted into conventional potting soil. The plants were grown for an additional 7 weeks in a greenhouse where they were exposed to 4 days of excessive heat (above 38° C.) at irregular intervals. After which, plants were harvested, photographed and weighed.


Single microbe or DMA treatment had a profound effect on the growth of the lettuce under heat stress. Plant vigor was improved with treatment of DMA #1 but further improvements were seen with single DP100 treatment. Importantly, aggregate plant weight was improved by 45% with DP100 treatment and 27% with DMA #1 treatment. Crop yield improvements of this sort would result in greater market values for farmers.



FIG. 19A. Germination rates under heat stress. Germination rates for each lettuce variety are displayed as percent germination (of 18 seeds) over time. Not all microbe treatments improved germination rates over mock (black). The microbe that improved germination most was specific for each lettuce type.



FIG. 19B. Total plant survival under heat stress. Not all plants that germinated survived continued heat stress. This histogram indicates how many plants survived to the point of harvest. Treatment of Outredgeous lettuce seeds with DP93 and DP94 improved survival.



FIG. 19C. Pro-Hex aggregate weights under heat stress. The total weight of all Outredgeous and Black Seeded Simpson lettuce plants harvested at 35 days post planting. A combination of germination improvement and enhanced plant growth led to more biomass generated for lettuce treated with DP94, DP93, and DP100, when compared with mock and DP5 conditions.



FIG. 20A. Little Gem seeds treated with microbes result in larger and more healthy plants when subjected to abiotic (heat) stress. Photographs of mature plants from mock-treated (left) and single microbe or DMA-treated seeds (right). A measuring tape reference is included for size in each photo. Note the larger plant sizes with probiotic microbe treatment.



FIG. 20B. Little Gem potted plant masses grown with heat stress. Box and whisker plot of masses from five lettuce plants harvested (left) and a histogram of aggregate plant masses (right). With both measurements plant masses were improved with microbe or DMA inoculation.


Example 12: Microbes can Colonize Plants and Humans as Part of their Life Cycle

Lactic acid bacteria and other groups of bacteria colonize plant tissues on the surface or as endophytes inside tissues. Lactobacillus, Leuconostoc and Lactococcus for example have been detected in fresh cabbage and then enriched in fermented products such as kimchi and considered probiotics providing health benefits to the human host. In addition to the plant host, they have been isolated from human stool or colonic biopsies indicating they can colonize or transit through the human gastrointestinal tract and therefore considered commensals for humans and safe to consume. A genomic survey of the samples listed in Table A revealed that there was a total of 94 bacterial genera and when compared to human stool meta studies there is an overlap of 34 genera found both in the plant host and in humans. The list with the overlapping genera in FIG. 8 contains the preferred candidates for nutriobiotics including multiple DP entries listed in Table E in addition to Lactobacillus, Leuconostoc and Lactococcus. In some embodiments, bacteria belonging to the genera listed in FIG. 8 can be developed into nutriobiotics.


Example 13: Organic Farming Promotes a Higher Microbial Content and Diversity than Conventional Farming

The use of agrochemicals since the green revolution has been aimed to increase crop yield by the use of chemical pesticides and herbicides with transgenic plant lines. This practice has a detrimental effect in the overall natural endogenous microbiota that decreases the product's nutritional value with a reduced content of beneficial microbes as the fungicides and pesticides are not specific to eliminate a target pathogen but affect also beneficial species. In FIGS. 9A-9D these differences are measured in strawberries and blackberries. For strawberries of the same variety farmed conventionally there is at least 10-fold decrease in the total microbial populations measured on several culture media (FIG. 9A) whereas not significant changes were observed in blackberries (FIG. 9B). In some embodiments, the use of nutriobiotics can provide a supplemental heterologous microbial load to restore some of the plant and human beneficial microbes.


Example 14: Carbohydrate-Related Enzymes CAZymes in Nutiobiotics are Important for their Role in Plant and Human Host

There are different enzyme families relevant in the role of bacteria with their beneficial role in crops and in humans. For example, glycosyl hydrolases (GH) cleave specific moieties on fungal cell walls that can serve as protectants against fungal pathogens protecting the crop from infections. Other families of GH break down components of plant fibers that microbes convert into anti-inflammatory short chain fatty acids in the colon to aid in the plant material complete digestion and production of fermentable substrates that can be beneficial and cross feed with other probiotic members in the gut. In FIG. 10 it is represented the abundance of the most relevant families of CAZymes and the feature of this as a nutriobiotic function.


All references, issued patents, and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.

Claims
  • 1.-18. (canceled)
  • 19. A nutritive food product comprising a preparation derived from edible leaves of a microgreen plant selected from a member of the Eruca genus, wherein at least a portion of the microgreen plant comprises a diversified microbial ecology comprising at least two heterologous microbes, wherein the heterologous microbes comprise at least two microbial species selected from any two of the species shown in Table B or Table E, or wherein the heterologous microbe comprises a nucleic acid sequence that has at least 97% identity to any one of the sequences shown in Table F.
  • 20.-23. (canceled)
  • 24. A seed or seedling of an agricultural microgreen plant having disposed on an exterior surface of the seed or seedling a formulation comprising an heterologous microbe, wherein the heterologous microbe is disposed on an exterior surface of the seed or seedling in an amount effective to colonize the plant, the formulation further comprising (i) at least one member selected from the group consisting of an agriculturally compatible carrier, a tackifier, a microbial stabilizer, a fungicide, an antibacterial agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, and a nutrient and (ii) a polymeric substance or an adhesive substance or a polymeric-adhesive substance.
  • 25.-34. (canceled)
  • 35. A nutritive food product comprising edible leaves of a herbaceous plant selected from a member of the Eruca genus, wherein at least a portion of the herbaceous plant comprises a diversified microbial ecology comprising at least two heterologous microbes that (i) synergistically benefit growth of the herbaceous plant or (ii) synergistically benefit resistance of the herbaceous plant to abiotic stress selected from temperature and moisture level.
  • 36.-40. (canceled)
  • 41. The nutritive food product of claim 35, wherein the edible leaves are obtained from the herbaceous plant under conditions such that the diversified microbial ecology is substantially retained in the edible leaves.
  • 42. The nutritive food product of claim 35, wherein the diversified microbial ecology produces a heterologous metabolite or enhance the production of endogenous metabolites in a tissue of the herbaceous plant.
  • 43. The nutritive food product of claim 35, wherein the edible leaves comprise detectable amounts of the heterologous microbe.
  • 44.-55. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2021/038311, filed Jun. 21, 2021, which claims priority to and the benefit of U.S. Provisional Application Nos. 63/041,381, filed Jun. 19, 2020, each of which is hereby incorporated in its entirety by reference for all purposes.

Provisional Applications (1)
Number Date Country
63041381 Jun 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2021/038311 Jun 2021 US
Child 18067470 US