COMPOSITIONS AND METHODS FOR RECRUITING STEM CELLS

Information

  • Patent Application
  • 20140106447
  • Publication Number
    20140106447
  • Date Filed
    March 15, 2013
    11 years ago
  • Date Published
    April 17, 2014
    10 years ago
Abstract
Described herein are compositions and methods of using modified placental tissue grafts composed of at least one membrane, capable of recruiting stem cells in vivo and in vitro.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention is directed, in part, to compositions for recruiting stem cells. In one embodiment, the stem cell recruitment is to the site of a diseased or injured organ and/or body part. Stem cell recruitment is achieved by use of a sufficient amount of modified placental tissue. Methods for achieving stem cell recruitment are also provided.


2. State of the Art


Heretofore, modified placental tissue has been used to treat a diseased or injured organ. However, such use has been limited by the amount of tissue available and the size of the organ. As a general rule, the minimum amount of modified placental tissue to elicit the desired result has been used. For example, in one embodiment, the placental tissue is used as a barrier layer between organs so as to prevent adhesion formation. See, for example, U.S. Publ. No. 2010/0104539. In such cases, the modified placental tissue successfully provides an exogenous therapeutic effect.


It is well understood that a more successful therapeutic outcome is achieved when the treatment regimen includes not only the exogenous therapeutic effect but also an endogenous therapeutic effect. That is to say that patients who are able to cooperatively couple an exogenous therapeutic agent with their body's own ability to heal itself will achieve a better outcome. One mechanism for endogenous healing is the recruitment of stem cells to the injured or diseased organ site. However, such an in vivo recruitment has been exceptionally difficult to achieve.


SUMMARY OF THE INVENTION

This invention is based, in part, on the discovery that application of a sufficient amount of modified placental tissue proximate to a diseased or injured body part of a patient surprisingly elicits stem cell recruitment to the site of the diseased or injured body part. Such a discovery provides for not only an exogenous therapeutic effect provided by the modified placental tissue but also an endogenous therapeutic effect provided by the recruited stem cells.


Accordingly, in one aspect of this invention there is provided a composition comprising a sufficient amount of modified placental tissue so as to elicit stem cell recruitment in vivo when applied proximate to an injured or diseased body part.


In another aspect of this invention, there is provided a composition comprising a sufficient amount of modified placental tissue so as to elicit an effective amount of stem cell recruiting factors so as to promote stem cell recruitment in vivo when applied proximate to an injured or diseased body part.


In another aspect, there is provided a method for eliciting stem cell recruitment from a biological source comprising stem cells, which method comprises contacting said biological source with a sufficient amount of modified placental tissue under conditions which result in stem cell recruitment proximate to the modified placental tissue. In one embodiment, the stem cell recruited is a haematopoietic stem cell (HSC). In another embodiment, the stem cell recruited is a mesenchymal stem cell (MSC).





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several aspects described below.



FIG. 1 shows a schematic for a cell culture insert for stem cell migration assays described in Example 3.



FIG. 2 shows a bar graph of percent cell migration in human mesenchymal stem cells (MSCs) cultured in the presence of various amounts of EpiFix®. Details are described in Example 3.



FIG. 3A shows a bar graph of percentage living/Lin mouse hematopoietic stem cells in normal skin, sham implant, acellular dermal matrix, and EpiFix® at 3, 7, 14, and 28 days post implant. Values shown are means+/−standard deviation, n=4 specimens. ** indicates p<0.05 when comparing EpiFix® or control ADM to normal skin and sham implant via one-way ANOVA. †† indicates p<0.05 when comparing EpiFix® to control ADM via two tailed t-test. FIG. 3B shows a bar graph of percentage living/Lin mouse mesenchymal cells in normal skin, sham implant, acellular dermal matrix, and EpiFix® at 3, 7, 14, and 28 days post implant. Values shown are means+/−standard deviations, n=4 specimens. ** indicates p<0.05 when comparing EpiFix® or control ADM to normal skin and sham implant via one-way ANOVA. Details are described in Example 4.



FIG. 4A shows representative FACS dot plots of cells detected using flow cytometry and fluorescent detection of CD45 and Sca-1. FIG. 4B shows photomicrograph of dermal tissue stained with DAPI which stains cell bodies, and CD34, which is a marker for hematopoietic stem cells. Details are described in Example 5.





DETAILED DESCRIPTION OF THE INVENTION

Before this invention is disclosed and described, it is to be understood that the aspects described below are not limited to specific compositions, synthetic methods, or uses as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.


This invention is predicated in part on the discovery that the use of a sufficient amount of modified placental tissue in treating a diseased or injured body part provides not only an exogenous treatment regimen but surprisingly also promotes an endogenous response which results in stem cell recruitment to the body part to be treated.


In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:


It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a bioactive agent” includes mixtures of two or more such agents, and the like.


“Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event or circumstance occurs and instances where it does not. For example, the phrase “optionally cleaning step” means that the cleaning step may or may not be performed.


The term “subject” or “patient” as used herein refers to any vertebrate organism including, but not limited to, mammalian subjects such as humans, farm animals, domesticated pets and the like.


The term “amnion” as used herein includes amniotic membrane where the intermediate tissue layer is intact or has been substantially removed.


The term “exterior surface” refers to either or both surfaces of the modified placental tissue which will contact the organ of the patient to which tissue is applied.


The term “organ” as used herein is used to have an ordinary meaning in the art, and refers to organs constituting animal viscera in general.


The term “body part” as used herein refers to any portion of a body of a subject, including tissue(s) and organs, and also body parts which are not generally referred to as organs provided that such body parts are amenable to treatment with stem cells. Exemplary body parts include, but are not limited to, bone, cartilage, tendon, ligament, retina, peripheral nerve, peripheral nerve sheath, small intestine, large intestine, stomach, skeletal muscle, heart, liver, lung and kidney.


The term “diseased” as used herein refers to an organ and/or body part that is characterized as being in a disease state, or susceptible to being in a disease state, wherein the disease is amenable to treatment with stem cells.


The term “injured” as used herein is used to have an ordinary meaning in the art, and includes any and all types of damage to an organ and/or body part, wherein the injury is amenable to treatment with stem cells.


The term “modified placental tissue” refers to any and all components of placental tissue including whole placental tissue that has been modified by cleaning, disinfecting, and/or segmenting the tissue as well as to separated components of placental tissue such as amnion, chorion, the umbilical cord, and the like. Modified tissue may maintain cellular layers, such as the epithelial layer and/or the fibroblast layer. Modified placental tissue may include further modification, such as lamination of one or more layers of placental tissue, micronization of placental tissue, chemisorption or physisorption of small molecules, proteins (e.g. growth factors, antibodies), nucleic acids (e.g. aptamers), polymers, or other substances.


The term “sufficient amount” refers to an amount of a modified placental tissue that is sufficient to provoke stem cell recruitment proximate to or on the modified placental tissue over time, either in vivo or in vitro. The “sufficient amount” of a modified placental tissue will vary depending on a variety of factors, such as but not limited to, the type and/or amount of placental tissue used, the type and/or size of the intended organ and/or body part to be treated, the severity of the disease or injury to the organ and/or body part to be treated and the administration route. The determination of a “sufficient amount” can be made by one of ordinary skill in the art based on the disclosure provided herein.


The term “stem cell recruiting factors” refers to any and all factors that are capable of recruiting stem cells and causing them to migrate towards a source of such factors. Non-limiting examples of stem cell recruiting factors may be one or more CC chemokines, CXC chemokines, C chemokines, or CX3C chemokines.


The term “stem cell recruitment” refers to direct or indirect chemotaxis of stem cells to a modified placental tissue. The recruitment may be direct, wherein stem cell recruiting factors (e.g. chemokines, which induce cell chemotaxis) in a modified placental tissue are released from the placental tissue and induce stem cells to migrate towards the placental tissue. In one aspect, the recruitment may be indirect, wherein stem cell recruiting factors in a modified placental tissue are released from the placental tissue which induce nearby cells to release factors (e.g. chemokines), that in turn induce stem cells to migrate towards the placental tissue. Still further, stem cell recruitment may embody both direct and indirect factors.


The term “proximate to” as used herein means adjacent to, or on a body part. For example, modified placental tissue proximate to the heart means that the placental tissue may be on the heart, or within 1-2 cm of the heart, but still close enough to exert a stem cell recruiting effect. In general, “proximate to” means that the modified placental tissue is placed sufficiently close so as to recruit stem cells to the diseased or injured organ and/or body part. Such a distance is generally within the skill of the art but preferably is within 3 cm of the organ or body part.


The term “exogenous” refers to non-naturally occurring substances, including allograft tissue, such as modified placental tissue.


The term “endogenous” refers to autologous biological substances from a subject.


The term “biological source” refers to an organ or tissue that contains a population of stem cells available to be recruited, e.g. bone marrow. The biological source may be in vivo or in vitro.


Titles or subtitles may be used in the specification for the convenience of a reader, which are not intended to influence the scope of the present invention. Additionally, some terms used in this specification are more specifically defined below.


In one embodiment, placental tissue may be modified as described in U.S. Ser. No. 61/683,698, including cleaning, separation of the amnion and chorion, removal or maintenance of the epithelial cell layer, decontamination, and dehydration. Dehydration may be accomplished using the drying apparatus as described in U.S. Ser. No. 61/683,698. Both of which applications are incorporated herein by reference in their entirety. Each aspect of that process produces modified placental tissue for the purposes of this invention whether used alone or in combination. However, it is preferred that the modified placental tissue include at least the steps of cleaning and decontamination. As such, modified placental tissue preferably comprises placental tissue which has been cleaned and decontaminated and also includes placental tissue which has undergone one or more of separation of the amnion and chorion, removal of the epithelial cell layer, and dehydration.


In some embodiments of the present technology, the modified placental tissue is selected from amnion, chorion, or both amnion and chorion. In preferred embodiments, modified placental tissue does not include the umbilical cord.


Modified placental tissue can also be formed into layers which may be dried separately and laminated together or dried together to form multi-layer laminates. Modified placental tissue may also be micronized into particles of a variety of sizes. Micronized placental tissue may be sandwiched between one or more layers of a multilayer laminate, or on top of a laminate. Micronized placental tissue may also be added to single layer of modified placental tissue. See, for example, U.S. Provisional Application Ser. No. 61/543,995 which is incorporated herein by reference in its entirety.


It will be appreciated that the actual preferred amounts of micronized placental tissue used to prepare the tissue grafts described herein in a specified case will vary according to the specific body part to be treated, the particular compositions formulated, the mode of application, and the degree of disease or injury in particular subject being treated. Dosages for a given host can be determined using conventional considerations, e.g. by customary comparison of the differential activities of the subject compounds and of a known agent, e.g., by means of an appropriate conventional pharmacological protocol. Physicians and formulators, skilled in the art of determining doses of pharmaceutical compounds, will have no problems determining dose according to standard recommendations (Physician's Desk Reference, Barnhart Publishing (1999).


The modified placental tissue described herein has numerous exogenous medical applications. For example, such tissue that has at least one amnion layer has been used in numerous wound healing applications. Amnion contains growth factors such as EGF, bFGF, and PDGF that promotes wound healing and re-epithelialization. This invention is based on the discovery that when used in sufficient amounts, such modified placental tissue also induces, directly or indirectly, induce stem cell recruitment proximate the amnion. In one aspect, the application of the modified placental tissue described herein where the epithelial layer of the skin is disrupted can be effective in delivering the growth factors directly to the injured site to promote healing as well as stem cell recruitment. Amnion is a unique ECM due to the presence of collagen types IV, V and VII, which enables the amnion to bind water and swell. It is understood that the wound healing aspect of the modified placental tissue has an exogenous therapeutic effect whereas the stem cell recruitment arising directly and/or indirectly from the modified placental tissue has an endogenous therapeutic effect.


Similarly, the intermediate tissue layer of the amniotic membrane is composed largely of glycoproteins and proteoglycans, which also enables the intermediate tissue layer to bind water. Thus, the tissue grafts when applied to a diseased or injured organ or body part helps retain water at that site, which facilitates healing. For example, cell migration, including stem cell recruitment, within the healing cascade is facilitated in a hydrophilic environment. The intermediate layer is also composed of collagen types I, III, and IV. Type I collagen provides mechanical strength to skin by providing a major biomechanical scaffold for cell attachment and anchorage of macromolecules. Type III collagen provides elasticity.


In some aspects, one or more stem cell recruiting factors that enhance stem cell chemotaxis and or recruitment may be added to modified placental tissue of the present technology. In other aspects, stem cell recruiting factors can be added to micronized placental tissue. Alternatively, stem cell recruiting factors may be added to layers of a laminate tissue graft. Thus, for example, cytokines, chemokines, growth factors, extracellular matrix components and other bioactive materials can be added to the modified placental tissue to enhance native stem cell recruitment. Specific non-limiting examples of stem cell recruiting factors may include one or more of the following: CC chemokines, CXC chemokines, C chemokines, or CX3C chemokines. Other stem cell recruiting factors may further include growth factors such as cc-Fibroblast Growth Factor (αFGF or αFGF-1), β-Fibroblast Growth Factor (βFGF-1 or βFGF-2), Platelet-Derived Growth Factor (PDGF), Vascular Endothelial Growth Factor (VEGF-A, B, C, D or E), Angiopoietin-1 and -2, Insulin-like Growth Factor (IGF-1), Bone Morphogenic Protein (BMP-2 and -7), Transforming Growth Factor-α and -β (TGF-α and TGF-β) Epidermal Growth Factor (EGF), Connective Tissue Growth Factor (CTGF), Hepatocyte Growth Factor (HGF), Human Growth Hormone (HGH), Keratinocyte Growth Factor (KGF), Tumor Necrosis Factor-α (TNF-α), Leukemia Inhibitory Factor (LIF), Nerve Growth Factor (NGF), Stromal cell derived factor 1 (SDF-1α), Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) and other factors as is known in the art.


In other aspects, the modified placental tissue described herein can be used in orthopedic applications (i.e., sports medicine). Sports medicine includes the repair and reconstruction of various soft-tissue injuries in or around joints caused by traumas, or chronic conditions brought about by repeated motion, in active individuals and athletes. For example, sports medicine includes the treatment of a variety of different injuries associated with, but not limited to, shoulders, elbows, feet, ankles hand and wrists. In one aspect, the modified placental tissue can be used to alleviate inflammation (e.g., tennis elbow, carpel tunnel, etc.). In other aspects, the tissue grafts can be applied to articular surfaces in order to provide medical benefits. For example, the modified placental tissue can help reduce inflammation or swelling of an articular surface. In other aspects, the modified placental tissue can help repair and/or regrow chondrocytes. In further aspects, the modified placental tissue described herein can be used in other orthopedic applications such as aid in the repair of periostium; help repair ruptured/damaged bursa; help secure void filling material during bone repair; or in applications involving a subject's extremities (e.g., anti-adhesion barrier for small bone fixation, anti-adhesion barrier where metal plating or hardware is used, or help repair ruptured/damaged bursa). In each case, the additional benefit of stem cell recruitment provides a further level of therapy to the diseased and/or injured organ and/or body part.


In one aspect, the stem cell recruitment that is achieved by the modified placental tissue described herein is useful in enhancing or improving wound healing. The types of wounds that present themselves to physicians on a daily bases are diverse. Acute wounds are caused by surgical intervention, trauma and burns. Chronic wounds are wounds that are delayed in closing compared to healing in an otherwise healthy individual. Examples of chronic wound types plaguing patients include diabetic foot ulcers, venous leg ulcers, pressure ulcers, arterial ulcers, and surgical wounds that become infected.


The physician's goal when treating traumatic wounds is to heal the wound while allowing the patient to retain natural function in the area of the wound with minimal scaring and infection. If a wound becomes infected, it can lead to a loss of limb or life. For the most part, physicians heal these patients without incident. However, physicians dealing with chronic wounds are mainly concerned with closing the wound as quickly as possible to minimize the risk of an infection that could lead to loss of limb or life. Chronic wounds are wounds on patients that have co-morbidities that complicate or delay the healing cascade. In one aspect, the modified placental tissue described herein can function as a tissue regeneration template that delivers essential wound healing factors, extracellular matrix proteins, inflammatory mediators as well as elicit stem cell recruitment to that site to help reduce inflammation, enhance healing, and reduces scar tissue formation. In this aspect, the modified placental tissue including micronized placental compositions described herein are used in treating wounds amenable to negative pressure technology, including burns and ulcers, such as chronic ulcers, diabetic ulcers, decubitus ulcers and the like.


In another aspect, the modified placental tissue is used in conjunction with conventional treatments, including, but not limited to, negative pressure therapy, and may also be used in combination with matrices or scaffolds comprised of biocompatible materials, such as collagen, hyaluronic acid, gelatin or combinations thereof.


In another aspect, the modified placental tissue described herein can be used to enhance wound healing and prevent scar formation as a result of a surgical incision. In one aspect, the tissue grafts can be applied to the open incision followed by suturing the incision. The modified placental tissue are particularly useful where large incisions are produced by a surgical procedure. An example of such a procedure involves the treatment of spinal scoliosis, which requires a significant incision along the back of the subject. In one aspect, modified placental tissue composed of an amnion/chorion laminate sandwich of micronized particles where the epithelium layer is intact are useful in the healing of surgical incisions with minimal scarring. With respect to wound healing and the prevention of scar formation, the modified placental tissue described herein can be used in combination with other wound healing products.


In another aspect, the modified placental tissue described herein are useful for addressing or alleviating complications to the spine and surrounding regions that occur after surgery. Acute and chronic spinal injuries and pain can be attributed to trauma and/or degenerative changes in the spinal column. For the degenerative patient, there is usually a progression of possible surgeries depending on the patient's symptoms and disease state. The first surgical option when conservative therapy has failed is a laminectomy or micro-discectomy. These minimally invasive procedures are intended to relieve the pain generator or stenosis of the spinal canal. If there is progression of the disease, then other surgeries may be necessary including, but not limited to, a spinal fusion. Spinal fusions may be achieved through several approaches: anterior (from the front through the abdomen), posterior (from the back), or lateral (through the side). Each approach has advantages and disadvantages. The goal is typically to remove the spinal disc, restore disc height and fuse the two spinal vertebrae together to limit motion and further degradation. There are also surgical options for the surgeon and patient to replace the spinal disc with an artificial disc. Spine trauma is typically treated by fusing the spine levels or if a vertebrae is crushed, the surgeon may choose to do a corpectomy and fusing across the levels that were affected.


In one aspect, the modified placental tissue described herein are useful in preventing or reducing scar formation on the spine or near the spine and sealing dural tears. Scar formation at or near the spine after surgery can be very debilitating and possibly require subsequent operations to address the symptoms as discussed above. The term “anti-adhesion” is also used in the art to refer to the prevention of scar tissue at or near the spine. In other aspects, the tissue grafts described herein can be used as a protective barrier, where the composition protects the spinal dura from post-surgical trauma from the surrounding surgical site. For example, the composition can prevent damage to the spinal dura caused by sharp edges from newly cut bone such as vertebrae. In other aspects, the tissue grafts can be used for anterior lumbar interbody fusion, posterior lumbar interbody fusion trans-lumbar interbody fusion, anterior cervical discectomy and fusion, micro discectomy, spinal dura repair, and as a dura sealant to prevent CSF leakage.


Depending upon the surgical procedure, the tissue grafts can be applied directly to the spinal dura, the surrounding region of the spine to include nerve roots, or a combination thereof. Due to the unique structure of vertebrae, the tissue grafts can be placed and affixed at the appropriate position in the subject. The tissue grafts can also provide proximal and distal barrier coverage where the spinal lamina has been removed for exposure to the affected area.


The tissue grafts are useful in preventing or reducing scar formation that can result from a variety of surgical procedures associated with the spine. The tissue grafts can be used after any procedure in the neck, mid-back, or lower back. Depending upon the application, the epithelium of the amnion can be substantially removed. For example, in posterior procedures such as a laminectomy or discectomy, the epithelium layer of the amnion is substantially removed. Removal of the epithelial cell layer exposes the amnion's basement membrane layer, which increases cell signaling characteristics. This up regulation response enhances cellular migration and expression of anti-inflammatory proteins, which inhibits fibrosis. The spinal dura is typically left unprotected following posterior procedures.


In other aspects, the epithelial cell layer of the amnion is not removed. For example, in anterior procedures or modified anterior procedures such as Anterior Lumbar Interbody Fusion (ALIF) and Transforaminal Interbody Fusion (TLIF), the amnion epithelium layer is not removed and remains intact. In these aspects, the tissue grafts provide additional protection to the vertebral surgical site by maintaining separation from the peritoneum, larger vessels, and abdominal musculature. The tissue grafts serve as a reduced friction anatomical barrier against adhesions and scaring. For example, the tissue grafts can prevent scar tissue binding major blood vessels to the spine. This is a common problem with post-spinal surgery, which requires a second surgical procedure to address this.


In other aspects, the tissue grafts can be used to reduce inflammation related to gingivitis, periodontitis, mucositis, and peri-implantitis, treatment of periodontal intra-bony defects to regenerate new bone, periodontal ligament, and cementum, regenerate lost bone around dental implants, increase the amount of clinical attachment following osseous contouring, treatment of gingival recession, regeneration of interdental papilla, either through surgical reconstruction or by directly injecting the papilla to increase size and thickness, applied over the top of a barrier membrane or biocompatible mesh in alveolar vertical and horizontal bone augmentations, applied over the surgical site after primary closure to aid in healing, applied onto autograft, xenograft, alloplast, caderivic allograft or placental allograft soft tissue graft, either before, during, or after placement of the soft tissue graft in the treatment of gingival recession, increasing the amount of clinical attachment, gingival augmentations around teeth and dental implants, expanding the zone of keratinized tissue, thickening overlying gingival tissue in guided bone regeneration, mixed with a alloplast, xenograft, and or caderivic bone graft, either before, during, or after placement for use in the treatment of intrabony defects to regenerate new bone, periodontal ligament, and cementum, in guided bone regeneration regenerate lost bone around implants, site preservation, fenestration and dehiscence defects, primary and secondary alveolar ridge augmentations, sinus elevations, and gingival flap perforations. In applications involving dentin and pulpal tissue, reduce inflammation of pulpal tissue, treatment of endodontic lesions, pulpal regeneration, and injected into hollowed pulpal chamber prior to obturation in endodontic therapy. In applications involving oral mucosa tissue to reduce inflammation in oral lesions, the treatment of oral lesions, and applied onto autograft, xenograft, alloplast, caderivic allograft or placental allograft soft tissue graft either before, during, or after placement of the soft tissue graft to replace larger amounts of mucosal tissue lost through disease or traumatic injury.


In one aspect, the tissue grafts can be used to repair peripheral nerves. The tissue graft can be placed on a repaired nerve sheath to prevent scar formation onto the healing nerve. The tissue grafts can also provide a protective enclosed environment for the repair to progress successfully. In other aspects, the tissue grafts can be manufactured into a nerve regeneration tube or artificial sheath to guide nerve growth in a protective environment where the nerve ends cannot be re-approximated. Here, nerves can re-attach up to a certain distance if the ends are allowed to meet freely without other soft tissue interfering. In another aspect, the tissue grafts can be used to wrap nerve bundles after prostatectomy procedures. These nerves are responsible for erectile function and possible continence. The tissue grafts can be applied to the nerve bundles to keep them from scarring and possibly damaging the nerves.


In another aspect, the tissue grafts may used for tendon and ligament repair and healing. A torn or damaged hamstring, for example, may be treated with a tissue graft of the present technology, with or without the addition of a scaffold for stem cell attachment and growth to repair the damaged hamstring.


In yet another aspect, the tissue grafts may be used to repair damage or degeneration of skeletal muscle damage. The muscle may be treated by applying the tissue graft proximate to the damaged muscle.


In still another aspect, the tissue grafts can be used in obstetrics and gynecological (OB/GYN) surgical procedures involving the treatment of diseases that may be related to the fertility of the female, pain caused by the reproductive system or cancer in the reproductive system. These procedures include the removal of uterine fibroids (myomectomy), removal of ovarian cysts, tubal ligations, endometriosis treatments, removal of some cancerous or non-cancerous tumors, and vaginal slings. These procedures may be completed through a transvaginal, abdominal or laproscopical approach.


The tissue grafts can be used as a patch to reduce the amount of scar tissue in the reproductive system after a surgical procedure. Scar tissue is another form of fibrous tissue and may also contribute to fertility problems. The ability to minimize the amount of scaring on the ovaries, or within the fallopian tubes may help with post-operative fertility and even pain. In another aspect, the tissue grafts can be used to reline the uterine wall after severe endometriosis treatments and increase the patient's ability to conceive. In a further aspect, the tissue grafts can be used as an anti-adhesion barrier after removal of ovarian cyst or aid in the repair of vaginal wall erosion.


In other aspects, the tissue grafts can be used in cardiac applications. Angina is severe chest pain due to ischemia (a lack of blood, thus a lack of oxygen supply) of the heart muscle, generally due to obstruction or spasm of the coronary arteries (the heart's blood vessels). Coronary artery disease, the main cause of angina, is due to atherosclerosis of the cardiac arteries. Various open cardiac and vascular surgery procedures to remove atherosclerotic clots require the repair, reconstruction and closure of the vessel, and the support of a regenerative tissue patch to close and patch the surgical defect. Heart by-pass grafts and heart defect reconstruction (as part of an open-heart surgical procedure) also can benefit from a patch or graft to provide a buttress to soft-tissue weakness, tissue replacement if there is a lack of suitable tissue, and also the potential to reduce adhesions to the heart itself The tissue grafts described herein can be used as a patch to support the repair of vascular and cardiac defects caused by operations and complications such as carotid artery repair, coronary artery bypass grafting, congenital heart disease, heart valve repair, and vascular repair (i.e. peripheral vessels).


The tissue grafts described herein can be used in general surgery procedures. For example, general surgical procedures include procedures related to the abdominal cavity. These include the intestines, stomach, colon, liver, gallbladder, appendix, bile ducts and thyroid glands. Procedures may include hernias, polypectomy, cancer removal, surgical treatment of Crohn's and ulcerative colitis. These procedures may be done open or laparoscopically. In other aspects, the tissue grafts can be used to facilitate closure of anastomosis, an anti-adhesion barrier for anastomosis, or an anti-adhesion barrier for hernia repair.


In other aspects, the tissue grafts can be used in ENT procedures. Tympanoplasty is performed for the reconstruction of the eardrum (tympanic membrane) and/or the small bones of the middle ear. There are several options for treating a perforated eardrum. If the perforation is from recent trauma, many ear, nose and throat specialists will elect to watch and see if it heals on its own. If this does not occur or frequent re-perforation occurs in the same area, surgery may be considered. Tympanoplasty can be performed through the ear canal or through an incision behind the ear. Here, the surgeon harvests a graft from the tissues under the skin around the ear and uses it to reconstruct the eardrum. The tissue grafts described herein can be used to prevent the additional trauma associated with harvesting the patients' own tissue and save time in surgery. In other aspects, the tissue grafts can be used as a wound covering after adenoidectomy, a wound cover after tonsillectomy, or facilitate repair of the Sniderian membrane.


In other aspects, the tissue grafts described herein can be used in cosmetic surgerical procedures. Scar revision is surgery to improve or reduce the appearance of scars. It also restores function and corrects skin changes (disfigurement) caused by an injury, wound, or previous surgery. Scar tissue forms as skin heals after an injury or surgery. The amount of scarring may be determined by the wound size, depth, and location; the person's age; heredity; and skin characteristics including skin color (pigmentation). Surgery involves excision of the scar and careful closure of the defect. In one aspect, the tissue grafts described herein can be used as a patch to aid in the healing and prevention of scars; and keloid or cancer revision/removal where careful approximation of soft-tissue edges is not achievable and scar tissue can result. Additionally, the anti-inflammatory properties of the tissue grafts can enhance healing as well.


In other aspects, the tissue grafts can be used in ophthalmological applications (e.g., on-lay grafts ocular surface repair) or urological applications (e.g., facilitate closure of the vas deferens during vasectomy reversal or facilitate closure of the vas deferens resulting from trauma).


In one aspect, the tissue grafts can be used in cranial dura repair and replacement, in the elimination of a frenum pull, the regeneration of lost patella tissue, the repair of the Schneiderian membrane in the sinus cavity, soft tissue around dental implants, vestibuloplasty, and guided tissue regeneration.


In addition to the selection of the components used to make the tissue grafts, the size of the micronized particles present in the grafts can also vary depending upon their application. In certain aspects, micronized particles having a larger particle size can be used in several applications. For example, the micronized particles (e.g., micronized amnion/chorion tissue graft) having a particle size from 150 μm to 350 μm can be effective in wound healing where it is desirable to reduce or prevent scar formation and enhance soft tissue healing. In one aspect, the tissue grafts can be used to heal dermal wounds. The tissue grafts can be administered at any depth within the dermal tissue of a subject (e.g., sub-cutaneous, sub-dermal, etc.). In one aspect, the tissue grafts are useful in healing diabetic ulcers (e.g., foot ulcers). In other aspects, the dermal wounds can be tracking wounds (i.e., deep wounds that extend into the muscle tissue).


In another aspect, the tissue grafts described herein are implanted proximal or internal to a diseased and/or injured body part in an amount sufficient to attract stem cells and promote endogenous healing. In various aspects, in order to attract stem cells to a damaged body part, a sufficient amount of placental tissue is required before the stem cells migrate to the target body part. For example, as described in Example 3, stem cells migration occurred in response to EpiFix® in a concentration-dependant manner. A 1.5 mm diameter disk of EpiFix® modified placental tissue was found not to result in a significant migration of stem cells in vitro. However, 4 mm diameter EpiFix® modified placental tissue disks and 12×13 mm square EpiFix® patches show a statistically significant increase in migration of stem cells compared with control cells. One square centimeter of EpiFix® weighs 4 mg. Surprisingly, stem cell migration even in vitro requires a minimum mass of modified placental tissue to induce migration, i.e. more than the mass of a 1.5 mm disk of EpiFix® modified placental tissue. Stated another way, the presence of a sufficient amount of modified placental tissue correlates to a sufficient concentration of stem cell recruiting factors such that stem cell recruitment is achieved.


In addition, Example 4 describes in vivo implantation of a 5×5 mm square EpiFix® modified placental tissue patch, leading to a statistically significant increase in stem cell recruitment in mice, starting at about 2 weeks post-implantation. In this regard, it is contemplated that the use of a larger amount of EpiFix® modified placental tissue would further enhance stem cell recruitment either in a reduced time frame to achieve stem cell recruitment and/or the number of stem cells recruited over a given period of time. In various embodiments, the enhancement of stem cell recruitment is at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100% or more, when compared to the subject not receiving a modified placental tissue graft. Regardless, in at least this example, the data shows that more than a minimal amount of EpiFix® modified placental tissue is required in order to effect stem cell recruitment.


Further, it is also contemplated that micronized modified placental tissue can enhance the rate of stem cell recruitment in a particular body part. In these aspects, micronized modified placental tissue is added to modified placental tissue, either a single layer of modified placental tissue, or in between a multi-layer laminate of placental tissue.


EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, and methods described and claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric. There are numerous variations and combinations of reaction conditions, e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.


Example 1
Preparation of Micronized Placental Tissue

Amnion/chorion tissue grafts used here to produce the micronized particles were produced by the process described in US 2008/0046095, which is incorporated by reference in its entirety. Tissue grafts (4 cm×3 cm) and two 9.5 mm steel grinding balls were placed in 50 mL vials and the vials subsequently sealed. The vials were placed in the Cryo-block, and the Cryo-block was placed in a Cryo-rack. The Cryo-rack was placed into a liquid nitrogen holding-Dewar flask. Tissue samples were subjected to vapor phase cooling for no more than 30-60 minutes. The Cryo-rack was removed from the Dewar flask, and the Cryo-block was removed from the Cryo-rack. The Cryo-block was placed into the Grinder (SPEX Sample Prep GenoGrinder 2010) and set at 1,500 rpm for 20 minutes. After 20 minutes had elapsed, the tissue was inspected to ensure micronization. If necessary, the tissue was placed back into the Dewar flask for an additional 30-60 minutes, and moved to the grinder for an additional 20 minutes to ensure sufficient micronization. Once the tissue was sufficiently micronized it was sorted using a series of American Standard ASTM sieves. The sieves were placed in the following order: 355 μm, 300 μm, 250 μm, 150 μm, and 125 μm. The micronized material was transferred from the 50 mL vials to the 355 μm sieve. Each sieve was agitated individually in order to thoroughly separate the micronized particles. Once the micronized particles were effectively separated using the sieves, the micronized particles having particle sizes of 355 μm, 300 μm, 250 μm, 150 μm, and 125 μm were collected in separate vials.


Example 2
Preparation of Tissue Grafts with Micronized Placental Tissue

Various modifications and variations can be made to the compounds, compositions and methods described herein. Other aspects of the compounds, compositions and methods described herein will be apparent from consideration of the specification and practice of the compounds, compositions and methods disclosed herein. It is intended that the specification and examples be considered as exemplary.


A detailed description of suitable cross-linking agents and procedures is provided in U.S. Patent Application Ser. No. 61/683,697 filed Aug. 15, 2012 and entitled PLACENTAL TISSUE GRAFTS MODIFIED WITH A CROSS-LINKING AGENT AND METHODS OF MAKING AND USING THE SAME which application is incorporated herein by reference in its entirety.


A detailed description of reinforced placental tissue grafts is provided in U.S. Patent Application Ser. No. 61/683,699 filed Aug. 15, 2012 and entitled REINFORCED PLACENTAL TISSUE GRAFTS AND METHODS OF MAKING AND USING THE SAME which application is incorporated herein by reference in its entirety.


A detailed description of making and using micronized placental tissue and extracts thereof is provided in U.S. Patent Application Ser. No. 61/683,700 filed Aug. 15, 2012 and entitled MICRONIZED PLACENTAL TISSUE COMPOSITIONS AND METHODS OF MAKING AND USING THE SAME which application is incorporated herein by reference in its entirety.


Example 3
Cell Migration in the Presence of EpiFix®

Human mesenchymal stem cells (human MSC) were evaluated in cell culture in the presence of samples of EpiFix® to determine whether the EpiFix® would induce migration of the human MSC. EpiFix® is a layer of amnion and chorion with the epithelial layer intact.


Materials and Methods

Standard migration assays were performed in 24-well cell culture inserts with 8-μm pore membrane filters at the bottom of the insert (see FIG. 1; BD Biosciences). 24 hours prior to the start of the experiment, human MSCs (one donor, passage 3) were cultured in serum free media, and 300 μL of 5 μg/mL fibronectin in PBS was placed into each cell culture insert to enable adsorption of fibronectin to the cell culture insert surface overnight.


On the day of the experiment, 700 μL of serum-free culture medium was loaded into the bottom wells of the plate, followed by the addition of differently sized portions of sterilized EpiFix® (Low: 1.5-mm diameter disk; Medium: 4-mm diameter disk; High: 12×13 mm square, trimmed into 3-4 mm square pieces; n=6 EpiFix® tissue donors tested) (FIG. 2). One square centimeter of EpiFix® weighs 4 mg. Serum-free medium and medium with 10% fetal bovine serum (n=6) acted as negative and positive controls, respectively. Human MSCs (40,000 cells in 300 μL) were then loaded into the cell culture inserts and cultured for 24 hours. Then, both sides of the cell culture inserts were rinsed with PBS, and non-migrating cells in the upper portion insert were removed with a cotton-tipped applicator. Cells on the lower side of the insert plus the membrane filter were fixed in 10% formalin for 20 minutes, then rinsed and stained with hematoxylin for 5 min. The number of cells migrating through the membrane were counted on the lower surface of the membrane with an inverted microscope (Nikon TE2000; SPOT Software 4.6).


Data were normalized to the 10% FBS positive control and are expressed as mean±standard deviation of counted, migrated cells per 100× field micrograph for each sample well. Statistical comparisons were performed using a Box-Cox transformation to normalize data variance, followed by one-factor analysis of variance (ANOVA) with Tukey's honestly significant difference post-hoc test.


Results

The Low group (1.5 mm diameter disk) containing the smallest EpiFix® sample was not significantly different from the no serum negative control (see bar graph in FIG. 2). Both the Medium group (4 mm diameter disk) and the High group (12×13 mm square, trimmed into 3-4 mm square pieces) were statistically higher than the no serum control (about 60% and 75% migration relative to control; see FIG. 2), indicating that EpiFix® stimulated cell migration. The High group was not significantly different from the Medium group. The results indicate that the EpiFix® product contains one or more factors that attract human mesenchymal stem cells.


Example 4
Stem Cell Recruitment in Mice Receiving EpiFix® Implants

A study was undertaken to determine whether EpiFix® implanted in normal mice causes recruitment of stem/progenitor cells, focusing on mouse hematopoietic stem cells (HSCs) and mouse mesenchymal stem cells (mouse MSCs).


Materials and Methods

EpiFix® products from six donors were used for implantation in normal mice. A 5×5 mm square of EpiFix® was surgically placed subcutaneously in 4 month old FVB/NJ mice (weighing between about 23.50 g and about 30 g). Four mice were implanted per sample per time point. The time points were 3, 7, 14 and 28 days. The negative controls were normal skin and sham operated mice (surgical incision but no implant). Decellularized dermal matrix (acellular dermal matrix; ADM) was used as the comparative implant (Type I collagen, no cytokines). The implant and overlying skin was harvested for fluorescence-activated cell sorting (FACS).


Implants and overlying skin were harvested, cut into 1 mm2 sections, and incubated in a 0.15% dispase/0.075% collagenase solution at 37° C. for 1 hour. After centrifugation, samples were stained with a lineage antibody cocktail as described below. CD31 antibody was added followed by Alexa Fluor 647 anti-rat secondary antibody. Phycoerythrin-Cy7-conjugated anti-CD45 antibody was incubated last. Samples were prepared and analyzed as described below.


Samples were incubated with a lineage negative (lin) antibody cocktail (Ter119/CD4/CD8a/Gr-1/CD45R/CD11b) followed by phycoerythrin-Cy5 anti-rat secondary antibody. For mesenchymal stem cell analysis, conjugated antibodies were added against CD45 (phycoerythrin-Cy7) and Sca-1 (fluorescein isothiocyanate). For hematopoietic stem cell analysis, conjugated antibodies were added against CD45 (phycoerythrin-Cy7), c-Kit (phycoerythrin), and Sca-1 (fluorescein isothiocyanate). Samples were incubated with antibodies for 30 minutes and then washed by adding 5 volumes of 2% fetal bovine serum in phosphate-buffered saline with 2mM ethylenediaminetetraacetic acid. Cells were centrifuged and then re-suspended in propidium iodide for 1 minute at 4° C. Samples were analyzed using an LSR Flow Cytometer. Using CellQuest software), samples were gated for lin/Sca-1+/CD45 to define mesenchymal stem cells and for lin/Sca-1+/c-Kit+/CD45+ to define hematopoietic stem cells.


Results

Mouse HSCs were significantly increased following EpiFix® implantation compared to negative controls at days 7, 14 and 28 (see FIG. 3A). Mouse HSCs remained significantly increased in the EpiFix® samples at day 28 compared to ADM.


Mouse MSCs were significantly increased following EpiFix® implantation compared to negative controls at day 7 (see FIG. 3B). The average percentages of mouse MSCs were increased at all time points compared to negative controls.


Thus the data described above show that EpiFix® implants effectively recruit both HSCs and MSCs in vivo in normal mice. The data also show that EpiFix® leads to longer term HSC recruitment than acellular dermal matrix (ADM), supporting the hypothesis of a cytokine mediated effect of EpiFix®.


Example 5
Stem Cell Characterization in Mice Receiving EpiFix® Implants

A study was undertaken to characterize stem cells recruited to EpiFix® implantation sites in mice, using flow cytometry and immunohistochemistry.


Materials and Methods

Sterile, Purion® processed EpiFix® in a 5×5 mm square patch was implanted subcutaneously through a skin incision on the backs of sixteen 4 month old FVB/NJ mice. Identical skin incisions were made in another sixteen mice to function as a control treatment (sham). For comparison with a collagen scaffold, a 5×5 mm square patch of decellularized human dermis (acellular dermal matrix; ADM) was implanted subcutaneously on the backs of sixteen mice. Un-operated mice were used as a source of “normal” back skin for the analyses.


The surgical site was removed at 3, 7, 14 and 28 days following implantation for analyses of stem cells. Four animals/group were used at each time point. Stem cells were identified with two distinct methods: Fluorescence-activated cell sorting (FACS) and immunohistochemistry (IHC). For the FACS analysis, all cells were isolated from the amnion and associated regenerated tissue. The cells were fluorescently labeled with antibodies to specific stem cell markers. The identity and number of each cell type were determined with a flow cytometer.


For the immunohistochemical analyses, the membrane and associated regenerated tissue was fixed, sectioned for slides, and stained with specific antibodies to stem cells. Two antibodies were used for the immunohistochemistry: anti-CD34, which specifically detects hematopoietic progenitor cells (HPC), and reacts with dermal progenitor cells, endothelial cells, dendritic cells; and anti-CD31, which detects endothelial cells. The stained tissue sections were examined microscopically and the presence and number of specific stem cell types were measured. For the experimental analysis, the relative number of each cell type was counted. The results were calculated as the percentage of each cell type (no. of immunostained cells/total number of cells). Two areas were analyzed immunohistochemically for cell recruitment: the tissue surrounding the implant and the implant itself.


Results

Representative data from the FACS analyses are shown in FIG. 4A. The left panel shows the total number of cells in the sample. The middle panel shows the number of CD45 positive cells (in red box). The right panel shows the number of Sca-1 positive cells (in red box). CD45 and Sca-1 are specific markers for hematopoietic stem cells.



FIG. 4B shows an exemplary immunohistochemistry image. The gray bar in the lower left corner represents 50 μm. The section was stained with DAPI (blue—stains all cells) and anti-CD34 (red). The place where the tissue is implanted in the experimental mice is shown for reference.


Hematopoietic progenitor cell (HPC) levels were significantly elevated in tissue surrounding EpiFix® implants at days 14 and 28 compared to negative controls. Hematopoietic progenitor cells were significantly increased in the tissue surrounding the EpiFix® implant at days 14 and 28 compared to collagen scaffold ADM control.


Progenitor cells were recruited into the EpiFix® implant. Intra-implant hematopoietic progenitor cells peaked at day 14 in the EpiFix® implant, and remained elevated at day 28. Average intra-implant hematopoietic progenitor cells were increased in the EpiFix® implant at days 14 and 28 compared to control ADM. Progenitor cells were not recruited into the ADM control implant.


Vascularization of the EpiFix® implant steadily increased from day 14 to day 28. The amount of new vessel formation in the EpiFix® implant was significantly greater than that in the ADM control on day 28.


These data establish that EpiFix® contains one or more factors that recruit both hematopoietic stem cells and mesenchymal stem cells to the site of injury. More of these stem cells were found in the EpiFix® membrane and associated regenerated tissue that in the sham or, more importantly, the control collagen scaffold. EpiFix® was significantly more effective than the control decellularized collagen scaffold in recruiting progenitor cells to colonize the implant site. There were more progenitor cells in the EpiFix® membrane than in the control collagen scaffold.


EpiFix® also induced new blood vessel formation in the associated regenerated tissue and the EpiFix® membrane itself. Vascularization in the EpiFix® membrane was significantly higher than in the collagen scaffold control.


Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the compounds, compositions and methods described herein.


Various modifications and variations can be made to the compounds, compositions and methods described herein. Other aspects of the compounds, compositions and methods described herein will be apparent from consideration of the specification and practice of the compounds, compositions and methods disclosed herein. It is intended that the specification and examples be considered as exemplary.

Claims
  • 1. A composition comprising modified placental tissue, wherein said placental tissue is present in an amount, such that, when placed proximate to a body part in viva, the placental tissue elicits an effective amount of stem cell recruiting factors so as to promote endogenous stem cell recruitment to said body part, and wherein the amount of said placental tissue is the same as or more than that of a 4 mm diameter disk comprising 4 mg per square centimeter of the placental tissue.
  • 2. The composition of claim 1, wherein the body part is selected from the group consisting of bone, cartilage, tendon, retina, peripheral nerve, peripheral nerve sheath, small intestine, large intestine, stomach, skeletal muscle, heart, liver, lung, and kidney.
  • 3. The composition of claim 1, wherein the stem cells recruited by the composition are pluripotent stem cells.
  • 4. The composition of claim 1, wherein the placental tissue has a mass sufficient to recruit stem cells to a body part to be treated.
  • 5. The composition of claim 1, wherein the body part is diseased or injured.
  • 6. The composition of claim 1, wherein the placental tissue comprises amnion.
  • 7. The composition of claim 6, wherein the amnion is selected from the group consisting of decellularized amnion, deepithelialized amnion retaining a fibroblast layer and amnion containing both epithelial cells and a fibroblast layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. provisional patent application No. 61/713,352, filed on Oct. 12, 2012. The content of the prior application is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61713352 Oct 2012 US